
Loop Splitting for Efficient Pipelining in
High-Level Synthesis

Junyi Liu, John Wickerson, George A. Constantinides
Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ, United Kingdom

{junyi.liu13, j.wickerson, g.constantinides}@imperial.ac.uk

Abstract—Loop pipelining is widely adopted as a key opti-
mization method in high-level synthesis (HLS). However, when
complex memory dependencies appear in a loop, commercial
HLS tools are still not able to maximize pipeline performance.
In this paper, we leverage parametric polyhedral analysis to
reason about memory dependence patterns that are uncertain
(i.e., parameterised by an undetermined variable) and/or non-
uniform (i.e., varying between loop iterations). We develop an
automated source-to-source code transformation to split the
loop into pieces, which are then synthesised by Vivado HLS
as the hardware generation back-end. Our technique allows
generated loops to run with a minimal interval, automatically
inserting statically-determined parametric pipeline breaks at
those iterations violating dependencies. Our experiments on
seven representative benchmarks show that, compared to default
loop pipelining, our parametric loop splitting improves pipeline
performance by 4.3× in terms of clock cycles per iteration. The
optimized pipelines consume 2.0× as many LUTs, 1.8× as many
registers, and 1.1× as many DSP blocks. Hence the area-time
product is improved by nearly a factor of 2.

I. INTRODUCTION

With strong demand for higher computation efficiency, the
adoption of specialized FPGA-based hardware accelerators is
expanding in both systems-on-chip and data centers. High-
level synthesis (HLS) has become a key FPGA design tool
due to the promise of high development productivity. Software
programs written in C/C++ or OpenCL can be compiled to
register-transfer level (RTL) hardware designs by tools such
as Xilinx Vivado HLS, Altera SDK for OpenCL, and academic
tools such as LegUp [1]. Among various optimizations in
HLS, loop pipelining is probably the first one considered
when designers would like to improve performance of their
critical loops. A high performance pipeline is able to start
one new iteration at every clock cycle. However, this is
often not possible for those loops with non-trivial loop-carried
dependencies.

Although automatic loop pipelining is widely supported in
many state-of-art HLS tools, they can only handle limited
memory dependence patterns, which need to be fixed and
known at compile-time. Often, in order to obtain efficient loop
pipelining in practice, a designer has to analyse dependence
patterns manually. It is also necessary to tune program di-
rectives and source code iteratively so that HLS tools can
be guided to implement appropriate pipeline architectures.
Therefore, with regard to loop pipelining, the performance
gap between fully-automatic HLS and expert-tuned design is
still considerable. We aim to realize formal support of un-

0
1

m− 1
m

m+ 1

2m− 1
2m

2m+ 1

br
ea

k

br
ea

k

. .
.

. .
.

read
write
dependency

Clock cycle

A
rr

ay
in

de
x

Fig. 1: Breaking pipeline execution at (m+1)th and (2m+1)th

iterations for the loop shown in Listing 1.

for (i=0; i<N; i++)
A[i+m] = A[i] + 0.5f;

Listing 1: Motivational loop with uncertain dependency.

certain (i.e., parameterised by an undetermined variable) and
non-uniform (i.e., varying between different loop iterations)
memory dependencies for loop pipelining in HLS.

Uncertain dependencies: The loop in Listing 1 provides
a motivational example. It contains a parameterized affine
recurrence equation [2] whose write access to the array A
depends on a single undetermined variable m. HLS tools like
Vivado HLS are not able to apply automatic loop pipelining
to this loop, due to the uncertain memory dependency caused
by variable m. When m ≥ 1, HLS tools cannot determine at
compile time how many iterations can be overlapped in the
pipeline without violating a read-after-write (RAW) memory
dependency. However, if we force the pipeline to start one new
iteration at each clock cycle, we can recognize that the first
potential RAW conflict will happen at the (m+ 1)th iteration.
In this iteration, the read access of A[m] may happen before
the end of write access visiting the same array element in
the first iteration. As shown in Fig. 1, we can break pipeline
execution at the (m + 1)th iteration (i = m) to resolve this
RAW conflict; nevertheless, the next potential conflict will
happen at the (2m + 1)th iteration (i = 2m). In order to
avoid memory conflicts when it is necessary, loop pipeline
needs to halt the execution of the (km+ 1)th iteration, where
k = 1, ..., bN/mc. Consequently, in comparison to executing
iterations sequentially – the behaviour of commercial tools
with this code – loop parallelism can be improved significantly
by keeping the pipeline as busy as possible without violating
inter-iteration dependency.

Non-uniform dependencies: The pipeline strategy above
can also optimize loops with non-uniform memory dependen-

for (i=0; i<N; i++)
A[2*i] = A[i] + 0.5f;

Listing 2: Motivational loop with non-uniform dependency.

cies, which can appear in many applications such as matrix
decomposition and triangular matrix computation. An example
of such a loop is shown in Listing 2, where the dependency
distance changes with the value of the induction variable. The
optimization of this example is discussed in Section III as a
detailed demonstration of our splitting methods.

In this paper, we propose a new pipeline optimization
technique, which addresses the issue of avoiding both uncer-
tain and non-uniform memory conflicts. The intuition of our
technique is to burst as many iterations as possible down the
loop pipeline at the target initialization interval, until sending
another iteration would violate a dependency. The technique
is implemented as a source-to-source code transformation,
splitting the original loops, and inserting appropriate directives
to steer downstream Vivado HLS optimization. This static,
offline transformation can determine when to break pipeline
execution at runtime, as a function of a set of run-time
parameters; light-weight run-time checks of these parameters
are automatically synthesised to determine when to insert
pipeline bubbles. The rest of this paper explains how our
problem can be formulated in terms of parametric polyhedral
optimization and hence automated in a tool flow. In particular,
we make the following contributions:
• We formulate a general parametric polyhedral analysis to

capture inter-iteration memory dependences (Section IV-B).
• We develop a parametric polyhedral transformation to real-

ize parametric loop splitting in order to ensure dependences
are respected (Section IV-C).

• We prototype our new optimization technique as a source-to-
source code transformation tool, which uses Xilinx Vivado
HLS as the backend for RTL generation (Section IV-D).

• We evaluate loop splitting on seven benchmarks exhibiting
complex loop-carried dependencies, and obtain 4.3× aver-
age speed-up with moderate hardware overhead (Section V).

II. RELATED WORK

There have been a number of approaches for improving
the performance of loop pipelining in HLS. One approach is
to develop efficient scheduling methods under the constraints
of physical resources and memory dependencies. Zhang et
al. [3] propose the ‘System of Difference Constraints’ to
capture these constraints with timing requirements. By solving
an optimization problem with these constraints, their solution
can explore different schedules that trade-off resources and
speed. Canis et al. [4] apply recurrence minimization to reduce
initiation interval; their scheduling solution also enhances
Zhang et al.’s method with a backtracking approach.

Among other recent efforts to optimize loop pipelining for
HLS, polyhedral analysis has frequently been used. Morvan et
al. [5] propose a method using polyhedral analysis to improve
nested loop pipelining. To overcome conflicts of memory

dependencies in a pipeline, their approach firstly flattens the
nested loop and then inserts wait states (‘bubbles’) to resolve
memory conflicts. However, their bubble insertion requires that
there is no conflict of memory dependencies in the innermost
loop. Unlike their approach, our optimization can be applied at
the innermost loop level, and is specially developed for loops
with uncertain or non-uniform memory dependencies.

Alle et al. [6] propose a loop transformation technique
inserting additional code that dynamically detects memory
conflicts in the pipeline at runtime. In contrast to detecting
and resolving memory conflicts at runtime, our loop split-
ting applies static analysis and transformation to customize
conflict-free pipeline architectures at compile time.

When there are uncertain or non-uniform memory depen-
dence patterns in the loop, the existing static scheduling
methods cannot resolve memory conflicts with a fixed and
small initiation interval, which means that a conservative
pipeline schedule with low parallelism has to be selected. Liu
et al. [7] introduced a transformation for loops with uncertain
memory dependence patterns extending previous approaches
based on polyhedral analysis to a parametric polyhedral anal-
ysis – as we do here – to generate the condition in which
the input loop can be pipelined without considering inter-
iteration memory dependency. However, they only identify
ranges of the parameters for which there are no significant
dependencies, and so the loop can be pipelined fully – it is an
‘all or nothing’ approach. Our work generalises their technique
by demonstrating that through a novel loop partitioning and
transformation, even those loops that Liu et al. are unable to
accelerate can have their performance significantly improved.

Li et al. [8] introduced an index-set splitting technique to
improve inner loop parallelism. Their approach recognizes
the loop iterations that are free of memory dependencies
and memory port conflicts so that fast loop pipelining is
applied on these iterations. Although their technique can also
improve pipelining on some loops with non-uniform memory
dependencies, our optimization is formalized to realize fine-
grained splitting and support uncertain dependencies.

In addition to loop pipelining, there are various other
polyhedral-based optimizations targeting data reuse and mem-
ory partitioning in HLS [9], [10], [11], [12]. These focus on
optimizing custom memory sub-systems to reduce memory
bottlenecks for better loop parallelism, and are complementary
to our approach.

III. MOTIVATION

In the context of HLS, loop pipelining is a technique to
enable the execution of multiple successive iterations to be
overlapped in a single synthesized pipeline hardware. The
pipeline performance is reflected by the achieved initiation
interval (II), which is the constant interval between the starts
of successive loop iterations. If we assume the latency of one
iteration is L clock cycles, the maximum number of parallel
iterations in this pipeline is equal to dL/IIe. Due to the phys-
ical limit of hardware resources and memory dependencies,
the maximum parallelism of loop pipelining (i.e., II = 1) is

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70
read
write
violated dependency
respected dependency

Clock cycle

A
rr

ay
in

de
x

(a) Too much pipelining (II = 1)

0 100 200 300 400 500 600

Clock cycle

(b) No pipelining (II = L)

0 20 40 60 80 100

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70sub-
loop 1

sub-loop 2 sub-loop 3

block
1

block
2

block
3

Clock cycle

(c) Our solution, loop splitting

Fig. 2: Different pipelining strategies for the motivational loop shown in Listing 2

not always achievable, especially when there are non-trivial
inter-iteration memory dependencies in the loop. If memory
dependencies are constant for all iterations, HLS will increase
II during the scheduling process to avoid memory conflicts
safely. However, memory dependencies can also vary between
iterations, or contain uncertainty. In these complex cases, a
pipeline with fixed II is not able to resolve all potential
memory conflicts. To realize loop pipelining, current HLS
tools have to select II close to pipeline latency, which is often
conservative in terms of parallelism.

In contrast to the conservative pipeline approach, we pro-
pose to synthesize a pipeline that can execute its iterations
with highest parallelism when it is possible, as illustrated
in Fig. 1. To realize this new optimization, we apply a loop
transformation to split the loop, which guides the HLS tool to
insert runtime break points into the generated pipeline.

A. Dependence distance

The analysis of memory dependencies is essential to deter-
mine how to split a loop. Given a pair of dependent write and
read accesses in a loop, the data written in one iteration should
be only read in a later iteration. The number of iterations
between these two accesses is the dependence distance d,
which will be further formalized in Section IV-B. In the
motivational loop shown in Listing 2, the data written to
A[2*i] at the (i + 1)th iteration is read from A[i+d] at
the later (i + d + 1)th iteration. Therefore, d = i, which
indicates that the dependence distance of this loop varies
between iterations.

For the sake of simplicity, assume for the example that the
latency of the loop body is L = 15 clock cycles. Read and
write accesses of the loop are assumed to be executed at the
first and last pipeline stages respectively. In Fig. 2, thin black
lines connect memory accesses in the same loop iteration.
Horizontal lines connect reads and writes to the same array
index; these lines are green when the write occurs after the

read, and red otherwise. If we apply pipelining with II = 1 as
shown in Fig. 2a, there will be L successive iterations executed
in parallel in the pipeline. When

1 ≤ d ≤ L− 1, (1)

read accesses will be executed before the finish of their
dependent write accesses, so that the memory dependency is
violated as illustrated with red lines in Fig. 2a. Since d could
be as low as 1, HLS tools like Vivado HLS have to select
II = L to satisfy the worst case, as shown in Fig. 2b (noting
the greatly enlarged x-axis).

B. Splitting the loop

The conservatism of loop pipelining in HLS can be reduced
by loop splitting. Firstly, we need to recognize which iterations
cause memory conflicts when the loop is pipelined with
II = 1. In Fig. 2a, the first and last iterations with d
satisfying (1) are the 2nd and 15th iterations. The loop is
then partitioned at these two iterations into three sub-loops
as shown in Fig. 2c. The first (1st and 2nd iterations) and
third (16th to N th iterations) sub-loops are safely pipelined
with II = 1.

After the fast parts of the motivational loop are separated,
the bottleneck of pipeline parallelism is located in the second
sub-loop. Since d of each iteration in this sub-loop satisfies (1),
we further partition these iterations into loop blocks as shown
in Fig. 2c. These blocks are pipelined respectively with II =
1, which is similar to breaking pipeline execution illustrated
in Fig. 1. The size of each block is equal to the dependence
distance of its first iteration. For instance, the first iteration of
the first block is the 3rd iteration with d = 2. When the first
block is executed in the pipeline with II = 1, the pipeline has
to delay the start of the 5th iteration to avoid its RAW conflict
with the 3rd iteration. Hence, there are two iterations (3rd and
4th) packed into the first block. It is notable that the pipeline
break created for the first iteration in a block also resolves the
RAW conflicts of the other iterations in this block. Similarly,

// Sub-loop 1: force pipelining with II=1
for (i=0; i<=1; i++)
A[2*i] = A[i] + 0.5f;

// Sub-loop 2:
for (k=2; k<=14; k=k+k)
// force pipelining inner loop with II=1
for (i=k; i<=min(14,k+k-1); i++)

A[2*i] = A[i] + 0.5f;
// Sub-loop 3: force pipelining with II=1
for (i=15; i<N; i++)
A[2*i] = A[i] + 0.5f;

Listing 3: Transformed loop from Listing 2.

we partition the next four iterations (5th to 8th) into the second
block and the rest (9th to 15th) into the third block.

C. Transformation template

The proposed splitting of the motivational loop can be
represented concisely by the template shown in Listing 3.
Three sub-loops can be pipelined entirely or block-wise with
II = 1 by setting directives to force HLS tools to ignore any
inter-iteration dependency. In the second sub-loop, an outer
loop level is inserted to realize block-wise splitting. To create
pipeline break points for runtime execution, we force the back-
end HLS to apply pipelining with II = 1 on the inner loop by
instructing it to ignore dependences. The bounds of the outer
loop level determine the range of iterations in the original loop.
The new induction variable k represents the start point of each
block partition. The step size of k is equal to the dependence
distance of the first iteration in the inner loop, and this d = k
also defines the trip count of each block. The min function
is used to ensure that the iterations of the last block do not
exceed the upper bound of sub-loop 2. For example, the third
block could contain eight iterations, but only the first seven
ones (9th to 15th) are inside the second sub-loop as shown
in Fig. 2c.

IV. POLYHEDRAL-BASED LOOP SPLITTING

In this section, we formulate a parametric polyhedral analy-
sis to capture memory dependence patterns for loop pipelining.
The parameters in the polyhedral models represent the unde-
termined variables in memory access patterns. Based on the
information from the analysis, loop splitting are realized by
transforming polyhedral models. Finally, we provide imple-
mentation details of our tool flow.

A. Preliminaries

The input of our analysis is a single nested loop with n
levels. There are Npair pairs of memory accesses visiting
the same arrays in this loop, . In this paper, our analysis is
described to capture RAW conflicts, but can also support other
memory dependencies. In addition, m undetermined variables
existing in memory accesses are represented as a parameter
vector p ∈ P, where P ⊆ Zm represents potentially known
ranges of these variables.

Definition 1 (Iteration Domain): The iteration domain Dp

is a parametric set of iteration vectors of the form:

Dp =
{
v ∈ Zn

∣∣ Ax ≤ b where x = [vT , pT]T
}
,

where v is a vector of n induction variables, A is a rational
matrix and b is a rational vector. The inequality system
represents the bounds for all loop levels.

For example, in Listing 1, x = [i,m]T , and the inequality
constraint of Dp is

[−1 0
1 0

]
[im] ≤

[
0

N−1
]
.

Definition 2 (Lexicographic Order): Given two iteration
vectors v = [v0, v1, . . . , vn−1]T and v′ = [v′0, v

′
1, . . . , v

′
n−1]T ,

v′ � v holds if and only if

∃0 ≤ i < n, v′i > vi ∧ ∀0 ≤ j < i, v′j = vj .

According to the sequential order of loop iterations, this
lexicographic order represents that v′ is executed after v in
pipeline.

Definition 3 (Array Indexing Function): Given one memory
access to a w-dimensional array, array indexing functions are
assumed in this paper to take the general affine form:

y = f(v, p) = Av +Bp+ c,

where v ∈ Dp, and y ∈ Zw is a vector of array indices.
A ∈ Zw×n and B ∈ Zw×m are given as two coefficient
matrices, and c ∈ Zw is given as one constant vector. This
parametric affine expression transforms one iteration vector
into one multi-dimensional array index.

The dependency relations of loop iterations can be assessed
by array indexing functions of dependent memory accesses.

Definition 4 (Iteration Dependency Map): In a given loop
nest, the kth pair of write and read accesses visiting the same
array can form one iteration dependency map Qp

k. This map
links two dependent iteration vectors in Dp such that

Qp
k =

{ (
v

v′

)
wk(v, p) = rk(v′, p)

∧ v′ � v ∧ v ∈ Dp ∧ v′ ∈ Dp

}
,

where v′ � v ensures that the sink iteration v′ is executed
after the source iteration v. wk(v, p) and rk(v′, p) are array
indexing functions of the kth pair of write and read accesses,
whose equality constraint implies a read-after-write memory
dependency between these accesses.

In practice, the equality constraint in Qp
k may be piece-

wise affine when there are conditions in loop bounds or
around memory accesses. For space reasons, we assume the
equality constraint is always affine in this paper, but our
implementation also supports the piece-wise case.

B. Parametric Polyhedral Analysis

1) Memory dependency in loop pipelining: As mentioned
in Section III, pipeline architecture is affected by both inter-
iteration memory dependency and loop scheduling. The infor-
mation about pipeline scheduling is assumed to be available
for our analysis. To formally evaluate memory conflicts in loop
pipelining, we firstly need to determine which iterations will
violate memory dependencies.

Definition 5 (Conflict Domain): Given an iteration depen-
dency map Qp

k, target initiation interval II and scheduled la-
tency Lk between the kth pair of dependent memory accesses,

the conflict domain Spk is a parametric set of iteration vectors
in Dp such that

Spk =

{
v

(∃v′, (v, v′) ∈ Qp
k)

∧ Ip (Zp
k(v))− Ip(v) ≤

⌈
Lk

II

⌉
− 1

}
,

where

Zp
k(v) = lexmin

({
v′
∣∣ (v, v′) ∈ Qp

k

})
,

which generates the lexicographically minimum point of v′

linked to v based on the equality constraint in Qp
k, and

Ip(v) = #
{
u
∣∣ u ∈ Dp ∧ v � u

}
,

which counts the number of iterations that are executed
before the iteration corresponding to v. Generally, Ip(v) can
be expressed as a parametric pseudo-polynomial, as known
as an Ehrhart polynomial, that counts the integer points of
a parametric polytope [13]. Similar to (1), the inequality
conditions check the existence of memory conflicts based on
given pipeline scheduling.

As shown in Def. 5, the conflict domain Spk includes
all iterations that will violate memory dependencies when
the entire loop is pipelined with the target II . To consider
dependencies implied from all pairs of dependent accesses,
the global conflict domain, Spconf =

⋃Npair

k=1 S
p
k , is the union of

all Spk .
The set of parameter vectors p for which Spk = ∅ is the safe

region, denoted as Pk ⊆ P. The global safe region, Psafe =⋂Npair

k=1 Pk, is the intersection of all local safe regions, and
allows conflict-free pipelining on the entire loop nest.

In this work, the Integer Set Library (ISL) [14] is used to
implement our parametric polyhedral analysis. As mentioned
before, the general form of Ip(v) is a parametric pseudo-
polynomial, which are representable with ISL. Morvan et
al. [5] estimated the lower bound of Ip (Zp

k(v)) − Ip(v) to
check pipeline legality for nested loops, but this bound was
mentioned to be not always tight. Therefore, sophisticated
analysis of parametric pseudo-polynomial is limited in ISL.

2) Constructing the conflict domain: In our analysis, we
limit the form of Ip (Zp

k(v)) − Ip(v) so that we can use
lexicographic optimization functions from ISL to generate Pk

from Spk . Currently, we restrict this expression with counting
integer points to be affine such that

dk(v) = Ip (Zp
k(v))− Ip(v) = cT0 v + cT1 p+ cT2 ,

where c0, c1, c2 are constant vectors of coefficients. To create
this affine expression, Qp

k is firstly used to generate the
difference of iteration vectors, which is Zp

k(v)− v.
Definition 6 (Dependence Difference): Given an iteration

dependency map Qp
k, the dependence difference δpk(v) is

a vector difference equal to an affine expression with the
following form.

δpk(v) = Zp
k(v)− v = Av +Bp+ c,

where A ∈ Zn×n and B ∈ Zn×m are coefficient matrices, and
c ∈ Zn is a constant vector. Since lexicographic optimization
is applied to obtain Zp

k(v), δpk is still single-valued when the
coefficient matrix of v′ in the read access function r(v′, p) is
not invertible.

Then, we use δpk(v) and trip counts of loop levels to count
integer points between v and Zp

k(v). We note that δpk(v) =[
δpk,0, δ

p
k,1, . . . , δ

p
k,n−1

]T
, and for 0 ≤ i < n, ti represents the

trip count of the ith loop level. Due to the affine restriction,
the supported cases of calculating dk(v) are shown as follows.
• Rectangular case. If every loop level has a uniform trip

count (which means that

dk(v) =
[
Πn−1

i=1 ti, Πn−1
i=2 ti, . . . , tn−1, 1

]
δpk(v)

holds), then there must be at most one level (say, j) with
a parametric trip count, and the dependence difference at
every level outside j must be constant (i.e., ∀0 ≤ i < j,
δpk,i is constant).

• Non-rectangular case. Otherwise, let j be the innermost
level with a non-uniform trip count. Then every level inside
j must have a constant trip count (which means

dk(v) =
[
. . . ,Πn−1

i=j ti, Πn−1
i=j+1ti, . . . , tn−1, 1

]
δpk(v)

holds), the dependence difference at level j−1 must be 0 or
1 (i.e., δpk,j−1 ≤ 1), and the dependence difference at every
level outside j−1 must be 0 (i.e., ∀0 ≤ i < j−1, δpk,i = 0).

C. Polyhedral Transformation

According to the memory dependency analysis, the iteration
domain Dp is partitioned based on the conflict domain and
dependence difference, when parameters are in the conflict
region, Pconf = P \ Psafe. In general, our transformation
modifies the model of static control parts (SCoP) [15] for
representing loop programs.

1) Determining the conflict dimension: In order to deter-
mine which level of a given loop nest should be split, each
non-zero dependence difference δpk is assessed to locate the
conflict dimension named as q. For each pair of dependent
memory accesses, we firstly locate its local conflict dimension
i. This is the outermost loop level causing memory dependency
through this pair of accesses; that is: δpk,i 6= 0 and ∀0 ≤ j <
i, δpk,j = 0. Then, the conflict dimension q is generated as
the largest local conflict dimension for all 1 ≤ k ≤ Npair.
Therefore, when the loop nest is split at the qth level, all
potential memory conflicts should be resolved.

2) Splitting by conflict domain: The first stage is to apply
fast pipelining on the iterations outside the conflict domain
when p ∈ Pconf . This is realized by partitioning the iteration
domain into three sub-domains at the conflict dimension. We
use lexicographic optimization to generate the first and last
iterations causing memory conflict:

lp = lexmin(Spconf), and up = lexmax(Spconf).

In particular, we take the qth elements of lp and up as the
split points at the conflict dimension. These two parametric
elements are represented as lpq and upq , whose expressions may
be piece-wise affine. The iteration domain Dp is partitioned
along lpq and upq such that

Dp =
⋃

Dp
1 =

{
v
∣∣ v ∈ Dp ∧ vq ≤ lpq

}
Dp

2 =
{
v
∣∣ v ∈ Dp ∧ lpq < vq ≤ upq

}
Dp

3 =
{
v
∣∣ v ∈ Dp ∧ upq < vq

} .

for (k=2; k<=14; k++){
for (i=k; i<=min(14,k+k-1); i++)

A[2*i] = A[i] + 0.5f;
k=k+k-1; }

Listing 4: Alternative form of sub-loop 2 shown in Listing 3.

These three sub-domains correspond to three sub-loops ex-
ecuted in sequential order. The pipeline break points are
introduced during the transitions between sub-loops, so that the
sub-loops with Dp

1 and Dp
3 can be fully pipelined by ignoring

loop-carried dependencies.
3) Splitting by dependence difference: The second stage

is to insert pipeline break points in the sub-loop with Dp
2 , so

that the pipeline can execute as many iterations in parallel
as possible. These break points are created by splitting the
qth loop level block-wise, and fast pipelining is applied on
split loop blocks. Correspondingly in Dp

2 , a new dimension is
inserted between the (q− 1)th and qth dimensions to create a
new iteration domain of the second sub-loop such that

D′p2 =

 v′

v′ = [v0, . . . , vq−1, vblk, vq, . . . , vn−1]T

∧ [v0, . . . , vq−1, vq, . . . , vn−1]T ∈ Dp
2

∧ lpq < vblk ≤ upq ∧ tblk | (vblk − lpq − 1)

∧ vblk ≤ vq < vblk + tblk

 ,

where vblk is the induction variable of the inserted dimension,
and tblk represents the trip count of the conflict dimension.
In general, tblk is a piece-wise affine expression with the
following form: tblk = αpvblk + βpp + γp, where αp, βp

and γp are piece-wise constant coefficients. It is generated by
taking the union of minimum positive δpk,q such as
Npiece⋃
i=1

(
min

{
δpk,q

∣∣ δpk,q > 0 ∧ p ∈ Pi
conf ∧ 1 ≤ k ≤ Npair

})
,

where Pconf =
⋃Npiece

i=1 Pi
conf , and Npiece represents the

number of disjoint parameter sets in the conflict region.
The divisibility constraint, tblk | (vblk − lpq − 1), can be

represented by existential quantification in ISL only when tblk
is a constant. To avoid this limitation, we insert one additional
statement in our SCoP model to explicitly define the stride of
the inserted loop level, which is equivalent to the divisibility
constraint of vblk. This alternative transformation is illustrated
in Listing 4, where induction variable k is incremented by
tblk = k after the execution of the inner loop level.

D. Implementation

We prototype our optimization technique in a source-to-
source code transformation framework. In our tool flow,
PoTHoLeS [16] is used to implement our custom polyhedral
analysis and transformation with the support of ISL. In PoT-
HoLeS, the SCoP model of the input loop is generated by the
Polyhedral Extraction Tool (PET) [17]. Xilinx Vivado HLS is
used as the back-end tool for generating RTL code. Due to
the limitation of collecting detailed scheduling information in
a commercial HLS tool, we use Vivado HLS to synthesize the
input loop once without considering inter-iteration dependen-
cies and take the implemented iteration latency as Lk for the

// Original:
for (i = 0; i < 100; i++)
 for (j = 0; j < 2; j++)
 #pragma HLS PIPELINE
 A[2*i+m][j] = A[i][j] + 0.5f;

// Transformed:
if (m >= -97 && m <= 9){
 for (i = 0; i < -m + 1; i++)
 for (j = 0; j < 2; j++)
 #pragma HLS PIPELINE
 #pragma HLS DEPENDENCE variable=A array inter false
 A[2*i+m][j] = A[i][j] + 0.5f;
 for (k = max(0, -m + 2); k <= -m + 8; k++){
 for (i = k; i < min(-m + 8, m + 2 * k - 1); i++)
 for (j = 0; j < 2; j++)
 #pragma HLS PIPELINE
 #pragma HLS DEPENDENCE variable=A array inter false
 A[2*i+m][j] = A[i][j] + 0.5f;
 k = k + (m + k - 1);
 }
 for (i = -m + 9; i < 100; i++)
 for (j = 0; j < 2; j++)
 #pragma HLS PIPELINE
 #pragma HLS DEPENDENCE variable=A array inter false
 A[2*i+m][j] = A[i][j] + 0.5f;
} else
 for (i = 0; i<100; i++)
 for (j = 0; j < 2; j++)
 #pragma HLS PIPELINE
 #pragma HLS DEPENDENCE variable=A array inter false
 A[2*i+m][j] = A[i][j] + 0.5f;

sub-loop 1

sub-loop 2

sub-loop 3

fast loop

Fig. 3: Demonstration of code transformation.

polyhedral analysis. To configure loop pipelining in Vivado
HLS, we also customize the insertion of program directives
(#pragma) in the generation of transformed code.

One example of our implemented code transformation is
shown in Fig. 3. The original loop is a two-dimensional
loop with one undetermined variable m in the write to
A[2*i+m][j], which implies uncertain and non-uniform
memory dependency. Since we also implement parametric
loop pipelining within our flow, the transformed code contains
the detection of conflict region of parameters, which is imple-
mented by the condition of the outermost if statement. The
fast loop in the else-case is aggressively pipelined by ignoring
inter-iteration dependency. The then-case includes three sub-
loops split from the original loop. Because the conflict domain
of the original loop is parametrized, bounds of sub-loops
contain m and code macros like min() and max(). For the
original loop, the dependence difference recognized by our
tool is m+i. Memory conflicts are only related to i, and thus
our tool splits the original loop at the outer level. In sub-loop
2, a new loop level is inserted with induction variable k, which
realizes block-wise loop splitting. Since Vivado HLS cannot
apply entire pipelining on a nested loop with variable bounds,
only the loop levels inside the inserted one in sub-loop 2 can
be pipelined. Therefore, we leverage this feature to implement
block-wise loop pipelining.

V. EXPERIMENTS

A. Benchmarks

As discovered in [8], [7], most loops in Polybench [18]
and some other related benchmarks contain only fixed and
uniform memory access patterns. Loop pipelining in HLS is
also preferred to implement these relatively simple loops due
to its lack of supporting uncertain and non-uniform memory
dependencies. Therefore, to evaluate the effectiveness of our

TABLE I. Performance and resource results of proposed loop transformation.

Orig Fast Split Orig Tran ratio Orig Tran ratio Orig Tran ratio Orig Tran ratio Orig Tran ratio Orig Tran ratio Orig Tran ratio
dist_param 12 1 1 12.0 5.0 0.41 2.068 2.428 1.17 24.9 12.0 0.48 233 467 2.00 332 584 1.76 2 2 1.00 5.79 5.63 0.97

dist_itr 14 - 1 14.0 1.7 0.12 2.303 2.816 1.22 32.3 4.9 0.15 225 422 1.88 397 641 1.61 2 2 1.00 7.26 2.06 0.28

dist_itr_param 6 1 1 6.1 1.7 0.28 2.052 2.843 1.39 12.4 4.8 0.39 283 827 2.92 397 1037 2.61 4 6 1.50 3.52 3.98 1.13

typ_loop 12 1 1 12.0 1.7 0.14 3.174 2.751 0.87 38.1 4.6 0.12 636 742 1.17 908 1246 1.37 5 5 1.00 24.23 3.44 0.14

jacobi_2d 48 3 3 48.0 14.2 0.29 2.354 2.939 1.25 113.0 41.6 0.37 614 1875 3.05 879 2506 2.85 7 10 1.43 69.38 78.02 1.12

tri_sp_slv 18 2 2 18.8 7.5 0.40 2.976 3.010 1.01 55.9 22.5 0.40 447 783 1.75 704 1054 1.50 6 6 1.00 24.97 17.61 0.71

floyd_warshall 14 - 2 14.0 2.3 0.16 2.511 2.758 1.10 35.2 6.3 0.18 464 727 1.57 692 1078 1.56 2 2 1.00 16.31 4.60 0.28

Geomean 0.23 1.13 0.27 1.95 1.83 1.12 0.52

FF DSP48E1 Area-Time Product*

* Area-Time Product = LUT number × Avg. Time/Iter (us)

Benchmark
Initiation Interval Avg. Cycles/Iter Clock (ns) Avg. Time/Iter (ns) LUT

loop splitting, we select seven representative benchmarks
whose dependence distances can be larger than one iteration
in their conflict regions. The loop bodies of these benchmarks
contain data paths of single precision floating point numbers.
The undetermined variables may appear in memory indices
and loop bounds, which are integers between INT_MIN and
INT_MAX as defined in <limits.h>.

dist param and dist itr are 1D loops shown in Listing 1
and Listing 2 respectively. dist itr param is a 2D loop shown
in Fig. 3. typ loop, jacobi 2d and tri sp slv are used as
benchmarks by Liu et al. [7]. Specifically, jacobi 2d is a
2D Jacobi stencil loop from Polybench modified to include
uncertain dependencies. tri sp slv is a 1D loop with non-
uniform dependencies, which has one undetermined iteration
causing a memory conflict. floyd warshall is a 3D loop
for finding shortest paths from Polybench, which has one
fixed iteration causing a memory conflict in the innermost
loop. Source codes, testbenches, and transformed codes of all
benchmarks are available in a public GitHub repository 1.

B. Experimental setup

In our experiments, we use Xilinx Vivado HLS 2015.4 as the
RTL generation backend. The target FPGA platform is Xilinx
Virtex 7 XC7VX485T. On-chip memory in Virtex 7 is dual-
port block RAM, which is considered when calculating the
target initiation interval. To achieve balanced results of clock
frequency and resource usage, we set the target clock period as
3ns for all experiments. The functional correctness of our loop
transformation is verified with dedicated testbenches through
C/RTL co-simulation provided by Vivado HLS. Furthermore,
Xilinx Vivado Design Suite 2015.4 is used to synthesize, place
and route the generated RTL codes for precise timing and
implementation results.

C. Results

1) Overall performance: Table I presents the overall
performance results, which compares our transformation to
the default loop pipelining of the HLS tool. Columns “Orig”
and “Tran” contain the results of the original and transformed
pipelines respectively. Column “Fast” refers to the duplicated
loops whose parameters are in the safe region, and column

1https://github.com/Junyi-Liu/benchmarks-HLS/tree/master/LSP

“Split” refers to the split sub-loops. There are no undeter-
mined variables in dist itr and floyd warshall, so that our
transformation only splits these loops.

Since we safely guide the HLS tool to ignore inter-iteration
dependency when it is necessary, the transformed pipelines
have an II ranging from just 1 to 3 cycles. This achieved
II only reflects the peak performance of the transformed
pipelines. To evaluate runtime performance, we measured loop
execution time with further experiments. For each loop with
uncertain memory accesses, we generated 1000 test cases with
random values of uncertain variables. These random values
were ensured to be within the conflict region of parameters, so
that we can assess the runtime performance of loop splitting.
For each benchmark, we collected 1000 pairs of iteration
numbers and execution time in clock cycles. The average
cycles per iteration in Table I shows a 4.3× speed-up in clock
cycles after loop splitting.

In return for higher runtime parallelism, the transformed
pipelines have a slower clock speed than the original pipelines.
The clock period is increased by 13% on average, which indi-
cates that our transformation does not significantly increase the
critical paths of generated pipelines. To consider the impact
of an increased clock period, average latency (in nanoseconds)
per iteration has also been calculated in Table I. Our optimiza-
tion still provides a 3.8× speed-up in real execution time.

2) Resource usage: Despite the improvement of loop
parallelism, our optimization also leads to the growth of
resource usage. As shown in Table I, after transformation,
the average utilization of Look-up Tables (LUTs) and Flip-
Flop registers (FFs) increases by 95% and 83% respectively.
In addition, our HLS backend tends to share DSP blocks used
for floating point computation across different loop bodies. As
shown in Table I, the average DSP block usage is increased
by only 12%.

Although the loop bodies of transformed loops are all
duplicated from the originals as shown in Fig. 3, it is still
difficult for our HLS backend to explore resource sharing,
especially for the calculation of memory addresses. However,
resource overhead is still less significant than performance
improvement, as witnessed by a 48% average reduction of the
area-time product. In Vivado HLS, forcing resource sharing
can be realized by replacing duplicated loop bodies with same
function call and disabling function inlining. Such comple-
mentary transformation could be effective to reduce resource

TABLE II. Splitting stages applied to benchmarks.

Benchmark Splitting Stage
conflict domain dependence difference

dist param - X
dist itr X X

dist itr param X X
typ loop - X
jacobi 2d - X
tri sp slv X -

floyd warshall X -

overhead when array index functions are complex.
3) Analysis of runtime performance: According to the

different memory dependence patterns detected in the bench-
marks, our transformation applied different combinations of
splitting stages, which are summarized in Table II. When the
loops are split by conflict domain, most transformed loops
have an average cycles/iteration close to II , as shown in
Table I. In particular, the second sub-loops of tri sp slv and
floyd warshall are empty, so that there is no further splitting
by dependence difference in these loops. The transformed
tri sp slv has a relatively larger cycles/iteration due to its
undetermined loop bounds.

For dist param, typ loop and jacobi 2d, the entire loop
can be treated as sub-loop 2. In these benchmarks, only
splitting by dependence difference is applied, and pipeline per-
formance changes with the parameters determined at runtime.
We further evaluated the runtime performance of dist param
to illustrate the speed-up of this splitting stage. Fig. 4 shows
the performance of four types of pipeline architectures, where
we compare our loop splitting (LSP) with parametric loop
pipelining (PLP) [7]. We also collected performance upper
bounds of dist param. They are created by synthesising the
loop with m replaced by constants inside the conflict region.
Although the behaviour of the synthesised pipelines is only
correct for their fixed dependence difference, these pipelines
still represent the ideal loop performance. When m is 1,
all iterations have to be executed sequentially. Due to extra
operations added to support LSP, the pipeline optimized by
LSP is slower than the original one only in this case. The
conflict region of dist param is 1 ≤ m ≤ 13, where the
pipeline optimized by PLP acts as same as the original one. In
contrast, when m becomes larger, there are fewer break points
inserted in the execution of the loop transformed by LSP, so
its runtime performance becomes closer to the ideal one. For
both LSP and PLP, this ideal performance can be achieved
when the loop is executed in fast mode (where m ≥ 14).

VI. CONCLUSION

In this paper, we introduce loop splitting to improve the
performance of loop pipelining. It is realized based on para-
metric polyhedral analysis and transformation. We prototyped
our proposed optimization in a source-to-source code transfor-
mation framework which is compatible with commercial HLS
tools such as Vivado HLS. For a given loop, our splitting
is able to resolve all potential conflicts of uncertain or non-
uniform memory dependency at compile time. According to
experiments on seven benchmark loops, runtime parallelism is

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

Dependence difference (= m)

C
yc

le
s/

It
e

ra
tio

n

Original code
Transformed by LSP
Transformed by PLP
Ideal performance

Fig. 4: Evaluating performance of transformed dist param.

increased significantly by our optimization technique, specifi-
cally 4.3× speed-up in clock cycles per iteration. At the same
time, resource usage overhead is shown to be moderate.

ACKNOWLEDGMENTS

The support of the EPSRC grants EP/I020357/1 and
EP/K034448/1, the Royal Academy of Engineering, and Imag-
ination Technologies is gratefully acknowledged. We thank the
anonymous reviewers for their helpful suggestions.

REFERENCES

[1] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp: High-level synthesis for FPGA-
based processor/accelerator systems,” in FPGA, 2011.

[2] P. Quinton and V. Dongen, “The mapping of linear recurrence equations
on regular arrays,” Journal of VLSI signal processing systems for signal,
image and video technology, vol. 1, no. 2, pp. 95–113, 1989.

[3] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline
synthesis,” in ICCAD, 2013.

[4] A. Canis, S. D. Brown, and J. H. Anderson, “Modulo SDC scheduling
with recurrence minimization in high-level synthesis,” in FPL, 2014.

[5] A. Morvan, S. Derrien, and P. Quinton, “Polyhedral bubble insertion:
A method to improve nested loop pipelining for high-level synthesis,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 32, no. 3, 2013.

[6] M. Alle, A. Morvan, and S. Derrien, “Runtime dependency analysis for
loop pipelining in high-level synthesis,” in DAC, 2013.

[7] J. Liu, S. Bayliss, and G. A. Constantinides, “Offline synthesis of online
dependence testing: Parametric loop pipelining for HLS,” in FCCM,
2015.

[8] P. Li and L.-N. Pouchet, “Throughput optimization for high-level
synthesis using resource constraints,” in Int. Workshop on Polyhedral
Compilation Techniques (IMPACT ’14), 2014.

[9] Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. K. Cheung,
“Automatic on-chip memory minimization for data reuse,” in FCCM,
2007.

[10] S. Bayliss and G. A. Constantinides, “Optimizing SDRAM bandwidth
for custom FPGA loop accelerators,” in FPGA, 2012.

[11] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, “Polyhedral-based
data reuse optimization for configurable computing,” in FPGA, 2013.

[12] Y. Wang, P. Li, and J. Cong, “Theory and algorithm for generalized
memory partitioning in high-level synthesis,” in FPGA, 2014.

[13] P. Clauss and V. Loechner, “Parametric analysis of polyhedral iteration
spaces,” Journal of VLSI signal processing systems for signal, image
and video technology, vol. 19, no. 2, 1998.

[14] S. Verdoolaege, “isl: An integer set library for the polyhedral model,”
in Proc. Int. Conf. on Mathematical Software (ICMS ’10), 2010.

[15] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and
O. Temam, “Semi-automatic composition of loop transformations for
deep parallelism and memory hierarchies,” Int. J. Parallel Programming,
vol. 34, no. 3, Jun. 2006.

[16] “PoTHoLeS: Polyhedral Compilation Tool for High Level Synthesis.”
[Online]. Available: https://github.com/SamuelBayliss/Potholes

[17] S. Verdoolaege and T. Grosser, “Polyhedral extraction tool,” in Int.
Workshop on Polyhedral Compilation Techniques (IMPACT ’12), 2012.

[18] “Polybench.” [Online]. Available: http://web.cse.ohio-state.edu/
∼pouchet/software/polybench/

