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Abstract 

Full derivations of Heyrovsky-Volmer (HV), Tafel-Volmer(TV), Heyrovsky-Tafel(HT), and Heyrovsky-Tafel-Volmer(HTV) 

mechanisms under steady state conditions are provided utilising a new theoretical framework which allows better 

understanding of the each of the mechanistic currents and part currents. Simple and easily implemented equations 

are presented, which provide both the hydrogen coverage and electrochemical current as a function of overpotential 

and relevant kinetic parameters. It is shown how these responses are governed by a set of dimensionless parameters 

associated with the ratio of electrokinetic parameters. For each of the different mechanisms, an “atlas” of Hads 

coverage with overpotential and corresponding current density is provided, allowing an understanding of all possible 

responses depending on the dimensionless parameters.  Analysis of these mechanisms provides the limiting reaction 

orders of the exchange current density for protons and bimolecular hydrogen for each of the different mechanisms, 

as well as the possible Tafel slopes as a function of the molecular symmetry factor, . Only the HV mechanism is 

influenced by pH whereas the TV,HT, and HTV mechanisms are not. The cases where the equations simplify to 

limiting forms are discussed. Analysis of the exchange current density from experimental data is discussed, and it is 

shown that fitting the linear region around the equilibrium potential underestimates the true exchange current 

density for all of the mechanisms studied. Furthermore, estimates of exchange current density via back-

extrapolation from large overpotentials is also shown to be highly inaccurate. Analysis of Tafel slopes is discussed 

along with the mechanistic information which can and cannot be determined. The new models are used to 

simultaneously fit sixteen experimental responses of Pt/C electrodes in acid towards the her/hor as a function of , 

pH, p(H2), and temperature, using a consistent set of electrokinetic parameters.  Examples of implementation of the 

equations as both computable document format and Excel spreadsheets are provided. 
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1 Introduction 

The hydrogen oxidation reaction (hor) and hydrogen evolution reaction (her) are of great technological importance 

due to the increasing need to store renewable energy in a suitable chemical form(i.e. via electrolysis to hydrogen) 

and conversion back to electrical energy (i.e. via fuel cells).  Over the last several years there has been increasing 

interest in these reactions because of the development of a range of different materials capable of being used within 

electrolysers to replace platinum1-4. At the same time there has been significant desire to understand the hor on 

platinum as the performance measured within fuel cells is typically much greater than that measured using standard 

electrochemical techniques such as the rotating disk electrode (RDE)5. There has been some progress to 

understanding the mass transport effects by developing new approaches which allow faster transport of hydrogen to 

the catalyst6-9. However, there is also a marked decrease in performance of the hor under alkaline conditions10, 

which would appear to be counter to the standard mechanisms, most of which suggest that the reaction should be 

pH independent. The development of new theoretical computational frameworks for understanding the 

thermodynamics of these reactions is producing intriguing suggestions11. Most of the attempts at understanding the 

electrochemical kinetics of the her/hor can be traced to the pioneering work of Tafel, Heyrovsky and Volmer 12-14, 

within which a number of elementary steps were demarcated, Table 1. 

Table 1 Description of the different equations used in solution of the hydrogen oxidation/evolution reaction and the 

time dependence of hydrogen coverage for each individual equation. S = surface adsorption site. H2,surf is a hydrogen 

molecule adjacent to the surface. 

H2,surf + 2S  2S-Had kad Eq 1 

Tafel 
2S-Had  H2,surf + 2S kdes Eq 2 

H2,surf + S  S-Had +H++e- k1 Eq 3 
Heyrovsky 

S-Had +H++e-  H2,surf + S k-1 Eq 4 

S-Had  S +H++e- k2 Eq 5 
Volmer 

S +H++e- 
 S-Had k-2 Eq 6 

Although various approaches have been used to try and extract useful electrokinetic data from the experimental 

her/hor results, for the most part these have involved mathematical treatments of Eq 1-Eq 6 in which simplifications 

have been introduced to make the resulting formulations tractable.  

For instance Vogel et al analysed hydrogen oxidation on porous Pt electrodes assuming a Tafel-Volmer mechanism15. 

For the hydrogen oxidation reaction, they derived a current-potential relationship under the assumption of simple 

charge transfer kinetics (i.e. a Butler-Volmer type approximation), assuming a Tafel-Volmer reaction with slow 

hydrogen adsorption. The latter aspect was based on their experimental measurements of low-pressure gas phase 

H2/D2 exchange over platinum (i.e. in the absence of electrolyte) which yielded a first order rate constant at 295 K of 

2.4 cm s-1. In their derivation, they assumed that  𝜃𝐻𝑎𝑑/𝜃𝐻𝑎𝑑
eq

 (the relative variation of the hydrogen coverage away 

from the equilibrium potential) did not change significantly within 50mV of the equilibrium potential (this 

assumption will be discussed below) 
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𝑖 = 𝑖0 [1 −
𝑐H2

𝑐H2
0 e2𝑓𝜂] 

  𝑓 =
F

𝑅𝑇
 

Eq 7 

In fact, this equation captures an essential feature of the hor/her that many attempts to fit experimental data using 

the Butler-Volmer expression (or simple modifications of it) fail to capture – and that is that the current does not 

show an exponential increase at positive overpotentials (hor), but instead tends to “flatten out”. In contrast, at 

negative overpotentials (her) there is an exponential increase in current. In many papers, this “flattening out” has 

been interpreted as due to a mass transport limitation, however the effect remains even in systems with very high 

rates of mass transport, suggesting that it is an intrinsic aspect of the electrokinetics16-19.  

In more recent work, initially by Chialvo et al20-25 and also taken up by others26-27 have attempted to produce suitable 

kinetic equations to describe the electrokinetics of Eq 1-Eq 6. These have then been used to rationalise experimental 

data. Such attempts to model the hor/her have not attempted to determine an explicit analytical expression for 

hydrogen coverage as a function of the reaction kinetics, but have typically relied on approximations, or assumptions 

on the equilibrium coverage of hydrogen. For instance, in 28, the coverage of hydrogen is calculated by numerical 

methods requiring an assumption as to the coverage of hydrogen under equilibrium conditions. In 27 an approximate 

solution to the hydrogen coverage is determined under certain conditions, but an assumption must still be made 

about the equilibrium coverage of hydrogen. In 19 the hydrogen coverage as a function of potential is calculated from 

the Hupd charge assuming a Frumkin isotherm. In the former cases it is usually assumed that the equilibrium coverage 

of hydrogen is very low, and simulations have suggested values over a very wide range: 0.07-10-7, although there is 

significant variation in the literature and in some cases, e.g. especially the her, this coverage may be quite high. 

Indeed, a recent study gives an equilibrium hydrogen coverage of 0.17929, which is somewhat different to values of 

ca. 10-3 used in previous studies by the same authors28. The inability to determine suitable values of hydrogen 

coverage under equilibrium conditions, and indeed over the entire potential range from the her region to the hor 

region limits the applicability of models to one particular aspect – e.g. hor or her. In such models the equilibrium 

coverage is a parameter used to improve the fit to data without providing any descriptive information. Clearly, a 

model which can deal with both her and hor  is not only more powerful, but also more likely to represent an accurate 

portrayal of reality, and some progress has been made in that area30. 

Within this paper we consider a new conceptual electrokinetic framework for treating the her and hor in a material 

independent way over a range of different conditions and apply this framework to the reaction on platinum in order 

to determine the material-dependent kinetic parameters for the hor/her on that material. The benefit of our 

approach compared to previous approaches is that the parameters used in the rate equations link directly to the 

elementary steps, and thus allow insight into both the surface coverage of intermediates and intrinsic rates of the 

different reactions occurring on the surface. We consider the analytical solutions to the Tafel Volmer (TV), the 

Heyrovsky-Volmer (HV), the Heyrovsky-Tafel (HT), and the Heyrovsky-Tafel-Volmer (HTV) reactions. The full Tafel-

Heyrovsky-Volmer model is shown to reduce to the TV and HT mechanisms under suitable limiting assumptions. For 

each of the different models we survey the entire spectrum of Hads isotherms and j- plots. In doing so we provide a 
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useful “atlas” of possible electrokinetic responses. These may be useful in assessing the hydrogen reaction over a 

range of different electrocatalytic systems.  For each of the different mechanisms we provide information about the 

possible Tafel slopes of the linear sections of the  𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂-plots. We show how the exchange current densities of 

the reactions are related to the underlying kinetic equations, and how use of data from the micropolarisation region 

underestimates the true exchange current density (in contrast to the Butler-Volmer equation). We then show how 

these kinetic equations can be used to fit mass-transport free electrokinetic data for Pt/C in acid electrolytes.  In 

order to aid interpretation and understanding of these different mechanisms we provide dynamic “computable 

document format” examples of each of the mechanisms. 

2 Experimental 

A commercial 60 wt.% Pt/C catalyst (HiSPEC 9100, Alfa Aesar, metal area of 89 m2 g-1 31) and high purity gases (N2, H2 

and O2 at >5.8 N from Air Products) with 6 N rated regulators (GCE DruVa) and acids were used; perchloric acid from 

VWR (Merc Suprapur) and GFS chemicals (Veritas double distilled) were both used with negligible difference in 

performance (not shown). Ultra pure water (Millipore Milli-Q, 18.2 MΩ cm) was used in producing all electrolytes. 

Before the electrochemical measurements, all glassware were soaked in acidified potassium permanganate over 8 h, 

rinsed with acidified hydrogen peroxide and then rinsed at least six times with ultra pure water. All floating 

electrodes were cleaned in a soxhlet extractor with ultra pure water for 24 hours before use. 

Electrochemical measurements were performed with a Gamry Reference 600 potentiostat in a water jacketed three 

electrode electrochemical cell utilizing a Pt counter electrode and a RHE in a Luggin capillary configuration. The cell 

was held at the relevant temperature using a re-circulator (Polyscience digital temperature controller, ±0.1 oC). 

For RDE measurements, an aqueous 0.1 M HClO4 solution was used as the electrolyte. Pt rotating disk electrodes 

with a diameter of 5 mm (AFE2M050PT, PINE instruments) which are applicable up to 7000 rpm were used as the 

WE. The RDE was attached to a modulated speed rotator (AFMSRCE, PINE instruments).   

The floating electrodes were made up and conditioned as described in 17, 32. The  electrodes were floated on liquid 

electrolytes with the reactant gas supplied to the catalyst through the hydrophobised pores, allowing high mass 

transport. 0.5 or 4 mol dm-3 perchloric acid was used – the latter to minimise the uncompensated resistance at the 

high currents achieve from the HOR. Gas mixtures were obtained using gas flow controllers (Bronkhurst EL flow 

series). Uncompensated resistances were corrected using the high frequency intercept of impedance measurements 

at a range of voltages. 

3 Theoretical approach 

An example of the results we obtain for each of the different cases we have studied is provided in Figure 1 where we 

give indicative steady state voltammograms (these are not meant to be examples of hor/her on any specific metal, 

but rather are given to illustrate the characteristic form of the resultant equations), plotting the hydrogen coverage 
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at the same time. We also provide, in an inset in each graph, a Tafel plot† i.e . a plot of  |log 𝑗|  versus . Also 

displayed in these 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂-plots are a breakdown as to the different current components – i.e. the magnitude of 

the appropriate reactions Eq 3-Eq 6 as a function of overpotential. We will examine the family of possible responses 

for each of the different mechanisms in greater detail below, but there are a number of interesting observations. For 

the Heyrovsky-Volmer reaction, Figure 1 (a), a number of different slopes in the 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂-plots are possible, 

depending on how the hydrogen coverage is changing over that particular potential range. No limiting current is 

seen in the plot.  For the Tafel-Volmer reaction, Figure 1(b), a current limitation is seen during the her and hor and 

no clear linear region is seen in the 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂 plot.  For Figure 1(c), the HT mechanism, a current limitation may be 

seen either during the her or during the hor (but not both) depending on the precise parameters used. For the HT 

mechanism, the hydrogen coverage always increases with increasing potential. Limiting slopes in the 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂-

plots may be seen in either side of the reaction. In contrast, the HTV reaction, Figure 1(d), may show plateaus during 

either the hor or her (or both), but at large overpotentials, the current always reverts to a “Tafel” –like response.   

In some approaches to model the hor/her reaction, the “net reaction” for each coupled step (k1/k-1, and k2/k-2 etc)  is 

calculated by taking the difference between the rates of the forward and reverse reactions, and all reactions are 

scaled to the magnitude of this net reaction at equilibrium (at equilibrium, there is no net reaction but two equal and 

opposite half reactions) e.g. see ref 24, 28, 30. For systems which only have one major reaction step, or for which one 

reaction step is much slower than all others, this is a useful method as it allows the definition of an exchange current 

density for the reaction. For more complicated reactions, this may not be possible. Furthermore, although the 

approach of writing total rates has some benefits, it also suffers in that the coupling between the forward and 

reverse reactions is implicit in the derivation, and the parameters which are derived are the net rates of reaction, 

rather than the explicit rate constants themselves. Our approach is slightly different in that we want to analyse and 

understand explicit relationships for equilibrium hydrogen coverage, and the different rate constants, and so we 

evaluate the individual constants. This leads to a minimum number of parameters which retain their mechanistic 

relevance whilst retaining a self-consistent thermodynamic interpretation. It also allows us to examine the exchange 

current density in terms of the fundamental kinetic parameters.  

The approach we take to solve the four different cases is rather straightforward. In the first instance we write down 

the kinetic expressions associated with changes to the hydrogen coverage for each of the different mechanisms 

(
𝑑𝜃𝐻𝑎𝑑
𝑑𝑡

, Table 2) which is then set to zero as appropriate for the steady state approximation, and the equation is 

solved for 𝜃𝐻𝑎𝑑. In this approach the adsorption isotherm of hydrogen is presumed to be Langmuirian – that is there 

are no interactions on the surface,  we do not (necessarily) assume participation of upd hydrogen, and furthermore 

this model is not capable of determining the coverage of upd hydrogen (see 19 for a discussion of the difference 

between the Had kinetic intermediate, Hupd, and Hopd). Rather, our approach is to assess a kinetic set of expressions 

for the hor/her and assess how well they replicate experimental data. From this assessment we will be able to 

determine whether further modifications to the kinetic expressions are necessary. In doing so we produce a set of 

                                                           
† Hence forth we will use the term “𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂-plot” instead of “Tafel plot” to avoid confusion with the Tafel mechanism. 
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equations with the minimum number of free parameters so as to make sure that our system is not 

overparameterised. Following determination of the hydrogen coverage with potential, we determine the coverage 

of hydrogen under equilibrium conditions. The 𝜃𝐻𝑎𝑑(𝜂) term is then inserted into the electrochemical kinetic 

equation (j/F, Table 2) to produce the electrochemical rate equation. At the equilibrium potential, the net current is 

zero, and so the electrochemical equation may be solved in order to eliminate one of the variables. Substitution into 

the electrochemical equation provides the final solution. We assume transport of hydrogen and protons to the 

electrode surface is fast – i.e. we ignore mass transport effects. We will later on compare these models to our recent 

experimental results utilising low loading electrodes under high mass-transport16-17, 33. Computational document 

format (cdf) documents of each of the mechanisms derived are available to down load as part of the supplementary 

information. The data used for generating the experimental plots, and spreadsheets which allow fitting of data to 

each of the mechanisms is available for download34. 

3.1 Heyrovsky-Volmer Reaction  
Solution of the steady-state adsorbed hydrogen coverage (Table 1) yields a simple expression for 𝜃𝐻𝑎𝑑

𝐻𝑉 (where the 

superscript represents the associate reaction) 

𝜃𝐻𝑎𝑑
𝐻𝑉 =

𝑎H2𝑘1 + 𝑎𝐻+𝑘−2
𝑎H2𝑘1 + 𝑘2 + 𝑎𝐻+𝑘−1 + 𝑎𝐻+𝑘−2

 Eq 8 

Where 𝑎𝐻2 , 𝑎𝐻+  are respectively the proton and hydrogen activities at the electrode surface with the standard state 

chosen to be the same as used to define the equilibrium potential.  

The analytical expression for θHad is then substituted into the kinetic expression for the electrochemical current 

based on the steps associated with an electrochemical reaction (Table 1).  Under equilibrium conditions, there is no 

net reaction. Furthermore, because of the requirement that 
𝑑𝜃𝐻𝑎𝑑

𝐻𝑉

𝑑𝑡
 =0, both the Heyrovsky and Volmer reactions (i.e. 

𝑘1/𝑘−1 and 𝑘2/𝑘−2) must independently also show no net reaction (indeed, they must have the same reversible 

potential),  and so we have 

𝜃𝐻𝑎𝑑
HV,eq

=
𝑎H2𝑘1

eq
+ 𝑎𝐻+𝑘−2

eq

𝑎H2𝑘1
eq
+ 𝑘2

eq
+ 𝑎𝐻+𝑘−1

eq
+ 𝑎𝐻+𝑘−2

eq  Eq 9 

(𝑘1
eq
𝑎𝐻2(1 − 𝜃𝐻𝑎𝑑

HV,eq
)−𝑘−1

eq
𝑎𝐻+𝜃𝐻𝑎𝑑

HV,eq
+ 𝑘2

eq
𝜃𝐻𝑎𝑑
HV,eq

− 𝑘−2
eq
𝑎𝐻+(1 − 𝜃𝐻𝑎𝑑

HV,eq
)) = 0 Eq 10 

Where 𝑘𝑖
eq

  is the value of the rate constant, 𝑘𝑖, for reaction i under equilibrium conditions, i.e. when =0, and 

under a defined value of 𝑎𝐻+  and 𝑎𝐻2. 

For the Heyrovsky-Volmer reaction, it is not possible to independently solve Eq 9 and Eq 10 for k-1 in terms of k1 and 

k-2 in terms of k2 as there is a coupling between both sets of equations through 𝜃𝐻𝑎𝑑
HV,eq

. The solution of Eq 9 and Eq 

10 give the following constraint on the solution: 
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𝑘2
𝑒𝑞

𝑘−2
𝑒𝑞
𝑎𝐻+

=
𝑘−1
𝑒𝑞

𝑘1
𝑒𝑞

𝑎𝐻+

𝑎H2
  Eq 11 

Hence we define, a constant K, such that 

𝐾 =  
𝑘2
𝑒𝑞

𝑘−2
𝑒𝑞
𝑎𝐻+

    ∴    𝑘−2
𝑒𝑞
= 

𝑘2
𝑒𝑞

𝐾𝑎𝐻+
,        𝑘−1

𝑒𝑞
= 𝐾𝑘1

𝑒𝑞 𝑎H2

𝑎𝐻+
  Eq 12 

Substitution of 𝑘−1
𝑒𝑞

, and 𝑘−2
𝑒𝑞

 into Eq 9 provides the equilibrium coverage of hydrogen in terms of our explicit 

parameters 

𝜃𝐻𝑎𝑑
𝐻𝑉,𝑒𝑞

=
1

1 + 𝐾
 Eq 13 

and we find that the hydrogen coverage under equilibrium conditions is pH dependent (implicit in the definition of K, 

Eq 12), but independent of bimolecular hydrogen activity. In previous approaches, 𝜃𝐻𝑎𝑑
𝐻𝑉,𝑒𝑞

 was an explicit fitting 

parameter, whereas in our case it is a derived parameter from the electrokinetic rate constants.  

Incorporation of deviations away from equilibrium though a perturbing electrochemical overpotential are then 

introduced in the normal manner. The rate constants under equilibrium conditions are related to the equilibrium 

potential and the intrinsic rate constant for each of the forward and reverse reactions as described in Appendix A. 

The symmetry factors for the reactions are associated exclusively with single one-electron transfer steps 

participating in a multistep electrode process35. We assume the  values for anodic and cathodic reactions sum to 

one, and for simplicity assume the same symmetry factor for both the Heyrovsky and Volmer steps. We assume that 

the anodic and cathodic transfer coefficients sum to one. Hence in Eq 8 we make the following substitutions 

 𝑘1 = 𝑘1
𝑒𝑞
𝑒𝛽𝑓𝜂,   

𝑘−1 = 𝐾𝑘1
𝑒𝑞 𝑎H2
𝑎𝐻+

𝑒−(1−𝛽)𝑓𝜂 ,       

𝑘2 = 𝑘2
𝑒𝑞
𝑒𝛽𝑓𝜂,   

𝑘−2 =
𝑘2
𝑒𝑞

𝐾𝑎𝐻+
𝑒−(1−𝛽)𝑓𝜂          𝑓 =

F

𝑅𝑇
 

Eq 14 

where 𝜂 = 𝐸 − 𝐸𝑒𝑞 . Substitution and simplification for the overpotential dependence of 𝜃𝐻𝑎𝑑
HV (𝜂) provides 

𝜃𝐻𝑎𝑑
HV (𝜂) =

(𝐺𝑒𝑓𝜂 + 1)

(𝐺𝑒𝑓𝜂 + 1) + K(𝑒𝑓𝜂 + 𝐺)
 Eq 15 

Where 𝐺 =
𝐾𝑘1

eq
𝑎H2

𝑘2
eq   is a derived parameter associated with the ratio of the two forward reactions and the 

magnitude of the forward and reverse Volmer reaction. Because a common value of 𝛽 is used for both sets of 

equations, all terms containing 𝛽 cancel out. As will be seen below, this isotherm has a particularly rich set of 

responses and may find advantageous uses in describing other electrochemical systems in which adsorption of 

intermediates occurs. 𝜃𝐻𝑎𝑑
HV (𝜂) shows some interesting properties, and is affected by both pH and bimolecular 

hydrogen activity. A typical response for 𝜃𝐻𝑎𝑑
HV (𝜂)  is shown in Figure 1 (a), along with the calculated current density. 
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This figure allows comparison of representative responses for the different mechanisms examined in this paper in 

terms of their hydrogen coverage and current density. The limiting solutions for Eq 15 as , and - are 

lim
𝜂→−∞

𝜃𝐻𝑎𝑑
HV (𝜂) =

1

1 + 𝐺𝐾
 lim

𝜂→∞
𝜃𝐻𝑎𝑑
HV (𝜂) =

1

1 +
𝐾
𝐺

 Eq 16 

We find that the hydrogen coverage at large positive and negative overpotentials does not necessarily approach one 

and zero, respectively, but instead depend on the balance of the electrochemical constants. The variation of the 

hydrogen isotherm with different values of the dimensionless constants, G and K, are displayed in Figure 2.  When 

G=1 the hydrogen coverage is potential independent, and 𝜃𝐻𝑎𝑑
HV (𝜂) =

1

1+𝐾
  , Figure 2(a). This corresponds to the 

situation where the forward rates are equal (𝑘1
eq
𝑎H2 = 𝑘2

eq
) and, as the hydrogen coverage is at steady state, this 

also means that both reverse rates are also equal (𝑘−1
𝑒𝑞
= 𝑘−2

𝑒𝑞
).  The actual value of the hydrogen coverage is then 

determined by K which provides a measure of whether the forward or reverse Volmer reactions are more favoured 

(this then also applies to the Heyrovsky reaction as both reactions are coupled). When K=1, Figure 2(a),  the 

hydrogen coverage shows symmetry about the equilibrium potential with 𝜃𝐻𝑎𝑑
HV (𝜂) = (1 − 𝜃𝐻𝑎𝑑

HV (−𝜂)). The shape of 

the isotherms are controlled by G, and values of G greater than one produce a hydrogen coverage which increases 

with potential, which is counter to the normal expectation. Such a situation occurs when the forward and reverse 

Heyrovsky reactions are fast, but the forward and reverse Volmer reaction are slow. Under these conditions, 

adsorbed hydrogen builds up on the surface as the forward Volmer reaction is unable to keep up with the forward 

Heyrovsky reaction. Because the forward/reverse Heyrovsky reactions are fast, the surface is kept clear of adsorbed 

hydrogen at low potentials.  With values of G less than one, adsorbed hydrogen coverage increase with decreasing 

potential. This situation occurs when the Volmer reactions are fast, but the Heyrovsky reactions are slow, and hence 

there is a buildup of hydrogen on the surface as potential is decreased. Two other plots of hydrogen coverage as a 

function of the model parameters are shown in Figure 2. In Figure 2(b) constant value of G is used and K is varied. As 

G<1, hydrogen coverage increases as potential is decreased (what would be considered the normal situation), and 

the value of K controls either the lower bounds of hydrogen coverage (K>1, ), or the upper bounds of hydrogen 

coverage (K<1, -), in line with the limits described in Eq 16. When a constant ratio of G to K is used, it is possible 

to vary the position of the isotherm, shifting to more positive or negative values, as displayed in Figure 2 c. When 

G=100, and G=106K (i.e. the inverse of the values used in Figure 2 b&c), the plots in Figure 2 b&c remain the same, 

but they are reflected in the =0 line (not shown).    

 Expansion of the electrochemical kinetic equations provides the following equation for current density as a function 

of 𝐾, 𝑘1
𝑒𝑞
𝑘2
𝑒𝑞
, 𝛽 : 

𝑗𝐻𝑉(𝜂) = 𝐹 ((𝑘1
𝑒𝑞
𝑎𝐻2 (1 − 𝜃𝐻𝑎𝑑

HV (𝜂)) + 𝑘2
𝑒𝑞
𝜃𝐻𝑎𝑑
HV (𝜂)) 𝑒𝛽𝑓𝜂

− (𝐾𝑘1
𝑒𝑞
𝑎H2𝜃𝐻𝑎𝑑

HV (𝜂) +
𝑘2
𝑒𝑞

𝐾
(1 − 𝜃𝐻𝑎𝑑

HV (𝜂)))𝑒−(1−𝛽)𝑓𝜂) 

Eq 17 
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This simplifies to the more compact expression in terms of K and G 

𝑗𝐻𝑉(𝜂) = 𝐹 (
2𝐺𝑘2

𝑒𝑞
𝑒−(1−𝛽)𝑓𝜂(𝑒2𝑓𝜂 − 1)

(𝐺𝑒𝑓𝜂 + 1) + 𝐾(𝑒𝑓𝜂 + 𝐺)
) Eq 18 

Compared to the definition of 𝜃𝐻𝑎𝑑
HV (𝜂) in Eq 15, Eq 18 contains 𝑘2

𝑒𝑞
 in its derivation, but scaled current densities may 

be produced for the same values of K, and G used in Eq 15 

𝑗𝐻𝑉(𝜂)

𝑘2
𝑒𝑞 = 𝐹 (

2𝐺(𝑒(1+𝛽)𝑓𝜂 − 𝑒−(1−𝛽)𝑓𝜂)

(𝐺𝑒𝑓𝜂 + 1) + 𝐾(𝑒𝑓𝜂 + 𝐺)
) Eq 19 

Plots of the scaled currents for the hydrogen coverages in Figure 2(a),(b) and (c) are provided in Figure 2(d),(e) and 

(f). When K=1, performance on the anodic and cathodic branches are the same with the best response obtained for 

larger values of G. This corresponds to the presumed situation operating in efficient hor/her  catalysts – at negative 

overpotentials, the surface is covered with adsorbed hydrogen and at positive overpotentials, the surface is free of 

adsorbed hydrogen.  When the reverse is true (i.e. G<1), the performance decreases. There is an ultimate limit 

approached when K=1 and G>>1 or G<<1 at which point the current approaches a “classical” limit, with a response 

that looks similar to the Butler-Volmer equation  

𝑗𝐻𝑉(𝜂) ≅ 𝐹 (2𝑘1
eq
𝑎H2(𝑒

𝛽𝑓𝜂 − 𝑒−(1−𝛽)𝑓𝜂))  K1, G<<1 Eq 20 

Or when G >>1 

𝑗𝐻𝑉(𝜂) ≅ 𝐹 (2𝑘2
eq
(𝑒𝛽𝑓𝜂 − 𝑒−(1−𝛽)𝑓𝜂))  K1, G>>1 Eq 21 

That is the current is limited by either the Heyrovsky or the Volmer reactions during both the hor and her. The slopes 

of the 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂-plots show characteristic values of 𝛽F/RT and –(1-𝛽)F/RT V decade-1. However, even in these cases 

Eq 20 and Eq 21 are rather poor representations of Eq 19 close to the equilibrium potential, overestimating the 

expected current. This comes about as close to the equilibrium potential, the denominator of Eq 19 becomes 

dominated by (𝐾𝐺 + 1). Many papers interpret hydrogen oxidation in terms of equations similar to Eq 2036, 

although it is important to note this equation only holds when K=1 (rates of forward/reverse Heyrovsky are the 

same), and the rate of the forward Volmer is at least ten times greater than the rate of the forward Heyrovsky (G/K 

<< 1). Also, this equation does not hold so well close to the equilibrium potential. In our fitting results for the 

micropolarisation region of the Heyrovsky-Volmer mechanism on Platinum in our previous paper32, we found that 

the forward Volmer is about the same order of magnitude as the forward Heyrovsky, and that K is somewhat greater 

than 1, suggesting that the use of Eq 20 or Eq 21  to fit data using platinum as a catalyst may not be optimum. 

Furthermore, as will be discussed below, when a full HV fit to the data over an expanded potential region is 

performed, the required fitting parameters diverge even more from the requirements for simplification to Eq 20 or 

Eq 21. 

When K1, the responses can be quite different as shown in Figure 2 (e) and (f) which correspond to the hydrogen 

coverages in Figure 2(b) and(c). Variation of K away from one leads to asymmetry in the her/hor reactions. The 
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slopes of the 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂-plots may not only show the characteristic values of 𝛽 and –(1-𝛽) (both multiplied by F/RT), 

but may also show values of  (1+𝛽) and –(2-𝛽). Enhanced slopes occur  

(a) at anodic potentials when both G and K <<1, and hence the denominator in Eq 18 and Eq 19 tends to one. In 

this case both the forward Heyrovsky and forward Volmer reactions are slow compared to their reverse 

reactions;  

(b) at cathodic potentials when either G or K (or both) >>1 so that the denominator in Eq 18 and Eq 19 tend to 

𝐺𝑒𝑓𝜂 , 𝐾𝑒𝑓𝜂 or the sum of those two terms. In this case the forward Volmer or forward Heyrovsky reactions are 

fast relative to their reverse reactions. 

It is important to note that the regions in which higher slopes are seen might suggest that the hor/her are enhanced 

in these regions, but in reality, performance in these regions is less than what might be expected by back-

extrapolating  the performance from larger overpotentials. Hence, these regions underperform compared to what 

might be expected.  In the example in Figure 1 (a), the her branch looks to be much more active than the hor branch, 

and if one assumed a “Butler-Volmer” potential dependence then this might presume that this shift is due to a value 

of  somewhat less than the usually expected value of 0.5. In reality, this increased slope of the 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂-plot is 

due to K>>1.  As was mentioned previously, many models assume that the hydrogen coverage ( 𝜃𝐻𝑎𝑑
HV /𝜃𝐻𝑎𝑑

HV,eq
) does 

not change significantly around the equilibrium potential (e.g. 15). For the HV model this only happens when G1 

(hydrogen coverage is potential independent as Heyrovsky and Volmer steps proceed at the same rate) or when K<G 

and KG < 1 (i.e. hydrogen coverage is large around the equilibrium potential as the forward Volmer and reverse 

Heyrovsky steps are slow compared to the other reactions). 

In order to further illustrate the kinetic equations a computable document format (cdf) representation of the 

Heyrovsky-Volmer equations as a function of overpotential and the parameters 𝐺,𝐾, 𝑘2
𝑒𝑞

 and 𝛽 is provided in the 

supporting information (note that 𝑎H2 and 𝑎𝐻+ are implicitly included in G, and K). This allows interactive plots of 

current density, 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂 plots (including the ½ currents for each component), and 𝜃𝐻𝑎𝑑
HV (𝜂). The 

phenomenological anodic and cathodic  values† as a function of potential are calculated by explicitly differentiating 

the logarithm of the absolute value of Eq 17. Plots of this function (multiplied by F/RT) provide horizontal plateaus 

representing the values of 𝛼𝑎 ,  and 𝛼𝑐  in the anodic and cathodic regions, and also provide useful information as to 

the regions over which such a slope would be visible (i.e. the horizontal plateau): 

𝛼𝑎 , 𝛼𝑐 =
𝑅𝑇 

𝐹
 
𝜕𝑙𝑜𝑔𝑒|𝑗|

𝜕𝜂
 Eq 22 

As we know the value of  used to generate the plots, we can then understand how the mechanisms transforms the 

single electron transfer  into the value which we measure (). 

                                                           
† The phenomenologically measured  values are linked to the symmetry factors, , for the one electron transfer through the 
specific mechanism35. Guidelli, R.; Compton, R. G.; Feliu, J. M.; Gileadi, E.; Lipkowski, J.; Schmickler, W.; Trasatti, S., Defining 
the Transfer Coefficient in Electrochemistry: An Assessment (Iupac Technical Report). Pure and Applied Chemistry 2014, 86, 245-
258..  
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3.2 Tafel-Volmer Reaction  
Solution of the Tafel-Volmer equation is performed in a similar manner to the Heyrovsky-Volmer using the 

appropriate equations for  
𝑑𝜃𝐻𝑎𝑑

TV

𝑑𝑡
 and j in Table 2. Solution of the steady-state adsorbed hydrogen coverage yields a 

quadratic expression for 𝜃𝐻𝑎𝑑
TV , and with two possible equations for 𝜃𝐻𝑎𝑑

TV  

𝜃𝐻𝑎𝑑
TV

=
4𝑎H2𝑘ad + 𝑘2 + 𝑘−2𝑎𝐻+ ±√𝑘2

2 + 2𝑘2(4𝑎H2𝑘ad + 𝑘−2𝑎𝐻+) + 16𝑘ad𝑘des𝑎H2 + 𝑘−2𝑎𝐻+(𝑘−2𝑎𝐻+ + 8𝑘des)

4𝑎H2𝑘ad − 4𝑘des
 

Eq 23 

Only one of the roots (the negative branch) gives a physically relevant response and this is then 

combined with the equation for current generation (Table 2). Under equilibrium conditions, the net rate 

is zero, and 𝜃𝐻𝑎𝑑
TV  is replaced by its equilibrium form with all constants in their equilibrium form 

𝑗TV = 𝐹 (𝑘2
𝑒𝑞
𝜃𝐻𝑎𝑑
TV,𝑒𝑞

− 𝑘−2
𝑒𝑞
𝑎𝐻+(1 − 𝜃𝐻𝑎𝑑

TV,𝑒𝑞
)) = 0 Eq 24 

Substitution of 𝜃𝐻𝑎𝑑
TV,𝑒𝑞

 into Eq 24 and solving for 𝑘−2
𝑒𝑞

  provides a quadratic in 𝑘−2
𝑒𝑞

  with two solutions: 

𝑘−2
𝑒𝑞
= ±

B𝑘2
𝑒𝑞

𝑎𝐻+
         Eq 25 

where the parameter 𝐵 = √
𝑎H2𝑘ad

𝑘des
  is associated with the ratio of the forward and reverse Tafel reaction.  

Only the positive root makes physical sense. As the expansion of 𝑘−2
𝑒𝑞

  has 𝑎𝐻+ in the denominator and all instances 

of 𝑘−2  are multiplied by 𝑎𝐻+, it is found that unlike the HV equation, the shape of 𝜃𝐻𝑎𝑑
TV,𝑒𝑞(𝜂) is pH independent.    

Expansion of the k2 and k-2 terms as previously discussed for the HV reaction produces 

𝑘2 = 𝑘2
𝑒𝑞
𝑒𝑓𝜂 ,    

𝑘−2 =
B𝑘2

𝑒𝑞

𝑎𝐻+
𝑒−(1−)𝜂𝑓         

Eq 26 

Substitution into Eq 23 results in the potential dependent coverage of hydrogen on the electrode surface 

𝜃𝐻𝑎𝑑
TV (𝜂) =

4𝐵2 + Z(𝑒𝑓𝜂 + 𝐵𝑒−(1−)𝑓𝜂) − √16B2 + (𝑍(𝑒𝑓𝜂 + 𝐵𝑒−(1−)𝑓𝜂))
2
+ 8𝐵𝑍(𝐵𝑒𝑓𝜂 + 𝑒−(1−)𝑓𝜂)

4(𝐵2 − 1)
 

 

Eq 27 

Where 𝑍 =
𝑘2
eq

𝑘des
 which balances Hads recombination compared to its electrochemical reaction. The hydrogen coverage 

is pH independent, but affected by the chemical adsorption/desorption rate constants and the bimolecular hydrogen 

concentration. 𝜃𝐻𝑎𝑑
TV (𝜂) is controlled by the two dimensionless constants, B and Z.  The denominator of Eq 27 

disappears as 𝑎H2𝑘ad → 𝑘des, although taking lim
𝑎H2𝑘ad→𝑘des

𝜃𝐻𝑎𝑑
TV (0) =

1

2
  leads to the conclusion that at that point the 

hydrogen coverage is ½ at all potentials.  𝜃𝐻𝑎𝑑
TV (𝜂) is bounded between 0 and 1, and always decreases with increasing 

. A plateau in the value of 𝜃𝐻𝑎𝑑
TV  may occur at 𝜂 = 0 when Z << B2 i.e. when the Volmer forward reaction is slower 
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than the Tafel reaction.  Under these conditions, the assumption that  𝜃𝐻𝑎𝑑
HV /𝜃𝐻𝑎𝑑

HV,eq
 does not change significantly 

close to the equilibrium potential is reasonable. Under equilibrium conditions (=0) we obtain  

𝜃𝐻𝑎𝑑
TV,𝑒𝑞

=
1

1 +
1
B

 Eq 28 

  And hence the equilibrium coverage is only dependent on the adsorption/desorption rate constants and not the 

Volmer reaction. Modification of the electrochemical rate equation to take into account the substitution for k2 and 

k-2 and substitution of 𝜃𝐻𝑎𝑑
TV (𝜂) gives 

𝑗TV(𝜂) = 𝐹𝑘2
𝑒𝑞
(𝜃𝐻𝑎𝑑

TV (𝜂)𝑒𝑓𝜂 − B(1 − 𝜃𝐻𝑎𝑑
TV (𝜂)) 𝑒−(1−)𝑓𝜂) Eq 29 

The resulting equation provides electrochemical current density in terms of the parameters kad, kdes, 𝑘2
𝑒𝑞

and . The 

TV equation for the hydrogen reaction is thus pH independent, unlike the HV equation. As with the HV reaction, it is 

possible to plot 𝑗TV in terms of the dimensionless constants B, and Z, by taking Eq 29 and dividing by kdes  

𝑗TV(𝜂)

𝑘des
= 𝐹𝑍 (𝜃𝐻𝑎𝑑

TV (𝜂)𝑒𝑓𝜂 − 𝐵 (1 − 𝜃𝐻𝑎𝑑
TV (𝜂)) 𝑒−(1−)𝑓𝜂) Eq 30 

An example of a solution to this equation is provided in Figure 1(b) utilising values of parameters representative of 

those required to fit experimental observations. The Tafel-Volmer reaction shows a limiting current at suitably high 

overpotentials, both during the hor and her. This limiting current is associated with limitations of both the 

adsorption (𝑗𝑇𝑉(𝜂 → ∞) = 2𝐹𝑘𝑑𝑒𝑠𝐵
2 = 2𝐹𝑎H2𝑘ad) and desorption (𝑗𝑇𝑉(𝜂 → −∞) = 2𝐹𝑘des) processes during the 

Tafel reaction, Eq 1 and Eq 2.  For the example shown, no clear slope is seen in the 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂 plot (inset), although 

the individual Volmer components of the current show linear regions in the 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂 plots at large overpotentials. 

It is interesting that both Volmer ½ currents show a peaked response with a maximum current at the position at 

which 𝜃𝐻𝑎𝑑
TV (𝜂) =

1

2
.  Plots mapping out a larger part of the (Z,B) parameter space are provided in Figure 3. As with 

the HV case, a large number of different isotherms for the hydrogen adsorption coverage are seen. When Z<<B 

(Forward Tafel reaction is faster than forward Volmer reaction) a plateau in hydrogen coverage is seen at the 

equilibrium potential, Figure 3a. Only once the overpotential is sufficiently far away from the equilibrium potential 

does 𝜃𝐻𝑎𝑑
TV (𝜂) tend to one and zero at negative and positive overpotentials, respectively. When B<<Z  (Tafel step 

slower than Volmer step) then a more characteristic isotherm is seen, Figure 3c. In the intermediate regime, a 

mixture of these two behaviours is possible,  Figure 3b. Casual inspection of Eq 29 would suggest that there is 

something amiss with the expression as no hydrogen concentration term is associated with the hor branch of the 

reaction, but it is associated with the her part of the curve through B. Part of this confusion is resolved by 

considering that 𝜃𝐻𝑎𝑑
TV (𝜂) contains 𝑎H2 in its derivation. A second aspect of Eq 29 is that it is not immediately obvious 

is that it forces an adsorption and desorption rate limitation to the hor and her respectively. This arises from the 

finite values of kad and kdes, and occurs through the fine balance of the preexponential coverage term and the 

exponential driving force term.   As can be seen from the scaled current densities corresponding to the hydrogen 

coverages, Figure 3d-f, a range of different current responses are possible.   When one or both of the Volmer steps 
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are sufficiently slow compared to the Tafel steps, then it is possible to obtain plots with a linear region evident in the 

𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂 plot, Figure 3d-e. These typically have slopes which can be used to extract eff.  When the Volmer 

reaction is fast, and the forward and reverse Tafel reactions have the same magnitude, then no linear region is 

evident, and there is a continuous curvature to the 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂 plots until limitations due to the Tafel step leads to a 

plateau in current. In the case where there is a significant mismatch in rates between the forward and reverse Tafel 

reactions, then it is possible to have a linear region in the 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂 plots. These correspond to the overpotentials 

where the hydrogen coverage is rapidly changing, and show slopes of ±2 (multiplied by F/RT), Figure 3f. In order to 

further illustrate the kinetic equations a computable document format (cdf) representation of the Tafel-Volmer 

equations as a function of overpotential is provided in the supporting information. This allows interactive plots of 

current density, 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂 plots (including the ½ currents for each component), 𝜃𝐻𝑎𝑑
TV , and 

𝑅𝑇 

𝐹
 
𝜕|log 𝑗|

𝜕𝜂
𝑣𝑠 𝜂 plots 

(effective symmetry factor plots) as a function of the parameters B,Z,  and . 

3.3 Heyrovsky-Tafel Reactions  
An interesting case arises if one considers just the Heyrovsky and Tafel reactions, and assumes the Volmer reaction 

cannot occur. Under this condition, adsorbed hydrogen produced during the oxidation of molecular hydrogen must 

be removed by recombination in the reverse Tafel reaction. During the hor the net reaction is 

H2,surf + S  S-Had +H++e- Eq 31 

2S-Had  H2,surf + 2S Eq 32 

During the her there is then the requirement for initial adsorption of hydrogen before subsequent reaction with a 

proton 

H2,surf + 2S  2S-Had Eq 33 

S-Had +H++e-  H2,surf + S Eq 34 

Counterintuitively, hydrogen evolution is required during the hor in order to keep the hydrogen coverage constant, 

and hydrogen adsorption is required during the her for the same reason. Although this process might be considered 

as somewhat “theoretical”, it has been invoked for hydrogen evolution in alkaline media 37. Solving for the steady 

state hydrogen coverage, and substituting into the current production relationship (Table 2), and solving for 𝑘−1
𝑒𝑞

 

provides the following 

𝑘−1
𝑒𝑞
= ± √𝑎H2√𝑘des𝑘1

eq

𝑎H+√𝑘ad
=
𝑘des𝑌

𝑎H+𝐵
         Eq 35 

where 𝑌 =
𝑎H2𝑘1

eq

𝑘des
  represents the balance between the forward Heyrovsky and reverse Tafel reactions. Substitution 

into the steady state equation for hydrogen coverage and simplification provides the steady-state hydrogen 

coverage as a function of potential for the Heyrovsky-Tafel reaction, 𝜃𝐻𝑎𝑑
HT (𝜂) 

𝜃𝐻𝑎𝑑
HT (𝜂) =

4𝐵2 + Y (𝑒𝑓𝜂 +
𝑒−(1−)𝑓𝜂

𝐵
) −√16B2 + (𝑌 (𝑒𝑓𝜂 +

𝑒−(1−)𝑓𝜂

𝐵
))

2

+ 8𝑌(𝑒𝑓𝜂 + 𝐵𝑒−(1−)𝑓𝜂)

4(𝐵2 − 1)
 

Eq 36 
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Under equilibrium conditions, the coverage of hydrogen is controlled by B in the same manner as for the Tafel-

Volmer reaction and hence is dependent only on 𝑘ad, 𝑘des and the bimolecular hydrogen concentration and is 

independent of proton concentration 

𝜃𝐻𝑎𝑑
HT,𝑒𝑞

=
1

1 +
1
B

 Eq 37 

𝜃𝐻𝑎𝑑
HT  is bounded by 0, and 1, and always increases with potential (Figure 4), although it may show a plateau at =0 

for Y << B2, i.e when the Heyrovsky forward reaction rate is much slower than the Tafel step (see example in Figure 

1c). Substitutions of 𝑘−1
𝑒𝑞

 into the equation for the electrochemical current and subsequent simplification gives  

𝑗HT(𝜂) = 𝐹𝑘1
𝑒𝑞
(𝑎𝐻2 (1 − 𝜃𝐻𝑎𝑑

HT (𝜂)) 𝑒𝑓𝜂 −
√𝑎H2√𝑘des

√𝑘ad
𝜃𝐻𝑎𝑑
HT (𝜂)𝑒−(1−)𝑓𝜂) 

 

Eq 38 

a dimensionless current in terms of the parameters B and Y may then be obtained i.e. the same parameters as used 

to define the hydrogen coverage in Eq 36 

𝑗HT(𝜂)

𝑘des
= 𝐹𝑌((1 − 𝜃𝐻𝑎𝑑

HT (𝜂)) 𝑒𝑓𝜂 −
𝜃𝐻𝑎𝑑
HT (𝜂)

B
𝑒−(1−)𝑓𝜂) Eq 39 

Limiting currents are always seen at sufficiently large anodic and cathodic overpotentials, although at intermediate 

potentials it is possible to have regions in which the slopes of the 
RT

𝐹

𝑑Log𝑒|𝑗|

dη
 vs η plots have eff values which 

correspond to  or 2 for the anodic section and –(1- ) or -2 for the cathodic section. These cases are highlighted in 

Figure 4.  

3.4 Heyrovsky-Tafel-Volmer Reactions  
Solution of the Heyrovsky-Tafel-Volmer equation is performed in a similar manner to the previous cases above using 

the appropriate equations for  
𝑑𝜃𝐻𝑎𝑑

HTV

𝑑𝑡
 and j in Table 2. Solution of the steady-state adsorbed hydrogen coverage 

yields a quadratic expression for 𝜃𝐻𝑎𝑑
HTV, and with two possible solutions for 𝜃𝐻𝑎𝑑

HTV, with only the negative branch 

making physical sense 

𝜃𝐻𝑎𝑑
HTV

=
1

4(𝑎H2𝑘ad − 𝑘des)
(𝑘2 + 𝑎H2(𝑘1 + 4𝑘ad) + 𝑎𝐻+(𝑘−1 + 𝑘−2)

± √(𝑘2 + 𝑎H2(𝑘1 + 4𝑘ad) + 𝑎𝐻+(𝑘−1 + 𝑘−2))
2 − 8(𝑎H2(𝑘1 + 2𝑘ad) + 𝑎𝐻+𝑘−2)(𝑎H2𝑘ad − 𝑘des)) 

 

Eq 40 

Under equilibrium conditions the net current is zero 

𝑗HTV = 𝐹 (𝑘1
eq
𝑎𝐻2(1 − 𝜃𝐻𝑎𝑑

HTV,eq
)−𝑘−1

eq
𝑎𝐻+𝜃𝐻𝑎𝑑

HTV,eq
+ 𝑘2

eq
𝜃𝐻𝑎𝑑
HTV,eq

− 𝑘−2
eq
𝑎𝐻+(1 − 𝜃𝐻𝑎𝑑

HTV,eq
)) = 0  Eq 41 

and hence it is possible to solve for 𝑘−1
eq

 in terms of 𝑘1
eq

 and 𝑘−2
eq

 in terms of 𝑘2
eq
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𝑘−1
eq
= √𝑎H2√𝑘des𝑘1

eq

𝑎𝐻+√𝑘ad
 =
𝑌𝑘des

𝐵𝑎𝐻+
,     

 𝑘−2
eq
= √𝑎H2√𝑘ad𝑘2

eq

√𝑘des𝑎𝐻+
=
𝐵𝑘2

eq

𝑎𝐻+
      

Eq 42 

Substitution into Eq 40 leads to the potential dependence of 𝜃𝐻𝑎𝑑
HTV(𝜂) in terms of 𝑘1

eq
, 𝑘2
eq
, 𝑘ad, 𝑘des, 𝛽. We find that 

the coverage is controlled by the three dimensionless constants previously defined, B, Y and Z, and that the equation 

for coverage can be rewritten in terms of these parameters  

   𝜃𝐻𝑎𝑑
HTV(𝜂) =

1

4(B2 − 1)
(4B2 + Z(𝑒𝛽𝜂 + B𝑒(−1+𝛽)𝜂) + Y (𝑒𝛽𝜂 +

1

B
𝑒(−1+𝛽)𝜂)

− √(4B2 + Z(𝑒𝛼𝜂 + B𝑒(−1+𝛽)𝜂) + Y (𝑒𝛽𝜂 +
1

B
𝑒(−1+𝛽)𝜂))

2

− 8(B2 − 1)(2B2 + Y𝑒𝛽𝜂 + BZ𝑒(−1+𝛽)𝜂)) 

Eq 43 

The hydrogen coverage shows features similar to those of the HV and TV/HT mechanisms. Setting 𝑘1
eq
→ 0 (i.e. no 

Heyrovsky reaction, Y → 0) produces 𝜃𝐻𝑎𝑑
TV (𝜂) (Eq 27). Setting 𝑘2

eq
→ 0 (i.e. no Volmer reaction, Z → 0) produces 

𝜃𝐻𝑎𝑑
HT (𝜂) (Eq 36). At the equilibrium potential, the hydrogen coverage simplifies to  

𝜃𝐻𝑎𝑑
HTV,𝑒𝑞

=
1

1 +
1
B

 Eq 44 

that is, the same form of equilibrium coverage as for the Tafel-Volmer and Heyrovsky-Tafel equations. In contrast to 

the HV equation (but similar to the TV equation), the HTV equation is pH independent. Furthermore, when 𝑌 = 𝐵𝑍, 

the hydrogen coverage becomes potential independent, that is 𝜃𝐻𝑎𝑑
HTV(𝜂) =

1

1+
1

B

 (cf the HV mechanism). When 𝑌 >

𝐵𝑍  then the hydrogen coverage increases as the potential becomes more negative (TV like behaviour) whereas 

when 𝑌 < 𝐵𝑍  the hydrogen coverage increases with increasing positive overpotential (such a behaviour was also 

seen under certain conditions for both the HV, and HT cases). This occurs when the recombination steps are fast, but 

the oxidation of the adsorbed hydrogen is slow. 𝜃𝐻𝑎𝑑
HTV(𝜂) can show limiting values at high overpotentials, similar to 

the case of the HV reaction. The limiting solutions for Eq 43 as , and - are 

lim
𝜂→−∞

𝜃𝐻𝑎𝑑
HTV(𝜂) =

1

1 +
𝑌
𝑍 𝐵2

 lim
𝜂→∞

𝜃𝐻𝑎𝑑
HTV(𝜂) =

1

1 +
𝑍
𝑌

 Eq 45 

𝜃𝐻𝑎𝑑
HTV(𝜂)  can also show a plateau around =0 (as seen for the TV and HT equations).  

Some representative plots of 𝜃𝐻𝑎𝑑
HTV(𝜂) as a function of the parameters B, Y  and Z are displayed in Figure 5(a)-(c). The 

parameters were chosen in such a way as to exemplify the range of possible isotherms. For all isotherms shown, it is 

possible to produce their associated mirror images (i.e. their reflection in the y-axis). 

Substitution of 𝜃𝐻𝑎𝑑
HTV(𝜂) into the equation for electrochemical current and simplification in line with the different 

parameters produces 
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𝑗HTV(𝜂) = 𝐹 ((𝑘1
eq
𝑎𝐻2 (1 − 𝜃𝐻𝑎𝑑

HTV(𝜂)) + 𝑘2
eq
𝜃𝐻𝑎𝑑
HTV(𝜂)) 𝑒𝛽𝑓𝜂 − (

√𝑎H2√𝑘des𝑘1
eq

√𝑘ad
𝜃𝐻𝑎𝑑
HTV(𝜂) +

𝐵𝑘2
eq
(1 − 𝜃𝐻𝑎𝑑

HTV(𝜂))) 𝑒(−1+𝛽)𝑓𝜂)  

Eq 46 

As with the previous cases, it is possible to obtain a dimensionless current by dividing the current density by 𝑘des as 

was the case with the TV and HT models. This then gives us the dimensionless current density in terms of the three 

parameters used to describe the hydrogen coverage: B, Y and Z. 

𝑗HTV(𝜂)

𝑘des
= 𝐹 ((𝑌 (1 − 𝜃𝐻𝑎𝑑

HTV(𝜂)) + 𝑍𝜃𝐻𝑎𝑑
HTV(𝜂)) 𝑒𝛽𝑓𝜂 − (

𝑌

𝐵
𝜃𝐻𝑎𝑑
HTV(𝜂) + 𝐵 𝑍 (1 −

𝜃𝐻𝑎𝑑
HTV(𝜂))) 𝑒(−1+𝛽)𝑓𝜂)  

Eq 47 

Compared to the HV and TV situations described above, we have a more complicated parameter space to map out. 

Setting 𝑘1
eq
→ 0 in Eq 47 (or more specifically Y → 0 ) recovers  the TV equation  (Eq 29) and setting 𝑘2

eq
→ 0 in Eq 47 

(or more specifically 𝑍 → 0 ) recovers  the HT equation,  Eq 40. The HTV equation for electrochemical current is pH 

independent, like the TV and HT equations, but unlike the HV equation. 

Scaled currents (
𝑗HTV

𝑘des
) for the parameter sets used to plot the 𝜃𝐻𝑎𝑑

HTV values in Figure 5(a)-(c) are shown in Figure 5(d)-

(f). As might be expected, the scaled currents show a range of different responses similar to those seen in the HV, 

TV, and TH cases. A specific feature of the HTV mechanisms is that the current response can show an inflection, 

something not seen in any of the other mechanisms. The inflection has been used to aid fitting of experimental data 

which show a similar feature, and indeed this inflection has been used as proof of transition from Tafel-Volmer to 

Heyrovsky-Volmer kinetics25, 27, 38. However, it now appears that the inflection seen in the experimental data is a 

manifestation of two reaction sites as seen in data produced using our new experimental technique16-17, 32 and 

suggested by us previously19. At large overpotentials the HTV mechanism always becomes dominated by the HV 

mechanisms as the electrokinetic steps out run the Tafel chemical step. However, closer to the equilibrium potential 

it is possible to have a current which is enhanced above those expected from an extrapolation from large 

overpotentials due to the significant involvement of the Tafel step.  

In order to illustrate this last point, it is interesting to consider the proportion of current which proceeds through 

each of the different mechanistic steps as a function of the parameters B,Y, and Z. The current through each of the 

different steps as a function of overpotential may be calculated by 

jHeyrovsky(𝜂) = 𝐹𝑘des (𝑌 (1 − 𝜃𝐻𝑎𝑑
HTV(𝜂)) 𝑒𝛽𝑓𝜂 −

𝑌

𝐵
𝜃𝐻𝑎𝑑
HTV(𝜂)𝑒(−1+𝛽)𝑓𝜂)              Eq 48 

and 

jVolmer(𝜂) = 𝐹𝑘des (𝑍𝜃𝐻𝑎𝑑
HTV(𝜂)𝑒𝛽𝑓𝜂 − 𝐵 𝑍 (1 − 𝜃𝐻𝑎𝑑

HTV(𝜂)) 𝑒(−1+𝛽)𝑓𝜂)  Eq 49 
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For the Heyrovsky and Volmer steps respectively. For the Tafel reaction we can calculate the “virtual current” 

associated with hydrogen reaction on the surface from mass balance arguments as 

jTafel(𝜂) = 2𝐹𝑘des (𝐵
2 (1 − 𝜃𝐻𝑎𝑑

HTV(𝜂))
2

− (𝜃𝐻𝑎𝑑
HTV(𝜂))

2

)   Eq 50 

Eq 48-Eq 50 represent the current generated through each of the different steps, however they do not represent the 

proportion of current generated through each pathway (combination of steps). This is arguably a more important 

parameter as it allows us to understand the ratio of the different pathways for the her/hor, and how those pathways 

change with overpotential.  We can calculate this function by recognising that (1 −
𝑗𝑇𝑎𝑓𝑒𝑙(𝜂)

𝑗HTV(𝜂)
)  represents the amount 

of reaction which proceeds through the HV pathway (i.e. the total fraction of current which does not involve the 

Tafel step). Hence we can deconvolute the fraction of reaction which proceeds through the different pathways as: 

ΧHeyrovsky−Volmer(𝜂) = 1 −
𝑗𝑇𝑎𝑓𝑒𝑙(𝜂)

𝑗HTV(𝜂)
  Eq 51 

The remaining current must pass through either the HT or TV pathways. The proportion of reaction that proceeds 

through those pathways is then 

ΧHeyrovsky−Tafel(𝜂) =
𝑗𝐻𝑒𝑦𝑟𝑜𝑣𝑠𝑘𝑦(𝜂)

𝑗𝐻𝑇𝑉(𝜂)
− 1 2⁄ ΧHeyrovsky−Volmer(𝜂)  Eq 52 

and 

ΧTafel−Volmer(𝜂) =
𝑗𝑉𝑜𝑙𝑚𝑒𝑟(𝜂)

𝑗𝐻𝑇𝑉(𝜂)
− 1 2⁄ ΧHeyrovsky−Volmer(𝜂)  Eq 53 

In Figure 5(g)-(i) we show examples of this breakdown for one of the sets of parameters used in Figure 5(a)-(h). It is 

interesting to see that the fraction of the TV pathway always peaks close to the equilibrium potential (although not 

necessarily exactly at the equilibrium potential) and then decays away as the overpotential increases on either side. 

The HT pathway, always shows a negligible fraction of current for all parameters considered. 

3.5 Exchange current density  
The exchange current density is a parameter often used to characterise complex multistep electrochemical reactions 

by analogy with the parameter determined from the Butler-Volmer equation. At its heart, this parameter measures 

how facile the electrochemical reaction is at the equilibrium potential. For the Butler-Volmer formalism, this 

parameter provides extra information as the large overpotential performance of the reaction (in the absence of 

mass transport effects) can be determined from the exchange current density and the Tafel slope. For the Butler-

Volmer equation, the exchange current can be determined either by back extrapolation of the Tafel region to the 

equilibrium potential (either from the anodic or cathodic branches), fitting of the curve over the intermediate 

potential regime, or from the micropolarisation region by taking the first terms of the series expansion of the Butler-

Volmer equation and fitting the slope. This latter approach is useful as it can be applied at low overpotentials, where 

it is often assumed that mass transport losses are not too great. All four approaches mathematically provide the 

same value of the exchange current density for an electrokinetic reaction following the Butler-Volmer equation.  
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It is often tacitly assumed that the same approach can be applied to multistep reactions, and that each of the 

different methods described above will provide the same numerical value of the exchange current density. As will be 

shown below, this is not the case and the assumption that the exchange current density can be determined from e.g. 

fitting the micropolarisation region, is not valid. Indeed, the utility of the exchange current density is somewhat 

devalued for multistep reactions, as it can no longer be assumed that the exchange current density and a Tafel slope 

can be used to predict currents far from the equilibrium potential (or conversely, that a Tafel slope can be used to 

predict the current close to the equilibrium potential). For each of the hydrogen mechanisms, we have calculated 

the mathematical form of the “exchange current” using each of the different approaches described above for each 

of the different mechanisms. The results are summarised in Table 3. In this table, we also list the mathematical 

equation for the equilibrium hydrogen coverage, whether the mechanism shows a pH dependence (that is if the 

exchange current density has a dependence on pH), and the observable Tafel slopes in terms of . 

3.5.1 “True” Exchange current density  

In Table 3 we list the “true” exchange current density for each of the reactions by taking the appropriate equations 

(Eq 17 for HV, Eq 29 for TV, Eq 38 for HT and Eq 46 for HTV) and determining the anodic and cathodic currents when 

=0, and 𝜃𝐻𝑎𝑑(𝜂) = 𝜃𝐻𝑎𝑑
eq

  for the respective reaction. 

For the HV mechanism, the exchange current density is associated with the serial combination of the Heyrovsky and 

Volmer steps.  The reaction order for protons may vary between  -1 to 1 dependent on the magnitude of 𝑘1
𝑒𝑞

 and 

𝑘2
𝑒𝑞

. Indeed, Bagotzky and Osetrova found a value of 0.5 using platinum microelectrodes although their 

interpretation for this non-integral value was associated with the presence of two pathways associated with the 

initial discharge step, one being pH dependent6. In our previous paper we found a reactant order for protons on Pt/C 

catalyst of 0.4 in the pH range 1 to -0.8. This value was adequately explained with a specific set of values for 𝑘1
𝑒𝑞

 and 

𝑘2
𝑒𝑞

 which would result in a reaction order for protons of 0 at pH<-1, and a reaction order of 1 at pH>1 with the 

intermediate regime showing a continuous change of reaction order with pH32. The significant decrease in exchange 

current density for the hor on platinum and other metals in alkaline environments may be associated with this 

variation of exchange current with pH39-40, although it may also be associated with a change of mechanism at high 

pH. Although a reaction order for protons less than zero is possible, the conditions under which this may occur are 

rather unlikely. The reaction order for bimolecular hydrogen varies between 0 and 1 depending on the magnitude of 

the forward Heyrovsky reaction compared to the reverse Volmer reaction. In our previous paper on the hor/her on 

platinum, we showed how the phenomenologically measured reaction order of hydrogen of 0.68 (quite close to the 

value of 0.61 measured in an alkaline environment41) could be rationalised in terms of the HV reaction mechanism 

and fitted values of 𝑘1
𝑒𝑞

 and 𝑘2
𝑒𝑞

 which were rather similar to each other and which thus provided results which were 

in the intermediate regime32. It is often assumed that a simplified form of the Butler Volmer equation can be used 

(c.f. Eq 20, Eq 21), but this requires severe constraints on the kinetic parameters which are unlikely to be satisfied. 

For the TV mechanism, the exchange current is dependent on the electrochemical Volmer rate constant, 𝑘2
𝑒𝑞

, and 

(through its dependence on the equilibrium hydrogen coverage, 𝜃𝐻𝑎𝑑
𝑇𝑉,𝑒𝑞

) the parameter B, associated with hydrogen 
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adsorption on the catalyst surface. There is no pH dependence of the exchange current density and the reaction 

order for hydrogen varies between 0 and ½.  The low value of the reaction order comes about because hydrogen 

adsorption is a chemical step (and hence not included in the exchange current), and the exchange current is 

influenced by 𝜃𝐻𝑎𝑑
eq

 which in turn is affected by the chemical adsorption step. This is different to the case of the 

micropolarisation region and indeed the entire electrokinetic response which will be affected by the hydrogen 

activity by a different reaction order as the chemical step is then also included (see below). Thus, although the 

limiting current will show a first order dependence with hydrogen partial pressure, the exchange current density will 

(at most) show a ½ –order dependence. This aspect has not been previously fully appreciated. 

For the HT mechanism, the exchange current density is dependent on the Heyrovsky rate constant, 𝑘2
𝑒𝑞

, and B (both 

directly, and through the dependence of 𝜃𝐻𝑎𝑑
𝐻𝑇,𝑒𝑞

 on B). Again there is no dependence of the reaction order on pH, 

and in this case the limiting values of the hydrogen reaction order are 1/2 or 1. The difference between the hydrogen 

reaction order of the HT and TV mechanisms comes about because of the involvement of bimolecular hydrogen in 

the electrokinetic steps, c.f. Eq 31. 

For the HTV mechanism, the exchange current density is associated with the sum of that associated with the TV and 

HT mechanisms. Hence, there is again no dependence of reaction order on pH. It is maybe surprising that the HTV 

mechanism shows no dependence on pH as the HV shows such a dependence. However, as is clear from the form of 

the exchange current density, it is the sum of two pH independent mechanisms, and hence is also pH independent. 

The limiting reaction order for hydrogen can take on three different values, 0, ½, and 1. As with the cases above, 

intermediate values are possible, but these are associated with a “transition region” where the reaction order is 

shifting between values.  

3.5.2 Exchange current density from the slope of the micropolarisation region 

Kinetic information for the hydrogen reaction is most frequently extracted from the micropolarisation region, as this 

allows the smallest perturbation to the system and hence leads to the least likelihood of introducing mass transport 

and Ohmic losses.  The exchange current density is then extracted from the slope of the micropolarisation region 

under the assumption that the hor/her follow a Butler-Volmer type expression and that series expansion of the 

exponential function about =0 is possible19: 

𝑗𝑆𝑝𝑒𝑐(𝜂) = (
2𝐹

𝑅𝑇
𝑗0)𝜂 Eq 54 

where 𝑗𝑆𝑝𝑒𝑐(𝜂) is the experimentally measured specific current density at overpotential, . Note that for 

thermodynamic reasons, the factor of two is required, as this allows a direct correspondence of the kinetic reaction 

with the Nernst equation at equilibrium (see Appendix A). 

Table 3 provides the kinetic form of the slope of the micropolarisation region in terms of the individual kinetic 

parameters. Under certain conditions these slopes may simplify to the true exchange current density, although in 
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many cases they will not. We also provide the possible limiting reaction order for hydrogen which may be seen for 

the slope of the micropolarisation region.  In all cases the reaction order for protons remain the same. 

As we have the full mathematical form of the HV equation we have determined the mathematical form of this 

micropolarisation region by taking the derivative of Eq 17 (with 𝜃𝐻𝑎𝑑
𝐻𝑉,𝑒𝑞 expanded by Eq 15) and setting =0. This 

approach is preferable to taking the series expansion as it is more accurate. 

(
𝜕𝑗HV(𝜂)

𝜕𝜂
)
𝜂=0

=
4F2

𝑅𝑇

𝐾𝑘1
eq
𝑘2
eq
𝑎H2

(𝐾 + 1)(𝐾𝑘1
eq
𝑎H2 + 𝑘2

eq
)
 Eq 55 

This further simplifies to 

(
𝜕𝑗HV(𝜂)

𝜕𝜂
)
𝜂=0

=
4F2

𝑅𝑇
𝜃𝐻𝑎𝑑
𝐻𝑉,𝑒𝑞 𝑘2

eq
𝐺

(𝐺 + 1)
= (

F

𝑅𝑇
)𝐹𝜃𝐻𝑎𝑑

𝐻𝑉,𝑒𝑞

(

 
1

1

4𝐾𝑘1
eq
𝑎H2

+
1

4𝑘2
eq
)

  

 

Eq 56 

Hence the measured apparent “exchange current density” is really a composite of both electrochemical rate 

constants, and shows a complex dependence on hydrogen and hydrogen ion concentration.  Rather than appearing 

as a parallel mechanism as it does in the true exchange current density, it appears as a serial mechanism 

𝑗0
𝑎𝑝𝑝

= 𝐹𝜃𝐻𝑎𝑑
𝐻𝑉,𝑒𝑞

(

 
1

1

4𝐾𝑘1
eq
𝑎H2

+
1

4𝑘2
eq
)

  

𝑗𝑆𝑝𝑒𝑐(𝜂) = (
𝐹

𝑅𝑇
𝑗0
𝑎𝑝𝑝
)𝜂 

Eq 57 

Where 𝑗𝑆𝑝𝑒𝑐(𝜂) is the experimentally measured specific current density at overpotential, . Note that in this case, 

the inclusion of the factor of 2 is not required as it is implicit in the derivation and leads to a consistent 

thermodynamic interpretation (see Appendix A).  In general, the apparent exchange current density does not match 

the true exchange current density. However, there are two domains over which this equation simplifies into a form 

which approximates the true exchange current density depending on the relative magnitude of 𝐾𝑘1
eq
𝑐H2 and 𝑘2

eq
, or 

more succinctly by the magnitude of G. When G>>1, and the forward Heyrovsky reaction is much faster than the 

reverse Volmer reaction  

𝑗𝑆𝑝𝑒𝑐(𝜂) = (
𝐹

𝑅𝑇
𝑗0
𝑎𝑝𝑝
)𝜂 = (

4𝐹

𝑅𝑇
𝑗0) 𝜂 = (

4𝐹2

𝑅𝑇
)(𝜃𝐻𝑎𝑑

𝐻𝑉,𝑒𝑞
𝑘2
eq
)𝜂          𝑖𝑓 G >> 1   Eq 58 

It is interesting to note that the exchange current density do not exactly match, but instead there is a factor of four 

difference. Under these conditions, exchange current density will show zeroeth order dependence on hydrogen 

concentration and either first or zeroeth order dependence on hydrogen ion concentration depending on the 

magnitude of K through its effect on 𝜃𝐻𝑎𝑑
𝐻𝑉,𝑒𝑞

.  

In comparison, when G<<1, which might be a more likely situation  
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𝑗𝑆𝑝𝑒𝑐(𝜂) = (
𝐹

𝑅𝑇
𝑗0
𝑎𝑝𝑝
) 𝜂 = (

4𝐹

𝑅𝑇
𝑗0) 𝜂 = (

4𝐹2

𝑅𝑇
)(𝜃𝐻𝑎𝑑

𝐻𝑉,𝑒𝑞
𝐾𝑘1

eq
𝑎H2)𝜂 Eq 59 

We have a reaction order of one for hydrogen and either zeroeth or 1st order reaction for proton activity depending 

on the magnitude of K.  

For the TV reaction, determination of the effective exchange current density by differentiation of Eq 29 leads to a 

rather unwieldy expression, and so the exponential terms were first linearised by series expansion about =0. This 

approach provides a good facsimile of the current density at close to the equilibrium potential. Differentiation of this 

function followed by setting =0 provides the following 

(
𝜕𝑗TV(𝜂)

𝜕𝜂
)
𝜂=0

=
4𝐹𝑘2

eq
𝑘ad𝑘des𝑎H2(1 − B)

(−𝑎H2𝑘ad + 𝑘des)(4B𝑘des + 𝑘2
eq
+ B𝑘2

eq
)
 

=
4𝐹𝜃𝐻𝑎𝑑

𝑇𝑉,𝑒𝑞𝑘2
eq
B

(𝑍 + 𝐵(4 + 𝑍))
 

Eq 60 

Further simplification provides, that for an experimentally measured specific current density at an 

overpotential, , 

 

We see that we can recover the “True” exchange current when both terms in Z in the denominator of Eq 61 tend to 

zero 

𝑗𝑆𝑝𝑒𝑐(𝜂) = (
𝐹

𝑅𝑇
𝑗0
𝑎𝑝𝑝
) 𝜂 = (

𝐹

𝑅𝑇
𝑗0)𝜂 = (

4𝐹2

𝑅𝑇
)(𝜃𝐻𝑎𝑑

𝑇𝑉,𝑒𝑞
𝑘2
eq
)𝜂           𝑖𝑓 (

𝑍

4
+
𝑍

4𝐵
) → 0 Eq 62 

This occurs when the Volmer reaction is slower than the Hads recombination reaction and the rate of hydrogen 

adsorption is fast compared to desorption. If this is not the case then the exchange current density estimated from 

the micropolarisation region will be underestimated. As the micropolarisation region is affected by the rate of 

hydrogen adsorption/desorption, the possible reaction order for hydrogen changes to now also include the 

possibility of a value of unity. This higher value becomes possible when 
𝑍

4𝐵
≫ 0, i.e. when the Volmer step is faster 

than the hydrogen adsorption/desorption step. A situation which is commonly encountered on many metals.   

The situation is similar for the HT mechanism. Series expansion about =0 followed by setting =0 provides an 

equation in which the denominator is modified from that seen for the true exchange current density, Table 3. In this 

case, the determination of the exchange current density from the linear polarisation region provides a valid value 

when  

𝑗𝑆𝑝𝑒𝑐(𝜂) = (
𝐹

𝑅𝑇
𝑗0) 𝜂 = (

4𝐹2

𝑅𝑇
)(
𝜃𝐻𝑎𝑑
𝐻𝑇,𝑒𝑞

𝑘1
𝑒𝑞
𝑎𝐻2

B
)𝜂       𝑖𝑓 (

𝑌

4𝐵
 +

𝑌

4𝐵2
) → 0 Eq 63 

𝑗𝑆𝑝𝑒𝑐(𝜂) = (
𝐹

𝑅𝑇
𝑗0
𝑎𝑝𝑝
) 𝜂 = (

𝐹

𝑅𝑇
𝑗0) 𝜂 = (

4𝐹2

𝑅𝑇
)(

𝜃𝐻𝑎𝑑
𝑇𝑉,𝑒𝑞

𝑘2
eq

(1 +
𝑍
4 +

𝑍
4𝐵)

)𝜂 Eq 61 
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That is, when the Heyrovsky step is much faster than both 𝑘ad and 𝑘des. As with the TV mechanisms, the number of 

limiting cases for hydrogen reaction order increases, although in this case the added possible value is a zeroth order 

dependence on hydrogen.  

For the HTV equation, expansion about 𝜂 = 0  and simplification provides an equation which is similar to the true 

exchange current density but is modified in both the numerator and denominator by the same factors seen for the 

TV and HT cases. It is only when both of these limitations are satisfied does the estimate of the exchange current 

density from the micropolarisation region converge to the true exchange current density 

𝑗𝑆𝑝𝑒𝑐(𝜂) = (
𝐹

𝑅𝑇
𝑗0)𝜂 = (

4𝐹2

𝑅𝑇
)𝜃𝐻𝑎𝑑

𝐻𝑇𝑉,𝑒𝑞
(
𝑘1
eq
𝑎H2

𝐵
+ 𝑘2

eq
)           𝑖𝑓 (

𝑌

4𝐵
 +

𝑌

4𝐵2
) → 0 𝒂𝒏𝒅 (

𝑍

4
+

𝑍

4𝐵
) → 0  Eq 64 

That is, when both the Heyrovsky and Volmer kinetics are much faster than the chemical adsorption/desorption 

steps. Furthermore, if these cases are not satisfied, then an extra number of limiting reaction orders for hydrogen 

become possible including a negative reaction order, and a reaction order of 3/2. 

3.5.3 Exchange current density from back extrapolation of the log|j| vs η to the equilibrium 

potential 

For the Butler-Volmer equation, the exchange current density calculated from extrapolation from large 

overpotentials is independent of the branch used, and matches the values determined from the micropolarisation 

region, but for the hydrogen reaction (and indeed any multi-step reaction), this may not be the case. The reason for 

this difference is that the reaction may be controlled by one slow step close to the equilibrium potential, but by 

another at large overpotentials. Back extrapolation assumes the slow step remains the same, but this may not be the 

case. Hence estimates of the “Exchange current density” via back-extrapolation of the current from large 

overpotentials to the equilibrium potential may lead to different values depending on whether the her or hor 

branches are used (e.g. see Figure 2(f) or Figure 5(f)), and hence it is necessary to individually solve for both 

branches. This approach is experimentally the most difficult to determine as it may involve operation in regions in 

which mass transport and Ohmic losses are large. Nonetheless, it is interesting to compare the results to the real 

exchange current density. 

The dependence of current at large positive and negative overpotentials may be determined by substituting the 

limiting hydrogen coverage (Eq 16 for HV, Eq 45 for HTV, or 0 and 1 for the HT and TV equations, respectively) into 

the appropriate equation for current generation (Eq 17, Eq 29, Eq 39, or Eq 47). Back-extrapolation of these 

equations to the equilibrium potential provides a “limiting” exchange current, Table 3. For both the HV and HTV 

forms, the slope of the responses are 
𝛽𝑅𝑇 

𝐹
 and 

−(1−𝛽)𝑅𝑇 

𝐹
 (but cf below, other possible slopes are possible at 

intermediate potentials). For both the TV and HT, the slope is zero as the reaction is limited by the 

absorption/desorption chemical reaction at large overpotentials. 

For the HV mechanism, the exchange current density calculated from the large overpotential extrapolation to the 

equilibrium potential are composed of the minimum and maximum hydrogen coverages (Eq 16) multiplied by one of 

the terms in the “true” exchange current density, Table 3. For the large positive extrapolation, the term is 
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associated with the Volmer step, as this will be the rds at large overpotentials. In comparison at large negative 

overpotentials, the term is associated with the reverse Heyrovsky step. It may be strange to see a term associated 

with the forward Heyrovsky step in the current associated with her region, but the conflict is resolved if one 

considers the equivalence shown in Eq 12, i.e. 𝑘−1
𝑒𝑞
𝑎𝐻+ = 𝐾𝑘1

𝑒𝑞
𝑎H2. In order for the exchange current density 

calculated due to large overpotential extrapolation from each branch be the same, it is necessary that 
𝑘−1
𝑒𝑞
𝑎
𝐻+

𝜃𝐻𝑎𝑑
HV

(𝜂→−∞)
=

𝑘2
𝑒𝑞

𝜃𝐻𝑎𝑑
HV

(𝜂→∞)
, where the denominators are taken from Eq 16. This is rather unlikely. 

For both the TV and HT mechanisms the limiting current densities are associated with either the chemical adsorption 

step (large positive overpotentials) or desorption step (large negative overpotentials), Table 3. As with the HV case, 

it is unlikely that both 𝑎H2𝑘ad and 𝑘𝑑𝑒𝑠 would have the same numerical value, and so it would be expected that the 

exchange current densities calculated from each approach would not be the same.  

Finally, the HTV mechanisms shows extrapolated exchange currents similar to that seen for the HV mechanisms in 

which the equation is composed of the limiting hydrogen coverage (Eq 45) multiplied by one of the terms in the true 

exchange current density, Table 3. For the large positive overpotential this is associated with the Volmer step, and 

for the large negative overpotential this is associated with the Heyrovsky step. As with the HV equation above, it 

may be strange to see a term associated with the forward Heyrovsky step in the current associated with the her 

region, but the conflict is resolved if one considers the equivalence shown in Eq 42, i.e.  𝑘−1
eq
𝑎𝐻+ =

𝑎H2𝑘1
eq

𝐵
, hence the 

relevance to the her is seen. As with the other cases above, it is unlikely that both branches would converge to the 

same exchange current density.  

3.6 Estimation of “Tafel” slopes of log|j| vs η plots from experimental results  
Significant care needs to be taken in reading too much into derived Tafel slopes, as in most cases a full Tafel slope 

does not develop and instead a “mixing” between different behaviours is seen. It is important to note that the 

potentials at which such behaviour occurs may be outside the region that can be experimentally accessed. Hence the 

validity (and usefulness) of the parameter may need to be questioned. Furthermore, as shown above, there may be 

intermediate regions with enhanced values of slope in the 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂 plots. In all cases these regions of enhanced 

slope may suggest much higher current densities at high overpotentials than those which can be achieved. The 

transition from one Tafel slope to another Tafel slope typically takes at least ~3 F/RT (~100mV at room temperature) 

and in order to develop a suitable and quantifiable slope, at least a further 3 F/RT is required. Identification of linear 

regions in the plots of log|𝑗| 𝑣𝑠 𝜂 is facilitated by plots of 
𝑅𝑇 

𝐹
 
𝜕𝑙𝑜𝑔|𝑗|

𝜕𝜂
  provided in the computable document format 

(CDF) files for each of the mechanisms examined, and available for download in supplementary material. 

Depending on the mechanism used a variety of fully developed linear regions in the log|𝑗| 𝑣𝑠 𝜂 plots are seen. A 

summary of the different values of the “measured”  values in terms of the mechanistic  value are provided in 

Table 3. The separation of terms is made easier by the cdf models provided with the paper, as it is possible to vary 

the value of  for a given set of parameters and see how this affects the value of eff seen in the plateau. It is 
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interesting to see that the full mechanistic derivation of the hor/her leads to distinct values of slopes with possible 

values of , (1+) and 2 for the anodic branch, and –(1-), -(2-) and -2 for the cathodic branch. Significant deviation 

of “Tafel slopes” away from the standard values of  and -(1-) (i.e. values >1 for anodic, and <-1 for cathodic 

branches) have often in the past been interpreted as an increase of the number of electrons in the rate determining 

step35. However, in this case we see that enhanced values of “Tafel slope” develop naturally from the underlying 

analytical solutions to the kinetic equations. Examples for some of the enhanced slopes are illustrated in Figure 1-

Figure 5. 

3.7 Estimation of the free energy of adsorption of hydrogen on the electrode surface, ∆𝒂𝒅𝒔𝑮𝑯𝟐
⊖

 

Under equilibrium conditions the coverage of adsorbed hydrogen on the surface is in equilibrium with 

hydrogen in the adjacent solution phase 

𝐻2 ⇌ 2𝐻𝑎𝑑𝑠  Eq 65 

As the derivation within this paper implicitly assumes a Langmuir adsorption isotherm, we have 

(
𝜃𝐻𝑎𝑑

1 − 𝜃𝐻𝑎𝑑
) = 𝑎H2 𝑒𝑥𝑝 (

−∆𝑎𝑑𝑠𝐺𝐻2,𝑜𝑝𝑑

𝑅𝑇
) Eq 66 

Where −∆𝑎𝑑𝑠𝐺𝐻2,𝑜𝑝𝑑 is the free energy of adsorption per mole of bimolecular hydrogen. At equilibrium, and 

under standard conditions, the hydrogen coverages take on their equilibrium values, and 𝑎H2 = 1. 

(
𝜃𝐻𝑎𝑑
𝑒𝑞,⊖

1 − 𝜃𝐻𝑎𝑑
𝑒𝑞,⊖

) =  𝑒𝑥𝑝(
−∆𝑎𝑑𝑠𝐺𝐻2,𝑜𝑝𝑑

⊖

𝑅𝑇
) Eq 67 

The LHS of this equation can be determined from the parameters 𝐾⊖ or 𝐵⊖ for the respective mechanisms.  It 

is important to note that this free energy of adsorption is not the same as that associated with Hupd formed on some 

platinum group metals, as the mechanistic framework we have used in this paper does not include the presence of 

Hupd. Rather it is associated with the  Hopd formed during the catalytic oxidation of H2 or during the hydrogen 

evolution reaction42-43.   

4 Results and Discussion  

In order to assess the different mechanisms towards the hor/her we have examined using the different models to fit 

experimental data using platinum as an electrode material. Although there is much work in the literature assessing 

the performance of platinum towards the hor/her it is now well recognised that mass transport masks the true 

activity of platinum for this reaction, and the measured “exchange current densities” are too low in many papers8, 44.  

This effect is illustrated in Figure 6 in which the her/hor polarisation plots are presented for a range of different 

electrochemical techniques transformed into specific activity (current density per real surface area). These 

techniques cover a wide range of mass transport regimes, in increasing order from microelectrodes with high surface 

area platinum catalyst (Rf=30) in contact with Nafion or acid45, a 50 m platinum microelectrode (Rf 1) in contact 
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with aqueous acid,  to a Pt rotating disk electrode disk (Rf 1, 7200 rpm)  in contact with 0.1 mol dm-3 HClO4
46,   to a 

single platinum particle (450 nm in diameter) in acid19  to results obtained utilising our floating electrode technique16, 

32 (Rf1) for an electrode in 1 mol dm-3 HClO4. It is clear that there is a significant spread of results, but what is also 

clear is that mass transport effects occur even when the electrode is polarised at potentials at which the current is a 

small fraction of the mass transport limited current. This is shown in Figure 6(b) in which the current densities are 

transformed into “kinetic currents” utilising  

𝑗𝑘(𝜂) = (
𝑗𝑙𝑖𝑚 𝑗(𝜂)

𝑗𝑙𝑖𝑚 −  𝑗(𝜂)
) Eq 68 

where the limiting currents are shown as dotted lines in Figure 6(a). Even after correction for the limiting currents 

the data do not converge to one plot, suggesting that Eq 68 is insufficient to correct for all mass transport effects. 

This is hardly surprising as the derivation of Eq 68 relies on the Butler-Volmer formalism, and the assumption that 

the mechanisms involves no adsorbed intermediates. It is only for the techniques which operate in the highest mass 

transport domains that there is any correspondence of the currents (i.e. floating electrode and 450 nm particle), 

suggesting that these techniques are operating close to the domain in which mass transport does not have too big 

an effect on electrokinetics. The other issue with mass transport corrections is that both the local limiting current 

density and the actual current density measured must be highly uniform across the entire surface and must be 

known to very high precision. For instance, in order to transform the rotating disk electrode data to that similar to 

the floating electrode data (a ca. 3 order of magnitude increase), the measured current density and limiting current 

density need to be measured at an accuracy better than 1 part in 104 and the current density (and limiting current 

density) needs to be uniformly distributed across the electrode to the same accuracy. This is virtually impossible to 

achieve, and no convincing RDE experiments have been performed to show that this is indeed the case. 

More sophisticated correction of the electrokinetics for the hor/her has been attempted by including the variation of 

bimolecular hydrogen concentration at the electrode surface and using this to build a more accurate model of the 

perturbation of the electrokinetics by the mass transport effect27, 38. For metals on which the hydrogen reaction is 

facile (e.g. platinum group metals in acidic electrolytes), it is difficult to see how techniques such as the rotating disk 

electrode can be used due to the above mentioned requirements without going to exceptionally low loading (and in 

this case the mass transport regime becomes more complex)8, 47, and hence it is necessary to use other techniques 

such as microelectrodes19, 26, 38, SECM techniques26, 48-50, or procedures which utilise gas phase transport of 

reactants17-18, 32, 51. For materials which show a much lower performance towards the her/hor, utilising techniques 

such as the RDE may be possible, but care must still be taken, especially in drawing conclusions about the activity of 

the catalyst, as the catalysts may be under a severe mass transport constraint. 

In Figure 7 we present data for the hor/her for ultra-low loading electrodes composed of HiSpec 9100 60 % Pt/C 

catalysts using the newly developed vacuum filtration method to produce uniform dispersions of catalyst on a 

porous substrate and thus allow direct access of gaseous reactants/products to/from the catalyst surface. These 

electrodes are floated on the surface of an electrolyte with a structure which allows fast and facile access of 
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reactants, and for which we estimate a mass transport coefficient, kMT > 10 cm s-1. Further details on the fabrication 

of these electrodes and information about their performance is available in the experimental section and other 

publications16-17, 32, 52.  In Figure 7(a) we show the performance in terms of specific activity (i.e. ratioed to the true 

surface area of the electrode as measured by upd hydrogen oxidation) of an electrode containing 2.2 µgPt cm-2 

HiSpec 9100 60 % Pt/C electrode in 4 mol dm-3 HClO4 as a function of temperature from 5oC to 60oC (278-333K). For 

comparison, the performance towards hor/her of a platinum rotating disk electrode (RDE) at 7000 rpm in a hydrogen 

saturated 0.1 mol dm-3 perchloric acid solution is also shown. The floating electrodes provide almost 1000-fold more 

current at the same potential when compared to the RDE due to the superior mass transport of the electrodes, and 

achieve specific current densities in excess of 1 A cm-2 at the highest temperature and at the peak activity point (i.e. 

a turnover frequency of >2000 hydrogen molecules per surface platinum site per second). Two peaks are seen in the 

response, and the performance decays at higher potentials. In a previous paper on hydrogen oxidation on individual 

supported platinum nanoparticles, a plateau was observed in the hor which varied in position and magnitude with 

platinum particle size19. This effect was interpreted and modelled as two different sites for the hor with different 

exchange current densities. Subsequently, other groups have interpreted the plateau in the hor as evidence of 

changeover from TV to the HV mechanism27, 38, utilising the HTV mechanism to model this effect. However, the 

results in results in Figure 7 strongly support the presence of two different reaction sites as formation of such peaks 

is inconsistent with a mechanistic changeover from TV to HV, as in all cases these mechanisms show a monotonic 

increase in current density. Furthermore, there is a reduction in performance at higher overpotentials, and this is 

attributed to the effect of anion adsorption, which even for perchlorate, a weakly adsorbing anion, becomes 

appreciable under conditions of such high currents16, 32. It is interesting to also see that the her response on the RDE 

is much poorer than that of the floating electrode, suggesting that the mass transport plays an important for the her 

too. Figure 7(b) shows the response of an electrode in 0.5 mol dm-3 perchloric acid as function of hydrogen partial 

pressure from 0.029 to 0.126 bar hydrogen (balance nitrogen). Even at the lowest partial pressure, the performance 

is greater than the RDE.  Figure 7(c) shows both sets of data presented on a logarithmic current scale. It is interesting 

to note that at high potentials, the current decays away much quicker and follows an exponential decay. This faster 

roll off in current starts at 0.70V and hence is assumed to be associated with the formation of OHad on the platinum 

surface which starts at this potential.  

4.1 Fitting of data 

In a previous paper, we fit the response of a large set of data from similar electrodes to the HV mechanism over the 

micropolarisation region from -10 to 10 mV utilising the linear form of the HV equation at the equilibrium potential, 

Eq 56, and found a good correspondence to the data32. In the following section, we use the full HV, TV, and HTV 

models to fit the hor/her response over a much wider potential range in order to assess which model is the most 

appropriate to replicate our data. As our data is to all intents mass transport free, we can use the models we have 

developed above without having to introduce added complications due to mass transport effects as is required when 

trying to assess RDE data27, 38. Furthermore we fit our data as a function of pH, hydrogen partial pressure, and 
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temperature, a much wider parameter space than typically used for these sorts of studies, which typically rely on 

rather small datasets. 

In our model derivations, we have for simplicity assumed that the number of available sites for adsorption is (1-

𝜃𝐻𝑎𝑑(𝜂)). In fact, as we discussed above, the situation is somewhat more complicated and that the number of 

available sites for adsorption, especially at higher potentials may be much less than this term suggests. A more 

accurate approach may be to write this term as (1-𝜃𝑆𝑝𝑒𝑐𝑡𝑎𝑡𝑜𝑟(𝜂) − 𝜃𝐻𝑎𝑑(𝜂)) where the extra term is associated with 

the species that adsorb more strongly than the hydrogen on the surface. As we have determined that the PZTC for 

these catalysts is 0.24 ± 0.01 V vs. RHE32, and that the decay in current is correlated with anion adsorption, we only 

fit over a potential region much less than this value so that anion adsorption occurs to a very limited extent. A more 

sophisticated model would deal with such blocking species on the surface. We also only consider a single surface 

which leads to a single set of parameters. Within our model, 𝑎𝐻2  is the activity of dissolved hydrogen and equivalent 

to the change in partial pressure of hydrogen, 𝑃𝐻2, assuming Henry’s Law  

𝑎𝐻2 = 𝑎𝐻2
⊖ (

𝑃𝐻2

𝑃𝐻2
⊖ 
) ≅

𝑐𝐻2

𝑐𝐻2
⊖
(
𝑃𝐻2

𝑃𝐻2
⊖ 
) 

Eq 69 

Where 𝑎𝐻2
⊖  and 𝑃𝐻2

⊖  are the standard state activities of hydrogen in solution and in the gas phase (i.e. 𝑃𝐻2
⊖ = 1 bar, 

𝑎𝐻2
⊖ = 1). 𝑐𝐻2

⊖  is the saturated concentration of hydrogen in the ionomer phase immediately adjacent to the catalyst 

particle in equilibrium with 1 bar H2 gas, and is taken as being 5.1010-7 mol cm-3   45. 

Each of the microscopic steps may be associated with their own activation energy 

𝑘1
eq(𝑇) = 𝑘1

eq,STP𝑒−𝐸𝑎,1/𝑅(
1
𝑇⁄ −
1
298.15⁄ ) 

𝑘2
eq(𝑇) = 𝑘2

eq,STP𝑒−𝐸𝑎,2/𝑅(
1
𝑇⁄ −
1
298.15⁄ ) 

𝑘𝑎𝑑(𝑇) = 𝑘𝑎𝑑
STP𝑒−𝐸𝑎,𝑎𝑑/𝑅(

1
𝑇⁄ −
1
298.15⁄ ) 

Eq 70 

although in order to reduce complexity we make the assumption that the reaction appears to be controlled by a 

single activation energy, and as such we can write 

𝑗𝑇(𝜂) = 𝑗𝑆𝑇𝑃(𝜂)𝑒
−𝐸𝑎/𝑅(

1
𝑇⁄ −
1
298.15⁄ ) Eq 71 

In performing the fitting procedure we fit all data sets simultaneously (i.e. 13 datasets comprising seven hydrogen 

partial pressures and six different temperatures) using the same set of parameters. This approach is preferable to 

fitting each dataset individually (which would give the appearance of much better fits, as each trace would have an 

optimised set of parameters), but which would not constrain the solution to values which optimised the fit across 

the entire dataset – i.e. we sacrifice getting the best possible fit for each experimental curve by having a more 

general and applicable solution. The partial pressure of hydrogen was corrected for the vapour pressure of water, 

which especially at higher temperature can lead to significant variation. Some extra comments associated with fitting 

are listed in Appendix B. 
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4.2 Fitting data to the Heyrovsky-Volmer mechanism 

For the TV reaction, we fit five parameters 𝑘2
⊖, 𝐾⊖, 𝐺⊖, Ea, and  to Eq 19 modified by Eq 71. Although Eq 19 

contains no explicit dependence on 𝑎𝐻2  and 𝑎𝐻+, these parameters enter into the equations through the definition 

of G and K respectively to give a specific value of Geq, and Keq for each experimental condition (𝐾𝑒𝑞 = 𝐾⊖ 𝑎𝐻+⁄ , 

𝐺𝑒𝑞 = 𝐺⊖𝑎𝐻2 𝑎𝐻+⁄ ). Likewise, 𝑘2
⊖ is automatically determined as all data sets are measured vs RHE for the 

appropriate 𝑎𝐻2  and 𝑎𝐻+  used. Hence the five parameters are used to simultaneously fit all 13 datasets. The fit was 

performed over the potential range -50 to +50 mV.  

We have previously used the linear approximation about the equilibrium potential to fit the data over the potential 

range -10mV to 10mV. Using the full HV equation, we find that we can extend the range of suitable fit to -50mV..+50 

mV. Beyond this range, especially at positive overpotentials we find that the fits diverge. At positive overpotentials 

our HV model over-predicts the current as it does not include the effect of the reaction shutting down due to anion 

adsorption. A comparison between the fit results (broken lines) and data (points) is provided in Figure 8a. The fitting 

parameters used to provide the best fit to the data sets are provided in Table 4, along with a number of parameters 

derived from those values. At higher temperatures and increased hydrogen partial pressures the fit remains 

relatively good, with greater deviation seen at the lower hydrogen partial pressures. A  value of 1/3 is determined 

from the fitting process, which is somewhat lower than the usual value of ½ ascribed to the hydrogen reaction. An 

activation energy of 18 kJ mol-1 is determined through the fitting procedure – this is the same as the experimentally 

observed activation energy in our previous paper32, although a little higher than the value determined during the 

fitting of results (15.5 kJ mol-1) in that paper. In our previous paper we used a data set which straddled a wider range 

of pH values, as the HV mechanism is the only one to show an effect on the exchange current density due to pH 

beyond the shift in equilibrium potential, whereas neither the TV nor the HTV mechanisms show a variation in 

kinetics beyond that associated with the shift in equilibrium potential (i.e. the exchange current density for both of 

these reactions is pH independent). The value of 𝐾⊖ determined from the fitting data is 3.09, which is in good 

agreement with the value of 𝐾⊖ determined in our previous paper of 2.6, suggesting that under standard 

conditions, the forward Volmer reaction is somewhat faster than the reverse Volmer reaction The values of 𝐾⊖ and 

𝐺⊖ which we determine from our data provide values of 𝑘1
⊖ and 𝑘2

⊖ of 8.6×10-7 and 5.1×10-6 mol cm −2s−1. These 

values are half and 4-5 times larger than the values determined using the cruder fit of the linear potential region 

(1.79×10-6 and 1.19×10-6 mol cm −2s−1). The difference is probably associated with the previous approach assuming 

a value of  of 1/2, whereas in this case  was used as a fitting coefficient. Using the 𝑘1
⊖ and the saturated hydrogen 

concentration (5.110-7 mol cm−3 from ref45), a value of 1.7 cm s-1 is calculated.   

It is salient to consider what these parameters mean in terms of simplification of the hor/her to a Butler-Volmer type 

formalism as described in Eq 20 and Eq 21. Neither the requirement that 𝐾⊖1, nor that 𝐺⊖<<1 is met, suggesting 

that such a model is poor at describing the hydrogen reaction. Comparison of model curves generated using Eq 19 

and Eq 20 using the parameters in Table 4 shows that there is almost a 20% error across the entire potential range 

studied in Eq 20 over the more correct Eq 19.  
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The hydrogen coverage values determined from the fitting parameters show that at the equilibrium potential under 

standard conditions, the hydrogen coverage is 0.24, and this increases to a maximum value of 0.38 at large negative 

overpotentials. Utilising Eq 67 and the equilibibrium hydrogen concentration under standard conditions  a value of  

∆𝑎𝑑𝑠𝐺𝐻2,𝑜𝑝𝑑
⊖  of +2.8kJ mol-1 is calculated, a value very close to the value of zero predicted on the basis of platinum’s 

performance close to the apex of the volcano plot of activity for the hydrogen reaction43, 53.  The equilibrium 

hydrogen coverage is fairly similar to the value of 0.179 determined on an Pt rotating disk electrode by Rau et al29. At 

large positive overpotentials the coverage has a non-zero value of 0.14. The true exchange current density is 183 mA 

cm-2 under standard conditions. This value is about 10% larger than the value determined solely from the 

micropolarisation region. In comparison there is a much larger difference with exchange current densities 

determined by extrapolating the large overpotential response back to the equilibrium potential which straddle the 

true exchange current density and over and underestimate it by about 20% and 10% respectively. The sensitivity of 

the exchange current density to pH changes i.e. (
∂log10(𝑗0)

∂log10(𝑎𝐻+)
)
𝑆𝑇𝑃

 is 0.41, close to the value of 0.38 determined in our 

previous paper when fitting the micropolarisation region32. As in that paper, the mechanism appears to be in 

transition from a reaction of one to zero as pH decreases. We calculate that the effect this parameter has on the 

exchange current is to increase the value from 0.14 A cm-2 to 0.314 A cm-2 as the acid strength is changed from 0.5 to 

4 mol dm-3 HClO4. 

We have taken the parameters determined from the fitting procedure and generated a plot for the hor/her over a 

moderate potential range in order to more fruitfully understand what the model potentially tells us about the 

reaction, Figure 9(a). In this figure we also plot the currents associated with each step of the reaction 

(Forward/Reverse Heyrovsky and Forward/Reverse Volmer), and also plot the different exchange current densities 

along with extrapolation of the current at large overpotentials back to the equilibrium potentials. For comparison, in 

the bottom part of Figure 9(a) we also plot 𝜃𝐻𝑎𝑑
HV  and the effective Tafel slope (

2.303 𝑅𝑇 

𝛽𝐹
,
−2.303 𝑅𝑇 

(1−𝛽)𝐹
) utilising the  value 

determined from the fit. The results show a slight asymmetry in the electrokinetic response in that the her is more 

facile than the hor, and as a result the exchange density extrapolated from the large negative overpotential region is 

larger than that from the large overpotential region. It is seen that a linear region in the log(j) vs  plot is only seen 

when |𝜂| >150 mV. This suggests that experimental data which shows linear “Tafel regions” at lower overpotentials 

may be due to artefacts. At these larger overpotentials, the slope of the Tafel plots are well described by the -value 

used within the electrokinetic model. 

4.3 Fitting data to the Tafel-Volmer mechanism 

For the TV reaction, we fit five parameters: 𝑘𝑑𝑒𝑠
⊖ , 𝐵⊖, 𝑍⊖, Ea, and  to Eq 30 modified by Eq 71. For each set of data, 

𝑎𝐻2  enters into the equations through 𝐵⊖ to give a specific value of  𝐵𝑒𝑞. Hence the five parameters are used to 

simultaneously fit all 13 datasets. The fit was performed over an extended range compared to that used for the HV 

fit: -50 to +100 mV. 
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The fit of the TV equation to the data set is good, especially for the results at lower hydrogen partial pressure, Figure 

8(b), accurately tracking the performance for both the her and hor. The presence of a peak is accurately captured by 

assuming a rate limiting hydrogen adsorption step (see below). For the higher partial pressure results, and especially 

at higher temperatures, there is a tendency to underestimate the current at higher overpotentials. This might be 

associated with hydrogen adsorption step having a lower activation energy than the “global” activation energy used, 

and hence this aspect is not adequately captured. Alternatively, as the exchange current density of the TV 

mechanism is not pH sensitive, the change in pH of the electrolyte might be having an effect on the reaction which is 

not captured by the TV mechanism, although as was seen in the HV mechanism, the ca 2-fold increase in going from 

0.5 to 4 mol dm-3 HClO4 might be important in obtaining good fits. Nonetheless, the her currents are adequately 

captured by the fits. 

The fit parameters determined during the fit procedure are displayed in Table 4, along with a number of parameters 

derived from those values. The fitted value of the molecular symmetry factor, , is close to ½. The reaction order 

with respect to bimolecular hydrogen under equilibrium conditions and at STP, i.e. (
∂log10(𝑗0)

∂log10(𝑎𝐻2)
)
𝑆𝑇𝑃

, is 0.39. 

Somewhat less than the limiting value of ½, showing that the mechanism is in a transition region where 𝐵⊖1. The 

value of the equilibrium hydrogen coverage under standard conditions, 𝜃𝐻𝑎𝑑
⊖  , is 0.22, close to the value determined 

for the HV mechanism. This value corresponds to a value of ∆𝑎𝑑𝑠𝐺𝐻2
⊖  of 3.1 kJ mol-1, about 10% higher than the value 

determined for the HV mechanism, but still very close to zero. The value of 𝑘𝑑𝑒𝑠
⊖   determined from the fitting 

procedure is 2.110-5 mol cm-2 s-1. This value is about 10 times greater than the value of 𝑘𝑎𝑑
⊖  determined from the 

fitting parameters suggesting that under standard conditions, the hydrogen recombination process on platinum is 

about 10 times faster than the adsorption process. The value of 𝑘𝑎𝑑
⊖  determined, combined with the saturated 

hydrogen concentration provides a value of 3.4 cm s-1. This is close to the value determined by Vogel et al of 2.4 cm 

s-1 determined at 295 K using low-pressure gas phase H2/D2 exchange over platinum15.  The true exchange current 

density under standard conditions is 189 mA cm-2, very close to the value determined for the HV mechanism. The 

exchange current determined from the micropolarisation region is 129 mA cm-2, meaning that attempts to measure 

the exchange current density using the micropolarisation region would underestimate the true value by about 30%, 

demonstrating the appreciable effect of the extra terms in the denominator of Eq 61 (i.e. (𝑍
4
+

𝑍

4𝐵
) = 0.47 using the 

fitting parameters). The limiting currents associated with hydrogen adsorption and desorption, are 329 and 4060 mA 

cm-2, and these values put a limit on the ultimate performance of the hor/her assuming the mechanism is a TV one. 

The activation energy determined form the data is 23 kJ mol-1, a little larger although similar in value to that 

determined from fitting the HV mechanism. 

As was performed for the HV mechanism, we have taken the parameters determined from the fitting procedure and 

generated a plot for the hor/her over a moderate potential range in order to more fruitfully understand what the 

model potentially tells us about the reaction, Figure 9(b). The limiting current on the her can be seen as occurring 
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once the overpotential reaches ca -300mV, and the different exchange current densities are plotted showing the 

wide divergence depending on the method used to measure them. No clear Tafel slope is seen in the plot.  

4.4 Fitting data to the HTV mechanism 

For the HTV mechanism, we fit six parameters: 𝑘𝑑𝑒𝑠
⊖ , 𝐵⊖, 𝑌⊖, 𝑍⊖, Ea, and  to Eq 47 modified by Eq 71. For each set 

of data, 𝑎𝐻2  enters into the equations through 𝐵⊖ and  𝑌⊖ to give a specific value of  𝐵𝑒𝑞   and 𝑌𝑒𝑞. The fit was 

performed over the same range as for the TV fit, i.e.  -50 to +100 mV. 

The fit of the HTV equation to the data set is good, although not appreciably better than that achieved using the TV 

equation at the expense of one more fitting parameter. There is a good fit especially for the lower hydrogen partial 

pressures, Figure 8(c), accurately tracking the performance for both the her and hor, although as with the HV 

mechanism, there is a divergence of fits at larger potentials due to the electrochemical reaction out running the 

chemical Tafel step.  

The fit parameters determined during the fit procedure are displayed in Table 4, along with a number of parameters 

derived from those values. The fitted value of the molecular symmetry factor, , is 0.71 suggesting a transition state 

which favours the products. The value of 𝐵⊖ is very similar to that found for the TV mechanism. This parameter 

leads to an equilibrium hydrogen coverage and value of ∆𝑎𝑑𝑠𝐺𝐻2
⊖  which are close to the values seen for both the HV 

and TV mechanisms. The value of 𝑘𝑑𝑒𝑠
⊖ , one of the other fitting parameters is also close to that seen for the TV 

mechanism, differing by less than a factor of two. The value of 𝑘𝑎𝑑
⊖  determined from this parameter, 2.1 cm s-1 is very 

close to that given by Vogel et al of 2.4 cm s-1 as discussed above15. The 𝑍⊖ parameter (associated with the Volmer 

step) is about three times larger than the same parameter for the TV mechanism, and this then leads to a value 𝑘2
⊖ 

which is within 50% of the value determined for the TV mechanism. The calculated activation energy, 20 kJ mol-1 is 

intermediate between the values obtained for the HV and TV mechanisms. The kinetic constant associated with the 

forward Heyrovsky step, 𝑘1
⊖, is ten times smaller than the value for the HV mechanism. The requirement for a small 

value for this parameter is associated with the deviation of current at large positive overpotentials.   The similarity of 

parameters between the HTV and the TV mechanism is not so surprising as the same fundamental processes are at 

work. 

Figure 9(c) shows the breakdown of the electrochemical currents into the separate forward/reverse 

Heyrovsky/Volmer part currents which sum to the total electrochemical current. It can be seen that close to the 

equilibrium potential, the Volmer currents are enhanced due to the extra current associated with the Tafel step. As 

the applied potential moves away from the equilibrium potential, the relative magnitude of the Tafel step becomes 

small relative to the Heyrovsky step. This point is emphasized in Figure 9(d) derived using Eq 51, Eq 52, and Eq 53. It 

can be seen that close to the equilibrium potential, the majority of the current is derived from the TV mechanism, 

whereas further way there is an increase in the HV mechanism. There is no contribution of the HT mechanism at any 

potential studied. Furthermore, the ratio of current from each mechanism is not symmetric about the equilibrium 

potential, rather it is stretched on the her  side. This can be also seen in the form of the current response in Figure 
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9(c) in which a there is a small plateau on the hor side close to the equilibrium potential, but a much wider deviation 

on the her side. Indeed, even at -300 mV overpotential, there is still a significant contribution of the TV mechanism 

to the current whereas by 200mV overpotential, virtually all the current comes from the HV mechanism. This effect 

also has a significant impact on the exchange current densities, Table 4. The “True” exchange current density is 

dominated by the TV mechanism, and is significantly higher than the exchange current density determined for the 

HV and TV mechanisms. Furthermore, it is about two-fold greater than the value determined from the linear region 

about the equilibrium potential (whose value is similar to that determined for the HV and TV mechanisms), this 

comes about as the (
𝑍

4
+

𝑍

4𝐵
) term in Eq 64 is significantly greater than zero. Rather surprisingly, the exchange current 

densities associated with the large overpotential extrapolation are very small in contrast to the true exchange 

current density – only 5% and 14% of the true exchange current density. This is because the hor/her  “overperforms” 

in the region close to the equilibrium potential due to the fast TV reaction, which more than compensates for the 

slow HV mechanism. The scatter of the exchange current densities is easily seen in Figure 9(c). The Tafel slope 

associated with the hor only develops at large ovepotentials (>200mV), although there is a peak at lower potentials. 

Measurements made in this intermediate regime, and utilising only a small range of data may interpret these 

measurements as implying a spuriously large “Tafel Slope”. In reality, this is associated with the details of the 

electrokinetics and a changeover from one mechanism to another. The effect is even more extreme on the her side 

where the “Tafel slope” remains far away from the expected one on the basis of , even at -300 mV. The reaction 

order with respect to bimolecular hydrogen under equilibrium conditions and at STP, i.e. (
∂log10(𝑗0)

∂log10(𝑎𝐻2)
)
𝑆𝑇𝑃

, is 0.39 

which is the same as the value determined for the TV mechanism. 

5 Conclusion 

We have developed and applied to experimental data a new theoretical framework for examining the hor/her. This 

approach allows formulation of a simplified electrokinetic framework which allows determination of reaction orders 

and Tafel slopes for different sets of kinetic parameters, and hence aids identification of appropriate mechanisms. It 

is interesting to note that only the Heyrovsky-Volmer mechanisms shows an exchange current which will change 

with pH, whereas in all other cases the exchange current should be pH independent (at least within the pH range in 

which the mechanisms listed in Eq 1 to Eq 6 operate). Similarly, the limiting reaction order dependence of the 

exchange current density on bimolecular Hydrogen shows possible values of 0, ½ and 1 depending on the 

mechanisms and precise values of the appropriate parameters. 

Within this paper we have shown that the standard approach of assuming that we can treat multi-step reactions in 

the same way as the Butler-Volmer equation is a very poor choice. Although for the her/hor there are individual 

cases where particular combinations of parameter allow such a simplification, this is not guaranteed. Hence some 

conclusions derived from such a simplification may be ill-judged. 

From both the “atlas” of possible response and the specific fitting results for hor/her on Pt/C in acid, it can be seen 

that a consistent slope in the Log(j) vs  plot is only seen for  >>100 mV. This suggests a significant limitation on 
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the ability to see such slopes in experimental data for the hor/her, as it can be difficult to operate at such large 

overpotentials without incurring significant mass transport losses using, for instance, the rotating disk electrode. 

Furthermore, the concept of using an exchange current density and “Tafel slope” is somewhat devalued as an 

approach to extrapolate performance, as it is seen that there appears to always be a transition of mechanism close 

to the equilibrium potential, and the transition between mechanisms requires at least 100mV of overpotential.  

Fitting a set of experimental data to the HV, TV and HTV mechanisms for data for platinum gives close agreement to 

some parameters. For instance the equilibrium hydrogen converage for all mechanisms, 𝜃𝐻𝑎𝑑
⊖ , is between 0.22-0.24, 

implying a value of ∆𝑎𝑑𝑠𝐺𝐻2,𝑜𝑝𝑑 close to +3 kJ mol-1, close to the value of zero expected for Pt. Likewise the 

activation energy for the her/hor is found to be between 18-23 kJ mol-1. Although there is a 10-fold variation in the 

value of the Heyrovsky reaction kinetic constant, 𝑘1
⊖, between the HV and HTV mechanisms. Across all mechanisms, 

the Volmer rate constant, 𝑘2
⊖, shows a relatively small deviation. The Volmer rate constant is consistently faster 

than the Heyrovsky rate constant, in agreement with previous literature suggesting that the Volmer step is fast. 

There is good agreement for the values of the chemical hydrogen steps associated with adsorption and desorption, 

𝑘𝑎𝑑
⊖  and 𝑘𝑑𝑒𝑠

⊖ .  

It is worthwhile considering which of the mechanisms is best suited to represent the experimental data, and this 

gives rise to a conundrum. It is difficult to imagine an HV mechanism which is able to accurately replicate the data in 

Figure 7, especially at high potentials where the experimental data shows that the reaction appears to shut down. At 

such high overpotentials, the only way that an HV mechanism could achieve such low currents would be if the 

surface was highly blocked.  This would require a blocking layer on the surface which is highly efficient and which 

would be also expected to severely limit the oxygen reduction reaction, something which is known not to occur on 

these electodes52. An intriguing alternative would be if the entropic barrier suggested by Rossmeisl et al11 acts to 

shut down the reaction at large overpotentials. In contrast, the TV mechanism would offer suitable advantages in 

this aspect, as the maximum rate of hor/her is limited by the chemical adsorption/desorption steps15  (as for instance 

performed in 29 where an HTV mechanism is used but with a Heyrovsky step which is 5 orders of magnitude lower 

than the Tafel step). But the TV or HTV mechanisms do not show a dependence of the exchange current density with 

pH, something which occurs within the experimental data.   

The assumption in this paper is that underpotential deposited hydrogen (Hupd), commonly formed on many platinum 

group metals, does not take part in the reactions  is common to the approach taken by a number of others27, 29, 54, 

although we have previously developed a model which explicitly includes Hupd as an intermediate19. In reality, the 

true situation is probably intermediate between these two extremes. A future modification to this model should try 

to incorporate that aspect and also deal with the shutdown of the hor at higher potentials due to anion adsorption. 
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7 Appendix A 

The Nernst equation for the hydrogen reaction is 

𝐸𝑒𝑞 = 𝐸⊖ + (
𝑅𝑇

2𝐹
) 𝑙𝑜𝑔𝑒 (

𝑎𝐻+
2

𝑎𝐻2
)          𝐸⊖ = 0  Eq 72 

As we are dealing with a multistep reaction, which involves a surface adsorbed intermediate (𝐻𝑎𝑑), we require that 

the intermediate reactions also fulfil the above criteria for the equilibrium potential. Under standard conditions we 

can write for the HV mechanism the two individual ratios of reactants to products for the Heyrovsky and Volmer 

steps (the same approach is applicable to the other mechanisms) and the coverage terms in 𝐻𝑎𝑑 cancel 

𝐸𝑒𝑞 = 𝐸⊖ + (
𝑅𝑇

2𝐹
) 𝑙𝑜𝑔𝑒 (

𝑎𝐻+𝜃𝐻𝑎𝑑
𝑒𝑞

𝑎𝐻2 (1 − 𝜃𝐻𝑎𝑑
𝑒𝑞 )

 
𝑎𝐻+(1 − 𝜃𝐻𝑎𝑑

𝑒𝑞 )

𝜃𝐻𝑎𝑑
𝑒𝑞 )  Eq 73 

At any reversible potential, the net reaction must be zero so  

𝑘1
𝑒𝑞𝑎𝐻2(1 − 𝜃𝐻𝑎𝑑

𝑒𝑞 ) − 𝑘−1
𝑒𝑞 𝑎𝐻+𝜃𝐻𝑎𝑑

𝑒𝑞 + 𝑘2
𝑒𝑞𝜃𝐻𝑎𝑑

𝑒𝑞 − 𝑘−2
𝑒𝑞 𝑎𝐻+(1 − 𝜃𝐻𝑎𝑑

𝑒𝑞 ) = 0  

𝑘1
𝑒𝑞𝑎𝐻2(1 − 𝜃𝐻𝑎𝑑

𝑒𝑞 ) + 𝑘2
𝑒𝑞𝜃𝐻𝑎𝑑

𝑒𝑞

𝑘−1
𝑒𝑞 𝑎𝐻+𝜃𝐻𝑎𝑑

𝑒𝑞 + 𝑘−2
𝑒𝑞 𝑎𝐻+ (1 − 𝜃𝐻𝑎𝑑

𝑒𝑞 )
= 1  

Eq 74 

Furthermore, there is the requirement that the hydrogen coverage is also stationary, and so 

𝑘1
𝑒𝑞𝑎𝐻2(1 − 𝜃𝐻𝑎𝑑

𝑒𝑞 ) + 𝑘−2
𝑒𝑞 𝑎𝐻+(1 − 𝜃𝐻𝑎𝑑

𝑒𝑞 ) − 𝑘−1
𝑒𝑞 𝑎𝐻+𝜃𝐻𝑎𝑑

𝑒𝑞 − 𝑘2
𝑒𝑞𝜃𝐻𝑎𝑑

𝑒𝑞 = 0 

 
𝑘1
𝑒𝑞𝑎𝐻2(1 − 𝜃𝐻𝑎𝑑

𝑒𝑞 ) + 𝑘−2
𝑒𝑞 𝑎𝐻+(1 − 𝜃𝐻𝑎𝑑

𝑒𝑞 )

𝑘−1
𝑒𝑞 𝑎𝐻+𝜃𝐻𝑎𝑑

𝑒𝑞 + 𝑘2
𝑒𝑞𝜃𝐻𝑎𝑑

𝑒𝑞 = 1  
Eq 75 

The constraints introduced by Eq 74 and Eq 75 can only be satisfied when 

𝑘1
𝑒𝑞𝑎𝐻2(1 − 𝜃𝐻𝑎𝑑

𝑒𝑞 ) = 𝑘−1
𝑒𝑞 𝑎𝐻+𝜃𝐻𝑎𝑑

𝑒𝑞  

𝑘2
𝑒𝑞𝜃𝐻𝑎𝑑

𝑒𝑞 = 𝑘−2
𝑒𝑞 𝑎𝐻+(1 − 𝜃𝐻𝑎𝑑

𝑒𝑞 )  
Eq 76 

and thus 

𝑘1
𝑒𝑞𝑎𝐻2

𝑘−1
𝑒𝑞 𝑎𝐻+

=
𝜃𝐻𝑎𝑑
𝑒𝑞

(1 − 𝜃𝐻𝑎𝑑
𝑒𝑞 )

 Eq 77 

and 

𝑘2
𝑒𝑞

𝑘−2
𝑒𝑞 𝑎𝐻+

=
(1 − 𝜃𝐻𝑎𝑑

𝑒𝑞 )

𝜃𝐻𝑎𝑑
𝑒𝑞   Eq 78 
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Substituting Eq 77 into Eq 78 provides 

(𝑎𝐻+)
2

𝑎𝐻2
=
𝑘−1
𝑒𝑞
𝑘−2
𝑒𝑞

𝑘1
𝑒𝑞
𝑘2
𝑒𝑞  Eq 79 

At the equilibrium potential, when the activity of reactants are one 

𝑘1
⊖𝑘2

⊖

𝑘−1
⊖ 𝑘−2

⊖
= 1 Eq 80 

This equation then also feeds into the constraint on the value of the rate constants, Eq 11. As the Nernst equation 

applies, we can satisfy the thermodynamic requirements of Eq 79 and Eq 80 via 

𝑘1
𝑒𝑞 = 𝑘1

⊖𝑒𝛽𝑓(𝐸
𝑒𝑞−𝐸⊖)  

𝑘2
𝑒𝑞 = 𝑘2

⊖𝑒𝛽𝑓(𝐸
𝑒𝑞−𝐸⊖)  

𝑘−1
𝑒𝑞 = 𝑘−1

⊖ 𝑒−(1−𝛽)𝑓(𝐸
𝑒𝑞−𝐸⊖)  

𝑘−2
𝑒𝑞 = 𝑘−2

⊖ 𝑒−(1−𝛽)𝑓(𝐸
𝑒𝑞−𝐸⊖)         𝑓 =

F

𝑅𝑇
 

Eq 81 

Such an approach applies equally well to the other mechanisms studied. 

8 Appendix B 

During the fitting of the data, a large range of parameters were tried as initial guesses in order to assure suitable 

convergence. During this process, it was found that there was a family of fitting parameters which specified a class of 

curves which reasonably well matched the data (although not as well as the ultimate fit) when  was fixed at 1/2. For 

these fits, although some parameters were fixed, others could be varied, with one of the other parameters changing 

in opposition to give the same goodness of fit. Such a relationship implies that the equations listed within this paper 

may be simplified to less complex forms over some range of parameters (indeed, such a simplification is what 

underlies Eq 20 and Eq 21). In all of these cases it was observed that although there were differences in the IV curves 

that were created with those parameters,  those differences only occurred at overpotentials well beyond what was 

experimentally accessible – hence they did not contribute to the “goodness of fit”.  

For the HV fit, the “approximately optimum” solution was found over a range of 𝑘2
⊖ from 310-6 to 1000 mol cm-2 s-1. 

Over this range of values for 𝑘2
⊖,  𝑘1

⊖ was always fixed at 7.010-7 mol cm-2 s-1 and 𝐾⊖ was always fixed at 5.4. This 

relationship makes  sense as it implies that forward Volmer always needs to be faster than the forward Heyrovsky. 

Hence 𝑘1
⊖ can be accurately determined from these fits, as can 𝐾⊖ (the ration between 

𝑘2
𝑒𝑞

𝑘−2
𝑒𝑞), but 𝑘2

⊖ is rather poorly 

defined. 

For the TV fit, there is a similar situation. For all the “approximately optimum” solutions, 𝑘𝑎𝑑
⊖  does not vary at all (2.3 

10-6 mol cm-2 s-1), as this parameter is required to produce a limitation, or “peak” in the hor. In contrast, as no 

limitation in the her is seen, there are a wide range of values of 𝑘𝑑𝑒𝑠
⊖  that satisfy the fit. In principle any value of 𝑘𝑑𝑒𝑠

⊖  

greater than 10-4 mol cm-2 s-1 will not cause deviation to the her curve (for values smaller than this, a plateau will 

start to form at overpotentials close to those that were measured). Within this domain, it is found that the ratio of 

𝑍⊖ /𝐵⊖  is constant at 1.37 (close to the ratio of the best fit values of 1.5).  

For the fitting of the HTV data, the situation is similar to both cases mentioned above.  Both 𝑘𝑎𝑑
⊖  (1.010-6 mol cm-2 s-

1) and 𝑘1
⊖ (1.910-7 mol cm-2 s-1), are constant over all “approximately optimum” solutions whereas 𝑘𝑑𝑒𝑠

⊖  can take on 
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values >10-6 mol cm-2 s-1 and 𝑘2
⊖ shows values between 10-2-10-5 mol cm-2 s-1. The best fit values of these parameters 

lie in these ranges.
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Table 2 Comparison of different equations to model the her/hor for the Heyrovsky-Volmer (HV), Tafel-Volmer (TV), Heyrovsky-Tafel (HT) and Heyrovsky-Tafel-Volmer (HTV) 

reactions.  

Mech. 𝑑𝜃𝐻𝑎𝑑
𝑑𝑡

 
j/𝐹 Parameters Derived 

Parameters 

 HV 𝑘1𝑎𝐻2(1 − 𝜃𝐻𝑎𝑑
𝐻𝑉 )−𝑘−1𝑎𝐻+𝜃𝐻𝑎𝑑

𝐻𝑉 −𝑘2𝜃𝐻𝑎𝑑
𝐻𝑉 +𝑘−2𝑎𝐻+(1 − 𝜃𝐻𝑎𝑑

𝐻𝑉 ) 
𝑘1𝑎𝐻2(1 − 𝜃𝐻𝑎𝑑

𝐻𝑉 )−𝑘−1𝑎𝐻+𝜃𝐻𝑎𝑑
𝐻𝑉 + 𝑘2𝜃𝐻𝑎𝑑

𝐻𝑉

− 𝑘−2𝑎𝐻+(1 − 𝜃𝐻𝑎𝑑
𝐻𝑉 ) 

𝛽, 𝐾, 𝑘1
𝑒𝑞
, 𝑘2
𝑒𝑞

 

𝐾 =  
𝑘2
𝑒𝑞

𝑘−2
𝑒𝑞
𝑎𝐻+

 

𝐺 =
𝐾𝑘1

eq
𝑎H2

𝑘2
eq  

TV 2𝑘𝑎𝑑𝑎𝐻2(1 − 𝜃𝐻𝑎𝑑
TV )

2
− 2𝑘𝑑𝑒𝑠𝜃𝐻𝑎𝑑

TV 2
− 𝑘2𝜃𝐻𝑎𝑑

TV +𝑘2𝑎𝐻+(1 − 𝜃𝐻𝑎𝑑
TV ) 𝑘2𝜃𝐻𝑎𝑑

TV − 𝑘−2𝑎𝐻+(1 − 𝜃𝐻𝑎𝑑
TV ) 𝑘𝑎𝑑 , 𝑘𝑑𝑒𝑠, 𝛽, 𝑘2

𝑒𝑞
 

𝐵 = √
𝑎H2𝑘ad
𝑘des

 

𝑍 =
𝑘2
eq

𝑘des
 

HT 𝑘1𝑎𝐻2(1 − 𝜃𝐻𝑎𝑑
HT )−𝑘−1𝑎𝐻+𝜃𝐻𝑎𝑑

HT + 2𝑘𝑎𝑑𝑎𝐻2(1 − 𝜃𝐻𝑎𝑑
HT )

2
− 2𝑘𝑑𝑒𝑠𝜃𝐻𝑎𝑑

HT 2
 𝑘1𝑎𝐻2(1 − 𝜃𝐻𝑎𝑑

HT )−𝑘−1𝑎𝐻+𝜃𝐻𝑎𝑑
HT  𝑘𝑎𝑑 , 𝑘𝑑𝑒𝑠, 𝛽, 𝑘1

𝑒𝑞
 

𝐵 

𝑌 =
𝑎H2𝑘1

eq

𝑘des
 

HTV 
𝑘1𝑎𝐻2 (1 − 𝜃𝐻𝑎𝑑

HTV
)−𝑘−1𝑎𝐻+𝜃𝐻𝑎𝑑

HTV
+ 2𝑘𝑎𝑑𝑎𝐻2 (1 − 𝜃𝐻𝑎𝑑

HTV
)
2

− 2𝑘𝑑𝑒𝑠𝜃𝐻𝑎𝑑
HTV2

−𝑘2𝜃𝐻𝑎𝑑
HTV

+𝑘−2𝑎𝐻+ (1 − 𝜃𝐻𝑎𝑑
HTV

) 

𝑘1𝑎𝐻2 (1 − 𝜃𝐻𝑎𝑑
HTV

)−𝑘−1𝑎𝐻+𝜃𝐻𝑎𝑑
HTV

+ 𝑘2𝜃𝐻𝑎𝑑
HTV

− 𝑘−2𝑎𝐻+ (1 − 𝜃𝐻𝑎𝑑
HTV

) 
𝑘𝑎𝑑 , 𝑘𝑑𝑒𝑠 , 𝛽, 𝑘1

𝑒𝑞
, 𝑘2
𝑒𝑞

 𝐵, 𝑌, 𝑍 
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Table 3 Parameters derived from each of the mechanisms. Definition of parameters K,G,B,Y and Z given in Table 2. 

Mech 𝜃𝐻𝑎𝑑
𝑒𝑞

 Limiting reaction 

order of true jo
a 

Possible value of  

calculated from the 

“Tafel Slope” 

𝑅𝑇 

𝐹
 
𝜕𝑙𝑜𝑔|𝑗|

𝜕𝜂
 

Exchange current density, jo Limiting H2 

reaction order in 

the  slope of the 

micropolarisation 

regionb 

 H+ H2 “True”: Magnitude 

of anodic and 

cathodic currents 

at 𝜂 = 0 

Slope of 

micropolarisation region   

𝑅𝑇

𝐹
(
𝑑𝑗

𝑑𝜂
)
𝜂=0

 

Extrapolation 

from +ve 

overpotential  

𝑗𝜂→∞(0) 

Extrapolation 

from -ve 

overpotential  

𝑗𝜂→−∞(0)  

 HV 
1

1 + K
 -1,0,1 0,1 

(1 + β), β, 

−(1 − β),−(2 − β) 
𝐹𝜃𝐻𝑎𝑑

𝐻𝑉,𝑒𝑞
(𝐾𝑘1

𝑒𝑞
𝑎𝐻2 + 𝑘2

𝑒𝑞
) 𝐹𝜃𝐻𝑎𝑑

𝐻𝑉,𝑒𝑞

(

 
1

1

4𝐾𝑘1
eq
𝑎H2

+
1

4𝑘2
eq
)

  2𝐹 (
1

1 +
𝐾
𝐺

)𝑘2
𝑒𝑞

 2𝐹 (
1

1+𝐺𝐾
)𝐾𝑘1

𝑒𝑞
𝑎H2

c 0,1 

TV 
1

1 +
1
B

 0 0,½  
2, β, 0 

0,−(1 − β),−2 
𝐹𝜃𝐻𝑎𝑑

𝑇𝑉,𝑒𝑞
𝑘2
𝑒𝑞

 𝐹𝜃𝐻𝑎𝑑
𝑇𝑉,𝑒𝑞

(
𝑘2
eq

(1 +
𝑍
4
+
𝑍
4𝐵
)
) 2𝐹𝑎H2𝑘ad 2𝐹𝑘𝑑𝑒𝑠 0,½,1 

HT 
1

1 +
1
B

 0 ½,1 
2, β, 0 

0,−(1 − β) 
𝐹𝜃𝐻𝑎𝑑

𝐻𝑇,𝑒𝑞
(
𝑘1
𝑒𝑞
𝑎𝐻2
B

) 𝐹𝜃𝐻𝑎𝑑
𝐻𝑇,𝑒𝑞

(

𝑘1
𝑒𝑞
𝑎𝐻2

𝐵
⁄

(1 +
𝑌
4𝐵
 +

𝑌
4𝐵2

)
) 2𝐹𝑎H2𝑘ad 2𝐹𝑘𝑑𝑒𝑠 0,½,1 

HTV 
1

1 +
1
B

 0 0, ½,1 
~2,β, 0 

0,−(1 − β), ~ − (2 − β) 
𝐹𝜃𝐻𝑎𝑑

𝐻𝑇𝑉,𝑒𝑞
(
𝑘1
eq
𝑎H2
𝐵

+ 𝑘2
eq
) 

𝐹𝑘des𝜃𝐻𝑎𝑑
𝐻𝑇𝑉,𝑒𝑞

(
𝑎H2𝑘1

eq

𝐵
+ 𝑘2

eq
(1 +

𝑌
𝐵
+
𝑌
𝐵2
))

(1 +
𝑍
4
+
𝑍 + 𝑌
4𝐵

+  
𝑌
4𝐵2

)
 
2𝐹 (

1

1 +
𝑍
𝑌

)𝑘2
eq

 2𝐹 (
1

1+
𝑌

𝑍 𝐵2

)(
𝑘1
eq
𝑎H2

𝐵
) d -½,0,½,1,3/2 

a Values represent reaction orders which may occur. Intermediate values may be measured phenomenologically as the mechanism transitions to a different reaction order 
(i.e. there will be a curved transition range which might be interpreted as an intermediate reaction order).  
b Reaction order for H+ the same as for the true exchange current density 
c via Eq 12, 𝑘−1

𝑒𝑞
𝑎𝐻+ = 𝐾𝑘1

𝑒𝑞
𝑎H2, hence the relevance to the her is seen. 

d via Eq 42, 𝑘−1
eq
𝑎𝐻+ =

𝑎H2𝑘1
eq

𝐵
, hence the relevance to the her is seen. 
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Table 4 Fitting parameters and parameters derived from those parameters for the simultaneous fit of all data sets. The derived parameters are calculated under standard 

conditions, T=298K, aH+=1.0, aH2=1.0. The parameters used for each of the models to fit the data are highlighted in grey. See Appendix B for added notes about the best fit 

values. 

Parameter Type Heyrovsky-Volmer Tafel-Volmer Heyrovsky-Tafel-Volmer 

#Fit parameters  5 5 6 
Fit domain  -50mV – 50 mV -50mV – 100 mV -50mV – 100 mV 

 Fixed 0.33 0.52 0.71 

𝐾⊖ Fit 3.09 N.A N.A 

𝐺⊖ Fit 0.52 N.A N.A 

𝐵⊖ Fit N.A 0.28 0.31 

𝑌⊖ Fit N.A N.A. 0.0072 

𝑍⊖ Fit N.A 0.42 1.27 

𝑘𝑑𝑒𝑠
⊖ / mol cm-2 s-1 Fit N.A 2.110-5 1.110-5 

Ea / kJ mol-1 Fit 1.8104 2.3104 2.0104 

𝜃𝐻𝑎𝑑
𝑒𝑞,⊖

 Derived 0.24 0.22 0.237 

𝜃𝐻𝑎𝑑
⊖ (𝜂 → −∞) Derived 0.38 1 0.944 

𝜃𝐻𝑎𝑑
⊖ (𝜂 → ∞) Derived 0.14 0 0.006 

∆𝑎𝑑𝑠𝐺𝐻2,𝑜𝑝𝑑
⊖ / kJ mol-1 Derived 4.4 3.1 2.9 

𝑘1
⊖/ mol cm-2 s-1 Derived 8.610-7 N.A 8.010-8 

𝑘2
⊖/ mol cm-2 s-1 Derived/Fitb 

5.110-6   8.910-6 1.410-5 

𝑘𝑎𝑑
⊖ / mol cm-2 s-1 Derived N.A 1.710-6 1.110-6 

𝑘1
⊖/ cm s-1 Deriveda 1.7 N.A 0.16 

𝑘𝑎𝑑
⊖/ cm s-1 Deriveda N.A 3.4 2.1 

𝑘𝑑𝑒𝑠
⊖ / cm s-1 Derived N.A 41.3 21.6 

𝑗0
⊖ 

/mA cm-2 

“True” 183 189 325 325 

Micropolarisation 165 129 151 151 

Extrapolated from j() 142 329 15 15 

Extrapolated from j(-) 197 4060 47 47 
a Calculated using the saturated concentration of hydrogen in electrolyte 5.110-7 mol cm−3   bFit parameter for Heyrovsky-Volmer   
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Figure 1 Representative plots showing the characteristic shapes of the four different models studied in this paper (a) Heyrovsky-Volmer; (b) Tafel-Volmer; (c) Heyrovsky- 
Tafel; (d) Heyrovsky-Tafel-Volmer. Values for producing the plots are displayed directly on them and are chosen to illustrate various features of the mechanisms. The main 
plots show both the current density (left axis) and hydrogen coverage(right axis). Inset in the graphs are the 𝑙𝑜𝑔|𝑗|𝑣𝑠 𝜂 plots for the corresponding currents and Tafel slopes 

(dotted lines, multiplied by 
𝑅𝑇 

𝐹
) in terms of the  used to generate the data.  Also shown on the inset plots are the component currents associated with electrochemical Eq 

3-Eq 6 as appropriate. These plots do not represent a specific system, but are more included to highlight the different facets of the alternative mechanisms. 
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Figure 2 Variation of the mathematically determined hydrogen adsorption isotherm, 𝜃𝐻𝑎𝑑
HV , (Eq 15) and scaled current, 

𝑗𝐻𝑉

𝑘2
𝑒𝑞 , (Eq 19) for the Heyrovsky-Volmer reaction  as a 

function of dimensionless overpotential and the parameters K, and G.  (a) 𝜃𝐻𝑎𝑑
HV  as a function of G at constant 𝐾 𝑎𝐻+⁄ ; (b) 𝜃𝐻𝑎𝑑

HV as a function of K at constant G, and (c) 𝜃𝐻𝑎𝑑
HV  at a 

constant ratio of G to K. (d)-(f)scaled  
𝑗𝐻𝑉

𝑘2
𝑒𝑞   plots for the same values of 𝜃𝐻𝑎𝑑

HV   and parameters in (a)-(c). The calculated slopes of the dotted lines in d,e and f correspond to 

RT

𝐹

𝑑Log𝑒|𝑗|

dη
 and are displayed in terms of , the mechanistic symmetry factor. Plots are produced with =1/2.  𝐾 = 

𝑘2
𝑒𝑞

𝑘−2
𝑒𝑞
𝑐𝐻+

 and 𝐺 =
𝐾𝑘1

eq
𝑐H2

𝑘2
eq . The top x-axis provides the 

overpotential values when T=298K. 
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Figure 3 Variation of the mathematically determined hydrogen adsorption isotherm, 𝜃𝐻𝑎𝑑
TV , (Eq 27) and scaled current, 

𝑗𝑇𝑉

𝑘𝑑𝑒𝑠
, (Eq 30) for the Tafel-Volmer reaction as a function 

of dimensionless overpotential and parameters B  and Z. (a) 𝜃𝐻𝑎𝑑
TV  for Z=1, and different values of B; (b) 𝜃𝐻𝑎𝑑

TV  for B=1, and different values of Z; (c) 𝜃𝐻𝑎𝑑
TV  at a constant ratio of B 

to Z. (d)-(f)  
𝑗𝑇𝑉

𝑘𝑑𝑒𝑠
 plots for the same values of 𝜃𝐻𝑎𝑑

TV   and parameters in (a)-(c).The calculated slopes of the dotted lines correspond to 
RT

𝐹

𝑑Log𝑒|𝑗|

dη
 and are displayed in terms of 

, the mechanistic symmetry factor.  𝐵 = √
𝑐H2𝑘ad

𝑘des
  and  𝑍 =

𝑘2
eq

𝑘des
. Plots are produced with =1/2. The top x-axis provides the overpotential values when T=298K. 
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Figure 4 Variation of the mathematically determined hydrogen adsorption isotherm, 𝜃𝐻𝑎𝑑
HT , (Eq 36) and scaled current, 

𝑗𝐻𝑇

𝑘𝑑𝑒𝑠
, (Eq 39) for the Heyrovsky-Tafel reaction as a 

function of dimensionless overpotential and parameters B  and Y. (a) 𝜃𝐻𝑎𝑑
HT  for B=1, and different values of Y; (b) 𝜃𝐻𝑎𝑑

TV  for Y=1, and different values of B; (c) 𝜃𝐻𝑎𝑑
HT  at a constant 

ratio of B to Y. (d)-(f)  
𝑗𝐻𝑇

𝑘𝑑𝑒𝑠
 plots for the same values of 𝜃𝐻𝑎𝑑

HT   and parameters in (a)-(c).The calculated slopes of the dotted lines correspond to 
RT

𝐹

𝑑Log𝑒|𝑗|

dη
 and are displayed in 

terms of , the mechanistic symmetry factor.  𝐵 = √
𝑐H2𝑘ad

𝑘des
,  𝑌 =

𝑐H2𝑘1
eq

𝑘des
. Plots are produced with =1/2. The top x-axis provides the overpotential values when T=298K. 
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Figure 5 Variation of the mathematically determined hydrogen adsorption isotherm, 𝜃𝐻𝑎𝑑
HTV, (Eq 43) and scaled current, 

𝑗𝐻𝑇𝑉

𝑘𝑑𝑒𝑠
, (Eq 47) for the Heyrovsky-Tafel-Volmer reaction 

as a function of dimensionless overpotential and parameters B, Y, and Z. (a) 𝜃𝐻𝑎𝑑
HTV for Y=10-4, Z=1 , and different values of B; (b) 𝜃𝐻𝑎𝑑

HTV for B=1, Z=0.1 and different values of Y; 

(c) 𝜃𝐻𝑎𝑑
HTV for Z=10 and a constant ratio of B to Y (B/Y=10). (d)-(f)  

𝑗𝐻𝑇𝑉

𝑘𝑑𝑒𝑠
 plots for the same values of 𝜃𝐻𝑎𝑑

HTV  and parameters in (a)-(c).The calculated slopes of the dotted lines 

correspond to 
RT

𝐹

𝑑Log𝑒|𝑗|

dη
 and are displayed in terms of , the mechanistic symmetry factor.  𝐵 = √

𝑐H2𝑘ad

𝑘des
,  𝑌 =

𝑐H2𝑘1
eq

𝑘des
, and 𝑍 =

𝑘2
eq

𝑘des
. Plots are produced with =1/2. The top x-

axis provides the overpotential values when T=298K. 
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Figure 6 Experimental results for the her/hor utilising a number of different experimental techniques. Microelectrodes with high surface area platinum catalyst (Rf=30) in 

contact with Nafion or acid (details in 45); a 50 m platinum microelectrode (Rf 1) in contact with aqueous acid  (details in 19),  a single platinum particle (450 nm in 

diameter) in acid (details in 19) ,  to a Pt rotating disk electrode disk (Rf 1, 7000 rpm)  in contact with 0.1 mol dm-3 HClO4,   and results obtained utilising our floating 

electrode technique16, 32 (Rf1) for an electrode in 1 mol dm-3 HClO4. T=298K, dV/dt=10 mV s-1, solution saturated with 1 bar hydrogen. 
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Figure 7 Experimental results for the her/hor utilising the floating electrode technique16, 32. (a) Temperature dependence of a 2.2 µgPt cm-2 HiSpec 9100 60 % Pt/C electrode 

in 4 mol dm-3 HClO4  1 bar H2(uncorrected for water vapour), Temperature: 278K, 288K, 298K, 303K,313K, 323K, 333K,  10 mV s-1, positive going  scan. (b) Hydrogen partial 

pressure dependence of a 3.5 µgPt cm-2 HiSpec 9100 60 % Pt/C electrode in 0.5 mol dm-3 HClO4 . H2 partial pressure (N2 diluent, uncorrected for water vapour): 0.126, 0.106, 

0.087, 0.068, 0.048, 0.029; 298K, 10 mV s-1, positive going scan. (c) Data in (a) and (b) plotted together on a logarithmic current scale. The potential scale on the x-axis has 

been converted to RHE, accounting for the change in equilibrium potential with hydrogen partial pressure through the Nernst equation. Currents are corrected to the 

nominal Pt surface area calculated using the hydrogen adsorption charge. Both (a) and (b) also show RDE results for a platinum disk in 0.1 mol dm-3 HClO4 saturated in 

hydrogen gas at a rotation rate of 7000 rpm.  
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Figure 8 Simultaneous fits (using a common set of parameters) for the data set given in Figure 7(a)&(b) using the (a) Heyrovsky-Volmer mechanism (Eq 19, fit performed 

between -0.05..0.05 V); Tafel-Volmer mechanism (Eq 30, fit performed between -0.05..0.10 V) and (c) Heyrovsky-Tafel-Volmer mechanism (Eq 47, fit performed 

between -0.05..0.10 V). For all fits,  was set to ½ and the hydrogen partial pressures were corrected for saturated water vapour pressure at the appropriate temperature 

of the reaction. All data were fit simultaneously with the fit parameters displayed on the diagrams along with the equilibrium hydrogen coverage derived from the fit 

parameters. Details of data sets given in caption to Figure 7. Symbols: Data, Dashed line: Fit. 
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Figure 9 Calculated hor/her curves for the fits calculated using the different mechanisms in this paper and the fitting parameters derived in Figure 8. (a) Heyrovsky-Volmer 

mechanism (Eq 19, fit performed between -0.05..0.05 V); (b) Tafel-Volmer mechanism (Eq 30, fit performed between -0.05..0.10 V) and (c); Heyrovsky-Tafel-Volmer 

mechanism (Eq 47, fit performed between -0.05..0.10 V). (d) shows the breakdown of pathways for the hor/her as a function of overpotential for the Heyrovsky-Tafel-

Volmer mechanism displayed in (c) based upon Eq 51, Eq 52 and Eq 53. For all fits the hydrogen partial pressures were corrected for saturated water vapour pressure at the 

appropriate temperature of the reaction. Parameters for the fits are the same as shown in Figure 8 and Table 4. aH+=1, aH2
=1, T=298K. For the HV and HTV reactions we also 

plot the asymptotic hydrogen coverage at large positive and negative overpotentials. We also plot the observed Tafel slope as a function of potential, including the 

expected Tafel slope based on the -value determined from the fit and temperature (298K), (e.g. 118 mV decade-1 when =½).  The part-currents associated with each stpe 

of the mechanisms are – Forward Heyrovsky (------), Reverse Heyrovsky (…………). Forward Volmer (-------), Reverse Volmer (………). 
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