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Abstract

Viscoelastic friction strongly depends on temperature, which determines the
material stiffness and, therefore, given a constant load, the volume that is
deformed and dissipates energy. We compare the results obtained by a nu-
merical approach introduced in Ref. [1] with measurements that separate
viscoelastic losses from Coulomb contribution. This is done for a range of
temperatures. We show that viscoelastic friction curves for different tem-
peratures can be arranged into a single master curve using a frequency shift
coefficient, which can be found from the characterization of the viscoelas-
tic material response. This shows that it is possible to accurately a) use
dynamic material analysis data to extrapolate viscoelastic friction measure-
ments to values outside the tested range, and b) use a tribometer to obtain
fundamental viscoelastic material properties.

Keywords: viscoelastic contact mechanics, viscoelastic friction, contact
mechanics measures.

1. Introduction

Viscoelastic friction is an issue that is currently the subject of signifi-
cant attention from engineering and tribology researchers. In order to obtain
a clearer understanding of this phenomenon, a large variety of experimental
techniques and numerical models have been developed ([8], [9], [10], [11], [14],
[15], [16], [1] ). This level of interest is primarily due to the large number
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of polymer and rubber-based engineering components in which viscoelastic
dissipation constitutes one of the main sources of mechanical losses. Classi-
cal examples include tires and seals ([2],[3]), but innovative applications in
fields such as bioengineering [4], nanotechnology [5] and ”green” technology
[6] are now also requiring an improved understanding of viscoelastic friction
mechanisms. Tackling these problems is, however, very challenging for a
number of reasons. Firstly, any numerical, analytical or experimental ap-
proach must incorporate the effects induced by the presence of the surface
roughness, whose power spectrum can extend over several orders of magni-
tude [7]. Furthermore, due to the particular nature of this class of materials,
not only time-dependent effects, but also the strong dependence of the mate-
rial properties on the temperature must be accounted for. Indeed, varying the
temperature dramatically changes the material stiffness and, consequently,
the deformed volume and the amount of energy dissipated ([26],[27]).

Given the intricacy of the problem, analytical approaches have proved
challenging. A pioneering attempt was made by Hunter [8] for the case of
two-dimensional (2D) contacts, i.e. for a rigid cylinder in contact with a vis-
coelastic half-space. Although many other contributions have later followed
the same approach [32], this model has a major limitation in that it can
handle only the simplest form of viscoelasticity, i.e. materials with only a
single relaxation time. Unfortunately, as it has been shown consistently in
the literature ([1],[17],[31],[27]), real viscoelastic materials are characterized
by complex mechanical behaviour with a large spectrum of relaxations times.
In the last fifteen years, Persson ([11], [12]) has developed a new theory that
can be applied - in first approximation - to a general viscoelastic material.
Recently, he has also investigated the role of temperature ([13],[26]), but,
to the best of authors’ knowledge, no definitive quantitative answer to the
problem has been provided.

Several numerical techniques have been implemented to overcome these
limitations. On the one hand, there are Finite Element Methods (FEM)
([15, 18, 19, 20, 21]) that can simulate real viscoelastic materials with many
relaxation times and complex geometrical configurations, but have been con-
ceived mainly for structural modelling so that, especially when the roughness
of the contacting bodies is accounted for and high resolution at asperity level
is required, it may be difficult to obtain accurate solutions for contact prob-
lems. On the other hand, Boundary Elements (BE) techniques provide good
solutions in terms of stresses and strains ([1],[7],[33],[35]), but, since they are
based on the superposition principle and, consequently, require translational
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invariance and system linearity to be satisfied, may suffer from limitations
linked to the generality of the contact domain and material properties. In
particular, one of the main issues relates to the temperature fields; specifi-
cally, the presence of temperature gradients implies varying material proper-
ties along the contact region and, consequently, hinders the applicability of
the methodology.

Experimental investigations have also shown that temperature effects can
have a dramatic influence on the contact properties and can affect the re-
liability of the models developed under isothermal assumptions ([26],[27]).
Interestingly, this issue was first acknowledged by Grosch who presented an
investigation into the dependence of rubber friction on sliding speed and tem-
perature. In spite of an experimental setup [10] that did not separate the
different forms of dissipation, i.e. Coulomb and viscoelastic friction, Grosch
was able to show a close relation between friction, material properties and
temperature.

This paper aims to shed light on the interdependence between viscoelastic
losses and thermal effects by carrying out friction measurements at different
temperatures with a new setup that, unlike Grosch’s, is capable of separat-
ing the Coulomb contribution from the viscoelastic dissipation. This enables
us to compare the measured viscoelastic friction with the numerical pre-
dictions obtained by employing the mathematical formulation in Ref. [1].
The primary purpose of this experimental campaign is to validate the nu-
merical method still in isothermal conditions, but over a large temperature
range. Furthermore, by investigating the relation between friction and ma-
terial properties, we propose a methodology to build a master curve for the
prediction of frictional response extrapolating data at different temperatures.
The paper is set out as follows. Section 2 briefly outlines the viscoelastic
model - including the time-temperature superposition effect - and the math-
ematical formulation employed for the numerical contact predictions. Section
3 describes the experimental procedure employed to measure the friction and
to separate Coulomb and viscoelastic friction. Finally, in Section 4, the ex-
perimental outcomes, compared with the numerical predictions, are shown
and discussed. The last Section includes conclusions and closing remarks.
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2. Material Constitutive Model and Numerical Formulation

2.1. Linear Viscoelastic Model

The viscoelastic response of linear rubber-like materials can be modelled
by the following integral equation :

ε (t) =

∫

t

−∞

dτJ (t− τ) σ̇ (τ) , (1)

where ε (t) is the time-dependent strain, σ (t) is the stress (the symbol ‘·’
stands for the time derivative), and the function J (t) is the creep function
that must satisfy causality, i.e. J (t < 0) = 0. The most general form of
J (t) is given by [17]:

J (t) = H (t)

[

1

E0

−

∫ +∞

0

dτC (τ) exp (−t/τ)

]

, (2)

where H (t) is the Heaviside step function, the real quantity E0 is the rubber
elastic modulus of the material at zero-frequency, C (τ) is a strictly positive
function defined as creep spectrum( [17] [29]), and τ is the relaxation time,
continuously distributed on the real axis.

Now, we observe that Eq. (2) can be Fourier transformed as ε (ω) =
σ (ω) /E (ω) where E (ω) is the viscoelastic modulus equal to E (ω) = [iωJ (ω)]−1.
Given such a definition, we can then write the following relation for E (ω):

1

E(ω)
=

1

E0

−

∫

∞

0

dτ
iωτC (τ)

1 + iωτ
=

1

E∞

+

∫

∞

0

dτ
C (τ)

1 + iωτ
(3)

From a physical point of view, we observe that, at low frequencies, the
material behaves elastically and, more specifically, is in the ‘rubbery’ region
since, for ω− > 0 , E (ω)− > E0. On the other hand, at very high frequency,
the material is again elastic but very stiff (brittle-like) and E (ω)− > E∞. In
the intermediate frequency range (the so called ‘transition’ region), the ratio
ImE (ω) /ReE (ω) , i.e. the loss tangent, is very large and this is responsible
for the viscoelastic energy dissipation.

Temperature has a dramatic influence on such a behavior: a tempera-
ture variation produces a shift of the viscoelastic frequency response (plot-
ted against log frequency) along to the frequency axis. Indeed, increasing
the temperature entails shifting to the right the viscoelastic modulus since,
thanks to the thermal energy, the material tends to relax (see Fig. 1). For
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Figure 1: The real E1 = Re [E (ω)] and the imaginary E2 = Im [E (ω)] parts of the
viscoelastic modulus E (ω) of a typical rubber-like material for different temperatures.

the majority of linear viscoelastic materials, and in particular for the almost
totality of rubber-like materials, a very simple logarithmic relation between
temperature and time can be assumed. Therefore, after defining a fixed refer-
ence temperature, T0, a time-temperature shift factor α(T ) can be introduced
such that:

E(ω, T ) = E(αω, T
0
) (4)

The coefficient α can be calculated by means of many empirical expression
- the most popular probably being the one suggested by Williams, Landel,
and Ferry in Ref. [43] - or can be directly measured by acquiring, at dif-
ferent temperatures, the mechanical response in a given frequency range by
employing a Dynamic Mechanical Analysis [17].
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The frequency-temperature superposition effect has a prominent impor-
tance in the characterization of the viscoelastic frequency response ([17],[29],[43]).
Indeed, by means of several isothermal tests, each carried out in a narrow
spectral window [ω1, ω2], this principle enables to characterize the viscoelas-
tic modulus over a much broader frequency range. In detail, each frequency
curve, acquired at a given temperature T , is shifted with α(T ) in such a
way that a final master curve can be built up. A reference temperature T0

is taken to set the frequency scale (the curve at that temperature undergoes
no shift).

2.2. Mathematical formulation of the Contact problem

In order to approach numerically the contact problem between linear vis-
coelastic solids, we have to discretize Eq. (2) by assuming C (τ) =

∑

k
Ckδ (τ − τk)

and, therefore, rewriting J (t) as:

J (t) = H (t)

[

1

E0

−

n
∑

k=1

Ck exp (−t/τk)

]

. (5)

Now, by moving from the Green function approach already developed
in ( [39] [40] [41]) and employing the viscoelasticity model presented above,
the boundary element approach developed in Ref. [1] is capable of assessing
the mechanics of sliding and rolling viscoelastic contacts. Basically, if we
recall the translational invariance and the elastic-viscoelastic correspondence
principle [17], the general linear-viscoelastic contact problem between a rigid
indenter and a viscoelastic slab can be formulated as:

u (x, t) =

∫

t

−∞

dτ

∫

d2xJ (t− τ)G (x− x′) σ̇ (x′, τ) , (6)

where x is the in-plane position vector, t is the time, u (x, t) is the normal
surface displacement of the viscoelastic solid, σ (x, t) is the normal interfa-
cial stress, J (t) is given in Eq. (2), and the quantity G (x) is the Green’s
function. Assuming steady-state conditions, i.e. sliding/rolling motion at
constant velocity v, Eq. 6 can be re-written in the form:

u (x,v) =

∫

d2x′G (x− x′,v)σ (x′) (7)

where the kernel G(x,v) depends parametrically on the speed v and has the
following form:
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G (x,v) = −
1− ν2

π

{

1

E∞

1

|x|
(8)

+

∫ +∞

0

dτC (τ)

∫ +∞

0+
dz

1

|x + vτz|
exp (−z)

}

.

Such a formulation, based on the isothermal assumption, requires the
viscoelastic modulus E(ω) corresponding to the temperature T of the vis-
coelastic solid. Furthermore, since the formulation is time-independent, the
contact problem can be solved by employing the same approach already de-
veloped for the linear elastic rough contact problem studied in ([39], [40],
[41]). For further details regarding the methodology, the reader can refer to
Ref. [1].

3. Experimental methodologies

In this study, friction measurements are made by means of a mini-traction
machine, or MTM, (PCS Instruments Ltd, Acton, UK), in which the ball is
loaded and rotated against the rotating flat disc (see Fig. 2). It is impor-
tant that each component is driven by a separate motor, thus enabling any
sliding/rolling speed combination (slide/roll ratios).

In these tests, the disc consists of a rubber layer attached to a steel
substrate. The thickness of the rubber sheet is chosen to be much larger
than the contact area for the given operating conditions so that it can be
considered a half-space in the numerical calculations. Furthermore, as shown
in Fig. 2, some mineral oil is introduced into the MTM specimen holding unit
for temperature control purposes; with particular care having been taken to
ensure that the fluid does not reach the contact interface, which remains dry.
The presence of the fluid allows the temperature of the viscoelastic body to
be adjusted while, at the same time, maintaining isothermal conditions.

For the ball sample, we use PTFE to minimize interfacial losses, here
approximated by Coulomb friction, and hence ensure an accurate measure of
the viscoelastic losses. This is important not only to reduce this additional
source of dissipation, but also to limit local thermal effects and wear, which
may affect the reliability of the measurements [1] .

Starting from the approach developed in Ref. [27], we want to separate
the viscoelastic losses from interfacial friction components. To this end, it
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Rubber Disc
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contact temperature

Figure 2: Schematic of the setup for the MTM rig.

is important to note that the Coulomb interfacial friction force, Fc, strictly
depends on the sign of the relative speed of the the ball and the disk w =
udisk − uball : Fc always changes its sign in accordance to the sign of w.The
viscoelastic frictional force, Fv, on the other hand, opposes the speed at
which the viscoelastic body is deformed, i.e. udisk. Consequently, if we fix
|udisk| and |w|, the force on the the load cell attached to the ball drive shaft
will be described by the the following four relationships between the sliding
conditions and the friction components (see Figure 3):

uball = −|uball| and w = −|w| : FI = O + Fc − Fv (9a)

uball = −|uball| and w = |w| : FII = O − Fc − Fv (9b)

uball = |uball| and w = −|w| : FIII = O − Fc + Fv (9c)

uball = |uball| and w = |w| : FIV = O + Fc + Fv (9d)

where O is the transducer’s offset (i.e. zero force reading). Therefore, the
Coulomb friction force is Fc = (FI+FIV −FII−FIII)/4, whereas the viscoelas-
tic friction is Fv = (FIII+FIV −FII−FIII)/4 . We process the measurements
in this way, so that we can eliminate the contribution of interfacial friction
to obtain the components of frictional losses linked solely to the viscoelastic
contribution.
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Figure 3: Schematic of the four steps implemented to separate the viscoelastic friction
force Fv and the Coulomb force Fc . The arrows refer to the forces on the ball.
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Figure 4: The viscoelastic modulus shift coefficient αT is plotted as a function of the
temperature.

4. Results and discussion

4.1. Material Mechanical Response

Since the aim is to characterize the viscoelastic friction, a highly dis-
sipative polymer, namely Viton fluoroelastomer, is used. The viscoelastic
frequency response of this material is characterized by means of a Q800 Dy-
namic Mechanical Analyzer (DMA) manufactured by TA instruments. This
test, carried out in tensile conditions, provides data over a set interval of
frequencies and temperatures. The characterization is performed on rubber
strips, having a cross section of 2 mm × 5.5 mm and a length of 35 mm, over
a frequency interval between 0.1 and 10 Hz and temperature varying from
−30 to 220 degrees Celsius with 10 ◦C step.

With regards to the data post-processing, aimed at building up the mas-
ter curve and described in the previous Section, the first step requires the
calculation of the shifting coefficient α defined in Eq. 6. In Figure 4, we
show α as a function of the temperature T .

Once the shifting parameters α have been determined, it is possible to
build up a master curve over a much extended frequency range. This is what
is shown in Figure 5, where the experimental data are plotted in blue - the
squares and the circles refer respectively to the imaginary and the real part of
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Figure 5: The real part E1 = Re [E (ω)] (squares) and the imaginary part E2 = Im

(circles) of the complex modulus E (ω) at 30 degrees Celsius . The blue colour refers to
the measured values, the red is used for the fit obtained by using Eq. (5).

the viscoelastic modulus. In the same plot, we fit the experimental data using
Eq. (5) with a spectrum of relaxation times being assumed to be in geometric
progression with Euler’s number as common ratio, i.e. τk+1/τk = e. A good
agreement, over the entire frequency range, that is extended for more than
15 orders of magnitude, is found between the experiment and the theoretical
fitting.

4.2. Friction measure

The friction measurements are carried out by using the MTM and fol-
lowing the experimental procedure explained in the previous Section. Tests
are conducted at a fixed normal load FN = 25 N in a speed interval ranging
from 20 to 200 mm/s, and we calculate, for each speed value, the viscoelastic
friction coefficient µ, that is obtained by averaging 8 data points . The test
is carried out at three different temperature values: T1 = 30 C, T2 = 60 C,
T3 = 90 C .

Figure 6 shows the experimental data with the relative scatter, which is
always less than 10%, and the numerical predictions. The two sets of results
are in very good agreement with each other over the entire temperature
range considered in the study. Incidentally, it can be observed that the
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Figure 6: Viscoelastic friction as a function of the rolling speed. Points refer to the exper-
imental results (each solid line show the scatter) , blue line to the numerical predictions.

friction coefficient µ decreases with speed; indeed, the speed range in Fig. 6
corresponds to a frequency interval where the loss modulus of our material
is decreasing. Furthermore, it can be noticed that in these temperature and
speed ranges, heating effects due to the sliding friction seem not to have a
discernible effect on the phenomenon under investigation.

The experimental technique adopted in this paper has the peculiar ad-
vantage of enabling a direct comparison with numerical predictions, over a
large range of speeds. This is not possible when employing other experimen-
tal procedures [10] [36],[1],[25],[9],[37] that do not separate the viscoelastic
dissipation from other frictional losses.

After characterizing the friction in a certain speed interval for different
temperatures, the question arises as to whether it is possible to extrapolate
information over a wider interval, as in the case of the viscoelastic modulus.
Indeed, from a physical point of view, viscoelastic losses are strictly related
to E (ω); qualitatively speaking, the storage part determines the volume
of material that is deformed and the loss modulus governs the amount of
dissipated energy. To test this hypothesis, Fig. 7, shows the experimental
data at different temperatures, shifted using the same viscoelastic modulus
coefficient α that was plotted in Figure 4. Figure 7 also shows numerical
calculations directly computed in the entire range. It can be seen that there

12



10
−2

10
−1

10
00

0.01

0.02

0.03

0.04

0.05

0.06

v [m/s]

µ

T=60 C

Figure 7: Viscoelastic friction as a function of the rolling speed. Points refer to the
experimental results shifted with αT , blue line to the numerical predictions.

is again good agreement between both numerical and experimental results.
This confirms the close relationship between modulus and friction. In-

deed, it shows that the shifting coefficient α marking the viscoelastic modulus
also characterizes the friction coefficient µ . On the one hand, this provides
a powerful tool to extrapolate information on the friction coefficient: given a
speed v and a temperature T , it is possible to obtain the friction coefficient
µ(v, T ) carrying out the test at a speed αv and a temperature T ′ :

µ(v, T ′) = µ(αv, T
0
). (10)

Furthermore, Fig. 7 reveals that the coefficient spectrum α(T ) can be
effectively measured using viscoelastic friction tests. This demonstrates that
a tribological measurement of the friction coefficient may provide important
support for the mechanical characterization of a viscoelastic material.

5. Conclusion

In this contribution we have performed detailed studies to shed light how
viscoelastic friction depends on temperature. To do this, an experimental
procedure that is capable of isolating the viscoelastic friction component and
providing stable measurements over a wide range of speeds and temperatures
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has been developed. This elimination of interfacial frictional losses is cru-
cial in order to validate numerical predictions that relate only to viscoelastic
contributions. Indeed, the experimental procedure has proved effective in
validating numerical simulations, obtained with the BE methodology devel-
oped in Ref. [1]. Interestingly, a decreasing trend of the viscoelastic friction
has been shown in the speed range analyzed, which corresponds to a fre-
quency interval where the loss modulus decreases. This trend, which cannot
be captured using other experimental methods, has important implications
for practical applications, such as tires, where viscoelastic dissipation is a
crucial quantity to control.

This work also demonstrates an important correlation between viscoelas-
tic friction and the material mechanical behaviour. We have clearly shown
that the viscoelastic modulus shift coefficients α(T ) can also be used to shift
the frictional response. This enables us to extrapolate the friction over a
larger range of speeds than would otherwise be allowed by the tribometer. At
the same time, this correspondence may offer an opportunity for the mechan-
ical characterization of viscoelastic materials using frictional measurements
alone.

Acknowledgements

CP gratefully acknowledges the support of Marie Curie Intra-European
Fellowship SOFT-MECH (Grant No. 622632).

14



[1] G. Carbone, C. Putignano, A novel methodology to predict slid-
ing/rolling friction in viscoelastic materials: theory and experiments.,
Journal of the Mechanics and Physics of Solids, 61 (8), pp. 1822-1834,
(2013).

[2] Bottiglione F., Carbone G., Mangialardi L., Mantriota G., Leakage
Mechanism in Flat Seals, Journal of Applied Physics 106 (10), 104902,
(2009).

[3] O’Boy D.J., Dowling A.P., Tyre/road interaction noise—A 3D vis-
coelastic multilayer model of a tyre belt, Journal of Sound and Vibration,
322, 4–5, 829–850, (2009).

[4] D. Craiem, R. L. Magin, Fractional order models of viscoelasticity as an
alternative in the analysis of red blood cell (RBC) membrane mechanics,
Phys. Biol. 7 013001, (2010).

[5] O. Regeva, S. Vandebrilb, E. Zussmana, C. Clasenb, The role of inter-
facial viscoelasticity in the stabilization of an electrospun jet, Polymer,
51, 12, 2611–2620, (2010).

[6] T. Tsujimotoa, H. Uyamaa, S. Kobayashib, Synthesis of high-
performance green nanocomposites from renewable natural oils, Polymer
Degradation and Stability, 95, 8, 1399–1405, (2010).

[7] G. Carbone, C. Putignano. Rough viscoelastic sliding contact: theory
and experiments. Physical Review E, 89, 032408, (2014).

[8] Hunter S.C. , The rolling contact of a rigid cylinder with a viscoelastic
half space Trans. ASME, Ser. E, J. Appl. Mech. 28, 611–617 (1961).

[9] M. Harrass, K.Friedrich , A.A.Almajid,Tribological behavior of selected
engineering polymers under rolling contact, Tribology International,43,
635–646, 2010.

[10] Grosch K. A. , The Relation between the Friction and Visco-Elastic
Properties of Rubber, Proceedings of the Royal Society of London. Series
A, Mathematical and Physical,274-1356, pp. 21-39, (1963).

[11] Persson B.N.J., Rolling friction for hard cylinder and sphere on vis-
coelastic solid, Eur. Phys. J. E 33, 327-333 (2010).

15



[12] Persson B. N. J., Theory of rubber friction and contact mechanics, J.
Chem. Phys. 115, 3840 (2001).

[13] Persson B. N. J., Rubber friction: role of the flash temperature, J. Phys.:
Condens. Matter 18 7789, (2006).

[14] Panek C. and Kalker J.J., Three-dimensional Contact of a Rigid Roller
Traversing a Viscoelastic Half Space, J. Inst. Maths Applies 26, 299-313,
(1980).

[15] J. Padovan, O. Paramadilok, Transient and steady state viscoelastic
rolling contact, Comput Struct, 20, 545-553, 1984.

[16] Vollebregt E.A.H., User guide for CONTACT, J.J. Kalker’s variational
contact model, Technical Report TR09-03, version 1.18, (2011).

[17] Christensen R. M., Theory of viscoelasticity,Academic Press, New York
(1971).

[18] J. Padovan. Finite element analysis of steady and transiently mov-
ing/rolling nonlinear viscoelastic structure-I. theory. Computers &
Structures, 27(2):249–257, (1987).

[19] J. Padovan, A. Kazempour, F. Tabaddor, and B. Brockman. Alternative
formulations of rolling contact problems. Finite Elements in Analysis
and Design, 11:275–284, (1992).

[20] L. Nasdala, M. Kaliske, A. Becker, H. Rothert, An efficient viscoelastic
formulation for steady-state rolling structures, Computational Mechan-
ics 22, 395-403, (1998).

[21] Le Tallec P., Rahler C., Numerical models of steady rolling for non-linear
viscoelastic structures in finite deformations,International Journal for
Numerical Methods in Engineering, vol. 37, 1159-1186 (1994).

[22] J. Halaunbrenner, A. Kubisz: ASLE-ASME Lubrication Conf., Chicago
(1967) Paper No. 67-Lub-25.

[23] Johnson K.L.J., Contact Mechanics, Cambridge University Press (1985).

16



[24] B. A. Krick, Jennifer R. Vail, Bo N. J. Persson, W. G. Sawyer, Optical
In Situ Micro Tribometer for Analysis of Real Contact Area for Con-
tact Mechanics, Adhesion, and Sliding Experiments. Tribol Lett. DOI
10.1007/s11249-011-9870-y

[25] B. Lorenz, B.N.J. Persson, S. Dieluweit, and T. Tada, Rubber friction:
Comparison of theory with experiment, DOI 10.1140/epje/i2011-11129-
1 Eur. Phys. J. E (2011) 34: 129 THE EUROPEAN PHYSICAL JOUR-
NAL E.

[26] G. Fortunato, V. Ciaravola, A. Furno, B. Lorenz and B N J Persson,
General theory of frictional heating with application to rubber friction,
Journal of Physics: Condensed Matter, 27, 17, (2015).

[27] C. Putignano, J. Le Rouzic, T. Reddyhoff, G. Carbone, D. Dini, A
Theoretical and Experimental Study of Viscoelastic Rolling Contacts
Incorporating Thermal Effects, Proceedings of the Institution of Me-
chanical Engineers, Part J: Journal of Engineering Tribology, vol. 228,
no. 10, 1112-1121, (2014).

[28] D. Maugis, Adhesion of Spheres: The JKR-DMT Transition Using a
Dugdale Model, Journal of Colloid and Interface Science, 150, 1, (1992).

[29] John D. Ferry, Viscoelastic Properties of Polymers, John Wiley & Sons,
Inc.

[30] Putignano C, Reddyhoff T, Carbone G, Dini D (2013). Experimen-
tal Investigation of Viscoelastic Rolling Contacts: A Comparison with
Theory. Tribology Letters, vol. 51, p. 105-113, ISSN: 1023-8883, doi:
10.1007/s11249-013-0151-9.

[31] C. Putignano, T. Reddyhoff, D. Dini, C. Carbone, Experimental in-
vestigation of viscoelastic rolling contacts: a comparison with theory.
Tribology Letters, 51 (1), pp. 105-113, (2013).

[32] I. Goryachevaa, Farshid Sadeghi, Contact characteristics of a
rolling/sliding cylinder and a viscoelastic layer bonded to an elastic sub-
strate, 184, 2, 125â“132, 1995.
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