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Abstract

A linear group G < GL(V), where V is a finite vector space, is called %—transitive if all
the G-orbits on the set of nonzero vectors have the same size. We complete the classification
of all the %—transitive linear groups. As a consequence we complete the determination of the
finite %—transitive permutation groups — the transitive groups for which a point-stabilizer
has all its nontrivial orbits of the same size. We also determine the (k+ %)-transitive groups

for integers k > 2.

1 Introduction

The concept of a finite %—tmnsitive permutation group — a non-regular transitive group in which

all the nontrivial orbits of a point-stabilizer have equal size — was introduced by Wielandt in

his book [16, §10]. Examples are 2-transitive groups and Frobenius groups: for the former, a

point-stabilizer has just one nontrivial orbit, and for the latter, every nontrivial orbit of a point-

stabilizer is regular. Further examples are provided by normal subgroups of 2-transitive groups;

indeed, one of the reasons for Wielandt’s definition was that normal subgroups of 2-transitive
3

groups are necessarily 3-transitive.

Wielandt proved that any %—transitive group is either primitive or a Frobenius group ([16,
Theorem 10.4]). Following this, a substantial study of %-transitive groups was undertaken by
Passman in [13, 14], in particular completely determining the soluble examples. More recent
steps towards the classification of the primitive 3-transitive groups were taken in [3] and [8].
In [3] it was proved that primitive %—transitive groups are either affine or almost simple, and
the almost simple examples were determined. For the affine case, consider an affine group
T(V)G < AGL(V), where V is a finite vector space, T(V') is the group of translations, and
G < GL(V); this group is %—transitive if and only if the linear group G is %—tmnsitive — that
is, all the orbits of G on the set V* of nonzero vectors have the same size. The %—transitive
linear groups of order divisible by p (the characteristic of the field over which V is defined) were
determined in [8, Theorem 6].

The main result of this paper completes the classification of %—transitive linear groups. In the
statement, by a semiregular group, we mean a permutation group all of whose orbits are regular.

Theorem 1 Let G < GL(V) = GL4(p) (p prime) be an insoluble p'-group, and suppose G is
%—tmnsitive on VE. Then one of the following holds:

(i) G is semiregular on V*¥;
(i) d =2, p=11,19 or 29, and SL2(5) <G < GLy(p);
(i) d =4, p=13, and SLy(5) <G < TLa(p?) < GL4(p).

In (ii) and (i), the non-semireqular possibilities for G are given in Table 1.



Table 1: Orbit sizes of 3-transitive groups in Theorem 1(ii),(iii)

p? [ |G| | orbit size on V¥ [ number of orbits
117 [ 600 | 120 1
19% | 360 | 120 3
1080 | 360 1
292 | 240 | 120 7
1680 | 840 1
134 | 3360 | 1680 17

Remarks 1. In conclusion (i) of the theorem, the corresponding affine permutation group
T(V)G (acting on V) is a Frobenius group, and G is a Frobenius complement (see Proposition
2.1 for the structure of these).

2. In conclusion (ii), F;R acts transitively on Vt, where R = SLy(5) and [y is the group of

scalars in GL(V'), and G = ZoR for some Zy < F;. Here G <F;R (hence is 3-transitive, since in

oy .1 oL
general, a normal subgroup of a transitive group is f—transmve).

3. The i-transitive group G in part (iii) is more interesting. Here G = (ZyR).2 < T'L;(13?),
where R = SLy(5) and Zy is a subgroup of F*,, of order 28, and GNGLy(13?) = ZyR has orbits
on l-spaces of sizes 20, 30, 60, 60.

Combining Theorem 1 with the soluble case in [13, 14] and the p-modular case in [8, Theorem
6], we have the following classification of %—transitive linear groups. In the statement, for ¢ an
odd prime power, Sy(q) is the subgroup of GLs(q) of order 4(q — 1) consisting of all monomial
matrices of determinant +1.

Corollary 2 If G < GL(V) = GLq4(p) is 1-transitive on V¥, then one of the following holds:
(i) G is transitive on V¥;
(ii) G <TLy(p?);
(i4i) G is a Frobenius complement acting semireqularly on V*;
(iv) G = So(p™?) with p odd;
(v) G is soluble and p® = 32,52 7% 112,17% or 3%;
(vi) SLy(5) <G < TLy(p¥?), where p¥/? =9, 11, 19, 29 or 169.
Together with the results of [3], Corollary 2 completes the solution of an old problem —

namely, the classification of %—transitive permutation groups. For completeness, we state this
classification here.

Corollary 3 Let X be a %-tmnsitive permutation group of degree n. Then one of the following
holds:

(i) X is 2-transitive;
(ii) X is a Frobenius group;

(iii) X is affine: X = T(V)G < AGL(V), where G < GL(V) is a -transitive linear group,
given by Corollary 2;

(iv) X is almost simple: either

(a) n =21, X = A7 or S7 acting on the set of pairs in {1,...,7}, or

(b) n = 1q(q—1) where ¢ = 27 > 8, and either G = PSLs(q), or G = PTLsy(q) with f
prime.



Turning to higher transitivity, recall (again from [16]) that for a positive integer k, a permu-
tation group is (k + %)—transitive if it is k-transitive and the stabilizer of k points has orbits of
equal size on the remaining points. For k > 2 such groups are of course 2-transitive so belong
to the known list of such groups. Nevertheless, their classification has some interesting features
and we record this in the following result.

Proposition 4 Let k > 2 be an integer, and let X be a (k + %)-tmnsitive permutation group of
degree n > k + 1. Then one of the following holds:

(i) X is (k + 1)-transitive;
(i) X is sharply k-transitive;
(iii) k =3 and X = PT'Ly(2P) with p an odd prime, of degree 2P + 1;
(iv) k=2 and one of:
Lo(q) <X < PTLy(q) of degree g+ 1;
X = Sz(q), a Suzuki group of degree ¢*> + 1;
X = AT'L1(2P) with p prime, of degree 2P.

Remarks 1. The sharply k-transitive groups were classified by Jordan for & > 4 and by
Zassenhaus for k = 2 or 3; see [6, §7.6].

2. In conclusion (iv), the groups Sz(q) and AT'L;(2P) are Zassenhaus groups — that is, 2-transitive
groups in which all 3-point stabilizers are trivial (so that all orbits of a 2-point stabilizer are
regular). The groups X with socle Ls(q) are all g—transitive, being normal subgroups of the
3-transitive group PT'Ly(q); some are 3-transitive, some are Zassenhaus groups, and some are
neither.

The paper consists of two further sections, one proving Theorem 1, and the other Proposition
4. We offer a few observations on the proof of the main result, Theorem 1. Quite early in the proof
is Lemma 2.3, which permits the use of inductive arguments. In order to use such arguments,
some rather delicate analysis of small-dimensional cases is needed; most of this analysis is carried
out theoretically, but for a few small cases we use computation through Magma [4]. We thank
Eamonn O’Brien for assistance with these Magma computations.

2 Proof of Theorem 1

Throughout the proof, we shall use the following well-known result about the structure of Frobe-
nius complements, due to Zassenhaus.

Proposition 2.1 ([15, Theorem 18.6]) Let G be a Frobenius complement.

(i) The Sylow subgroups of G are cyclic or generalized quaternion.

(i) If G is insoluble, then it has a subgroup of index 1 or 2 of the form SLo(5) X Z, where Z
is a group of order coprime to 30, all of whose Sylow subgroups are cyclic.

The following result is important in our inductive proof of Theorem 1.

Proposition 2.2 Let R = SLy(5) or As, let p > 5 be a prime, and let V' be a faithful absolutely
irreducible Fq R-module, where ¢ = p*. Regard R as a subgroup of GL(V'), and let G be a group
such that R<G <TL(V).

(i) If R is semiregular on V* then dimV =2 and R = SLy(5).

(ii) Suppose dimV = 2 and G has no regular orbit on the set P1(V) of 1-spaces in V. Then
either q € {p,p?} with p <61, or q = 74



(i5i) If dimV =2 and G is %—tmnsz’tive but not semireqular on V¥, then ¢ = 11,19,29 or 169.
Conversely, for each of these values of q there are examples of %—tmnsitive, non-semireqular
groups G, and they are as in Table 1 of Theorem 1.

Proof. (i) The irreducible R-modules and their Brauer characters can be found in [5], and
have dimensions 2, 3, 4, 5 or 6. For those of dimension 3 or 5, the acting group is R & As, and
involutions fix nonzero vectors; and for those of dimension 4 or 6, elements of order 3 fix vectors.

(ii) Let dim V' = 2, and suppose G has no regular orbit on P; (V). Assume for a contradiction
that ¢ is not as in the conclusion of (ii). In particular, ¢ > 61 (recall that p > 5).

Write R = R/Z(R) = A5 and G = G/(G N Fy). Now Npcrv)(R) = R, so it follows that
G = R(o) for some o € PI'L(V) (possibly trivial). Note that if p = +2 mod 5 then F,2: C F,.

Consider the action of R =2 A5 on P;(V). As A5 has 31 nontrivial cyclic subgroups, and each
of these fixes at most two 1-spaces, it follows that R has at least (¢ — 62)/60 regular orbits on
P, (V). Since ¢ > 61, R has a regular orbit, and so G # R by our assumption.

Let 7 be the order of the element o modulo R (so that F,» C F,). If there is a regular R-orbit
Ag on P;(V) that is not fixed by o® for any i with 1 <i <r —1, then Gao, = R and so G<U> =1
for (v) € Ag and G has a regular orbit on P;(V), a contradiction. Hence r > 1, and for each
regular R-orbit A, there is a subgroup (ai(A)>, of prime order modulo R, which fixes A setwise.
Moreover, for (v) € A, there exists © € R such that zo*®) fixes (v). Since there are at least
q — 62 elements of P;(V) in regular R-orbits, it follows that

|UﬁXP1(v)(x0'j)\ >q—62, (1)

where the union is over all x € R and all j dividing r with r/j prime. Let s = r/j for such j,
and let z € R. If (z07)® # 1 then (z07)® € R fixes at most two 1-spaces, and so [fix(xo?)| < 2;

and if (zo7)® = 1, then zo’ is PGL(V)-conjugate to a field automorphism of order s, and
fix(xo?)| = ¢*/* + 1. Hence (1) implies that
60 Y (¢ +1)>q-62. (2)

s|r,s prime

Recall that p > 5 and F,» C F,.

Suppose that 6|r. The terms in the sum on the left hand side of (2) with s > 5 add to at
most 7(q'/® 4 1), which is easily seen to be less than ¢'/2 + 1. Hence (2) gives

qg— 62

2(¢"* +1) + (¢ +1) > o

Putting y = ¢'/% this yields 120y® 4+ 60y? + 242 > 3%, which is false for y > 7. Similarly,
when hef(r,6) = 1 or 3, we find that (2) fails. Consequently hcf(r,6) = 2, and (2) gives
2(q*/? + 1) > (g — 62)/60, which implies that ¢'/2 < 121. Hence (as p > 5 and ¢ = p® with a
even), either ¢ = p? or ¢ = 7* or 11%. Then further use of (2) gives p < 61 in the former case,
and also shows that ¢ # 11%. But now we have shown that ¢ is as in (ii), contrary to assumption.
This completes the proof.

(iii) Suppose G is i-transitive but not semiregular on V¥. If G has a regular orbit on Py (V),
then it has a regular orbit on V¥ which is not possible by the assumption in the previous
sentence. Hence ¢ must be as in the conclusion of part (ii). For these values of ¢, we use Magma
[4] to construct R = SLy(5) in SLa(q), and for all subgroups of I'L2(¢) normalizing R, compute
whether they are %—transitive and non-semiregular. We find that such groups exist precisely
when ¢ is 11, 19, 29 or 169, and the examples are as in Table 1. [}

Note that part (ii) of the proposition follows from [11, Theorem 2.2] in the case where R is

Fp-irreducible on V. We shall need the more general case proved above.

We now embark on the proof of Theorem 1. Suppose that G is a minimal counterexample.
That is,

e G <GL4(p) =GL(V) is an insoluble, %—transitive p’-group,



e G is not semiregular on V*# and G is not as in (ii) or (iii) of the theorem, and

e (G is minimal subject to these conditions.

Observe that since G is %—transitive and not semiregular, it cannot have a regular orbit on V.

The affine permutation group VG < AGL(V) is %—transitive on V and not a Frobenius group,

hence is primitive by [16, Theorem 10.4]. It follows that G is irreducible on V.

By [14, Theorem 1.1], G acts primitively as a linear group on V. Choose ¢ = p* maximal
such that G < T'L,(q) < GLq4(p), where d = nk. Write V =V, (¢), Go = GNGL,(¢), K =F,
and Z = Gy N K*, the group of scalars in Gy. Since G is insoluble, n > 2. Also G is absolutely
irreducible on V (see [8, Lemma 12.1]), so Z = Z(G)).

Lemma 2.3 Let N be a normal subgroup of G with N < Gy and N £ Z, and let U be an
wrreducible K N-submodule of V. Then the following hold:

(i) N acts faithfully and absolutely irreducibly on U;
(i) N is not cyclic;
(iii) Gu acts -transitively on U*;

(iv) if (Gu)Y is insoluble and not semiregular, and (N () |U|) # (SLy(5), ¢?) with q € {11,19,29,169},
then U =V.

Proof. As G is primitive on V, Clifford’s theorem implies that V' | N is homogeneous, so
that V{ N=U&U;&---@ U, with each U; =2 U. Hence N is faithful on U; it is also absolutely
irreducible, as in the proof of [8, Lemma 12.2]. Hence (i) holds, and (ii) follows.

To see (iii), let v € U*, n € N and g € G,,. Then vng = vgn’ = vn/ for some n’ € N. Hence
{vn : n € N} is invariant under G,. As U is irreducible under N, {vn : n € N} spans U, and
hence G, stabilises U. Therefore

|G : Gq,| = |G : GU| : ‘GU : Gv‘.

As G is %—transitive this is independent of v € U?, and hence Gy is %—transitive on U, as in
(iii).

Finally, (iv) follows by the minimality of G. ]

By [14, Theorem A], O,(Gy) is cyclic for each odd prime r, and hence is central by Lemma
2.3(ii). Consequently F(Gp) = ZE where E = O3(Gp). Moreover [14, Theorem A] also shows
that ®(F) is cyclic, hence contained in Z, and |E/®(E)| < 28.

Now let F*(Gy) = ZER; - - Ry, a commuting product with each R; quasisimple (possibly
k=0).

Lemma 2.4 We have k > 1.

Proof.  Suppose k = 0, and write N = F*(Gy) = ZE. Since V | G is primitive, every
characteristic abelian subgroup of F is cyclic, so E is a 2-group of symplectic type. By a result
of Philip Hall ([2, 23.9]), we have E = E; o F' where E; is either 1 or extraspecial, and F
is cyclic, dihedral, semidihedral or generalised quaternion; in the latter three cases, |F| > 16.
Since N = F*(Gg) we have Cg,(N) < N and Go/Cgq,(N) < Aut(N). Hence Aut(N) must be
insoluble, and it follows that |E;/®(Fy)| > 2.

Now FE has a characteristic subgroup Fo = Fj o L, where L = Cy if 4 divides |F| and L =1

otherwise. Then Ey < G. Let U be an irreducible K Ey-submodule of V. By Lemma 2.3, Ey is
faithful on U and Gy is 3-transitive on U*. Write H = (Gy)Y.

Assume that H is soluble. As H is %-transitive on U £ it is therefore given by [14, Theorem

BJ, which implies that one of the following holds:

(a) H is a Frobenius complement;



<TLi(q"*), where |U| = ¢*%;
<

GLa(q") with |U| = ¢**, and H consists of all monomial matrices of determinant 4-1;
(d) |U| =p? with p € {3,5,7,11,17}, or |U| = 3.

In all cases except the last one in (d), it follows (using Proposition 2.1(i) for (a)) that |Ey/®(Ep)| <
22, which is a contradiction. In the exceptional case |U| = 3% and |Eq/®(oE)| = 2*. But in this
case any 3’-subgroup of Aut(N) is soluble, and hence G is soluble, again a contradiction.

Hence H is insoluble. As H is not a Frobenius complement by Proposition 2.1(ii), it is not
semiregular on U#, and so Lemma 2.3(iv) implies that U = V. Hence Fj is irreducible on V and
so F is cyclic and N = ZE = ZFEy. We have |Ey/®(Ep)| < 28 by [14, Theorem A}, and hence
|Eo/®(Ep)| = 22™ with m = 2,3 or 4.

Case m = 4. Suppose first that m = 4, so By = 2!*8 and dimV = 16. By [14, Lemmas 2.6,
2.10] we have E; = Ey, so that |Z|y = 2 and Gy < Z02'18.0§(2) (e = £). Also [14, Lemma 2.4]
gives (p®> —1)3 > 2% hence p > 7, and the proof of [14, Lemma 2.12] gives |G/N| > ¢®/2°. Since
G/N < 05(2), it follows that ¢ = 7. Hence G/N is an insoluble 7’-subgroup of O§(2) of order
greater than 78/2%. Using [5], we see that such a subgroup is contained in one of the following
subgroups of O§(2):

26,05 (2), 215.(S5 x S5) (e = —)
53 X 08(2), 26.(56 X 2), 26.(55 X 53), (55 X 55)2 (6 = +)

We now consider elements of order 3 in G. These are elements t; lying in subgroups O (2)* of
05(2) for 1 < k < 4 and acting on the 16-dimensional space V as a tensor product of k diagonal
matrices (w,w™') with an identity matrix of dimension 24~* where w € K* is a primitive cube
root of 1; there are also scalar multiples wty if Z contains wl. We compute the action of t; on
V and also the class of the image of 5 in O§(2) in Atlas notation, as follows:

k | action of t;, on V' | Atlas notation

1] (w®,wT®) 3A(e=—),3A(e=+)
2| (1®),w® u=1@W) | 3B(e=—), 3E (e = +)
3] (1™, w0 =10 | 3C (e =—-), 3D (e = +)
4| (10,0 w=10G) | —(e=—), 3BC (e = +)

Hence every element of order 3 in G has fixed point space on V of dimension at most 8. Con-
sidering the above subgroups of Og(2), we compute that the total number of elements of order 3
in G is less than 22°. If G contains an element of order 3 fixing a nonzero vector in V, then as
G is %—trabnsitive7 every nonzero vector is fixed by some element of G of order 3. Hence V is the
union of the subspaces Cy (t) over ¢t € G of order 3, so that

Vi< > Iov)l. (3)
teqG,|t|=3
This yields 76 < 229 . 78 which is false.
It follows that GG contains no element of order 3 fixing a nonzero vector. So every element of
order 3 in G/N is conjugate to t1.

We now complete the argument by considering involutions in G. Now G certainly contains
involutions which fix nonzero vectors, so arguing as above we have

Vi< > Iev)l. (4)

ted,[t[=2

The group G/N is an insoluble 7'-subgroup of O§(2), all of whose elements of order 3 are
conjugates of t;. Using Magma [4], we compute that there are 206 such subgroups if € = +, and
59 if e = —. For each of these possibilities for G/N we compute the list of involutions of G and
their fixed point space dimensions. All possibilities contradict (4). For example, when ¢ = —
the largest possibility for G has 188 involutions with fixed space of dimension 12; 74886 with
dimension 8; and 188 with dimension 4. Hence (4) gives

70 <188 (7' 4+ 7*) + 74886 - 78,



which is false. This completes the proof for m = 4.

Case m = 3. Now suppose m = 3, so that dim V' = 8. This case is handled along similar lines
to the previous one. By [14, Lemma 2.9], either |Z|s = 2 and Go/N < O§(2), or 4 divides |Z|
and G contains a field automorphism of order 2 (so that ¢ is a square), and Go/N < Spg(2). As
G is insoluble, its order is divisible by 2 and 3, so p > 5. Also each non-central involution in
G fixes a nonzero vector.

Assume now that 7 divides |G|. If 7 divides |G/Go| then ¢ > 57 and we easily obtain a
contradiction using (4); so 7 divides |G|. Elements of order 7 in Gg act on V as (12, w,w?, ..., w")
where w is a 7th root of 1 in the algebraic closure of F, (since they are rational in OF (2)). In
particular they fix nonzero vectors, so %—transitivity implies

Vi< Yo eyl (5)

teG,|t|=T

The number of elements of order 7 in Spg(2) is 207360, and hence the number in Gy is at most
(¢ —1,7)-25-207360. Each fixes at most ¢ vectors, so (5) gives

¢ <(qg—1,7)-25-207360 - ¢°,

which implies that ¢ < 13. Hence ¢ = 5,11 or 13 (not 7 as Gy is a p’-group). As ¢ is prime, by
the first observation in this case, we have |Z|s = 2 and G/N < Of (2). But then the number
of elements of order 7 in G is at most 2% - 5760, so (5) forces ¢ = 5. So G/N is an insoluble
5’-subgroup of Og (2), and now we use Magma to see that such a group G is not %—transitive on
the nonzero vectors of V' = V5(5).

Therefore 7 does not divide |G|. It follows that Gy/N is contained in one of the following
subgroups of Spg(2):
08(2)7 SG X Sg, 25~SG~

As Gy is insoluble and a p’-group, we have p > 7. We now consider elements of order 3 in G.
These are conjugate to elements ¢, (1 < k < 3) lying in subgroups (O5 (2))* of Sps(2), and
acting on V' as follows:

t: (w®, w1 @),

ty: (1%,w® w1 (®),

t3: (12,w® W= 16),

Suppose G has an element of order 3 which fixes nonzero vectors in V', so that (3) holds. We
argue as in the previous case that ¢ is not a cube, so 3 does not divide |G/Gg|. In Og (2), the
numbers of elements conjugate to ¢1, 2, t3 are 240, 480, 80 respectively. Hence, if Go/N < Og (2)
then (3) gives

¢ < 2% 480¢% + 25 - 80¢® + 2% - 240¢* + 2° - 4804° 4 27 - 80¢>

where the last three terms are only present if 3 divides |Z|. This gives ¢ = 7. Similarly ¢ = 7 is
the only possibility if Go/N is contained in Sg x S5 or 2°.S5. But now we compute using Magma
that such groups G are not %—transitive on the nonzero vectors of V' = Vg(7).

Thus all elements of order 3 in G are fixed point free on V*, and hence Go/N is an insoluble
7'-subgroup of Spg(2), all of whose elements of order 3 are conjugate to t;. We compute that
there are 10 such subgroups, and for each of them, (4) implies that ¢ = 7 is the only possibility:
for example, the largest possible Gy has 60 (resp. 3526, 60) involutions with fixed point spaces
on V of dimension 6 (resp. 4, 2), so (4) yields

¢® < 60¢° + 35264 + 6042,

hence ¢ = 7. Finally, we compute that none of the possible subgroups G is %—transitive on the
nonzero vectors of V = Vg(7).

Case m = 2. Now suppose m = 2, so that dim V' = 4. Then G(/N is an insoluble subgroup of
Sp4(2), so is isomorphic to Sg, Ag, S5 or As.



Assume that Go/N is Ag or Sg. Then 4 divides |Z] (so divides ¢ — 1). Elements of G of
order 3 are conjugate to t;, (k = 1,2) lying in Spa(2)¥; and t; acts on V as (w®,w=1?), ¢, as
(12, w,w™1). By assumption Gy contains elements in both classes, so (3) yields

gt < 2% 40¢% +2-2% - 40g + 2 - 22 - 40¢%,

where the last two terms are present only if 3 divides |Z]| (hence also ¢ —1). Since 4 divides ¢—1,
we conclude that ¢ = 13 or 17 in this case.

Now assume Go/N is A5 or Ss. As G is a p’-group, p > 7. We compute that G has at most
230 involutions, so (4) gives ¢* < 230¢?, whence ¢ < 13.

Thus in all cases, we have ¢ = 7,11,13 or 17. We now compute that none of the possibilities
for G is %—transitive on the nonzero vectors of V' = Vj(g). This completes the proof of the
lemma. |

Lemma 2.5 Either |E/®(E)| <22, or |E/®(E)| =2* and p = 3.

Proof.  The result is trivial if £ < Z, so suppose this is not the case. Let N = ZF <G,
and let U be an irreducible K N-submodule of V. By Lemma 2.3, N is faithful on U and Gy is
1-transitive on U*. Write H = (Gy)Y.

Assume first that H is insoluble. Now H is not semiregular on U* (as it is not a Frobenius
complement by Proposition 2.1, having N = NV as a normal subgroup), so Lemma 2.3(iv)
implies that U = V. But then N = ZF is irreducible on V| which forces k& = 0, contrary to
Lemma 2.4.

Hence H is soluble. As it is %—transitive on U!, it is therefore given by [14, Theorem BJ; the
list is given under (a)-(d) in the proof of Lemma 2.4. In all cases except the last one in (d), it
follows that |E/®(FE)| < 2%; in the exceptional case |U| = 3* and |E/®(E)| = 2*. Hence the
conclusion of the lemma holds. ]

Lemma 2.6 If R; <G, then R; = SLy(5) and V | R; = U', a direct sum of | copies of an
irreducible K R;-submodule U of dimension 2.

Proof. Suppose R := R; <G. By Lemma 2.3, V | R = U’ with U irreducible and (Gy)Y
i-transitive. If (R,dimU) = (SL3(5),2) then the conclusion holds, so suppose this is not the
case. If RV is semiregular then R is a Frobenius complement, so R = SL,(5); but then dim V'
must be 2 by Proposition 2.2(i), which we have assumed not to be the case. Therefore RV is not
semiregular, and so U = V by Lemma 2.3(iv). In particular F*(Gy) = ZR.

At this point we wish to apply [11, Theorem 2.2]: this states that, with specified exceptions,
any p’-subgroup of GL4(p) that has a normal irreducible quasisimple subgroup, has a regular
orbit on vectors. In order to apply this, we need to establish that our quasisimple normal
subgroup R of G acts irreducibly on V, regarded as an F, R-module. To see this, we go back to
the proof of Lemma 2.3, letting N := R < G. Taking U’ to be an irreducible F,R-submodule of
V', that proof shows that R is faithful on U’, and that Gy is %—transitive on U’. Hence by the
minimality of G, either U’ = V' (which is the conclusion we want), or ng is semiregular or as in
(ii) or (iii) of Theorem 1. In the semiregular case, Proposition 2.1 implies that R = SL2(5) and
U’ is a 2-dimensional R-module over some extension K of F,, and this holds in (ii) and (iii) of
Theorem 1 as well. However this can only happen if dimg V = 2, contradicting our assumption
that (R,dimU) # (SL2(5),2). Hence U’ =V, as desired.

Now we apply [11, Theorem 2.2] which determines all the possibilities for G not having a
regular orbit on V; these are

(1) the case with R = A. (¢ < p) and V the deleted permutation module of dimension ¢ — 1,
and

(2) the cases listed in Table 2 (note that in column 4 of row 14 of the table, G13 and Gy denote
groups of orders 18 and 9).

Case (1) In this case G = ZygH where Zj is a group of scalars and H = A, or S., and
V={(ar,...,ar) € Fy: > a; = 0}. If vy = (1,-1,0,...,0) and vz = (1,1,-2,0,...,0), one



Table 2: Groups in case (2) of the proof of Lemma 2.6

G/Z n |q G, < m

As 3 [ 11 Co 3

Ss 4 |7 Co 3

Se 5 |7 Co 5
Ag.2 4 |7 Cs 2

Ag 3 119,31 Co,Cy 5,3
Az 4 |11 Cs 7
Ly(7) |3 |11 Co 3
Ly(7).2 13 |25 Co 3
Us(3)2 (7 |5 Co 7
Us(3)2]6 |5 S5 4
Us(2) |4 |7 — —_
Us(2) |5 |7,13,19 Sy, Vi, Co 5,5,5
Us(2).2 6 |7,11,13 D12, Vi, Co 5,55
Us(2) |4 |13,19,31,37 Gis, Gy, C3, Oy 4,2,2,3
Us(3)2 |6 |13,19,31,37 W (Bj3),S3 x Cy,Vy,Cs | 5,5,5,5
Us(2) |10 7 Vi 3
Spe(2) |7 |11,13,17,19 C3,Vy,Co, Co 7,7,7,7
QF(2) |8 |11,13,17,19,23 | W(Bs), Sa, 53, Va,Co | 7,7,7,7,7
Jo 6 |11 S 4

checks that the sizes of the G-orbits containing v; and v are ‘:((C%Z)(‘)‘Z)Ol and 3|Z|(3) respectively.

These are not equal for any ¢ > 5, contradicting %—transitivity.

Case (2) In the case where G/Z = Uy(2) and (n,q) = (4,7), G has two orbits on 1-spaces of

sizes 40 and 360 (see [12]), and so cannot be i-transitive on V¥. In each other case in Table 1,

[11, Theorem 2.2] gives the existence of a vector v with stabiliser G,, contained in a subgroup as

indicated in column 4 of the table; and examination of the corresponding Brauer character of G

of degree n in [5] gives the existence of another vector u with stabiliser G,, containing an element
1

of order m, as indicated in column 5. It follows in all cases that G is not -transitive. [

Lemma 2.7 We have k = 1.

Proof. Suppose k > 1. Assume first that R; <G for all i. Then N := Ry Ry < G; moreover
N is not a Frobenius complement by Proposition 2.1, so is not semiregular on V*, and hence
Lemma 2.3(iv) shows that N is irreducible on V. Now Lemma 2.6 implies that

N =R1Ry = SL2(5) X SL2(5) <G<L FL4(q).

Let V. =U ® W be a tensor decomposition preserved by N, with dimU =dimW =2. If ¢ #p
or p? with p < 61, and also q # 7%, then Proposition 2.2 shows that the group induced by G/Z
on l-spaces in U has a regular orbit, and the same for W. Pick (u) and (w) in such orbits
(v € Uyw € W). Then G(,gu)y < Z and so Gugw = 1. Hence G has a regular orbit on Vi a
contradiction. And if ¢ = p, p? or 74, then

G<Z- (SL2(5) (24 SL2(5))(Z =7 -RiRs.a < FL4(q),

where a divides 4. Here Gy = Z - R1R5. Let u1,us be a basis of U and wy,wy a basis of W.
Writing matrices relative to these bases, define RY = {AT : A € Ry}. Then by [8, Lemma 4.3],
for the vector v = u; ® wi + us ® wy we have

(Go)o ={B®B™T:Be R NRLY}. (6)

There is only one conjugacy class of subgroups SLs(5) in GL2(q), so we can choose bases u;, w;
such that R; = RY; then for the corresponding vector v the order of (Gy), is divisible by 60. On



the other hand there are bases for which Ry N RI has order dividing 20, giving a vector stabilizer
in G of order coprime to 3. This contradicts %—transitivity.

Thus not all the R; are normal subgroups of G. Relabelling, we may therefore take it that
G permutes [ factors Ry, ..., R; transitively by conjugation, where [ > 1. Let N = R;...R;.
Lemma 2.3(iv) implies that N is irreducible on V, so that k = [ and F*(Gy) = ZN. Now [1,
(3.16), (3.17)] implies that N preserves a tensor decomposition V =V; ® --- ® Vi, with dimV;
independent of i, N < @ GL(V;) and G < Nppv)(Q GL(V;)) = (GL(Vi)o--- 0 GL(Vk)).Sk.{0)
with o a field automorphism acting on all factors.

Let GG; be the kernel of the natural map from G to Sk, so that G; = G N B where B =
(GL(V1) o -+ 0o GL(V%)).(o). There is a map ¢ : G; — PI'L(V}) which has image normalizing
the simple irreducible group T := Ry /Z(R;).

Just as in the second paragraph of the proof of Lemma 2.6, IV acts irreducibly on V', regarded
as an I, N-module. It follows that R; acts irreducibly on V, regarded as an IF, R;-module: for if
W is a proper nonzero [F, R;-submodule of Vi, then by the transitivity of G on the R;, there is a
proper nonzero F, R; submodule W; of V; for each i, and then W1 ®- - -® W is an IF,, V-submodule
of V, contradicting the F,N-irreducibility of V.

As in the proof of Lemma 2.6, this means that we can apply [11, Theorem 2.2] to the action
of G1¢ on V;. This shows that one of the following holds:

(a) G1¢ has a regular orbit on the 1-spaces of Vi;
(b) T and V; are among the exceptions indicated in (1) and (2) of the proof of Lemma 2.6;

(¢) (T,dimV;) = (4s,2).

Assume first that (a) holds and (c) does not. So G1¢ has a regular orbit on 1-spaces in V;. Let
(v) be a 1-space in such an orbit. Write also v for the corresponding vector in the other V;, and
let H be the stabiliser (G1)yg...gv. Then H fixes the 1-space (v) ® - -+ ® (v), so by the choice of
v, we have H < Z, the group of scalars in G. Hence in fact H = 1. It follows that G,g...g, has
order dividing k!. Also, assuming R; % SLy(r), there is an involution r; € R;\Z fixing a nonzero
vector u; € V;, and hence we see that G, g...gu, has order divisible by 2k However 2% does not
divide k! so this is impossible. For R; = SLs(r) we have dim V; > 2 (as we are assuming (c) does
not hold), and use a similar argument with an element of order 3 fixing a vector (which can be
seen to exist from the character table of SLa(r) in [7]).

Now consider case (b), where T,V; are as in (1) or (2) of the proof of Lemma 2.6. For T\, V;
as in Table 2 (apart from U4(2) in dimension 4), let v,u € V; be as in the last paragraph of the
proof of Lemma 2.6, and let C' be the group in the fourth column of Table 2 and m the integer in
the fifth. Then (G1)yg...0v is isomorphic to a subgroup of C*, so that G.,g..., has order dividing
|C|*k!. On the other hand (G1)yg..g. has order divisible by m*. Since G is i-transitive, this
implies that m* divides |C|*k!, which is not the case.

The remaining cases in (b) are: T' = A. (¢ < p), V4 the deleted permutation module; and
T = Uy(2), Vi = V(7). In the latter case T has two orbits on 1-spaces in V; with stabilizers of
orders 72 and 648; so as above G has a vector stabiliser of order dividing 72¥k! and another of
order divisible by 648%~1 a contradiction. Now suppose 7' = A, (¢ < p) and V; is the deleted
permutation module, which we represent as {(z1,...,z.) € F, : > x; = 0}. By Bertrand’s
Postulate (see [9]) we can choose a prime 7 such that § < 7 < c¢. Let v1,v2 be the following
vectors in Vi:

v = (17, =r, 07" 1), wy = (17711 —7,097").

Then G, .00, has order divisible by r*, while G,,g..9v, has order dividing m*k!, where
m = (r—1)!(c—7)! (note that 1 —r # 1 in F,, since p > ¢). Hence r* divides k!, a contradiction.

Finally consider case (c¢). Here dimV; = 2 and R; = SLy(5); this case requires a special
argument. Since R; is Fp-irreducible on Vi, we must have ¢ = p or p?, and hence G < Z -
(SLy(5) ® - -+ ® SLa(5)).Sk.(0) with o of order 1 or 2. Write s = [E]. As in the argument after
(6), there is a vector v € Vi ® V, whose stabilizer in SLy(5) ® SLa(5) contains a diagonal copy
of SLy(5). Tensoring v with the corresponding vectors in Vs @ Vg, ..., Vas_1 ® Vag (and a further
vector in Vj, if k is odd), we see that there is a vector in V' with stabilizer in G of order divisible
by 60°. On the other hand there is a 1-space (w) in V; with stabilizer in SL2(5)/Z(SLa(5)) of
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order dividing 2, 3 or 5. Then |Gue...gw| divides t*k!|o| for some t € {2,3,5}. Thus 60</2
divides t*k!|o|. This is impossible unless k is odd, t = 5 and there is no 1-space in V; with
stabilizer of order dividing 2 or 3. The latter can only hold if ¢ = 3 mod 4 and ¢ = 2 mod 3.
This implies that ¢ = p and ¢ = 1, so that 60*~1)/2 divides 5¥k!. In particular 2= divides k!,
which is a contradiction for k& odd. ]

We can now complete the proof of Theorem 1. By Lemmas 2.6 and 2.7, we have F*(Gy) =
ZER; where Ry = SLy(5) and E = O2(Gp). Note that p > 5 since G is a p’-group, and so
Lemma 2.5 shows that |E/®(E)| < 22. Also by Lemma 2.6 we have V | R; = U', a direct sum
of [ copies of an irreducible K R;-submodule U of dimension 2.

Suppose E £ Z, so that E/®(E) = 22. Write N = F*(Gy). Proposition 2.1 shows that N is
not a Frobenius complement; hence Lemma 2.3 shows that N is irreducible on V. Let W be an
irreducible K E-submodule of V. By Lemma 2.3, E is faithful on W (so dim W = 2) and GV, is

1_

a soluble 5-transitive group. Such groups are classified in [14, Theorem B]. From this it follows

that one of the following holds:

(a) G}V is a Frobenius complement (so E is generalised quaternion);

(b) relative to some basis of W we have G}}; = Sp(g), the group of monomial 2 x 2 matrices of
determinant +1;

(c) |W|=p? with p € {7,11,17}.

In case (c), ¢ = p; alsop # 7, 17 as SLa(5) £ GLa(p) for these values. Hence V. =U QW = V,(p)
with p = 11, and a Magma computation shows that there is no such %—transitive group G in this
case.

In case (a), Gl < Z-SLy(3) < GLa(q); and in (b), Gl = Z-22 < Z-SLy(3).2 < GL2(g). In
either case it follows that V =U @ W and G < Z - (SL2(5) ® (SL2(3).2)) < GLa(q) ® GLa2(q) <
GLy(q). Write G = GZ/Z, so that G < A5 x Sy.

We saw in the proof of Proposition 2.2 that at least ¢ — 62 of the elements of P;(U) lie in
regular orbits of As. Similarly, at least ¢ — 32 elements of Py (W) lie in regular orbits of S4. Hence
if ¢ > 61 then, picking (u) € P;(U) and (w) € P;(W) in regular orbits, we see that u ® w lies in
a regular orbit of G on V*. This is a contradiction, since G is %-transitive but not semiregular.
Hence g < 61. Now a Magma computation shows that no %—transitive groups arise in cases (a)
and (b) as well.

Thus we finally have F*(Gy) = ZRy with Ry = SLy(5) and V | Ry = U!, dimU = 2. Here
G/Z is As or S5, so | = 1. Now Proposition 2.2(iii) shows that ¢ = 11, 19, 29 or 169 and G is as
in conclusion (ii) or (iii) of Theorem 1. This is our final contradiction to the assumption that G
is a minimal counterexample.

This completes the proof of Theorem 1.

3 Proof of Proposition 4

Let k£ > 2 and suppose that X is a (k + %)—transitive permutation group of degree n. Assume
that X is not k-transitive. We refer to [10, §2] for the list of 2-transitive groups, and to [6, §7.6]
for a discussion of sharply k-transitive groups.

The proposition is trivial if X is A,, or S,,, so assume this is not the case. Then k < 5, as there
are no 6-transitive groups apart from A, and S,. Apart from A, and S,, the only 5-transitive
groups are the Mathieu groups Mi5 and Mas4, and the only 4-transitive, not 5-transitive, groups
are My; and Ms3. The groups My, and Mo are sharply 4- and 5-transitive respectively; and in
Mos, a 4-point stabilizer has orbits of size 3 and 16, so that Ms3 is not 4%—transitive and also
Moy is not 5%—transitive. This gives the proposition for k = 4 or 5.

Next let £ = 3. Then X is a 3-transitive but not 4-transitive group, hence is one of the
following: AGL4(2) (degree 29); 2*. A7 (degree 2%); My, (degree 12); May or Moo.2 (degree
22); or a 3-transitive subgroup of PT'La(q) (degree ¢ + 1). The affine groups here are not 3%—
transitive, as a 3-point stabilizer fixes a further point. Neither are My, Mas or Mys.2 as 3-point
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stabilizers have orbits of size 3,6 or 3,16. Finally, suppose that X is a 3-transitive subgroup of
PT'Ly(q). There are two possible sharply 3-transitive groups here, namely PG Ls(q) and a group
M(q?) == L2(q?).2 with ¢ = ¢2 and ¢ odd, which is an extension of Ls(qg3) by a product of a
diagonal and a field automorphism. Assuming that X is not one of these, it must be the case that
a 3-point stabilizer Xqg, = (¢), where ¢ is a field automorphism. Since X is 33-transitive, (¢)
acts semiregularly on the remaining ¢ — 2 points, so any nontrivial power of ¢ must fix exactly 3
points. It follows that ¢ = 2P with p prime, and ¢ has order p, which is the example in conclusion
(iii) of Proposition 4.

Now suppose that £k = 2. Consider first the case where X is almost simple, and let T =
soc(X). When T is not La(q), Sz(q) or *Ga(q), the arguments in [10, §3] show that a 2-point
stabilizer X,g has orbits of unequal sizes on the remaining points, contradicting 2%—transitivity.
The groups with socle La(q) are in conclusion (iv) of Proposition 4. If T = %G2(q) (of degree
q® + 1), then X,z has order (¢ — 1)f, where f = |X : T| is odd, and X,p is generated by an
element = of order ¢ — 1 and a field automorphism of odd order f. This group has a unique
involution x(9=1/2 which fixes ¢ + 1 points. It follows that some nontrivial orbits of X5 have
odd size and some have even size, contrary to 2%—transitivity. Now consider T' = Sz(q), of degree
¢®> + 1. If X = T then it is a Zassenhaus group, and is in (iv) of the proposition. Otherwise,
X = (T, ¢) where ¢ is a field automorphism of odd order f, say, and ¢ fixes g3 + 1 points, where
q= qg. For suitable «, 8 we have X,p = (z, ¢), where = has order ¢ — 1, and (x) has ¢+ 1 orbits
of size ¢ — 1. Now ¢ fixes points in some of these orbits, so by 2%—transitivity it must fix a point
in each of them. But [fix(¢| = g2 + 1 < ¢ + 1, which is a contradiction.

Finally, suppose X is affine (with k& = 2). Write X = T(V) X, < AGL(V), where n = |V,
T(V) is the translation subgroup, and Xy < GL(V). We refer to [10, §2(B)] for the list of
possibilities for the transitive linear group Xo. If Xo > SLa(q) (n = ¢%,d > 2), Spa(q)’ (n =
q®,d > 4) or Go(q)' (n = ¢%), the arguments in [10, §4] show that for some v € V¥, X, has
nontrivial orbits of unequal sizes. In cases (6-8) of [10, §2(B)], we have Xo>SLa(5), SLa(3), 2114
or SLy(13), and n € {3%,35 52, 72,112,192, 232,292 592}; in each case n — 2 is coprime to the
order of a 2-point stabilizer Xy, so it follows by 2%-transitivity that Xy, = 1. In other words,
X must be sharply 2-transitive, as in conclusion (ii) of the proposition.

It remains to deal with the case where X < A := AT'L1(q) (n = q). Here Ay consists of field
automorphisms, so if we pick v € F, such that v lies in no proper subfield of F,, then Ag;, = 1.
Hence by 2%—transitivity7 all 3-point stabilizers in X are trivial — that is, X is a Zassenhaus group.
It is well known that the non-sharply 2-transitive Zassenhaus groups in the 1-dimensional affine
case are just AT'L;(2P) with p prime, as in (iv) of the proposition. This is easy to see: we have
Xo1 = (¢), where ¢ is a field automorphism, and this acts semiregularly on F, \ {0, 1}; hence, as
argued at the end of the k = 3 case above, ¢ = 2P with p prime and X = AI'L,(2P), as required.

This completes the proof of Proposition 4.
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