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Abstract. We prove a conjecture of Etingof and the second author for hypertoric varieties,

that the Poisson-de Rham homology of a unimodular hypertoric cone is isomorphic to

the de Rham cohomology of its hypertoric resolution. More generally, we prove that this

conjecture holds for an arbitrary conical variety admitting a symplectic resolution if and

only if it holds in degree zero for all normal slices to symplectic leaves.

The Poisson-de Rham homology of a Poisson cone inherits a second grading. In the

hypertoric case, we compute the resulting 2-variable Poisson-de Rham-Poincaré polynomial,

and prove that it is equal to a specialization of an enrichment of the Tutte polynomial of a

matroid that was introduced by Denham [Den01]. We also compute this polynomial for

S3-varieties of type A in terms of Kostka polynomials, modulo a previous conjecture of the

first author, and we give a conjectural answer for nilpotent cones in arbitrary type, which

we prove in rank less than or equal to 2.

1 Introduction

Let X be a Poisson variety over C. Etingof and the second author [ES10a] define a right

D-module M(X) (whose definition we recall in §2), and define the Poisson-de Rham

homology group HPk(X) to be the cohomology in degree −k of the derived pushforward of

M(X) to a point. If X is affine, then HP0(X) coincides with the zeroth Poisson homology

of C[X], but HP∗(X) does not directly relate to higher Poisson homology. If X is smooth

and symplectic, then M(X) is naturally isomorphic to the right D-module ΩX of volume

forms on X, and therefore we have an isomorphism HPk(X) ∼= HdimX−k(X;C). The next

natural case to consider is when X is singular but admits a conical symplectic resolution3

ρ : X̃ → X; examples include hypertoric varieties, symmetric schemes of Kleinian singularities

(more generally, Nakajima quiver varieties), nilpotent cones (more generally, S3-varieties), and

certain slices to Schubert varieties in the affine Grassmannian [BPW, §2]. In this case, Etingof

and the second author [ES13, 1.3.1] conjecture that M(X) is (noncanonically) isomorphic to

ρ∗ΩX̃ , and therefore that HPk(X) ∼= HdimX−k(X̃;C).

1Supported by NSF grant DMS-0950383.
2Supported by NSF grant DMS-1406553.
3A precise definition of a conical symplectic resolution is given at the beginning of Section 3.
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In this paper, we prove this conjecture for hypertoric varieties. More generally, we show

that if the vector space isomorphism holds when k = 0 not just for X, but also for all normal

slices to symplectic leaves of X, then the D-module isomorphism M(X) ∼= ρ∗ΩX̃ holds, as well

(Theorem 4.1). These vector space isomorphisms have already been established for hypertoric

varieties by the first author [Pro14, 3.2], therefore Theorem 4.1 applies. Also, since these

vector space isomorphisms are well-known to hold for slices to codimension two leaves, the

isomorphism M(X) ∼= ρ∗ΩX̃ always holds in codimension two, which gives another proof of

a result of Namikawa [Nam11, 4.2] on the sections of the local systems on codimension-two

leaves (see Corollary 4.7 below).4

Part of the structure of a conical symplectic resolution is an action of C× on X with

respect to which the Poisson bracket is homogeneous. The right D-module M(X) is weakly

C×-equivariant, and this induces a second grading on HP∗(X), which we call the weight

grading. We prove a general result (Theorem 5.1 and its corollaries) that computes M(X),

with its weight grading, in terms of the degree zero Poisson homology of the slices. Let PX(x, y)

be the Poincaré polynomial of HP∗(X), where x encodes homological degree and y encodes

weight. When X is a hypertoric variety, we show that PX(x, y) is equal to a specialization of

a polynomial studied by Denham [Den01] that encodes the dimensions of the eigenspaces of

the combinatorial Laplacian of a matroid (Theorem 6.1), which is closely related to the Tutte

polynomial of the associated hyperplane arrangement. When X is an S3-variety of type A,

we similarly compute PX(x, y) in terms of Kostka polynomials (Proposition 7.1), modulo a

conjecture that appears in [Pro14, 3.4]. Finally, we give a conjectural description of PX(x, y)

where X is the nilpotent cone in arbitrary type (Conjecture 8.4), and prove it in certain cases.

Acknowledgments: We would like to thank G. Denham, P. Etingof, C. Mautner, and

V. Ostrik for their help with this project. In particular, we thank Mautner for help with

Lemmas 3.4 and 3.5 and Etingof for useful discussions about Proposition 2.1 and Conjecture

8.4, and for helpful comments on an earlier version. We are grateful to G. Lusztig for suggesting

the formula of Conjecture 8.4, and for introducing us to the material in Remark 8.10. We

would also like to thank the anonymous referee for helpful suggestions.

2 The twistor family

We first recall the definition of the right D-module M(X) from [ES10a]. Let X be an

affine Poisson variety over C and i : X → V an embedding into a smooth affine variety

V = SpecO(V ), let IX ⊆ O(V ) be the ideal of X, and H(X) ⊆ Vect(X) the Lie algebra of

Hamiltonian vector fields, H(X) = {ξf | f ∈ O(X)}, with ξf (g) = {f, g}. Let H̃(X) ⊆ Vect(V )

be the subspace of vector fields which are parallel to X and restrict there to Hamiltonian vector

4Thanks to the anonymous referee for this observation.
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fields. Then we can define the right D-module on X, M(X) = i!
(
(H̃(X) + IX) · D(V ) \D(V )

)
,

where D(V ) is the ring of differential operators on V . By Kashiwara’s theorem, the resulting

D-module on M(X) does not depend on the choice of embedding. In fact it can also be defined

without using the embedding by (H(X) · DX) \ DX , where now DX is the standard right

D-module on X (in terms of i, DX = i!
(
IX · D(V ) \ D(V )

)
), which has a canonical action on

the left by Vect(X). Note that this definition extends in a canonical way to nonaffine Poisson

varieties, but we will not need this extension.

From now on, let X be a normal, irreducible, affine Poisson variety of finite type over C.

Let ρ : X̃ → X be a projective symplectic resolution, equipped with a particular choice of

ample line bundle on X̃. Kaledin extends ρ to a projective map ρ : X̃→ X of schemes over

the formal disk ∆ := SpecC[[t]], where over the closed point 0 ∈ ∆ we have

X̃0
∼= X̃ and X0

∼= X.

Furthermore, he shows that X is normal and flat over ∆, and that over the generic point, ρ

restricts to an isomorphism of smooth, affine, symplectic varieties [Kal08, 2.2 and 2.5]. This

family of maps over ∆ is called the twistor family.

Let M := M(X), and let T := ρ∗ΩX̃ be the derived pushforward to X of the right D-module

of volume forms on X̃. By [Kal06, 2.11], ρ is semismall, hence T is also a right D-module

(that is, the homology of T is concentrated in degree zero). These extend naturally to right

D-modules M := M(X) and T := ρ∗ΩX̃ on X (we note that the definition of these D-modules

make perfect sense in families over ∆). Let M0 be the right D-module on X obtained by killing

C[[t]]-torsion in M, and let M0 be the restriction of M0 to X. (In Theorem 4.1, we will show

that, under suitable hypotheses, M0 is isomorphic to M . However, we a priori know only that

M0 is a quotient of M .)

We would like to perform the same construction on T and T , but it is unnecessary: if we

forget the Poisson structure, the family X̃ over ∆ is locally trivial (that is, X̃ admits an open

cover by trivial families over ∆) [Nam08, 17], thus T has no C[[t]]-torsion. Since M(X) equals

the canonical D-module of volume forms when X is smooth and symplectic [ES10a, 2.6], the

right D-modules M0, M, and T are all isomorphic at the generic fiber.

Proposition 2.1 The semisimplification of M0 is (noncanonically) isomorphic to T .

Proof: Since M0 and T are isomorphic at the generic fiber, the semisimplifications of M0 and

T must be isomorphic (as they have the same class in the Grothendieck group of holonomic

D-modules on X). But T is semisimple by the decomposition theorem [BBD82, 6.2.5], so it

must be isomorphic to the semisimplification of M0. 2

3



3 Rigidity

We now add the hypothesis that ρ : X̃ → X is conical, which means the following:

• X and X̃ are both equipped with actions of the multiplicative group C×, and the map ρ

is equivariant.

• The action of C× induces a non-negative grading on C[X], with only the constant

functions in degree zero.

• The Poisson bracket on X (equivalently the symplectic form on X̃) is homogeneous for

the action of C×.

Our aim in this section is to prove that Ext1(T, T ) = 0, and therefore that M0 is in fact

isomorphic to T . We accomplish this in two steps, first showing that all summands supported

on a single leaf have no self-extensions, and then showing that there can be no extensions

between summands of T supported on different leaves.

For the first step, we prove more generally that all topological local systems on a leaf

are semisimple. We use the term local system to mean an O-coherent right D-module

(equivalently, a vector bundle with a flat connection) on a locally closed smooth subvariety.

We use the term topological local system to mean a representation of the fundamental

group of such a subvariety. By the Riemann-Hilbert correspondence, the latter are equivalent

to the former when we require that the connection has regular singularities. All of the local

systems we consider will have regular singularities.

Proposition 3.1 All finite-rank topological local systems on a leaf S ⊂ X are semisimple.

Remark 3.2 Proposition 3.1 does not require that X admit a symplectic resolution, but

only that it be conical and be a symplectic variety in the sense of Beauville [Bea00], which

means that the Poisson bracket on the regular locus of X is nondegenerate and the inverse

meromorphic symplectic form extends to a (possibly degenerate) 2-form on some (equivalently

every) resolution of X. Such varieties include, for example, quotients of symplectic varieties by

finite groups acting symplectically [Bea00, 2.4], which often do not admit symplectic resolutions

(see, e.g., [BS13]).

Proof of Proposition 3.1: Let Y be the normalization of the closure of S in X. Then Y

is a symplectic variety in the sense of Beauville [Kal06, 2.5], and the conical action on X

induces a conical action on Y . The regular locus Yreg is birational to S and isomorphic away

from a subvariety of codimension 2; in particular, the fundamental groups of S and Yreg are

isomorphic. Thus it is sufficient to prove that every finite-rank topological local system on

Yreg is trivial.
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Since Yreg is a quasiprojective variety, π1(Yreg) is finitely generated (this follows, for exam-

ple, from the finite triangulability of [ Loj64]). In the situation at hand, Namikawa has proved

that the profinite completion π̂1(Yreg) is finite [Nam]. By a theorem of Grothendieck [Gro70],

the map π1(Yreg)→ π̂1(Yreg) induces an equivalence of categories of finite-dimensional repre-

sentations, hence the category of finite-dimensional representations of π1(Yreg) (equivalently,

the category of finite-rank topological local systems on Yreg) is semisimple. 2

Corollary 3.3 For any topological local system K on S, the D-module IC(S;K) is semisimple.

Moreover, any D-module whose composition factors are of this form is semisimple. In particular,

Ext1(IC(S;K), IC(S;L)) = 0 for topological local systems K,L on S.

Proof: The first statement is a well-known consequence of the fact that K is semisim-

ple. Indeed, if K = K1 ⊕ · · · ⊕ Km is a decomposition into simples, then IC(S;K) =

IC(S;K1) ⊕ · · · ⊕ IC(S;Km), and each IC(S;Ki) is simple. For the second statement,

let j : S → S̄ be the open inclusion. If M is any D-module whose composition factors

are all of the form IC(S;K), then M ∼= IC(S; j∗M). Indeed, we have canonical maps

H0(j!j
∗M)→M → H0(j∗j

∗M), which become isomorphisms after restriction to S. Since all

composition factors of M have support S̄, the first map must be surjective and the second

injective. Therefore M is isomorphic to the image of H0(j!j
∗M) → H0(j∗j

∗M), i.e., to

IC(S; j∗M). If we further assume that all composition factors IC(S;K) are topological local

systems, then j∗M is semisimple, and hence so is IC(S; j∗M) ∼= M , implying the second

statement. The final statement follows because any extension of IC(S;K) and IC(S;L) must

be trivial. 2

Let S ⊂ X be a symplectic leaf, and let i : S̄ r S → X be the inclusion of the boundary of S.

Let KS := HcodimSρ∗Ωρ−1(S), which is a local system on S with regular singularities (i.e., a

topological local system). Since the resolution ρ is semismall [Kal06, 2.11], the decomposition

theorem [BBD82, 6.2.5] yields

T ∼=
⊕
S

IC(S;KS), (3.1)

and that the KS are semisimple; for us, this last fact also follows from Proposition 3.1. By

Corollary 3.3, Ext1(IC(S;KS), IC(S;KS)) is zero.

It remains to show that there are no extensions between summands on different leaves. We

do this using the following two lemmas.5

Lemma 3.4 The complex i∗i
∗ IC(S;KS) of right D-modules is concentrated in degrees ≤ −2.

5The authors thank Carl Mautner for explaining the following two lemmas and their proofs.
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Proof: It is a standard property of intermediate extensions of local systems that i∗ IC(S;KS)

is concentrated in negative degrees. Since i is a closed embedding, i∗ is exact, and thus

i∗i
∗ IC(S;KS) is concentrated in negative degrees. Therefore we only have to show that

H−1 i∗i
∗ IC(S;KS) = 0.

For a contradiction, let S′ be a maximal symplectic leaf in the closure of S on which

H−1 i∗i
∗ IC(S;KS) is supported, and let jS′ : S′ → X the inclusion. Then

H−1 j∗S′i∗i
∗ IC(S;KS) = H−1 j∗S′ IC(S;KS)

is a local system on S′. By our assumption, the stalk of IC(S;KS) at every point of S′ has

nonzero cohomology in degree −dimS′ − 1.

Choose a point x ∈ S′. The stalk IC(S;KS)x is a summand of Tx. But H∗(Tx) is the

pushforward to a point of the restriction of ΩX̃ to the fiber ρ−1(x). This is the same for the

formal neighborhood (or an analytic neighborhood) of ρ−1(x), thus we obtain the shifted

topological cohomology H∗+dimX(ρ−1(x);C) of the fiber. By [Kal09, 1.9], H∗(ρ−1(x);C) is

concentrated in even degrees, and hence the same is true for H∗(Tx). Since dimS′ is even, this

gives us a contradiction. 2

Lemma 3.5 Let S 6= S′ be symplectic leaves of X. Then Ext1(IC(S;KS), IC(S′,KS′)) = 0.

Proof: Assume first that S is not contained in the closure of S′. Thus, S is disjoint from the

closure of S′. Let jS : S → X and iS : S̄ \ S → X be the inclusions. Then j∗S IC(S′,KS′) = 0.

We have the standard exact triangle

→ (jS)!KS → IC(S;KS)→ (iS)∗i
∗
S IC(S;KS)→ .

Apply Hom (−, IC(S′,KS′)), and we obtain in the long exact sequence,

→ Ext1((iS)∗i
∗
S IC(S;KS), IC(S′,KS′))→ Ext1(IC(S;KS), IC(S′,KS′))

→ Ext1((jS)!KS , IC(S′,KS′))→ .

We want to show that the middle term is zero. By adjunction, since j∗S IC(S′,KS′) = 0, the

last term is zero. It suffices therefore to show that the first term is zero. However, by Lemma

3.4, (iS)∗i
∗
S IC(S;KS) has cohomology concentrated in degrees ≤ −2, whereas IC(S′,KS′) is a

D-module (in degree zero). Therefore, the first term is also zero.6

6More generally, for any triangulated category with a t-structure, if M is a complex whose cohomology is
concentrated in negative degrees and N is a complex whose cohomology is concentrated in nonnegative degrees,
then Hom(M,N) = 0.
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Next assume S is contained in the closure of S′. Since S 6= S′, S′ is not contained in the

closure of S. In this case, applying Verdier duality,

Ext1(IC(S;KS), IC(S′,KS′)) = Ext1(D IC(S′,KS′),D IC(S;KS)).

But, since ΩX̃ is self-dual, so is T , and hence D IC(S;KS) = IC(S;DKS) is a summand of

T . Therefore, IC(S;DKS) ∼= IC(S;KS), and the same holds for S′. Thus we again have

Ext1(IC(S;KS), IC(S′,KS′)) = 0. 2

Putting together Lemma 3.5 and Proposition 3.1, (3.1) immediately implies:

Proposition 3.6 The D-module T is rigid; that is, Ext1(T, T ) = 0.

The following corollary is an immediate consequence of Propositions 2.1 and 3.6.

Corollary 3.7 M0 is isomorphic to T .

4 The main theorem

For each leaf S, choose a point s ∈ S, and let XS be a formal slice to S at s. Then the

base change of ρ along the inclusion of XS into X induces a projective symplectic resolution

X̃S → XS . The following theorem asserts that, if the weak version [ES13, 1.3(a)] of the

conjecture of Etingof and the first author holds for each XS , then the strong version [ES13,

1.3(c)] holds for X.

Theorem 4.1 Suppose that, for every leaf S of X, dim HP0(XS) = rkKS. Then M ∼= T .

Our proof of Theorem 4.1 easily extends to the following more general statement.

Theorem 4.2 If U ⊆ X is an open subset and dim HP0(XS) = rkKS for all leaves S

intersecting U , then M |U ∼= T |U .

Remark 4.3 In fact, we can relax the assumption that X admit a symplectic resolution

and assume only that X is a conical symplectic variety in the sense of Beauville [Bea00] and

that U ⊆ X admits a projective symplectic resolution, replacing T |U by the corresponding

D-module on U .

If S is a symplectic leaf of codimension two, the equality dim HP0(XS) = rkKS is well-

known (since XS is a Kleinian singularity), so we automatically conclude the following result.

Corollary 4.4 If U is the complement of all symplectic leaves of codimension greater than

two, then M |U ∼= T |U .
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Note that the isomorphism of Theorem 4.1 is not canonical; we can correct this as follows.

Let i : S → X be the inclusion, and let LS := H0(i∗M) be the local system studied in [ES10a,

§4.3].7 The fiber LS,s of LS at the point s is canonically isomorphic to the vector space

HP0(XS) [ES10a, 4.10].

Corollary 4.5 Under the hypothesis of Theorem 4.1, there is a canonical isomorphism M ∼=⊕
S IC(S;LS), and a noncanonical isomorphism LS ∼= KS for each symplectic leaf S. More

generally, for each leaf S, we can conclude LS ∼= KS if we know that dim HP0(XS′) = rkKS′

for all S′ whose closure contains S.

Remark 4.6 As in Remark 4.3, for the final assertion we need not require X admits a

symplectic resolution, rather that X be a conical symplectic variety and that an open subset

containing S admit a projective symplectic resolution.

Proof of Corollary 4.5: As explained by Etingof and the second author [ES10a, §4.3],

the right D-modules IC(S;LS) are subquotients of M . Now, by Theorem 4.1 and Corol-

lary 3.3, M is semisimple, so in fact IC(S;LS) is a direct summand of M , and since

Hom(IC(S;LS), IC(S′;KS′)) = 0 for S 6= S′, we must have that IC(S;LS) is a direct summand

of IC(S;KS) ⊆ M . Restricting to S, we see that LS is a direct summand of KS . Since

rkLS = dim HP0(XS) = rkKS , KS and LS are in fact isomorphic.

Consider the canonical adjunction morphism M → H0(i∗LS), which induces a surjection

from M to IC(S;LS). By Proposition 3.6, the map M →
⊕

S IC(S;LS) is an isomorphism.

The final assertion is obtained by the same argument along with Theorem 4.2. 2

Corollary 4.5 allows us to give a new proof of a result of Namikawa [Nam11, 4.2].8

Corollary 4.7 Let S be a codimension two symplectic leaf of a conical symplectic variety

(such as a variety admitting a conical symplectic resolution). Then the dimension of Γ(S,LS)

is equal to the number of irreducible components of the inverse image ρ−1(S).

Proof: Let U ⊆ X be the complement of the symplectic leaves of codimension greater than

two. Then U automatically admits a symplectic resolution (which is the minimal resolution),

so by Remark 4.6, Corollary 4.5 applies (if we assume X admits a conical symplectic resolution,

this argument is unnecessary). Thus Γ(S,LS) ∼= Γ(S,KS). Next, KS is the local system with

fibers H2(ρ−1(s)) for s ∈ S (the top cohomology of the fibers ρ−1(s)), and so one sees that

7It is not a priori clear that LS has regular singularities, though this will follow from Corollary 4.5.
8Namikawa works in greater generality, not requiring that X be conical. He also uses an a priori different

local system than LS , notated by H, and defined only on codimension two leaves. In particular, H is defined as
a topological local system, unlike LS . However, it follows from the discussion in [Nam11, §4] that LS and H
have the same monodromy, hence the underlying topological local system of LS is isomorphic to H. Moreover,
under our assumptions, we show that LS has regular singularities, so it can be viewed as a topological local
system isomorphic to H.
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the global sections identify with the functions on the irreducible components of ρ−1(S). Thus

the dimension is the number of such components. 2

Proof of Theorem 4.1: Let N be the kernel of the surjection M → M0
∼= T , so that we

have a short exact sequence

0→ N →M → T → 0

of right D-modules on X. Assume for the sake of contradiction that the support of N is

nontrivial. It is necessarily a union of symplectic leaves; let S be a maximal such leaf. Restrict

to the formal neighborhood of the leaf S. Then N,M , and T are local systems along S (that

is, upon restriction to a contractible analytic open neighborhood U of every point of S, they

become external tensor products of local systems on U and D-modules on the normal slice).

We can therefore make use of the exact restriction functor for such D-modules to the slice

XS at s, given by P 7→ PS := i∗XSP [−dimS] (for iXS the inclusion of XS into the formal

neighborhood of S), and we obtain the exact sequence

0→ NS →MS → TS → 0.

By functoriality and the definitions of M and T , MS is isomorphic to M(XS), and TS is

isomorphic to the derived pushforward of the canonical sheaf of X̃S .

Let π be the pushforward of XS to a point. We have

H−1 π∗(TS) ∼= HdimXS−1
(
ρ−1(s);C

)
= 0

by [Kal06, 2.12]. Also, NS is a delta-function D-module at s, so π∗NS is concentrated in degree

zero. Thus, we obtain a short exact sequence

0→ H0 π∗(NS)→ H0 π∗(MS)→ H0 π∗(TS)→ 0.

We have

H0 π∗(TS) ∼= HdimXS (ρ−1(s);C).

By assumption, we also have

dim H0 π∗(MS) = dim HP0(XS) = rkKS = dim HdimXS
(
ρ−1(s);C

)
.

Thus H0 π∗(MS) and H0 π∗(TS) have the same dimension, and therefore H0 π∗(NS) = 0. This

means that NS = 0, which is a contradiction. 2
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Let π be the map from X to a point. By definition, we have HPk(X) := H−k π∗(M). By the

de Rham theorem, we have an isomorphism H−k π∗(T ) ∼= HdimX−k(X̃;C). Thus, as explained

by Etingof and the second author [ES13, 1.3], Theorem 4.1 implies that the Poisson-de Rham

homology of X is isomorphic to the de Rham cohomology of X̃.

Corollary 4.8 Under the hypothesis of Theorem 4.1, we have a (noncanonical) isomorphism

HPk(X) ∼= HdimX−k(X̃;C) for all k.

Corollary 4.9 Any two conical projective symplectic resolutions of X have the same Betti

numbers.

Remark 4.10 In fact, it is possible to show that any two conical projective symplectic

resolutions of X have canonically isomorphic cohomology rings; this follows from [Nam08, 25].

Example 4.11 Let A be a coloop-free, unimodular, rational, central hyperplane arrangement,

and let X(A) be the associated hypertoric variety [PW07, §1]. Any simplification Ã of A
determines a conical projective symplectic resolution X̃(Ã) of X(A). The symplectic leaves of

X(A) are indexed by coloop-free flats of A, and the slice to the leaf indexed by F is isomorphic

to a formal neighborhood of the cone point of X(AF ), where AF is the localization of A at F

[PW07, §2]. Hence the hypothesis of Theorem 4.1 is that, for every coloop-free flat F ,

dim HP0(X(AF )) = dim H2 rkF
(
X̃(ÃF );C

)
.

This is proved in [Pro14, 3.2], hence Theorem 4.1 holds for hypertoric varieties.

5 Weights

We assume throughout this section that the hypothesis of Theorem 4.1 is satisfied.

By homogeneity of the Poisson bracket, the vector space

HP0(X) ∼= C[X]
/
{C[X],C[X]}

inherits a grading from the action of C×. Moreover, the D-module M has a canonical weak

C×-equivariant structure, thus HPk(X) = H−k π∗(M) is naturally graded for all k (where π is

the map from X to a point).

Let n be the positive integer such that the Poisson bracket on X has weight −n (this

weight must be negative since the bracket vanishes along ρ−1(0) in the resolution X̃). Suppose

that, for every symplectic leaf S, the normal slice XS admits a conical C×-action equipping

the Poisson bracket on XS with the same weight −n. More generally, we can suppose XS to be

equipped with a vector field ξ such that LξπXS = −nπXS , where πXS is the Poisson bivector
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(that is, we only require an infinitesimal action of C×). In fact, this is no additional assumption:

such a ξ always exists by virtue of the Darboux-Weinstein decomposition X̂s
∼= Ŝs×̂XS [Kal06,

2.3]. If p : X̂s → XS is the projection, we may take ξ = p∗(EuX̂s |{0}×XS ), where EuX̂s is the

vector field for the C×-action. However, we impose no requirement that the vector field ξ be

obtained in this way.

Let π be the Poisson bivector on X, and let θ be any vector field such that Lθπ = cπ for

some c ∈ C. Then the bracket of θ with any Hamiltonian vector field is again Hamiltonian,

thus left multiplication by θ is an endomorphism of the right D-module M(X). It is the

zero endomorphism if and only if θ is Hamiltonian (in which case c = 0). Since IC(S;LS) is

(canonically) a quotient of M(X), this also induces an endomorphism of IC(S;LS), and hence

of LS and its fiber LS,s. In the case of the Euler vector field EuX , which is induced by an

honest action of C×, this endomorphism must be semisimple. By the same construction, the

vector field ξ on XS induces an endomorphism of M(XS), and therefore of the vector space

HP0(XS). In this case, since we do not assume that ξ integrates to an honest action of C×,

we do not know a priori that the endomorphism is semisimple. The following result says that

it is, and that the induced gradings on LS,s ∼= HP0(XS) agree up to a shift.

Theorem 5.1 The endomorphism of HP0(XS) induced by ξ is semisimple, and the canonical

vector space isomorphism LS,s → HP0(XS)[n dimS/2] respects the weight gradings.

In many cases, including hypertoric and Nakajima quiver varieties, the local systems

LS ∼= KS are trivial. This allows us to conclude the following two corollaries.

Corollary 5.2 If the local systems {KS} are trivial, then there is an isomorphism of weakly

C×-equivariant D-modules

M(X) ∼=
∑
S

IC(S;LS) ∼=
∑
S

IC(S; ΩS)⊗HP0(XS)[n dimS/2],

where the grading on HP0(XS) is induced by the (possibly infinitesimal) action of C× on XS.

Define PX(x, y) to be the Poincaré polynomial of HP∗(X), where x records homological

degree and y records weights for the C×-action. Note that weights can be both positive and

negative, so PX(x, y) is a polynomial in x, y, and y−1. For each leaf S, let QS̄(x) be the

intersection cohomology Poincaré polynomial of S̄, that is, QS̄(x) :=
∑

dim IHk(S̄;C)xk.

Corollary 5.3 If the local systems {KS} are trivial, then

PX(x, y) =
∑
S

xdimS y−n dimS/2 QS̄(x−1) PXS (0, y).
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Proof: Let π be the map from X to a point. Then the corollary follows from Corollary 5.2

and the fact that H−k(π∗ IC(S; ΩS)) ∼= IHdimS−k(S̄;C). 2

Remark 5.4 The first author has conjectured that, if n = 2 and X ! is symplectic dual

to X in the sense of [BLPW, 10.15], then PX(0, y) = QX!(y) [Pro14, 3.4]. Thus, if each

KS is trivial, each slice XS has a symplectic dual, and the aforementioned conjecture holds,

then Corollary 5.3 allows us to express PX(x, y) entirely in terms of intersection cohomology

Poincaré polynomials.9

In the next two sections, we will apply this result to compute PX(x, y) when X is a

unimodular hypertoric cone or a type A S3-variety. In both of these cases, the leaf closures,

the slices, and their symplectic duals are varieties of the same type [BLPW, 10.4, 10.8, 10.16,

10.18, and 10.19]; the local systems are trivial; and we know how to compute their intersection

cohomology Poincaré polynomials. In the former case we obtain h-polynomials of the broken

circuit complexes of matroids, and in the latter case we obtain Kostka polynomials. The

conjecture about symplectic duals is proved for hypertoric varieties but not for S3-varieties,

thus the computations in Section 7 are conditional on this unproved statement.

To prove Theorem 5.1, we need the following result. Let Us be a contractible open

neighborhood of s in the analytic topology.

Proposition 5.5 Every analytic Poisson vector field on Us is Hamiltonian, and so is any

algebraic Poisson vector field on the formal completion X̂s.

Proof: By normality of X, it is enough to prove each statement on the regular locus. On

a smooth symplectic manifold, Poisson vector fields correspond to closed one-forms and

Hamiltonian vector fields correspond to exact one-forms. Thus, we need to show that the

global sections of the de Rham complex has vanishing first cohomology on the regular locus.

For the analytic statement, it suffices to show that the topological cohomology of U reg
s vanishes,

since in this case every closed one-form is the differential of a smooth function, and if the

one-form is analytic, the same must be true of the function.

We begin by observing that U reg
s
∼= ρ−1(U reg

s ). By [Kal06, 2.12], H1(ρ−1(Us);C) = 0,

so we need to show that passing to the preimage of the regular locus does not introduce

any cohomology in degree 1. Since Us \ U reg
s has complex codimension at least one, hence

real codimension at least two, every loop in Us can be homotoped to U reg
s , so the map

π1(U reg
s )→ π1(Us) is surjective. Consider the stratification

ρ−1(Us \ U reg
s ) =

⊔
S′

ρ−1(Us ∩ S′),

9As explained in [Pro14], the full version of the conjecture [Pro14, 3.4] applied to a slice XS with a symplectic
dual would imply that dim HP0(XS) = rkKS , thus the hypothesis of Theorem 4.1 would be satisfied.
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where S′ ranges over all symplectic leaves of X whose closure contains S other than the

open leaf. Suppose S′ is such a leaf. By the semismallness property [Kal06, 2.11], the

codimension of ρ−1(Us ∩ S′) is at least half the codimension of S′. If the codimension of S′ is

at least four, then ρ−1(Us ∩S′) therefore has codimension at least two, hence real codimension

four. The fundamental group of a smooth manifold is unchanged by removing a locus of

real codimension greater than two (since homotopies of loops can be pushed off this locus).

Therefore the fundamental group of Us is unchanged by removing the union of ρ−1(Us ∩ S′)
over all leaves S′ of codimension at least four. Next, if S′ has codimension two, then the

singularity at s′ ∈ S′ is of Kleinian type, and hence in a small enough neighborhood Us′ of s′,

the fundamental group π1(ρ−1(Us′)) is a finite subgroup of SL2(C). Therefore, the kernel of

the map π1(ρ−1(Us \ S′))→ π1(ρ−1(Us)) is generated by this finite subgroup of SL2(C). We

conclude that the surjection π1(ρ−1(U reg
s ))→ π1(ρ−1(Us)) is generated by elements of finite

order, and hence this surjection descends to an isomorphism on homology

0 = H1(ρ−1(U reg
s ),C)

∼=−→ H1(ρ−1(Us),C).

Dualizing, we obtain the desired result.

For the statement about the formal completion, we follow [ES, §4.4]. Let V := U \U reg
s be

the singular locus. By Hartshorne’s theorem [Har72, Har75], the de Rham hypercohomology

of the formal completion ˆ̃Xρ−1(s) equals the topological cohomology of the fiber ρ−1(s), which

also equals the topological cohomology of ρ−1(Us). Then, as in [ES, (4.40)], the Mayer-

Vietoris sequences for the triples (X̃, X̃ \ ρ−1(V ), ˆ̃Xρ−1(s)) and (X̃, X̃ \ ρ−1(V ), ρ−1(Us)) are

isomorphic. Since the intersections of the second two open subsets of X̃ are ρ−1(X̂reg
s ) ∼= X̂reg

s

and ρ−1(U reg
s ) ∼= U reg

s , respectively, we may take hypercohomology of the de Rham complex

to conclude that H1
DR(X̂reg

s ) ∼= H1
DR(U reg

s ). The latter, by Grothendieck’s theorem, is equal

to the topological cohomology, which we showed is zero.

To conclude, we need to compare the hypercohomology of the de Rham complex with the

cohomology of global sections of the de Rham complex. The spectral sequence computing

hypercohomology degenerates in degree one on the second page, yielding an isomorphism

H1
DR(X̂reg

s ) ∼= H1(Γ(Ω•
X̂reg
s

))⊕ (R1Γ)(OX̂reg
s

). Hence both summands are zero. 2

Proof of Theorem 5.1: Passing to a formal neighborhood of s, we obtain the Darboux-

Weinstein decomposition X̂s
∼= Ŝs×̂XS . Then we can view ξ as a vector field on X̂s parallel to

the XS factor everywhere, and set ξ′ := EuŜs+ ξ. Letting π be the Poisson bivector on X and

hence on X̂s, we have Lξ′π = −nπ = LEuπ. This implies that ξ′−Eu is Poisson, and therefore

Hamiltonian by Proposition 5.5. Thus the endomorphisms of M(X̂s) ∼= M(Ŝs) �M(XS)

induced by Eu and ξ′ are equal.

The endomorphism induced by Eu is responsible for the grading on LS,s, and the endo-
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morphism of M(XS) induced by ξ is responsible for the grading on HP0(XS). To prove the

theorem, we need to show that the endomorphism of M(Ŝs) induced by EuŜs is multiplication

by −n dimS/2. To see this last fact, note that M(Ŝs) ∼= ΩŜs
via the map that sends the

canonical generator to ωdimS/2, where ω is the symplectic form on Ŝs. Since the Lie derivative

map from vector fields to differential operators is an antihomomorphism, we have

EuŜs · ω
dimS/2 = −LEuŜs

ωdimS/2 = −(n dimS/2)ωdimS/2,

by our assumption that the Poisson bracket on X, and hence on S, has weight −n. 2

6 The hypertoric case

In this section we compute the polynomial PX(A)(x, y) for a coloop-free, unimodular, rational,

central hyperplane arrangement A with ` hyperplanes. We use the action of C× described in

[Pro14, §2], for which the symplectic form on the resolution has weight n = 2.

Denham [Den01, §3] defines a polynomial ΦA(x, y, b1, . . . , b`) whose coefficients are the

dimensions of certain eigenspaces (determined by the b exponents) of “combinatorial Laplacian”

operators on certain vector spaces (determined by the x and y exponents). We will identify all

of the b variables to obtain a 3-variable polynomial ΦA(x, y, b). This is an enrichment of the

Tutte polynomial in the sense that ΦA(x− 1, y − 1, 1) = TA(x, y) [Den01, 23(2)].

Theorem 6.1 PX(A)(x, y) = y−2 rkA ΦA(x2 − 1, y−2 − 1, y2).

Proof: As stated in Example 4.11, the symplectic leaves of X(A) are indexed by coloop-

free flats of A, and the leaf indexed by F has a formal slice that is isomorphic to a formal

neighborhood of the cone point of X(AF ). Furthermore, the closure of the leaf is isomorphic

to X(AF ), where AF is the restriction of A to F [PW07, §2].

Let TA(x, y) be the Tutte polynomial of A. By [PW07, 4.3 and 5.5], we have

QX(A)(x) = hbr
A (x2) = x2 rkA TA(x−2, 0).

Applying this to the restricted arrangement AF , we obtain

QX(AF )(x) = x2 crkFTAF (x−2, 0),

where crkF = rkA− rkF . By [Pro14, 3.1], we have

PX(A)(0, y) = QX(A∨)(y) = y2 rkA∨ TA∨(y−2, 0) = y2|A|−2 rkA TA(0, y−2),
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where A∨ is the Gale dual of A. Applying this to the localized arrangement AF , we obtain

PX(AF )(0, y) = y2|F |−2 rkF TAF (0, y−2).

Applying Corollary 5.3, we have

PX(A)(x, y) =
∑
F

x2 crkF y−2 crkFx−2 crkF TAF (x2, 0) y2|F |−2 rkF TAF (0, y−2)

= y−2 rkA
∑
F

y2|F | TAF (x2, 0) TAF (0, y−2).

Let χA(x) = (−1)rkA TA(1− x, 0) be the characteristic polynomial of A. By the first equation

in [Den01, §3.1], we have

ΦA(x, y, b) =
∑
F

(−1)rkA−|F | χAF (−x) χ(AF )∨(−y) b|F |

=
∑
F

(−1)rkA−|F | (−1)rkAF (−1)rk(AF )∨TAF (x+ 1, 0) T(AF )∨(y + 1, 0) b|F |

=
∑
F

TAF (x+ 1, 0) T(AF )∨(y + 1, 0) b|F |

=
∑
F

TAF (x+ 1, 0) TAF (0, y + 1) b|F |.

Thus

y−2 rkA ΦA(x2 − 1, y−2 − 1, y2) = y−2 rkA
∑
F

TAF (x2, 0) TAF (0, y−2) y2|F | = PX(A)(x, y),

and the theorem is proved. 2

Remark 6.2 Specializing at y = 1, we obtain the equation

PX(A)(x, 1) = ΦA(x2 − 1, 0, 1) = TA(x2, 1) = x2 rkAhA(x−2),

matching the known formula for the Betti numbers of a conical symplectic resolution of X(A)

given in [HS02, 1.2] and [PW07, 3.5 and 5.5].
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7 The case of S3-varieties in type A

Let λ and µ be partitions of the same positive integer r. Let Oλ be the nilpotent coadjoint

orbit in sl∗r whose Jordan blocks have sizes given by the parts of λ;10 then λ ≥ µ in the

dominance order if and only if Oµ is contained in the closure of Oλ. In this case, let Xλµ

be the normal slice to Oµ inside of the closure of Oλ. This space is sometimes called an

S3-variety, after Slodowy, Spaltenstein, and Springer [Web11, BLPW]. The variety Xλµ is

a Nakajima quiver variety for a finite type A quiver, and conversely any such variety is an

S3-variety [Maf05]; in particular, Xλµ admits a projective symplectic resolution (the fibers are

known as Spaltenstein varieties), and the local systems associated to the symplectic leaves

are trivial. We equip these varieties with the standard action of C× with the property that

the Poisson bracket is homogeneous of weight -2. The symplectic leaves of Xλµ are indexed by

the poset [µ, λ]. For any ν ∈ [µ, λ], the closure of the leaf Sν is isomorphic to Xνµ, and the

normal slice to Sν is isomorphic to Xλν .

Let nλ =
∑

i(i − 1)λi, so that dimXλµ = 2(nµ − nλ). A theorem of Lusztig [Lus81,

Theorem 2] says that

QXλµ(x) = x2(nµ−nλ)Kλµ(x−2), (7.1)

where Kλµ(t) is the Kostka polynomial associated to λ and µ. We will assume that the

conjecture [Pro14, 3.4] holds; we have X !
λµ = Xµtλt , so the explicit statement of the conjecture

in this case is that

PXλµ(0, y) = QXµtλt (y) = y2(nλt−nµt )Kµtλt(y
−2). (7.2)

Proposition 7.1 If Equation (7.2) holds for all type A S3-varieties, then

PXλµ(x, y) = y2(nλt−nµ)
∑

ν∈[µ,λ]

y2(nν−nνt )Kνµ(x2)Kνtλt(y
−2).

Proof: For all ν ∈ [µ, λ], Equation (7.2) tells us that

dim HP0(Xλν) = PXλν (0, 1) = Kνtλt(1),

which is in turn equal to the rank of the local system KSν [BM83, 3.5(b)], thus the hypothesis

10More precisely, the elements of the image of this orbit under the Killing form isomorphism sl∗r → slr have
this Jordan decomposition.
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of Theorem 4.1 is satisfied. Then by Corollary 5.3, we have

PXλµ(x, y) =
∑

ν∈[µ,λ]

x2(nµ−nν)y−2(nµ−nν)x2(nν−nµ)Kνµ(x2)y2(nλt−nνt )Kνtλt(y
−2)

= y2(nλt−nµ)
∑

ν∈[µ,λ]

y2(nν−nνt )Kνµ(x2)Kνtλt(y
−2).

This completes the proof. 2

8 The case of the nilpotent cone in general type

Let g be any semisimple Lie algebra, and let X ⊆ g∗ be the nilpotent cone. As before, one can

consider coadjoint orbits in X and slices to one inside the closure of another; however, these

do not admit symplectic resolutions in general, and even when they do, the assumptions of

Theorem 4.1 are not known to be satisfied. Here we consider only the case of X itself, where

Theorem 4.1 is known to hold for the Springer resolution T ∗B → X [ES10b], where B is the

flag variety.11 If g is not of type A, then the hypothesis of Corollary 5.3 fails, so we have no

direct way of using that result to compute PX(x, y). However, we will conjecture a formula for

PX(x, y) based on the type A case and a suggestion of G. Lusztig and P. Etingof.

8.1 Generalized Kostka polynomials

Let W be the Weyl group of g. Springer theory tells us that T is equipped with an action

of W , and that for every irreducible representation χ of W , we may associate a nilpotent

coadjoint orbit Og,χ and an irreducible local system Mg,χ on Og,χ such that

M ∼= T ∼=
⊕
g,χ

IC(Og,χ;Mg,χ)⊗ χ (8.1)

as a W -equivariant D-module. By pushing forward to a point and taking cohomology, we

obtain an action of W on H∗(T ∗B;C) = H∗(B;C) which is isomorphic (after forgetting the

grading) to the regular representation.

For each χ of W , let

Kg,χ(t) :=
∑
i≥0

ti dim HomW

(
χ,H2 dimB−2i(B;C)

)
.

We call Kg,χ(t) a generalized Kostka polynomial, motivated by the following well-known

proposition.

11In fact, in [ES10b] the conclusion M ∼= T of Theorem 4.1 is proved first, and then the hypothesis follows.
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Proposition 8.1 For any g and any representation χ of W , we have

Kg,χ(t2) =
∑
i≥0

ti dim IHdimOg,χ−i(Ōg,χ;Mg,χ).

If g = slr, χ is an irreducible representation of Sr, and ν is the partition of r with the property

that Og,χ = Oν , then Kg,χ(t) = Kν(1r)(t).

Proof: The first statement follows immediately from pushing Equation (8.1) forward to a

point and taking cohomology. To obtain the second statement from the first, we use Equation

(7.1) (for µ = (1r) and λ = ν), along with the fact that, in type A, all the local systems Mg,χ

are trivial. 2

Remark 8.2 By Poincaré duality, for σ the sign representation, HomW (χ,H2i(B;C)) ∼=
HomW (χ⊗ σ,H2 dimB−2i(B;C)), thus we also have

Kg,χ(t) =
∑
i≥0

ti dim HomW

(
χ⊗ σ,H2i(B;C)

)
.

Remark 8.3 Note that H∗(B;C) is canonically isomorphic as a W -equivariant graded algebra

to the coinvariant algebra C[h]/(C[h]W+ ), where C[h]+ ⊂ C[h] is the augmentation ideal and

h∗ ⊂ C[h] sits in degree 2.

8.2 The conjecture

Since the summand IC(Og,χ;Mg,χ) of M is simple, the weak C×-equivariant structure on M

induces a grading on the multiplicity space χ. Let h(χ; t) be the Hilbert series for this grading.

Conjecture 8.4 For each irreducible representation χ of W , we have

h(χ; y) = Kg,χ(y−2),

and therefore

PX(x, y) =
∑

χ∈Irrep(W )

Kg,χ(x2)Kg,χ(y−2).

Remark 8.5 Conjecture 8.4 holds at the specialization y = 1 by the fact that H∗(B;C) is

isomorphic to the regular representation of W .

Remark 8.6 If Mg,χ is trivial, then IH0(Ōg,χ;Mg,χ) ∼= C, thus Proposition 8.1 tells us that

the top degree of Kg,χ(x2) is equal to the dimension of Og,χ. Similarly, the bottom degree of
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Kg,χ(y−2) is equal to −dimOg,χ, which is what the bottom degree of h(χ) should be according

to Theorem 5.1.

Remark 8.7 By Theorem 5.1, Conjecture 8.4 implies that, for each nilpotent orbit S,

PXS (0, y) = ydimS
∑

rkMg,χ ·Kg,χ(y−2), (8.2)

where the sum is taken over all χ such that Og,χ = S. If there is only one such χ (and hence

Mg,χ is trivial), then Conjecture 8.4 for χ is equivalent to Equation (8.2) for S.

Let σ denote the sign representation of W and triv the trivial representation.

Example 8.8 In the case where χ = triv, which corresponds to the trivial local system on

the open orbit, Equation (8.2) says that h(triv; y) = y− dimX . On the other hand, if χ = σ

is the sign representation, which corresponds to the cone point, it says h(σ; y) = 1. These

conclusions both agree with Theorem 5.1, since in both cases the Poisson homology of the

slice is one-dimensional and concentrated in degree zero.

Proposition 8.9 If g = slr, then the first formula of Conjecture 8.4 agrees with Equation

(7.2) and the second with Proposition 7.1.

Proof: If Og,χ = Oν , then Equation (7.2) with λ = (r) and µ = ν tells us that

PX(r)ν
(0, y) = y2(n(1r)−nνt )Kνt(1r)(y

−2) = ydimOνtKνt(1r)(y
−2) = ydimOg,χ⊗σKg,χ⊗σ(y−2).

On the other hand, the first formula of Conjecture 8.4 is equivalent to Equation (8.2), which

says that

PX(r)ν
(0, y) = ydimOg,χKg,χ(y−2).

Thus we need to prove the following identity:

Kg,χ(t2) = tdimOg,χ−dimOg,χ⊗σKg,χ⊗σ(t2). (8.3)

Using Poincaré duality (Remark 8.2) and the fact that dimOg,χ = r(r − 1)− nν , this identity

reduces to the following palindromic property of Kg,χ(t2):

Kg,χ(t2) = tnνt−nν+r(r−1)Kg,χ(t−2).

This follows from [BL78, Propositions A and B, (1)], and (as explained there) is originally due

to Steinberg [Ste51]. 2
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Remark 8.10 As pointed out by G. Lusztig, it is possible to generalize (8.3) to arbitrary

irreducible types. For any irreducible representation χ of W , let χs denote the unique

special representation in the same two-sided cell as χ. In [BL78], there is an involution i

defined on the set of irreducible representations of W , which is the identity except for six

irreducible representations in types E7 and E8, called “exceptional” ones, which are exactly

the representations for which Kg,χ(t) is not palindromic.

Lusztig pointed out that, combining [BL78, Propositions A and B] with the determinant

of [Lus84, 5.12.2], and comparing powers of u in the latter, one can conclude the following

identity (when W is irreducible):

Kg,χ(t2) = tdimOg,χs−dimOg,χs⊗σKg,i(χ)⊗σ(t2). (8.4)

In type A, i is trivial and χ = χs for all χ, thus we recover the identity in Equation (8.3).

Remark 8.11 Motivated by in part by symplectic duality [BLPW], we originally guessed the

following formula for h(χ):

y− dimOg,χ+dimO
gL,χ⊗σKg,χ⊗σ(y−2).

(Here gL is the Langlands dual of g, whose Weyl group is canonically isomorphic to that of g.)

This agrees with Conjecture 8.4 in all of the examples considered in this paper: types A`, B2,

C2, and G2, and also for the subregular orbit in general (and, in the B2, C2, and G2 cases, the

Langlands duality is required for it to hold). However, as Lusztig pointed out, the formulas do

not coincide in some cases, such as when χ is the (non-exceptional) 50-dimensional irreducible

representation of E8 for which Mg,χ is trivial; moreover, Remark 8.6 implies that our original

guess was incorrect in this case.

8.3 A proof of the conjecture along the subregular orbit

In this subsection we verify Conjecture 8.4 when Og,χ is equal to the subregular orbit R.

First suppose g is simply laced; in this case, the only such representation is the reflection

representation χ = h.

Proposition 8.12 If g is simply laced, then Conjecture 8.4 holds for χ = h.

Proof: Since there is only one irreducible representation associated to the subregular orbit,

Conjecture 8.4 for h is equivalent to Equation (8.2) for R, which says

PXR(0, y) = ydimRKg,h(y
−2).
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By Remarks 8.2 and 8.3, since codimR = 2, we have

ydimRKg,h(y
−2) = y−2h(HomW (h,C[h]/(C[h]W+ ); y).

Consider the map from Φ : C[h]W → HomW (h,C[h]/(C[h]W+ )) taking f to Φf , which is defined

by the formula Φf (x) := ∂x(f) for all x ∈ h. The restriction of Φ to the linear span of the

fundamental invariants (the ring generators of C[h]W ) is an isomorphism. Since Φ lowers

degree by 2, this implies that

ydimRKg,h(y
−2) = y−2

∑
i

y2di−2 =
∑
i

y2(di−2),

where {2di} are the degrees of the fundamental invariants.12 This indeed coincides with

PXR(0, y), as desired [Gre75, AL98]. 2

In the non-simply laced case, let D̃ be the simply laced Dynkin diagram folding to the type

of g, let W̃ be the corresponding Weyl group, and let h̃ be its reflection representation. As

representations of W , we have h̃ ∼= h⊕ τ for some irreducible representation τ 6∼= h of W , and

τ and h are the only two irreducible representations lying over R. The slice XR is a Kleinian

singularity of type D̃, and Theorem 5.1 tells us that HP0(XR) is isomorphic as a graded vector

space to a fiber of the local system LR[−dimR], where

LR = (Mg,h ⊗ h)⊕ (Mg,τ ⊗ τ) .

Proposition 8.13 If g is not simply laced, then Conjecture 8.4 holds for χ = h and for χ = τ .

Proof: For χ = h or τ , let HP0(XR)χ ⊂ HP0(XR) be the summand corresponding to a fiber

of the local system Mg,h[−dimR] ⊂ LR[−dimR]. As in the proof of Proposition 8.12, we need

to show that the Hilbert series of HP0(XR)χ is equal to

y−2h(HomW (χ,C[h]/(C[h]W+ )); y). (8.5)

We first consider the case where χ = h. The local system Mg,h is trivial, so HP0(XR)h is

the part of HP0(XR) that is fixed by the action of π1(R). As in the proof of Proposition 8.12,

Equation (8.5) simplifies to ∑
i

y2(di−2),

where {2di} are the degrees of the fundamental invariants for the action of W on C[h]. (Note

that these are a subset of the fundamental invariants for the action of W̃ on C[h̃].) We will

12The factor of 2 is there because h∗ sits in degree 2.
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check on a case-by-case basis that this is equal to the Hilbert series of HP0(XR)h. We will

skip the case of G2, since that will be treated separately in Proposition 8.15. In all other

cases, π1(R) ∼= Z/2, and the action on HP0(XR) can be deduced from the explicit bases for

the latter in [EGP+12, §5.1]. It is straightforward to check that our formula is correct.

Next, consider the case χ = τ . In view of the above, we need to show that

y−2h(HomW (τ,C[h]/(C[h]W+ )); y) =
∑
i

y2(ei−2),

where {2ei} are the degrees of the fundamental invariants for the action of W̃ on C[h̃] that

restrict to zero on h ⊆ h̃. To prove this, it is sufficient to show that there exists a graded

vector space isomorphism

HomW̃ (h̃,C[h̃]/(C[h̃]W̃+ )) ∼= HomW (h̃,C[h]/(C[h]W+ )).

The restriction map from C[h̃] to C[h] induces a natural map from the left-hand side to the

right-hand side. Moreover, both sides have the same dimension (equal to dim h̃), since the

coinvariant algebras for W and W̃ are the regular representations of W and W̃ , respectively.

Therefore, it suffices to prove that the natural map is injective.

Equivalently, we need to show that, for every fundamental invariant f ∈ C[h̃]W̃ which

restricts to zero on h̃, the corresponding homomorphism Φf ∈ HomW̃ (h̃,C[h̃]/(C[h̃]W̃+ )) de-

fined above restricts to a nonzero element of HomW (τ,C[h]/(C[h]W+ )). This is easy to ver-

ify explicitly in the case where g is of type Bn (so D̃ = A2n−1), using the embedding

W (Bn) ↪→W (A2n−1) ∼= S2n−1, since then C[h̃]W̃ is the ring of symmetric polynomials (mod-

ulo linear symmetric polynomials). In the case Cn, τ is one-dimensional and τ ⊗ τ is trivial,

thus h⊥ ⊆ (h̃)∗ is one-dimensional. Then, the fundamental invariant f of C[h̃]W̃ which restricts

to zero in C[h]W lies in (h⊥) but not in (h⊥)2. It follows that the corresponding element Φf

indeed restricts to a nonzero element of HomW (τ,C[h]/(C[h]W+ )). In the case F4, one can

explicitly verify the statement. 2

8.4 Proof of the conjecture for semisimple Lie algebras of rank at most 2

Conjecture 8.4 is easy to verify for g of type A1 and A2 by checking Equation (7.2) in low

dimensions.13 In the two remaining examples, we prove the conjecture for g of type B2 and

G2, and therefore for all all g of semisimple rank at most 2.

Proposition 8.14 Conjecture 8.4 for g of type B2 (g = so5).

13In fact, in these cases, the result also follows from Example 8.8 and Proposition 8.12.
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Proof: There are four nilpotent orbits: the zero orbit, the minimal orbit (of dimension four),

the subregular orbit (of dimension six), and the open orbit (of dimension eight). Call these

O0, O2, O4, O6, and O8, where Ok has dimension k. These orbits are all simply-connected

except for O6, which has fundamental group Z/2Z. Let Ωk denote the rank-one trivial local

system on Ok, and let L6 be the nontrivial rank-one local system (with regular singularities)

on O6. The Weyl group is isomorphic to the dihedral group of order eight, which has five

irreducible representations: triv, σ, τ, τ ⊗ σ, and h. The Springer correspondence for g takes

the following form [Car93, §13.3].

χ (Og,χ,Mg,χ)

triv (O8,Ω8)

σ (O0,Ω0)

τ (O6, L6)

τ ⊗ σ (O4,Ω4)

h (O6,Ω6)

The W -equivariant Poincaré polynomial of the coinvariant algebra is equal to

1 + h · t2 + (τ + τ ⊗ σ) · t4 + h · t6 + σ · t8,

therefore

Kg,triv(t2) = t8, Kg,σ(t2) = 1, Kg,τ (t2) = t4 = Kg,τ⊗σ(t2), Kg,h(t
2) = t2 + t6.

Thus, Conjecture 8.4 says that

h(triv; y) = y−8, h(σ; y) = 1, h(τ ; y) = y−4 = h(τ ⊗ σ; y), h(h; y) = y−2 + y−6.

All of the slices except the slice to O6 have one-dimensional HP0, therefore the conjectural

formulas for triv, σ, and τ ⊗ σ follow from Theorem 5.1. Our table tells us that IC(O6; Ω6)

appears in M with multiplicity 2 = dim h and IC(O6; Ω6) appears in M with multiplicity

1 = dimσ. The slice to O6 is a Kleinian singularity of type A2, where a basis for HP0 is given

by the images of 1, xy, (xy)2 ∈ C[x, y]Z/3. Since the generator in top degree can be taken to

be the square of the generator in middle degree, we see that the nontrivial local system L6

must be in middle degree and the trivial one Ω6 must be in top and bottom degrees; this

allows us to conclude that the formulas for h(σ; y) and h(h; y) are correct. 2

Proposition 8.15 Conjecture 8.4 holds for g of type G2.
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Proof: There are five nilpotent orbits, call them O0, O6, O8, O10, and O12 (again dimOk = k),

and these are all simply-connected except for the subregular orbit O10, which has fundamental

group S3 [Car93, p. 427]. Let Ωk denote the trivial local system on Ok, and on O10, let L10

denote the local system corresponding to the reflection representation of the fundamental

group S3 (this is irreducible of rank two, with regular singularities).

Let τ be the irreducible one-dimensional representation of W other than σ (it is denoted

by φ′1,3 in [Car93, p. 412]). Then the Springer correspondence for g takes the following form

[Car93, p. 427].

χ (Og,χ,Mg,χ)

1 (O12,Ω12)

σ (O0,Ω0)

τ (O10, L10)

τ ⊗ σ (O6,Ω6)

h (O10,Ω10)

h⊗ τ (O8,Ω8)

The W -equivariant Poincaré polynomial of the coinvariant algebra is equal to

1 + h · t2 + (h⊗ τ) · t4 + (τ + τ ⊗ σ) · t6 + (h⊗ τ) · t8 + h · t10 + σ · t12

therefore

Kg,1(t2) = t12, Kg,σ(t2) = 1, Kg,τ = t6 = Kg,τ⊗σ,

Kg,h(t
2) = t2 + t10, Kg,h⊗τ (t2) = t4 + t8.

Thus, Conjecture 8.4 says that

h(triv; y) = y−12, h(σ; y) = 1, h(τ ; y) = y−6 = h(τ ⊗ σ; y),

h(h; y) = y−2 + y−10, h(h⊗ τ ; y) = y−4 + y−8.

The slices to O0, O6, and O12 have one-dimensional HP0, therefore the conjectural formulas

for triv, σ, and τ ⊗ σ follow from Theorem 5.1. The slice to O10 is a Kleinian singularity of

type D4, thus HP0(XO10), has the Hilbert series 1 + 2t4 + t8. Since L10 has rank two, it must

occur in weight 4; this proves our conjecture for τ and h.

Finally, to prove our conjecture for h⊗ τ , we need to show that h(HP0(XO8); t) = 1 + t4.

First note that the dimension of HP0(XO8) must be two, as a consequence of [ES10b]. Since

XO8 is conical and singular, the function 1 ∈ C[XO8 ] has nonzero image in HP0(XO8), thus

we only need to show that there is a nonzero element of HP0(XO8) in degree four. To do
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this we can use the explicit realization of XO8 given in [GG02]: it is the intersection of the

nilpotent cone with the Slodowy slice Y := Φ(e+ ker(Ad f)), with Φ : g → g∗ given by the

Killing form, with e ∈ O8 and (e, h, f) a corresponding sl2-triple. Since there is only one

nilpotent orbit of dimension 8, it is easy to see that we can take e to be the generator eα

of the root space for the short simple root α, f = fα, and h = hα. Moreover, as explained

in [ES10b], it suffices to compute HP0(Y ) itself, since this is a free module over C[g]g, with

HP0(XO8) ∼= HP0(Y )/(C[g]g+), the latter being the augmentation ideal. The latter can be

computed explicitly in the first few degrees: under the Kazhdan grading, C[Y ] is a polynomial

algebra on generators in degrees 2, 2, 2, 4, 5, and 5. The first three generators are the sl2 triple

mentioned above, and they act trivially on the generator in degree 4. Thus in degree four,

HP0(Y ) has dimension two. However, the generators of C[g]g are in degrees four and twelve

(these are the fundamental invariants, and the Kazhdan grading restricts on C[g]g to the the

usual grading placing g∗ in degree two, and the latter is well-known to assign the genera-

tors degrees four and twelve). Thus, in degree four, HP0(XO8) has dimension one, as desired. 2
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