
Fracture Toughness of Porous Material of LSCF in Bulk and Film Forms

Zhangwei Chen,† Xin Wang, Finn Giuliani, and Alan Atkinson

Department of Materials, Imperial College London, London SW7 2BP, United Kingdom

Fracture toughness of La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF) in both

bulk and film forms after sintering at 900°C to 1200°C was mea-

sured using both single-edge V-notched beam (SEVNB) 3-point

bending and Berkovich indentation. FIB/SEM slice-and-view
observation after indentation revealed the presence of Palmqvist

radial crack systems after indentation of the bulk materials. Based

on crack length measurements, the fracture toughness of bulk

LSCF specimens was determined to be in the range 0.54–
0.99 MPa�m1/2 (depending on sintering temperature), in good

agreement with the SEVNB measurements (0.57–1.13 MPa�m1/2).

The fracture toughness was approximately linearly dependent on
porosity over the range studied. However, experiments on films

showed that the generation of observable indentation-induced

cracks was very difficult for films sintered at temperatures below

1200°C. This was interpreted as being the result of the substrate
having much higher modulus than these films. Cracks were only

detectable in the films sintered at 1200°C and gave an apparent

toughness of 0.17 MPa�m1/2 using the same analysis as for bulk

specimens. This value is much smaller than that for bulk material
with the same porosity. The residual thermal expansion mis-

match stress measured using XRD was found to be responsible

for such a low apparent toughness.

I. Introduction

OVER the last few decades, perovskite material La0.6Sr0.4-
Co0.2Fe0.8O3-d (LSCF) has been widely used for applica-

tions in cathodes for intermediate temperature solid oxide
fuel cells (IT-SOFCs)1 and oxygen separation membranes,2

thanks to its promising mixed ionic–electronic conductivity3

and high oxygen surface exchange rate.4 The long-term dura-
bility of such applications also relies on LSCF’s mechanical
properties in addition to its electrochemical properties as for
other components.5–7 Appropriate mechanical properties are
highly desired to avoid possible failures such as cracks,
delamination, and fractures induced by mechanical stresses
arising from both fabrication and operation.8 To date, most
studies of mechanical properties of LSCF have focused on
elastic modulus and strength determination for nominally
dense and porous bulk material using conventional macro-
scopic techniques such as resonance methods and ring-on-
ring bending.7,9–11 In our previous work, we studied elastic
modulus and hardness of both porous films and bulk mate-
rial using nanoindentation.12 Another key mechanical prop-
erty is fracture toughness, which characterizes resistance to
fracture, has, however, received little attention, particularly
for porous materials.

Mode I fracture toughness (KIc) is a material prope-
rty which describes the ability of a material containing a
preexisting crack to resist further crack propagation lead-
ing to fracture. It is therefore an important parameter for
assessing fracture failure since the occurrence of cracks
and defects is unavoidable during processing, fabrication,
or application.13 Literature reports concerning indentation
fracture toughness of films on substrates are restricted to
dense (or nanoporous) thin coatings.14–16 This study pre-
sents measurements of KIc at room temperature for porous
LSCF in both bulk and film forms prepared by sintering
at 900°C to 1200°C.

II. Experimental Procedure

(1) Specimen Preparation
LSCF specimens in both bulk and film forms were studied.
Both the LSCF films deposited on fully dense CGO
(Ce0.9Gd0.1O2-d) substrates and the bulk LSCF in disk and
bar shapes were fabricated followed by sintering in air at
900°C to 1200°C, as detailed in.12 The as-sintered films were
typically 10 lm thick and crack free with very smooth sur-
faces.17 The SEVNB specimens were prepared in accordance
with ASTM E399 Standard.18 A notch was machined using a
thin diamond saw, followed by cutting with a razor blade
sprayed with diamond suspension to obtain a sharp tip
radius for the notches (with a typical width of 20–30 lm).

Porosity p, elastic modulus E, and indentation hardness H
have been reliably measured in the previous work12 for both
bulk and films as summarized in Table I. As also reported
in19,20 for various materials, the indentation hardness in this
study was found to be similar to the hardness which was
measured based on the dimensions of the residual imprint
and thus was used for the toughness calculation. The Pois-
son’s ratio m was assumed to be 0.3 9 where required.

(2) Single-Edge V-Notched Beam (SEVNB) 3-Point
Bending Test
Fracture toughness of the bulk bars was first determined using
the SEVNB tests. The bars were loaded up to fracture in
3-point bend mode using a ZwickiLine Z2.5 testing machine
(Zwick, Ulm, Germany). Loading data were recorded with a
loading rate of 0.01 N/s. KIc was calculated using Eq. (1),21
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where F is the applied load at fracture, S is the predefined
span length between the two outer supporting points, B is
the beam thickness, W is the beam width, and b is the notch
depth. In this study, S = 20 mm, B = 3.5 mm, W = 5 mm,
L = 25 mm, and b = 2.5 mm.
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(3) Indentation Test
Fracture toughness measurements on both bulk specimens
and porous films were also conducted using a combined
micro/nanoindentation machine (NanoTest; Micromaterials,
Wrexham, UK) with a Berkovich diamond tip. Loads of up
to 500 mN (nanoindentation) or from 1 to 20 N (microin-
dentation) were applied as needed. Toughness calculation
was based on the resulting crack lengths measurement on the
specimen surface. Surface and subsurface of the imprints and
cracks were investigated using the FIB/SEM slice-and-view
technique (Helios NanoLab600; FEI, Hillsboro, OR).

Various formulae22–24 have been proposed to link the frac-
ture toughness to the indenter type, crack geometry, load,
and the properties of the materials under test. For indenta-
tion with a Berkovich tip, the mode I fracture toughness was
obtained using Eq. (2)24:

KIC ¼ 0:016
a

l
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where E and H are elastic modulus and hardness as summa-
rized in Table I. P is the maximum indentation load, c is the
radial crack length measured by SEM from indent center to
the radial crack tip (i.e., crack end), a is the diagonal length
of the indent from center to the indent corner, and l is the
crack distance measured from the indent corner to the crack
tip and is l = c�a.

Equation (2) is also thought to be applicable to the tough-
ness measurement of supported films under appropriate con-
ditions. However, the results might be influenced by the
substrate, the residual stress, and the permanent pore-filling
deformation when the films are porous. These can signifi-
cantly complicate the fracture toughness measurement of the
film. For example, the effect of the substrate has been
acknowledged in some previous work on fully dense coat-
ings,13,25 but there has been no in-depth investigation. More-
over, to the best of our knowledge, no information can be
found in the literature regarding such effects on the fracture
measurements of porous thin films deposited on hard sub-
strates.

(4) XRD Residual Stress Measurement
The typical average values of the thermal expansion coeffi-
cient (TEC) for LSCF and CGO were taken as 15.3 9 10�6

and 12.5 9 10�6 K�1, respectively, according to.1,26,27 The
existence of such a TEC mismatch will induce tensile equi-
biaxial residual stresses in the films after cooling. Therefore,
the determination of the residual stresses in the films is criti-
cal for interpreting the fracture experiments. XRD is a reli-
able technique to determine the residual stresses in thin

polycrystalline films.28 If the specimen is in a plane equi-biax-
ial stress state (r) which corresponds to linear elastic strain
(e) of the crystal lattice, then the angular position of a cho-
sen diffraction peak will be shifted (by D2h). To increase the
measurement precision, diffraction peaks generated at high
angles are usually chosen (i.e., 2h > 120°). If the specimen is
tilted by an angle w (where w is the angle of the normal of
the lattice diffraction plane to the specimen surface normal)
then it is not necessary to know the strain-free lattice param-
eter.

The measurements were carried out at room temperature
with the so-called sin2w method28 using a Philips PW1729
(Philips, Eindhoven, the Netherlands) XRD machine (oper-
ated at 40 kV and 40 mA) with a copper target producing
CuKa radiation. Scans were conducted at a number of w val-
ues from 0°, 12.92°, 18.44°, 22.79°, and 26.57°, corresponding
to sin2w values of 0.0–0.2 with an increment of 0.05. The in-
terplanar d-spacing was plotted as a function of sin2w and
Eq. (3)28 used to calculate the residual stresses in the as-sin-
tered LSCF thin films.
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where K ¼ E
1þm

� �
1
dw0

is a constant and E is the previously

measured modulus. m is the Poisson’s ratio which was
assumed to be 0.3. dw0 is the measured lattice spacing when

w0 = 0, and M ¼ @dw
@ sin2 w

� �
is the slope of the plot of d-spacing

versus sin2w.

III. Results

(1) SEVNB 3-Point Bending Test for Bulk Specimens
The fracture toughness measured based on the SEVNB tests
is shown in Table II. KIc increased with increasing sintering
temperature as expected.

(2) Indentation Results for Bulk Specimens
Although the indentation-induced cracks did not generate
identifiable pop-in events in the indentation load–displace-
ment curves, they were detected in SEM examinations.

(A) Microstructural Characterization: Accurate frac-
ture toughness measurements require well-defined indenta-
tion-induced cracks.29 Clear cracks are observed in Fig. 1(a)
in the 5.22% porosity specimen (sintered at 1200°C) after
indentation at 5 N load. While crack morphologies generated
by indentation at various loads for the specimens sintered at
1100°C and below are less clear to see due to their porous
surfaces and the crack width being comparable to the pore/

Table I. Summary of Bulk and Film Properties12

Sintering temperature (°C)

Bulk Films

p (vol%) E (GPa) H (GPa) p (vol%) E (GPa) H (GPa)

900 44.9 � 0.3 34.2 � 2.1 0.69 � 0.09 46.9 � 2.2 32.4 � 1.2 0.37 � 0.08
1000 36.3 � 1.1 44.5 � 3.2 0.86 � 0.20 39.7 � 2.6 48.3 � 4.6 0.61 � 0.11
1100 28.7 � 0.9 80.2 � 1.9 2.35 � 0.14 24.1 � 1.8 90.0 � 6.4 1.28 � 0.14
1200 5.2 � 0.1 174.3 � 2.8 5.76 � 0.12 15.2 � 1.2 121.5 � 7.2 1.97 � 0.20

Table II. Fracture Toughness Measured by SEVNB Tests for Bulk Specimens

Specimen sintering temperature (°C) 900 1000 1100 1200

Fracture toughness at RT (MPa�m1/2) 0.57 � 0.05 0.68 � 0.07 0.74 � 0.08 1.13 � 0.15
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particle sizes. Nevertheless, the cracks were all identified and
dimensions measured with the aid of high-resolution SEM as
arrowed in Figs. 1(b)–(d).

In this study, the FIB/SEM was used to investigate the
cross-sectional cracking geometry. Two locations across one
of the radial diagonals of the imprint in the specimen sin-
tered at 1200°C were chosen for sequential FIB sectioning
and SEM imaging, as presented in Fig. 2.

It can be seen from the above SEM images that crack-
ing is not observed immediately below the contact area of
the residual imprint. The sectioned face in Fig. 2(b) con-
firms the generation of the well-developed radial crack
(vertical orientation and horizontal propagation) from the
corner of the residual imprint. The cracks penetrated under

the specimen surface to a depth of several times the inden-
tation depth without extending into or beneath the
deformed zone for joining. Based on the above observa-
tions, the crack shape induced by Berkovich indentation
here is categorized as the Palmqvist radial crack type,30 as
the cracks generated from each extremity of the corner are
independent, rather than joined to form the median or
half-penny shaped cracks beneath the deformed zone.22

Figure 3 shows the SEM images of the crack morphologi-
es after indentation at 2 N for a specimen with intermediate
porosity sintered at 1000°C. FIB sequential sectioning was
also used to obtain cross-sectional views, revealing the possi-
ble Palmqvist radial crack type as observed for the other
samples in this study. However, it is not possible to identify

(a) (b)

(c) (d)

Fig. 1. SEM micrographs showing radial cracks around the imprints of bulk specimens after sintering and indentation at different load
(a) 1200°C and 5 N, (b) 1100°C and 500 mN, (c) 1000°C and 2 N, and (d) 900°C and 20 N. Note that the trenches in (c) were machined by FIB.

(a) (b)

Fig. 2. FIB-sectioned features under the indented area after indentation at 5 N of a bulk specimen sintered at 1200°C: (a) cross section through
the imprint center, (b) cross section through the imprint corner, showing a well-developed crack.
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whether the crack is transgranular or intergranular based on
the micrographs obtained. An important feature in this speci-
men is that less densification is found in the deformed
regions [Fig. 3(a)], as compared with the clear densification-
induced porosity gradient found in the indented films on
dense substrates.12 This will be returned to in the later dis-
cussion.

(B) Comparison of Fracture Toughness Derived from
Indentation and SEVNB: Based on the elastic modulus,
hardness and the crack dimensions measured the fracture
toughness of the four types of bulk specimens were calcu-
lated using Eq. (2) and are compared to the SEVNB results
as a function of porosity, as shown in Fig. 4.

It can be seen that the indentation results agree well with
the SEVNB results to within experimental error, although
the latter are consistently slightly higher than the former.
This could be caused by the notch tips not being sufficiently
sharp, and this tends to overestimate the toughness.31 The
low toughness values for specimens sintered at temperatures
below 1200°C are due to the high porosities of the specimens
(>28%). The resulting toughness data for the specimens sin-
tered at 1200°C (0.99 � 0.10 MPa�m1/2 by indentation and
1.13 � 0.15 MPa�m1/2 by SEVNB) are also close to the liter-
ature values reported by Chou et al.9 (1.10 � 0.05 MPa�m1/2)
and Huang et al.32 (0.91 � 0.05 MPa�m1/2), as summarized
in Table III. Note that as shown in the table, a relatively
large toughness was reported by Li et al.33

(1.75 � 0.25 MPa�m1/2).
Figure 4 also shows approximately linear relationships of

toughness versus porosity within the range of porosity inves-
tigated. There exist some nonlinear empirical expressions
about the porosity dependence of fracture toughness in the
literature, such as KIc = (1 � P)3/2KIC0,

34,35 KIc = (1�P)2

KIc0,
35 and KIc = e�bPKIc0,

36 with KIc0 being zero porosity
toughness of the specimen. Two typical KIc-P models are
plotted in Fig. 4 to compare with the current data. It is
found that KIc = (1�P)3/2KIc0 (the open-cell model, with
KIc0 = 1.24 MPa�m1/2) matches better with the current data
than the other one KIc = (1�P)2KIc0 (the closed-cell model,
with KIc0 = 1.49 MPa�m1/2). However, it should be empha-
sized that there is barely any theoretical basis for these
empirical relations, neither for the linear fits shown in this
study.

(3) Indentation Results and Residual Stresses for Films
(A) Microstructural Characterization: Fracture tough-

ness measurements of porous films need acceptable indents
that show radial cracks without interfacial delamination.
In this study, SEM examinations showed that no detecta-
ble cracking was found at any load in the films sintered at

900°C–1100°C, either in the nanoindentation load range
(0–500 mN) or beyond (500–3000 mN). Nevertheless, for the
films sintered at 1200°C, clear cracks at loads ranging from
200 to 500 mN were found.

Examples of SEM images of the residual imprints after
indentation at 500 mN for the films sintered at 1100°C and
1200°C are shown in Fig. 5.

The above images show that Berkovich indentation in the
highest density film produced well-defined cracks without
any chipping or secondary cracks. Sequential FIB sectioning
and SEM imaging were also made for the films using to see
the deformation below the residual imprint, as shown in
Fig. 6.

Figure 6 shows no evident subsurface delamination. In
Fig. 6(b), a radial crack propagated through the film thick-
ness and arrested on the interface with the substrate. There-
fore, the crack system in the indented film could be regarded
as approximating a radial/Palmqvist crack.

(B) Film Fracture Toughness Derived from Indenta-
tion: By applying Eq. (2), KIc of 0.17 � 0.02 MPa�m0.5 was
estimated for the film sintered at 1200°C (15.2% porosity).
This value is very small and is much lower than that of the
bulk specimens. According to Fig. 4 the toughness of a bulk
specimen having the same porosity is expected to be
~0.9 MPa�m0.5. Figure 7 shows that for 500 mN indentation
load, the film exhibited significantly longer cracks than a
bulk specimen with even higher porosity.

(a) (b)

Fig. 3. Micrographs of the crack after indentation at 2 N of a bulk specimen sintered at 1000°C: (a) cross section through the imprint center,
(b) cross section through the imprint corner, showing a well-developed crack.
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Table III. Comparison of Fracture Toughness Measurements for Nominally Dense LSCF Specimens

Reference Sintering conditions (in air) Relative density (%) Grain size (lm) Measurement technique Fracture toughness at RT (MPa�m1/2)

Chou et al.9 1250°C/4 h/300°C/h 95.4 � 0.2 2.9 Vickers indentation 1.10 � 0.05
Huang et al.32 1200°C/4 h/300°C/h 96.6 � 0.2 0.6 � 0.2 Vickers indentation 0.91 � 0.05
Li et al.33 1200°C/2 h/300°C/h 98.3 0.8 Vickers indentation 1.75 � 0.25
This work 1200°C/4 h/300°C/h 94.78 � 0.01 1.6 SEVNB 3-point bending 1.13 � 0.15

Berkovich indentation 0.99 � 0.10

(a) (b)

Fig. 5. SEM micrographs of imprint morphologies after indentation at 500 mN for films sintered at (a) 1100°C, (b) 1200°C.

(a) (b)

Fig. 6. Micrographs of the FIB-sectioned residual imprint: (a) cross section through the imprint center, showing densification underneath,
(b) cross section through the imprint corner.

(a) (b)

Fig. 7. For a given load (500 mN), much longer cracks are found in a 1200°C sintered film (b) with 15% porosity, compared to 1100°C
sintered bulk (a) with even much larger porosity (29%). Note that both images are at the same magnification and the indent sizes (triangles) are
very close.
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(C) Residual Stresses in the As-sintered Films: The
interplanar d-spacing dw is plotted as a function of sin2w in
Fig. 8 for the central diffraction peak at (420) plane based
on the XRD patterns (insets) generated for the films sintered
at different temperatures. The shifting of the diffraction
peaks from high diffraction angles (2h) to lower angles when
w increased suggests the presence of tensile strains and stres-
ses in all the films investigated. dw versus sin2w shows good
linearity. The resulting residual stresses for the films are
listed in Table IV, showing increasing stress with higher sin-
tering temperature as expected.

The stresses induced by TEC mismatch in the films after
cooling are estimated using Eq. (4) on an elastic regime
basis.

rthermal ¼ E

1� m2
ðaf � asÞðT0 � TÞ (4)

where af and as are TEC of LSCF and CGO, respectively. E
and m are the elastic modulus and Poisson’s ratio of LSCF
film, respectively. T0 is the stress free temperature, which is
regarded the same as the sintering temperature in this study.
T is the room temperature (25°C). The results are compared
in Table IV assuming no stress relief during cooling. Ideally,
for each film, the thermal mismatch stress should equal the
residual stress determined by XRD if there has been no stress
relief during cooling. However, the thermal mismatch stress
higher than the residual stress indicates that there has been
some stress relief. When a larger TEC of LSCF (such as
24.5 9 10�6 K�127) is used for calculation, the theoretical
stresses as well as the difference to the measured ones would

increase greatly, suggesting that there could be much signifi-
cant stress relief.

IV. Discussion

Tensile residual stress in a brittle film can lead to an exten-
sive network of cracks through the film; also known as chan-
nel cracking. The energy release rate for growth of a channel
crack increases as the crack extends in the plane of the film
and eventually reaches a constant value independent of crack
length (steady-state cracking) when the crack is longer than
approximately a few times the film thickness. According to
Beuth,37 the energy release rate G, due to steady-state film
cracking, can be calculated using the following Eq. (5),

G ¼ 1

2

r2ð1� m2Þh
E

pg (5)

where r is the measured residual stress, m is the Poisson’s
ratio (assumed to be 0.3), h is the film thickness, E is the
elastic modulus determined using nanoindentation, and g is a
nondimensional parameter close to unity and depends on the
relative elastic properties of the film and substrate. The cal-
culated energy release rate and the resulting stress intensity

for the onset of steady-state cracking (using KC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
ð1�t2ÞG

q
for plane strain) are presented in Table V. The stress inten-
sity is also compared with the fracture toughness for bulk
material which had the same porosity as estimated based on
the fits in Fig. 4.

Table IV. Residual Stresses of the Films Determined by XRD

Sintering Temperature (°C) 900 1000 1100 1200

Residual stress measured (MPa) 59 � 3 100 � 2 179 � 6 242 � 10
Theoretical thermal mismatch stress (MPa) 79.4 131.9 270.9 399.7

(a) (b)

(c) (d)

Fig. 8. Plots of dw as a function of sin2w for the different LSCF films based on the XRD patterns (insets) generated at (420) using sin2w
method.
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The stress intensities for channel cracking in Table V are
almost all lower than the fracture toughness of bulk material
of equivalent porosity. Therefore, assuming that the fracture
toughness of a film is similar to that of bulk material having
the same porosity, these results are consistent with the obser-
vation that the as-sintered films do not show networks of
channel cracks when cooled to room temperature.

The results of this study raise two general issues regarding
the application of indentation to measure the toughness of
porous bulk materials and porous films on substrates. The
first relates to the appropriateness of the analysis used for
indentation of dense materials when applied to porous bulk
materials. The present results show that the indentation
toughness results are in good agreement with the SEVNB
results for the porous bulk materials. This is at first unex-
pected because the permanent deformation mechanisms in
dense and porous materials are different and some contribu-
tion from disruption of the particle networks and crushing
densification might be expected under the indenter. Since this
does not conserve volume, it would result in a smaller plastic
zone for a given indenter depth and lower residual stresses
on unloading. This would tend to lead to an overestimate of
the toughness using Eq. (2) because a larger load would be
required to give the same crack length. However, the FIB/
SEM analysis under the indent shows no clear evidence of
consolidation under the indenter. Furthermore, if anything
the indentation toughness is consistently slightly smaller than
the SEVNB toughness. Therefore, it is concluded that the
permanent deformation in these porous materials does not
involve significant consolidation and behaves macroscopically
as if it were a dense effective material.

The second issue relates to the use of indentation to mea-
sure toughness for porous films on dense substrates. Despite
the similar crack patterns exhibited in both LSCF bulk and
films, it is worth noting that the toughness equation was
originally developed for bulk materials and therefore its
applicability for assessing film fracture toughness remains
questionable25 even though it has been used to assess dense
thin film fracture toughness by a number of researchers.15,38

In the present work, we have found that indentation did not
produce cracks in films sintered at 1100°C and below. This
cannot be attributed to a low toughness. Furthermore, much
longer cracks in films sintered at 1200°C compared with bulk
specimen of similar porosity. It is therefore more likely that
the standard analysis of the indentation method is not valid
for these supported films. It might be expected that in gen-
eral the toughness of a film on a substrate is inherently dif-
ferent from that of a bulk specimen of equal porosity.

There are issues in literature regarding the reliability of
indentation for toughness measurement of brittle materials.39

However, our study shows that the toughness measured
using indentation agrees well with that measured using SEV-
NB for bulk LSCF specimens (Fig. 4), suggesting the validity
of the method for bulk specimens throughout the porosity
range studied. Therefore, the different behavior of the films
must be due to the substrate. According to Lawn et al.40 the
tensile stresses provoking cracking are a combination of elas-
tic stresses at peak load (responsible for the initial stages of
cracking) and residual stresses during unloading (for the later
stages of crack extension). (For the present films there are
also the additional long-range residual stresses measured due

to TEC mismatch to be considered). During loading, the
much stiffer substrate means that for a given load the stresses
in the substrate will reduce the tensile (hoop) stresses in the
film that initiate cracking. This will be more significant in the
more porous films of lower modulus and it is suggested that
in the films sintered at 1100°C and below, the combined
indentation and TEC mismatch stresses in the film are insuf-
ficient to initiate the first stages of cracking. As a result, the
residual stresses have no cracks to enlarge in the unloading
phase and no cracks are produced. For the film sintered at
1200°C, the modulus is closer to that of the substrate and
the stresses might become high enough to initiate cracks dur-
ing loading. The stress intensity for channel cracking due to
TEC mismatch is lower than the fracture toughness of the
film and therefore these cracks do not propagate during
loading. During unloading the cracks are subjected to the
combined stress intensities of the indentation residual stress
field and the long-range TEC mismatch stress field and the
two stress intensities are additive. For the observed crack
length when the crack arrests in the film sintered at 1200°C,
the stress intensity due to the indentation is
0.17 � 0.02 MPa�m1/2 and the stress intensity due to the
TEC mismatch stress is 0.96 � 0.01 MPa�m1/2. The direct
addition of these two values to account for the combined
effects of indentation and TEC mismatch stresses for the
same opening mode of loading could not seem appropriate,
as the indentation also induce release of residual stress. Nev-
ertheless, this analysis suggests that the real fracture tough-
ness of the film is comparable to that of the bulk specimen
having equivalent porosity (0.90 MPa�m1/2) and that the
residual stress due to TEC mismatch is a major factor which
caused a large underestimation of the toughness of this film
as measured by applying the standard theory without consid-
ering the TEC mismatch stress.

V. Conclusions

This study presents the measurements of the room-tempera-
ture fracture toughness of LSCF in both bulk and film forms
using SEVNB 3-point bending (for bulk) and Berkovich
indentation (for bulk and films) after sintering at 900°C to
1200°C. The lengths of indentation-induced cracks were esti-
mated from SEM images of the indented surfaces. The FIB/
SEM slice-and-view technique was employed to characterize
the surface and subsurface crack morphologies, and con-
firmed the presence of radial Palmqvist crack systems
induced by Berkovich indentation. The indentation toughness
of bulk LSCF was determined to increase from 0.54 to
0.99 MPa�m1/2 as the sintering temperature increased from
900°C to 1200°C and the porosity decreased from 45% to
5%. The indentation toughness results were in good agree-
ment with the SEVNB results (0.57 to 1.13 MPa�m1/2). In
contrast, no indentation-induced cracks were detected for
porous films sintered at temperatures below 1200°C. XRD
stress analysis showed that the films had a residual tensile
stress due to the TEC mismatch between the film and the
substrate. This stress was lower than the critical stress
required to cause long-range channel cracking in the films.
The absence of indentation-induced cracking in these films
sintered at lower temperatures is suggested to be attributed
to the fact that the substrate has much higher modulus than

Table V. Strain Energy Release Rate and Stress Intensity for Channel Cracking Due to Residual Stress for the Films and
Comparison with the Fracture Toughness for Bulk Material of Equivalent Porosity

Sintering Temperature (°C) 900 1000 1100 1200

g 0.86 0.90 1.03 1.11
Strain energy release rate (J/m2) 1.3 � 0.1 2.7 � 0.2 5.3 � 0.1 7.7 � 0.2

Stress intensity at RT (MPa�m1/2) 0.21 � 0.01 0.36 � 0.01 0.69 � 0.01 0.96 � 0.01
Fracture toughness for bulk material of equivalent porosity (MPa�m1/2) 0.49 0.59 0.77 0.90
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the films. The only observable cracks were found in the films
sintered at 1200°C and resulted in an apparent toughness
value of 0.17 MPa�m1/2 using the same theoretical treatment
as used for the bulk specimens. This apparent toughness is
much smaller than that of a bulk specimen of the same
porosity. This apparently low value of toughness was found
to be caused by the thermal expansion mismatch residual
stress in the film as determined using XRD.
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