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Abstract

This paper studies bilateral multi-issue negotiation leetw self-interested autonomous agents.
Now, there are a number of different procedures that can ée fas this process; the three main
ones being thpackage deal proceduria which all the issues are bundled and discussed together,
the simultaneous proceduia which the issues are discussed simultaneously but inkgely of
each other, and theequential procedurm which the issues are discussed one after another. Since
each of them vyields a different outcome, a key problem is wdiewhich one to use in which
circumstances. Specifically, we consider this questioraforodel in which the agents have time
constraints (in the form of both deadlines and discounbfagtand information uncertainty (in that
the agents do not know the opponent’s utility function). #as model, we consider issues that are
both independent and those that are interdependent anthiteeequilibria for each case for each
procedure. In so doing, we show that the package deal is trtHacoptimal procedure for each
party. We then go on to show that, although the package deabmaomputationally more com-
plex than the other two procedures, it generates Paretmalptiutcomes (unlike the other two), it
has similar earliest and latest possible times of agreetoght simultaneous procedure (which is
better than the sequential procedure), and that it (likedther two procedures) generates a unique
outcome only under certain conditions (which we define).

1. Introduction

Negotiation is a key form of interaction in multiagent syste(Maes, Guttman, & Moukas, 1999;
Sandholm, 2000). It is a process in which disputing agentsddehow to divide the gains from
cooperation. Since this decision is made jointly by the &gyhremselves (Rosenschein & Zlotkin,
1994; Raiffa, 1982; Pruitt, 1981; Fisher & Ury, 1981; Yourk)75; Kraus, 2001), each agent
can only obtain what the other is prepared to allow them. Nbes,simplest form of negotiation
involves two agents and a single-issue. For example, censigcenario in which a buyer and a
seller negotiate on the price of a good. To begin, the two tagane likely to differ on the price at
which they believe the trade should take place, but througtoeess of joint decision-making they
either arrive at a price that is mutually acceptable or tlaéytd reach an agreement. Since agents
are likely to begin with different prices, one or both of themist move toward the other, through
a series of offers and counter offers, in order to obtain auallyt acceptable outcome. However,
before the agents can actually perform such negotiatidresy, must decide the rules for making
offers and counter offers. That is, they must set the netjmtigrotocol (Lax & Sebenius, 1986;
Osborne & Rubinstein, 1990; Rosenschein & Zlotkin, 1994au&; Wilkenfeld, & Zlotkin, 1995;
Lomuscio, Wooldridge, & Jennings, 2003).
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On the basis of this protocol, each agent chooses its syréiteg, what offers it should make
during the course of negotiation). For competitive scersawith self-interested agents, each partic-
ipant defines its strategy so as to maximise its individuisityutFurthermore, for such scenarios, an
agent’s optimal strategy depends very strongly on the inédion it has about its opponent (Fatima,
Wooldridge, & Jennings, 2002, 2004). For example, theegsathat a buyer would use if it knew
the seller’s reserve price differs from the one it would dsedid not. From all of this, it can be
seen that the outcome of single-issue negotiation depanftsiokey factors (Harsanyi, 1977): the
negotiation protocol, the players’ strategies, the plslypreferences over the possible outcomes,
and the information that the players have about each othmueMer, in most bilateral negotiations,
the parties involved need to settle more than one issue. ¥aon@e, agents may need to come to
agreements about objects/services that are charactéysattributes such as price, delivery time,
quality, reliability, and so on. For such multi-issue negbns, the outcome also depends on one
additional factor: theegotiation proceduréSchelling, 1956, 1960; Fershtman, 1990), which spec-
ifies how the issues will be settled. Broadly speaking, tlaeecthree ways of negotiating multiple
issues (Keeney & Raiffa, 1976; Raiffa, 1982):

e Package dealThis approach links all the issues and discusses themhiggas bundle.

e Simultaneous negotiatio his involves settling the issues simultaneously, bue¢pehdently,
of each other.

e Seguential negotiationThis involves negotiating the issues sequentially, oter @inother.

Now, these three different procedures have different ptigseand yield different outcomes to the
negotiators (Fershtman, 2000). So the key question to answevhich of them is best? Here,
since we are concerned with self-interested agents, oiomof the optimal procedure is the one
that maximises an agent’s individual return. However, soptimality is only part of the story;
given our motivations we are also concerned with the Pargtionality of the solutions for these
procedures (because Pareto optimality ensures that wtdiés not go wasted), the computational
complexity of the procedures (because for scenarios withrimation uncertainty, the agents need
to compute their equilibrium offers during the process afati@tion, as opposed to the complete in-
formation scenario where the strategies can be precompileslactual time of agreement (because
for scenarios with information uncertainty, this time deg® on an agent’s beliefs about its oppo-
nent and an agreement may not occur in the first time period) ttee uniqueness of the solutions
they generate (because this allows the agents to know tttemlashares).

One immediate observation in this vein is that the packagé glees rise to the possibility of
making tradeoffs across issues. Such tradeoffs are pessitin different agents value different
issues differently. For example, if there are two issuesaraagent values the first more than the
second, while the other agent values the second issue naré¢hé first, then it is possible to make
tradeoffs and thereby improve the utility of both agentatie¢ to the situation without tradeoffs. In
contrast, for the simultaneous and sequential approattieessues are settled independently and so
there is no scope for such tradeoffs between them. Moreaeeseek to answer the above question
about optimality for the types of situation that are comngdated by agents in real-world contexts.
Thus, we consider negotiations in which there are:

1. Time constraints.Agents have time constraints in the form of both deadlines$ discount
factors. Here we view deadlines as an essential elemerd siggotiation cannot go on in-
definitely, rather it must end within a reasonable time lithivne, 1979). Likewise, discount
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factors are essential since the desirability of the gooddhaded often declines with time.
This happens either because the good is perishable or duietiton. Moreover, the strategic
behaviour of agents with deadlines and discount factoferdifrom those without (see Ru-
binstein, 1982, for single issue bargaining without dewtliand Sandholm & Vulkan, 1999;
Ma & Manove, 1993; Fershtman & Seidmann, 1993; Kraus, 20@¥1hdrgaining with dead-
lines and discount factors). For instance, the presencelefdline induces each negotiator
to play a strategy that ensures the best possible agreeratrt ihe deadline is reached.
Likewise, the presence of a discount factor means that megelm agreement today is not the
same as reaching it tomorrow. Hence, the agents try to reaaljraement sooner rather than
later.

2. Uncertainty about the opponent’s negotiation parametditse information that agents have
about their negotiation opponent is likely to be uncertaee( Fudenberg & Tirole, 1983;
Fudenberg, Levine, & Tirole, 1985; Rubinstein, 1985, foigée issue bargaining with uncer-
tainty). Moreover, in some bargaining situations, one efgitayers may know something of
relevance that the other does not. For example, when bargaiwer the price of a second
hand car, the seller knows its quality, but the buyer does$wth situations are said to have
asymmetnyin information between the players (Muthoo, 1999). On thephand, irsym-
metricinformation situations both players have the same infaematAgain, agents have to
operate in both situations and so we analyse both cases.

3. Interdependence between issu&be issues under negotiation may be independent or inter-
dependent. In the former case, an agent’s utility from ameiskepends only on the agreement
that is reached on it, not on how the other issues are settlethe latter case, an agent’s
utility from an issue depends not only on the agreement thadched on it but also on how
the other issues are settled (Bar-Yam, 1997; Klein, Far&alyama, & Bar-Yam, 2003). Both
situations are common in multiagent systems and so agaimalgse both cases.

Thus we study five different settings: i) complete informatsetting C1), ii) a setting with
independent issues and symmetric uncertainty about thasigsilities (SU;), iii) a setting with
independent issues and asymmetric uncertainty about grgsgitilities (AU7), iv) a setting with
interdependent issues and symmetric uncertainty abowghets’ utilities §Up), and v) a setting
with interdependent issues and asymmetric uncertaintytahe agents’ utilitiesAUp).

Our methodology is to first derive equilibria for each of thegedures in each of the above
settings, From this, we can determine which of them is ogtithawe will see, this analysis shows
that, for all the settings, the package deal is the best. e gjo on to analyse the procedures in
terms of other performance metrics. Specifically, we shat; fh all the settings, only the package
deal generates a Pareto optimal outcome. We also show thatigh the package deal may be com-
putationally more complex than the other two procedurdsadt similar earliest and latest possible
times of agreement to the simultaneous procedure (whicktterthan the sequential procedure),
and it (like the other two procedures) generates a unigusme only in certain situations (which
we define). The key results of our study are summarised ireThbl

There has previously been some formal comparison of diffggeocedures to find the optimal
one (see Section 7 for details). However, all this work hakeast one of the following major
limitations. First, it has focused on comparing proceddoesegotiation without deadlines. Note
that existing work has obtained equilibrium for negotiatigith deadlines, but only for the single
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Information Package deal Simultaneous Sequential
setting
For thecth issue For thecth issue For thecth partition
CI te=1 t.=1 te=rc
Time of fori<e<m forl<e<m fori<e<pu
agreement For thecth issue For thecth issue For thecth partition
te SU;r, SUp te = te = te =17
AU, andAUp | tL = min(2r — 1,n) th = min(2r — 1,n) th =15+ min(2r — 1,n)
fori<ce<m fori<ce<m fori<e<pu
Time to CI O(mn) O(Mn) O(Mn)
compute | SU;andSUp | O(mar®T(n— L)) | O(|S.|7.r*T(n— %)) | O(S.|7.r°T(n — L))
equilibrium | AU; andAUp | O(mar3(n—2)1) | O(S.|7.r*(n— L)L) | O(S.|#.r3(n—2)%)
Pareto Cl,
optimal? SU;,SUp, Yes No No
AU], andAUD
Unique CI If -C1 If Cy If Cy
eqU|I|brlum'? SU;,SUp, If =C5V Cy If Cs If Cx
AU], andAUD

Table 1: A summary of key results; denotes the start time for theh partition, t& the earliest
possible time of agreement, arjdthe latest possible time of agreement).

issue case (Sandholm & Vulkan, 1999; Stahl, 1972), and dadfgpe of the sequential procedure
for multiple issues (Fatima et al., 2004). See Section 7 ébaits. Second, it has focussed only on
independent issues and asymmetric information settinggd,Tit has only focused on finding the
optimal procedure, but has not considered the additionatiso properties of different procedures.
Given this, our paper makes a threefold contribution. Finst obtain the equilibrium for each
procedure when there are deadlines. Second, we analysglmigsues that are both independent
and interdependent. Moreover, we analyse both symmetdcaapmmetric information settings.
Finally, on the basis of the equilibrium for different procees, we provide the first comprehensive
comparison of their solution properties (viz. time compgxPareto optimality, uniqueness, and
time of agreement). When taken together, the results gléadicate the choices and tradeoffs
involved in choosing a negotiation procedure in a wide raofgeircumstances. This knowledge
can be used by a system designer who is responsible for degitire mechanism that should be
used to moderate the negotiation encounters and by thesathemiselves if they can choose how to
arrange their interactions. Furthermore, this knowledge &lls the agents what their equilibrium
offers are during negotiation.

The remainder of the paper is organised as follows. We begigiing a brief overview of
single-issue negotiation in Section 2. In Section 3, weysthd three multi-issue procedures for the
setting with complete information and where the issuesratependent. This study is undertaken
to provide a foundation for Sections 4, 5, and 6, which treatibformation about the agents’
utilities as uncertain. More specifically, in Section 4, wlgse a scenario with symmetric uncer-
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tainty about the opponent’s utility. In Section 5, we analgsscenario with asymmetric uncertainty

about the opponent’s utility. Sections 4 and 5 both deal witlependent issues. In Section 6, we

extend the analysis to interdependent issues. Sectiortisdiss the related literature and Section 8
concludes. Appendix A provides a summary of notation ermgaajroughout the paper.

2. Single-1ssue Negotiation

Assume there are two agentsandb. Each agent has time constraints in the form of deadlines and
discount factors. Since we focus on competitive scenaritis self-interested agents, we model
negotiation using the ‘split the pie game’ analysed by Osband Rubinstein (1994), Binmore,
Osborne, and Rubinstein (1992). We begin by introducing ¢bmplete information game.

Let the two agents be negotiating over a single isgueThis issue is a ‘pie’ of size 1 and the
agents want to determine how to divide it between themselkere is a deadline (i.e., a number
of rounds by which negotiation must end). Letc NT denote this deadline. The agents use
Rubinstein’s alternating offers protocol (Osborne & Rub@n, 1994), which proceeds through a
series of time periods. One of the agents, gastarts negotiation in the first time period (ie= 1)
by making an offer £;), that lies in the interval0, 1], to b. Agentb can either accept or reject
the offer. If it accepts, negotiation ends in an agreemetit wgetting a share af; andb getting
y; = 1 — z;. Otherwise, negotiation proceeds to the next time periodyhich agen® makes a
counter-offer. This process of making offers continued one of the agents either accepts an offer
or quits negotiation (resulting in a conflict). Thus, there tree possible actions an agent can take
during any time period: accept the last offer, make a new otoffer, or quit the negotiation.

An essential feature of negotiations involving alterngtisffers is that the pie is assumed to
shrink with time (Rubinstein, 1982). Specifically, it stkinat each step of offer and counteroffer.
This shrinkage models a decrease in the value of the piee@epting the fact that the pie perishes
with time or there is inflation). This shrinkage is represenivith a discount factor denotéd<
§; < 1for both' agents. At = 1, the size of the pie i$, but in all subsequent time periods> 1,
the pie shrinks ta! .

We denote the set of real numbersIbynd the set of real numbers in the interiall] by R;.
Then let[z!, y!] denote the offer made at time peribdherex! andy! denote the share for agent
andb respectively. Then, for a given pie, the set of possiblersfie

{lzL,yl] 2l >0, 4 >0, and at +y! =07}

wherez! € Ry andy! € Ry. Each player's utility function is defined over the &t Let u¢ :
R; x N* — Randu! : R; x N* — R denote the utility functions of the two agents. At tiéf
a andb receive a share aft andy! respectively (where! + y! = 55‘1), then their utilities are:

.
apt oy ) T ift<n
ui (@i, 1) = { 0 otherwise

.
bt oy ) Y fE<n
ui (Y5 1) = { 0 otherwise

1. Having a different discount factor for different agenidyomakes the presentation more involved without leading to
any changes in the analysis of the strategic behaviour cgkats or the time complexity of finding the equilibrium
offers. Hence we have a single discount factor for both agent
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The conflict utility (i.e., the utility received in the evettiat no deal is struck) is zero for both
agents. Note thaf is not shown explicitly in an agent’s utility function but isiplicit. This is
because, during any time periodx! andy! denotea’s andb’s actual shares respectively (not the
ratios of their shares) wheng + y! = 6:*. In other wordsj is included in an agent’s share. This
will become clearer when we show the agents’ shares in Esjores.

For the above setting, the agents reason as follows in avatetermine what to offer. Let agent
a denote the first mover (i.e., at= 1, a proposes t@ how to split the pie). To begin, consider the
case where the deadline for both agents is 1. If b accepts, the division occurs as agreed; if not,
neither agent gets anything (sinae= 1 is the deadline). Herey is in a powerful position and is
able to propose to keep 100 percent of the pie and give nothibg. Since the deadline is = 1,

b accepts this offer and agreement takes place in the firstgeried.

Now, consider the case where the deadline is 2. In the first round, the size of the pie is 1
but it shrinks tod; in the second round. In order to decide what to offer in the foand, a looks
ahead ta = 2 and reasons backwardsAgenta reasons that if negotiation proceeds to the second
round,b will take 100 percent of the shrunken pie by offeriiigd;| and leave nothing fosi. Thus,
in the first time period, it offersb anything less than;, b will reject the offer. Hence, during the
first time period, agent offers[1 — ¢;, ¢;]. Agentb accepts this and an agreement occurs in the first
time period.

In general, if the deadline is, negotiation proceeds as follows. As before, agemhcides what
to offer in the first round by looking ahead as fartas: n and then reasoning backwards. This
decision making leads to make the following offer in the first time period:

(S5 (=1Y 8], 1 = S5 [(—1)4]]] @

Agentb accepts this offer and negotiation ends in the first timeogerNote that the equilibrium
outcome depends on who makes the first move. Since we havegembsaand either of them could
move first, we get two possible equilibrium outcomes.

On the basis of the above equilibrium for single-issue riagoh with complete information, we
first obtain the equilibrium for multiple issues and theredetine the optimal negotiation procedure
for the various settings that we have previously described.

3. Multi-Issue Negotiation with Complete I nfor mation

As mentioned in Section 1, the existing literature does notide an analysis of all the multi-issue
procedures for negotiation with deadlines. Hence, we blegianalysing the complete information
setting. From this base, we can then extend to the case wieeeis information uncertainty.

Herea andb negotiate overn > 1 independent issues (Section 6 deals with interdependent
issues). These issues angdistinct pies and the agents want to determine how to spilt eathem.
Let S = {1,2,...,m} denote the set of. pies. As before, each pie is of size 1. Let the discount
factor for issuec, wherel < ¢ < m, be0 < 6. < 1. For each issue, let denote each agent’s

2. It is possible thab may reject such a proposal. In practicewill have to propose an offer that is just enough to
induceb to accept. However, to keep the exposition simple, we asshate can get the whole pie by making the
100 percent proposal.

3. This backward reasoning method is adopted from (StafM2)190ur model is a generalisation of (Stahl, 1972);
during time period, an agent in our model can propose any offer between zeré‘aidbecause the size of the pie
is 6°~1), but a player in (Stahl, 1972) is given a fixed number of alitives to choose from.
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deadline. In the offer for time period(wherel < ¢ < n), agenta’s (b's) share for each of thex
issues is now represented asrarelement vector! € R7* (y* € RY"). Thus, if agent’s share for
issuec at timet is =, then agent’s share igy! = (6.~ — z%). The shares for andb are together
represented as the packdgé y'].

We define an agent’s cumulative utility using the additiverfoThere are two reasons for this.
First, it is the most common form for cumulative utilities tiraditional multi-issue utility theory
(Keeney & Raiffa, 1976). Second, additive cumulative ti¢ii are linear and so the problem of
making tradeoffs becomes computationally tractablEne functionsU/¢ : R7* x R7* x N* — R
andU? : R x RT* x Nt — R give the cumulative utilities for andb respectively at time. These
are defined as follows:

Y kSul(alt) ift<n
Ua t’ t,t — c=1"ec Ye\Ver = 2
G {0 otherwise @
Yo kbub(yt,t) ift<n
Ub t7 t,t — c=1"c%e\Ier = 3
(% vl 0) {0 otherwise @)

wherek® € R denotes am: element vector of constants for agerandk® € R’ that forb. Here
R, denotes the set of positive real numbers. These vectorsatedhow the agents value different
issues. For example, H; > kZ,,, then agent values issue more than issue + 1. Likewise
for agentb. In other words, then issues argerfect substitutef.e., all that matters to an agent is
its total utility for all them issues and not that for any subset of those Varian, 2003; GddeH,
Whinston, & Green, 1995). In all the settings we study, tkeeés will be perfect substitutes.

Each agent has complete information about all negotiateoarpeters (i.en, m, k2, k:i’ ando,.
for 1 < ¢ < m). For this complete information setting, we now determime equilibrium for the
package deal, the simultaneous procedure, and the sezjymotedure.

3.1 The Package Deal Procedure

In this procedure, the agents use the same protocol as fedssue negotiation (described in Sec-
tion 2). However, an offer for the package deal includes agsal for each issue under negotiation.
Thus, form issues, an offer includes divisions, one for each issue. Agents are allowed to either
accept a complete offer (i.e., all issues) or reject a complete offer. An agreement can therefo
take place either on ath issues or on none of them.

As per single-issue negotiation, an agent decides whateo loy looking ahead and reasoning
backwards. However, since an offer for the package dealidies a share for all the: issues,
agents can now make tradeoffs across the issues in ordeximisa their cumulative utilities. For
1 < ¢ < m, the equilibrium offer for issue at timet is denoted ag:’, b'] wherea! andb’, denote

crvc

the shares for agent andb respectively. We denote the equilibrium package at tinas [a!, b']

4. Using a form other than the additive one will make the fiorchonlinear. Consequently an agent’s tradeoff problem
becomes global optimization problemwvith a nonlinearobjective function. Due to their computational complexity
such nonlinear optimization problems can only be solvedgiapproximation methodgHorst & Tuy, 1996; Bar-
Yam, 1997; Klein et al., 2003). Moreover, these methods atgeneral in that they depend on how the cumulative
utilities are actually defined. In order to overcome thidicliity, we used the additive form for defining cumulative
utilities. Consequently, our tradeoff problem is a lineptimization problem, thexactsolution to which can be
found in polynomial time (as shown in Theorems 1 and 2). Altifoour results apply to the above defined additive
cumulative utilities, in Section 6.4 we discuss how they lddwld for nonlinear utilities.
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wherea! € R (b' € RT") is anm element vector that denotess (b's) share for each of the
issues. Also, fol < ¢t < n, 8! ¢ RT* is anm element vector that represents the sizes of the
m pies at timet. The symbol0 denotes amn element vector of zeroes. Note that o ¢ < n,
at + bt = 61 (i.e., the sum of the agents’ shares (at tithéor each pie is equal to the size of
the pie att). Finally, for time periodt (for 1 < ¢ < n) we leta(t) (respectivelys(t)) denote the
equilibrium strategy for agent (respectivelyb).

As mentioned in Section 1, the package deal allows agentake tmadeoffs. We |GtRADEOFFA
(TRADEOFFB) denote agent’s (b's) function for making tradeoffs. Given this, the follovgrheo-
rem characterises the equilibrium for the package deakpiwe.

Theorem 1 For the package deal procedure, the following strategiemifa Nash equilibrium. The
equilibrium strategy fot = n is:

A(n) = OFFER [6"71,0] IF a’s TURN
~ | ACCEPT IFb’'s TURN

(n) = OFFER [0,6"" 1] IF s TURN
~ | ACCEPT IFa’s TURN

For all preceding time periods < n, if [2?, y!] denotes the offer made at timethen the equilibrium
strategies are defined as follows:

Alt) = OFFER TRADEOFFA (K, k¥, 6, UB(t), m, t) IF a’'s TURN
I (UY([xt, 9], t) > UA(t)) ACCEPT else REJECT s TURN

B(t) — OFFER TRADEOFFB(k®, kb, 5, UA(t), m, t) IF b's TURN
I (Ub(J2t, yY),t) > uB(t)) ACCEPT else REJECT li#s TURN

whereua(t) = U%([a'*t1, 0]t + 1) and uB(t) = U°([a**!, 6!, + 1). An agreement takes
place att = 1.
Proof: We look ahead to the last time period (i.e.+= n) and then reason backwards. To begin,
if negotiation reaches the deadline) (then the agent whose turn it is takes everything and leaves
nothing for its opponent. Hence, we get the strategigs) andB(n) as given in the statement of
the theorem.

In all the preceding time period$ & n), the offering agent proposes a package that gives its
opponent a cumulative utility equal to what the opponentldiget from its own equilibrium offer
for the next time period. During time periad eithera or b could be the offering agent. Consider
the case where makes an offer at. The package that offers att givesb a cumulative utility of
Ub([at*1, b1, t + 1). However, since there is more than one issue, there is maneditie package
that givesh a cumulative utility ofU®([a**+*, b+1], ¢ + 1). From among these packagesffers the
one that maximises its own cumulative utility (because & igility maximiser). Thus, the problem
for a is to find the packag&!, b'] so as to:

maximise X" k%!
suchthat ™, (047! — a!)k? = uB(t)
0<al<1 forl<c<m (4)
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This tradeoff problem is similar to thieactional knapsack problertMartello & Toth, 1990; Cor-
men, Leiserson, Rivest, & Stein, 2003), the optimal sotufior which can be generated using a
greedyapproach (i.e., by filling the knapsack with items in the decreasindeorof value per unit
weight). The items in the knapsack problem are analogousetssues in our case. The only differ-
ence is that the fractional knapsack problem starts withnapty knapsack and aims to fill it with
items so as to maximise the cumulative value, while an agémdeoff problem can be viewed as
starting with the agent having 100 per cent of all the issunekthen aiming to give away portions
of issues to its opponent so that the latter gets a given atimelutility, while the resulting loss
in its own utility is minimised. Thus, in order to find how toliggthe m issues, agent considers
k2 /Kb for 1 < ¢ < m becausé? /k? is the utility thata needs to give up in order increass utility

by one. Since: wants to maximise its own utility and givea utility of U°([a!*1, b1, ¢ + 1), it
divides them pies such that it gets the maximum possible share for thesessfor whichk? /k? is
high and gives to agehtthe maximum possible share for those issues for whiglk? is low. Thus,

a begins by givingh the maximum possible share for the issue with the lowggt?. It then does
the same for the issue with the next lowg$f k% and repeats this process uritigjets a cumulative
utility of U°([a*+1,b"*1],¢ 4 1). In order to facilitate this process of making tradeoffs, ithdivid-
ual elements ok’ are arranged such thit /k% > k2, | /k%. . The functionTRADEOFFA takes six
parametersk®, Kb, 6, UB(t), m, andt and uses the above described greedy method to solve the
maximisation problem given in Equation 4 and return theesponding package. If there is more
than one package that solves Equation 4, theRDEOFFA returns any one of them (because agent
a gets equal utility from all such packages and so does dgenthe functionTRADEOFFB for
agenth is analogous to that far.

On the other hand, the equilibrium strategy for the agentréweives an offer is as follows. For
time periodt, letb denote the receiving agent. Théracceptdz!, y] if us(t) < Ub([xt, y'], ), oth-
erwise it rejects the offer because it can get a higherytilithe next time period. The equilibrium
strategy fora as receiving agent is defined analogously. Hence we get thiébeigm strategies
(a(t) andB(t)) given in the statement of the theorem.

In this way, we reason backwards and obtain the offers fer1. The first mover makes this
offer and the other agent accepts it. An agreement therefarers in the first time period.]

Theorem 2 For the package deal procedure, the time taken to determmecailibrium offer for
t = 1is O(mn) wherem is the number of issues amdis the deadline.

Proof: We know from Theorem 1 that the time to compute the equiliaraffer fort = n is linear in
the number of issues (see strategiés) ands(n)). Consider a time periotl< n. During this time
period, the functiomrRADEOFFA is used to make tradeoffs. The time complexityr&fADEOFFA
(which uses the greedy approach described in the proof abréhe 1) isO(m) (Martello & Toth,
1990; Cormen et al., 2003). This function needs to be regeaieevery time period from the
(n — 1)th to the first. Hence the time complexity of finding an offer fbe first time period is
O(mn). O

5. The time complexity of this approach@m) (Martello & Toth, 1990), wheren denotes the number of items. Note
that the greedy method for the fractional knapsack probkared®(m) time regardless of whether the coefficients
k2 andk® (for 1 < ¢ < m) in Equation 4 are positive or negative (Martello & Toth, 099In the present setting
(as we mentioned at the beginning of Section 3) these caafficiare all positive. However, we will come across
negative coefficients when we deal with interdependenesguSection 6.
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Theorem 3 The package deal procedure generates a Pareto optimal méco

Proof: Recall that we consider competitive negotiations. Hengeah individual issue (where

1 < ¢ < m), an increase in one agent’s utility results in a decreagbanof the other. However,
for the package deal procedure, an agent considers its atimeuutility from all m issues. Con-
sequently, during the process of backward reasoning, atitin n, the agent that makes tradeoffs
maximises its own cumulative utility without lowering thatits opponent (with respect to what the
opponent would offer in the next time period). Hence the ldmjiiim outcome for the package deal
is Pareto optimallJ

Theorem 4 For a given first mover, the package deal procedure has a enéquuilibrium outcome
if the following condition is false:

C:. There exists ar and aj (wherel < ¢ < mandl < j < m) such that { # 5) and
(ki /K = kg K).

Proof: Consider atime periotl< n and leta denote the offering agent. Recall from Theorem 1 that
a splits them issues in the increasing order/gf/k?. Thus, for a given andy, if k¢ /k! = k3 /kS,
then agent is indifferent between which of the two issué( j) it splits up first. For example, if
m=2n=2278=05ki =1k =2,k =2 andk} = 4, thenk¢/kb = k$/kb = 0.5. If a
is the offering agent at= 1, it can offer(1,0) for issue 1 and1/4,3/4) for issue 2. This gives a
cumulative utility of 1.5 taz and 3 tob. Alternativelya can offer(0,1) for issue 1 and3/4,1/4)
for issue 2 since this also results in the same cumulatiViéesito « andb.

On the other hand, % /k? # k¢ /k?, thena splits issue first if k{/k? < k¢ /k? and issug first
if kf/k:ﬁ? > k:;l/ké’ In other words, there is only one possible equilibrium offeata can make at
any timet < n. Likewise there is one possible equilibrium offer thatan make at any time< n.
Since there is a unique offer for each time period, the dguilin outcome is uniqué.]

Note that the uniqueness we refer to in Theorem 4 is with dpea given first mover. If the
first mover changes, then the equilibrium outcome may chaghe following example illustrates.
Letm =2,n =2,0 = 0.5, k¢ =1, k% = 2, k% = 2, andk} = 1. If a is the offering agent at
t = 1, its equilibrium offer is(1/4, 3/4) for the first issue andl, 0) for the second. This results in
a cumulative of2.25 to ¢ and1.5 to b. In contrast, ifb is the offering agent at= 1, its equilibrium
offer is (0, 1) for the first issue and@3/4,1/4) for the second. This results in a cumulative utility
of 1.5 to a and2.25 to b. In the following discussion, we use the term unique to medque with
respect to a given first mover.

3.2 The Simultaneous Procedure

For this procedure, the: issues are partitioned info > 1 disjoint subsets. Fotr < ¢ < pu, let
S, denote theth partition whereJ.,_ S, = {1,...,m}. The issues within each subset are settled
using the package deal. Negotiation for each ofitlpartitions starts at = 1. Thus, fory = m, all
m issues are settled simultaneously and independently bf@her. At the other extreme, we have
only one partition (i.e.; = 1) which is the package deal procedure described in SectiorS&ce
the issues in each subset (i.e., edchare settled using the package deal, the equilibrium fon eac
of thesey partitions is obtained from Theorem 1. Consequently, wetgefollowing results.

First, an agreement for each issue occurs in the first rounid.i¥ because negotiation for each
partition starts at = 1. Also, from Theorem 1, we know that an agreement for the ppekkeal
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occurs at = 1. Hence, for the simultaneous procedure, an agreementdbrpeatition (and hence
each issue) occurs in the first time period.

Second, for the simultaneous procedure, the time takenterdme an equilibrium offer for
t =1is¥!_,O(|Sc|n) where|S,| is the number of issues in th¢h partition andr is the deadline.
This is explained as follows. Since the time taken to find theildrium offer fort = 1 for the
package deal (i.e., for = 1) is O(mn) (see Theorem 2), the time taken to compute the equilibrium
offer for t = 1 for the cth partition isO(|S.|n). Hence, for allx partitions, the time complexity
is ¥/, O(|Sc|n) which is equal ta®(Mn), whereM denotes the number of issues in the largest
partition.

Third, it follows from Theorem 4 that the simultaneous phae has a unique equilibrium
outcome if the following conditiort; is true:

C>. There is no partitiorr (wherel < ¢ < ) for which the condition”'; is true.

Finally, as Theorem 5 shows, the simultaneous procedurenofgenerate a Pareto optimal
outcome.

Theorem 5 The simultaneous procedure may not generate a Pareto ojpbduteome.

Proof: The package deal allows tradeoffs to be made across alt thsues, while the simultaneous
procedure allows tradeoffs to be made across issues widltim gartition but not across partitions.
Hence the simultaneous procedure may not generate a Patiet@boutcome. We show this with a
counter example. Consider the case where 2,6 = 0.5, m = 3, u = 2, 57 = {1,2}, Sy = {3},

¢ =1,k =2,k =3,k =1, k5 = 0.5, andk} = 0.25. Leta denote the first mover. From
Theorem 1, we know that in the equilibrium for partitiéh, agenta gets a share df.25 for issue
1 and1 for issue2, andb gets a share di.75 for issuel and nothing for issu@. For partition.S,,
each agent gets a sharelgR. Thus,a’s cumulative utility from all three issues 875 and that of
bis 0.875.

Now consider the case where all three issues are discusseptis package deal. Here,= 1
and all other parameters remain the same. In the equilibdutcome for this procedure, gets a
cumulative utility of5.125 andb gets0.875. This means that the procedure wjih= 2 does not
generate a Pareto optimal outcorhé.

3.3 The Sequential Procedure

For this procedure, the: issues are partitioned ino > 1 disjoint subsets. For < ¢ < pu, letS,
denote theth partition whereJ!_, S. = {1,...,m}. They partitions are negotiated sequentially,
one after another. The issues within a subset are settlad tigt package deal. Negotiation for the
first partition starts at time = 1. If negotiation for thecth (for 1 < ¢ < u) partition ends at.,
then negotiation for théc + 1)th partition starts at time,. + 1. Each player gets its share for all
the issues in a partition as soon as the partition is sefflads, foru = m, all m issues are settled
in sequence. At the other extreme, we have only one partftien . = 1) which is the package
deal procedure described in Section 3.1. Since the issueacim subset (i.e., each) are settled
using the package deal, the equilibrium for each of thesabsets is obtained from Theorem 1 by
substituting the appropriate negotiation start times &mhepartition.
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Theorem 6 For the sequential procedure, the equilibrium time of agneat for thecth partition
(for1 <c<p)isT.=c.

Proof: From Theorem 1, we know that an agreement for the packageodeats in the first time
period. Hence, negotiation for each partition ends in theesime period in which it starts (i.e.,
negotiation for thesth partition starts at = ¢ and results in an agreement in the same time period).
The time taken to settle all the issues is thereforg. [

Note that the time complexity of the sequential procedur,(the time to compute equilibrium
offers) is the same as that for the simultaneous proceduse, ke the simultaneous procedure, the
equilibrium outcome for the sequential procedure may ndRdreto optimal. Finally, the condition
for the equilibrium outcome for the sequential procedurddaunique is the same as that for the
simultaneous procedure.

3.4 The Optimal Procedure

Having obtained the equilibrium outcomes for the three nisdtue procedures, we now compare
them in terms of the utilities they generate for each playé&en the procedure that gives a player
the maximum utility is its optimal one.

Note that, for the sequential procedure, the equilibriunt@ame strongly depends on the order
in which the partitions are settled. This ordering is callee negotiatioragenda There are two
ways of defining the agenda (Fershtman, 193§ogenoushor endogenously If the agenda is
determined before the actual negotiation over the issugisfiehen it is said to be exogenous. On
the other hand, for the endogenous agenda, the agents ddwtessue they will settle next during
the process of negotiation. The agenda that gives an agemdkimum utility between all possible
agendas is its optimal one (Fatima et al., 2004). Our oledtere is not to determine the optimal
agenda, but to consider a given agenda and compare thebeguilioutcome for the sequential
procedure for that agenda with the outcomes for the simeittas and the package deal procedures,
in order to find the optimal procedure. The following theoremaracterises this procedure.

Theorem 7 Irrespective of how then issues are split intg: > 1 partitions, the package deal is
optimal for both parties.

Proof: In order to compare an agent’s utility from different progess, it is important to take into
account who initiates negotiation. For the package dealfitat mover makes an offer on all the
issues. Hence we compare an agent’s utilities for the threeedures, given the agent that will be
the first mover for all the three procedures for all the issues

We first show that the outcome for the package deal is no whesethat for the simultaneous
procedure. Consider the simultaneous procedure fopanyl. For this procedure, far < n, the
offering agent makes tradeoffs across the issues in eatliggamdependently of the other parti-
tions. Now consider the package deal procedure (i.e., with 1 partitions). For this procedure,
the offering agent makes tradeoffs acrossraissues. Since the difference between the procedure
with ;1 = 1 and the one withy > 1 is that the former makes tradeoffs acrossmalissues while the
latter does not, each agent’s utility from the former prageds no worse than its utility from the
latter.

We now show that for a givem (wherey > 1), for each agent, the outcome for the simultaneous
procedure is better than that for the sequential one (ieds@ of the agenda for the sequential
procedure). We do this by considering each of ghgartitions.
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Package deal | Simultaneous Sequential
Time of For thecth issue| For thecth issue| For thecth partition
agreementi(,) te=1 te=1 te=c
forl<e<m forl <ec<m forl <c<yu
Time to compute O(mn) O(Mn) O(Mn)
equilibrium
Pareto optimal? Yes No No
Unique equilibrium? If =C4 If Cy If Cs

Table 2: A comparison of the outcomes for the three multiégsrocedures for the complete infor-
mation setting C'1).

e Partitionc = 1. Since negotiation for the first partition startstat 1 for both the simulta-
neous and the sequential procedures, the outcome for thisquais the same fop, = 1 and
1 > 1. Hence, for the first partition, an agent gets equal utilignf the two procedures.

e Partitionc > 1. Let agenta denote the first mover for partition (for 2 < ¢ < p) for
both simultaneous and sequential procedures. Alsd/jet andUg,, denotea’s cumulative
utility for this partition from the equilibrium outcome fdhe simultaneous and the sequential
procedures respectively. Likewise, B¢, = and Ué’eq denotedb’s cumulative utility for this

partition from the equilibrium outcome for the simultanecand the sequential procedures
respectively.

Now for the simultaneous procedure, negotiation for eadtitipam starts in the first time
period. An agreement for each partition also occurs in tetfine period. On the other hand,
for the sequential procedure, negotiation for t¢ttepartition starts in theth time period and
results in an agreement in the same time period (see Thedre®inGe each pie shrinks with
time, agent’s cumulative utilityUg;,, is greater tha/g, ., and agent’s cumulative utility
Ul is greater thai/?

sim seq-*
Thus, the simultaneous procedure is better than the segluene for both agents. Furthermore

(as shown above), the outcome for the package deal is no wuasethat for the simultaneous
procedure for both agents. Therefore, for each agent, ttleage deal is the optimal proceduts.

These results are summarised in Table 2. For the above anahgs negotiation parametens ..,

k¢, andk? (for 1 < ¢ < m) were common knowledge to the agents. However, this is eiylito
be the case for most encounters. Therefore we now extendrihlgsis to incomplete information
scenarios with uncertainty about utility functiéndn Section 4, we focus on the symmetric infor-
mation setting where each agent is uncertain about the'sthtdity function. Then, in Section 5,
we examine the asymmetric information setting where onbdetwo agents is uncertain about the
other’s utility function, but the other agent knows theitytifunction of both agents.

6. There are two other sources of uncertainty: uncertainbyiethe negotiation deadline and uncertainty about distcou
factors. Future work will deal with uncertainty about digobfactors. However, for independent issues, we analysed
the case with symmetric uncertainty about deadlines inirleatWooldridge, & Jennings, 2006). The extension of
this work to the case of interdependent issues is anothectain for future work.
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4. Multi-1ssue Negotiation with Symmetric Uncertainty about the Opponent’s Utility

In this symmetric information setting, each agent is uraerabout its opponent’s utility function:
for 1 < ¢ < m, agenta (b) is uncertain about® (k%). Specifically, letK” denote a vector of vectors
where each vectok; € R (for 1 < i < r) consists ofn constant positive real numbers. These
r vectors are the possible values for € R’ and kb € R’*. In other words, there aretypes

for agenta andr types for agenb. Let P* : N* — R; denote the discrete probability distribution
function fork® andP? : N* — R, that fork®. The domain for these two functions[is.r]. In other
words, forl < i < r, P%(i) (P°(4)) is the probability that agent (b) is of typei. Forl < ¢ < m,

let K. denote theth element of vectok;.

In this setting, the vectaK and the function?® and P are common knowledge to the nego-
tiators. Also, each agent knows its own type, but not thatobpponent. In addition, each agent
knowsr, §, n, andm.

Since there are types for agent andr types for agent, we definer different cumulative
utility functions for each of the two agents. If agen(b) is of typei (for 1 < i < r) then its utility
Ug: R xR x Nt — R (U? : RP* x R* x Nt — R) from the division specified by the package
[z¢,y!] at timet is:

Yo Kieud(l,t) ift<n
0 otherwise

Us(z',y'],t) = { (5)
EZ’"”:lKiculc’(yé, t)y ift<n
0 otherwise

Up([a',y'),t) = { (6)
Note that, as before, the issues are perfect substituteghiBsetting, we determine the equi-
librium outcomes for each of the three multi-issue procedwand then compare them.

4.1 The Package Deal Procedure

We know from Theorem 1 that the equilibrium outcome for thenptete information setting de-
pends ork? andk? (for 1 < ¢ < m). However, in this setting, there is uncertainty abbfitand
k. Hence we use the standard expected utility theory (NeurSabiorgenstern, 1947; Fishburn,
1988; Harsanyi & Selten, 1972) to find an agent’s optimaltstya Before doing so, however, we
first introduce some notation.

Forl < i < r, we leta(i,t) denote the equilibrium strategy for an agentf type i for the
time periodt. Analogously,B(7,t) denotes the equilibrium strategy for an ageof type for the
time periodt. Note that forl < i < r, if [a,b!] is the package offered at timen equilibrium,
thena! + b* = §'1! (i.e., for each pie, the sum of the shares of the two agentsuialéo the size
of the pie at timet). Also, for1 < i < r, we leta(i, j,¢) denote the equilibrium strategy for an
agenta of typei for the time period, assuming thak is of typej. Analogously,B(i, j,t) denotes
the equilibrium strategy for an agembf typei for the time period, assuming that is of typej.

Also, leteua(i, t) denote the cumulative utility that an agentf type: expects to get frorh’s
equilibrium offer at timet (i.e., a is the receiving agent anfdthe offering agent at). Likewise,
EUB(i,t) denotes the cumulative utility that an agémtf type: expects to get from’s equilibrium
offer at timet (i.e., b is the receiving agent andthe offering agent af). We leteua(i, j,t) denote
agenta’'s expected cumulative utility from its own equilibrium eff at timet if a is of type i,

7. An agent’s type indicates which of thevectors it corresponds to.
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assuming thab is of typej. Note that this is:'s utility when it is the offering agent at And let
EUB(4, j,t) denote ageri's expected cumulative utility from its own equilibrium effat timet if b
is of type: and assuming that is of typej. Note that this i$’s utility when it is the offering agent
att.

Recall that in this setting, each agent only knows its owretmt not that of its opponent.
Since there are possible types, there arepossible offers an agent can make at any time period
(one offer corresponding to each of the opponent’s types)org these offers, the one that gives
an agent the maximum expected cumulative utility is itsraptioffer. If thecth offer (1 < ¢ < r)
gives an agent the maximum expected cumulative utility thie say that theptimal choiceor the
agent isc. For time period:, we letopTa(i, t) (OPTB(1,t)) denote the optimal choice for agent
(b) of typei.

At t = n, the offering agent gets everything and the opponent getsutdity. Thus, fort = n,
we have the following:

EUA(i,n) =0 for1<i<r @)
EUB(i n)=0 forl<i<r (8)
EUA(Z, j,n ZKwét 1 fori<i<randl <j<r (9)
EUB(i, j, n ZKwat I fori1<i<randl<j<r (10)

Note that fort = n, EUA(4, j,n) andEUB(4, j, n) do not depend op because in the last time period,
the offering agent gets 100 percent of all thepies. For all preceding time periods< n, we have
the following:

EUA(i,t) = EUA(:,6,t+1) forl <i<rwhered = oprTA(i,t+ 1) (11)

EUB(i,t) = EUB(i,\,t+1) forl <i<rwhere =o0prTB(i,t+1) (12)

BUA(L, j,t) = Y F%(i,jet)x P’e) forl<i<randl<j<r (13)
e=1

BUB(i,5,t) = Y F'(i,j,e,t) x Pe) forl<i<randl <j<r (14)
e=1

The functionF'* takes four parameters; j, e, andt, and returns the utility that an agenof type

1 gets from offering the equilibrium package for timeassuming that agehtis of typej where in
fact it is of typee. Obviously, agenb acceptsa’s offer att if U°(a(4,7,t),t) > EUB(e,7y,t + 1)
wherey = opTB(e, t + 1). Otherwise, ageritrejectsa’s offer and negotiation proceeds to the next
round in which case’s expected utility issUA(7, ¢ + 1). Hence,F'® is defined as follows:

U8(a(i,g,t),t) if U(A(i,5,t),t) > BUB(e,7,t + 1) wherey = oPTB(e, t + 1)
EUA(i,t +1)  otherwise

Fig.e.) = {
where the strategy(i, j,t) for ¢t = n is defined as follows:

(i, jm) = OFFER[§"~1,0] if a’sturn
b2 =\ ACCEPT otherwise
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and for all preceding time periods< n it is defined as:

AL G 1) = OFFERTRADEOFFAL(K, 8, BUB(j,t),1, j,m,t, P, P®) if a's turn
DIU T i Us([at, Y], t) > EUA(i, t) ACCEPT else REJECT otherwise

where[z?,y!] denotes the offer made atand the functioh TRADEOFFAL is defined as follows.
Like TRADEOFFA, the functionTRADEOFFAL solves the following maximisation problem:

maximise X" K;.a,
suchthat ™, (08 — al) K. = BUB(j, t)

[

0<al<1 for1<c<m (15)

wherei denotesa’s type andj that of b. However, the difference betweamADEOFFAL and
TRADEOFFA arises when there is more than one package that maxiaigsesmulative utility (i.e.,

¥m | K;.al) while giving b a cumulative utility ofeuB(j, ¢). If there is more than one such package,
then in Theorem 1, it does not matter which of these packag#ters tob (because both agents
have complete information). HenCeRADEOFFA can return any one such package. However, in
the present setting, there is uncertainty. Thereforegifdlis more than one package that maximises
a’s cumulative utility while givingb a cumulative utility ofEUuB(j,t), thenTRADEOFFAL returns
the package that maximisess expected cumulative utility. For instance, [et,b'] be one such
package that maximisess cumulative utility. Thena's expected cumulative utility fronfu?, b?]
(i.e.,EUA(1, 7,t)) is as given in Equation 13 where:

ags Ug([at,b!],t) if Ub([at,b!],t) > EUB(e,v,t + 1) wherey = OPTB(e, t + 1)
F(i,j,et) = LA .
EUA(Z,t + 1) otherwise
Obviously, if there is more than one package that maximiseexpected cumulative utility and
givesb a utility of EUB(7, t) thenTRADEOFFAL returns any one such package.
We now turn to agerit. For this agentF®, B(i, j, t), andTRADEOFFB1 are defined analogously
as follows:

FY(i.je.t) = Ub(B(i,4,t),t) if UXB(i,j,t),t) > EUA(e,a,t + 1) wherea = OPTA(e, t + 1)
L& = EUB(i,t +1)  otherwise

where the strategs(i, j, t) for t = n is defined as follows:

8(i, j,n) = OFFER[0, "] if b's turn
b2 = ACCEPT otherwise

and for all preceding time periods< n it is defined as:

8(i,j.t) = OFFERTRADEOFFB1(K, 0, BUA (], 1), 1, j, m,t, P*, P?) if b's turn
YIEZ Ui Ub((at, oY), t) > EUB(i, t) ACCEPT else REJECT otherwise

8. A method for making tradeoffs has been proposed by Far@i@mra, and Jennings (2002) for an incomplete infor-
mation setting, but this method differs from ours. Also,&eret al. only present a method for making tradeoffs, but
they do not show that the resulting offer is in equilibrium.cbntrast, our method shows that the resulting offer is in
equilibrium.
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Thus, the optimal choice for agemf(i.e., opTA(i, t)) and that for ageri (i.e., opTB(i, t)) are
defined as follows:

OPTA(i,t) = argma¥_,EvA(i,j,t) forl<i<r (16)
orPTB(i,t) = argmaX_,EUB(i,j,t) forl<i<r @an

Note that the offering agent’s optimal choice for n does not depend on its opponent’s type since
the offering agent gets all the pies.

We compute the optimal choice for the first time period by oeasy backwards fromt = n.

At t = 1, if an agenta of typei is the offering agent, then it offers the package that cpords to
agent being of typeopTA(i, 1). Likewise, if an agenk of type: is the offering agent, then it offers
the package that corresponds to agebeing of typeorTB(i, 1).

However, since&pTA (i, 1) andopTB(i, 1) are obtained in the absence of complete information,
an agreement may or may not take place in the first time petioah agreement does not occur
att = 1, then the agents need to update their beliefs as follows.7TEet {1,2,...,r} denote
the set of possible types for agentt timet. Fort = 1, we haveT = {1,2,...,r} andT} =
{1,2,...,r}. Assume that an agentof typei makes an offer at = 1. If the offer thata makes
gets rejected, then it means tthas not of typeopTA(7, 1) and sou updates its beliefs abotitusing
Bayes’ rule. Now, on the basis afs offer att = 1 (say|[z!,']), agentb can infer the possible
types for agent.. Thus, agenb too updates its beliefs using Bayes’ rule. The belief updales
for time ¢ are as defined below.

UPDATE BELIEFS: Agent: puts all the weight of the posterior distributionids type
overT}? — {opTB(i,t)} using Bayes’ rule. Agerii puts all the weight of the posterior
distribution ofa’s type overk using Bayes’ rule wherf& C {1,2,...,r} is the set of
possible types fou that can offerlz?, 4] in equilibrium.

The belief update rule for the case whéreffers att = 1 is analogous to the above case where
offers att = 1.

Thus if the offer at = 1 gets rejected, then negotiation goes to the next round. -At2, the
offering agent (say an ageatof type ) finds orTa(i, 2) with its updated beliefs. This process of
updating beliefs and making offers continues until an agesd is reached.

In Section 3, we used the concept of Nash equilibrium becthesagents had complete infor-
mation. However, in the current setting, each agent is taiceabout its opponent’s type and so
an agent’s optimal strategy depends on its beliefs abowpi®nent. Hence we use the concept
of sequential equilibriun{Kreps & Wilson, 1982; van Damme, 1983) for this setting. S=yial
equilibrium is defined in terms of two elements:stategy profileand asystem of beliefs The
strategy profile comprises of a pair of strategies, one foh@gent. The belief system has the fol-
lowing properties. Each agent has a belief about its opg@nigpe. In each time period, an agent’s
strategy is optimal given its current beliefs (during thediperiod) and the opponent’s possible
strategies. For each time period, each agent’s beliefau{atsoopponent) are consistent with the
offers it received. Using this concept of sequential eftiilim, the following theorem characterises
the equilibrium for the package deal procedure.

Theorem 8 For the package deal procedure, the following strategiesifa sequential equilibrium.
The equilibrium strategies far= n are:

Aiyn) = OFFER [0"~1,0] IF a’s TURN
H™ =1 ACCEPT IFb's TURN
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B(i,n) = OFFER [0,6"" 1] IF s TURN
b= ACCEPT IFa’s TURN

for 1 < i < r. For all preceding time periods < n, if [2¢, '] denotes the offer made at timethen
the equilibrium strategies are defined as follows:

OFFER TRADEOFFAL(K, 6, EUB(1,t),4, 1, m,t, P*, P?) IF a’s TURN
If offer gets rejected UPDATE BELIEFS

RECEIVE OFFER and UPDATE BELIEFS s TURN
If (U([2*,y'],t) > EUA(i,t)) ACCEPT else REJECT

Al t) =

OFFER TRADEOFFB1(K, §, EUA (9, 1),1, ¢, m,t, P*, P®) IF b's TURN
If offer gets rejected UPDATE BELIEFS

RECEIVE OFFER and UPDATE BELIEFS /5 TURN
If (U(zt,4'],t) > EUB(i,t)) ACCEPT else REJECT

B(i,t) =

for 1 < < r. Here,sb) = opTA(i,t) and¢ = OPTB(i,t). The earliest possible time of agreement
ist = 1 and the latest possible time of agreemerttis min(2r — 1,n).

Proof: Attime ¢t = n, the offering agent takes all the pies and leaves nothindgt$aspponent.
The opponent accepts this and we gét,n) andB(i,n). Now consider a time period < n.
Recall that during negotiation for the complete informatsetting (see Section 3.1), at tirhe n,
the offering agent proposes a package that gives its opp@neamulative utility equal to what
the opponent would get from its own equilibrium offer for thext time period. However, for the
current incomplete information setting, an agent knowsvis type but not that of its opponent.
Hence, for this scenario, at time< n, the offering agent (say) proposes a package that gives
an expected cumulative utility equal to witawould get from its own equilibrium offer for the next
time period (i.e.EUB(¢, t)). This package is determined by theaDEOFFA1 function. Likewise,
if b is the offering agent at time then it makes tradeoffs usingrADEOFFB1 and offersa an
expected cumulative utilitgua(e, t).

We obtain the equilibrium offer fot = n — 1 and then reason backwards until we obtain the
equilibrium offer fort = 1. However, since these offers are computed in the absenaengilete
information (i.e., on the basis of expected utilities), amegment may or may not take place at
t = 1. If an agreement does not take place at 1, then negotiation proceeds as follows. Consider
a time periodt such thatl < t < n. Let[z!,!] denote the offer made at time The agent
that receives the offer (say agerntupdates its beliefs using Bayes’ rule: put all the weighthef
posterior distribution ob’s type overkC whereC C {1,2,...,r} is the set of possible types fér
that can offerz?, y'] in equilibrium. If the proposed offeri«!, 3']) gets rejected, then the offering
agent (say agertof typei) updates its beliefs using Bayes’ rule: put all the weighthef posterior
distribution ofa’s type overT* — {orTB(i,t)}. The belief update rule for the case where agent
offers at timet are analogous to the above rule. These belief update rules imborporated in the
agents’ strategies give(i, t) ands(i, t) as shown in the statement of the theorem.

We now show that the beliefs specified above are consistanin@any time period < n, let
the strategy profileA(i, t), B(i,t)) assign probabilityl — € to the above specified posterior beliefs
and probabilitye to the rest of the support for the opponent’s type.cAs 0, the above strategy pair
converges to4A, B). Also, the beliefs generated by the strategy pair conviergiee beliefs described
above. Given these beliefs, the strategiends are sequentially rational.
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The earliest possible time of agreement is 1. We show this with the following example. Let
n=2m=27r=20=1/2andK = [1,2;5, 1]. Let agent be the offering agent at time= 1.
Assume that: is of type 1 (i.e.x = [1,2]). Let P’(1) = 0.1 and P?(2) = 0.9. Sincer = 2, agent
a can play two possible strategies at time 1: one that corresponds to the case whasof type 1
and the other that corresponds to the case whiref type 2. For the former case’s equilibrium
offer att = 1is [0, 1] for the first issue angg, 1] for the second one. Heneasa(1,1,1) = 1.5.
For the latter casey’s equilibrium offer att = 1 is [2, ] for the first issue anfl, 0] for the second
issue. Hence&uA(1,2,1) = 2.16. Sinceeua(1,2,1) > EUA(1,1,1), opTA(l, 1) = 2 anda plays
the latter strategy. Now ff is in fact of type 2, then it acceptss offer at¢ = 1. But if b is in fact of
type 1, it rejects:’s offer att = 1 since it can get a higher utility at= 2. An agreement therefore
occurs at = 2. Thus, the earliest possible time of agreementsis1.

Now consider the case where arf type i offers att = 1 but an agreement does not occur at
this time. Wheru's offer gets rejected, it knows thatis not of typeopTA(i, 1). Thus the number
of possible types fob is now reduced te — 1. This happens every timemakes an offer (i.e., every
alternate time period) but it gets rejected. When negotiateaches time periad= 2r — 1, there
is only one possible type fdr. Likewise, there is only one possible type for agenfn agreement
therefore takes place &= 2r — 1. However, ifn < 2r — 1 then an agreement occurstat n (see
A(i,n) andB(i,n)). In other words, if an agreement does not occur at 1, then it occurs at the
latest byt = min(2r — 1,n). O

As we mentioned earlier, if there is more than one packagetives Equation 15, therRADEOFFA 1
returns the one that maximise’s expected cumulative utility. Leta,” (where: denotes:’s type
andj that ofb) denote the set of all possible packages thetDEOFFA1 can return at time. The
setpB;’ for agenth is defined analogously.

Theorem 9 For a given first mover, the package deal procedure has a @néguilibrium outcome
if the conditionCyj is false orCy is true.

Cs. There exists an, j, ¢, andd, such that ¢ # d) and ¢ # j) and (K;./ K. = Kiq/K;q) where
1<i<r1<j<r1<c<m,andl <d<m.

Cy. [PA”| =1and|pB| = 1wherel <i<r,1<j<ri#jandl <t<n.

Proof: Leti denote agent’s type andj denoteb’s type wherel # j, 1 < i < r,andl < k < r.
Note that ifa andb are of the same type, they have similar preferences fordritassues. S0+# j
because the agents gain from making tradeoffs when theyfaté#ferent types. The rest of the
proof for the conditionC5 follows from Theorem 4. Considér,. If Cj is true, then we know that,
at timet, TRADEOFFA1 returns that package that solves Equation 15 and maximisexpected
cumulative utility. Hence iiDAij contains a single element, then there is only one possildkaga
that TRADEOFFA1 can return. Likewise, ifDBij contains a single element, then there is only one
possible package thatkADEOFFB1 can return. If there is only one possible offer for each time
period1l < t < n, then the equilibrium outcome is unique.

In order to determine the time complexity of the package ,deal first find the complexity
of the TRADEOFFA1 function. As we mentioned beforeRADEOFFA1 differs from TRADEOFFA
when there is more than one package that solves the maxiomgaioblem of Equation 15. We
know from Theorem 9 that there is more than one such packale donditionC} is true. We also
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know from Theorem 1 that using the greedy approagty DEOFFA considers then issues in the
increasing order of(;./ K ;. wherei denotes:’s type and;j denoted’s type. LetS,’ C S denote a
set of issues (whereé < DY < m, 1 < p < D%, i denotesz’s type, and;j denotes’s type) such
that: - -
|S;,3| >1 forl<p< DY
and:
K; K;

\4 i =
JAESY . )
“4er Kje K;

In other wordsS;’ is a set of issues such thatiéndd belong toS,/ thenk;./ K. = K;q4/K 4, and
D is the number of sets that satisfy this condition. SP# = 0 then it means that there is only
one package that solves Equation 15. Bu2# > 0 then there is more than one package that solves
Equation 15 and from among theseADEOFFA1 must find the one that maximise%s expected
cumulative utility. For example if the set of issuesSis= {1,2,3,4}, r = 2, K1 = {5,6,7,8},
andK, = {9,6,7,8}, thenD!2 = 1, S{2 = {2,3,4}, and|S;{?| = 3. So while making tradeoffs,
a can consider the issues d}? in any order because for all the three issues it needs to giteeu
same amount of utility in order to increass utility by 1. The three issues if}? can be ordered
in 3! different ways resulting ir8! different packages. From among the¥alifferent packages,
TRADEOFFA1 must find the one that maximisess expected cumulative utility. In general, for
D% > 1, let7¥ denote the numbgrof possible packagesraADEOFFA1 needs to consider where
7w is:

DY
=T IsI!
p=1

In other words, ifa’s type isi andb’s type isj, then there are™’ packages that solve Equation 15
and from among theserRADEOFFA1 must find the one that maximisess expected cumulative
utility. So if DY = 0, thenz/ = 1. Let# be defined as:

T o= mazx e (18)

1<i<r,1<j<n,i#j

In other words;r is the maximum number of packages thataDEOFFA1 will have to search to
find the one that maximisess expected cumulative utility (considering all possibypéds ofa
and all possible types df). Note that, as beforey and b are of different types (i.e4 # j in
Equation 18) because the agents gain from making tradediénthey are of different types. The
time complexity offRADEOFFA 1 depends ori.

Theorem 10 The time complexity afRADEOFFAL is O(m).

Proof: We know from Theorem 2 that the time complexity of finding amg package that solves
Equation 15 isO(m). However, if there is more than one package that solves Equab then
TRADEOFFA1 returns the one that maximises expected cumulative utility. The time to compute
a’s expected cumulative utility from any one such packag8(is:). The maximum number of such
packages for which needs to find its expected cumulative utilitysisThus the time complexity of
TRADEOFFAL is O(m). O

9. Note thatr*/ is defined in terms of the factorial d,/|, but |S;| is independent ofn and it is assumed that
IS < m.
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Corollary 1 If DY = 0for1 < i <r,1 < j < r,andi # j, then the time complexity of
TRADEOFFA1 is the same as the complexity ot ADEOFFA.

Proof: If DY =0for1 <i<r,1<j<r andi # j, thent” = 1 and sor = 1. So the time
complexity of TRADEOFFAL is O(m). O

Theorem 11 The time complexity of computing the equilibrium offerstfar package deal proce-
dure isO(m#r3T (n — L)) whereT = min(2r — 1,n).

Proof: Let a denote the agent that offersiat= 1 and assume that is even (the proof for odd
n is analogous). We begin with the last time period and thesomdackwards. Since is even
andq starts at = 1, itis b’s turn to offer in the last time period. For= n, the time taken to find
EUB(4, j, t) (for a giveni andy) is O(m) (see Equation 10). Hence, the time taken to fin@(s, j, t)
for all possible types df (i.e.,1 < j < r)is O(mr). Note that, at this stageyus(i, ¢ — 1) is known
for 1 <i < r (see Equation 12).

Now consider the time periotl= n — 1. Sincen is even, it isa’s turn to offer att = n — 1.

In order to finda(z, t), we first need to find> wherey = opTA(i,t). From Equation 16 we know
that, for a giveri, the time to findopTA(7, t) depends on the time taken to firdA(i, 7, ) which
in turn depends on the time to fikd (i, j, e, t) (see Equation 13). The time taken fiot(i, j, e, t)
depends on the time taken fa(i, j, ¢). For a giveni and a givery, the time taken to find (s, j,t)

is the time taken by the functionRADEOFFA. SinceEuB(j, t) is already known at time, the time
taken byTRADEOFFAL is O(m) (see Theorem 10). The time taken to firfd:, j, e, ¢) is therefore
O(mm). Given this, the time to findua(i, 7, t) (for a giveni, j, andt) is O(mar). Hence, for a
giveni, the time to findy = oPTA(i, t) is O(m#r?). At this stageEUB(1, t) is known (see the last
sentence in the first paragraph of this proof). Consequebotlya given:, the time to finda (i, ¢) is
O(m#r?). Recall that each agent knows only its own type and not thas @pponent. Hence we
need to determine(i, ¢) for all possible types of (i.e., for1 < i < r). This takesO(m4r?) time.
Note that at this stageua(i, j, t) is known for all possible values éfand all possible values gf
(wherel <i<randl <j<r).

Now consider the time period= n — 2 when it isb’s turn to offer. Fort = n — 2 and a given,
the time to findopTB(i, t) is O(m4r?) and so the time to findpTB(i, ) for all possible types of
b(ie, forl <i<r)isO(mard).

In the same way, the time required to do all the necessary gtatipn for each time period
t < nis O(m#r®). Hence, the total time to find the equilibrium offer for thesfitime period is
O((n — 1)m#r3). However, as noted previously, an agreement may or may rotr ac the first
time period. If an agreement does not take place at 1, then the agents update their beliefs
and compute the equilibrium offer far= 2 with the updated beliefs. The time to compute the
equilibrium offer fort = 2 is O((n — 2)m#r3). This process of updating beliefs and finding the
equilibrium offer is repeated at mdst= min(2r — 1,n) times. Hence the time complexity of the
package deal i&7 ,O((n — i)m#r?) = O(mar3T(n — L)) (see Cormen et al., 2003, — page 47
— for details on how to simplify an expression of the foxti, O((n — i)m#r?3)). O

Theorem 12 The package deal procedure generates a Pareto optimal méco

Proof: This follows from Theorem 3. The difference between the detepnformation setting of

Theorem 3 and the current incomplete information settintpas for the former setting the agents
maximise their cumulative utilities, whereas in the cutrsetting they maximise their expected
cumulative utilities. Specifically, for every time peridthe offering agent maximises its expected
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cumulative utility from all them issues such that its opponent’s expected cumulativeyusliéqual
to what the opponent would get from its own equilibrium offi@r the next time period. Hence, for
the current setting, the equilibrium offer for every timeipd is Pareto optimal]

4.2 The Simultaneous Procedure

Recall that for this procedure, the > 1 partitions are discussed in parallel but independently of
each other. The offers made during the negotiation for amypartition do not affect the offers
for the others. Specifically, negotiation for each pamitgtarts att = 1 and each partition is
settled using the package deal procedure. Since eachligraitidealt with separately, the results of
Theorem 8 apply directly to each of thwpartitions.

Let 7. denoter for thecth partition. Then, from Theorem 11, we know that the timetafor the
cth (for 1 < ¢ < p) partition isO(|S.|#.r3T'(n — L)). Let the partition for whichS, |, is highest
be denotedS,. Then the time complexity of the simultaneous procedur® (S, |#.r*T(n —
%)). Also, from Theorem 5, it follows that the simultaneous aure may not generate a Pareto
optimal outcome. Finally, from Theorem 9 we know that thewdtameous procedure has a unique
equilibrium outcome if the following condition is satisfied

Cs5. If there is no partition: (wherel < ¢ < p) for which the condition —C53 v Cy) is false.

4.3 The Sequential Procedure

For this procedure, the > 1 partitions are discussed independently and one after anoftiso,
for 1 < ¢ < pu, negotiation on theth partition starts in the time period that follows an agream
on the(c — 1)th partition. Since the package deal is used for each martithe following results are
obtained on the basis of Theorem 8.

First, Theorem 8 applies to each of the> 1 partitions. Thus, for the sequential procedure,
if negotiation for thecth (for 1 < ¢ < p) partition starts at time,., then it ends at the earliest at
timet. and at the latest by. + min(2r — 1,n). Second, it follows from Theorem 11 that the time
taken for the sequential procedure@|S.|7.73T(n — %)). Third, the sequential procedure may
not generate a Pareto optimal outcome (see Theorem 5).\-ite conditions for uniqueness are
the same as those for the simultaneous procedure.

4.4 The Optimal Procedure

Having obtained the equilibrium outcomes for the three pdoces for the above defined incomplete
information scenario, we now compare them in terms of theetga utilities they generate to each
player. Again, the procedure that gives a player the maxiraxpected utility is the optimal one.

Theorem 13 The package deal is optimal for each agent.

Proof: The proof for this is the same as Theorem 7. The only diffexdpetween the complete
information setting of Theorem 7 and the current incomplafermation setting is that for the
package deal procedure for the former setting (during tisr@d¢ < n), the offering agent pro-
poses a package that maximises its own cumulative utilibflergiving its opponent a cumulative
utility equal to what the opponent would get from its own digaum offer in the next time period.
On the other hand, for the current incomplete informatiottiree the offering agent proposes a
package that maximises its own expected cumulative utithile giving its opponent an expected
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Package deal Simultaneous Sequential
Time of Earliest: 1 Earliest: 1 For thecth partition
agreement Latest:min(2r — 1,n) | Latest:min(2r — 1,n) e =t¢
for all m issues for all m issues th =15 + min(2r — 1,n)
fort<c<u
Timetocompute | O(mar3T(n—T)) | O(S.|7r3T(n— 1)) | O(|S:|7.r°T(n — L))
equilibrium
Pareto optimal? Yes No No
Unique equilibrium? If =C3Vv Cy If Cs If Cs

Table 3: A comparison of the expected outcomes for the thrgdé-resue procedures for the sym-
metric information setting (for the sequential procedufedenotes the start time for the
cth partition, ¢ the earliest possible time of agreement, @nthe latest possible time of
agreement).

cumulative utility equal to what the opponent would get fritssnown equilibrium offer in the next
time period. Also, for each agent, the package deal maxgiiseexpected cumulative utility from
all them issues (since tradeoffs are made across alhthissues). But the simultaneous procedure
maximises each agent’s expected cumulative utility fohgaartition (i.e., the simultaneous proce-
dure does not make tradeoffs across partitions). Henceaspait's expected cumulative utility for
all them issues is higher for the package deal relative to the simedtas procedure. Furthermore,
irrespective of how then issues are partitioned into partitions, we know that the simultaneous
procedure is better than the sequential one for each agen® feorem 7). Hence, the package deal
is optimal for each agentl

These results are summarised in Table 3.

5. Multi-Issue Negotiation with Asymmetric Uncertainty about the Opponent’s
Utility

In some bargaining situations, one of the players may knawesloing of relevance that the other
may not know. For example, when bargaining over the pricesgfcnd hand car, the seller knows
its quality but the buyer does not. Such situations are sdidteasymmetrjn information between
the players (Muthoo, 1999). Our asymmetric informatiortisgtdiffers from the symmetric one
explored in the previous section in that one of the two ag@saga) has complete information, but
the other (say) is uncertain about’s utility function: for 1 < ¢ < m, agentb is uncertain about
k4. Here K, P°, PP n, r, andm are as defined in Section 4. The negotiation parameter®?,
P’ r, 85, n, andm are common knowledge to the negotiators. Furthermolaows its own type
and that ob, while b knows its own type but not that af Finally, the definitions for the cumulative
utility functions remain the same as in Section 4. For thisreg we now determine the equilibrium
for each of the three multi-issue procedures.
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5.1 The Package Deal Procedure

We extend the analysis of Section 4 to the current settinglesws. It is clear that for the last time
period ¢ = n), the utilitieseua(i,t) andeUB(i,t) are as per Section 4. Létdenoteb’s actual
type. Recall that agent now knows;. Hence on the basis of Equation 13 for th&; setting, we
geteuA(s, j, t) for the current asymmetric information setting as follows:

BUA(i,5,t) = F%i,j,5,t) fori<i<randl<j<r (19)

On the other hand, since ageis uncertain about’s type, the definitions foEuB(s,t) and
EUB(i, j, t) are as given in Section 4. Also, the definitions i, F, A(4, j,t), B(i, j, t), oPTA(7, t),
andopTB(%, t) for all time periods remain the same as in Section 4.

Finally, in this setting, belief updating does not apply geata because it has complete in-
formation. Only agenb updates its beliefs about This is done in the same way described in
Section 4. Because 65 uncertainty, we use the concept of sequential equilibrii this setting as
well. The following theorem characterises the equilibritonthe package deal procedure.

Theorem 14 For the package deal procedure the following strategiesnfar sequential equilib-
rium. The equilibrium strategies far= n are:

Ain) = OFFER [0"1,0] IF a’s TURN
"7 ACCEPT IFb’s TURN

B(i,n) — OFFER [0,6"7!] IF b's TURN
"7 | ACCEPT IFa’s TURN

for 1 < i < r. For all preceding time periods < n, if [2¢, '] denotes the offer made at timethen
the equilibrium strategies are defined as follows:

OFFER TRADEOFFAL(K, 6, EUB(J,1),4,7,m,t, P*, P®) IF a’s TURN
A(i,t) = ¢ RECEIVE OFFER IF b's TURN
If (U2(2t,y],t) > BUA(i,t)) ACCEPT else REJECT

OFFER TRADEOFFB1(K, §, EUA (9, 1),1, ¢, m,t, P*, P®) IF b's TURN
If offer gets rejected UPDATE BELIEFS

RECEIVE OFFER and UPDATE BELIEFS /s TURN
If (UP(«,y!],t) > EUB(i,t)) ACCEPT else REJECT

for 1 < i < r. Here,j denotes ageni's type andy = opTB(i,t). The earliest possible time of
agreement i$ = 1 and the latest possible timefis= min(2r — 1,n).

Proof: As Theorem 8. The only difference is thahow knowsb’s type (j). Hence this information
is used as a parameter fORADEOFFAL.

The earliest possible time of agreement is- 1. We show this with the following example.
Letn =2, m =2,r=2,6 =1/2, andK = [1,2;5,1]. Letb (i.e., the agent with uncertain
information) be the offering agent at time= 1. Assume thab is of type 2 (i.e.k® = [5,1]). Let
P*(1) = 0.9 and P%(2) = 0.1. Sincer = 2, b can play two possible strategies at time- 1:
one that corresponds to the case wheiie of type 1 and the other that corresponds to the case
wherea is of type 2. For the former cas#&s equilibrium offer att = 1 is [0, 1] for the first issue
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and[%, %] for the second. Henceus(1,1,1) = 4.725. For the latter casey's equilibrium offer
att = 1is[2, 2] for the first issue andll, 0] for the second one. Heneas(1,2,1) = 3. Since
EUB(1,1,1) > EUB(1,2,1), opTB(1,1) = 1 andb plays the former strategy. Now df is in fact
of type 1, then it acceptiss offer att = 1. Butif a is in fact of type 2, it rejectd’s offer att = 1
since it can get a higher utility at= 2. An agreement therefore occurstat 2. Thus, the earliest
possible time of agreementiis= 1.

Now consider the case where an agewff type i offers att = 1 but an agreement does not
occur at this time. Wheh's offer gets rejected, it knows thatis not of typeopTB(i,1). Thus
the number of possible types faris now reduced ta — 1. This happens every timemakes an
offer (i.e., every alternate time period) but it gets regelct When negotiation reaches time period
t = 2r — 1, there is only one possible type faor Sincea knowsb’s type, an agreement therefore
takes place at = 2r — 1. However, ifn < 2r — 1 then an agreement occurstat n (SeeA(i,n)
ands(i,n)). In other words, if an agreement does not occur-at1, then it occurs at the latest by
t=min(2r —1,n). O

Note that the latest possible time of agreement for the asstnwrinformation setting is the same as
that for the symmetric information setting of Theorem 8.sliBibecause, in the asymmetric setting,
althougha knowsb’s type, b is uncertain about’s type. Also, it take®r — 1 time periods fom to
come to knowu’s actual type. Hence, the earliest and latest time of ageaém the same for both
settings.

Theorem 15 The time complexity of computing the equilibrium offersthar package deal proce-
dure iSO(mﬁr?’%(n - %)) whereT" = min(2r — 1,n).
Proof: Let a denote the agent that offersiat= 1 and assume that is even (the proof for odd
n is analogous). We begin with the last time period and thesomdackwards. Since is even
and agent starts att = 1, it is b’s turn to offer in the last time period. Fa@r= n, the time
taken to findeus(z, j,t) (for a giveni andj) is O(m) (see Equation 10). Hence, the time taken
to find EUB(:, j, t) for all possible types of (i.e.,1 < j < r)is O(mr). Note that, at this stage,
EUB(i,t — 1) is known forl < ¢ < r (see Equation 12).

Now consider the time periotd= n — 1. Sincen is even, it isa’s turn to offer att = n — 1.
In order to finda(z, t), we first need to find> wherey = opTA(i,t). From Equation 16 we know
that, for a given;, the time to findorTa(i,¢) depends on the time taken to fiRd A(7, j, ¢) which,
in turn, depends on the time to fimd (7, j, e, t) (see Equation 19). The time taken o¥(i, j, e, )
depends on the time taken fofi, j, t). For a giveri and a givery, the time taken to find (i, j,t) is
the time taken byrRADEOFFA1. SinceEuB(j, t) is already known at time, the time taken by the
function TRADEOFFA1 is O(m7) (as Theorem 2). The time taken to fir@(i, j, e, t) is therefore
O(mm). Given this, the time to fingua(z, 7, ¢) (for a giveni, j, andt) is O(m) sinceb’s type
is known to both agents — see Equation 19. Hence, for a givére time to findy) = OPTA(3, t)
is O(mar). At this stage gUB(1, t) is known (see the last sentence in the first paragraph of this
proof). Consequently, for a giventhe time to finda(, ¢) is O(mar). Recall that does not know
a’s type. Hence we need to determing;, ¢) for all possible types of (i.e., for1 < i < r). This
takesO(m#r?) time. Note that at this stagaua(i, j, ¢) is known for all possible values efand all
possible values of (wherel < i <randl <j <r).

Now consider the time periad= n — 2 when it isb’s turn to offer. The only difference between
the computation fot = n — 1 andt = n — 2 is that for the former case, the time to find (i, j, t)
(for a giveni, j, andt) is O(m) sinceb’s type is known to both agents. However for the latter
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case, the time to findus(s, j, t) (for a giveni, j, andt) is O(mar) sincea’s type is not known to
b (see Equation 14). Consequently, for a givete time to finds(i, t) is O(m#r?). So the time to
determines(i, t) for all possible types df (i.e., for1 < i < r)is O(m#ar3) time. Note that at this
stagereuB(i, j,t) is known for all possible values @éfand all possible values gf(wherel < i <r
andl < j <r).

In the same way, the time required to do all the necessary gt@tipn for each odd time period
t < nis O(m#r?), while that for each even time periodd@m#r?3). Hence, the total time to find
the equilibrium offer for the first time period '(.@(mfrr?’("T‘l)). However, as noted previously, an
agreement may or may not occur in the first time period. If ae@gent does not take placetat
1, then the agents update their beliefs and compute the leguih offer fort = 2 with the updated
beliefs. The time to compute the equilibrium offer for= 2 is O(m#r3(%52)). This process of
updating beliefs and finding the equilibrium offer is regebtit most” = min(2r — 1,n) times.

Hence the time complexity of the package deals, O(mar3(25%)) = O(mard(n — $)1). O

Theorem 16 The package deal procedure generates a Pareto optimal méco
Proof: As per Theorem 121

Theorem 17 For a given first mover, the package deal procedure has a engquilibrium outcome
if =C3 Vv Cyis true.
Proof: As per Theorem 9]

5.2 The Simultaneous Procedure

Theorem 14 applies to each of the> 1 partitions. Hence, from Theorem 15, we know that the

time taken for theth (for 1 < ¢ < p) partition is(’)(\Sc\ﬁcr?’("gT)%). Hence, the time complexity

of the simultaneous procedure@|S. |#.r3(n — £)L). Also, from Theorem 5, it follows that the
simultaneous procedure may not generate a Pareto optirncaioa. Finally, from Theorem 17 we

know that the simultaneous procedure has a unique equiliboutcome if the conditiod’; is true.

5.3 The Sequential Procedure

First, Theorem 14 applies to each of the> 1 partitions. Thus, for the sequential procedure, if
negotiation for theith (for 1 < ¢ < ) partition starts at time,, then it ends at the earliest at time
t. and at the latest bg. + min(2r — 1,n). Second, it follows from Theorem 15 that the time taken
for the sequential procedure @(|S;|#.r%(n — £)Z). Third, the sequential procedure may not
generate a Pareto optimal outcome (see Theorem 5). Fittalygonditions for uniqueness are the

same as those for the simultaneous procedure.

5.4 The Optimal Procedure

It follows from Theorem 13 that, for each agent, the optinralcedure is the package deal. These
results are summarised in Table 4.

6. Multi-lIssue Negotiation for Interdependent Issues

For the independent issues case of Section 4, an agenit fdilissuec (for 1 < ¢ < m) depends
only on its share for that issue and is independent of otlseres However, in many cases, an
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Package deal Simultaneous Sequential
Time of Earliest: 1 Earliest: 1 For thecth partition
agreement Latest:min(2r — 1,n) | Latest:min(2r — 1,n) e =t¢
for all m issues for all m issues th =5 4+ min(2r — 1,n)
fort<c<u
Timetocompute | O(mar*L(n—1)) | O(S:|7r3(n—5)L) | O(S.|7.r*(n—2)I)
equilibrium
Pareto optimal? Yes No No
Unique equilibrium? If =C3Vv Cy If Cs If Cs

Table 4: A comparison of the expected outcomes for the thrdg-resue procedures for the asym-
metric information setting (for the sequential procedufedenotes the start time for the
cth partition, ¢ the earliest possible time of agreement, @nthe latest possible time of
agreement).

agent’s utility from an issue depends not only on its shardlfe issue, but also on its share for
others (Klein et al., 2003). Given this, in this section weu® on such interdependent issues.
Specifically, we model interdependence between the issufedlaws. Consider a package’, 3].
For this package, for an agemof typei, the utility from issuec at timet is now of the form:

Kicxe + X7 xij(xe —x;) ift<n
a [zt 4], ) = J=1A1 7 20
wie(le, v 1) 0 otherwise (20)
and that for an agemtof typeq, it is:
Kicye + X7 X0 (ye —yj) it <n
i (lat, o), 1) = i (e~ 43) . (21)
0 otherwise

where K;. denotes a constant positive real number gpda constant real number that may be
either positive or negative. As before, an agent’s cumudatitility is the sum of its utilities from
the individual issues:

Y oKext ift<n
Ua xt7 t ,t — C:1 wcre — 22
e ylo {O otherwise (22)
YKyl ift<n
Ub xt7 t ,t — c=14YcIe = 23
(291 {O otherwise (23)

Here K denotes a vector analogous to the vedibrexcept that the individual elements of the
latter are all constant positive real numbers, while thdgbeformer may be positive or negative.
Note that in Equations 5 and 6, all the coefficients are pesiiie., ;. > 0for 1 < i < r and

1 < ¢ < m). Butin Equations 22 and 23, the coefficiehf;() may be a positive or a negative real
number.
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The above cumulative utility functions are linear (see &qll1976; Charness & Rabin, 2002;
Sobel, 2005, for other forms of utility functions for inteqgendent preferencé3. As mentioned
before, we chose the linear form for reasons of computdtioactability.

In this setting the vectoK™ and the functions”® and P® are common knowledge to the nego-
tiators. Also, each agent knows its own type, but not thatsobpponent. In addition, each agent
knowsr, §, n, andm. In other words, there is symmetric uncertainty about theooent’s utility
(as we will see in Section 6.4, the results for the asymmetse can easily be obtained from the
following analysis for the symmetric case).

6.1 The Package Deal Procedure

For the cumulative utilities defined in Equations 22 and 2%drem 18 characterises the equilib-
rium for the package deal.

Theorem 18 For the package deal procedure, the following strategigsfa sequential equilib-
rium. The equilibrium strategies far= n are:

Ai,n) = OFFER [0"1,0] IF a’s TURN
b= ACCEPT IFb's TURN

B(i,n) = OFFER [0,6"" 1] IF s TURN
b= ACCEPT IFa’s TURN

for 1 < i < r. For all preceding time periods < n, if [2¢, 3] denotes the offer made at timethen
the equilibrium strategies are defined as follows:

OFFER TRADEOFFAL(K, 8, EUB(¢, 1), 4,4, m,t, P*, P?) IF a’s TURN
If offer gets rejected UPDATE BELIEFS

RECEIVE OFFER and UPDATE BELIEFS s TURN
If (U2([z',y'],t) > EUA(4,t)) ACCEPT else REJECT

A(iyt) =

OFFER TRADEOFFB1(K, 8§, BUA(¢, 1), i, , m,t, P*, P’) IF b’s TURN
If offer gets rejected UPDATE BELIEFS

RECEIVE OFFER and UPDATE BELIEFS s TURN
If (UP(x,y!],t) > EUB(i,t)) ACCEPT else REJECT

B(i,t) =

for1 < < r. Here,sb) = opTA(i,t) and¢ = OPTB(i,t). The earliest possible time of agreement
ist = 1 and the latest possible timefds= min(2r — 1, n).

Proof: As Theorem 8. The only difference between the independenegssetting of Theorem 8
and the present interdependent issues one is in terms okfimtidn for cumulative utilities: in
Equations 5 and 6, all the coefficients are positive (i§., > 0 for 1 < ¢ < r andl < ¢ < m).
But in Equations 22 and 23, the coefficiett,;() may be a positive or a negative real number.
However, the greedy method (given in Theorem 1) for solvhmgftactional knapsack problem of
Equation 15 works for both positive and negative coeffig€htartello & Toth, 1990; Cormen et al.,
2003). Hence, the proof of Theorem 8 applies to this settingyell. [

10. Although in (Pollak, 1976; Charness & Rabin, 2002; Spop@05) these forms are discussed in the context of how
an agent's utility depends on the utility of other agentsgyt may equally well be interpreted for the case where an
agent’s utility for an issue depends on its share for ottares.
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Theorem 19 The time complexity of computing the equilibrium offersthar package deal proce-

dure isO(m#r3T (n — L)) whereT' = min(2r — 1,n).

Proof: As Theorem 11. Since the method for making tradeoffs is theesas that for the setting

with symmetric uncertainty and independent issues ($.€;), the time complexity is the same as
in Theorem 117

It is obvious that Theorems 9 and 12 extend to this settingedis w

6.2 The Simultaneous Procedure

It follows from above that all the results of Section 4.2 gppl this setting as well.

6.3 The Sequential Procedure

It also follows from above that the results of Section 4.3appthis setting as well.

6.4 The Optimal Procedure

It follows from Theorem 13 that the package deal remains fitenal procedure even if the issues
are interdependent. The results for this setting are the sarthose in Section 4 and are summarised
in Table 3.

Finally, consider the asymmetric information setting ottt 5 but in the current context
of interdependent issues. From the above analysis for synenuacertainty with interdependent
issues, it is clear that the method for making tradeoffs memthe same irrespective of whether
the information is symmetric or asymmetric. Consequeifdlythe case of asymmetric information
with interdependent issues, we get the same results asith8gsetion 5.

Recall that this analysis was done for linear cumulativédities. We now discuss how our
results would hold for more complex utility functions thagaon-lineat'. For cumulative utilities
that are nonlinear, the tradeoff problem becomegobal optimization problenwith a nonlinear
objective function. Due to their computational complexgych nonlinear optimization problems
can only be solved usingpproximation method@orst & Tuy, 1996; Bar-Yam, 1997; Klein et al.,
2003). In contrast, our tradeoff problem is a linear optatian problem, theexactsolution to
which can be found in polynomial time (as shown in Theoremsd &). Although our results
apply to linear cumulative utilities, it is not difficult teee how they would hold for the nonlinear
case. First, the time of agreement for our case would holdtieer (nonlinear) functions. This
is because this time depends not on the actual definitionefatients’ cumulative utilities but
on the information setting (i.e., whether or not the infotiora is complete). Second, 1€?(w)
denote the time complexity adiRADEOFFAL for nonlinear utilities for the package deal wjih= 1,
and O(w.) that for thecth partition. Also, letS, denote the partition for whicl¥(w,) is the
highest between all partitions. Then, we know from Theordnthht the time complexity of the
package deal for the setting with symmetric uncertaint9 (sr37 (n — %)). Consequently, the time
complexity of both the simultaneous and the sequentialguoes iSO (w, 73T (n — %)). Third,
while the package deal outcome for our additive cumulattilgies is Pareto optimal, the package
deal outcome for nonlinear utilities may not be Pareto ogkinThis is because (as stated above)

11. Note that bilateral bargaining for which the playerdlitytfunctions are nonlinear has been studied by Hoel (3986
in the context of a single issue as opposed to the multi-isage which is the focus of our study.
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nonlinear optimization problems can only be solved usingr@amation methods while the linear
optimization problem can be solved using an exact methodh(asoof of Theorem 1). Finally,

since the conditions for a unique solution depend on theahdgfinition of cumulative utilities, the
conditions given in Tables 1 2, 3, and 4 may not hold for otems of utility functions.

7. Related Work

Since Schelling (1956) first noted the fact that the outcofrreegotiation depends on the choice of
negotiation procedure, much research effort has beeneatkvotthe study of different procedures
for negotiating multiple issues. For instance, Fershtmi®@90) extended the model developed by
Rubinstein (1982), for splitting a single pie, to sequdniregotiation for two pies. However, this
model assumes complete information, imposes an agendamxagly, and then studies the relation
between the agenda and the outcome of the sequential bagggame. In more detail, for two pies
of different sizes, he analyses the effect of going first @lénge and the small pie.

A number of researchers have also studied negotiationsamitbtndogenous agenda (Inderst,
2000; In & Serrano, 2003; Bac & Raff, 1996). In Inderst (20@yers have discount factors,
but no deadlines. For independent issues, this work assuoraplete information and studies
three different negotiation procedures: package deallsmeous, and sequential negotiation with
endogenous agenda. Their main result is that the packags dea optimal procedure and that for
each procedure there exist multiple equilibria. In and &®r(2003) extend this work by finding
conditions under which the equilibrium becomes unique.eNbat our work differs from both of
these in that we analyse negotiations with both discounbfa@nd deadlines, which we consider
to be much more common with automated negotiations. Morewxedo this for both independent
and interdependent issues without making the completenri#tion assumption.

Bac and Raff (1996) also developed a model that has an endoge@genda. They extended
the model developed by Rubinstein (1985) for single pie &aifgg with incomplete information
by adding a second pie. In this model, the players have diddagtors, but no deadlines. The
size of the pie is known to both agents and the discountintpifas assumed to be equal for all
the issues for both agents. Also, there is asymmetric irdtion: one of the players knows its
own discounting factor and that of its opponent, while theeotplayer knows its own discounting
factor, but is uncertain of its opponent’s. In more detéils factor can take one of two values;
with probability z, andd;, with probability 1 — z. These probabilities are common knowledge. For
this model, the authors determine the equilibrium for thekpge deal and the sequential procedure.
They show that, under certain conditions, the sequentimigature can be the optimal one. However,
there are three key differences between this model and Bugt, we analyse both symmetric and
asymmetric information settings, while Bac and Raff analysly the latter. Second, the negotiators
in our model have a deadline, while in Bac and Raff they do Agfain, we believe our analysis
covers situations that often occur in automated negotiageitings. Finally, Bac and Raff focus on
independent issues, but we analyse both independent amndependent issues.

A slightly different approach (from the above ones) was g Busch and Horstmann (1997).
Again, they extended the model developed by Rubinsteingjl @it by adding a preliminary period
in which the agents bargain over the agenda. The outcomésafttge is then used as the agenda for
negotiating over the issues. In this complete informatiadet, there are two pies for bargaining.
Furthermore, these two issues become available for néigotiat different time points. The players
have discount factors or fixed time costs, but no deadlinexeShere are two issues, there are two
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possible agendas. The outcome for these two agendas is rmp#h that for the package deal.
Their main result is that the players may have conflictindgyences over the optimal agenda. Note
that a key difference between this model and ours is thahaligsues in our model are available
from the beginning, while in their model the two issues bee@wailable at different time points.
Furthermore, Busch and Horstman assume complete infaymatihile we do not.

From all the models mentioned above, perhaps the one tHasist to ours is the one developed
by Inderst (2000). Unlike our work, Inderst assumes comeglgformation and independent issues.
Also, it does not model player deadlines, while we do. Howevelerst does model players’ time
preferences as discount factors. Also, just like our maalklhe issues for negotiation are available
at the beginning of negotiation. In terms of results, Intstows that the package deal is the
optimal procedure. Our study also shows that the packadesidgee optimal procedure for both
agents. Finally, our work provides a detailed analysis efdtiributes of the different procedures
(such as the time of agreement, the time complexity, thet®aimality, and the conditions for
uniqueness), while Inderst does not.

In summary, all the aforementioned models for multi-issegatiation differ from ours in at
least one of three major ways. The players in our model hatle diecount factors and deadlines,
but a general characteristic of the above models is thatlétyeys only have discount factors but no
deadline¥’. Negotiation with deadlines has been studied by Sandhotivatkan (1999) (in the
context of a single issue) and by Fatima et al. (2004) for¢ggential procedure withh = m. Given
this, our contribution lies firstly in finding the equilibriufor all the three procedures. Second, we
analyse both asymmetric and symmetric information settimghile previous work analyses only
the former. Third, we analyse both independent and intengiggnt issues while previous work
focuses primarily on independent issues. Furthermoresttsting literature does not compare the
different multi-issue procedures in terms of their atttédsu(viz. time complexity, Pareto optimality,
unigueness, and time of agreement). By considering thesatudy allows a more informed choice
to be made about a wider range of tradeoffs that are involmedetermining which is the most
appropriate procedure.

Finally, we would like to point that in Fatima et al. (2006)ewonsidered independent issues
and carried out the same study as we do in this work, but in arstnic information setting with
uncertainty about the negotiation deadline (as opposeddertainty over the agents’ utility func-
tions that is the focus of this work). The key result of (Fatiet al., 2006) is similar to the result of
our current work, namely that the optimal procedure in ¢(Ratet al., 2006) is the package deal.

8. Conclusions and Future Work

This paper studied bilateral multi-issue negotiation leswself-interested agents in a wide range of
settings. Each player has time constraints in the form afliitezs and discount factors. Specifically,
we considered both independent and interdependent isadestidied the three main multi-issue
procedures for conducting such negotiations: the packegk tthe simultaneous procedure, and the
sequential procedure. We determined equilibria for eadeguiure for two different information
settings. In the first, there is symmetric uncertainty alibatopponent’s utility. In the second,
there is asymmetric uncertainty about the opponent'stytiliVe analysed both settings for the
case of independent and interdependent issues. For eéioly,set compared the outcomes of the

12. (Fatima et al., 2004) studies a multi-issue model witidtiaes, but it focuses on determining the equilibrium foe o
specific sequential procedure: the one in which each gartitas a single issue.
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different procedures and showed that the package dealimalgor each agent. We then compared
the three procedures in terms of four attributes: the tinmapexity of the procedure, the Pareto
optimality of the equilibrium solution, the unigueness loé tequilibrium solution, and the time of

agreement (see Table 1).

In more detail, our study shows that the package deal is irtli@coptimal procedure for each
party. We also showed that although the package deal mayrbputationally more complex than
the other two procedures, it generates Pareto optimal m&sdqunlike the other two procedures), it
has similar earliest and latest possible times of agreeasetiie simultaneous procedure (which is
better than the sequential procedure), and that it (likeother two procedures) generates a unique
outcome only under certain conditions (which we defined).

There are several interesting directions for extendingtineent analysis. First, in this work, we
modelled the players’ time preferences in the form of distdactors which is the most common
basis for such analysis. However, existing literature (Bu& Horstman, 1997) shows that the
outcome for negotiation with discount factors can diffesnfr the outcome for negotiation with
fixed time costs. It will, therefore, be interesting to extawur results to negotiations with fixed
time costs. Second, our present work analysed the settithgunicertainty about utility functions.
Generalisation of our results to scenarios with other sssiaf uncertainties such as the agents’
discount factors is another direction for future work.
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Appendix A. Summary of Notation

a,b The two negotiating agents.

n Negotiation deadline for both agents.

m Total number of issues.

S The set ofm issues.

S. A subset ofS (S, C ).

M Number of issues in the largest partition.

1 Number of partitions for the simultaneous and sequentiatguiures.

0. Discount factor for issue (for 1 < ¢ < m).

4 An m element vector that represents the discount factor fonthesues.

2! An m element vector that denotes share for each of the: issues at time.
y' An m element vector that denoté's share for each of the: issues at time.
[z!, y' ] The package offered at time

a! Agenta’s share for issue in the equilibrium offer for time period.

Cc

bt

Agentb’s share for issue in the equilibrium offer for time period.

a' Anm element vector that denote®s share for each of the: issues in equilibrium at time
b* An m element vector that denoté's share for each of the: issues in equilibrium at time
[a', ' ] The equilibrium package offered at tine

U Cumulative utility function for agent of type:.

Ul-b Cumulative utility function for ageni of type.

UA(t) Agenta’s cumulative utility from the equilibrium offer for time

UB(t) Agentb’s cumulative utility from the equilibrium offer for time

A(1,7,t) Agenta’s equilibrium offer for timet if a is of typei assuming is typej.

(
B(i,7,t) Agentd’s equilibrium offer for timet if b is of typei assuming: is type;.
A(7,t) Equilibrium strategy for an agentof typei at timet.

(

B(i,t) Equilibrium strategy for an agentof type: at timet.

EUA(7,t) Cumulative utility that an agent of type i expects to get frond’s equilibrium offer at
timet (i.e.,a is the receiving agent artdthe offering agent af).
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EUB(i,t) Cumulative utility that an agerit of type i expects to get froma’s equilibrium offer at
timet (i.e., b is the receiving agent andthe offering agent af).

EUA(4, j,t) Agenta’s expected cumulative utility from its equilibrium offeoiftimet if a is typei
and assuming thatis type;.

EUB(i,j,t) Agentb’'s expected cumulative utility from its equilibrium offeorftimet if b is types
and assuming is typej.

r Number of types for agent (and also the number of types for agéjt

T/ Set of possible types for agemit timet.

T? Set of possible types for ageinat timet.

P% The probability distribution function fok®.

P® The probability distribution function fok? .

K A vector ofr vectors each element of which is in turn a vectorropositive reals.

S A subset ofS (S}/ C S wherei denotesa’s type and; that of b) such that)S;’| > 1 and
Kic — Kz
vc,dES;jK_jc o ij'

TRADEOFFA Agenta’s function for making tradeoffs in the complete informatisetting.
TRADEOFFB Agentb’s function for making tradeoffs in the complete informatisetting.

TRADEOFFA1 Agenta’s function for making tradeoffs in the four incomplete infwation settings:
SUr, SUp, AU, AUp.

TRADEOFFB1 Agentbd’s function for making tradeoffs in the four incomplete infmation settings:
SUr, SUp, AU, AUp.

« Maximum number of packages thek ADEOFFA1 (or TRADEOFFB1) will have to search to find
the one that maximisess (or b's) expected cumulative utility (considering all possiblpes
of a andb).

PA? The set of all possible packages thi&tADEOFFA1 can return at time (¢ denotes:’s type and
j that ofb).

pB./ The set of all possible packages thataDEOFFB1 can return at time (i denotes:’s type and
j that ofbd).
References

Bac, M., & Raff, H. (1996). Issue-by-issue negotiation ithle of information and time preference.
Games and Economic Behavid3, 125-134.

Bar-Yam, Y. (1997).Dynamics of Complex Systenfsddison Wesley.

414



MULTI-ISSUENEGOTIATION WITH DEADLINES

Binmore, K., Osborne, M. J., & Rubinstein, A. (1992). Nonpemtive models of bargaining. In
Aumann, R. J., & Hart, S. (Eds.Handbook of Game theory with Economic Applications
Vol. 1, pp. 179-225. North-Holland.

Busch, L. A., & Horstman, I. J. (1997). Bargaining frictionsargaining procedures and implied
costs in multiple-issue bargaining.conomica 64, 669-680.

Charness, G., & Rabin, M. (2002). Understanding socialgoesfces with simple test3.he Quar-
terly Journal of Economigsl17(3), 817—-869.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.020 An introduction to algorithms
The MIT Press, Cambridge, Massachusetts.

Faratin, P., Sierra, C., & Jennings, N. R. (2002). Using Isirity criteria to make trade-offs in
automated negotiationd@rtificial Intelligence Journal1422), 205-237.

Fatima, S. S., Wooldridge, M., & Jennings, N. R. (2002). Tif&uence of information on negoti-
ation equilibrium. InAgent Mediated Electronic Commerce 1V, Designing Mechmasiand
SystemsNo. 2531 in LNCS, pp. 180 — 193. Springer Verlag.

Fatima, S. S., Wooldridge, M., & Jennings, N. R. (2004). Aeradp based framework for multi-
issue negotiationArtificial Intelligence Journgl152(1), 1-45.

Fatima, S. S., Wooldridge, M., & Jennings, N. R. (2006). Gitieint procedures for multi-issue ne-
gotiation. InProceedings of the Eighth International Workshop on Ageadisted Electronic
Commerce (AMEC)p. 71-85, Hakodate, Japan.

Fershtman, C. (1990). The importance of the agenda in angaiGames and Economic Behavjor
2,224-238.

Fershtman, C. (2000). A note on multi-issue two-sided bangg: bilateral proceduressames and
Economic Behavigr30, 216-227.

Fershtman, C., & Seidmann, D. J. (1993). Deadline effedatisimeificient delay in bargaining with
endogenous commitmeniournal of Economic Theor$0(2), 306—321.

Fishburn, P. C. (1988). Normative thoeries of decision mgkinder risk and uncertainty. In
Bell, D. E., Raiffa, H., & Tversky, A. (Eds.Decision making: Descriptive, normative, and
prescriptive interactionsCambridge University Press.

Fisher, R., & Ury, W. (1981).Getting to yes: Negotiating agreement without giving Houghton
Mifflin, Boston.

Fudenberg, D., Levine, D., & Tirole, J. (1985). Infinite lmmmn models of bargaining with one sided
incomplete information. In Roth, A. (Ed.game Theoretic Models of Bargainingniversity
of Cambridge Press, Cambridge.

Fudenberg, D., & Tirole, J. (1983). Sequential bargainintpwwmcomplete informationReview of
Economic Studie$0, 221-247.

Harsanyi, J. C. (1977)Rational behavior and bargaining equilibrium in games awdial situa-
tions Cambridge University Press.

Harsanyi, J. C., & Selten, R. (1972). A generalized Nashtgwidor two-person bargaining games
with incomplete informationManagement Scienc#8(5), 80—106.

415



FATIMA , WOOLDRIDGE, & JENNINGS

Hoel, M. (1986). Perfect equilibria in sequential bargagngames with nonlinear utility functions.
Scandinavian Journal of Economj@&3(2), 383—400.

Horst, R., & Tuy, H. (1996) Global optimazation: Deterministic approacheSpringer.

In, Y., & Serrano, R. (2003). Agenda restrictions in mudisiie bargaining (ii): unrestricted agendas.
Economics Letters9, 325-331.

Inderst, R. (2000). Multi-issue bargaining with endogesnagendaGames and Economic Behav-
ior, 30, 64-82.

Keeney, R., & Raiffa, H. (1976)Decisions with Multiple Objectives: Preferences and Valtede-
offs New York: John Wiley.

Klein, M., Faratin, P., Sayama, H., & Bar-Yam, Y. (2003). N#gting complex contractslEEE
Intelligent Systems(6), 32—38.

Kraus, S. (2001).Strategic negotiation in multi-agent environmenithe MIT Press, Cambridge,
Massachusetts.

Kraus, S., Wilkenfeld, J., & Zlotkin, G. (1995). Negotiatiaunder time constraints Artificial
Intelligence Journgl75(2), 297-345.

Kreps, D. M., & Wilson, R. (1982). Sequential equilibriutaconometrica50, 863—-894.

Lax, D. A., & Sebenius, J. K. (1986)he manager as negotiator: Bargaining for cooperation and
competitive gainThe Free Press, New York.

Livne, Z. A. (1979). The role of time in negotiation Ph.D. thesis, Massachusetts Institute of
Technology.

Lomuscio, A., Wooldridge, M., & Jennings, N. R. (2003). Asdi#ication scheme for negotiation
in electronic commercelnternational Journal of Group Decision and Negotiatjat(1),
31-56.

Ma, C. A., & Manove, M. (1993). Bargaining with deadlines angberfect player controlEcono-
metricg 61, 1313-1339.

Maes, P., Guttman, R., & Moukas, A. (1999). Agents that buy s&ll. Communications of the
ACM, 42(3), 81-91.

Martello, S., & Toth, P. (1990).Knapsack problems: Algorithms and computer implememtatio
John Wiley and Sons. Chapter 2.

Mas-Colell, A., Whinston, M. D., & Green, J. R. (1998Jicroeconomic TheoryOxford University
Press.

Muthoo, A. (1999).Bargaining Theory with ApplicationsCambridge University Press.

Neumann, J. V., & Morgenstern, O. (194 7heory of Games and Economic BehaviBrinceton:
Princeton University Press.

Osborne, M. J., & Rubinstein, A. (1990Bargaining and Markets Academic Press, San Diego,
California.

Osborne, M. J., & Rubinstein, A. (1994A Course in Game Thearyrhe MIT Press.
Pollak, R. A. (1976). Interdependent preferenc&merican Economic Review6(3), 309—-320.

416



MULTI-ISSUENEGOTIATION WITH DEADLINES

Pruitt, D. G. (1981) Negotiation BehaviorAcademic Press.

Raiffa, H. (1982).The Art and Science of NegotiatioHarvard University Press, Cambridge, USA.
Rosenschein, J. S., & Zlotkin, G. (1994ules of EncounteMIT Press.

Rubinstein, A. (1982). Perfect equilibrium in a bargainmgdel. Econometrica50(1), 97-109.

Rubinstein, A. (1985). A bargaining model with incompletéormation about time preferences.
Econometrica53, 1151-1172.

Sandholm, T. (2000). Agents in electronic commerce: comapbtechnologies for automated nego-
tiation and coalition formation. Autonomous Agents and Multi-Agent Systed(i), 73—96.

Sandholm, T., & Vulkan, N. (1999). Bargaining with deadindn AAAI-99 pp. 44-51, Orlando,
FL.

Schelling, T. C. (1956). An essay on bargainidgnerican Economic Review6, 281-306.
Schelling, T. C. (1960)The strategy of conflictOxford University Press.

Sobel, J. (2005). Interdependent preferences and rediprdournal of Economic LiteratureXLIII,
392-436.

Stahl, 1. (1972). Bargaining Theory Economics Research Institute, Stockholm School of Eco-
nomics, Stockholm.

van Damme, E. (1983Refinements of the Nash equilibrium concdgerlin:Springer-Verlag.
Varian, H. R. (2003)Intermediate MicroeconomicdV. W. Norton and Company.

Young, O. R. (1975).Bargaining: Formal theories of negotiationUrbana: University of lllinois
Press.

417



