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Abstract: This paper deals with the problem of modelling a chemical reactor for the Direct
Reduction of Iron ore (DRI). Such a process is being increasingly promoted as a more viable
alternative to the classic Blast Furnace for the production of iron from raw minerals. Due to
the inherent complexity of the process and the reactor itself, its effective monitoring and control
requires advanced mathematical models containing distributed-parameter components. While
classical approaches such as Finite Element or Finite Differences are still reasonable options,
for accuracy and computational efficiency reasons, an algebraic approach is proposed. A full
multi-physical, albeit one-dimensional model is addressed and its accuracy is analysed.
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1. INTRODUCTION

In the recent years, the need of improving the efficiency,
productivity, and safety of the steelmaking process has
become more urgent, due to rising production costs and
to restrictions imposed by environmental regulations. One
of the increasingly successful routes for steelmaking, is
the gas-based Direct Reduction of Iron Ore (DRI), which
is a greener and more energy-efficient alternative to the
classical Blast Furnace or Reduction Furnace/Melting Fur-
nace processes. In fact, while the primary energy source
for the classical processes is coal, in the DRI case not
only coal, but Natural Gas, gases from coal gasification
(Syngas) or coke oven gas can be used as well, leading to
a reduction of emitted CO2 that can range from 40% to
62% (Duarte et al. (2010)). The economic benefits are also
worth noting, especially in areas where sources of natural
gas are present. Due to the complexity of the process,
which is a nonlinear, multi-physics, distributed-parameter
system, a novel approach for advanced control and fault
diagnosis schemes for such a system is needed. This is
particularly important since a typical plant produces 200
ton/hour of DRI and the cost for steel products is around
500 Eur/ton: by considering an efficiency in the conver-
sion of DRI to finished steel products of 85%, it means
that shutdown costs may reach 2 MEur per day. In this
paper, we address the foundations of those problems, by
proposing a novel model for the DRI process based on
the algebraic formulation. In Section 2, the DRI process is
described, while in Section 3 we explain why a new model
is necessary and we introduce the Algebraic Formulation
approach, which we use in Section 4 to develop the DRI
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model. In Section 5, some simulation results are given.
Some concluding remarks are finally provided in Section 6.

2. THE DRI PROCESS

The DRI (Direct Reduction Iron) process is a complex
chemical process, converting lump ore and/or iron oxide
pellets into highly metallised, stable iron product. The
reactions are obtained by letting circulate a reducing gas,
mainly constituted by hydrogen and carbon monoxide,
through a moving bed of particulate iron ore at temper-
atures on the order of 700°C to 1000°C (Zervas et al.
(1996)), following one of the two most successfull DRI
commercial solution: the MIDREX and the ENERGIRON
(Kolbeinsen (2010)). The reactions happen inside a shaft
reactor, that can reach pressure values of about 6 bar
and temperature as high as 1100 degrees C. In these
conditions, more typical of chemical, rather than steel
plants, safety issues should be considered very carefully
in the DRI plant design, to avoid injuries, environmental
damage or plant damage, as well as to maximize through-
put (Gonzalez Lopez and Noriega (2008)). As in Zugliano
et al. (2013), a one-dimensional model will be considered
here. Each cell is modeled taking into account pellet and
gas flows, mass/molar concentration and thermal energy
transport, heat exchange between gas and solid phases,
and chemical reactions, making it a multi-physics prob-
lem. The following chemical reactions are considered: the
reduction reactions

3Fe2O3 +H2
−−⇀↽−− 2Fe3O4 +H2O,

3Fe2O3 +CO −−⇀↽−− 2Fe3O4 +CO2,

Fe3O4 +H2
−−⇀↽−− 3 FeO + H2O,

Fe3O4 +CO −−⇀↽−− 3FeO + CO2,

FeO + H2
−−⇀↽−− Fe + H2O,



FeO + CO −−⇀↽−− Fe + CO2,
the steam reforming

CH4 +H2O −−⇀↽−− 3H2 +CO,

CH4 +CO2
−−⇀↽−− 2H2 + 2CO

and the methan cracking

CH4 −−⇀↽−− C+ 2H2.

3. THE ALGEBRAIC FORMULATION

Due to the large dimensions of the reactor and the sig-
nificant gradients expected, it is natural to model it
as a distributed-parameters system (Parisi and Laborde
(2004); Nouri et al. (2011); Zugliano et al. (2013)). A
classical approach is to rely on some PDE discretization
such as FDTD, FEM or FV. In this paper an Algebraic
Formulation (AF) approach will be followed, which avoids
entirely the discretization step by using algebraic equa-
tions in first place (Ferrari et al. (2013); Tonti (2001,
2013)). The AF, as well as other direct algebraic meth-
ods such as DEC (Desbrun et al. (2005)), MD (Bossavit
(1998)) or FIT (Clemens and Weiland (2001)), presents
many advantages, and leads to a structure-preserving and
conservative numerical scheme.

The AF makes use of global variables, that is, variables
associated not to a point, like field variables in differential
theories, but to a finitely-sized domain. For instance, a
global variable in electromagnetism is the magnetic flux
through a surface, which is measured in Wb, whereas a
field variable is the magnetic flux density at a point on
the surface, measured in Wb m

−2 . Global variables can be
divided in three main categories: configuration v., which
define the state of a system; source v., which describe
all the causes that can change the configuration; and
energy v., which can be computed from the previous
two. Variables, as usual, are linked by equations, namely:
definition eq., balance eq. and constitutive eq.. The key
point of the AF is the association of variables to a discrete
space and time reference framework, called a complex
(Munkres (2000)). The complex (see Fig. 1) is made up
of oriented finite geometric elements, the p-cells, with
p ∈ {0, . . . , 3} being the geometric dimension, which
are denoted with the letters I (time instants), T (time
intervals), P (points), L (lines), S (surfaces), and V

(volumes), and can be endowed with either an internal
or an external orientation, in the latter case a tilde being
used. For a generic variable a, the notation a[I,P] denotes
for instance its association with the time element I and
the spatial one P, while the notation ∂X is used for the
boundary of the generic element X, and X− or X+ for the
previous or next element when ordering is clear from the
context.

In order to allow the definition of the physical variables
and the equations of a given problem, the computational
domain needs to be decomposed both in space and in time
into two staggered complexes: the primal (internal orien-
tation), and the dual (external orientation). An important
aspect of the AF is that, even when a problem is solved in
one dimension only, as in the present case, the elements of
the spatial complex are anyway three dimensional entities.
In our case the reactor, being an axially symmetric object,
is divided into a number of stacked cylindrical frusta, the
cells, along its axis (see Fig. 1).
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Fig. 1. a) An illustration of the of the DRI reactor, and
it spatial tessellation (with only four cells for clarity),
showing 0, 1, 2 and 3-cells; b) a subdivision of the
time-line into primal and dual time instants ti and t̃i,
and intervals τi and τ̃i.

4. AN ALGEBRAIC MULTIPHYSICS MODEL OF A
DRI REACTOR

Following the description in (Zugliano et al. (2013)), we
will model three different, but fully coupled phenomena:
gas and pellet flow, heat exchange, chemical reactions. We
assume the following:

• plug flow, both for gas and pellet;
• quasi-static approximation for gas flow dynamics

(time to reach steady state for pressures and velocities
is negligible)

• istantaneous mixing of gas or of solid;
• heat conduction and concentration diffusion is negli-

gible;
• Unreacted Shrinking Core pellet model.

4.1 Gas and pellet flow

The flow model must guarantee the conservation of mass
and momentum. An Eulerian formulation will be used, and
following Tonti (2013) we will associate contents to dual
volumes, and flows to dual surfaces. Gas mass conservation
can be easily written as

Mg,rate[T, Ṽ] = −(Mg,adv[T, ∂Ṽ]) +Mg,source[T, Ṽ] (1)

with Mg,rate[T, Ṽ] ,
Mg [I

+,Ṽ]−Mg [I
−,Ṽ]

|T| being the rate of

change of the mass content in the generic dual 3-cell,



Mg,adv[T, ∂Ṽ] ,
Mg[I

−, Ṽ−]

|Ṽ−|
vg[T, S̃−]|S̃−|

−
Mg[I

−, Ṽ]

|Ṽ|
vg[T, S̃]|S̃|

the flow of mass through the boundary of that cell as-
suming the gas is moving upwards (see Fig. 1), and

Mg,source[T, Ṽ] the rate of production of mass inside that
cell, for instance due to chemical reactions. The conserva-
tion of gas momentum content pg[Ĩ, Ṽ], instead, reads

pg[Ĩ
+, Ṽ]− pg[Ĩ

−, Ṽ] =

=
(

pg[T̃,P+]|S̃+| − pg[T̃,P−]|S̃−|
)

|T̃|+ Ig,V [T̃, Ṽ]

(2)

this last equation being simply the equivalent of the second
law of motion of Newton, with pg[T̃,P] being the pressure
of the gas at the primal point P at the center of the dual
volume Ṽ and Ig,V [T̃, Ṽ] the impulse of volume forces
acting on the gas. An important force making up this
term, apart the gravity effect, is the drag experienced by
the gas flowing through the packed bed of solid pellet.
In order to model this, the Ergun law (Ergun (1952))
will be employed, which relates the pressure drop along
a stretch of straight pipe filled with a packed bed, to the
fluid velocity. As it is an experimental law, it is very easy
to write it in algebraic formulation:

pg[T̃,P+]− pg[T̃,P−] =
150µ|L|

D2
p

(1− ǫ)2

ǫ3
vg[T, S̃]

+
1.75|L|ρg

Dp

(1 − ǫ)

ǫ3
v2g [T, S̃] (3)

with µ being the gas mixture dynamic viscous friction
coefficient, |L| the length of the primal 1-cell representing
the pipe stretch, ǫ the bed void fraction, ρg the gas
density and Dp the pellet equivalent diameter, with the gas
quantities being referred to the undisturbed flow. Finally,
we must include the gas state equation as a constitutive
relation linking together the gas state variables

pg[T̃,P] =
ρg[I, Ṽ]

M̄Ng
[I, Ṽ]

RTg[T̃,P] (4)

with R being the ideal gas constant, M̄Ng
[I, Ṽ] ,

∑

s∈Sg
N(s)

g [I,Ṽ]M
(s)

Ng

N̄g [I,Ṽ]
the weighted average of the molar

mass, and N̄g[I, Ṽ] ,
∑

s∈Sg
Ng,s[I, Ṽ] the total number

of gas moles inside the dual cell volume. The equations
for the solid phase are analogous and will not be repeated,
modulus the fact that this flow is assumed to be incom-
pressible and that we neglige the drag exerted by the gas.

4.2 Thermal model

The thermal model allows to enforce conservation of in-
ternal energies Ug[I, Ṽ] and Up[I, Ṽ], by balancing all the
different heat terms (see Table 2). The balance equations,
remembering again that the gas and pellet flows directions
are assumed to be fixed, are thus

Ug[I
+, Ṽ] = Ug[I

−, Ṽ]+
(

Qg,adv[T, ∂Ṽ]−Qg,conv[T, Ṽ]

−Qg,rad[T, Ṽ]−Qg,wall[T, Ṽ] +
∑

r∈R

Q
(r)
g,react[T, Ṽ]

)

|T|

(5)

Up[I
+, Ṽ] = Up[I

−, Ṽ]+
(

Qp,adv[T, ∂Ṽ] +Qg,conv[T, Ṽ]

+Qg,rad[T, Ṽ] +
∑

r∈R

Q
(r)
p,react[T, Ṽ]

)

|T| (6)

with Qg,adv[T, ∂Ṽ] and Qp,adv[T, ∂Ṽ] being computed
similarly to the mass advection terms of subsection 4.1.

The computation of Q
(r)
g,react[T, Ṽ] and Q

(r)
p,react[T, Ṽ] is

detailed in subsection 4.3, while the other terms are
computed as

Qg,conv[T, Ṽ] = hcAc

(

Tg[T̃,P]− Tp[T̃,P]
)

,

Qg,rad[T, Ṽ] = Acσ
ǫp

1− (1− ǫp)(1− αg)

(

ǫpT
4
g [T̃,P]

−αgT
4
p [T̃,P]

)

Qg,wall[T, Ṽ] = 2πkw
TwIN

[T̃,P]− TwOUT
[T̃,P]

log
rwOUT

rwIN

|L̃|

where hc is the convection coefficient, Ac is the exchange
surface, ǫp and ǫg are pellet and gas emissivity, respec-
tively, αg is gas absorbance, kw is the wall thermal con-
ductivity, rwIN

, rwOUT
and TwIN

, TwOUT
are the reactor

radii and the temperature, inside and outside the wall
respectively, |L̃| is the length of the dual 1-cell. Finally,
the links between internal energies and temperatures are
the constitutive equations Ug[I, Ṽ] = fUg

(Tg[T̃,P]) and

Up[I, Ṽ] = fUp
(Tp[T̃,P]) where the functions fUg

and fUp

represent the fact that the gas and solid heat capacities
Cp,g and Cp,p are temperature dependent.

4.3 Chemical species balance

The chemical part of the model must enforce the conser-
vation of the molar content for each specie:

N (s)
g [I+, Ṽ] = N (s)

g [I−, Ṽ]

+

(

N
(s)
g,adv[T, ∂Ṽ] +

∑

r∈R

N
(s)
g,react[T, Ṽ]

)

|T|, ∀s ∈ Sg

(7)

for the gas, and similarly for the solid. It is conve-

nient here to introduce the quantity O
(r)
react = (Krp

(ir)
g −

K ′
rp

(i′r)
g )Ajrnp that represents the number of oxygen moles

reduced in an unitary volume and time by the r–th reac-
tion, with Kr and K ′

r being the direct and the inverse
cinetic constants, ir ∈ Sg the reducing gas specie, i′r ∈ Sg

the oxydized gas specie, Ajr the contact area per pellet
of the reduced solid specie jr ∈ Sp in the USC model,
and np the number of pellets in an unitary volume. By



using this quantity, and the reaction equations introduced
in Section 2, it is straightforward to compute the contri-

butions of a given reaction to the terms N
(s)
g,react[T, Ṽ],

N
(s)
p,react[T, Ṽ] and Q

(r)
p,react[T, Ṽ] . For instance, the total

contribution to N
(Fe2O3)
p,react [T, Ṽ] is equal to −3(O

(1)
react +

O
(2)
react)|Ṽ|, while the contribution to the generic term is

Q
(r)
p,react[T, Ṽ] = O

(r)
reactHr|Ṽ|, with Hr the r–th reaction

entalpy.

Table 1. Gas and pellet flow variables

Symbol 1 Kind 2 Description

Mx[I, Ṽ] C Mass content inside dual 3-cells

pg[T̃,P] C Pressure of gas at primal 1-cells

ρg[I, Ṽ] C Gas density inside 3-cells

vx[T, S̃] S Velocity through dual 2-cells

Mx,adv[T, S̃] S Mass flow through dual 2-cells due
to advection

Mx,react[T, Ṽ] S Mass production rate due to chem-
ical reactions, inside 3-cells

Table 2. Thermal model.

Symbol 1 Kind 2 Description

Tx[T̃,P] C Temperature at primal 0-cells

Ux[I, Ṽ] E Thermal energy content inside
dual 3-cells

Qx,adv[T, S̃] S Heat flux through dual 2-cells due
to advection

Q
(r)
x,react[T, Ṽ] S Heat production due to chemical

reaction r ∈ R, inside 3-cells

Qg,conv[T, Ṽ] S Heat transfer in gas due to convec-
tion with pellet, inside 3-cells

Qg,wall[T, Ṽ] S Heat transfer in gas due to con-
vection with reactor walls, inside
3-cells

Qg,rad[T, Ṽ] S Heat transfer in gas due to thermal
radiation, inside 3-cells

4.4 Resolution scheme

A clear advantage of the AF is that it leads in a natural
way to explicit time marching schemes (Ferrari et al.
(2013); Tonti (2013)), as can be verified by looking at
Eqs. (1), (2), (5), (6) (7). Anyway, due to the problem
being multiphysic and fully coupled, and to the presence of
numerous parameters that are temperature, pressure and
concentration dependent, a scheme for solving the previ-
ous equations in the right order is needed. Furthermore,
boundary conditions and initial values must be defined. In
order to ease the following presentation, we will consider a
one dimensional cell complex containing T primal 0-cells
in time and N primal 0-cells in space, and a simplified
notation will be introduced, such as

X(n, k) ≡ X [·, ·]

where X stand for a generic variable, and n ∈ {0, 1/2, 1, 1+
1/2, . . . , T − 1} and k ∈ {1/2, 1, 1 + 1/2, . . . , N − 1/2} are
two integers which identify in time and space the cell which
1 The index x can refer to either gas (g) or solid (p)
2 C = configuration, S = source, P = parameter, E = energy

the variable is referred to. In particular, integer values of
n are used for referring to primal instants or their corre-
sponding dual interval, while fractional values for primal
intervals or their corresponding dual instants. Similarly,
integer values of k are used for primal points, dual lines,
primal surfaces or dual volumes, and fractional values for
dual points, primal lines, dual surfaces or primal volumes.
The chosen boundary conditions will constrain the value
of the gas velocity, pressure, temperature and composition
at the gas inlet, and the solid velocity, temperature and
composition at the upper inlet, as in practice these values
are known and/or measurable on line. As initial conditions,
a uniform temperature, pressure and nominal composition,
representing a cold reactor, will be chosen. Considering the
modelling assumptions, at the generic n–th time instant
the resolution scheme will comprise the following steps,
in order to compute the new state of the gas phase (the
procedure is analogous for the solid phase)

(1) The pressures pg(n, k) are computed from eq. (2), and
from (3) and vg(n − 1/2, k − 1/2), starting from the
bottom boundary value pg(n, 1) and moving upwards
in the reactor;

(2) The mass content Mg(n, k), the internal energy
Ug(n, k) and the molar content Ng(n, k) are updated
using eqs. (1), (2) and (7), and the source terms
referred to the time interval n− 1/2

(3) The temperature Tg(n, k) is computed as Tg(n, k) =

Tg(n− 1, k) +
Ug(n,k)−Ug(n−1,k)

Cg,p(n−1/2,k) by applying the defi-

nition of heat capacity Cg,p ;
(4) All the physical parameters that are time varying are

updated (such as gas density, heat capacity, viscosity,
absorbance, etc ...)

(5) The gas velocity vg(n+ 1/2, k+ 1/2) is computed from
vg(n+ 1/2, k − 1/2) and eq. (1) and (4), starting from
the bottom boundary value vg(n+1/2, 1/2) and moving
upwards in the reactor;

(6) All the advection terms referred to the time interval
n+ 1/2 are computed

Table 3. Chemical species balance.

Symbol 1 Kind 2 Description

N
(s)
g [I, Ṽ] C Molar content of gas

specie s ∈ Sg ,

{H2, CO, H2O, CO2, CH4, N2}
inside dual 3-cells

N
(s)
p [I, Ṽ] C Molar content of solid

specie s ∈ Sp ,

{Fe2O3, FeO, Fe, C, Gangue}
inside dual 3-cells

Tx[T̃,P] C Temperature at a primal 0-cells

pg[T̃,P] C Pressure of gas mixture at primal
1-cells

p
(s)
g [T̃,P] C Partial pressure of gas specie s ∈

Sg at primal 1-cells

M
(s)
Nx

P Molar mass of specie s

N
(s)
x,react[T, Ṽ] S Molar production rate of specie s

due to chemical reactions, inside 3-
cells

Q
(r)
x,react[T, Ṽ] S Heat production due to chemical

reaction r ∈ R, inside 3-cells



(7) All the source terms due to chemical reactions, or heat
transfer, are computed.

As it can be seen, steps from 1) to 4) are needed for up-
dating configuration and parameter variables to the actual
time instant, using the source terms of the previous inter-
val; steps 5) to 7) are needed, instead, for computing the
source terms for the next time interval. A problem that can
arise in “closing” all the equations with this scheme, is that
due to the nonlinearity of the constitutive eq. (4) and/or
of the time varying parameters, the gas density predicted
by eq. (1) may not be consistent with eq. (4), especially
during transients. In order to mantain this discrepancy
at a negligible level, a prediction/correction approach is
introduced in step 5), so that the computed velocity is
corrected in order to account for the gas espansion or
contraction predicted by eq. (4). Similar approaches are
common in numerical modelling of compressible fluid flow
(see for instance Xiao (2004); van der Heul et al. (2003))
and in the present case the proposed correction has proved
to make the gas densities converge in a small number of
iterations, as will be shown in the next section.

5. SIMULATION RESULTS

In this section, we illustrate the effectiveness of the pro-
posed approach by analyzing the simulation behaviour of
a "toy model" with only 4 cells. In figure 2, we analyze the
dynamics of the molar fractions, both for gas and pellet,
along the four cells during the length of the simulation.
After that, we checked moles balances (see an example in
Fig. 3), by computing:

Nin(n, k) =

n−1
∑

m=0

Nflow(m+ 1/2, k − 1/2)

Nout(n, k) = −

n−1
∑

m=0

Nflow(m+ 1/2, k + 1/2)

Nreact(n, k) =

n−1
∑

m=0

Nchem(m+ 1/2, k)

Nstore(n, k) = N(n, k)

Finally, we verified energy balance checks (see Fig. 4).

6. CONCLUDING REMARKS

In this paper, we developed a new model for the DRI
process based on the Algebraic Formulation. This work
will pave the base for advanced Model–Based Control or
Model–Based Fault Diagnosis schemes. As a future work
we are going to simulate and validate a 160 cells model
and we are going to study some faulty scenarios. The ob-
jective is the implementation of a distributed monitoring
architecture Ferrari et al. (2012); Boem et al. (2013), by
considering each cell as a subsystem. One of the main
challenges, apart from the complexity of the chemical
plant, is that there are only few sensors in the real process,
measuring only some of the state variables (input and
output of the reactor) and so the behavior of gas and pellet
in the internal cells has to be reconstructed.
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Fig. 2. Molar fractions dynamics for gas and pellet species in the four cells.
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Fig. 3. Mole balance checks for two elements (steam and iron) in the four cells.
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Fig. 4. Energy balance checks for gas and pellet species in the four cells.


