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Abstract—In a modern FPGA system-on-chip design, it is often
insufficient to simply assess the total power consumption of the
entire circuit by design-time estimation or runtime power rail
measurement. Instead, to make better runtime decisions, it is
desirable to understand the power consumed by each individ-
ual module in the system. In this work, we combine board-
level power measurements with register-level activity counting
to build an online model that produces a breakdown of power
consumption within the design. Online model refinement avoids
the need for a time-consuming characterisation stage and also
allows the model to track long-term changes to operating
conditions. Our flow is named KAPow, a (loose) acronym
for ‘K’ounting Activity for Power estimation, which we show
to be accurate, with per-module power estimates as close to
±5mW of true measurements, and to have low overheads.
We also demonstrate an application example in which a per-
module power breakdown can be used to determine an efficient
mapping of tasks to modules and reduce system-wide power
consumption by over 8%.

1. Introduction

In a world increasingly dominated by system-on-chip
(SoC) designs, power efficiency is of ultimate concern due
to the dark silicon effect: more transistors can be placed
on a die than can be continuously switched. Designers
put a large amount of effort into managing this challenge
up-front, but many things can change once a system is
manufactured and deployed: to simply assume worst-case
behaviour incurs significant performance penalties under
average conditions. For example, a system may be pro-
duced where, due to variation, some modules are more
power-efficient than others. An intelligent, self-aware system
might independently control the power consumption of each
module using dynamic frequency scaling. Tasks could then
be mapped to these modules in a way that delivers the
best overall performance given the constraints of the power
budget, available hardware and work to be done.

Such runtime techniques would be particularly useful
for FPGAs, where the shortened design cycles reduce the
time available for offline analysis. FPGAs’ reconfigurable
hardware makes it more difficult to implement well estab-
lished techniques, such as power gating, but also offers
great opportunities for runtime adaptation. Unfortunately,
the self-awareness necessary to deliver this vision is cur-
rently missing from the power consumption toolbox: we

can measure system-wide power consumption at runtime
and forecast per-module contributions at design-time, but
we cannot determine such a breakdown online.

1.1. Per-module Online Power Modelling

While power measurement at Vdd pins is common, man-
ufacturing SoCs with per-module power domains is usually
impractical due to increased metal and pad costs, particu-
larly for a configurable technology such as the FPGA. A
more feasible approach is to instead monitor the switch-
ing activity within each module, since switching is a key
indicator of dynamic power. Models that forecast power
consumption based on predicted switching activity are well
established for use at design-time, however inaccuracies
inevitably arise from assumptions made regarding data pat-
terns and operating conditions. Some of these assumptions
can be avoided by training a model during commission-
ing, but, unless the external conditions are static and all
the possible system behaviour is captured by the training
programme, such a model would be running blindly and
errors will begin to accumulate. Instead, what is needed is
a means to calculate a runtime power breakdown without
relying on a stale model.

Figure 1 illustrates the benefits of an online, activity-
based power model—described in this paper—used to esti-
mate power consumption. The plot shows the error between
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Figure 1: Error accumulations in online- vs offline-generated
signal activity-to-power models under voltage scaling



modelled and externally measured power for a system mod-
ule as its supply voltage is lowered, comparing an online
model to an offline version based on ordinary least squares
(OLS). As the operating conditions deviate from their nom-
inal values, the error in the offline power model increases,
while the online model quickly adapts. The effects of dif-
ferent classes of input data, operating modes and exogenous
conditions, such as temperature, voltage and degradation,
can all be captured online, with the resulting model being far
more useful for runtime control in a dynamic environment
than its offline counterpart. Note that while Figure 1 is
included here for illustrative purposes, the system its data
was obtained from is that described in Section 6, run on the
platform explained in Section 5 using the online algorithm
described in Section 4.

Using an adaptive online model in an embedded sys-
tem is more practical than ever thanks to readily available
general computing resources. FPGA-SoCs with hardened
multicore CPUs are ideal platforms to use since the general-
purpose processors can carry out infrequent incremental
model updates and optimise the computationally intensive
tasks that run in soft logic.

In this paper, we describe the first runtime modelling
framework providing a per-module power breakdown in an
FPGA system, making the following novel contributions:

• We describe an automated tool flow capable of in-
strumenting arbitrary HDL for runtime monitoring
of signal activity.

• We apply system identification techniques to allow
an activity-to-power model for any SoC design to be
trained and updated at runtime.

• We experimentally quantify the relationships be-
tween model accuracy and the incurred hardware and
software overheads.

• We show how knowledge of per-module behaviour
can facilitate the power-efficient mapping of tasks to
hardware, leading to an over-8% power reduction.

2. Background

The power consumed by a CMOS integrated circuit can
be split into static and dynamic components: static power
consumption is a property of the process technology and
operating conditions, while dynamic power originates from
the charging and discharging of circuit nets due to switching
activity. Both components can vary at runtime and need to be
considered by a model, however dynamic power is the only
consideration required for a per-module breakdown as it is
relevant to runtime decisions regarding clock frequency and
scheduling. Equation 1 describes the relationship between
dynamic power Pdynamic, switching activity αi on a net i,
operating frequency f , intrinsic capacitance Ci and supply
voltage Vdd.

Pdynamic =
∑
i

αifCiV
2

dd (1)

Power estimation tools are widely used at compile-
time to ascertain whether designs will meet their power

specifications and to inform decisions on packing, thermal
management and power supply capacity. These tools initially
estimated power consumption by simulating circuits with
typical test vectors and later using vectorless, probabilistic
techniques [1]; the latter style has been further applied to
FPGAs to facilitate power-aware compilation [2]. As the
complexity of FPGA applications has increased, so too has
the need for high-level power estimation models for modular
systems [3]. These statistical, learning-based models are
trained using activity and power estimates as well as re-
source utilisation, allowing implementations to be compared
without performing placement and routing.

Prior work [4] proposed the evaluation of system-wide
power consumption through a dynamic power monitoring
approach using activity counters. Therein, signals were auto-
matically selected for activity counting and an offline model
was developed through simulation to relate these activity
counts to power: realtime activity measurements facilitated
runtime power estimation. Because the model was statically
trained, however, the results were found to have ±15%
error. Moreover, observation only of overall system power
does not provide sufficient information to deploy adaptive
strategies such as dynamic voltage and/or frequency scaling,
task migration or power gating.

3. Tool Flow

Our automated tool flow comprises two main stages:
signal selection, which identifies nets likely to be correlated
with high power consumption, and instrumentation, which
adds logic to them to allow their behaviour to be monitored
online. In this work, we monitor only synchronous events
at rising clock edges on these signals, rather than those
introduced asynchronously by glitches; the online model we
use will, however, automatically tune itself to add more
weight to signals that are prone to glitching. We target
systems composed of multiple modules (IP blocks, typically
hardware accelerators) described in HDL and assembled in
Altera’s QSys system integration tool. These are transpar-
ently instrumented in order to report their own switching
activity while remaining functionally identical. We assume
a master CPU-slave accelerator model, corresponding to
the typical use of newer FPGA-SoC devices: in this work,
specifically the Altera Cyclone V SoC family.

The most straightforward approach to instrumenting a
module would be to analyse (or simulate) its HDL in order
to determine signals of interest before augmenting it with
activity counters. Two issues exist with this method: firstly,
estimating the power consumption of individual signals
based solely on behavioural HDL can be inaccurate since
neither physical resources nor the data that exercise them
are considered [3] and, secondly, augmentation of the HDL
with instruments would likely cause circuit mapping to be
different, thereby altering the very thing one wishes to
observe. The latter problem is similar to that faced when
inserting timing [5] or debugging infrastructure [6], both of
which are even more sensitive to any circuit perturbations.
Our flow, shown in Figure 2, overcomes these issues to
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Figure 2: KAPow tool flow

some extent by performing signal selection and inserting
instrumentation using placed and routed netlists.

Some minor preprocessing must be performed on each of
the M modules to be instrumented before compilation: each
is modified to accommodate eight additional words within
its address space for instrumentation control. Following this,
the modules’ HDL is compiled and the resultant netlists
extracted as Verilog Quartus Mapping (VQM) files [7]. In
order to identify the signals that best indicate power con-
sumption, each module is fed through Altera’s design-time
power analysis tool, PowerPlay, as described in Section 3.1.
Selected signals are augmented with activity counters (de-
tailed in Section 3.2) by modifying the VQMs, which are
then substituted for the modules’ original HDL within QSys.
Finally, the system is compiled as normal: importantly, all
VQM primitives are fully preserved.

3.1. Signal Selection

The purpose of signal selection is to identify nets in
the design that are strongly indicative of their modules’
power consumption. We do this by using PowerPlay to
report nets with high estimated switching activity, since
these should consume the most power. Altera report that
PowerPlay’s power estimates are accurate to within ±20%
of true measurements when provided with realistic activity
data [8]. The tool makes power consumption estimates
by summing the static and dynamic power components
contributed by all logic and routing resources based on a
detailed database of device characteristics. Dynamic power
components are scaled using relevant clock frequencies and
switching forecasts from one of two sources: in vectored
mode, switching rates are derived from a simulation, while
in vectorless mode, they are estimated using statistical meth-
ods instead [9]. A vectorless estimation starts from primary
inputs and propagates switching rates through all nets by
considering the Boolean functions that connect them.

Although vectorless estimation is known to be less
accurate than its vectored counterpart, this is the method
we adopt for signal selection because it is general-purpose:
it is applicable to any circuit, even those without source
or testbench code or indicative test vectors. We leave the
switching rate for primary inputs at its default value of
12.5%. Since we only use PowerPlay to identify signals to
monitor, the accuracy of those signals’ estimated activities
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Figure 3: Simplified view of a Cyclone V ALM

is essentially irrelevant as they will be measured at runtime.
Thus, the only important factor at this stage is whether they
are likely to have a high impact on power consumption. The
tool produces a file containing switching rates for all signals,
from which we select the N—a user-selectable parameter—
most frequently toggling.

We note that PowerPlay’s estimates of power consump-
tion are inherently inaccurate and do not capture any dy-
namic shifts brought about through changing input data
or environmental conditions. However, for the purposes
of identifying the ‘hot’ signals at design-time this is not
important since the coefficients associated with these signals
will be determined and tuned at runtime.

3.2. Instrumentation

At the heart of any instrumentation that counts syn-
chronous events is an efficient counter structure. We use
linear feedback shift register (LFSR)-based counters because
they are smaller and faster than arithmetic counters: four
LFSR bits can be placed in each adaptive logic module
(ALM) of the Cyclone V architecture we target as opposed
to two binary counter bits due to the presence of only two
full adders. Outputs are not sequential; however, since each
counter has relatively few bits (justified in Section 5.2), the
decoding is easy to perform in software with a lookup table.

A low-overhead single-bit scan chain is sufficient to
read out the activity counts since the required sampling
rate is low. Reading out the counters’ contents also shifts
zeroes into the head of the scan chain: an efficient reset
method. An advantage of the Cyclone V architecture is that
register resources each have two data input ports, as shown
in Figure 3: we use one to capture the next state of the
counting logic while the second forms the scan chain input,
avoiding the use of a soft multiplexer.

Figure 4 shows the full, scan-capable activity counter.
When a positive edge is detected and the instrument is
enabled (EN = 1), the LFSR’s clock enable (CE) is driven
high, causing it to advance to its next state since SLOAD is
held permanently high. When the scan chain is in operation
(SE = 1), the LFSR does not shift into its next state, taking
on the value at its scan input instead.

Scan chain read-back is accomplished through a FIFO
instantiated as part of a template, shown in Figure 5, which
wraps each instrumented module. Clock domain crossing,
if required, is handled automatically. To take an activity
measurement, the counters are enabled for a period of time
dictated by an adjustable ‘instrumentation lifetime’ counter,
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after which the contents of the scan chain can be read out
across the system bus via the FIFO.

While we have optimised our design for a particular
device family, similar activity counters and read-back infras-
tructure could easily be implemented in alternative FPGAs.
Similarly, although our flow was built upon Altera tools,
a Vivado-based version targetting Xilinx devices would be
largely equivalent in structure.

4. System Identification

Signal activity can be translated into a power estimate
using a weighted linear model, with partial system behaviour
used to dynamically update the coefficients via methods of
system identification [10]. Figure 6 shows a typical system
identification setup in which an input vector, a, is fed into
both a black box—‘black’ since this technique has no, nor
needs any, understanding of the system’s internals—and its
model. Coefficient vector x̂ is an estimate of x, the latter
containing the ‘true’ coefficients of the system. Outputs of
the system and model, y and ŷ, respectively, are used to form
an error, e: an adaptive algorithm seeks to tune x̂ in order
to drive e towards zero for the latest observation as well
as those that preceded it. We assume a linear relationship
between activities a and measured system power y, as
shown in Equation 2.

y = aTx (2)

In prior work [4], a non-adaptive offline model requiring
multiple (a, y) observation pairs for training was used.
A vector of y and matrix of a were formed from these
pairs, allowing Equation 2 to be solved in the least squares
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Figure 6: System identification overview

sense to find x̂, which remained fixed during runtime. By
contrast, the identification algorithm we use is recursive
least squares (RLS) [11], which iteratively updates x̂ as
new measurements arrive. The RLS update function is of
the form x̂[t] = x̂[t − 1] + f(e[t], k[t]), as defined in
Equations 3, 4 and 5. k is the gain vector, containing factors
determining the scaling of each coefficient, P the inverse
covariance matrix, capturing the partial correlations between
input variables, and λ the forgetting factor, a parameter
determining the memory of the algorithm. λ = 1 means
that all prior observations are given equal weighting (infinite
memory) and is used for describing time-invariant systems,
whereas lesser values allow prior samples to be assigned
exponentially decaying weights.

k[t] =
λ−1P [t− 1]a[t]

1 + λ−1a[t]TP [t− 1]a[t]
(3)

P [t] = λ−1P [t− 1]− λ−1k[t]a[t]TP [t− 1] (4)
x̂[t] = x̂[t− 1] + e[t]k[t] (5)

With a linear model, it is straightforward to compute
the power contribution of each module m, ŷm, since the
model’s coefficients can be partitioned and its individual
power estimates computed as shown in Equations 6, 7, 8
and 9. Scalars as and x̂s represent the ‘input’ and coefficient,
respectively, for the device’s static power which, for us, also
includes the dynamic power consumed by resources that are
not correlated with module activity, such as the SoC bus. We
keep as constant, allowing the model to tune x̂s over time.
The dynamic power consumed by the activity counters them-
selves is included within the respective modules’ estimates
since their own switching is dictated by the behaviour of
the module to which each is connected.

a = [as a0 a1 . . . aM−1] (6)
x̂ = [x̂s x̂0 x̂1 . . . x̂M−1] (7)

ŷm = aT
mx̂m (8)

ŷ = asx̂s +

M−1∑
m=0

ŷm (9)

5. Errors and Overheads

Experiments were performed to investigate how model
accuracy and overheads change as we modify parameters
N , the number of activity counters per module, and W ,
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the width of each counter in bits. The system used to
obtain the results in this section was the seven-module
design described in detail in Section 6. We targetted the
Altera Cyclone V SX SoC development board for all exper-
iments performed in this work, with Quartus II 64-bit 15.0.0
used for compilation. At the development board’s core lies
a 5CSXFC6D6F31C6 FPGA-SoC, consisting of two hard
ARM Cortex-A9 cores tightly coupled to a 42k-ALM FPGA
manufactured on a 28nm low-power process. The board
also features two Linear Technology LTC2978 power supply
regulators—one each for the CPU cores and FPGA—which
we used for taking runtime power measurements.

System identification was implemented entirely in soft-
ware on the SoC’s hard CPU cores, clocked at their de-
fault 925MHz and running Ubuntu 14.04. Communication
with hardware modules and their activity counters was
accomplished through memory-mapped registers accessed
from Linux using mmap(). Experimentation revealed that
P [0] = 1000I from starting coefficients x̂[0] = 0 gave good
results, and we found λ = 0.999 to work well in allowing
the algorithm to adapt to changing operating conditions.

5.1. Error by Number of Activity Counters

Figure 7 shows how the absolute error between estimated
and measured power consumption varies with the number
of activity counters, N , used per module with counters
each W = 9 bits wide. Each point is an average of errors
across the system’s seven modules, with 32-point windowing
applied in order to reduce noise and highlight the models’
trends. In all cases in Figure 7 (and Figures 8 and 11), data
collected for the first 7N + 1 (the model’s order) iterations
are not shown since the model cannot converge on a single
solution for x̂ during this period. Larger values of N tended
to result in lower relative error but took longer to converge,
as one would expect since RLS adapts dynamically: errors
accurate to ±10mW were seen with small N (8), while
±5mW was achievable with larger values (≥ 256).

5.2. Error by Counter Width

Figure 8 shows how the relative error varies with the
counter width, W , with instrumentation lifetime equal to the
number of cycles, 2(2W − 2), needed to maximise dynamic
range while guaranteeing no overflow. Analysis across the
range of N tested shows that the choice of counter width has
a significant effect on steady-state error, but not necessarily
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Figure 8: Relative error by counter width W

the rate of convergence. These results indicate that reducing
N has a smaller impact on error than decreasing W by the
same factor to achieve a similar area gain.

5.3. Hardware and Design Overheads

Figure 9 shows the overheads in area (ALMs and logic
array blocks (LABs)), compilation time and power incurred
through adding our instrumentation. As expected, the num-
ber of ALMs required increased with N , but the relationship
between N and the number of LABs was less clear since
the latter is determined by a packing heuristic. Compilation
time appreciates with N , with N = 512 proving especially
difficult to compile since it approached the limits of device
capacity. The compilation time figure excludes the initial
VQM generation because this would be integrated into a
single pass in a fully developed tool flow. System power
consumption increased with N , reflecting the disturbances
and wire length increases created by intrusively attaching
activity counters inside each module. These results indicate
that N = 8 and W = 9 offer a reasonable tradeoff
between relative error (±10mW) for area (ALM) and power
overheads of 9% and 3.6% (53mW), respectively.

The total power overhead measurements quoted were
taken with activity counters disabled. Experimentation re-
vealed that system-wide measurements could be taken at up
to 91 samples per second; with the counters operating at this
rate, the average power for W = 9 was found to increase by
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3.7%, from 1.70W to 1.76W. This measurement was found
to be unaffected by changes in N .

5.4. Software Overhead

The complexity of the RLS algorithm across various N
is captured in Figure 10, the values of which represent the
times needed to update the model during each iteration.
With N = 8, each system-wide update required 0.6ms to
complete, representing around 5% of total CPU time at the
maximum sampling rate of 91Hz.

6. Power Breakdown

A system was developed upon which KAPow’s esti-
mation of module-wise power breakdowns could be eval-
uated. A SoC implementation containing seven functionally
identical (in terms of throughput and latency) FIR filter
modules was devised, with each module instrumented as
described in Section 3. Heterogeneity was introduced by
forcing each module to map a different proportion of its
multipliers, from all to none, to LUTs rather than DSP
blocks; consequently, each module exhibited different power
characteristics and, therefore, had instruments attached to
different signals. The uninstrumented system occupied 24%
of the available ALMs, spread out over 62% of the FPGA’s
LABs, along with 94% of block RAM and all DSPs. All
modules met timing at 200MHz, however each was inde-
pendently clocked by a runtime-adjustable PLL, allowing
frequency to be changed dynamically on a per-module basis.
The SoC bus and instrumentation controllers ran at 50MHz
throughout all experiments conducted in this work and, aside
from the experiment performed for Section 1.1, FPGA core
voltage remained fixed at 1.1V. N = 8 activity counters
were used per module, each W = 9 bits wide; this remained
true for all later-described experiments as well.

During each experimental iteration, a different system
workload was applied: a clock frequency, one of nine input
data sets and one of ten groups of coefficients were selected
at random for each filter module. Activity and system-wide
power measurements were also taken in each iteration and
used to update the model. A true power breakdown was
established for comparison on every fifth iteration by taking
a system-wide power measurement and then successively
clock-gating single modules and repeating power measure-
ments, from which per-module dynamic and system static
power consumptions were derived.

The scatter plots in Figure 11 show the close correla-
tions obtained between modelled and true per-module power
consumptions. Each data point represents an experimental
iteration with an associated power breakdown measurement.
Once sufficient training time (750 iterations) had elapsed,
the mean absolute error between modelled and measured
per-module power consumption was found to be 9.8mW.
There was some variation between the different filter im-
plementations: the best (module 4) achieved a mean error
of 8.3mW while the worst (module 6) was 12.9mW. For
all of the modules, the mean error was small compared to
the range in power consumed over their different operating
modes. Static power tracking was particularly good, achiev-
ing mean absolute error of 4.0mW.

Repeatability experiments on the power breakdown mea-
surements showed deviations in the ±5mW range: the mean
absolute measurement noise was 3.9mW, with outliers as
large as 14.0mW. The observed model errors were therefore
not significantly greater than measurement noise, indicating
that the model accuracy approached the limits of what could
be measured with our test setup.

7. Static Power Compensation

An experiment was performed to verify KAPow’s ability
to compensate for changes in static power consumption,
the key determiner of which is temperature. We used the
system described in Section 6 and a temperature control rig
consisting of a thermoelectric effect heat pump, water cooler
and resistance thermometer, allowing the setting and main-
taining of device temperature over a wide range. Random
workload changes were applied as described in Section 6,
with static power estimated using our model and measured
after clock-gating all modules. Initial training lasted for 300
iterations, with temperature held at 25◦C. Following this, the
temperature was increased by 5◦C every 150 iterations until
it reached the device’s upper temperature corner of 85◦C.
The results of the experiment are shown in Figure 12, which
demonstrates close tracking between model-predicted and
measured static power consumption. No correlations were
seen between dynamic power estimates and temperature.

8. Task Mapping

We now demonstrate an application in which KAPow
was employed to guide the mapping of tasks to modules for
system-wide power optimisation. Seven different filtering
tasks (input data and coefficients), representing a range
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Figure 11: Per-module power estimates versus true values
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Figure 12: Static power tracking within power breakdown
during temperature sweep
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Figure 13: System power for all task→ hardware mappings
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Figure 14: Task mapping power breakdown

of complexities and, consequently, power behaviour, were
specified to be executed simultaneously by the seven-module
system described in Section 6. Recall that the modules
are functionally identical but implementationally different,
thus the task → module mapping chosen will influence the
system-wide power consumption. Clock frequency remained
fixed at 200MHz. The set of all possible mappings contained
7P7 = 7! = 5040 permutations; a histogram (with 2mW
bins) of their power consumptions is given in Figure 13.
This data suggests that an arbitrary mapping will result in
system-wide power consumption of 1420mW, with best and
worst cases of 1350 and 1500mW, respectively.

Figure 14 shows the results of an experiment run using
a simple closed-loop controller that attempted to minimise
total power consumption. Training completed during the first
seven iterations consisted of the rotation of tasks across the
seven modules, initialising a 7×7 activity table. In each sub-
sequent iteration, activity counts and power measurements
were taken as normal to update the model. The controller
then used its new coefficients, x̂, to exhaustively forecast
the system-wide power consumption for all 7! mappings
(340ms in software), the optimal of which was applied to
the hardware. Figure 14 shows that, for around the first 50
iterations, the model continued to adapt before converging
on what it believed to be the optimal mapping. In this case,
the controller was able to find a mapping that consumed
1369mW of power on average: 54mW (3.8%) lower than the
median—whence the best possible improvement is 75mW
(5.3%)—and 126mW (8.4%) lower than the worst case, after
accounting for the overhead of instrumentation.
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Finally, Figure 15 provides side-by-side comparisons of
compile-time vectorless power forecasts from PowerPlay,
true measurements and runtime estimates from KAPow.
Measurements and runtime estimates are a snapshot taken
during the experiment’s 150th iteration. Comparing the ‘Vec-
torless’ and ‘Measured’ bars, we observe that vectorless
estimation predicts approximately equal power behaviour
across the modules, while measurement reveals significant
variation. Looking now at the ‘Model’ bar, it can be seen that
our online modelling is much closer to the measured data:
KAPow successfully accounts for implementational and op-
erational differences not foreseen by vectorless analysis.

9. Conclusion

In this paper we presented KAPow, a flow that combines
hardware instrumentation with software system identifica-
tion techniques to estimate per-module breakdowns of power
consumption within FPGA-SoC applications. Our approach
is based around the monitoring of influential signals within
each module, determined at compile-time through vectorless
power analysis. We demonstrated that low-overhead activity
counting logic can be mapped automatically, transparently
and elegantly to FPGAs.

Rather than estimating system-wide power consumption,
as in prior work, we measured it directly and applied system
identification to train and continuously update a linear power
model online. Once running, the model adapts to changes
in operating conditions in ways that offline models cannot.
Our approach can unburden vendors from the costly expense
of having to pre-characterise a custom power model to fit
individual devices and applications, and greatly improves
on the accuracy achievable with a one-size-fits-all model.
Furthermore, the ability to establish power consumption
breakdowns unlocks a whole field of runtime performance
optimisation techniques, allowing challenges including pro-
cess variation and dark silicon to be addressed.

We evaluated KAPow on a multi-module system to
establish its accuracy, adaptability and suitability to inform
runtime task mapping for system-wide power optimisation.
Module-level power estimates were shown to be accurate
to as low as ±5mW of true measurements: of the order of
measurement noise within our experimental setup. In our
task mapping experiment, power consumption improvement
of over 8% was achieved for a 9% area overhead (or ∼2%
of the device) and worst-case power overhead of sub-4%.

Early indications show that the presented accuracy holds
for arbitrary circuits. The largest limitation at present—and,

we believe, most promising avenue for future work—lies in
signal selection. Selecting signals based solely upon vec-
torless analysis-predicted activity ignores the fact that some
may be highly correlated. This is indeed a limitation with
our current flow: often, several counters can be eliminated
with no effect on the accuracy of the model.

In the future, we would like to experiment with different
signal selection methods, including vectored (simulation-
based) approaches [1] and by analysing circuit structure
using centrality techniques [12]. We will also evaluate the
use of asynchronous counters to explicitly capture glitches.
Finally, we envisage that a higher-level runtime management
layer, in place of the simple controllers used in this work,
may allow estimates from KAPow to be combined with
application-level parameters to enable finer-grained control.
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