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Abstract

We consider the Westervelt equation in an unbounded domain and propose nonlinear absorbing boundary condi-
tions for its efficient and robust numerical simulations. We use the theory of pseudo- and para-differential operators as
well as asymptotic expansions to derive local in space and time absorbing boundary conditions of low to high orders
in a consistent way. We show that the pseudo- and para-differential theories lead to essentially the same absorbing
boundary conditions in terms of computational efficiency and numerical accuracy, whereas the asymptotic expansions
result in exactly the same boundary conditions as the ones obtained with the para-differential approach. Moreover,
we demonstrate that the use of pseudo- and para-differential operators leads to the same boundary conditions if the
nonlinear function to be linearized vanishes at zero. The numerical studies demonstrate both the efficiency and effec-
tiveness of the developed boundary conditions for different regimes of wave propagation in a wide range of excitation
frequencies and angles of incidence.
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1. Introduction1

Many problems in science and engineering are naturally formulated in unbounded domains; typical examples2

originate from fluid dynamics, solid mechanics, aerodynamics, electrodynamics, acoustics, etc. However, numerical3

simulations of such problems require a finite computational region. There are basically two approaches which can be4

used to reformulate problems in infinite domains as problems in finite domains. The first one is to map an unbounded5

domain to a bounded one, known as the Perfectly Matched Layer technique first introduced by Berenger [11] and later6

on used for many different partial differential equations. We specifically refer to e.g., [31, 1, 34, 14, 2, 4, 16, 5, 41, 9] in7

the context of acoustic wave equations. The second approach, followed in this work, is to impose fictitious boundaries8

to truncate the domain of interest. Such artificial boundaries require special boundary conditions so that the boundary9

value problem is well-posed and its solution is an accurate approximation to the restriction of the solution in the10

unbounded domain. In other words, these boundary conditions have to be transparent to or, as they are usually called,11

absorbing for solutions propagating outwards the artificial boundary.12

It is commonly recognized that absorbing boundary conditions (ABCs) play a key role in computations on un-13

bounded domains and have a significant impact on the accuracy of numerical methods. Over the past thirty years,14
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ABCs have developed into a vigorous research direction including a wide spectrum of methods and approaches. A15

detailed description of these techniques is out of the scope of this work and therefore we restrict ourselves to referring16

the reader to the comprehensive review articles [23, 53, 26, 27, 24, 25] and the references therein.17

Despite the intensive research activity in the field of transparent boundary conditions, most results have been18

obtained for linear problems with constant coefficients. Wave equations with variable coefficients have received19

much less attention, not to mention nonlinear models. There are only few papers devoted to problems with variable20

coefficients [20], convective [10] and nonlinear [30, 51, 59, 46] terms. Despite the existence of some approaches to21

the construction of ABCs for nonlinear wave models their application to concrete equations is rather sophisticated and22

still out of the scope of most research works.23

The focus of this work is on the construction of ABCs for high-intensity ultrasound waves governed by the Wester-24

velt equation, which is a basic mathematical model of nonlinear acoustics playing a central role in many medical and25

industrial applications, such as diagnostic ultrasound [21, 50, 47], thermotherapy of tumors [22, 28, 15], lithotripsy [6],26

ultrasound cleaning and sonochemistry (e.g. [17, 39]), etc. Linear acoustic models are not applicable to high intensity27

ultrasound regimes of wave propagation due to appearing nonlinear effects, which require more sophisticated wave28

equations to be taken into account.29

The ABCs proposed in this work are based on two approaches: the theory of pseudo-differential [40, 32, 45] and30

para-differential [36, 44] calculus. The first approach is applicable to linear wave equations with variable coefficients,31

therefore we use it for the Westervelt equation linearized in a neighborhood of a reference solution. The second32

approach we apply directly to the nonlinear Westervelt equation. Notice that both the pseudo- and para-differential33

theories have already been used in the construction of transparent boundary conditions. For example, the pseudo-34

differential calculus was exploited by Engquist and Majda in [20] to design ABCs for the linear wave equation with35

variable coefficients. Another application of the pseudo-differential calculus to the construction of ABCs for the36

acoustic wave equation can be found in [8]. The pseudo-differential approach has also been used to derive ABCs37

for optical waveguides [7] and the Maxwell equations [3]. Transparent boundary conditions for the semilinear wave38

equation as well as for the nonlinear Schrödinger equation were obtained in [52] and [51], respectively, with the help39

of para-differential operators.40

The novelty of our work lies in the derivation and analysis of high-order ABCs for the Westervelt equation,41

which have not yet been constructed. We do so for the one- and two-dimensional versions of the Westervelt equation42

first of all in a domain without corners. It is worth noting that ABCs in general and for the Westervelt equation in43

particular are used not only when computational domains are infinitely large but also when they are too large for44

numerical simulations. Specifically, the High Intensity Focused Ultrasound (HIFU) problem considered in this work45

is a striking example where a finite but still so vast domain of wave propagation occurs that using the entire domain46

would make computations unfeasible. In the HIFU problem, the use of ABCs is inevitable, since they allow to carry47

out simulations in domains of order of centimeters (where are the most interesting physical processes take place),48

otherwise it would require to consider a much larger computational domain to guarantee that the waves leaving the49

domain were attenuated enough not to influence the physical processes studied.50

The rest of this paper is organized as follows. In Section 2 we present the problem formulation. In Section 351

we derive absorbing boundary conditions for the Westervelt equation, in one and two space dimensions, based on52

the pseudo- and para-differential calculus as well as on asymptotic expansions. Section 4 focuses on the Lagrange53

multiplier based technique to couple the Westervelt equation and ABCs, and on numerical methods to solve the54

coupled problem. In Section 5 we give numerical results demonstrating the efficiency of the proposed boundary55

conditions. The paper concludes with a discussion of the main findings.56

2. Problem definition57

The Westervelt equation is one of the fundamental equations governing the propagation of acoustic waves in58

nonlinear regimes [55, 28, 15, 13]. This equation was first derived from Lighthill’s equation by Westervelt [55]. In59

this work, we present a brief derivation of the Westervelt equation from the basic equations of fluid dynamics: the60

continuity equation, the Navier–Stokes equation, the entropy equation, and the equation of state.61

We introduce the pressure p, density ρ, velocity v, specific entropy s, and temperature T , and decompose these62
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quantities into their time-mean and fluctuating components as63

p = p0 + p′ , (1)
ρ = ρ0 + ρ′ , (2)
v = v0 + v′ , (3)
s = s0 + s′ , (4)

T = T0 + T ′ . (5)

To derive the Westervelt equation, we first consider the equation of continuity64

ρt + v · ∇ρ + ρ∇ · v = 0. (6)

Substitution of (1) and (2) into (6) gives65

(ρ0 + ρ′)t + v · ∇(ρ0 + ρ′) + (ρ0 + ρ′)∇ · v = 0 . (7)

Assuming the time-mean density ρ0 to be constant, one can rewrite (7) as66

ρ′t + ρ0∇ · v = −ρ′∇ · v − v · ∇ρ′ . (8)

To proceed, we make use of the Navier–Stokes equation67

ρ (vt + (v · ∇)v) + ∇p = µ∆v +

(
ζ +

1
3
µ

)
∇(∇ · v) , (9)

with ζ and µ standing for the shear and bulk viscosities, respectively.68

Applying the vector identities69

∇(∇ · v) = ∆v + ∇ × ∇ × v , (10a)
70

v · ∇v =
1
2
∇(v · v) − v × ∇ × v , (10b)

to the Navier–Stokes equation (9) results in71

ρ

(
vt +

1
2
∇(v · v) − v × ∇ × v

)
+ ∇p = µ∆v +

(
ζ +

1
3
µ

)
(∆v + ∇ × ∇ × v) . (11)

Assuming constant p0 and using (1) and (2), we rewrite (11) in the form72

(ρ0 + ρ′)
(
vt +

1
2
∇(v · v) − v × ∇ × v

)
+ ∇p′ = µ∆v +

(
ζ +

1
3
µ

)
(∆v + ∇ × ∇ × v) , (12)

which after some rearrangements leads to73

ρ0vt +
ρ0

2
∇(v · v) − ρ0v × ∇ × v + ρ′vt +

ρ′

2
∇(v · v) − ρ′v × ∇ × v + ∇p′ =

(
ζ +

4
3
µ

)
∆v +

(
ζ +

1
3
µ

)
∇ × ∇ × v . (13)

Applying (10b) to (13) and taking into account that the acoustic velocity v is irrotational in our case (∇ × v = 0),74

equation (13) can be written in the following form75

ρ0v′t +
ρ0

2
∇(v′ · v′) + ρ′v′t + ∇p′ =

(
ζ +

4
3
µ

)
∆v′, (14)

where we also assume zero time-mean velocity v0, which implies the equality v = v′, and omit the third order76

fluctuating term ρ′

2 ∇(v · v).77
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Another component needed in the derivation is the entropy equation [29] :78

ρT
Ds
Dt

= κ∆T + µ(∇ · v)2 +
µ

2

(
∂vi

∂x j
+
∂v j

∂xi
−

2
3
δi j
∂vk

∂xk

)2

, (15)

where s is the specific entropy (per unit mass), κ is the thermal conductivity, T is the temperature, and δi j is the79

Kronecker delta.80

According to [29], the right hand side of (15) is dominated by the term κ∆T ′. We therefore can wirte81

ρ0T0 s′t = κ∆T ′. (16)

Given the equation of state in the form82

p = p(ρ, s), (17)

we expand it in a Taylor series about an equilibrium state (ρ0, s0) and neglect the third-order terms, namely83

p − p0 =
(
Pρ

)
s,0

(ρ − ρ0) +
1
2!

(
Pρρ

)
s,0

(ρ − ρ0)2 + (Ps)ρ,0 (s − s0) + . . . (18)

Equation (18) can also be expressed as84

p′ = A
(
ρ′

ρ0

)
+

B
2

(
ρ′

ρ0

)2

+ (Ps)ρ,0 s′, (19)

with85

A = ρ0

(
Pρ

)
s,0
≡ ρ0c2, B = ρ2

0

(
Pρρ

)
s,0
,

where c is the speed of sound, which is assumed to be constant. Thus, equation (19) can be recast into the form86

p′ = c2ρ′ +
c2

ρ0

B
2A

ρ′2 + (Ps)ρ,0 s′. (20)

In order for the Westervelt equation to be independent of s′, we combine the entropy equation (16) and the87

continuity equation (20). In accordance with [48], we substitute T ′ =
(
Tp

)
s,0

p′ into (16) that yields88

ρ0T0 s′t = κ
(
Tp

)
s,0
∇ · ∇p′. (21)

From the linear Euler equation89

vt = −
1
ρ0
∇p′, (22)

we find90

−∇p′ = ρ0vt (23)

and substitute it into equation (21):91

ρ0T0 s′t = −ρ0κ
(
Tp

)
s,0

(∇ · v)t . (24)

Then, we integrate equation (24) with respect to time and have92

ρ0T0s′ = −ρ0κ
(
Tp

)
s,0
∇ · v, (25)

or93

s′ = −
κ

T0

(
Tp

)
s,0
∇ · v . (26)

Substitution of (26) into (20) yields94

p′ = c2ρ′ +
c2

ρ0

B
2A

ρ′2 −
κ

T0
(Ps)ρ,0

(
Tp

)
s,0
∇ · v . (27)
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In order to compute the coefficient
1
T0

(Ps)ρ,0
(
Tp

)
s,0

in (27), we use the equation of state for a perfect gas [48],95

which gives96

p′ = c2ρ′ +
c2

ρ0

B
2A

ρ′2 − κ

(
1
cν
−

1
cp

)
∇ · v . (28)

Using the linear equation of continuity97

∇ · v ≈ −
1
ρ0
ρ′t . (29)

in (28) results in98

p′ = c2ρ′ +
c2

ρ0

B
2A

ρ′2 +
κ

ρ0

(
1
cν
−

1
cp

)
ρ′t . (30)

On the other hand, from the linear equation of state99

ρ′ = p′c−2, (31)

it follows that (30) can be written as100

p′ = c2ρ′ +
1

ρ0c2

B
2A

p′2 +
κ

ρ0c2

(
1
cν
−

1
cp

)
p′t . (32)

Multiplication of equation (32) by c−2 and expressing it in terms of ρ′ gives101

ρ′ =
p′

c2 −
1

ρ0c4

B
2A

p′2 −
κ

ρ0c4

(
1
cν
−

1
cp

)
p′t . (33)

The next step is to combine the equation of continuity (8), the momentum equation (14) and the equation of state102

(33) into one equation. For doing so, we first use (29) and (31) to recast (8) in the form103

ρ′t + ρ0∇ · v =
p′

ρ0c4 p′t −
1
c2 v · ∇p′. (34)

We then differentiate equation (33) with respect to time104

ρ′t =
1
c2 p′t −

1
ρ0c4

B
2A

(
p′2

)
t
−

κ

ρ0c4

(
1
cν
−

1
cp

)
p′tt (35)

and use (34) to have105

1
c2 p′t −

1
ρ0c4

B
2A

(
p′2

)
t
−

κ

ρ0c4

(
1
cν
−

1
cp

)
p′tt + ρ0∇ · v =

1
2ρ0c4

(
p′2

)
t
−

1
c2 v · ∇p′ . (36)

Using equations (22), (31) to express the term ρ′v′t and equations (29), (31) to express the term
(
ζ + 4

3µ
)
∆v′, one106

can reformulate the Navier–Stokes equation (14) as107

ρ0vt + ∇p′ =
1

2ρ0c2∇p′2 −
ρ0

2
∇(v · v) −

1
ρ0c2

(
ζ +

4
3
µ

)
∇p′t . (37)

Application of the divergence operator to (37) gives108

ρ0 (∇ · vt) + ∆p′ =
1

2ρ0c2 ∆p′2 −
ρ0

2
∆(v · v) −

1
ρ0c2

(
ζ +

4
3
µ

)
∆p′t . (38)

Differentiation of (36) with respect to time and subtraction the resulting equation from (38) leads to109

∆p′ −
1
c2 p′tt =

1
2ρ0c2 ∆p′2 −

ρ0

2
∆(v · v) −

1
ρ0c2

(
ζ +

4
3
µ

)
∆p′t

−
1

ρ0c4

B
2A

(
p′2

)
tt
−

κ

ρ0c4

(
1
cν
−

1
cp

)
p′ttt −

1
2ρ0c4

(
p′2

)
tt
−
ρ0

2c2 (v · v)tt .

(39)
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After rearrangement of the right hand side in (39) and using the replacements110

∆ (v · v) = c−2 (v · v)tt , ∆p′ = c−2 p′tt ,

in the higher order terms we arrive at Kuznetsov’s equation, which governs the propagation of nonlinear waves in a111

thermoviscous medium,112

1
c2 p′tt − ∆p′ −

δ

c4 p′ttt =

(
1

ρ0c4

B
2A

p′2 +
ρ0

c2 v · v
)

tt
, (40)

where the diffusivity of sound δ > 0 is given, as presented in [42], by113

δ =
1
ρ0

(
ζ +

4
3
µ

)
+
κ

ρ0

(
1
cν
−

1
cp

)
,

Assuming that local nonlinear effects can be neglected, (i.e., making the replacement v · v =
(

1
ρ0c p′

)2
on the right114

hand side) we arrive at the Westervelt equation115

1
c2 p′tt − ∆p′ −

δ

c4 p′ttt =
βa

ρ0c2 (p′2)tt , (41)

and inserting the linear wave equation relation for the damping term (i.e. c−2 p′ttt = ∆p′t), the Westervelt equation (41)116

can be written as117

1
c2 utt − ∆u −

δ

c2 ∆ut =
βa

ρ0c2 (u2)tt, in (0,T ) ×Ω , u := p′, (42)

and Ω ⊆ Rd, d ∈ {1, 2, 3}, u = u(·, t) is the acoustic pressure, βa = 1 + B/(2A) with B/(2A) > 0 standing for the118

parameter of nonlinearity of the fluid, and T is the final time at which the problem is to be solved. All the parameters119

are assumed to be constant.120

The Westervelt equation (41) is widely used to simulate high-intensity focused ultrasound fields generated by121

medical ultrasound transducers. This equation is valid when the cumulative nonlinear effects dominate the local122

nonlinear effects. Unlike the Khokhlov-Zabolotskaya-Kuznetsov equation, which is valid for directional sound beams123

and can be applied for transducers with relatively small aperture angles, the Westervelt equation allows using large-124

aperture-angle transducers.125

In some cases the dimensionless form of the Westervelt equation [54] is more preferable than its dimensional126

analogue. However, for the purpose of this paper, we use the dimensional version of the equation. It is also worth127

noting that the classical Westervelt equation derived in [55] is an equation which is obtained from (41) by setting128

δ = 0. Despite this fact, equation (41) is also referred to as the Westervelt equation.129

We recast the Westervelt equation (42) in a form more convenient for further treatment130

c−2utt − ∆u − β∆ut = γ(u2)tt in (0,T ) ×Ω (43)

with β = δ/c2, γ = βa/(ρ0c4), and complement (43) with the initial conditions131

u(·, t = 0) = u0 , ut(·, t = 0) = u1 in Ω , (44)

and with the inhomogeneous Neumann and absorbing boundary conditions132

un

∣∣∣∣
(0,T )×ΓN

= g(t), Au
∣∣∣∣
(0,T )×ΓA

= 0, (45)

where ΓN is a boundary part on which excitation of sound takes place, and ΓA is an artificial boundary part on which133

absorbing boundary conditions are prescribed; ∂Ω = ΓN ∪ ΓA, n is the normal derivative to the boundary ΓN and the134

operatorA is an annihilating operator for outgoing waves, which we specify in due course.135

3. Absorbing boundary conditions for the Westervelt equation136

In our derivation, without loss of generality we consider two domains Ω = (−∞, 0] in 1-d and Ω = (−∞, 0] ×R in137

2-d, where x plays the role of the outward unit normal and (in 2-d) y is the tangential direction.138
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3.1. Absorbing boundary conditions in 1-d via linearization and pseudo-differential calculus139

As it was already mentioned, the direct reformulation of the Westervelt equation (43) in terms of pseudo-differential140

operators is not possible because of the nonlinear term on the right hand side. Therefore, we linearized (43) around a141

reference solution u(0)
142

(c−2 − 2γu(0))utt − ∆u − β∆ut = 2γu(0)
t ut in (0,T ) ×Ω . (46)

After the derivation of the ABCs from this inhomogeneous linear wave equation with variable coefficients, we re-143

insert u(0) = u to arrive at the ABCs for the Westervelt equation. The reason for using (46) (as was also done for the144

well-posedness proof in [37]) and not the standard linearization according to the first order Taylor expansion, which145

would be146

c−2utt − ∆u − β∆ut = 2γ
(
2u(0)

t ut + uu(0)
tt + u(0)utt − (u(0)

t )2 − u(0)u(0)
tt

)
in (0,T ) ×Ω , (47)

is that the offset terms −2(u(0)
t )2 − 2u(0)u(0)

tt = −γ(u(0))2
tt would destroy the commutativity of symbols of pseudo-147

differential operators below.148

For simplicity of exposition we first of all consider the one-dimensional version of the Westervelt equation (43)149

c−2utt − uxx − βutxx = γ(u2)tt . (48)

Thus, in 1-d the operator form of linearization (46) reads as150

D1u = 0, with D1 = ν2∂2
t − ∂

2
x − β∂txx − 2γu(0)

t ∂t , (49)

where we set ν2 = ν2(u(0)) with151

ν2(v) = c−2 − 2γv , (50)

and point out that our analysis of the Westervelt equation, cf. [38], is based on estimates that actually make sure152

positivity of c−2 − 2γu, so that ν2 > 0 is a natural assumption. In order to derive transparent boundary conditions for153

the linearized Westervelt equation (48) we make use of the theory of pseudo-differential calculus. For the purpose of154

this formal derivation, ν is assumed to be a C∞ function both in time and space. Otherwise further discussion based155

on pseudo-differential operators makes no sense due to the impossibility to associate a differential operator with a156

symbol having a limited regularity. Since we do not prove this smoothness, our derivations are only formal.157

Our derivation of ABCs is based on the Nirenberg factorization of (49) written in terms of pseudo-differential158

operators. Thus, to construct approximate boundary conditions we factorize the operator D1 as159

D1 = −(∂x − A)(∂x − B) + R, (51)

where A = A(x, t,Dt) and B = B(x, t,Dt) are pseudo-differential operators with symbols a(x, t, τ) and b(x, t, τ) from160

the space161

S 1 = S 1(R2) =

{
f (t, τ) ∈ C∞(R2) :

∣∣∣∣∣∣ ∂ξ∂tξ
∂σ

∂τσ
f (t, τ)

∣∣∣∣∣∣ ≤ Cξ,σ(1 + |τ|)1−|σ|, ∀ξ, σ ∈ N0

}
.

The differential operator Dt is defined as −i∂t with the imaginary unit i, and R is a smoothing pseudo-differential162

operator with the Schwartz kernel k(x, y) ∈ C∞ satisfying [33]:163

(1 + |x − y|)N

∣∣∣∣∣∣ ∂ξ∂xξ
∂σ

∂yσ
k(x, y)

∣∣∣∣∣∣ ≤ Cξ,σ,N , ∀ξ, σ,N ∈ N0.

Developing factorization (51), we get164

D1 = −∂2
x + (A + B)∂x + Bx − AB + R. (52)

At the symbolic level, factorization (52) reduces to165

ν2(iτ)2 − β(iτ)∂2
x − 2γu(0)

t (iτ) = (a + b)∂x + bx − ab + R (53)
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with the correspondence iτ↔ ∂t between the frequency and the (physical) time domains. By a slight abuse of notation,166

for a function f , we denote the symbol of the zero order differential operators u 7→ f u (multiplication operator) again167

by f .168

The next step is to define symbols a and b in (53). For doing so, it is worth to remark that formally these symbols169

admit the following asymptotic expansions170

a(x, t, τ) ∼
∑
j≥0

a1− j(x, t, τ), |τ| → ∞ , (54a)

and171

b(x, t, τ) ∼
∑
j≥0

b1− j(x, t, τ), |τ| → ∞ , (54b)

where a1− j(x, t, τ) and b1− j(x, t, τ) are homogeneous functions of degree 1 − j in τ. To asymptotically expand the172

symbol c := ab, we make use of the following theorem [58].173

Theorem 3.1. The product of two pseudo-differential operators A(x,D) ∈ Ψm1 and B(x,D) ∈ Ψm2 with symbols174

a(x, ξ) ∈ S m1 and b(x, ξ) ∈ S m2 respectively, is a composition operator C(x,D) = A(x,D)B(x,D) ∈ Ψm1+m2 with a175

symbol c(x, ξ) ∈ S m1+m2 having the asymptotic expansion given by176

c(x, ξ) ∼
∑
|α|≤N

1
α!

Dα
ξ a(x, ξ)∂αx b(x, ξ) (55)

for every nonnegative integer N and with the standard multi-index notation α = (α1, α2, . . . , αk), |α| = α1+α2+. . .+αk,177

x = (x1, x2, . . . , xk), ξ = (ξ1, ξ2, . . . , ξk), Dα = Dα1 Dα2 . . .Dαk and ∂α = ∂α1∂α2 . . . ∂αk . Thus, the symbol c := ab of the178

product of the pseudo-differential operators A(x, t,Dt) and B(x, t,Dt) is asymptotic to179

c(x, t, τ) ∼
∑

k,l,n≥0

(−i)n

n!
∂n
τa1−k(x, t, τ)∂n

t b1−l(x, t, τ) . (56)

Substitution of (54) and (56) in (53) and casting-out R lead to180

ν2(iτ)2 − β(iτ)∂2
x − 2γu(0)

t (iτ) =
∑
j≥0

(a1− j + b1− j)∂x +
∑
j≥0

∂xb1− j

−
∑

j≥0, k+l+n= j

(
(−i)n

n!
∂n
τa1−k∂

n
t b1−l

)
︸                   ︷︷                   ︸

O(τ2− j)

, k, l, n ≥ 0. (57)

By equating the symbols with the same degree of homogeneity on both sides of equation (57) we can find the181

coefficients a1− j and b1− j for j ≥ 0. Typically, the more coefficients are taken the more accurate ABCs are. However,182

taking more coefficients also makes the ABCs more complicated and involved to implement, since they contain higher183

order derivatives. Therefore, we only show how to find the coefficients {a j, b j} j={1,0,−1} and note that other coefficients184

can be calculated analogously. In order to define the first pair of coefficients a1 and b1, we equate the symbols with185

the degree of homogeneity O(τ2). This gives the system of equations186  a1 + b1 = 0,

ν2(iτ)2 = −a1b1.
(58)

To make the terms of order O(τ2) vanish we took the following solution to (58)187

b1 = −a1 = ν(iτ). (59)

Remark 3.1. The choice of the sign in front of ν(iτ) is not arbitrary, since it defines the propagation direction of the188

wave.189
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In order to find the next pair of coefficients a0, b0 we equate the symbols with degree of homogeneity O(τ1) that190

gives the following system of equations191  a0 + b0 = 0 ,

β(iτ)∂2
x + 2γu(0)

t (iτ) = a1b0 + a0b1 − ia1τb1t − b1x ,
(60)

in terms of unknowns a0, b0.192

Substitution of b1 = −a1 in (60) yields193

b0 = −a0 = −
1

2a1

(
ia1τa1t + a1x − β(iτ)∂2

x − 2γu(0)
t (iτ)

)
(61)

or, in terms of a1 = −ν(iτ), we have194

b0 = −a0 = −
1
2ν

(
A0[ν] + β∂2

x + 2γu(0)
t

)
(62)

with the operatorA0 := ∂x + ν∂t.195

Remark 3.2. Note that here we exchanged the order of b0 and a1. However, with a1, b0, a0 as above this is obviously196

not correct as long as β , 0 since, for example, in a0b1 the second order space derivative from a0 acts on the function197

ν from b1. These difficulties are caused by the strong damping term β∆u in deriving ABCs, and have a quite natural198

explanation: The strong damping term destroys the wave like character of the equation since it implies decay of the199

energy and a rather parabolic than hyperbolic behaviour of the equation, cf. [37]. Moreover, note that the β term200

would lead to a second order normal derivative term in the first order and even to a fourth order normal derivative201

term in the second order absorbing boundary conditions. Vanishing β enables us to recover commutativity of the202

operators a1 and b0 as required to justify the derivations above. In the following we omit the term with β in (62) i.e.203

consider204

b0 = −a0 = −
1
2ν

(
A0[ν] + 2γu(0)

t

)
(63)

instead, and also set β = 0 in the further derivation of absorbing boundary conditions.205

In order to obtain more accurate boundary conditions we equate the symbols with degree of homogeneity O(τ0),206

which leads to the following system of equations207 
a−1 + b−1 = 0,

−a1b−1 − a0b0 − a−1b1 + i(a1τb0t + a0τb1t) −
i2

2
a1ττb1tt + b0x = 0.

(64)

The solution to (64) is given by208

b−1 = −a−1 = −
1

2a1

(
−a2

0 + i(a1τa0t + a0τa1t) +
1
2

a1ττa1tt + a0x

)
. (65)

Taking into account (59) and (62) we deduce that209

b−1 = −a−1 =
1

2ν(iτ)

(
A0

[
1
2ν

(
A0[ν] + 2γu(0)

t

)]
−

(
1
2ν

(
A0[ν] + 2γu(0)

t

))2 =:
γµ

2ν(iτ)
. (66)

Again we have exchanged the order of the operators to have a1b−1 + a−1b1 = a1b−1 − a−1a1 = a1(b−1 − a−1). Having210

set β = 0 helps here as well, since this renders a−1(x, t,Dt)Dt a plain multiplication operator. Note that with the211

Taylor linearization (47) an offset term γ(u(0)2)tt would have appeared here, which would have prevented the equality212

a−1a1 = a1a−1. (Here, we write f for the symbol of the zero order differential operator u 7→ f (constant mapping),213

which has to be strictly distinguished from the multiplication operator u 7→ f u.) This problem is avoided by using the214

fixed point type linearization (46).215
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According to [43], the operator216

∂x − a(x, t,Dt) = 0 (67)

annihilates outgoing waves at {x = 0} × (0,T ) and thus can be used to construct ABCs of different orders of accuracy.217

Substitution of the asymptotic expansion (54a) with the first k leading terms into (67) results in the following boundary218

condition219 ∂x −

k∑
j=0

a1− j(x, t,Dt)

 u

∣∣∣∣∣∣∣∣
x=0

= 0. (68)

An ABC of order k can be obtained from (68) by keeping the first k terms.220

Thus, in order to construct a zero order ABC we set k = 0 and substitute the coefficient a1 in (68), which gives221

A0[u]
∣∣∣∣
x=0

= (ux + νut)
∣∣∣∣
x=0

= 0. (69)

Parallel to the construction of the zero order ABC (69), we set k = 1 and substitute a1, a0 in (68) to obtain the first222

order boundary condition:223

A1u
∣∣∣∣
x=0

= (A0 − B1)u
∣∣∣∣
x=0

=

(
ux + νut −

1
2ν

(
(νx + ννt)u + 2γu(0)

t u
))∣∣∣∣∣∣

x=0
= 0 (70)

with B1 := 1
2ν

(
A0[ν] + 2γu(0)

t

)
.224

For k = 2 we obtained the second order ABC225

A2u
∣∣∣∣
x=0

= (A1ut − B2u)
∣∣∣∣
x=0

=

(
uxt + νutt −

1
2ν

(
(νx + ννt)ut + 2γu(0)

t ut − µu
))∣∣∣∣∣∣

x=0
= 0 , (71)

where we multiplied with (iτ) before converting from symbols to operators, and where B2 :=
γµ(u(0))
2ν(u(0))

with226

µ(v) =
1
γ
A0

[
1

2ν(v)
(A0[ν(v)] + 2γvt)

]
−

(
1

2ν(v)
(A0[ν(v)] + 2γvt)

)2

= A0

 1

2
√

c−2 − 2γv

− vx√
c−2 − 2γv

+ vt

 − γ  1

2
√

c−2 − 2γv

− vx√
c−2 − 2γv

+ vt

2

. (72)

Inserting u itself for the a priori solution u(0), we arrive at zero227 (
ux +

√
c−2 − 2γu ut

)∣∣∣∣∣∣
x=0

= 0 , (73)

first228 ux +

√
c−2 − 2γu ut −

γ

2
√

c−2 − 2γu

utu −
1√

c−2 − 2γu
uxu


∣∣∣∣∣∣∣
x=0

= 0 , (74)

and second order229 uxt +

√
c−2 − 2γu utt −

γ

2
√

c−2 − 2γu

(ut)2 −
1√

c−2 − 2γu
uxut − µ(u)u


∣∣∣∣∣∣∣
x=0

= 0 (75)

nonlinear ABCs for the Westervelt equation (48). Note that slightly different boundary conditions result from the230

derivation via the para-differential approach presented in Section 3.2.231
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3.2. Absorbing boundary conditions in 1-d via para-differential calculus232

In this part, we focus on the construction of absorbing boundary conditions for the Westervelt equation (43) with no233

preliminary linearization in contrast to the approach used in Section 3.1. The disadvantage of the pseudo-differential234

approach for designing ABCs is in its inability to treat nonlinear equations. This obstacle can be overcome by using the235

para-differential calculus originated from the paper of Bony [36] with an improvement done by Meyer [44]. Although236

the para-differential calculus and especially Bony’s para-linearization technique embrace wide opportunities to build237

ABCs for nonlinear equations, their use is still very restricted in current research works. The first application of para-238

differential operators to the development of ABCs has been done for the Burgers equation in [18]. Some relatively239

recent results can be found in few works (e.g. [52, 51]).240

Before the derivation of ABCs we briefly recall some general facts about para-differential operators and Bony’s241

para-linearization. Let us consider a nonlinear differential equation of order N defined as follows242

F[u](x) = Φ(x, u(x), . . . , ∂αu(x), . . .)0≤|α|≤N = 0 (76)

with Φ ∈ C∞ and x ∈ Rd. In accordance to [36], the para-linearization of (76) with Φ(x, ·) vanishing at 0 is given by243

F[u] =
∑

0≤|α|≤N

TF′(u)∂
αu + R(u) , (77)

where TF′(u) is a para-differential operator having as symbol the linearization F′(u) = ∂Φ
∂λα

(·, u, . . . , ∂αu, . . .)0≤|α|≤N of F244

at u, and R(u) is a smooth error. More precisely, for all u ∈ Hs(Rd) with s > d/2 equation (77) implies R(u) ∈ H2s−d/2
245

(see [44]). Equation (77) is often referred to as the para-linearization formula of Bony, and the para-differential246

operator Ta with a symbol a(x) ∈ C∞, x ∈ Rd is defined as247

F (Tau)(ζ) =
1

(2π)d

∫
Rd

χ(ζ − η, η)F a(ζ − η)F u(η) dη , (78)

where F is the Fourier transform, and χ ∈ C∞(Rd × {Rd \ {0}}) is a function of homogeneity degree zero satisfying248  χ(ζ, η) = 1 if |ζ | ≤ ε1|η| ,

χ(ζ, η) = 0 if |ζ | ≥ ε2|η| ,
(79)

with 0 < ε1 < ε2.249

Before the derivation of ABCs for the Westervelt equation (48), we develop the nonlinear term on its right hand250

side γ(u2)tt = 2γ((ut)2 + uutt) and recast (48) in the form251

ν2(u)utt − uxx − βutxx = 2γ(ut)2 (80)

with ν2(u) = c−2 − 2γu.252

Based on (77) and taking into account that the product of two functions f and g can be written in term of para-253

differential operators [36] as254

f g = T f g + Tg f + R , (81)

where T f and Tg are para-differential operators with symbols f and g, we obtain the para-linearized Westervelt equa-255

tion in the operator form256

D2u = 0, D2 = c−2∂2
t − 2γ(Tutt + Tu∂

2
t ) − ∂2

x − β∂txx − 2γT2ut∂t (82)

instead of the Westervelt equation (80).257

Acting similar to the previous derivation, we apply Nirenberg’s factorization, analogous to (51), and rewrite (82)258

in the form259

D2 = −(∂x − A)(∂x − B) + R , (83)

where A and B are para-differential operators with symbols a and b, respectively.260
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A similar argument as for the linearized Westervelt equation yields261

ν2(u)(iτ)2 − 2γutt − β(iτ)∂2
x − 4γut(iτ) = (a + b)∂x + ∂xb − ab + R . (84)

Note that this equation differs from (53) and also leads to different ABCs. Again, we skip the β terms for the same262

reason as in Section 3.1.263

Substitution of asymptotic expansions of symbols (54) and (55) in (84) results in equation (57) from which, by264

equating the symbols of the same degree of homogeneity O(τ2) on both sides, we obtain the same coefficients265

b1 = −a1 = ν(iτ). (85)

However, the equation for the O(τ1) terms is different compared to (60), namely266  a0 + b0 = 0 ,

β(iτ)∂2
x + 4γu(0)

t (iτ) = a1b0 + a0b1 − ia1τb1t − b1x ,
(86)

which upon setting β = 0 yields (as opposed to (63))267

b0 = −a0 = −
1
2ν

(A0[ν] + 4γut) (87)

with the operatorA0 := ∂x + ν∂t.268

Finally, in contrast to (64), we have the following equation for the O(τ0) terms269 
a−1 + b−1 = 0 ,

−a1b−1 − a0b0 − a−1b1 + i(a1τb0t + a0τb1t) −
i2

2
a1ττb1tt + b0x = −2γutt ,

(88)

so that we get270

b−1 = −a−1 =
1

2ν(iτ)

(
A0

[
1
2ν

(A0[ν] + 4γut)
]
−

(
1
2ν

(A0[ν] + 4γut)
)2

− 2γutt

 =:
µ̃

2ν(iτ)
. (89)

Parallel to the ABCs for the linearized Westervelt equation from Section 3.1, we obtained the zero order ABC271

A′0u
∣∣∣
x=0 = (∂x + ν(u)∂t) u|x=0 = 0 , (90)

the first order one272

A′1u
∣∣∣
x=0 = (A′0 − B

′
1)u

∣∣∣
x=0 =

(
∂x + ν(u)∂t −

1
2ν(u)

(
A′0[ν(u)] + 4γut

))
u

∣∣∣∣∣∣
x=0

= 0 , (91)

with B′1 := 1
2ν(u) (A

′
0[ν] + 4γut) , and the second order boundary condition273

A′2u
∣∣∣
x=0 =

(
A′1ut − B

′
2u

)∣∣∣
x=0 =

(
uxt + νutt −

1
2ν

(
(νx + ννt)ut + 4γ(ut)2 − µ̃u

))∣∣∣∣∣∣
x=0

= 0 , (92)

where B′2 := µ̃(u), which contains multiplication with utt, as opposed to (71). As in the pseudo-differential case, we274

do not consider higher order boundary conditions, although their derivation follows the same lines.275

3.3. Absorbing boundary conditions in 1-d via asymptotic expansions276

An alternative approach to the derivation of ABCs for the Westervelt equation (48) can be based on the asymptotic277

expansion of the solution u(x, t) in an ε-neighborhood of u(0)(x, t) in terms of ε, namely278

u = u(0) + εu(1) + ε2u(2) + . . . (93)
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For the purposes pursued in this work it is enough to consider the terms of order ε in (93). Plugging (93), up to the279

terms O(ε1), into (48) gives280

c−2(u(0) + εu(1))tt − (u(0) + εu(1))xx − β(u(0) + εu(1))txx = γ(u(0)2
+ 2εu(0)u(1) + ε2u(1)2

)tt . (94)

The standard asymptotic argument implies equating the terms of the same degree in ε. In particular, for O(ε0) we281

have282

c−2u(0)
tt − u(0)

xx − βu(0)
txx = γ(u(0)2

)tt . (95)

Equation (95) is satisfied for u(0), since this is the solution to equation (48).283

By equating the terms of order ε, we obtain the linearized Westervelt equation284

c−2u(1)
tt − u(1)

xx − βu(1)
txx = 2γ(u(0)u(1))tt

or alternatively in the operator form, with replacing u(1) for u,285

D̃1u = 0, D̃1 = ν2∂2
t − ∂

2
x − β∂txx − 2γ(u(0)

tt id + 2u(0)
t ∂t) . (96)

As can be seen, equations (82) and (96) are exactly the same equations at the symbolic level, thereby eventually286

leading to the same ABCs. Thus, the para-differential approach to the construction of ABCs is equivalent to the287

asymptotic expansion method.288

In order to para-linearize the Westervelt equation the para-differential approach uses the Taylor expansion with289

the assumption that the nonlinear function vanishes at zero. This means that in terms of the Taylor linearization of the290

right hand side f (u) = γ(u2)tt of the Westervelt equation (43), f (u) vanishes at the reference solution u(0). Therefore,291

the following remark is valid.292

Remark 3.3. The same assumption, the para-differential technique relies on, being introduced into the Taylor expan-293

sion applied to the right hand side of the Westervelt equation (43) gives the same result as the para-linearization thus294

making these approaches equivalent to each other. From the other hand, the para-linearization is equivalent to the295

asymptotic expansion as well as to the Taylor linearization, which, as we showed, prevents the offset term γ
((

u(0)
)2
)

tt
296

of being introduced into the absorbing boundary conditions. Therefore, we conclude that there do not appear to be297

sufficient reasons to derive ABCs through the para-differential technique unless the coefficients have limited regularity.298

Overall, we found that the para-differential technique is equivalent to both the asymptotic expansion of the West-299

ervelt equation and to the linearization of its right hand side through the standard linearization according to the first300

order Taylor expansion with the assumption that the nonlinear function vanishes at the reference solution u(0).301

3.4. Absorbing boundary conditions in 2-d via linearization and pseudo-differential calculus302

In the spatially two dimensional situation the operator form of the Westervelt equation (43) reads as303

D1u = 0, with D1 = ν2∂2
t − ∂

2
x − ∂

2
y − β∂txx − β∂tyy − 2γu(0)

t ∂t in (−∞, 0) × R , (97)

where ν is defined by (50). Here, we proceed very similarly to the 1-d case, and consider pseudo-differential operators304

A = A(x, y, t,Dy,Dt) and B = B(x, y, t,Dy,Dt) with respect to time and tangential (i.e. y) direction, but the expansion305

is still with respect to powers of τ, so equations (51), (52) (with A = A(x, y, t,Dy,Dt) and B = B(x, y, t,Dy,Dt)) remain306

the same, whereas (53), (54), (57) change to307

ν2(iτ)2 − (iη)2 − β(iτ)∂2
x − β(iτ)(iη)2 − 2γu(0)

t (iτ) = (a + b)∂x + bx − ab + R (98)

with the correspondence iη↔ ∂y and308

a(x, y, t, η, τ) ∼
∑
j≥0

a1− j(x, y, t, η, τ), |τ| → ∞ , (99a)
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309

b(x, y, t, η, τ) ∼
∑
j≥0

b1− j(x, y, t, η, τ), |τ| → ∞ , (99b)

and310

ν2(iτ)2 − (iη)2 − β(iτ)∂2
x − β(iτ)(iη)2 − 2γu(0)

t (iτ) =
∑
j≥0

(a1− j + b1− j)∂x +
∑
j≥0

∂xb1− j

−
∑

j≥0, k+l+n= j

(
(−i)n

n!
∂n
τa1−k∂

n
t b1−l

)
︸                   ︷︷                   ︸

O(τ2− j)

, k, l, n ≥ 0 , (100)

respectively, where a1− j and b1− j are homogeneous functions of degree 1 − j in τ (and are additionally functions of311

x, y, t, and η). As in [19], in our derivations we rely on an assumption of the type η ∼ τ. Therewith, β(iτ)(iη)2 becomes312

a third order term that cannot be matched by the right hand side. Thus, in two space dimensions we already here313

arrived at the limitations due to the strong damping term (see also Remark 3.2 above), which we therefore omitted314

from now on by setting β = 0. Considering the O(τ2) terms in (100) leads to315  ν2(iτ)2 − (iη)2 = −a1b1 ,

a1 + b1 = 0 .
(101)

in place of (58), which results in316

b1 = −a1 =

√
ν2(iτ)2 − (iη)2 . (102)

At this point, a fundamental difference to the 1-d case arises, since one has to approximate the square root317 √
ν2(iτ)2 − (iη)2 = ν(iτ)

√
1 −

η2

ν2τ2

in order to derive practically applicable boundary conditions. We do so by a Taylor expansion whose order is adapted318

to the order of the ABCs.319

The calculations for a0, b0 look exactly the same as in the 1-d case and yield320

b0 = −a0 = −
1

2a1

(
ia1τa1t + a1x − 2γu(0)

t (iτ)
)

(103)

i.e.321

b0 = −a0 = −
νt

2

(
1 −

η2

ν2τ2

)−3/2

−
νx

2ν

(
1 −

η2

ν2τ2

)−1

−
2γu(0)

t

2ν

(
1 −

η2

ν2τ2

)−1/2

. (104)

To obtain zero order boundary condition we use the zero order Taylor expansion322

(1 − x)1/2 ≈ 1, x :=
η2

ν2τ2

in (102) to have323

b̃0
1 = −ã0

1 = ν(iτ). (105)

For our first order boundary condition we use the first order Taylor approximation324

(1 − x)1/2 ≈ 1 −
1
2

x , (1 − x)−3/2 ≈ 1 +
3
2

x , (1 − x)−1 ≈ 1 + x , (1 − x)−1/2 ≈ 1 +
1
2

x

for the terms that are nonlinear with respect to τ, η in (103) and (104). This yields the following symbols325

b̃1
1 = −ã1

1 = ν(iτ)
(
1 −

η2

2ν2τ2

)
,

b̃1
0 = −ã1

0 = −
νt

2

(
1 +

3η2

2ν2τ2

)
−
νx

2ν

(
1 +

η2

ν2τ2

)
−

2γu(0)
t

2ν

(
1 +

η2

2ν2τ2

)
.
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Again we insert u itself for the a priori solution u(0) to arrive at the zero order ABC326 (
ux +

√
c−2 − 2γu ut

)∣∣∣∣∣∣
x=0

= 0 (106)

and at the first order boundary condition327 uxt +

√
c−2 − 2γu utt −

1

2
√

c−2 − 2γu
uyy −

γ

2
√

c−2 − 2γu

ut −
1√

c−2 − 2γu
ux

 ut

+
γ

2(c−2 − 2γu)3/2

1
2

ut +
1√

c−2 − 2γu
ux

 ∫ ·

0
uyy dt


∣∣∣∣∣∣∣
x=0

= 0 ,

(107)

where we have multiplied the symbols with (iτ) to obtain (107) or alternatively328 uxtt +

√
c−2 − 2γu uttt −

1

2
√

c−2 − 2γu
uyyt

−
γ

2
√

c−2 − 2γu

ut −
1√

c−2 − 2γu
ux

 utt +
γ

2(c−2 − 2γu)3/2

1
2

ut +
1√

c−2 − 2γu
ux

 uyy


∣∣∣∣∣∣∣
x=0

= 0 ,

(108)

where we have multiplied the symbols with (iτ)2 to obtain (108).329

4. Discretization330

In this section we consider the space and time discretizations for problem (43)-(45) and how to couple the derived331

ABCs with the numerical methods used. Our focus is on the 2-d ABCs, since the 1-d boundary conditions use the332

same principle for coupling. For the space discretization we apply the finite element method with the standard setting333

of Sobolev spaces for evolution problems, while the time integration is done by the classical Newmark method.334

For the weak formulation it is natural to use the space H1, then the resulting variational problem reads as follows:335

for given initial data u(·, t = 0) = u0, ut(·, t = 0) = u1, find u ∈ L2(0,T ; H1(Ω)), ut ∈ L2(0,T ; L2(Ω)) and utt ∈336

L2(0,T ; H−1(Ω)) such that for all φ ∈ H1 and for all times t ∈ (0,T )337 〈
c−2utt, φ

〉
Ω +

(
∇u,∇φ

)
Ω −

(
un + βutn, φ

)
ΓA
−

(
β∇ut,∇φ

)
Ω −

(
γ(u2)tt, φ

)
Ω =

(
g(t) + βutn, φ

)
ΓN

(109)

with 〈·, ·
〉

Ω denoting the duality product on H1(Ω) × H−1(Ω) and (·, ·) standing for L2-inner product.338

The integration of the zero order ABC (106) into the weak formulation (109) is straightforward: one has to express339

the ABC in terms of un and substitute it into the boundary term340

−
(
un + βutn, φ

)
ΓA
, (110)

which gives341

(ν(u)ut + (ν(u)ut)t, φ)ΓA
.

However, such a straightforward substitution is not applicable to the first order ABC (108). In this case, we use a342

Lagrange multiplier (LM) based approach proposed in [49]. The main idea is to introduce the LMs λ = −un and343

κ = ut on the absorbing boundary ΓA and recast the boundary integral (110) as344

−
(
un + βutn, φ

)
ΓA

=
(
λ + βλt, φ

)
ΓA
,

(
λ, φ

)
ΓA

:=
∫
ΓA

λφ dΓA =

l∑
i=1

∫
Γi

A

λφ dΓi
A , (111)

where ΓA is assumed to be piecewise smooth and decomposed into l non-overlapping smooth subparts Γi
A.345
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To couple the first order boundary condition (108) and equation (109) we reformulate (108) in the weak form:346

− (λtt, µ)Γi
A

+ (ν(u)κtt, µ)Γi
A
−
κτµ

2ν

∣∣∣∣
∂Γi

A

+

(
κτ,

(
µ

2ν

)
τ

)
Γi

A

−

(
γκt

2ν

(
κ +

λ

ν

)
, µ

)
Γi

A

+ θuτµ
∣∣∣∣
∂Γi

A

− (uτθτ, µ)Γi
A

= 0 , (112)

where θ =
γ

2ν3/4

(
κ

2
−
λ

ν

)
and τ is the tangential derivative to Γi

A, and ∂Γi
A denotes the endpoints of Γi

A, i = 1, 2, . . . , l.347

The boundary condition (112) holds for all test functions µ out of an appropriate test space defined on Γi
A. To get348

rid of the terms on ∂Γi
A, we allow only for test functions µ being equal to zero on ∂Γi

A, i = 1, 2, . . . , L. Using for µ349

piecewise linear and continuous hat functions in H1
0(Γi

A), we end up with350

− (λtt, µ)ΓA
+ (ν(u)κtt, µ)ΓA

+

(
κτ,

(
µ

2ν

)
τ

)
ΓA

−

(
γκt

2ν

(
κ +

λ

ν

)
, µ

)
ΓA

− (uτθτ, µ)ΓA
= 0. (113)

To obtain a more simple algebraic structure, we use dual LMs [56, 57]. We also require no continuity for the LMs,351

since it would result in poor approximation properties. Thus, we apply the crosspoint modification of mortar finite352

elements to define the basis functions of the LMs ansatz space. With each interior node of Γi
A we associate one basis353

function. The ansatz space for the LMs differs from the test space for µ, and we are formally in a Petrov–Galerkin354

setting. Note that by construction the dimension of the test and ansatz space is the same.355

The algebraic formulation of the coupled problem (109), (113) can be expressed as a semi-discrete system of356

nonlinear ordinary differential equations357

A(vn+1)v̈n+1 + B(vn+1) ˙vn+1 + C(vn+1)vn+1 = F n+1, (114)

with the vector of unknowns v = (u, λ, κ)T and the terms358

A =


c−2M − 2γM̃ 0 0

0 −D B̃
0 0 0

 , B =


βK − 2γM̃ βDT 0

0 0 −
γ
2 K̃

−M 0 0

 , C =


K DT 0
−P Q −

γ
2 D̃

0 0 M

 , F =

f
0
0

 ,
where the right hand side f represents the Neumann boundary condition; M and K are the standard mass and stiffness359

matrices, respectively. The other matrices are responsible for nonlinear terms and coupling between the Westervelt360

equation and the ABC.361

In order to approximate the system of equations (114) in time, the generalized α-method [12] is applied:362

v̇n+1 = a1vn+1 − ˆ̇vn, v̈n+1 = a2vn+1 − ˆ̈vn, where (115)

ˆ̇vn = a1vn +
(1 − α̂ f )γ̂ − β̂

β̂
v̇n +

(1 − α̂ f )(γ̂ − 2β̂)

2β̂
∆tv̈n, ˆ̈vn = a2vn +

1 − α̂m

β̂∆t
v̇n +

1 − α̂m − 2β̂
2β̂

v̈n

with the parameters a1 = (1 − α̂ f )γ̂/(β̂∆t), a2 = (1 − α̂m)/(β̂∆t2), and ∆t is a time step. In all computations we set363

α̂m = α̂ f = 0, β̂ = 0.25, γ̂ = 0.5, which results in the standard Newmark scheme [35] the application of which364

to (114) yields365

a2A(vn+1)vn+1 + a1B(vn+1)vn+1 + C(vn+1)vn+1 = F n+1 +A(vn+1) ˆ̈vn + B(vn+1) ˆ̇vn. (116)

To solve the nonlinear system (116) we use the Newton method, demonstrating excellent convergence behavior366

and robustness with respect to the choice of governing parameters in (43), acoustic source settings and ABCs.367

5. Numerical results368

In this part, we study the performance of the proposed absorbing boundary conditions in one and two space369

dimensions for different regimes of wave propagation. First, we analyzed the accuracy of ABCs derived with the370

pseudo-differential and para-differential approaches in a one dimensional waveguide. Second, we considered a two371

dimensional, horizontal waveguide with an inclined, artificial lateral wall and studied how the accuracy of the solution372
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was influenced by the angle of incidence and the excitation frequency. Third, we carried out numerical experiments373

for the High Intensity Focused Ultrasound (HIFU) problem with settings typical for thermal ablation of tumors in the374

human liver and analyzed how intensively the solution was contaminated by reflected waves.375

We denote the absorbing boundary conditions as ABCd,o
n , where the superscripts d and o indicate the space di-376

mension and the order of ABC, respectively, while the subscript n stands for the pseudo- (PS) or para-differential377

(PR) calculus based ABC, or the Engquist–Majda (EM) boundary condition, respectively. Here, by Engquist–Majda378

ABCs we mean those designed for the linear wave equation, so not taking into account the nonlinearity and the strong379

damping in the Westervelt equation.380

In order to compare different ABCs, a reference solution u∗ was computed in the domain Ω′ c Ω, which is381

large enough to prevent the solution in the restricted domain Ω from being polluted during the computations. Note382

that u∗ was computed for the same problem settings and physical parameters as u (the solution affected by reflected383

waves) but in a larger computational domain. The studied ABCs were compared in terms of an l2-norm relative error384

δ(u∗, u) = ‖u∗ − u‖2/‖u∗‖2, between the reference solution and the solution u distorted by reflected waves. We also385

introduce a difference δ̃(u∗, u) = u∗ − u, which allows us to track reflected waves. In all numerical experiments the386

number of finite elements per wavelength was set to be 50, and the time step was chosen in such a way as to have 20387

time samples per time period for each of the frequencies ω = {25 kHz, 50 kHz, 100 kHz, 1 MHz}. To induce a wave in388

the domain, a monofrequency excitation of the form un = sin(2πωt) was used. The simulation time t and the initial389

acoustic pressure amplitude were normalized to unity. The physical parameters in all numerical tests correspond to390

those of human liver [28, 15]: c = 1596 m · s−1, ρ = 1050 kg ·m−3, B/A = 6.8, b = 2αc3/(2πω)2, with the acoustic391

absorption coefficient α = 4.5 Np ·m−1 ·MHz−1.392

5.1. ABC in 1-d393

In this section, we compare ABC1,o
n , with o = {0, 1}, n = {PS,PR,EM} on a line segment Ω ∈ [0, 16 cm] and study394

how the excitation frequency of the transducer influences the performance of the ABCs considered. The excitation un395

with one of the frequencies ω = {25, 50, 100} kHz was set at the point ΓN = 0, while the ABC studied was prescribed396

at the point ΓA = 16 cm (Fig. 1).397

ΓN ΓA

Fig. 1: General geometrical setup for the line segment domain Ω.

We present a series of snapshots of the reference solution u∗ and the solution u affected by the boundary conditions398

ABC1,o
n , o = {0, 1}, n = {PS,EM} in Fig. 2. As can be seen, for t ∈ [0, 1], the difference between ABC1,0

PS and ABC1,1
PS is399

fairly small and slightly discloses itself only near the solution extrema. The same scenario is followed by the first order400

Engquist–Majda condition but only for t ≤ 0.2. However, as time advances the reflected waves start contaminating the401

solution. More insightful information on how the boundary conditions perform in time is given by the relative error δ402

presented in Fig. 3.403

As can be seen from Fig. 3, the accuracy of the proposed ABCs does not significantly depend on the excitation404

frequency, although the relative error δ for the first order Engquist–Majda condition ABC1,1
EM and the zero-order condi-405

tion ABC1,0
PS becomes somewhat higher in the low-frequency regimes. The first order conditions ABC1,1

PS and ABC1,1
PR406

perform equally well at all frequencies studied. The behaviour of the boundary conditions ABC1,0
PS and ABC1,1

PS brings407

no surprise - the higher the order of the ABC is, the more accurate the solution becomes. The error δ, introduced408

by ABC1,0
PS , exhibits a very moderate growth at the initial stage of the simulation (t ∈ [0.2, 0.6]) with the maximum409

reached at t ≈ 0.6. For t > 0.6, the error moderately fluctuates around a mean value with no further growing. On the410

other hand, the first order condition ABC1,1
PS demonstrates qualitatively the same behaviour as the zero order one, but411

on a much lower scale. The relative error δ also fluctuates around a mean, but these fluctuations are much smaller412

compared to those of ABC1,0
PS . It is important to remark that the difference between ABC1,1

PS and ABC1,1
PR is virtually413

the same, indicating that the additional term 2γut in ABC1,1
PR (see the boundary condition (91) for detail) is of minor414

importance. In contrast to the proposed ABCs, the first order Enqguist–Majda condition is of much less accuracy. It415
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Fig. 2: Typical snapshots of the reference solution u∗ and the solutions u
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affected by reflected waves from the first

order Engquist–Majda condition, zero and first order ABCs based on the pseudo-differential calculus, respectively. The excitation frequency is
ω = 100 kHz.
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Fig. 3: One dimensional waveguide. Relative error δ versus time t for different excitation frequencies ω and for the first (ABC1,1
EM) order Engquist–

Majda condition, zero (ABC1,0
PS ) and first (ABC1,1

PS ) order boundary conditions based on the pseudo-differential calculus, and the first order para-
differential condition (ABC1,1

PR). Note that the rectangular in the right down corner is a magnification of the lower part of the graph.

also has an initial growing trend for t ∈ [0.2, 0.6], which is, however, much steeper than that of the conditions ABC1,0
PS ,416

ABC1,1
PS , and the fluctuations are significantly larger.417

We would like to draw the reader’s attention to the resemblance between the error plots for ABC1,0
PS and ABC1,1

EM:418

the local disturbance at t = 0.6 on both graphs (noticeable for ABC1,1
EM, and barely perceptible for ABC1,0

PS ), as well419

as the declined trend for t > 0.6. By analyzing the reflected waves for the boundary conditions ABC1,o
n (o = {0, 1},420

n = {EM, PS , PR}) we found that δ̃
(
u∗, u

∣∣∣
ABC1,1

EM

)
≈ δ̃

(
u∗, u

∣∣∣
ABC1,0

PS

)
in the sense that their extrema evolve in a similar way421

and appear essentially at the same instances in time (Fig. 4). Although ABC1,1
EM and ABC1,0

PS are quantitatively different,422

their qualitative resemblance is evident. In effect, such a similarity is not a coincide. These boundary conditions are423

very similar in form, and ABC1,1
EM can be derived analogously to ABC1,0

PS by taking u(0) = 0 in the linearized Westervelt424
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Fig. 4: One dimensional waveguide. Typical snapshots of the difference δ̃ = u∗ − u (vertical axis) between the reference solution u∗ and the
solution u distorted by reflected waves from the first (ABC1,1

EM) order Engquist–Majda condition, zero (ABC1,0
PS ) and first (ABC1,1

PS ) order boundary
conditions based on the pseudo-differential calculus, and the first order para-differential condition (ABC1,1

PR).

equation (46). However, the boundary conditions ABC1,1
PS and ABC1,1

PR work differently and possess similarity with425

neither of the two mentioned.426

5.2. ABC in 2-d427

In this part we study how the boundary conditions with ABC2,o
n , o = {0, 1}, n = {PS,PR,EM} absorb ultrasound428

waves at different frequencies and angles of incidence in a two-dimensional horizontal acoustic waveguide and also429

analyze the performance of the ABCs for the High-Intensity Focused Ultrasound problem.430

5.2.1. Acoustic waveguide431

We consider a two-dimensional horizontal acoustic waveguide Ω ∈ [0, 8 cm] × [0, 18 cm] and the excitation un432

with a frequency ω = {25, 50, 100} kHz set on the left boundary ΓN of the domain Ω. The ABC studied was prescribed433

on the right boundary ΓA, which is inclined to the horizontal axis at one of the angles α = {75◦, 60◦, 45◦} (Fig. 5).434

α
ΓN

ΓAΩ

Fig. 5: General geometric setup for the horizontal acoustic waveguide Ω.

A series of snapshots of the reference solution u∗ and the solution affected by the boundary conditions ABC2,o
n435

(o = {0, 1}, n = {PS,EM}) are shown in Fig. 6. In this case, the situation is essentially the same as for the 1-436

d waveguide. The Engquist–Majda condition of first order significantly pollutes the solution with reflected waves437



Igor Shevchenko, Barbara Kaltenbacher / Journal of Computational Physics 00 (2016) 1–27 20

(Fig. 6(b)). The second order Engquist–Majda ABC outperforms the first order one, but the reflections are still very438

large (Fig. 6(c)). Per contra, the zero order condition ABC2,0
PS exhibits a much better performance and only introduces439

low-amplitude reflected waves into the solution (Fig. 6(d)). The first order conditions ABC2,1
PS and ABC2,1

PR demonstrate440

a considerable improvement and a very accurate solution compared to the conditions ABC2,1
EM, ABC2,2

EM and ABC2,0
PS441

(Fig. 6(e)). We did not present the results for the boundary condition ABC2,1
PR derived via the para-differential approach,442

since, as in the one-dimensional case, it gives essentially the same accuracy as ABC2,1
PS .443

The dependency of the ABCs, considered in this section, on the excitation frequency ω echoes that of the ABCs444

in 1-d case - there is no considerable loss of accuracy when ω changes (Fig. 7). On the contrary, the incident angle α445

significantly affects the performance of the ABCs. As α decreases, so does the accuracy, and this effect is more pro-446

nounced for the first and second order Engquist–Majda boundary conditions. The proposed ABCs are less influenced447

by the angle of incidence compared to the Engquist–Majda conditions and still give relatively accurate results even in448

low-α regimes.449
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t = 0.25 t = 0.50 t = 0.75 t = 1.00

(a)

(b)

(c)

(d)

(e)

Fig. 6: Typical snapshots of the solution in the 2-d waveguide with α = 75◦ and ω = 100 kHz: (a) the reference solution u∗; and the solution u
distorted by reflect waves from the boundary conditions (b) ABC2,1

EM, (c) ABC2,2
EM, (d) ABC2,0

PS , (e) ABC2,1
PS .
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Fig. 7: Dependency of the relative error δ on the excitation frequency ω and the incidence angle α in the wo dimensional waveguide. Relative error
δ versus time t for the first (ABC2,1

EM) and second (ABC2,2
EM) order Engquist–Majda conditions, and for the zero (ABC2,0

PS ) and first (ABC2,1
PS ) order

boundary conditions based on the pseudo-differential calculus.

5.2.2. High-Intensity Focused Ultrasound problem450

In this part, we studied the HIFU problem in which we used monofrequency excitation by a concave array of451

transducers, with an aperture of 20 mm and excitation frequency ω = 1.0 MHz, located on the bottom of the domain452

Ω (Fig. 8). Such a transducer array shape allows to focus high intensity ultrasound waves on the desired place within453

the sonicated biotissue and create a local temperature increase to destroy tumor cells. On the rest of the boundary ΓA454

we set the ABC studied. The configuration of the computational domain used as well as the transducer characteristics455

and the problem parameters are typical for numerical simulations of HIFU ablations of tumors.456

The accuracy of ABCs for the HIFU problem is one of the most important issues, since in case of using inaccurate457

ABCs reflected waves can significantly contaminate the acoustic pressure field, which, in turn, is used in the coupled458

thermo-acoustic HIFU problem to compute the temperature distribution in the sonicated biotissue. The knowledge of459

the temperature field determines the success of any HIFU therapy and therefore its distortion can lead to misinterpre-460

tation of simulation results.461

The reference solution u∗ and the solution u influenced by reflected waves from the boundary conditions ABC2,o
n462

(o = {0, 1}, n = {EM,PS}) at different characteristic time steps are shown in Fig. 9.463
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Ω
ΓA

ΓA ΓA

ΓN

Fig. 8: General geometric setup for the high-intensity focused ultrasound problem.
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(a)

(b)

(c)

(d)

(e)

Fig. 9: Snapshots of the solution for the HIFU problem: (a) the reference solution u∗; and the solution u distorted by reflect waves from the
boundary conditions (b) ABC2,1

EM, (c) ABC2,2
EM, (d) ABC2,0

PS , (e) ABC2,1
PS .

The difference between these boundary conditions is clearly visible. In particular, the second order Engquist–464

Majda ABC outperforms the first order one, especially in the focal spot, where the solution is affected the most by the465
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reflected waves (Figs.9(b) and 9(c)). Interestingly that far off the focus the first order Engquist–Majda ABC seems to466

perform even better than its second order version. However, overall the second order Engquist–Majda condition gives467

a better accuracy as opposed to the first order one.
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Fig. 10: HIFU problem. Relative error δ versus time t for the first (ABC2,1
EM) and second (ABC2,2

EM) order Engquist–Majda conditions, and for the
zero (ABC2,0

PS ) and first (ABC2,1
PS ) order boundary conditions based on the pseudo-differential calculus.

468

The proposed ABCs of zero and first order demonstrate much more accurate results than the Engquist–Majda469

ABCs in both the focal zone and in the periphery of the computational domain (Figs.9(d) and 9(e)). Moreover, they470

also show a much smoother behaviour in time, which is confirmed by the relative error δ (Fig. 10).471

6. Conclusions472

In this work we have proposed local in space and time absorbing boundary conditions for the Westervelt equation473

in one and two space dimensions. The derivation of the boundary conditions is based on the theory of pseudo-474

and para-differential calculus, which has been applied to the construction of absorbing boundary conditions for the475

Westervelt equation in this work for the first time. We have found that both techniques lead to essentially the same476

absorbing boundary conditions in terms of computational efficiency and numerical accuracy.477

We have studied different approaches to the linearization of the Westervelt equation (the Taylor linearization,478

asymptotic expansions, and the Bony para-linearization) and found that they are all equivalent if the Taylor lineariza-479

tion uses the same assumption as the para-linearization approach - the function vanishes at the reference solution.480

All our numerical tests exhibit no instabilities, and demonstrate both the efficiency and effectiveness of the pro-481

posed boundary conditions. They are also attractive from the computational point of view due to their local character482

and are easy to implement into existing numerical methods. The developed absorbing boundary conditions provide483

quantitatively much better results than the classical first and second order Engquist–Majda conditions and can effi-484

ciently handle different regimes of wave propagation in a wide range of excitation frequencies and angles of incidence.485

This shows that it pays off to take into account the nonlinearity as well as strong damping present in the Westervelt486

equation also in the boundary conditions. It is also important to remark that the application of the self-adapting487

technique [49] to the proposed boundary conditions will result in further improvements.488
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