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Abstract— We provide an overview of the theory and applica-
tions of the notion of moment at “discontinuous interpolation
signals”, i.e. the moments of a system for input signals that
do not satisfy a differential equation. After introducing the
theoretical framework, which makes use of an integral matrix
equation in place of a Sylvester equation, we discuss some
applications: the model reduction problem for linear systems at
discontinuous signals, the model reduction problem for hybrid
systems and the discontinuous phasor transform for the analysis
of circuits powered by discontinuous sources.

I. INTRODUCTION

The model reduction problem consists in finding a sim-
plified description of a complex model in specific operating
conditions maintaining at the same time certain properties
[1]. Model reduction by moment matching is a method that
has the objective of determining a reduced order model
which has a steady-state output response equal to the one
of the system to be reduced for the same class of input
signals [2]. In fact, the moments of a linear system are
in one-to-one relation with the steady-state response of a
particular interconnected system. In this paper we provide an
overview of the results generated from the notion of moment
at “discontinuous signals” introduced in [3], [4]. The origin
of this notion is motivated by a large number of applications
in which standard operating conditions are associated to non-
continuous input signals, such as pulse width modulated
waves in power converters. The generality of the signals we
are able to interpolate (Section II), which include signals
generated by time-invariant systems, time-varying systems,
nonlinear systems and hybrid systems, is pointed out. The
theoretical framework is introduced (Section III) and the
notion of moment at discontinuous signals is defined using an
integral matrix equation. We then cover several applications
in which this new notion has been, or can be, used. First,
we give (Section IV) a family of reduced order models
by moment matching at discontinuous signals. Second, we
extend (Section V) the theory of model reduction by moment
matching to hybrid systems. Third, we give (Section VI) the
notion of discontinuous phasor transform and show the use of
this new analytical tool for the analysis of switching circuits.

II. A GENERAL CLASS OF SIGNALS

We begin with introducing the definition of explicit and
implicit models and we present the general class of signal
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generators in explicit form. We show that this general class is
a powerful description which includes the signals generated
by very different classes of systems.

Definition 1: Let x, with x(t) ∈ Rn, be the state of a
dynamical system Σ. Let u, with u(t) ∈ Rm, be the input of
Σ. Let t0 and x0 = x(t0) be the initial time and the initial
state, respectively. If there exists a function φ : R×R×Rn×
Rm → Rn such that

x(t) = φ(t, t0, x0, u), (1)

for all t ≥ t0, we call equation (1) the representation in
explicit form [5], or the explicit model, of Σ.
Assume φ(t, t0, x0, u) has a continuous derivative with re-
spect to t for every t0, x0 and u, and there exists a function
f : Rn × Rm → Rn continuous for each t over Rn × Rm
such that

ẋ = f(x, u). (2)

We call the differential equation (2) the representation in
implicit form [6], or the implicit model, of Σ.
Consider a signal generators in explicit form described by
the equation

ω(t) = Λ(t)ω(0), u = Lω, (3)

with Λ(t) ∈ Rν×ν such that Λ(0) = I . Note that (3) provides
a very general class of models which contains the implicit
model

ω̇ = Sω, u = Lω, (4)

but that describes several other signal generators. For in-
stance, it can represent signals generated by a time-varying
system of the form

ω̇ = S(t)ω, u = Lω, (5)

in which case Λ(t) is the transition matrix associated to (5)
[7, Section 3].
Equation (3) can also represent a signal generator described
by some class of hybrid systems of the form

ω̇(t, k) = Sω(t, k), uc=Lcω,
ω+ = ω(t, k + 1) = Jω(t, k), ud=Ldω,

(6)

which jumps and flows on some hybrid time domain. Note
also that any periodic signal, linear with respect the initial
condition, can be described by (3) adding the property

Λ(t) = Λ(t− T ), t ≥ T, (7)

where T is the period of the signal u. Not only any periodic
signal can be represented with (3), but (3) can be regarded as



“the signal itself” generated by all the other representations.
For instance, if we consider a square wave, then Λ(t) = u(t),
irrespective of the class of systems that generated the signal.
For instance, u(t) can be generated by a nonlinear system,
i.e. u(t) = sign(sin(t)). Or it can be generated by the hybrid
system (6). In fact, considering the case of periodic jumps,
with period T , yields

Λ(t) = Jb
t
T ceSt. (8)

It is evident that the characterization of the moments for
the explicit signal generator (3) would solve the problem
of model reduction by moment matching for many different
classes of input signals.

III. INTEGRAL DEFINITION OF MOMENT

Consider a linear, single-input, single-output, continuous-
time, minimal, system described by the equations

ẋ = Ax+Bu, y = Cx, (9)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, A ∈ Rn×n, B ∈ Rn×1
and C ∈ R1×n. To guarantee that the steady-state response
of system (9) driven by (3), upon which the description
of moment is based, exists, we need to introduce further
hypotheses on the class of input signals (3).

Assumption 1: The vector ω(t) defined in equation (3) has
a strictly proper Laplace transform with non-negative poles.

Assumption 2: The matrix valued function Λ(t) is non-
singular for all t ≥ 0.
Assume now that there exists a set T ⊂ R≥0 in which Λ(t) is
differentiable with respect to t and consider the time-varying
system described by the equation

ż(t) = G(t)>z(t), (10)

with G(t) = −Λ̇(t)Λ(t)−1. Let Φ(t) be the transition matrix
of system (10).

Assumption 3: The function G(t) is piecewise continuous
with respect to t. Moreover, there exist T ≥ 0 and a
polynomial p(t) such that ||Φ(t)>|| ≤ p(t) for all t ≥ T .

Assumption 4: The triple (L,Λ, ω(0)) is minimal, see [4].
Remark 1: Assumptions 1, 2, 3 and 4 are “mild” as-

sumptions and the role of each assumption is explained
in [4]. Note that they are satisfied by a general class of
discontinuous periodic signals, see [8].
We report now the definition of moment as derived in [4].

Theorem 1: [4] Consider system (9) and the signal gen-
erator (3). Assume Assumptions 2 and 3 hold, σ(A) ⊂ C<0

and Λ(t) is almost everywhere differentiable. Let

Π(t) =

(
eAtΠ(0) +

∫ t

0

eA(t−τ)BLΛ(τ)dτ

)
Λ(t)−1, (11)

be a family of matrix valued functions parametrized in
Π(0) ∈ Rn×ν . Then there exists a unique Π∞(0) such
that, for any Π(0), lim

t→+∞
Π(t)− Π∞(t) = 0, where Π∞(t)

is the solution of (11) with Π(0) = Π∞(0). Moreover, if
x(0) = Π∞(0)ω(0) then x(t)−Π∞(t)ω(t) = 0 for all t ≥ 0,
and the set M∞ = {(x, ω) ∈ Rn+ν |x(t) = Π∞(t)ω(t)} is
attractive.

Note that the function Π∞(t) solves the differential equation

Π̇(t) = AΠ(t) +BL−Π(t)Λ̇(t)Λ(t)−1, (12)

with the initial condition Π(0) = Π∞(0), for all t ∈ T .
Definition 2: Consider system (9) and the signal genera-

tor (3). Suppose Assumptions 1, 2 and 3 hold and σ(A) ⊂
C<0. The function CΠ∞(t), where Π∞(t) is the solution of
equation (11) with Π(0) = Π∞(0), is defined as the moment
of system (9) at Λ.

Corollary 1: [4] Consider the interconnection of sys-
tem (9) with the signal generator (3). Suppose Assump-
tions 1, 2, 3 and 4 hold and σ(A) ⊂ C<0. Then the moment
of (9) at Λ coincides with the steady-state response of the
output of the interconnected system (9)-(3).
The choice of defining the moment of (9) as in Definition 2
is justified by the equivalence, when an implicit model of
(3) is available, between the new and the classical definition
of moment (see [4, Theorem 3], [9]).
The determination of the initial condition Π∞(0) is sim-
plified if particular classes of systems are considered. For
instance we may consider periodic signals, since they are of
special interest for applications [3], [4], [8].

Corollary 2: [4] Consider system (9) and the signal
generator (3). Assume Assumptions 2 and 3 hold and σ(A) ⊂
C<0. If for (3) the property (7) holds, then Π∞(t) is periodic
and equation (11) becomes

Π∞(t) =
(
I − eAT

)−1[∫ t

t−T
eA(t−τ)BLΛ(τ)dτ

]
Λ(t)−1. (13)

Remark 2: Exploiting the periodicity of the steady-state,
Π∞(t) defined in (13) has to be computed only over a period.
This can be done off-line and the obtained values can then
be used on-line for any time interval, considerably reducing
the complexity of determining Π∞(t).

IV. MODEL REDUCTION AT DISCONTINUOUS SIGNALS

With this characterization of moment we can define a
family of reduced order models for the linear system (9)
at the input signals generated by (3) with the property (7).
Note that the property (7) can be removed, as shown in [4].

Proposition 1: [4] Consider system (9) and the signal
generator (3) with the property (7). Suppose Assumptions 1,
2, 3 and 4 hold and σ(A) ⊂ C<0. Then the system

ξ̇ = Fξ +Gu, ψ = CΠ∞(t)P∞(t)−1ξ(t), (14)

with ξ(t) ∈ Rν , F ∈ Rν×ν , G ∈ Rν×ν and Π∞(t) defined
in (13), is a model of system (9) at (Λ, L), if σ(F ) ⊂ C<0

and

P∞(t) =
(
I − eFT

)−1[∫ t

t−T
eF (t−τ)GLΛ(τ)dτ

]
Λ(t)−1, (15)

is non-singular for all t ∈ R≥0.

V. MODEL REDUCTION FOR HYBRID SYSTEMS

First of all note that the problem of model reduction of
linear systems at input signals generated by hybrid systems
is already solved by Proposition 1, considering the matrix Λ
defined in (8). An alternative formulation based on hybrid



output regulation, but still inspired by the results of [4], has
been given in [10]. Instead, herein we consider the more
general problem of model reduction of hybrid systems at
input signals generated by hybrid systems, extending in this
way the results in the literature.
Define the hybrid time domain H := {(t, k) : t ∈
[kT, (k + 1)T ] , k ∈ Z} and the set D of complex numbers
with modulus strictly smaller than one, i.e. D := {s ∈
C : |s| < 1}. Consider a linear, single-input, single-output,
minimal, hybrid system flowing and jumping according to
H described by the equations

ẋ = Acx+Bcuc, x+ = Adx+Bdud, y = Cx, (16)

with x(t, k) ∈ Rn, u{c,d}(t, k) ∈ R, y(t, k) ∈ R, A{c,d} ∈
Rn×n, B{c,d} ∈ Rn×1 and C ∈ R1×n.

Theorem 2: Consider the interconnection of system (16)
with the hybrid generator (6). Assume σ

(
Ade

AcT
)
⊂ D<1.

The steady-state output response of the interconnected sys-
tem is CΠ∞(t)ω, where Π∞ is the unique solution of

Π̇∞ = AcΠ∞ −Π∞S +BcLc,
Π∞(T )J = AdΠ∞(0) +BdLd,

(17)

if and only if σ
(
JeST

)
∩ σ

(
Ade

AcT
)

= ∅.
Proof: It is easy to show that the output response of

the interconnected system is

y(t, k)=CΠ∞(t)ω(t, k)+CAkde
Act(x(0, 0)−Π∞(0)ω(0, 0)),

with Π∞(t) =

(
eAc(t)Π∞(0) +

∫ t

0

eAc(t−τ)BcLce
Sτdτ

)
e−St,

where Π∞(0) is the solution of the Sylvester equation

Π(0)∞e
−STJ − e−AcTAdΠ∞(0) =

= −
∫ T

0

e−AcτBcLce
S(τ−T )dτ + e−AcTBdLd.

The solution of this equation is unique if and only if
σ
(
JeST

)
∩ σ

(
Ade

AcT
)

= ∅. Moreover the transient term
CAkde

Act(x(0, 0) − Π∞(0)ω(0, 0)) decays to zero since
σ
(
Ade

AcT
)
⊂ D<1, proving the claim.

Note that Π∞(t) defined in (17) is exactly the same matrix
defined in Theorem 1, for the special signal generator (6).

Definition 3: Consider system (16) and the signal gen-
erator (6). Assume σ

(
JeST

)
∩ σ

(
Ade

AcT
)

= ∅ and
σ
(
Ade

AcT
)
⊂ D<1. The function CΠ∞(t), where Π∞(t)

is the solution of equations (17) is defined as the moment of
system (16) at (S,Lc, J, Ld).

Proposition 2: Consider system (16) and the signal
generator (6). Suppose σ

(
JeST

)
∩ σ

(
Ade

AcT
)

= ∅,
σ
(
Ade

AcT
)
⊂ D<1 and Assumption 4 hold. Then the

system
ξ̇ = (S −GcLc)ξ +Gcuc,
ξ+ = (J −GdLd)ξ +Gdud,
ψ = CΠ∞(t)ξ(t),

(18)

with ξ(t, k) ∈ Rν , ψ(t, k) ∈ R, G{c,d} ∈ Rν×1 and
Π∞(t) the unique solution of (17), is a model of system (16)
at (S,Lc, J, Ld), for any G{c,d} such that σ

(
JeST

)
∩

σ
(

(J −GdLd)e(S−GcLc)T
)

= ∅.

Proof: Under the hypotheses of the Proposition, the
steady-state of the interconnection of system (16) and the sig-
nal generator (6) has a steady-state described by CΠ∞P

−1
∞ ω,

with P∞(t) = I the unique solution of

Ṗ∞ = (S −GcLc)P∞ − P∞S +GcLc
P∞(T )J = (J −GdLd)P∞(0) +GdLd.

(19)

VI. DISCONTINUOUS PHASOR TRANSFORM

Assume now that the state variables of the linear sys-
tem (9) represent the currents and the integrals of the currents
of an electrical circuit, i.e. they are obtained applying the
Kirchhoff’s Voltage Law. We assume also that the sources are
voltage sources. In [8], see also [11], it has been shown that
the phasors of a linear system are the moments of the system
describing the circuit when a single complex interpolation
point is selected. Hence, the integral definition of moment
allows to define an extension of the phasor transform for
discontinuous sources, e.g., pulse width modulated waves.

Definition 4: The system (9) and the generator (3) are said
to be in the mixed convention if the matrices A, B and C
have real entries and the matrices L and Λ have complex
entries.
We define now the phasor for sources described by (3).

Definition 5: [8] Consider system (9) and the signal
generator (3) with the property (7). Assume Assumptions 1,
2, 3 and 4 hold, σ(A) ⊂ C<0 and Λ(t) is almost everywhere
differentiable. The components of the function Π∞(t), de-
fined in (13), are the discontinuous phasors of all the currents
and of all the integrals of the currents in system (9) for the
source Λ(t). The discontinuous inverse phasor transform of
the steady-state output current i(t) of system (9) is

i(t) = <
[
I(t)Λ(t)

]
, (20)

with I(t) = CΠ∞(t).
Remark 3: Similarly to the sinusoidal case, the instanta-

neous currents are recovered multiplying the phasor with the
source and taking the real part.

Remark 4: Differently from the sinusoidal case, the pha-
sor I(t) is a time-dependent periodic function. Note that if
Λ(t) is sinusoidal, equation (13) defines the usual constant
phasor and Π∞ solves a Sylvester equation (see [11]).

Remark 5: The inverse phasor transform introduced in
[12] is a particular case of the more general phasor transform
we have introduced. In fact, that phasor transform is recov-
ered when Λ(t) = ejω(t). Note moreover that in [12] the
phasor itself, i.e. the direct phasor transform, is not defined.

Now that we have defined the discontinuous phasor and
the discontinuous inverse phasor transform we extend the
properties of the phasor circuit analysis describing the v-i
characteristics of some common subcircuits which constitute
power electronic devices. In fact, to be useful for applications
we need to be able to compute the voltage across an inductor,
capacitor and resistor given the phasor of the current which
flows through these components. This is of paramount im-
portance to be able to define the power and, more in general,



to make this mathematical extension an accurate description
of the physical quantities in the circuit. The expressions
that relate voltage and current in an inductor, capacitor and
resistor are, respectively,

v = L
di

dt
, v =

1

C

∫ t

0

i dτ, v = Ri. (21)

Utilizing the classical phasor transform

f(t) = <
[
Fejωt

]
, (22)

it can be proved that the relations

V = jωL I, V =
1

jωC
I, V = RI, (23)

hold. When the source is described by the generator (3), these
relations may not hold anymore. Consider, for instance, a
square wave, which is described by the sum of infinitely
many frequencies ωk. It is exactly for this inability to
deal with this type of signals without approximations that
Definition 5 has been introduced. In fact, exploiting the
discontinuous phasor transform we obtain the following exact
relations.

Theorem 3: [8] Consider the equations in (21). The
relations

V (t) = L İ(t) + L
Λ̇(t)

Λ(t)
I(t),

V̇ (t) +
Λ̇(t)

Λ(t)
V (t) =

1

C
I(t),

V = RI(t),

(24)

hold.
Remark 6: If Λ(t) = ejωt, then İ(t) = 0, V̇ (t) = 0,

Λ̇(t)Λ(t)−1 = jω and (24) become the relations in (23).
Remark 7: In the mixed convention, the components with

odd indeces of Π∞, computed from (13), are those functions
that multiplied by Λ give the steady-state of the integrals of
the currents.
Using the phasor transform (20) the instantaneous power is
defined as

p(t) = v(t)i(t) = <
[
V (t)Λ(t)

]
<
[
I(t)Λ(t)

]
, (25)

which, exploiting the properties of the real part operator,
yields

p(t) =
1

2
<
[
V (t)∗I(t)Λ(t)Λ(t)∗

]
+

1

2
<
[
V (t)I(t)Λ(t)2

]
.

(26)
As in the sinusoidal case the instantaneous power is separated
in two terms: the average of the first term is equal to the
average power, whereas the average of the second term is
zero. However, differently from the sinusoidal case, the first
term is not constant, in general, and thus it is not equal to
the average power. Hence, the average power and the reactive
power are defined as follows.

Definition 6: In the phasor domain identified by the pha-
sor transform (20), the average power Pa and the reactive

power Q are defined as

Pa =
1

2

〈
<
[
V (t)∗I(t)Λ(t)Λ(t)∗

]〉
,

Q =
1

2

〈
=
[
V (t)∗I(t)Λ(t)Λ(t)∗

]〉
,

(27)

where < · > represents the time average operator.
Equations (27) are consistent with the usual definition of
average power and reactive power in the complex exponential
case. For the non-exponential case, equations (27) generalize
the respective relations achievable with the phasor transform
(22). Note that one can say more when specific signals are
considered. For instance, if the input signal is a square wave,

Pa =
1

4
<
[
V (t)∗I(t)

]
.

VII. CONCLUSION

We have provided an overview of the results originated
from the notion of moment at “discontinuous interpolation
signals”. We have introduced the target class of signal
generators and we have shown its generality. We have defined
the notion of moment with an integral matrix equation and
we have discussed some applications presented in the liter-
ature, i.e. the model reduction problem for linear systems at
discontinuous signals and the discontinuous phasor transform
for the analysis of circuits powered by discontinuous sources,
and a new application, i.e. the model reduction problem for
hybrid systems.
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