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We revisit one of the earliest proposals for deformed dispersion relations in the light of recent
results on dynamical dimensional reduction and production of cosmological fluctuations. Depending
on the specification of the measure of integration and addition rule in momentum space the model
may be completed so as to merely deform Lorentz invariance, or so as to introduce a preferred frame.
Models which violate Lorentz invariance have a negative UV asymptotic dimension and a very red
spectrum of quantum vacuum fluctuations. Instead, models which preserve frame independence
can exhibit running to a UV dimension of 2, and a scale-invariant spectrum of fluctuations. The
bispectrum of the fluctuations is another point of divergence between the two casings proposed here
for the original model.

I. INTRODUCTION

Deformed special relativity (DSR) was proposed as a
simple way to accommodate modified dispersion rela-
tions (MDRs) without introducing preferred frames [1–
6]. One of the first DSR models was that proposed in [5],
inspired by its position space counterpart, initially intro-
duced by Fock [7, 8]. Given recent developments in the
field, particularly with regards to cosmological perturba-
tion generation [11–14] and the phenomenon of running
of dimensionality [15–29], it is timely to reappraise this
model. Some of its original motivations are now obsolete;
however, exciting developments are now driving the field.
The model remains one of the simplest of its kind, and it
is interesting to revisit it in the light of recent work.
We recall that the model proposed in [5] is based upon

the MDR:

E2 − p2

(1− λE)2
= m2 (1)

with a number of variations considered in [6] (specifi-
cally in order to implement a varying speed of light [30–
32]). This MDR was supplemented by a set of non-linear
transformation laws between inertial observers, chosen in
order to preclude the introduction of a preferred frame
right at “step one”. However the integration measure
in momentum space for the model was never specified.
Depending on this “step 2” issue, the model may either
be an example of Lorentz invariance violation (LIV) or
of proper relativistic DSR. The authors clearly intended
the latter, but the potential for the model to be included
in both frameworks should not be neglected.
As a “step 3” issue we note that the energy-momentum

addition rule and the mutiparticle sector of the theory
add yet another layer where one may choose LIV or not.
The early proposal in [6] accommodates the latter, but
a linear addition rule would also allow for a LIV ele-
ment in the framework. In this paper we consider the
various completions of this model in view of these possi-
bilities. The “step 2” options will be seen to have dra-
matic implications for the asymptotic UV dimensionality
of the space-time and the spectrum of cosmological fluc-

tuations. “Step 3” issues will be found to leave an imprint
onto the bispectrum and higher-order correlators of the
fluctuations.

II. TO LIV OR NOT NO LIV

The MDR (1) does not by itself specify whether the
theory has broken Lorentz invariance or not, even if
transformation laws between observers are postulated
such that the MDR remains invariant. As explained in
[5] we should select a non-linear representation of the
Lorentz group if we do not want to introduce a preferred
frame right from the start (as would be the case if linear
transformations were chosen). This amounts to postulat-
ing standard transformations for the auxiliary “lineariz-
ing” variables:

Ẽ =
E

1− λE
(2)

p̃i =
pi

1− λE
(3)

resulting in transformations such that a deformed boost
along the ẑ direction, with velocity v, reads

E′ =
ξ (E − vpz)

1 + λ(ξ − 1)E − λξvpz

p′z =
ξ (pz − vE)

1 + λ(ξ − 1)E − λξvpz

p′x =
px

1 + λ(ξ − 1)E − λξvpz

p′y =
py

1 + λ(ξ − 1)E − λξvpz
(4)

where ξ = 1/
√
1− v2 (assuming D = 3 spatial dimen-

sions). These are the transformation rules for the phys-
ical variables. It is assumed that the interactions peg
down the physical frame as the MDR frame, because only
in this frame is there minimal coupling (or Einstein grav-
ity is valid).
But even if care has been taken to prevent the intro-

duction of a preferred frame at line one, further work is
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required to prevent it from sneaking in elsewhere. For
instance, one must specify the measure of integration in
momentum space, a matter closely related to the iden-
tification of the dimensionality of spacetime. We clearly
introduce a preferred frame if we supplement (1) and (4)
with an undeformed measure in momentum space:

dµ = dE dp pD−1. (5)

In contrast we do not introduce a preferred frame if we
choose measure:

dµ =
dE dp pD−1

(1 − λE)D+2
, (6)

since this is invariant under transformations (4), as can
be inferred from the fact that in linearizing coordinates
this measure becomes:

dµ̃ = dẼ dp̃ p̃D−1, (7)

i.e. the trivial measure, which is invariant under linear
transformations.
The composition rule for energy and spatial momenta

is another important element where one may have LIV or
not. If a linear composition rule is specified for E and p,
then this obviously selects a preferred frame. However,
if the integration measure (6) has been chosen, the pre-
ferred frame is evident only at the level of the multipar-
ticle sector (and interactions), with the preferred frame
silent when examining free particles. This shows the mul-
titude of options available, as we could also combine a
linear addition rule with measure (5), resulting in a fully
LIV theory (i.e. one where the preferred frame is mani-
fest at all levels).
To avoid the introduction of a preferred frame at all

a number of possibilities were considered in [5]. The de-
formed sum ⊕ of the momenta of N particles may be
chosen to be:

E1 ⊕ ....⊕ EN =

∑

n
En

1−λEn

1 + fN(λ)
∑

n
En

1−λEn

(8)

~p1 ⊕ ....⊕ ~pN =

∑

n
~pn

1−λEn

1 + fN(λ)
∑

n
En

1−λEn

. (9)

The function fN(λ) may be non-trivial if we wish the
multiparticle energy-momentum to transform differently
from the single particle one. In fact, the multiparticle
transformations then mimic the single particle ones, but
with λ replaced by fN(λ). This was proposed to cir-
cumvent the “soccer ball” problem, and at its simplest
fN = λ/N . It leads to a commutative but non-associative
addition rule; in fact, we must have:

p1 ⊕ p2 ⊕ p3 6= (p1 ⊕ p2)⊕ p3 6= p1 ⊕ (p2 ⊕ p3). (10)

However, the soccer ball is by and large a red herring [33,
34], and it never exists in field theory [35–37]. So we
can simply set fN = λ, leading to a commutative and
associative addition law, without introducing a preferred
frame. All of these choices regarding addition rules will
have signatures in the bispectrum of the theory.

III. SPACETIME DIMENSIONALITY AND

VACUUM FLUCTUATIONS

The implications for the dimensionality of space-time
of the various LIV/DSR options for completing the model
are dramatic. The phenomenon of running of the dimen-
sionality of spacetime, as one scans from IR to UV, has
been widely studied [15–29]. Its most direct relation to
MDRs was exposed in [14, 38, 39], where it was shown
that the phenomenon may be characterized in terms of
the Haussdorf dimension of energy-momentum space in
units such that all non-trivial effects are shifted to the
integration measure. This always agrees asymptotically

with results obtained using the spectral dimension as a
tool, but bypasses many of its conceptual drawbacks [40].
For our model, in the LIV case, we can write the mea-

sure (5) in terms of linearizing variables resulting in:

dµ̃ =
dẼ p̃D−1 dp̃

(1 + λẼ)D+2
→ dẼ p̃D−1 dp̃

(λẼ)D+2
(11)

where the last limit represents the UV regime. Energy
and spatial momentum have UV dimensionality:

DE = −D − 1 (12)

Dp = D (13)

and therefore total Haussdorf dimension dH = −1, in-
dependently of D. It is not clear that a negative di-
mensionality of energy-momentum space is pathological.
It merely signals that, as we consider momentum space
shells located further and further outwards, we find that
the number of modes they contain falls off, instead of
increasing. The number of modes contained in these
shells is not negative (something which would obviously
be pathological). A negative dimensionality is therefore
a theoretical possibility.
Regardless of this issue, it is obvious that the model is

phenomenologically problematic. As explained in [9] the
spectrum of quantum vacuum fluctuations generated in
the UV is directly related to the dimension of momen-
tum space. Our result implies that in this model these
fluctuations have a very red spectrum, with:

nS = −2. (14)

With basic assumptions on gravity, this is also the spec-
trum left outside the horizon, a conclusion which is
independent of D. Of course some assumptions may
be modified, but in the light of previous work [9, 11–
14, 41] our result suggests that the LIV completion of
the model is phenomenologically pathological. We stress
that by replacing the Casimir of the theory by a power
of itself (as in C → C1+γ) these conclusions would not
change. The UV dimension would still be negative (in-
deed, dH = −1/(1+γ)), and the spectrum of fluctuations
be red.
If we choose a DSR measure, however, the situation is

very different. Since in linearizing units (where all non-
trivial effects are shifted to the measure) we have (7),
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there is no running of the dimensionality in this model.
However, just as for de Sitter momentum space [38], anti-
de Sitter momentum space [39], and what in [9] was called
non-local Lorentz invariant theories, we can consider the
class of associated models with MDRs

E2 − p2

(1 − λE)2
+ λ2γ

[

E2 − p2

(1− λE)2

]1+γ

= m2 . (15)

In the UV limit this becomes

λ2γ

[

E2 − p2

(1− λE)2

]1+γ

≈ m2. (16)

Just as in that case we then find that the UV spectral
dimension is:

dH =
1 +D

1 + γ
(17)

so that for D = 3 and γ = 1 we run to 2 dimensions in
the UV, and so [9] the vacuum fluctuations have a power
spectrum with the coveted:

nS = 1, (18)

with interesting phenomenological implications [41]. A
subtlety similar to that addressed in [10] must be resolved
here, too, and will be addressed in the next Section.

IV. THE SUM RULE AND THE BISPECTRUM

Given the various composition rules proposed in Sec-
tion II, a number of possibilities emerge regarding the
density fluctuations. This is relevant both for the details
of the evaluation of the power spectrum, as well as the
selection rules constraining the higher order correlators.
If the sum rule is linear (and thus we have a LIV the-

ory), then, first of all, the argument in [9] for evaluating
the power spectrum does apply directly, without further
refinement. In addition, the selection rules for the bis-
pectrum (and higher order correlators) are trivial. For
example the bispectrum must take the form:

〈φ3〉 ∝ δ(3)
(

~k1 + ~k2 + ~k3

)

F (~k1, ~k2, ~k3) , (19)

i.e. be non-vanishing only on triangles. The function

F (~k1, ~k2, ~k3) depends on the size and shape of the trian-
gles and is determined by the details of the interaction
Hamiltonian of the theory.
The situation is different should we use a DSR sum

rule, such as (8) and (9). Then, care must be taken
to make sure one does not introduce a preferred frame
at quantization, by applying the prescription proposed
in [9], as explained in [10]. Proper, frame independent
quantization follows from identifying the “antipode” in
momentum space. For this to be compatible with Eqs.
(8) and (9) (with fN = λ), the antipode, defined as

E ⊕ (⊖E) = 0

~p⊕ (⊖~p) = 0

(20)

should be given by:

⊖ E = − E

1− 2λE
(21)

⊖~p = − ~p

1− 2λE
. (22)

The two-point function is given by the single-particle
state normalization, induced by δ(p ⊕ (⊖p′). If γ = 0,
in linearizing coordinates both the measure and the dis-
persion relation are the trivial ones, as well as the conser-
vation laws of momenta. So the two-point function will
be the standard one, and no preferred frame has been in-
troduced at quantization, as long as we restrain ourselves
to the 2-point function. However, if γ 6= 0, a further lin-
earization procedure is needed, equal in everything to
that found for non-local Lorentz invariant theories in [9]
(see Section VA). Specifically, for γ = 1 and D = 3 we
should linearize via a further step, first by introducing
coordinates:

Ẽ = r̃ cosh φ̃ (23)

p̃ = r̃ sinh φ̃ (24)

then

r̂ = r̃2 (25)

φ̂ =
1

6
φ̃ (26)

and finally:

Ẽ = r̃ cosh φ̃ (27)

p̃ = r̃ sinh φ̃. (28)

The measure in linearizing units will therefore be

dµ̂ = dÊ dp̂ (29)

and this does correspond to the conclusion that nS = 1,
as explained in [9], and likewise it does not introduce a
preferred frame.
The results for the two-point function are therefore

trivial unless γ 6= 0, for the DSR theory. This is be-
cause in the absence of interactions, and as long as we
do not look at the spacetime counterpart of the theory,
we cannot distinguish between different momentum space
frames connected by non-linear redefinitions of momenta.
When γ = 0 our DSR model is connected to the standard
special-relativistic theory by a non-linear redefinition of
momenta. Once interactions are introduced, however,
the momentum frame is fixed. This explains why the
three-point function has non-trivial features, even when
γ = 0, as we now show.
In general the three-point function is of the form:

〈φ3〉 ∝ δ(3)
(

~k1 ⊕ ~k2 ⊕ ~k3

)

F (~k1, ~k2, ~k3) , (30)

where the amplitude F depends on the details of the in-

teractions, and the momenta ~k1, ~k2, ~k3 are on-shell. If
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the theory is written in linearizing coordinates, then the
delta function contains the standard sum of momenta and
it constrains these momenta to form triangular shapes.
If, however, we consider the theory in the MDR frame,
the delta function of the deformed sum of momenta does
not in general constrain the momenta to form triangu-
lar shapes. This signals the non-equivalence of the two
frames, as selected by the interaction Hamiltonian.
If we take (8) and (9) with fN (λ) = λ, then in the

MDR frame the argument of the delta function is:

~k1 ⊕ ~k2 ⊕ ~k3 =

~k1

1−λ|~k1|
+

~k2

1−λ|~k2|
+

~k3

1−λ|~k3|

1 + λ
(

~k1

1−λ|~k1|
+

~k2

1−λ|~k2|
+

~k3

1−λ|~k3|

)

(were we have taken into account the massless on-shell

relation Ei = |~ki| ). It is clear that the condition ~k1 ⊕
~k2 ⊕ ~k3 = 0 is equivalent to ~k1 + ~k2 + ~k3 = 0 in only two
cases:

• if one of the vectors is zero and the other two are
of equal length but opposite direction (i.e. we have
a squeezed triangle),

• if |~k1| = |~k2| = |~k3| (i.e. we have an equilateral
triangle).

In all the other cases the condition ~k1⊕~k2⊕~k3 = 0 leads
to an “open triangle”. To see this we should write the
deformed sum as a standard sum plus a correction term:

~k1 ⊕ ~k2 ⊕ ~k3 = ~k1 + ~k2 + ~k3

+ λ

(

|~k1|~k1
1− λ|~k1|

+
|~k2|~k2

1− λ|~k2|
+

|~k3|~k3
1− λ|~k3|

)

.

It is then easy to check that if we require both ~k1+~k2+~k3
and the term in parentheses to be zero one of the two
aforementioned conditions has to hold. Otherwise, the
term in parentheses fails to vanish and gives the size of
the “gap” left for the triangle to close.
The selection rule just discovered is to be contrasted

with that found for the LIV completion of the model
(closed triangles only), and that identified in [10] for de
Sitter momentum space (squeezed triangles only; a dif-
ferent spectrum of gaps for the open triangles). This
highlights the discriminating potential of the bispectrum.

V. CONCLUSIONS

In this paper we reexamined one of the earliest mod-
els for MDRs in the light of recent developments in the
field. We found the original formulation of the model to
lack sufficient information in order to address the relevant

issues, specifically regarding the integration measure in
momentum space and the addition rule of energy and
momentum. We proposed LIV and DSR measures of in-
tegration and addition rules, leading to at least 4 combi-
nations of possibilities, all with very different theoretical
and phenomenological implications.
We found that a LIV integration measure leads to run-

ning to negative dimension in the UV and a strongly red
spectrum of density fluctuations. In contrast, a DSR inte-
gration measure may run to 2 UV dimensions, specifically
if the most obvious Casimir is squared. This is associated
with the production of scale-invariant vacuum quantum
fluctuations.
In addition, it is possible to supplement a DSR mea-

sure with a LIV addition rule, resulting in Lorentz viola-
tion only at the level of the multiparticle sector and the
3-point function and higher order correlators. For the
theory to be fully relativistic a non-trivial addition rule
must be specified. This results in a non-vanishing bispec-
trum for open triangles with very specific gaps depending
on size and angle. The only exceptions are equilateral
and squeezes triangles, on which the bispectrum is still
non-vanishing. This is an interesting signature of these
theories.
In conclusion, if we accept a DSR completion of the

original model, then it differs very little from the non-
local Lorentz invariant theory considered in [9] and else-
where in the literature. In that model the standard wave
operator is squared. In both cases there is running to 2
dimensions in the UV and the vacuum fluctuations are
scale-invariant. This is not surprising, since in both cases
momentum space is actually flat. The theories are differ-
ent, however, if we examine interactions and the bispec-
trum. Then the different addition rules selected by the
different interaction Hamiltonians will bring to the fore
fundamental differences, as we have shown.
The DSR model considered here, however, is always

very different from the de Sitter momentum space model.
This boils down to the intrinsic curvature of the mo-
mentum space of that model, but also its group theory
structure (for example, the Casimir operator is different
from the metric invariant). All of these theories provide
a rich Planck scale phenomenology regarding running of
dimensionality and the cosmological density fluctuations.
They should be considered on an equal footing until an
experimental clue comes to the rescue. In this paper we
pointed to a possible location where to look.
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