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Abstract

This paper estimates the causal effect of 20 mph zones on road casualties in

London. Potential confounders in the key relationship of interest are included

within outcome regression and propensity score models, and the models are then

combined to form a doubly robust estimator. A total of 234 treated zones and

2844 potential control zones are included in the data sample. The propensity

score model is used to select a viable control group which has common support in

the covariate distributions. We compare the doubly robust estimates with those

obtained using three other methods: inverse probability weighting, regression

adjustment, and propensity score matching. The results indicate that 20 mph zones

have had a significant causal impact on road casualty reduction in both absolute

and proportional terms.
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1. Introduction1

It is widely thought that a reduction in vehicle speeds can reduce the severity2

of road casualties and decrease the number of traffic collisions (Soole et al., 2013;3

Elvik et al., 2004; Elvik, 2009). There are a number of policy interventions that4

can be used by governments to reduce traffic speeds in the hope of improving road5

safety. An example of such measurse is designation of 20 mph zones, which are6

widely applied in the UK particularly in residential areas.7

While several studies have been undertaken to analyze the impact of 20 mph8

zones on various outcome of interest, there remains uncertainty regarding the9

causal effects of 20 mph zones on road safety. A major challenge for evaluation10

lies in constructing viable counterfactual outcomes that can represent what would11

have happened to “treated” units in the absence of the treatment (i.e. designation12

of 20mph status). Since counterfactual outcomes cannot be observed, regression-based13

statistical models are usually used to model them, particularly via before-after14

and time-series methods (e.g. Webster and Layfield, 2003; Grundy et al., 2009).15

The validity of such methods relies on their ability to control for confounders,16

which are a set of risk factors for the outcome of interest that are also correlated17

with treatment assignment. The estimator of treatment effects is consistent and18
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unbiased only if the confounders are properly accounted for. This critical issue,19

however, is inadequately justified in previous studies.20

This research contributes to the literature by tackling the issue of confounding21

using a doubly robust (DR) estimator and subsequently uses this method to evaluate22

the effect of 20 mph zones on road casualties in London. The DR approach23

combines outcome regression (OR) and propensity score (PS) models to obtain24

an estimator which is consistent and asymptotically unbiased so long as at least25

one of the component models (i.e. OR or PS) is correctly specified. It thus26

provides two opportunities for valid treatment effect estimates which is useful in27

situations when the quality of data or knowledge about the underlying processes is28

not uniform. The DR method has been used routinely to estimate causal treatment29

effects in other areas of science such as medicine and epidemiology, but, to the30

best of our knowledge, has not been applied previously in road traffic safety31

research.32

Another key contribution of our paper lies in development of a panel data33

sets to capture variance in road network characteristics over time. A limitation34

of previous research on this topic is that road network effects have been assumed35

static which could lead to biased treatment effect estimates if such characteristics36

operate as confounders.37
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This paper is organized as follows. Section 2 reviews previous literature in the38

field. Methods are described in Section 3 and Section 4. Our results are presented39

and discussed in Section 5. Conclusions are then drawn in the final section.40

2. Literature Review41

A wealth of empirical evidence shows a clear relationship between traffic42

collisions and vehicle speeds. In particular, mean vehicle speeds are found to43

be positively related with the number and severity of traffic collisions (Elvik et44

al., 2004; Elvik, 2009). Speed limits specify maximum desirable traffic speeds45

and these can be used to reduce the number of road traffic casualties. An example46

of such a measure is traffic calming, which is especially prevalent in residential47

areas.48

Numerous studies have been conducted to evaluate the safety impacts of traffic49

calming. A meta-analysis by Elvik (2001) investigates the effects on road safety50

of area-wide urban traffic calming schemes from 33 studies, including research51

reports from Norway, Sweden, Finland, Denmark, Germany, the Netherlands,52

Great Britain, France, the United States and Australia. The results show that53

area-wide urban traffic calming schemes reduce the number of injury accidents54

by about 15% on average, whilst a 25% reduction in the number of accidents55
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is found for residential streets. Another meta-analysis by Bunn et al. (2003)56

reviews 16 controlled before-after trials of area-wide traffic calming mainly in57

high income countries. Their review results also suggest that traffic calming58

can be effective in reducing the number of traffic crashes. However, previous59

studies reviewed in these meta-analyses tend to use before-after methods with60

some defined comparison group, which is not able to fully control for confounding61

effects, such as selection bias, also known as the regression to mean.62

A number of studies have examined the impact of traffic calming in te UK,63

including 20 mph zones, on road safety, traffic speeds, environmental and health64

outcomes, amenity, traffic volumes, and inequality (Casanova and Fonseca, 2012;65

Grundy et al., 2009; Steinbach et al., 2011; Tovar and Kilbane-Dawe, 2013;66

Webster and Mackie, 1996; Webster and Layfield, 2003; Williams and North,67

2013). Webster and Layfield (2003) investigate 78 20mph zones in London applying68

before-after methods. Allowing for background changes, total and KSI casualties69

are found to be reduced by 45% and 57% respectively. Grundy et al. (2009)70

conduct a time series analysis using data of 399 20mph zones in London from71

1986 to 2006. Time trend effects are taken into account by using conditional72

fixed effects Poisson models. The authors also suggest that the RTM effect can be73

controlled for by dropping data for three, four or five years prior to the implementation74
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of the 20 mph zones.75

There are two key issues that have not been fully addressed in previous evaluation76

studies on the impacts of 20 mph zones. First, the methods used in previous work77

are mainly before-after control studies. Usually, a control group is employed78

to estimate the counterfactual outcomes of the treatment group. Ideally control79

groups should have the same or similar characteristics to those of the treatment80

group, i.e. the control group must be representative of the treated sites. However,81

in previous research, insufficient attention has been paid to selection of such82

control groups. For example, Webster and Layfield (2003) use all unclassified83

roads in London as control data for roads in 20 mph zones. However, due to84

selection bias, the characteristics of treated and “control” units defined in this way85

may differ.86

Second, a fundamental assumption required to draw valid causal inference87

from observational data is that all confounders are measured and represented88

adequately. Previous studies on 20 mph zones have largely ignored the potential89

for road casualties to be associated with the road network characteristics. Yet90

we know from the literature road casualties are significantly associated with road91

network characteristics, such as road class, road density and the number of nodes,92

the connectivity and accessibility of the road network, and the curvature of the93
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road network (e.g. Huang et al., 2010; Marshall and Garrick, 2011; Rifaat et al.,94

2011; Jones et al., 2008; Quddus, 2008). The failure to account for the effects95

due to road network characteristics in evaluating traffic calming measures can96

bias estimates of the safety impacts of 20 mph zones. In this paper we develop a97

detailed panel data set on road network design to address potential confounding98

from this source.99

The doubly robust estimator, originally proposed by Robins et al. (1995), has100

been described in the statistical literature (Bang and Robins, 2005; Robins et al.,101

1995; Robins, 1999; Lunceford and Davidian, 2004), and applied extensively in102

various areas of science. However, it has not yet been used for road safety research103

although in our view it has great potential.104

3. Methods105

The DR estimator combines PS and OR models developed using insights from106

the potential outcomes framework for causal inference. In this section we first107

introduce the potential outcomes framework and draw attention to its relevant108

assumptions. We then discuss how a doubly robust estimator of causal effects can109

be obtained by combining outcome regression and propensity score models.110
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3.1. Potential outcome framework111

In presenting the potential outcome framework, it is necessary to introduce112

relevant notation. Di is an indicator of treatment enrolment for individual or unit113

i. To facilitate understanding, consider only binary treatments. Di = 1, if unit i114

received the treatment, and 0 otherwise. Let Yi(Di) be the potential outcomes for115

unit i. Therefore, Yi(0) denotes the level of outcome that unit i would attain if116

not exposed to the treatment. Likewise, Yi(1) denotes the level of outcome that117

unit i would attain if exposed to the treatment. The individual causal treatment118

effect for unit i can be defined as δi = Yi(1) − Yi(0) (Individual Treatment Effect).119

The fundamental problem of causal inference is that since unit i can be either120

treated or not, we can only observe one of these two potential outcomes. If121

unit i is subject to the treatment then Yi(1) will be realized and Yi(0) will be an122

unobservable counterfactual outcome and vice versa.123

In simple control studies, such as those described in the literature review124

above, the average treatment effect on the treated (ATE), E[Y(1) − Y(0)|D = 1],125

is estimated by taking comparisons of the average outcomes between treated and126

control units, which can be defined as:127

δAT E = E[Y(1)|D = 1] − E[Y(0)|D = 0]128

= E[Y(1) − Y(0)|D = 1] + {E[Y(0)|D = 1] − E[Y(0)|D = 0]} (1)129
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In the above equation, the term in curly brackets is not zero for most cases130

due to selection bias, i.e. the treatment assignment is usually associated with the131

potential outcomes that individuals could attain, with or without being exposed to132

the treatment.133

In randomized experiments, the probability of assignment to treatment does134

not depend on potential outcomes. That is,135

(Y(1),Y(0)) ⊥ D136

Then E[Y(0)|D = 1] = E[Y(0)|D = 0]137

and therefore138

δAT E = E[Y(1)|D = 1] − E[Y(0)|D = 0]139

= E[Y(1) − Y(0)|D = 1] + {E[Y(0)|D = 1] − E[Y(0)|D = 0]}140

= E[Y(1) − Y(0)|D = 1] (ATE with randomized assignment) (2)141

Equation (2) provides an unbiased estimator of ATE. Randomized experiments142

are straightforward and allow the greatest reliability and validity of statistical143

estimates of causal effects. Whilst they are a valuable tool for treatment evaluation,144

it is not always feasible to implement a randomized experiment due to high costs145

and ethical issues. Consequently, causal analysis with observational data uses146

models to approximate randomized distinctions. There are two critical assumptions147

underpinning such studies.148

9



3.2. Assumptions149

3.2.1. Unconfoundedness150

The validity of causal inferences from observational data crucially relies on151

the assumption of unconfoundedness. The unconfoundedness assumptions, also152

known as conditional independence (CIA), assumes all observed differences in153

characteristics between the treated and untreated units are controlled for, and the154

outcomes that would result in the absence of treatment are the same for both155

groups. The CIA creates a selection process analogous to that of randomized156

experiments. More generally, the distribution of the counterfactual outcomes for157

treated and untreated groups are the same. In these circumstances it is possible to158

infer the counterfactual outcomes and the treatment effect can be estimated by the159

differences between treatment and control groups. The unconfoundedness can be160

described as:161

(Y(1),Y(0)) ⊥ D | X,∀X162

The unconfoundedness assumes that all relevant confounders are observed. This163

assumption is crucial to making causal inferences in observational studies, but is164

untestable in practice. The unconfoundednesse assumption is too strong and may165

not hold when unobserved factors that may influence outcomes are not included in166

the model. However, this assumption can be relaxed by using the difference-in-difference167
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(DID) estimator (Heckman et al., 1997). In the DID approach, the dependent168

variable is the difference between outcomes in pre-intervention and post-intervention169

periods. Given data from the pre-treatment period, any time-invariant confounder170

can be controlled for. In addition, the likelihood of satisfying this assumptions171

can be strengthened by capturing as much information as possible about potential172

confounders.173

3.2.2. Common support174

For valid treatment effect estimation it is also required that both treated and175

untreated units have overlap in the support of the covariate distributions. This is176

known as the positivity or the overlap condition (Cole and Hernan, 2008). Also,177

either extremely high or low values of propensity scores can cause problems when178

inverse weighting by creating large weighted outcome values (Kurth et al., 2006;179

Emsley, 2007). Similar to the test used in matching approaches, a histogram180

showing the distribution of propensity scores for both groups can help identify181

the positivity and avoid the extreme values problem.182

3.3. Doubly robust estimation183

The DR estimator is described below in the case of binary treatments for184

Frequentist inference. For a Bayesian treatment of the DR estimator please see185
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Graham et al. (2015).186

3.3.1. Outcome regression187

The potential outcome framework can be written in terms of a simple linear188

regression model:189

Yi(D) = α + δD + εi(D) (3)190

Where εi(D) is the potential outcomes error term. Linear functions are used for191

notational simplicity. Other functional forms, such as Poisson, can be used in192

practice. In this analysis, the model is specified in the DID form to eliminate the193

influence of time-invariant characteristics. Hence Yi(D) is defined as the difference194

between outcomes in pre-intervention and post-intervention periods.195

With observational data, the estimator of the average causal effect, δ′, can be196

described as:197

δ′ = E(Yi|D = 1) − E(Yi|D = 0)198

= δ + E[εi(0)|D = 1] − E[εi(0)|D = 0] + E[εi(1) − εi(0)|D = 1] (4)199

This estimator of the treatment effect will be biased due to the dependence between200

the treatment assignment D and the error term εi. If all potential confounders X are201

observed and correctly specified in the regression model, the treatment assignment202

D is independent of the error term εi, D ⊥ εi | X. The proper specification of the203

model, however, can be difficult when multiple potential confounders exist. The204
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propensity score can be used as a single covariate and methods based on the PS,205

e.g. inverse probability weighting, can be applied in causal analysis.206

3.3.2. Inverse probability weighting207

Different from the outcome regression methods, the inverse probability weighting208

(IPW) controls for confounding by using a single index, the propensity score. It209

is the probability that a unit is selected into the treatment group conditional on210

observed covariates. The first step when implementing the IPW is to estimate211

the propensity score. For a binary treatment variable, logit and probit models are212

usually preferred to a linear probability model, which may generate predictions213

outside the [0, 1] bounds of probabilities. Logit and probit models usually yield214

similar results, hence the choice between them is not critical (see further discussion215

of this point in Smith, 1997). In this paper, a logit model is used:216

P(T = 1 | X) =
EXP(α+β′X)

1+EXP(α+β′X) (5)217

Where α is the intercept and β′ is the vector of regression coefficients.218

The estimator of propensity score, P’, can be predicted based on the estimated219

parameters and observed covariates for both treated and control individuals. Besides220

matching, another way of using PS to control for confounding is to weight the221

observed data. The IPW is defined as the inverse of the conditional probability of222

an individual’s actual treatment status.223
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In observational data the sample is not randomized, but rather one in which224

individuals from certain subpopulations are over- or under-sampled. The idea is225

that weighting by the IPW estimator creates a pseudo population in which the226

distributions of confounders among the treated and untreated are the same as the227

overall distribution of those in the original total population (Sturmer et al., 2006).228

This indicates that the potential outcomes are independent of the treatment, which229

is consistent with the unconfoundedness assumption. The IPW is 1/P’ for the230

treated and 1/(1-P’) for the untreated. The IPW estimator of the ATE can be231

modelled as (Lunceford and Davidian, 2004):232

δIPW = N−1∑N
i ( DiYi

P′i
) − N−1∑N

i ( (1−Di)Yi
1−P′i

) (6)233

Similarly, the IPW estimator can be biased if the model for calculating the PS is234

misspecified.235

3.3.3. Doubly robust estimator236

The doubly robust methods proposed by Robins et al. (1995) combine the237

outcome regression and inverse probability weighting in one single model. The238

DR estimator can be expressed as the following equation:239

δDR = N−1∑N
i [ DiYi

P′i
−

(Di−P′i )Y
′
i,D=1

P′i
] − N−1∑N

i [ (1−Di)Yi
1−P′i

−
(Di−P′i )Y

′
i,D=0

1−P′i
] (7)240

Where Y ′i = E(Y | D, X) is the predicted value from the outcome regression model241

given D=0,1 and the baseline covariates X. The two average terms are estimates242
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of the mean potential outcomes, YX=1 and YX=0, if everyone were to be treated243

and untreated. As a consequence, the difference in means is the effect due to the244

treatment.245

In equation (7), the first terms in each average are the IPW estimators for246

E(YX=1) and E(YX=0) respectively. The second terms are called augmentations247

(Funk et al., 2011) as this component is formed by taking the product of two bias248

terms: one from the PS model and one from the outcome regression model. If249

either bias term equals zero, then it excludes the other non-zero bias term from250

the incorrect model. That is the DR estimator will be consistent for the true251

average treatment effect, if either model is correctly specified. (For more detailed252

demonstration of the DR property, please refer to the work by Lunceford and253

Davidian, 2004).254

The standard error can be obtained by bootstrapping the whole sequence of255

regressions, including the estimation of the propensity score. This can be realized256

in the STATA package dr (Emsley et al., 2008). Figure 1 shows the diagram of257

applying the DR methods to the estimation of treatment effects.258
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Figure 1: The diagram of the application of the doubly robust method to the evaluation of safety
effects of 20 mph zones

4. Data259

4.1. Confounders260

The validity of the DR methods heavily relies on the “no unmeasured confounders”261

assumption, which is unfortunately untestable. However, its influence can be262

lessened by capturing as much information about potential confounders as possible.263

Theoretically, covariates that affect the treatment assignment and potential264

outcomes should be included in the models. In practice, however, selection of such265

covariates can be complex due to the lack of precise knowledge of the relations266
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among outcomes, treatment and confounders.267

Although including additional covariates can increase the precision of the DR268

estimator (Lunceford and Davidian, 2004), this could generate problems with the269

common support (Bryson et al., 2002). And although the inclusion of non-significant270

covariates will not affect the unbiasedness and consistency of the estimates, it can271

reduce their efficiency, especially with small samples (Augurzky and Schmidt,272

2000).273

It is also suggested that omitting important covariates can cause serious bias274

in estimation (Heckman et al., 1997). Rubin and Thomas (1996) recommend that275

a covariate should only be excluded if there is consensus that the covariate is276

unrelated to either the outcome or participation. If there are doubts about this, it277

is advised to include the relevant covariates.278

A simulation study by Brookhart et al. (1996) illustrates how the choice of279

variables included in the propensity score model can affect the bias, variance,280

and mean squared error of estimated treatment effects. Their results suggest that281

the optimal practice, in terms of bias and precision, is to include all covariates282

that affect the outcome regardless of whether they have impacts on treatment283

assignment. In contrast, however, adding a covariate unrelated to the outcome284

but related to treatment assignment will increase the variance without decreasing285

17



bias.286

4.2. Covariates included in DR287

The covariates inclusion would be less complicated if criteria for treatment288

participation were available. Where such criteria are not available, it is still289

possible to choose covariates based on previous empirical findings. In this study290

two sets of covariates are considered to be included in the DR models.291

4.2.1. Covariates suggested as criterion for 20 mph zones selection292

Although the requirements for 20 mph zones have been prescribed in a number293

of legislation and regulations, the criterion of selecting 20 mph zones remains294

unclear. The most relevant document is setting local speed limits by DfT (2013),295

which provides guidance to highway authorities and local traffic authorities who296

are considering setting local speed limits, including 20 mph zones. The key factors297

that should be taken into account in any decisions on local speed limits are shown298

below:299

• History of collisions, including frequency, severity, types and causes;300

• Road geometry and engineering (e.g. bends, junctions);301

• Road function;302
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• Presence of vulnerable road users;303

• Existing traffic speeds.304

According to another report by Steer Davies Gleave (2014), there is considerable305

variability as to the implementation of 20 mph zones in different authorities.306

However, most boroughs prioritize areas as 20 mph zones based on collision307

history, resident requests, and in some cases the presence of schools. Selection308

of 20 mph zones, therefore, is primarily based on accident history. Pre-treatment309

accident records are valuable covariates when estimating the DR estimator because310

they are important predictors of treatment entry and potential outcomes in post-treatment311

period. The accident data was collected from the STATS 19 data base and was312

further classified by severity type. The location of an accident was recorded313

using the British National Grid coordinate system. Each individual accident was314

located on the map using Geographical Information System (GIS) software, such315

as MapInfo and Arcmap.316

Existing traffic speeds, such as the 85th percentile speed and percentages of317

vehicles over the speed limit are not normally publicly available for all sites on318

UK roads, however. We address this issue by randomly selecting a large sample319

of potential control zones within London area. In doing so, it is expected that both320

treated and untreated zones are observed at every level of pre-treatment traffic321
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speeds, so the overlap condition is met.322

To account for the impacts of the presence of vulnerable road users on the323

decision to implement 20 mph zones, the Index of Multiple Deprivation (IMD)324

is obtained from the office for the Deputy Prime Minister. The Index of Multiple325

Deprivation integrates data on the following seven deprivation domain indices into326

one overall deprivation score: income, employment, housing and services, health,327

education, crime and environment.328

4.2.2. Covariates suggested as important factors affecting road casualties329

Notwithstanding the covariates discussed above there are areas not meeting330

the criteria (e.g. the collision history) which may still be selected as 20 mph331

zones for one or more of the other reasons, such as community concern and332

engineering factors (DfT, 2013). In other words, there are unknown factors that333

affect treatment assignment but are not explicitly described in the criterion for 20334

mph zones selection. As suggested by Rubin and Thomas (1996) and Brookhart335

et al. (2006), unless there is consensus that the covariate is unrelated to treatment336

participation, covariates that affect the outcome should be included in the model,337

because they decrease the variance of the estimated treatment effect without increasing338

bias. Hence covariates suggested as important factors for analyzing road casualties339

are also considered.340
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One constraint in previous research on 20 mph zones is that no longitudinal341

or panel data of road network characteristics has been employed. The statistical342

relationship between road casualties and the characteristics of a road network343

has been investigated in the literature as described above, showing in general344

statistically significant effects. In this study, information regarding the road network345

was obtained from Ordnance Survey (OS) Meridian, which is a vector map dataset346

of Great Britain at a scale of 1:50000. This dataset is updated annualy and is347

collected for study period excluding for 2005 due to data availability. A set of348

variables is extracted from Meridian data set to describe the characteristics of the349

road network at zone level.350

• Traditional road network characteristics. The length, as well as the density,351

of the road network is calculated according to road class, e.g. A road, B352

road, Minor road. Road network nodes are defined as meeting points of two353

or more roads. The total number and density of nodes is also calculated.354

• Connectivity and accessibility of the road network. It has been suggested355

that the degree of connectivity and accessibility of a road network can356

influence the number of crashes (Marshall and Garrick, 2011). The measure357

used in this study is the link-to-node ratio, which is calculated by dividing358

the number of links by the number of nodes. A high link-to-node value359
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indicates a more connected road network than one with a low link-to-node360

value. A node with only one link, also known as a dead end, is usually361

associated with a residential area. The density of dead ends is used in this362

study as a measure of the accessibility of a network.363

• Curvature of the road network. Road curvature has been suggested as an364

important factor influencing road casualties (Jones et al., 2008; Quddus,365

2008). The literature indicates that straighter roads have more crashes than366

roads with more bends. The variable used in this research to measure367

curvature is the number of vertices per km. The number of vertices are368

obtained using ArcGIS and divided by the road length in each zone.369

Previous research has also suggested an association between road traffic crashes370

and socio-demographic characteristics, such as employment, deprivation and land371

use (Wier et al., 2009; Dissanayake et al., 2009; Graham and Stephens, 2008).372

In particular, a positive relationship has been found in relation to the size of the373

population and the level of employment, which implies that more casualties may374

occur in areas with more residents and job opportunities. To consider this effect,375

the data for population and employment, as well as the information of land use was376

obtained from the Office for National Statistics (ONS). In summary, the covariates377

that we included in the DR model are shown in Table 1. All of these covariates378
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are included in both outcome regression and propensity score models.

Table 1: Covariates included in the doubly robust model

Covariates Description

KSI (baseline) Killed and seriously injured casualties in three years before the intervention
Slightly injured (baseline) Slightly injured casualties in three years before the intervention
A roads (%) Percentage of A roads
B roads (%) Percentage of B roads
Minor roads (%) Percentage of minor roads
IMD The index of multiple deprivation
Domestic (%) Percentage of domestic buildings, e.g. residential area
Non-domestic (%) Percentage of non-domestic buildings, e.g. business and office district area
Green space (%) Percentage of green spaces and gardens
Population density Residential population per m2

Employment density Number of employees per m2

Ratio of Emp to Non-Emp Ratio of employment to non-employment
Density of dead ends Ratio of nodes with only one link to all nodes
Links per node Ratio of road links to nodes
Vertices density Number of horizontal vertices per km

379

4.3. Sample size380

Figure 2 shows the map of 20 mph zone and control zones in London. The 20381

mph zones in the dataset cover a large period of time of 1989-2007. Due to data382

restrictions, only 20 mph zones established between 2002 and 2007 are included383

in the treatment group. Besides 234 20mph zones, a total of 2844 potential384

control zones were selected randomly within London area. It is possible that385

the implementation of 20 mph zones may have impacts on neighboring zones, so386

zones within 150 meters of each 20 mph zone are not included in the potential387

control group (Grundy et al., 2009). To ensure that three years data before and388
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after are available for all 20 mph zones. The STATS 19 data used for this analysis389

includes road accidents in the UK from 1999 to 2010.390

Figure 2: Map of 20 mph zones in London with Lower Layer Super Output Areas Boundary

5. Results391

In this section, the safety effects of 20 mph zones are investigated using the392

DR method. The DR method combines two separate models: the propensity score393

model and outcome regression model. As discussed earlier, the optimal practice394

is to use the same set of covariates in both the propensity score and outcome395
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regression models. The regression results from both models are presented, followed396

by the estimation of 20 mph zones effects using the DR method.397

5.1. Propensity score estimation398

The first step in the doubly robust method is to estimate the propensity scores.399

The logit and probit models are usually used in the PS model and give similar400

results. In this study, the logit model is preferred due to a higher BIC value.401

The estimation model shows a low Pseudo R-squared value. As Westreich et402

al. (2011) emphasized, however, the primary purpose of PS model is not to403

predict treatment assignment, but to balance covariates in order to control for404

confounding. Previous studies (Brookhart et al, 2006; Myers et al., 2011; Austin,405

2009) have also shown that better predictive performance does not improve the406

balance of risk factors for the outcome. It is recommended to use measures of407

covariate balance to evaluate PSM models (Austin, 2009; McCaffrey et al., 2004).408

The logit model is regressed on the covariates, which could influence both409

the treatment assignment and the potential outcomes. The covariate “Minor roads410

(%)” is dropped due to multicollinearity. Table 2 shows that most covariates are411

significantly related to the treatment assignment, indicating that they are important412

in predicting the possibility of being treated. Specifically, 20 mph zones are more413

likely to be implemented in areas with a higher historical record of slightly injured414
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casualties, which is consistent with the guidelines by DfT (2013). However, the415

relation between the number of KSI in baseline years and the propensity score is416

not significant. This indicates that slightly injured casualty is more predominant417

when making decisions on 20 mph zones. In addition, deprived areas have substantially418

more 20 mph zones, which is consistent with previous findings (Rodgers et al.,419

2010). In terms of land use, the propensity score is found to be negatively related420

to the percentages of non-domestic buildings and green space. In addition, areas421

with higher density of residential population and lower density of employees have422

higher propensity of being selected as 20 mph zones. Regarding the characteristics423

of road network design, only the covariate links per node has a significant impact424

on treatment assignment, which is not surprising, because they are assumed to425

have more impacts on road casualties.426

As discussed in the previous section, a total of 2844 potential control zones427

were selected randomly within the London area. However, the characteristics of428

treated and potential control zones may differ in the absence of any treatment.429

Only untreated zones with similar characteristics to those treated can be used430

to approximate the counterfactual outcomes of the 20 mph zones. So before431

proceeding to the doubly robust estimation, the control group need to be refined432

via matching, which can improve the balance of characteristics between treated433
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Table 2: Propensity score model

Coef. Std. Err. z P > |z|

KSI (baseline) —
Slightly injured (baseline) 0.007 0.002 3.19 0.001
A roads (%) 0.884 0.288 3.07 0.002
B roads (%) 1.148 0.391 2.94 0.003
IMD 0.015 0.004 4.05 < 0.001
Domestic (%) —
Non-domestic (%) -4.581 1.536 -2.98 0.003
Green space (%) -0.735 0.386 -1.9 0.057
Population density 173.455 42.180 4.11 < 0.001
Employment density -243.780 82.203 -2.97 0.003
Ratio of Emp to Non-Emp 0.252 0.094 2.68 0.007
Density of dead ends —
Links per node -0.094 0.019 -5.440 < 0.001
Vertices density —

Pseudo R Square: 0.31 BIC: 2145.4

and control groups. Table 3 shows the t-test of differences in covariate means434

before and after radius matching (caliper=0.05). It can be seen that the characteristics435

between the treated and original control groups are imbalanced. Matching is436

subsequently used to refine the control group and the bias due to differences in437

observable characteristics is reduced as shown in table 3. The sample size of438

control group is now refined to 1415.439

Next, we check the distributions of propensity scores for both groups. The440

histograms in figure 3 show that the propensity scores have similar ranges across441

the two groups and overlap very well, indicating the overlap assumption is plausible.442

It is also worth noting that the propensity scores do not have either extremely high443

or extremely low values, which can cause problems when inverse weighting by444
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creating large, weighted outcome values (Kurth et al., 2006).445

446

Table 3: T-test of covariate means pre- and post-matching

Unmatched Mean %reduct t-test
Covariate Matched Treated Control bias t p > t
KSI U 5.375 5.715 -0.35 0.726

M 5.375 5.516 58.7 -0.19 0.851
Slightly injured U 36.088 34.203 0.33 0.742

M 36.088 37.013 50.9 -0.19 0.852
A roads (%) U 0.092 0.059 5.16 < 0.001

M 0.092 0.084 75.4 0.69 0.488
B roads (%) U 0.046 0.024 5.35 < 0.001

M 0.046 0.042 84.8 0.38 0.705
M roads (%) U 0.862 0.917 -7.26 < 0.001

M 0.862 0.874 79.1 -0.8 0.423
IMD U 30.558 22.871 9.61 < 0.001

M 30.558 30.294 96.6 0.23 0.820
Domestic (%) U 0.137 0.124 3.75 < 0.001

M 0.137 0.136 94.5 0.14 0.885
Non-domestic (%) U 0.077 0.060 3.63 < 0.001

M 0.077 0.075 85.6 0.38 0.702
Green space (%) U 0.356 0.423 -4.86 < 0.001

M 0.356 0.358 97.1 -0.11 0.909
Population density U 0.009 0.007 10.53 < 0.001

M 0.009 0.009 98.8 -0.07 0.941
Employment density U 0.004 0.003 8.17 < 0.001

M 0.004 0.004 96.3 -0.2 0.842
Ratio of Emp to Non-Emp U 2.031 2.197 -4.4 < 0.001

M 2.031 2.045 91.5 -0.23 0.817
Density of dead ends U 0.055 0.053 0.26 0.795

M 0.055 0.065 -467.8 -0.86 0.393
Links per node U 3.030 3.026 0.2 0.844

M 3.030 3.017 -243.9 0.4 0.687
Vertices density U 19.275 17.816 2.2 0.028

M 19.275 19.149 91.4 0.14 0.891
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Figure 3: Propensity score distribution by treatment status

5.2. Outcome regression models447

We apply generalized linear regression models using the pre-treatment covariates448

listed in Table 1 as predictors. The STATS 19 data classifies the casualty by449

severity (KSI and slightly injured) and by types (Cycle-, Pedestrian-, and Motor-related).450

Regression models for outcomes are fitted on the predictors for the treatment and451

control groups separately, and the predicted values will be obtained for the whole452

population.453

Table 4 shows the regression results for different casualty severities and types454

29



by groups. Most covariates are significantly associated with the number of casualties455

for both treated and control groups. Specifically, the number of KSI and slightly456

injured casualties in baseline years are positively related to the casualty number457

after the treatment. The density of residential population and employees are458

used to control for traffic exposure within each zone. Most models show there459

are positive effects from the level of population and employment. This implies460

that more casualties may occur in zones with a higher density of residents and461

job opportunities. Socio-economic deprivation has previously been shown to be462

positively related to road traffic casualties (Graham and Stephens, 2008), and this463

has been confirmed by the results of this study which indicate that IMD scores464

have positively effects on all types of casualties.465

We further investigate the effects of land use characteristics on casualties.466

Three main types of land use are examined: domestic, non-domestic and green467

space. The non-domestic area studied in this paper includes office district area and468

business area, such as large trade area, warehousing, and wholesaling. The results469

suggest higher percentages of domestic and non-domestic areas are associated470

with more casualties, whilst there are fewer casualties in areas with higher percentages471

of green space. This is consistent with previous findings (Pulugurtha et al., 2013),472

which suggest that land use characteristics such as residential and business areas473
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are generally high traffic activity generators.474

Regarding road network characteristics, as suggested in many other studies475

(e.g. Huang et al., 2010), road density is positively associated with road casualties476

at all types and severity levels. Two covariates were used as indicators of road477

network connectivity: the links per node and the number of nodes with one link478

(Chin et al., 2008). It can be hypothesized that areas with a better-connected479

road network will have more casualties, because pedestrians, cyclists and motor480

vehicles have better accessibility and total traffic activities tend to be more frequent.481

The results indicate that an increase in links per node is associated with an increase482

in the casualty numbers for all severities. Lower densities of nodes with one link,483

also known as dead ends, usually indicate limited access to streets. The results484

show that higher densities of dead ends are associated with fewer casualties.485

The results also suggest that road networks with a greater degree of horizontal486

curvature, i.e. more vertices per km, are associated with fewer casualties. This487

result is consistent with previous findings (e.g. Jones et al., 2008; Quddus, 2008).488

The mechanisms for this could be complex, however, one possible reason is that489

vehicles have lower speeds when passing curving road sections.490

The adjusted R-square values are estimated to show the degree to which the491

outcome regression models fitted the treatment and control groups are appropriate492

31



to prediction. The adjusted R-square values are more than 60% for most models493

and are 70% for slightly injured models. The high values suggest the predicted494

outcomes from the regression models are valid.495

32



Ta
bl

e
4:

O
ut

co
m

e
re

gr
es

si
on

m
od

el
s

Sl
ig

ht
ly

In
ju

re
d

K
ill

ed
an

d
Se

ri
ou

sl
y

In
ju

re
d

C
yc

le
-r

el
at

ed
C

as
ua

lti
es

Pe
de

st
ri

an
-r

el
at

ed
C

as
ua

lti
es

M
ot

or
-r

el
at

ed
C

as
ua

lti
es

C
ov

ar
ia

te
s

Tr
ea

tm
en

t=
1

Tr
ea

tm
en

t=
0

Tr
ea

tm
en

t=
1

Tr
ea

tm
en

t=
0

Tr
ea

tm
en

t=
1

Tr
ea

tm
en

t=
0

Tr
ea

tm
en

t=
1

Tr
ea

tm
en

t=
0

Tr
ea

tm
en

t=
1

Tr
ea

tm
en

t=
0

K
SI

0.
04

9
**

*
0.

00
4

**
*

0.
04

3
**

*
0.

01
3

**
*

0.
06

9
**

*
0.

01
0

**
*

0.
04

6
**

*
0.

00
1

0.
03

2
**

*
0.

00
4

**
Sl

ig
ht

ly
in

ju
re

d
0.

00
3

**
*

0.
01

0
**

*
0.

00
5

**
*

0.
00

9
**

*
2.

0E
-0

4
0.

00
9

**
*

0.
00

4
**

*
0.

01
0

**
*

0.
00

6
**

*
0.

01
1

**
*

A
ro

ad
s

(%
)

1.
35

3
**

*
1.

37
3

**
*

1.
05

0
**

*
1.

40
2

**
*

1.
28

2
**

*
1.

54
2

**
*

1.
05

4
**

*
1.

06
6

**
*

1.
47

4
**

*
1.

48
3

**
*

B
ro

ad
s

(%
)

1.
20

9
**

*
0.

55
2

**
*

0.
66

4
1.

07
6

**
*

0.
67

3
**

*
0.

88
9

**
*

1.
46

7
**

*
0.

58
1

**
*

1.
37

1
**

*
0.

49
0

**
*

IM
D

0.
02

9
**

*
0.

00
4

**
*

0.
03

3
**

*
0.

00
2

0.
02

3
**

*
-2

.0
E

-0
4

0.
02

6
**

*
0.

00
9

**
*

0.
04

1
**

*
0.

00
5

**
*

D
om

es
tic

(%
)

4.
63

6
**

*
0.

22
3

1.
53

5
-0

.3
18

0.
67

2
-2

.2
88

**
*

6.
81

9
**

*
3.

68
8

**
*

6.
01

0
**

*
0.

63
8

**
N

on
-d

om
es

tic
(%

)
0.

60
0

0.
38

9
**

*
1.

07
8

-0
.1

98
0.

15
6

0.
74

0
**

*
2.

39
4

**
*

2.
34

5
**

*
-0

.2
72

-1
.7

13
**

*
G

re
en

sp
ac

e
(%

)
-0

.2
30

*
-0

.0
61

0.
01

2
-0

.3
39

**
*

-1
.3

95
**

*
-1

.0
52

**
*

0.
26

0
-0

.2
21

**
0.

42
7

0.
42

9
**

*
Po

pu
la

tio
n

de
ns

ity
44

.9
**

*
32

.4
**

*
59

.7
40

.9
**

17
7.

3
**

*
40

.7
**

*
54

.4
*

2.
3

-5
.5

29
.6

**
*

E
m

pl
oy

m
en

td
en

si
ty

48
.8

**
*

71
.3

**
*

11
8.

5
**

11
4.

0
**

*
42

3.
4

**
*

19
1.

8
**

*
14

3.
9

**
-1

4.
9

13
2.

5
**

*
-6

.7
*

R
at

io
of

E
m

p
to

N
on

-E
m

p
0.

06
7

0.
01

3
0.

13
8

0.
05

8
-0

.2
56

0.
17

2
**

*
0.

22
8

0.
05

8
*

0.
31

8
**

*
-0

.0
58

D
en

si
ty

of
de

ad
en

ds
-1

.9
70

**
*

-0
.8

38
**

*
-3

.8
75

**
*

-0
.6

25
*

-3
.2

95
**

*
-2

.0
51

**
*

-2
.0

11
**

*
-0

.1
96

-1
.7

09
**

*
-0

.4
05

**
L

in
ks

pe
rn

od
e

0.
20

7
**

0.
03

8
0.

01
6

**
*

0.
18

9
**

*
0.

51
6

**
*

0.
21

2
**

-0
.1

17
0.

03
1

0.
09

3
0.

22
2

**
*

V
er

tic
es

de
ns

ity
-0

.0
13

**
*

-0
.0

04
**

*
-0

.0
15

**
-0

.0
02

-0
.0

10
**

-0
.0

03
**

-0
.0

16
**

*
-0

.0
02

*
-0

.0
14

**
*

-0
.0

05
**

*
R

-s
qu

ar
e

0.
70

4
0.

69
6

0.
54

5
0.

51
6

0.
66

0
0.

66
9

0.
61

9
0.

58
7

0.
62

3
0.

58
3

O
bs

23
4

14
15

23
4

14
15

23
4

14
15

23
4

14
15

23
4

14
15

N
ot

es
:F

ig
ur

es
ar

e
si

gn
ifi

ca
nt

at
:*

90
%

,*
*9

5%
an

d
**

*9
9%

.
49

6

33



5.3. Effects of 20 mph zones on road casualties497

Given the satisfaction with the component models, propensity score and outcome498

regression as discussed in the above sections, now we proceed to estimate effects499

of 20 mph zones using the doubly robust method. For comparison, three other500

methods are also applied: inverse probability weighting, regression adjustment501

and propensity score matching. Besides inverse probability weighting, another502

application of propensity score is matching. The basic idea is to match each503

treated unit to untreated units with similar propensity scores. Conditional on the504

propensity score, differences in observed outcomes between the two groups can505

be solely attributed to the intervention impacts. The matching algorithm used in506

this paper is radius matching (caliper=0.05). For detailed discussion of matching507

algorithms, please refer to the work by Heinrich et al. (2010). Table 5 presents the508

estimations of the safety effects of 20 mph zones by casualty types and severities.509

The 20 mph zones consistently have a significant impact on reducing casualties510

in both absolute number and percentages. The results are very similar for all511

four methods, with a reduction in slightly injured casualties of around 1.7 (10%512

in percentage), and KSI of around 0.73 (24% in percentage) respectively. The513

number of pedestrian-related casualties decreases by 0.85 (21% in percentage),514

which is significant at the 99% level for all four methods. In terms of motor-related515
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casualties, only the absolute number of casualties is found to be significantly516

reduced by 1.5, whilst this effect is not significant when estimated in percentage.517

No significant effects of 20 mph zones are found on cycle-related casualties.518

The similar results from four methods increase confidence in the doubly robust519

method.520

To investigate the robustness of DR method to model misspecification, we521

further examine false models by omitting confounders from both regression and522

propensity score models. The omitted confounders are significant predictors of523

outcomes but insignificant for propensity score estimation. This is similar to the524

routine done by Lunceford and Davidian (2004), and Bang and Robins (2005).525

The DR method should offer protection against the bias due to the misspecification526

of regression model. The results are shown in Table 5. All false models are527

distinguished by superscript “#”. It can be seen that the false OR models lead528

to unstable estimates with relatively large standard errors due to the omission of529

significant covariates, while false DR as well as IPW estimators are consistent530

with the original results for most models. This shows that the DR method is531

superior for affording protection against misspecification.532

It is worth noting that the effects of 20mph zones on reducing casualties estimated533

in this paper are smaller than the results from previous studies. For example, the534
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reduction in casualties varies from 22% to 61% according to previous reports535

(Webster and Mackie, 1996; Webster and Layfield, 2003; Grundy et al., 2009;536

Steinbach et al., 2011). There are several possible reasons for this. First, is that the537

implementation period of 20 mph zones investigated in previous studies is from538

1991 to 2008, and the effects of 20 mph zone may diminish over time (Grundy539

et al., 2009). If we focus on 20 mph zones implemented in recent years, the540

previous findings are more consistent with the ones in this paper. For example,541

Grundy et al. (2009) used conditional fixed effects Poisson models to estimate542

the effects of 20 mph zones using the same data. They first used the data from543

1987 to 2006 and found significant reduction in casualties and collisions. Their544

initial findings are much higher than the ones of this study. Then they restricted545

analyses to 2000-2006, the period with the lowest annual numbers of casualties.546

The results are very similar to the ones of this study this time. For example, they547

found that the percentage reductions are 28.4% for KSI and 21.6% for pedestrian548

injuries, and no significant effect for cyclists. These results are, to a large extent,549

consistent with our findings. Second, and as discussed earlier, the over-estimation550

of treatment effects in previous studies could be also due to the selection bias.551

For example, Webster and Layfield (2003) use all unclassified roads in London552

as “control” data for roads in 20 mph zones. The characteristics of treated and553
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control zones, e.g. historical records of casualties differ in the absence of the554

treatment, and the counterfactual outcomes approximated by such “control” zones555

will be biased. Finally, use of detailed panel data on road network characteristics556

provides adjustment for sources of confounding that have not been addressed in557

previous studies.558
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6. Discussion and Conclusions560

Several studies have been conducted to evaluate the effects of 20 mph zones561

on road casualties in the UK. A key issue with causal analysis concerns how the562

statistical methods employed account for confounding. The ability to draw causal563

inferences from observational data relies on two properties: correctly specified564

models and comparability between the treatment and control groups under study.565

Neither of these issues has been addressed rigorously in previous studies. In this566

paper, we have applied the doubly robust method which affords us two opportunities567

for obtaining consistent and asymptotically unbiased causal effect estimates. Given568

the fact that we rarely know the exact relations among potential outcomes, treatment569

assignment, and confounding factors; the DR property is useful as it increases570

scope for satisfying model assumptions in practice. In addition, the propensity571

score incorporated in the doubly robust method can be used as the criterion when572

constructing the control group.573

Our results show that the 20 mph zones consistently have significant impact574

on reducing casualties in both absolute number and percentages, especially for575

KSI and pedestrian-related casualties. Considering the diminishing effects of 20576

mph zones over time, our results are consistent with the general conclusions of577

previous research in this field.578
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This paper also has two other major findings. First, previous studies rarely579

look at the criteria for 20 mph zones selection. Although there is considerable580

variability as to the implementation of 20 mph zones in different authorities,581

propensity score estimation suggests that the main factors affecting the decisions582

on 20 mph zones are the historical records of casualties and socio-economic characteristics,583

e.g. deprivation, land use, and population. Second, by developing a panel data of584

OS Meridian TM 2, the variation in the road network across time is controlled for585

in our models. The outcome regression models further show that zones with road586

network of high connectivity and more bends have more casualties.587

There are also some limitations with the analysis presented in this paper.588

Due to data availability, the effects of 20 mph zones on traffic speeds are not589

investigated in the model. And population and employment are used instead of590

traffic volume to reflect the overall traffic activities. Despite these, the results591

from both the propensity score and outcome regression models suggest that the592

covariates included are significantly associated with the implementation of 20593

mph zones and road casualties.594

As suggested by Grundy et al. (2009), the effects of 20 mph zones may595

diminish over time. A study on temporal heterogeneity of treatment effect would596

make an interesting question. We also suggest researchers to compare the doubly597
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robust method with other widely used causal methods, such as empirical Bayes598

for future research.599
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