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Abstract 21	

Multilocus sequence data provide far greater power to resolve species limits than the single 22	

locus data typically used for broad surveys of clades. However, current statistical methods 23	

based on a multispecies coalescent framework are computationally demanding, because of the 24	

number of possible delimitations that must be compared and time-consuming likelihood 25	

calculations. New methods are therefore needed to open up the power of multilocus 26	

approaches to larger systematic surveys. Here, we present a rapid and scalable method that 27	

introduces two new innovations. First, the method reduces the complexity of likelihood 28	

calculations by decomposing the tree into rooted triplets. The distribution of topologies for a 29	

triplet across multiple loci has a uniform trinomial distribution when the 3 individuals belong 30	

to the same species, but a skewed distribution if they belong to separate species with a form 31	

that is specified by the multispecies coalescent. A Bayesian model comparison framework 32	

was developed and the best delimitation found by comparing the product of posterior 33	

probabilities of all triplets.  The second innovation is a new dynamic programming algorithm 34	

for finding the optimum delimitation from all those compatible with a guide tree by 35	

successively analyzing subtrees defined by each node. This algorithm removes the need for 36	

heuristic searches used by current methods, and guarantees that the best solution is found and 37	

potentially could be used in other systematic applications. We assessed the performance of the 38	

method with simulated, published and newly generated data. Analyses of simulated data 39	

demonstrate that the combined method has favourable statistical properties and scalability 40	

with increasing sample sizes. Analyses of empirical data from both eukaryotes and 41	

prokaryotes demonstrate its potential for delimiting species in real cases.  42	

Keywords: Multilocus species delimitation, Bayesian model comparison, Dynamic 43	

programming, Bacterial species 44	
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INTRODUCTION 45	

Species constitute the basic taxonomic unit for exchanging information about biological 46	

diversity. Defining species boundaries in a consistent manner is therefore of major importance 47	

to a broad range of biological disciplines. DNA-based delimitation provides a universal 48	

method to detect the signature of species existence applicable to various organisms. 49	

Consequently, methods to delimit species from DNA sequences alone have been actively 50	

developed over the last decade. For early applications of DNA-based delimitation, available 51	

markers were limited to a handful of barcoding loci customized for each type of organism 52	

(such as cox1 for animals, Hebert et al. 2003), and therefore delimitation methods were 53	

designed to handle these single locus sequences (Pons et al. 2006; Puillandre et al. 2012; 54	

Fujisawa and Barraclough 2013; Zhang et al. 2013).  However, as the cost of sequencing large 55	

amounts of DNA has dramatically decreased, and the ease of developing nuclear markers 56	

from genome data has increased, the focus has naturally shifted from single to multiple locus 57	

approaches. 58	

There has been huge progress recently in the development of statistical methods for 59	

multilocus species delimitation, driven by theoretical advances in the multispecies coalescent 60	

model (Rannala and Yang 2003; Degnan and Rosenberg 2009). By comparing alternative 61	

delimitation hypotheses and finding the best one based on probability distributions of gene 62	

trees under the multispecies coalescent model, species can be delimited robustly even with 63	

incomplete lineage sorting. Several methods using Bayesian or information theoretic 64	

frameworks have been published so far (O’Meara 2010; Yang and Rannala 2010; Ence and 65	

Carstens 2011). Empirical studies have evaluated these methods using taxonomically difficult 66	

groups (Carstens and Dewey 2010; Hambäck et al. 2013; Satler et al. 2013). Now, the 67	

multispecies coalescent model is becoming a standard for multilocus DNA-based delimitation, 68	
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and there are attempts to integrate these methods with morphology and geography in order to 69	

achieve integrative taxonomy (Fujita et al. 2012; Edwards and Knowles 2014). 70	

One drawback of methods based on the multispecies coalescent model is their limited 71	

scalability: they rely on the calculation of the probability of obtaining gene trees (or a 72	

sequence alignment) given a population tree under the coalescent model, which is relatively 73	

time consuming. Also, the joint evaluation of species boundaries and species phylogeny 74	

requires searches through an enormous parameter space (Yang and Rannala 2014) , and 75	

computation becomes challenging even with small numbers of sampled individuals. Thus, 76	

current procedures for multilocus delimitation often require prior assignments of samples to 77	

populations, and they are therefore restricted to validation of candidate delimitations based on 78	

the assignments. Delimitation without any a priori assignment (species discovery, Ence and 79	

Carstens 2011) is feasible only with a limited number of samples, though techniques to reduce 80	

search space are being actively studied (Yang and Rannala 2010; Satler et al. 2013). With the 81	

increasing ease of sequencing massive multiple nuclear markers (e.g. transcriptome, RAD; 82	

Baird et al. 2008; anchored hybrid enrichment; Lemmon et al. 2012), the need for rapid and 83	

scalable delimitation methods is becoming more urgent. 84	

An alternative strategy for potentially scalable multilocus species delimitation is to use 85	

genealogical concordance. The congruence of between-species branching across gene trees 86	

reconstructed for separate loci versus incongruence within species has been used as a 87	

signature of reproductive isolation and thereby species diversification (Barraclough et al. 88	

2003). Early attempts that used topological congruence to detect species included the 89	

delimitation of cryptic fungi using concordance of gene trees inferred from five loci 90	

(Koufopanou et al. 1997). The "Genealogical Concordance Phylogenetic Species 91	

Recognition" (GCPSR, Taylor et al. 2000) is now commonly used to delimit fungal species 92	

which often lack morphological or environmental information (Vialle et al. 2013; Millanes et 93	
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al. 2014). A disadvantage of using concordance measures between multiple gene trees is that 94	

it is hard to treat them under statistical models of evolution. It has been known that a set of 95	

multiple gene trees do not necessarily "concord" with each other even if they are generated 96	

under the same species tree because of the stochastic nature of the coalescent process. 97	

Moreover, the consensus topology of gene trees may not be congruent even with the species 98	

tree that generated the gene trees (the anomalous gene tree problem, Degnan and Rosenberg 99	

2006). Thus, the degree of concordance at which one can confidently infer species is not as 100	

simple as first perceived. Modelling the distribution of congruence of trees is intrinsically 101	

difficult as it must incorporate calculations of the probability of gene trees under a given 102	

species tree. Only one non-parametric method with a simulated null model has been devised 103	

for statistical delimitation based on topological congruence (O’Meara 2010). 104	

Here, we develop a new method for multilocus species delimitation using gene tree 105	

congruence, which employs a likelihood model based on the distribution of triplets.  We 106	

define a triplet as a partial rooted tree consisting of three tips. Using the distribution of rooted 107	

triplets is a promising approach to model congruence between gene trees under the coalescent 108	

framework for two reasons. First, the number of triplets with congruent topology is an 109	

intuitive measure of topological similarity between trees. Second, the distribution of triplets is 110	

readily tractable under the multispecies coalescent framework (Pamilo and Nei 1988) and has 111	

been used successfully for rapid inference of phylogenetic trees (Liu et al. 2010). The 112	

distribution model for triplet topology is simple and can be extended for intuitive and rapid 113	

model-based delimitation. We tested the performance of the new method with various data 114	

sets including simulated gene genealogies and both published and newly generated sequence 115	

data from both eukaryotes and microbes. The method provides a tractable approach for 116	

multilocus delimitation that is scalable to samples with hundreds of individuals across large 117	

clades. 118	
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 119	

METHODS 120	

Calculation of the likelihood of triplet distributions 121	

We employ common assumptions of the multispecies coalescent model (Rannala and Yang 122	

2003; Degnan and Rosenberg 2009): there is neutral random coalescence without structure 123	

within species (i.e. panmixia), no gene flow or horizontal transfer between species, and loci 124	

evolve independently without intra-locus recombination.  In addition, to simplify, we assume 125	

initially that the topology of the gene tree is known without error.  Under these assumptions, 126	

the distribution of triplet topologies is modelled by a simple trinomial distribution as follows.  127	

 A bifurcating tree with K tips can be decomposed into !
!  rooted triplets. For a given 128	

triplet of three individuals, a, b and c, there are three possible topologies, ab|c, ac|b and bc|a. 129	

When genealogies from N independent loci are sampled, the numbers of gene trees that 130	

conform to each topology - represented by n1, n2, and n3 - are modelled by a trinomial 131	

distribution for each triplet. When individuals a, b and c belong to a single species, then under 132	

our assumption that the species is panmictic, there is an equal probability of observing each of 133	

the three triplet topologies because coalescent events of any pair are equally likely in a 134	

panmictic population. Therefore, the distribution of counts of the three topologies is 135	

represented by an equiprobable trinomial distribution with likelihood: 136	

 137	

𝑃𝑊 𝑛1,𝑛2𝑛3 =  
𝑁

𝑛1!𝑛2!𝑛3!
1
3

𝑁

 

(Eq.1) 138	

 139	
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When individuals are sampled from 2 or 3 distinct species, under the assumptions of the 140	

multispecies coalescent process above, the probability of observing triplets congruent with the 141	

species tree topology is 1-2e-λ/3, where λ is the length of the internal branch measured by 142	

coalescent time units on the species tree, and the probability of observing an incongruent 143	

triplet is e-λ/3 (Pamilo and Nei 1988; Degnan and Rosenberg 2006). Hence, the distribution of 144	

triplet counts follows the skewed trinomial distribution. 145	

 146	

𝑃𝐵 𝑛1,𝑛2,𝑛3 𝑣 = 𝑛1,𝜆 =
𝑁

𝑛1!𝑛2!𝑛3!
1−

2
3 𝑒

−𝜆
𝑛1 1

3 𝑒
−𝜆

𝑛2+𝑛3
 

(Eq. 2) 147	

 148	

In the equation above, ν = n1 is the count of triplets congruent with the species tree topology 149	

(dominant topology) while n2 and n3 denote the counts of incongruent triplets (minority 150	

topologies). Note that this distribution does not distinguish the two-species case from the 151	

three-species case. Therefore, it is impossible to split a pair of species only represented by 152	

two samples but possible to split a species represented by a single sample from species with 2 153	

or more samples. 154	

 155	

A Bayesian model comparison framework 156	

In the absence of prior knowledge of the species tree, the observer cannot know a 157	

priori which triplet is the triplet concordant with the species tree. Choosing the most 158	

frequently observed triplet and using its count as ν in the above equation introduces a bias 159	

toward the three-species case and increases the rate of false positives (Supplementary figure 160	
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S1, available at Dryad: dryad.	3cb25). We therefore develop a Bayesian model comparison 161	

framework to take the unknown species tree into account.  162	

When the species tree is unknown, there are three models that conform to the three-163	

species case described above. We call these three models, Τ! = {𝜏!!, 𝜏!!, 𝜏!!} , each of which 164	

is associated with one of three possible topologies of the underlying species tree. The 165	

likelihood functions of the models in ΤB are described by PB in equation (2), with the 166	

dominant triplet ν matching n1, n2 and n3 for τb1, τb2 and τb3, respectively. 167	

We also consider three models for the case of a single species, following the scheme 168	

of Yang and Rannala (2014). We call the set of the three models, Τ! = {𝜏!!, 𝜏!!, 𝜏!!}. Each 169	

model in ΤW is again associated with one of the three possible topologies and has its 170	

counterpart in ΤB (Yang and Rannala 2014). The likelihood functions are PW in equation (1) 171	

and they are identical across models. 172	

  With the six candidate models, the joint posterior probability of τ (model) and λ 173	

(branch length) given triplet counts X = (n1, n2, n3) is 174	

 175	

𝑃 λ, τ 𝑋) =  
𝑃(𝑋|λ, τ)π(λ)π(τ)

𝑃(𝑋|λ, τ)π(λ)π(τ)!∈!!⋃!! 𝑑λ
 

(Eq.3) 176	

, where π(τ) and π(λ) are posterior probabilities of τ and λ. We obtain the posterior probability 177	

of τ by marginalizing the joint posterior by λ. 178	

𝑃 τ X =  
𝑃(𝑋|λ, τ)π(λ)π(τ)𝑑λ

𝑃(𝑋|λ, τ)π(λ)π(τ)!∈!!⋃!! 𝑑λ
 

(Eq. 4) 179	
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To simplify the expression for the posterior, we now employ simple uniform priors, π τ = !
!
  180	

and π λ = 1
𝐿 0 ≤ 𝜆 ≤ 𝐿  . We use a prior range up to L=5 throughout this study, which 181	

covers a realistic range of frequency of dominant triplets, 0.33 ≤ 1-2e-λ /3 ≤ 0.996. The 182	

posterior probability of the model with the uniform priors is, 183	

𝑃 τ X =  
𝑃(𝑋|λ, τ)𝑑λ!

!

𝑃(𝑋|λ, τ)𝑑λ!∈!!⋃!!
!
!

 

(Eq.5) 184	

The integration of P(X| λ, τ) over λ has a tractable analytical solution, therefore a reversible 185	

jump MCMC is not required to characterize this posterior distribution. When τ is one of the 186	

three models of ΤW, the integration over λ is trivial. 187	

𝑃 𝑋 𝜆, 𝜏 ∈ Τ! 𝑑𝜆
!

!
= 𝐿 ∙ 𝑃!(𝑋) 

When τ belongs to ΤB, the integration of the likelihood function is represented by the incomplete beta 188	

function. When the dominant triplet ν is n1, 189	

𝑃 𝑋 𝜆, 𝜏 ∈ 𝑇! 𝑑𝜆
!

!
=

1
2

!!!!!
𝐶 1 − 𝑥 !!𝑥!!!!!!!𝑑𝑥

!
!

!!!!
!

=
1
2

!!!!!
𝐶 β

2
3
;  𝑛! + 𝑛!, 𝑛! + 1 − β

2𝑒!!

3
;  𝑛! + 𝑛!, 𝑛! + 1   

where β(x; a, b) is the incomplete beta function and C is the multinomial coefficient in 190	

equation (2). Replacing n1 with n2 or n3 gives solutions for ν = n2 or n3. 191	

The models in ΤB are supporting the three-species delimitation, B, (that is, samples are 192	

from three distinct species); therefore the posterior probability of the delimitation B is a sum 193	

of the three posterior probabilities of the models in ΤB. 194	
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𝑃 𝐵 X =
𝑃 𝑋 𝜆, 𝜏 𝑑𝜆!

!!∈!!

𝑃 𝑋 𝜆, 𝜏 𝑑𝜆!
!!∈!! + 3𝐿 ∙ 𝑃!(𝑋)

 

(Eq.6) 195	

, and the posterior probability of the single-species case delimitation, W, (samples are from a 196	

single species) is, 197	

𝑃 𝑊 X =
3𝐿 ∙ 𝑃!(𝑋)

𝑃 𝑋 𝜆, 𝜏 𝑑𝜆!
!!∈!! + 3𝐿 ∙ 𝑃!(𝑋)

 

(Eq.7) 198	

With a given hypothesis of delimitation, each of the !
!  triplets is assigned to one of 199	

the two categories defined above, i.e. a, b and c either belong to the same species or to 200	

multiple species. The overall posterior probability of a given delimitation for all K taxa is the 201	

product of the posterior probabilities of all triplet counts of two categories. For a set of triplet 202	

counts, w, which is assigned to delimitation W, and a set b, which is assigned to delimitation 203	

B, the log-posterior probability of a delimitation D is as follows. 204	

 205	

log𝑃 D|X =  log𝑃(𝑊|𝑛!, 𝑛!, 𝑛!)
!!,!!,!! ∈𝒘

+ log𝑃(𝐵|𝑛!, 𝑛!, 𝑛!)
(!!,!!,!!)∈𝒃

 

(Eq.8) 206	

We use this quantity as the posterior probability score. Note that it is not a true posterior 207	

probability of delimitation since it ignores the mutual dependence of the parameters of the 208	

triplet distribution caused by overlapping membership of some triplets. However, the similar 209	

approximation of likelihood functions has been used successfully in statistical phylogenetic 210	

inference (Liu et al. 2010) and we test its performance by simulation here. 211	
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 212	

Finding the best delimitation model 213	

The posterior probability score described above is used to find the optimal 214	

delimitation from a set of delimitations of samples. The number of all possible delimitations 215	

of K samples is represented by the Bell number, !
!

!
!!!  (Bell 1934), where !!  is a Stirling 216	

number of second kind, defined as the number of all possible ways to split K items into i 217	

groups. This number is common to partitioning problems and intractably large. An approach 218	

taken to reduce the number of delimitations considered is using a guide tree (Yang and 219	

Rannala 2010), which gives a hierarchical structure of multiple delimitations. Different 220	

combinations of splitting and lumping of lineages on a given guide tree are searched to find 221	

the best delimitation. Conventional search methods with the guide tree approach use either 222	

reversible-jump Markov chain Monte Carlo for characterizing posterior probabilities of 223	

competing delimitations  (Yang and Rannala 2010, 2014) or heuristic search algorithms to 224	

find the optimal combinations of splits and lump of lineages (O’Meara 2010; Satler et al. 225	

2013).  226	

We now consider only the problem of finding the best delimitation on a fixed guide 227	

tree without tree rearrangement. The number of all possible delimitations under a given guide 228	

tree with S tips is approximately 1.5!  (floor of 1.5S) in the worst case and S in the best case 229	

(Fujisawa and Barraclough 2013). The size of the space is reduced compared with the Bell 230	

number, but still grows exponentially with the number of species in the worst case.  We 231	

developed a new dynamic programming algorithm to rapidly find the best combination of 232	

lineages on the guide tree, taking advantage of the optimal substructure of the likelihood 233	

model and the guide tree structure.  234	
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Given a delimitation under a guide tree, D, its posterior probability score can be 235	

decomposed into a sum of the scores of the delimitations of two subtrees descending from the 236	

root, logP(DL) and logP(DR), and a constant factor since equation (8) is additive. 237	

 238	

logP D = logP 𝐷! + logP 𝐷! + 𝑐 

𝑐 =  logP(𝐵|𝑛!,𝑛!,𝑛!)
(!!,!!,!!)∈𝒃𝒓𝒐𝒐𝒕

 

(Eq.9) 239	

where c is a constant representing a score for triplets crossing over 2 subtrees descending 240	

from the root node of the guide tree. Since triplets are not shared between subtrees and their 241	

posterior probabilities are independently calculated, the optimal solutions for each subtree 242	

must be included in the global solution. Therefore, finding the global optimal solution can be 243	

reduced to finding solutions to subtrees’ delimitations, and iteratively solving and combining 244	

them yields the global solution. An exception is the case where logP(D) is represented by the 245	

root of the guide tree; that is, all samples are from the same species. In the case of root 246	

delimitation, equation (9) does not hold because the constant of the third term must be 247	

represented by P(W|X) not P(B|X). So, the dynamic programming algorithm must compare 248	

the “root” delimitation with the aggregated solution of subtrees in each step. This leads to the 249	

algorithm described in Figure 1 and supplementary text S1 (Online Appendix). This algorithm 250	

calculates the global optimal posterior probability score from a guide tree, and the best 251	

delimitation was obtained by keeping the set of nodes producing the best score. The algorithm 252	

reduces the number of likelihood calculations to twice the number of the nodes on the guide 253	

tree.  254	
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 We implemented the method in a program called “tr2” (Trinomial distribution of 255	

Triplets) for calculation of posterior probability scores for delimitation hypotheses and the 256	

search algorithm for the best delimitation given a guide tree. The program is implemented in 257	

Python and can run on any operating system (Distributed at 258	

https://bitbucket.org/tfujisawa/tr2-delimitation, archived version for paper is available at 259	

Dryad: dryad.3cb25). 260	

 261	

Simulations and case studies 262	

We used simulated and real gene trees to test the performance of the method. First, we 263	

performed coalescent simulations with species trees with 3 and 10 tips. Then, we analyzed a 264	

published data set of rattlesnakes with 29 individuals and a newly sequenced data set of 144 265	

Bacillus cereus isolates. 266	

 267	

Three-species simulations.— In order to test the performance of the delimitation 268	

model, we first conducted a simple 3 species simulation and assessed the error rates of the 269	

model. In this simulation, we assume gene trees are known without error. Gene genealogies 270	

were simulated within a species tree with three tips and fixed branch lengths, T1=4000 and 271	

T0=8000 generations (Figure 2a). The number of samples per species was set to 10, totalling 272	

30 individual samples. The effective population sizes were set to 1/2*T1 to 8*T1 for all 273	

species (T1=1/8Ne – 2Ne generations). Coalescent trees within the species tree were 274	

simulated using SIMCOAL (Excoffier et al. 2000) assuming that one species represents one 275	

population and populations merge on speciation events. Custom scripts were used to generate 276	

input files for SIMCOAL from species trees. Twenty-five independent loci were simulated 277	
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100 times, which resulted in 2500 gene trees in total.  The posterior probability  for a global 278	

delimitation W (all individuals are from a single species) and the three alternative models 279	

representing correct delimitation (a), over-splitting (b) and under-splitting (c) (Figure 2) were 280	

calculated with increasing numbers of loci between 5 and 25 with step 5. Error rates, i.e., the 281	

frequency of choosing an incorrect model as the best model, were recorded for each iteration. 282	

 283	

Ten-species simulations.— The ten-species simulation considers more realistic 284	

conditions. Species trees with 10 tips were simulated under the Yule model with a constant 285	

speciation rate. The total depth of species trees, T, was rescaled to 20000 generations, and the 286	

effective population size (Ne) of species was set as 1, 1/2, 1/4, 1/8 and 1/16 times of T 287	

(Ne=1250-20000). These parameter settings cover speciation rates and effective population 288	

sizes observed in various eukaryotic groups (Coyne and Orr 2004; Charlesworth 2009) 289	

including extreme cases of rapid radiations. Gene trees with 10 samples per species (100 total 290	

samples) for 40 independent loci were simulated using SIMCOAL and the custom scripts. 291	

Simulations were replicated 100 times. 292	

In the first simulation, hereafter simulation A, we assume that the topology of the 293	

guide tree and assignment of terminals to species groups is known. This simulation tests 294	

whether the method can correctly find the positions of nodes which define species from 295	

multiple competing combinations on a guide tree. The tr2 program was run with the species 296	

tree as a guide and simulated gene trees as inputs. The number of loci used ranged from 5 to 297	

40. 298	

 In the second simulation, B, delimitation was conducted solely from sets of gene trees 299	

(species discovery approach). A consensus tree was built from gene trees from multiple loci 300	

using the rooted triple consensus (Ewing et al. 2008). Then, the consensus tree was used as 301	
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the guide tree in the delimitation step. This guide tree contains all possible hierarchical 302	

delimitations, from each individual representing a separate species to all individuals 303	

representing a single species.  Polytomies on consensus trees were randomly resolved by the 304	

“multi2di” function in the “ape” package (Paradis et al. 2004).  In addition, we performed a 305	

set of simulations to assess the effect of increasing numbers of loci and individual samples. 306	

Gene trees were simulated within the same species trees as above with Ne=T/4, but the total 307	

number of samples was reduced to 50 (5 per species) and the number of loci was doubled, 308	

keeping the total sample size (number of loci X number of samples) constant. Delimitation 309	

with tr2 was conducted in the same procedure as simulation B. 310	

 The third simulation, C, considers conditions where gene trees and species trees are 311	

estimated from DNA sequences. Sequences were simulated along the branches of the gene 312	

trees simulated above using Seq-Gen (Rambaut and Grassly 1997) assuming HKY+G model 313	

(Ts/Tv = 2.5 and α = 0.1) and 3% of overall genetic variations. These parameters were chosen 314	

to be comparable to the case studies described in the next sections. Sequence length was set to 315	

a constant length of 750bp. Gene trees were reconstructed from the simulated sequences using 316	

RAxML with a GTR+G model (Stamatakis 2014) and rooted by the “-I f” option of RAxML . 317	

Guide trees were estimated from the reconstructed gene trees with the rooted triple consensus, 318	

and delimitation was conducted with tr2. Under the parameter settings above, within-species 319	

genetic variation of simulated sequences ranged from 0.3% to 1.4% depending on Ne, and 320	

between-species variation was 3.0%.   321	

 The number of estimated species and the number of exact matches between estimated 322	

and true species were measured as the accuracy of delimitation. The elapsed time for each 323	

trial was also recorded. The numbers of non-monophyletic species were counted to measure 324	

the degree of incomplete lineage sorting. The effects of Ne, the number of loci, simulation 325	

type (A, B and C) and their second interaction terms on the proportion of exact matches were 326	
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tested using GLM. For simulation B, the effect of the two sampling strategies was also tested. 327	

Simulations and delimitations were run on a Linux personal computer with a 2.3 GHz Intel i5 328	

quad-core processor and 4GB memory. 329	

 330	

Case study one: Sistrurus Rattlesnakes.— Kubatko et al. (2011) sampled 18 nuclear 331	

loci and one mtDNA locus of Sistrurus rattlesnakes. The data set of the nuclear loci included 332	

58 phased sequences from 29 individuals of six known subspecies of S. catenatus/S. miliarius 333	

and two outgroups. Kubatko et al. (2011) reported that one subspecies, S. catenatus catenatus, 334	

exhibited signatures of a distinct species status while the other five subspecies did not show 335	

significant evidence of independent species based on the monophyly-based test described by 336	

Rosenberg (2007). We reanalyzed this data set. The gene trees and an alignment matrix of 18 337	

nuclear loci were downloaded from TreeBase (accession:TB2:S11174). The trees were 338	

randomly resolved with “multi2di”. Then, a consensus tree was built using the rooted triple 339	

consensus from them, and the best delimitation was determined with the consensus as the 340	

guide tree. A re-sampling procedure of loci was conducted by progressively adding single loci 341	

in random order. Polytomies were randomly resolved in each iteration. The re-sampling was 342	

repeated 50 times to characterize the effect of increasing number of loci on the delimitation. 343	

Genetic variation within subspecies was 0.2% and between species 2.2%. 344	

 345	

Case study two: Bacillus Multilocus Sequence Typing.— We tested the applicability of 346	

the tr2 method to bacterial species using a multilocus sequence typing (MLST) data set of the 347	

Bacillus cereus complex. Multilocus sequence typing (MLST) is a typing scheme for bacterial 348	

species/subspecies using a few (typically seven) loci (Maiden et al. 1998; Maiden 2006). It is 349	

widely used in clinically relevant bacteria and occasionally in environmental prokaryotes to 350	
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delimit species (e.g. Papke et al. 2007). Although bacterial reproduction is largely clonal, in 351	

many bacteria including Bacillus cereus, genetic exchange also occurs (Vos and Didelot 352	

2009). If there was frequent gene exchange within a group of closely related individuals, but 353	

none between distantly related groups, this could lead to units equivalent to reproductively 354	

isolated species in sexual eukaryotes (Didelot et al. 2011; Barraclough et al. 2012).The tr2 355	

method should be able to delimit such a group as a putative species. However, in clonal 356	

bacteria without any recombination, the delimitation method based on gene tree congruence 357	

would delineate all individuals as separate species because the true genealogy of each locus 358	

would be identical. Another complication is that horizontal transfer might occur rarely 359	

between otherwise distinct species. This could introduce additional incongruence among loci 360	

between otherwise separate species. We were interested to see how the method coped with a 361	

prokaryotic clade that might display these complications. 362	

 Our sample comprised 144 isolates originally collected from evenly spaced quadrats 363	

in the walled garden at Silwood Park for the study by Collier et al. (2005). In brief, freezer 364	

isolates were regrown on B. cereus selective agar and DNA extracted using Chelex Instagene 365	

matrix method. The 7 house-keeping genes used for standard B. cereus MLST (Jolley et al. 366	

2004) were PCR amplified and Sanger sequenced using primers and conditions at the MLST 367	

database (http://pubmlst.org/bcereus/info/primers.shtml). Sequences were edited in Geneious 368	

and trimmed to the lengths used at the MLST database. Full details are provided elsewhere 369	

(Collier et al. 2005; Barraclough et al. in preparation), and sequences are available at Genbank 370	

(Accession: KT806485-KT807462). 371	

Alignment lengths of the MLST sequences ranged from 348 to 504bp, and there were 372	

29 to 55 unique haplotypes at each locus (maximum of 55 for purH and minimum of 29 for 373	

glpF and gmk). The complete data matrix excluding missing loci contained 2806 bp from 374	

each of 114 isolates, which included 99 unique multilocus sequence types. Overall genetic 375	
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variation was 4.0%. Sequences from the seven loci were separately aligned with MUSCLE 376	

3.8 (Edgar 2004). Gene genealogies of the seven loci were estimated using BEAST 1.80 377	

(Drummond et al. 2012). Ten million generations of MCMC sampling were run with a 378	

GTR+G substitution model and the log-normal relax clock model (Drummond et al. 2006). 379	

Twenty percent of the MCMC samples were discarded as burn-in. The convergence of the 380	

parameters was checked by effective sampling size using Tracer (Rambaut and Drummond 381	

2007), and the maximum clade credibility trees (MCC trees) were extracted from the MCMC 382	

runs using TreeAnnotator.  383	

 Two methods were used to obtain guide trees for delimitation of the Bacillus group.  384	

First, a consensus tree was constructed using the rooted triple consensus from the MCC trees 385	

of seven loci. Second, in order to account for the effects of horizontal transfer on the guide 386	

tree estimation, we ran ClonalFrame (Didelot and Falush 2007) on the concatenated 387	

alignment. ClonalFrame estimates the most likely clonal genealogy by removing putative 388	

horizontally transferred regions. An MCMC of ClonalFrame was run with 800 thousand 389	

generations, and 50% of the chain was discarded as burn-in. Convergence of parameters was 390	

examined by checking effective sample size using Tracer. The 50%-majority consensus from 391	

the ClonalFrame MCMC was used as a second guide tree.  Re-sampling of loci was 392	

conducted 50 times using these two guide trees. To further account for the uncertainty of tree 393	

building, 100 trees were sampled from the MCMC chain from BEAST for each locus and 394	

from the chain of ClonalFrame, and delimitation was repeated with these 100 sets. The 395	

frequency for each pair of samples to be grouped in the same species was recorded. (Sequence 396	

alignments and trees are available at Dryad: dryad.	3cb25) 397	

 398	

RESULTS 399	
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Three-species simulations 400	

The overall false positive rate (FPR, rate of over-splitting) in the three-species simulations is 401	

0.0 in all iterations with all numbers of loci between 5 and 25. False negative rates (FNR, rate 402	

of under-splitting) decrease as the number of loci used increases (Figure 3). FNR of less than 403	

30% were attained with only 5 loci when Ne was 2000 and 4000 (equivalent to T=2Ne and 404	

Ne) whereas the FNRs reached 30% with 20 loci when Ne was 8000 (T=1/2Ne). With larger 405	

Ne values, the decrease of FNRs was much slower, and the method was not able to correctly 406	

delimit species within the range of loci used in the simulations when Ne was 16000 and 407	

32000 (T=1/4Ne-1/8Ne). The average time required for one trial was 0.5 seconds. 408	

Ten-species simulations 409	

When true species trees are given as the guide tree, the method appeared to delimit species 410	

consistently. The proportion of exact matches increased with the number of loci used (Figure 411	

4, A), and the number of estimated species approached the true number of species, 10 (Figure 412	

5, A).  With low Ne value (Ne=1250), the median number of exact matches reached 10 when 413	

25 or more loci were used. The increase in the number of exact matches slowed down with 414	

larger Ne values, for example, when Ne≥5000, 40 loci were not enough to attain 100% exact 415	

matches. 416	

 The accuracy was slightly reduced when the guide trees were estimated by the 417	

consensus method (Figure 4 and 5, B). However, the effect of simulation type was not 418	

significant (z = -0.33, p = 0.74 for simulation type, GLM with binomial errors) while Ne and 419	

the number of loci were highly significant (p << 0.001 for both Ne and the number of loci). In 420	

addition to the under-split observed in the simulation A, a few oversplits occurred especially 421	

when the number of loci was small. In 0.9% of trials, the method estimated more than 10 422	

species. Overall accuracy still increased when more loci were added. When the gene trees 423	
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were estimated from the simulated sequences, the accuracy further decreased, especially when 424	

the number of loci was small (Figure 4, C). The accuracy was significantly lower than other 425	

simulation types (z = -4.42, p << 0.001, GLM with binomial error).  Even more frequent 426	

oversplits were observed: the number of trials with >10 estimated species reached 2.0%. 427	

(Figure 5, C). 428	

 The time required for a delimitation process increased nearly linearly with the number 429	

of loci (Supplementary Figure S2). Median time ranged from 23 to 47 seconds for 10 tip 430	

guide trees and from 135 sec to 162 seconds for guide trees with 100 tips. Average 431	

proportions of non-monophyletic species were between 0.34 for Ne=1250 and 0.97 for 432	

Ne=20000 (Supplementary Figure S3), indicating non-monophyly is prevalent even for small 433	

Ne values. The accuracy of delimitation was significantly lower when fewer loci and more 434	

samples were used (z=-3.27, p=0.001, GLM with binomial error, Supplementary Figure S7).  435	

 436	

Rattlesnakes 437	

The method delimited 4 putative species of the Sistrurus rattlesnakes, including two 438	

ingroup and two outgroup species (Figure 6 Left, Supplementary Figure S4). The two ingroup 439	

species matched with the known taxonomic species, S.catenatus and S.miliarius. Random 440	

resampling of loci indicated the number of estimated species does not saturate within the 441	

range of loci used in this study (Figure 6 Left). With 18 loci, 28% of repeated delimitations 442	

split S.catenatus into two groups: one group exclusively consisted of a subspecies 443	

S.c.catenatus and another group consisted of S.c.edwardsii and S.c.tergeminus. Three 444	

subspecies of S.miliarius were always grouped together into a single species. 445	

 446	
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Bacillus MLST 447	

Delimitation using the seven MCC trees and rooted triple consensus tree resulted in 7 putative 448	

species while the delimitation with ClonalFrame consensus resulted in 11 species.  The 449	

majority of nodes on the rooted triple consensus were unresolved (Supplementary Figure S5). 450	

ClonalFrame robustly recovered three clades, two of which were unresolved in the rooted 451	

triple consensus (Clade A, B and C in Figure 7). The difference between the two approaches 452	

is consistent with horizontal transfer affecting topologies deeper in the tree; we mainly focus 453	

on the result of delimitation using the ClonalFrame guide tree.  Re-sampling of loci showed 454	

that there was substantial variation in the number of estimated species (Figure 6 Right): the 455	

sample of 7 loci might be too few for robust delimitation in this case. Repeated delimitations 456	

run on 100 sets of MCMC tree samples exhibited 18 species that were consistently delimited 457	

(Figure 7). While clades A and B were grouped into three or four large clusters, clade C was 458	

more frequently separated into small singleton species. Frequencies for isolates to be grouped 459	

in species with other isolates within these clades were on average 61% and 40% for clade A 460	

and B and 35% for clade C.   461	

 We estimated linkage disequilibrium (LD) within subsets of these groups to test for 462	

variation in recombination rate. Samples were taken from within the largest clusters in clade 463	

A and B respectively, and randomly from within clade C, and LD of variable sites was 464	

calculated for each group by the “LD” function of an R package “pegas” (Paradis 2010). The 465	

test calculates the correlation between pairs of variable sites (Zaykin et al. 2008). There are 466	

distinctive linkage patterns between and within the seven loci in the three groups 467	

(Supplementary Figure S6). In clade A and B, strong to moderate LD within each locus and 468	

LD between a few pairs of loci were observed, but LDs between loci were small (Median  469	

within-locus R2=0.49 and 0.16  and Median between-locus R2 = 0.07 and 0.08 for clades A 470	

and B, respectively). This is consistent with recombination among separate loci, but linkage 471	
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within loci. On the other hand, in clade C, there were moderate or high levels of LD between 472	

most loci (Median within-locus R2=0.38 and between-locus R2=0.29 for clade C), consistent 473	

with low rates of recombination even between loci. 474	

 475	

DISCUSSION 476	

Congruence between gene trees provides intuitive and readily tractable statistical models for 477	

multilocus species delimitation. In this paper, we developed a method to delimit species based 478	

on topological congruence or incongruence of triplets quantified by two types of trinomial 479	

distribution models. These models were derived from the multispecies coalescent framework 480	

and can be used for robust delimitation of species from gene trees with incomplete lineage 481	

sorting. The simulation studies confirmed that the method can consistently delimit species 482	

without monophyly, and its performance increased with the number of loci and decreased 483	

with larger effective population size relative to divergence time.  484	

The accuracy of the method is slightly lower than the reported performance of 485	

conventional multilocus delimitation methods (Camargo et al. 2012); more than 25 loci were 486	

required to delimit with 95% success rate under the condition T=0.5*Ne (Figure 2) while 487	

Camargo et al. (2012) reported 60 - 100 % success with 10 loci by conventional methods. The 488	

advantage of tr2 appears to be its speed and applicability to large data.  According to 489	

Camargo et al. (2012), with a four species guide tree, SpedeSTEM (Ence and Carstens 2011) 490	

ran in 30 seconds with 20 samples and BP&P (Yang and Rannala 2010) with 80 samples in 491	

6.5hrs. The order of speed of the tr2 (30 seconds with 100 samples and 10 species with known 492	

gene trees) is comparable to the fastest conventional method. When a sequence alignment is 493	

used, additional time for tree reconstruction is required (e.g. approximately 1 minute per locus 494	

by RAxML), but the reconstruction - delimitation procedure can still scale to large data sets. 495	
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In addition, the dynamic programming algorithm finds the global solution on a given guide 496	

tree while most heuristic optimizations do not guarantee it. The method was sufficiently 497	

conservative to over-splitting, which is a favorable property for DNA-based species 498	

delimitation methods (Carstens et al. 2013). 499	

The simulation studies also showed that the accuracy of the guide tree is crucial for 500	

accurate multilocus delimitation. It has been known that the incorrect assignment of samples 501	

on guide trees results in oversplits of species in multilocus delimitation (Leaché and Fujita 502	

2010; Zhang et al. 2014). The oversplits observed in the discovery approach (simulation B 503	

and C) are likely to have resulted from the incorrect placement of samples on guide trees. 504	

However, except for the excess of oversplits, the effect of unknown guide tree was minimal. 505	

The number of exact matches was not significantly different between known and unknown 506	

guide tree simulations, and even when DNA sequences were used, accuracy was comparable 507	

to the other simulations with a sufficient number of loci. It appears that, when the consensus 508	

species tree estimation can resolve a particular node on a guide tree, tr2 does not erroneously 509	

merge or split species on the node.  This is a useful property since there are discrepancies 510	

between the number of loci required for correct delimitation, guide tree estimation and initial 511	

population assignment in the conventional delimitation procedures (Zhang et al. 2014).  The 512	

inaccurate estimate of guide tree and delimitation may be mediated simply by adding more 513	

loci as the number of loci is not a major computational obstacle.  514	

The delimitation results for Sistrurus rattlesnakes were partially consistent with the 515	

reported results in Kubatko et al. (2011). Though the two known taxonomic species, 516	

S.catenatus and S.miliarius, were consistently delimited as putative species, only about 30% 517	

of iterations supported the distinctiveness of the subspecies S.c.catenatus. Considering the 518	

number of loci necessary to delimit species in the simulation studies, 18 nuclear markers 519	

appear to be insufficient to fully delimit this group with the present method. The resampling 520	
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also indicates that polytomies are an important source of uncertainty on delimitations. The 521	

two alternative outcomes with 18 loci resulted solely from the different resolutions of 522	

polytomies. The lack of mutations and resulting polytomies do not positively mislead the 523	

delimitation when the identical sequences are randomly inserted or polytomies are randomly 524	

resolved. Nevertheless, simulations and case studies show the use of uninformative loci 525	

compromise the power of species detection and introduce uncertainty. We used repeated 526	

delimitations with randomly resolved gene trees and guide trees, and this approach was able 527	

to capture the level of uncertainty of gene tree reconstruction in the rattlesnakes. Resampling 528	

trees from bootstrap trees or MCMC runs, as done in the Bacillus data set, is an alternative 529	

way to handle the uncertainty.  530	

The results of re-sampling analysis of Bacillus complex indicate more uncertainty in 531	

their delimitation than the rattlesnakes. The reduced number of species observed on the rooted 532	

triple consensus may partly result from the unresolved guide tree due to horizontal transfer 533	

between distantly related groups.  However, distinctive patterns of bacterial diversification 534	

were still observed. Clade A and B were consistently delimited into large groups while clade 535	

C mainly consisted of weakly connected singletons. Samples from these two categories 536	

exhibited a contrasting pattern of linkage disequilibrium patterns. Especially, low LD between 537	

loci observed in samples from the largest clusters detected in clades A and B indicates that 538	

there is frequent gene exchange between members of those groups. Homologous 539	

recombination creates local topological discordance on bacterial genomes (Didelot et al. 540	

2010), and if the recombination events are localized only within closely related groups, the 541	

mutually recombining groups can be detected by tr2 through genealogical discordance. The 542	

clusters delimited in the clades A and B are likely to be such groups. Clade C has low 543	

recombination rates and methods based on recombination and gene congruence are 544	

inappropriate. It may still be possible to identify independently evolving groups in such clades 545	
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using alternative concepts and methods developed for clonal bacteria and asexuals (Cohan 546	

2001; Barraclough et al. 2003). Clearly, the mixture of high and low-recombining lineages in 547	

the Bacillus data adds complexities to species delimitation (which we will address in detail 548	

elsewhere) and the number of loci may not be large enough to fully elucidate diversification 549	

patterns.  However, the result demonstrates the potential for detecting ‘recombinationally 550	

isolated’ groups in prokaryotes.   551	

The parameters to be considered for the computational complexity of delimitation are 552	

the number of samples (K), the number of species (S) and the number of loci (N). The 553	

dynamic programming algorithm introduced in this paper finds the best delimitation and 554	

reduces the complexity of search through a guide tree to time scale linear to S, Ο(S), which 555	

allows a thorough search of a guide tree. For example, using a guide tree that assigns every 556	

individual into a distinct species has often been prohibitive with large samples, but, in our 557	

simulations, tr2 was able to process guide trees with 100 tips within 150 seconds. Combined 558	

with good performance with respect to other parameters - cubic dependency of time on 559	

overall sample size, Ο(K3) and linear for loci, Ο(N) - the method could be used to provide a 560	

rapid search method through candidate delimitation hypotheses before applying more 561	

statistically rigorous methods to large datasets. Current next generation sequencing projects 562	

often target a large number of loci from relatively few individuals. The tr2 method is suitable 563	

for this type of sampling design since the impact of increasing loci on computations is smaller 564	

than increasing individuals. A simulation shows that higher accuracy is achieved with more 565	

loci than with more individuals when total sample size (loci X individuals) is fixed 566	

(Supplementary Figure S7). This demonstrates a potential use of current sequence 567	

technologies for species delimitation though the optimal sampling strategy is yet to be 568	

investigated.  A final point is that the dynamic programming algorithm introduced in this 569	

study may be applied for other optimal partitioning problems using hierarchical structure, 570	
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such as finding optimal partitioning of sequence alignments for phylogenetic inference (Li et 571	

al. 2008; Lanfear et al. 2012). 572	

In this study, we did not consider possible violations of the assumption of the 573	

multispecies coalescent model including gene flow between populations. Gene flow between 574	

sister species reduces the number of dominant triplets and increases two minority triplets 575	

equally, and may compromise the accuracy of the method. Incorporating branch lengths into 576	

the model may be required to tease apart the effects of gene flow and incomplete linage 577	

sorting. Introgression events from distantly related groups may be detected as an increase in 578	

one of two minority triplet counts. Indeed, deviation from equal counts of minority triplets is 579	

used for tests of introgressive gene flow (Durand et al. 2011; Zwickl et al. 2014). Violation of 580	

the model assumption of panmixia could be detected in a similar manner by extending the 581	

trinomial distribution model used in this study to a three-rate model.  582	

The method now uses estimated gene trees as inputs. In addition, it uses a guide tree 583	

estimated from the given gene trees or other independent methods. This procedure does not 584	

take the uncertainty of gene tree and species tree inference into account. Also, most 585	

computational time of the delimitation procedure was spent on the tree-building steps (a 586	

BEAST run on 1 locus of Bacillus took 2.5hrs while the tr2 ran in 2 minutes with > 100 587	

samples). For guide tree inference, one possible solution would be to incorporate joint 588	

inference of species tree and delimitation using triplets. Triplet- or quartet-based phylogenetic 589	

inference methods using known gene trees under the multispecies coalescent framework have 590	

been developed and implementations to handle large datasets already exist (Liu et al. 2010; 591	

Mirarab et al. 2014). The delimitation step based on the trinomial distributions could be easily 592	

integrated into these procedures. Also, gene tree inference could be bypassed by directly 593	

counting triplets estimated from 3 corresponding sequences  and an outgroup as done in some 594	



	 27	

phylogenetic inference programs (DeGiorgio and Degnan 2010). Combining these methods 595	

could potentially lead to a highly scalable joint estimation of species tree and delimitation.   596	

In conclusion, we present a method for species delimitation from multilocus data that 597	

can potentially scale to the kind of sample sizes that are currently only feasible for single-598	

locus approaches. The method uses exact methods derived from the multispecies coalescent, 599	

but by splitting the problem into triplets it circumvents the computational challenges.  As it 600	

becomes easier to sequence non-model genomes, and consequently to assay variable nuclear 601	

markers across clades, we envisage a growth in the number of studies using standardized 602	

multiple unlinked markers across entire clades, equivalent to current DNA barcoding sample 603	

regimes. Our method is designed with these scenarios in mind to complement more intensive 604	

methods. 605	
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CAPTIONS OF FIGURES 760	

Figure 1. An illustration of how the dynamic programming algorithm finds the optimal 761	

delimitation. Below each node in the guide tree, two alternative delimitations are compared 762	

(horizontal arrows) and the better one is chosen (dotted squares). The best delimitation below 763	

one node is inserted into the comparison at the higher level successively to yield the final 764	

optimal delimitation. 765	

 766	

Figure 2. Schematic representations of alternative hypotheses of delimitation for the three-767	

species simulations: a) Correct hypothesis, b) Under-split and c) Over-split. 768	

 769	

Figure 3. Relationships between false negative rate and the number of loci used for 770	

delimitation in the three-species simulations that simulated different effective population sizes 771	

within species relative to the divergence time between species. 772	

 773	

Figure 4. Relationships between the number of exact matches and the number of loci used in 774	

the 10-species simulations. A) Both guide trees and gene trees are known, B) Guide trees are 775	

estimated but gene trees are known and C) Guide trees and gene trees are estimated from 776	

DNA sequences. 777	

 778	

Figure 5. Relationships between the number of estimated species and the number of loci used 779	

in the 10-species simulations. A) Both guide trees and gene trees are known, B) Guide trees 780	
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are estimated but gene trees are known and C) Guide trees and gene trees are estimated from 781	

DNA sequences. 782	

 783	

Figure 6. The number of species estimated when randomly re-sampling loci in the empirical 784	

data sets. Left) Rattlesnakes. Right) Bacillus complex.  785	

 786	

Figure 7. Results of delimitation with 100 sets of gene trees and guide trees sampled from 787	

MCMC runs. Trees from ClonalFrame MCMC were used as guide trees. Left) The 50% 788	

majority consensus tree built with ClonalFrame . Right) The frequency that each pair of 789	

isolates was grouped by tr2. 790	

 791	

CAPTIONS OF SUPPLEMENTARY FIGURES 792	

Figure S1. a) Frequency of false positives for three types of model comparison procedures. 793	

The count of each topology was drawn from a trinomial distribution with equal rate, which 794	

simulates samples from a single species, and model comparisons using AIC and the Bayesian 795	

modelling were conducted. AICs were calculated using the likelihood of eq.(1) for the single-796	

species case and eq.(2) for the three-species case. Posterior probabilities were calculated with 797	

eq.(6) and eq.(7). The numbers of trials where the three-species case had larger AICs or 798	

smaller posterior probabilities than the single-species case were recorded as false positives. 799	

Abbreviations of models are: AIC_MF: AIC with the most frequent topology as dominant 800	

topology. AIC_Random: AIC with randomly chosen triplet as dominant topology. Bayes: 801	

Bayesian model comparison with six models. 802	
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 803	

 804	

Figure S2. Relationships between the required time for delimitation and the number of loci. 805	

 806	

Figure S3. Average number of non-monophyletic species for each setting in the 10-species 807	

simulations. 808	

 809	

Figure S4. A rooted triple consensus tree inferred from 18 nuclear loci of Sistrurus snakes. 810	

Polytomies were randomly resolved. Bars in dark grey indicate species delimited by the tr2. 811	

Bars in light grey show an alternative delimitation that appeared in the repeated delimitations. 812	

The numbers on nodes represent the average  difference of log posterior probability scores 813	

between the null and alternative models defined by the nodes. A positive value indicates that 814	

the delimitation B (separate species) is preferred over the delimitation W (same species). 815	

Nodes indicated by asterisks are the most recent common ancestor nodes for species groups. 816	

 817	

Figure S5. Results of delimitation of Bacillus with 100 sets of gene trees sampled from 818	

MCMC runs using rooted triple consensus as guide trees. Left) The rooted triple consensus 819	

built with seven MCC trees . Right) Frequency that each isolate is grouped by the tr2. 820	

 821	

Figure S6. Distribution of linkage disequilibrium measured by R2. Dotted grey lines indicate 822	

the border of loci and each grid cell represents the positions of each locus, from left hand side, 823	

glpF, gmk, ilv, pta, purH, pycA and tipD.  824	
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 825	

Figure S7. Relationship between the number of exact matches and total sample size (loci X 826	

individual samples). Dark grey: trials with sample size=50. Light grey: trials with sample size 827	

= 100.  828	

 829	

 830	
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