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Locomotion of a microorganism in weakly viscoelastic liquids
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In the present work we study the motion of microorganisms swimming by an axisymmetric distribution of
surface tangential velocity in a weakly viscoelastic fluid. The second-order fluid constitutive equation is used to
model the suspending fluid, while the well-known “squirmer model” [M. J. Lighthill, Comm. Pure Appl. Math.
5, 109 (1952); J. R. Blake, J. Fluid Mech. 46, 199 (1971)] is employed to describe the organism propulsion
mechanism. A regular perturbation expansion up to first order in the Deborah number is performed, and the
generalized reciprocity theorem from Stokes flow theory is then used, to derive analytical formulas for the
squirmer velocity. Results show that “neutral” squirmers are unaffected by viscoelasticity, whereas “pullers” and
“pushers” are slowed down and hastened, respectively. The power dissipated by the swimming microorganism
and the “swimming efficiency” are also analytically quantified.
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I. INTRODUCTION

The locomotion of small organisms in Newtonian fluids at
low Reynolds numbers (Re) displays very different features
with respect to that used by larger organisms. Indeed, in the
Re � 1 regime, viscous forces are dominant over inertial ones,
and propulsion is only possible through non time-reversible
swimming strokes, a feature that has been brilliantly discussed
by Purcell in enunciating the so-called “Scallop Theorem” [1].
Different swimming mechanisms are exploited by microor-
ganisms to generate their own propulsion. One of them is
the undulatory movement of flagella, notable examples being
Spermatozoa and Escherichia Coli, among others; another
mechanism is the undulatory movement of many small flagella,
called cilia, on the organism surface, as exploited by Parame-
cium, Volvox, or Opalina. A theoretical model for the former
mechanism of propulsion has been proposed by Taylor [2],
whereas the latter mechanism has been investigated in the
pioneering works of Lighthill [3] and Blake [4]. The model
proposed by those latter authors has been widely used in the lit-
erature, e.g., to study hydrodynamic interactions between two
ciliated organisms [5], suspensions of active organisms [6,7],
and the behavior of single and many “active particles” near
boundaries [8,9]. Organisms modeled through this approach
have usually been termed squirmers in the literature.

In many situations of interest, small organisms are pro-
pelling themselves through non-Newtonian fluids such as
mucus [10] or biofilms [11], which can display highly
viscoelastic properties. Viscoelasticity in the suspending fluid
breaks the above cited scallop theorem, and locomotion
with time-reversible strokes becomes possible, as shown by
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Lauga [12]. The impact of viscoelasticity in the constitutive
equation of the suspending fluid is typically quantified by
introducing the Deborah number De, which is the ratio of
the fluid and the flow characteristic times.

For the viscoelastic case, most of the work has dealt
with flagellar-based propulsion: small amplitude theories
for swimming sheets [13,14] and filaments [15] have been
reported, together with numerical simulations for large ampli-
tude swimming [16], and for motions of helicoidally shaped
flagella [17,18]. On the other hand, theoretical studies on
the swimming of ciliated organisms in viscoelastic fluids are
limited to the above-cited work of Lauga [12,19], with results
valid for small-amplitude time-dependent swimming strokes,
and to recent numerical simulations of steady squirmers,
performed at rather high Deborah numbers [20,21].

In this paper, we investigate the effects of a low vis-
coelasticity of the suspending medium on the locomotion of
ciliated microorganisms. Indeed, in several realistic situations,
such as in marine water or ponds [22], protozoa and algae
swim in dilute suspensions of other microorganisms, in which
exopolymeric substances (mostly consisting of high molecular
weight polysaccharides) are dissolved [23]. The resulting
dilute polymeric solution can therefore conveniently be mod-
eled as a slightly viscoelastic fluid [22,23]. In this situation,
viscoelasticity effects on the swimming behavior of cilated
microorganisms can be computed analytically, which is the aim
of the present work. Specifically, we use a perturbative analysis
in the Deborah number to study the swimming behavior of a
single squirmer propelling itself in a second-order fluid (SOF),
i.e., the “basic” viscoelastic liquid [24]. In the derivation, the
so-called generalized reciprocity theorem [25] from Stokes
flow theory is used. We obtain analytical expressions for the
organism velocity and the dissipated power, valid to first order
in De. To the best of our knowledge, these are the first analytical
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expressions derived for a steady squirmer in a viscoelastic
fluid.

The paper is organized as follows. In Sec. II, we briefly
review the organism propulsion model adopted, i.e., the
Lighthill-Blake model. In Secs. III and IV the governing fluid-
dynamics equations are reported, together with the perturbative
procedure. In Secs. V–VI the reciprocity theorem is applied to
compute both the swimmer velocity and the power dissipated
by the swimmer in a second-order fluid. Some conclusions
are drawn in Sec. VII. For sake of completeness, the explicit
calculation of the velocity and pressure fields at order De is
reported in the Appendix.

II. SWIMMER MODEL

It is apparent that a description of the dynamics of a ciliated
organism through a detailed analysis of the individual cilia
motions is by far too complex. For this reason, different models
have been proposed, where actual cilia motions are replaced,
e.g., by an overall motion of a deformable surface (a sort of
“envelope” of the cilia population) [26], or, in an even simpler
way, by a steady tangential “slip velocity” on a rigid boundary
representing the microorganism surface [27]. In this latter case,
the slip velocity is in fact an ultrasimplified modeling of the
time-averaged ciliary propulsion [5], introduced for the first
time by Lighthill and Blake [3,4]. In the rest of the paper, we
will refer to this model microorganism as a “squirmer.”

In the context of the Lighthill-Blake model, we consider the
squirmer as a sphere propelling itself only by axisymmetric
surface tangential velocities. In spherical comoving coordi-
nates, with origin at the microorganism center, and the z axis
coinciding with the direction of motion, the slip velocity on
the surface can then be written as [3,4]

vr = 0, (1a)

vθ =
∞∑

n=1

−2

n(n + 1)
BnP

1
n [cos(θ )], (1b)

vφ = 0, (1c)

where θ is the azimuthal angle (and φ is the angle of revolu-
tion), P 1

n [cos(θ )] are the nth associated Legendre polynomials,
and the Bns, which have units of velocity, are the “swimming
modes” [5]. In the present work we consider Bn = 0 for
n > 2, as commonly assumed in literature [5,20,21]. Thus,
the specification of the coefficients B1 and B2 completely
determines the type of swimming. A squirmer with a positive
ratio B2

B1
is called puller, as its maximum tangential velocity is

on the frontal hemisphere; in other words, a puller generates
propulsion from the front. Squirmers with a negative ratio B2

B1
are called pushers, as they generate propulsion from the rear.
When B2 = 0, the organism is called neutral.

In Newtonian fluids, the swimming velocity V is given
by VN = 2

3B1 [3,4], hence is the same for all squirmers. The
coefficient B2 will only enter the expression of the swimming
dissipated power [4] (see Eq. (35)).

III. GOVERNING EQUATIONS

The investigation of the behavior of a steady squirmer in a
non-Newtonian fluid of course requires the specification of a

constitutive equation for the fluid stress tensor. In this work,
as mentioned in the Introduction, we will employ the second-
order fluid (SOF) constitutive model [24], since we are only
interested in small deviations from the Newtonian behavior.
The second-order fluid is the asymptotic approximation of
most viscoelastic fluids in slow and slowly varying flows [28].
The stress tensor T for an incompressible SOF is given by

T = −p I + μA + α1 B + α2 A2. (2)

In Eq. (2), p is the pressure, μ is the viscosity, A is the
symmetric part of the velocity gradient,

A = ∇v + ∇vT , (3)

and B is given by

B = ∂ A
∂t

+ (v · ∇)A + A · ∇v + ∇vT · A. (4)

The constitutive coefficients α1 and α2 in Eq. (2) are related
to “normal stresses” of the viscoelastic liquid. Specifically, for
a steady shear flow with shear rate γ̇ , the first and second
normal stress differences are N1 = �1γ̇

2 and N2 = �2γ̇
2,

respectively, and it is α1 = −�1
2 and α2 = �1 + �2.

Under the assumption of negligible Reynolds number,
the steady-state dimensionless mass balance and momentum
balance are

∇ · v = 0, (5)

∇ · T = 0, (6)

with the dimensionless stress tensor given by

T = −p I + A − De(B + bA2), (7)

where b = α2
α1

and De = −α1
μ

2B1
3a

. In defining the Deborah
number, we considered −α1

μ
as the characteristic viscoelastic

timescale, and we choose as flow timescale the ratio of the
microorganism radius a and the Newtonian swimmer velocity
2B1

3 . Finally, notice that the viscosity of the suspending fluid
has also been used in making the stress nondimensional in
Eq. (7), through the choice of a characteristic stress μ 2B1

3a
.

In addition to the above equations, we assume that the
microorganism is “force-free,” i.e., that the fluid exerts a zero
force on it: ∫

4π

T · n dS = 0. (8)

(n in Eq. (8) is the inwardly directed normal to the sphere
surface 4π , as a is the characteristic length.)

We seek a solution for the dynamical Eqs. (5)–(7), plus the
force-free condition Eq. (8), in the limit of De � 1. Of course,
appropriate boundary conditions will be required; see the next
section.

IV. PERTURBATIVE PROCEDURE

In this section we proceed with the perturbative analysis of
non-Newtonian effects on the squirmer motion, with De as the
expansion parameter. We therefore write the unknown velocity
and pressure fields as regular expansions in De, that is to say

v = vN + De vSOF + O(De2), (9a)

p = pN + De pSOF + O(De2). (9b)
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(a) (b) (c)

FIG. 1. (Color online) Comoving frame streamlines generated by microorganisms in a Newtonian fluid: (a) neutral swimmer, (b) pusher
with β = −3, (c) puller with β = 3. (Somehow unrealistic high values of β are chosen, merely to highlight the flow field features.) The solid
dot represents the position of a stagnation point.

A. Zeroth-order solution

The fundamental solution (the Newtonian case), has been
given by Lighthill and Blake [3,4]. By adopting a “comoving”
spherical coordinate system with its origin coinciding with the
sphere center, the nondimensional boundary conditions on the
sphere surface r = a = 1 are given by

vr,N = 0, (10a)

vθ,N = 3
2 sin(θ ) + 3

2βcos(θ )sin(θ ), (10b)

vφ,N = 0 (10c)

[see Eq. (1)], where we defined β = B2
B1

. Values of β for real
microorganisms that have been reported in literature range
between −1 and 1 [7,8,29,30]. Always in the comoving frame,
as r → ∞, the pressure is zero, and the velocity is

vr,N = −VNcos(θ ), (11a)

vθ,N = VNsin(θ ), (11b)

vφ,N = 0, (11c)

where VN is the (nondimensional) Newtonian swimming
velocity, to be determined. As already stated above, the
dimensional velocity calculated by Lighthill and Blake is
VN = 2B1

3 (along z), and is the same for all swimmers (i.e., it is
independent from β). Hence, the nondimensional zeroth-order
(Newtonian) squirmer velocity in Eq. (11) is 1, and the
zeroth-order complete dimensionless velocity and pressure
fields in the comoving frame are given by

vr,N =
(

1

r3
− 1

)
cos(θ ) + 3

4

(
1

r4
− 1

r2

)
β[3cos(θ )2 − 1],

(12a)

vθ,N =
(

1 + 1

2r3

)
sin(θ ) + 3

2

1

r4
βcos(θ )sin(θ ), (12b)

vφ,N = 0, (12c)

pN = 3

2

1

r3
β[3cos(θ )2 − 1]. (12d)

In Fig. 1, we report the streamlines generated by three different
organisms in a Newtonian fluid, in the comoving frame.
The motion of the swimmers in the laboratory frame is to
the right, hence, velocity is negative at large positive z for
all three swimmers in Fig. 1 (comoving frame). A neutral
squirmer, Fig. 1(a), generates a front-rear antisymmetric flow
field, whereas such symmetry is broken for pusher and puller
organisms, Figs. 1(b) and 1(c), where stagnation points can be
seen ahead and behind the swimmer, respectively.

For later use, we define the zeroth-order stress tensor
resulting from the velocity and pressure fields given in Eq. (12)
as

T N = −pN I + AN. (13)

B. First-order problem

The governing equations of the first-order problem are

∇ · vSOF = 0, (14)

∇ · T SOF = ∇ · (
BN + bA2

N

)
, (15)

where the stress tensor T SOF is defined by

T SOF = −pSOF I + ASOF, (16)

and the tensors BN and AN are evaluated with the zeroth-order
flow field.

Of course, the force-free condition has to be imposed also
for the first-order problem and is written as∫

4π

[
T SOF − (

BN + bA2
N

)] · n dS = 0. (17)

Notice that, although the force-free condition of Eq. (17) is at
order De, the stress tensor appearing in the equation (in square
brackets) also includes a contribution from the Newtonian
solution.

In writing down the boundary conditions for the first-order
problem, we retain the choice of the previous subsection for the
reference frame, i.e., we remain in the (Newtonian) comoving
frame. As a consequence, the boundary conditions at infinity
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are simply

vr,SOF = 0, (18a)

vθ,SOF = 0, (18b)

vφ,SOF = 0, (18c)

pSOF = 0, (18d)

whereas the first-order problem boundary condition on the
sphere surface is given by

vr,SOF = VSOF cos(θ ), (19a)

vθ,SOF = −VSOF sin(θ ), (19b)

vφ,SOF = 0, (19c)

where the nondimensional VSOF, to be determined, is the
order De correction to the swimmer velocity. Notice that
the adoption of the boundary condition Eqs. (19) expresses
in fact the hypothesis that the propulsion mechanism at the
microorganism surface is not affected by the suspending
fluid. Notice further that, in the laboratory frame, the overall
nondimensional velocity of the squirmer is given by

V = 1 + De VSOF + O(De2). (20)

V. SWIMMER VELOCITY

In principle, the unknown fields pSOF and vSOF plus the
first-order squirmer velocity VSOF can be obtained from the
solution of Eqs. (14)–(17). In what follows, on the other
hand, we show that the first-order squirmer velocity VSOF

can in fact be obtained without the explicit knowledge of
the first-order velocity and pressure fields, by making use
of the generalized reciprocity theorem [25] from Stokes flow
theory.

We proceed by defining an auxiliary Stokes problem,
namely, the translation of a sphere, suspended in an unbounded
quiescent Newtonian fluid, in the same direction of the
squirmer. For simplicity, we will assume that the sphere
translation in the auxiliary problem is occurring with velocity
VN = 1, i.e., with the same velocity of the Newtonian squirmer.
The equations governing this problem are

∇ · v̂ = 0, (21)

∇ · T̂ = 0. (22)

(All the quantities related to the auxiliary problem are denoted
with a caret.) The stress tensor of the auxiliary problem is
given by

T̂ = −p̂ I + Â, (23)

and the boundary conditions on the sphere surface (in the
comoving frame) are

v̂r = 0, (24a)

v̂θ = 0, (24b)

v̂φ = 0. (24c)

Always in the comoving frame, the boundary conditions at
infinity are

v̂r = −cos(θ ), (25a)

v̂θ = sin(θ ), (25b)

v̂φ = 0, (25c)

p̂ = 0. (25d)

The generalized reciprocity theorem in our case reads

−
∫

4π

v̂ · n · T SOFdS +
∫

4π

vSOF · n · T̂dS

= −
∫

V

v̂ · (∇ · T SOF)dV +
∫

V

vSOF · (∇ · T̂ )dV. (26)

We can make some simplifications in the above equation: (i)
the last integral of the right-hand side is identically zero [see
Eq. (22)]; (ii) the first integral of the left-hand side is identically
zero [see Eq. (24)]; (iii) in the surviving volume integral, ∇ ·
T SOF is substituted by the known expression ∇ · (BN + bA2

N),
using Eq. (15); (iv) since the velocity vSOF on the sphere surface
is equal to vSOF = VSOFk (k is the unit vector of the z axis),
the second surface integral on the left-hand side of Eq. (26) is
simply equal to VSOFF̂ , where F̂ is the force required to sustain
the sphere motion in the auxiliary problem. From Stokes law, it
is F̂ = 6πV̂ = 6πVN = 6π along the axis of motion. Hence,
Eq. (26) becomes

6 π VSOF = −
∫

V

v̂ · [∇ · (
BN + bA2

N

)]
dV. (27)

By using the identity w · ∇ · W = ∇ · (w · W ) − ∇w : W
(w and W are a vector and a tensor, respectively), we rewrite
the volume integral in Eq. (27) as the sum of two volume
integrals, and we transform the volume integral containing the
overall divergence into a surface integral to obtain∫

4π

v̂ · n · (
BN + bA2

N

)
dS + 6 π VSOF

=
∫

V

∇v̂ :
(
BN + bA2

N

)
dV. (28)

Again, the surface integral is zero because of Eq. (24). We
then obtain

VSOF = 1

6π

∫
V

∇v̂ :
(
BN + bA2

N

)
dV. (29)

We emphasize that, because of our choice of the Newtonian
comoving frame, the time derivative included in BN is zero;
see Eq. (4). Thus, the integral Eq. (29) involves only known
quantities, from the zeroth-order problem and the auxiliary
problem, and can be analytically computed to give

VSOF = 3
10 (1 + b)β (30)

for the the O(De) organism velocity correction. The total
microorganism velocity is then given by

V = 1 + 3
10 (1 + b)β De + O(De2) (31)

[see Eq. (20)] or, in dimensional variables,

V = 2

3
B1

[
1 − 1

10

B2

a

�1

μ

(
1 + �2

�1

)]
. (32)
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FIG. 2. (Color online) Squirmer swimming velocity as a function
of De. Solid lines represent the analytical solution, Eq. (31), for
b = −1.8; solid symbols are numerical solution for a Giesekus fluid
with b = −1.8.

Similar to what was found by Wang and Ardekani [31]
for a ciliated organism swimming in a Newtonian fluid at
small, but nonzero, Reynolds number, the swimming speed
depends linearly on the parameter β. Our analysis shows
that the order De correction, Eq. (30), also depends on the
constitutive parameter b. We remark that realistic values for
b range from −2, for a fluid with �2 = 0 (no second normal
stress difference), to −1, when �2 = −�1

2 . Thus, (1 + b) is
always negative, and the sign of the velocity correction at order
De will depend on the sign of β. (A qualitatively similar result
was obtained by Wang and Ardekani [31] for small nonzero
Reynolds numbers; indeed, they found VRe = −0.11β for the
O(Re) correction to the Newtonian velocity with no inertia.)

The total organism velocity V is shown in Fig. 2, as a
function of De, for three different β values. We find that a
puller is slower in a viscoelastic fluid than in a Newtonian
one, while a pusher is faster. We emphasize that the speed
of a neutral squirmer (β = 0) is unchanged by viscoelasticity
up to O(De). Recent numerical simulations at high De [20,21]
showed that pusher, puller, and neutral squirmers are all slower
in a viscoelastic fluid than in a Newtonian fluid. On the
other hand, our analytic results show that a pusher swims
faster at O(De), while a neutral squirmer is unaffected by
viscoelasticity at O(De). In order to verify our analytical
solution we computed the squirmer swimming velocity in a
Giesekus viscoelastic fluid [24] through numerical simulations
at small Deborah numbers. The rheological parameters were
chosen so as to match a second-order fluid with b = −1.8. The
results are shown as solid symbols in Fig. 2. Data obtained from
numerical simulations are in agreement with our analytical
solution for very low De values. In Fig. 2 it is clearly shown
from simulation results that the velocity of a pusher squirmer
goes through a maximum and then decreases, while, for a
neutral squirmer, the velocity shows an initially flat behavior
and then decreases with increasing De. It is apparent that,
for Deborah numbers larger than ≈0.02, the numerical results
start to deviate from the analytical theory, which means that
higher-order viscoelastic effects (i.e., higher powers of De)
come into play. The organism velocity obtained from the
numerical simulations, being always lower than the analytical

velocity at order De, suggests that higher-order De effects
always reduce the velocity of the microorganism regardless if
it is a puller, pusher, or neutral, compatibly with what found
by Zhu et al. [20,21] at large Deborah numbers.

VI. POWER DISSIPATED AND SWIMMING EFFICIENCY

Another effect of fluid viscoelasticity is that of modifying
the power dissipated by the organism to move. The power P

consumed by the microorganism is given by

P =
∫

4π

T · n · v dS. (33)

Applying the asymptotic expansion Eq. (9) to the definition
above, and retaining only the terms up to O(De), we obtain

P =
∫

4π

T N · n · vN dS + De

[ ∫
4π

T N · n · vSOF dS

+
∫

4π

[
T SOF − (

BN + bA2
N

)] · n · vN dS

]
. (34)

The second integral in Eq. (34) is identically zero, because
vSOF = VSOFk is constant on the surface 4π and can be
taken out of the integral, and the resulting integral expresses
the Newtonian swimmer force-free condition. In the above
equation, moreover, the first integral is simply the power
dissipated by a swimming microorganism in a Newtonian fluid
and has been calculated by Blake [4]:

PN = 6π (2 + β2). (35)

Thus, it is

P = 6π (2 + β2) + De
∫

4π

[
T SOF − (

BN + bA2
N

)] · n · vN dS

= PN + DePSOF. (36)

The De first-order correction PSOF is given by the surface
integral in Eq. (36). For the sake of precision, a piece of
this integral involves known quantities (AN, BN, and vN);
hence, only the piece containing T SOF is still unknown. We can
compute this integral without the explicit expressions of the
first-order velocity and pressure fields entering T SOF, however,
again by applying the generalized reciprocity theorem. Indeed,
by considering the Newtonian zeroth-order solution as the
“auxiliary” problem, we can write∫

4π

vN · n · T SOFdS =
∫

4π

vSOF · n · T NdS

+
∫

V

vN · (∇ · T SOF)dV

−
∫

V

vSOF · (∇ · T N)dV. (37)

Now: (i) The last volume integral in Eq. (37) is nil, because
∇ · T N = 0; (ii) the surface integral in the right-hand side is
nil, because vSOF = VSOFk can be taken out of the integral,
and the integral now expresses the force-free condition of the
Newtonian problem; (iii) in the surviving volume integral of
Eq. (37), we can use Eq. (15), and hence the integrand function
is completely known in terms of the Newtonian fields. In
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FIG. 3. (Color online) Total swimming power dissipated as a
function of β, for De = 0.02.

conclusion, we obtain

PSOF = −
∫

4π

(
BN + bA2

N

) · n · vN dS

+
∫

V

vN · ∇ · (
BN + bA2

N

)
dV. (38)

By further manipulation of the latter equation (through
divergence theorem and the tensorial identity already exploited
in the previous section), we get the final compact form for the
first-order power correction:

PSOF = −
∫

V

∇vN :
(
BN + bA2

N

)
dV. (39)

By analytically performing the integration in Eq. (39), we
obtain

P = PN + DePSOF

= 6π (2 + β2) + De 27
5 π (1 + b)(4β + β3). (40)

The first-order correction to the power dissipated by
the squirmer depends cubically on β, similarly to what
found by Wang and Ardekani [31] for a squirmer propelling
through a Newtonian fluid at nonneglegible Reynolds number.
Interestingly, we find that the power employed by a neutral
organism for swimming is unchanged up to O(De). In Fig. 3
we plot the swimming power, normalized by the Newtonian
PN, as a function of β, and for De = 0.02. (For such a De
value, the first-order theory is applicable; see the comparison
with the numerical simulations of Fig. 2, and the discussion
there.) When the organism is almost neutral (i.e., β ≈ 0) the
slope of P

PN
versus β is determined by the linear term in PSOF

that, in turn, depends on b; for realistic fluids, such slope is
negative. Also for larger β (in absolute value) the slope stays
negative. Thus, pullers swimming in a viscoelastic medium
are saving energy with respect to the Newtonian case, while
pushers are spending more energy. Our analysis reveals then
a behavior at variance with recent numerical simulations [21],
where it is found that squirmers swimming in a viscoelastic
fluid always save energy with respect to the Newtonian case. It
must be emphasized, however, that the simulations reported in
Ref. [21] are performed at much higher De values than those
considered here, in the perturbative approach.

FIG. 4. (Color online) Swimming efficiency normalized with the
Newtonian one, as a function of β, for De = 0.02.

The swimming efficiency η of a given squirmer is defined
as the ratio between the power required to drag an inert sphere
at the same velocity of the squirmer to that dissipated by the
microorganism itself [4]:

η = V F (V)

P (V)
. (41)

We emphasize that the force F required to drag a sphere in
a second-order fluid to first order in De is unchanged with
respect to the Newtonian value [32,33]; i.e., it is F = 6π V .
The efficiency, therefore, is

η = 6πV 2

P
, (42)

and we calculate

η = ηN

[
1 + De

(
2VSOF − PSOF

PN

)]

= 1

2 + β2

[
1 + De

3

5
(1 + b)β

(
1 − 3

2

4 + β2

2 + β2

)]
. (43)

In Fig. 4 we report the squirmer efficiency η normalized
with the Newtonian one ηN = 1

2+β2 from Eq. (43), for De =
0.02. We find that pullers are always more efficient than
pushers. It should be recalled, however, that pullers are always
slower than pushers in the O(De) theory.

VII. CONCLUSIONS

In this paper we have studied the effects of viscoelasticity
on a spherical steady squirmer swimming in a second-order
fluid, through perturbative analysis. A regular perturbation
expansion in the Deborah number De and the generalized
reciprocity theorem have been used, to obtain analytical
results. We found that the velocity of a neutral squirmer is
unaffected by viscoelasticity, whereas pullers and pushers
are slowed and hastened, respectively. We also quantified
the power dissipated by a microorganism to swim in a
second-order fluid, finding it to depend cubically on the ratio
B2
B1

, which rules the velocity at the swimmer surface in the
Lighthill-Blake model. Pushers always dissipate more energy
than pullers; with respect to the Newtonian case, pushers have
larger dissipation, whereas pullers dissipate less.
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The above-mentioned results were found at first order in De;
i.e., they represent the trends of deviations from the Newtonian
results for a weak viscoelasticity of the suspending liquid.
In fact, numerical computations (also reported in the paper)
show that the range of applicability of the first-order theory is
limited to rather low De values. We surmise, however, that our
analysis can be relevant in some (selected) actual conditions.
For example, for the Volvox microorganism it is a ≈ 100 μm,
VN ≈ 100 μm

s ; hence, the flow characteristic time is 1 s. For
a viscoelastic liquid with a characteristic time of 10−2 s, a
perfectly realistic value, e.g., for a dilute macromolecular
solution, the resulting Deborah number is De ≈ 10−2, inside
the range of validity of our calculations. It might then be
possible to observe some effects of such weak viscoelasticity,
in particular for pullers, which have the largest deviations from
the Newtonian case.

APPENDIX: PRESSURE AND VELOCITY
FIELD CALCULATION

In this Appendix we report the “complete” solution to
Eqs. (14)–(17), i.e., to the order De problem. We adopt the
stream-function formulation of such equations to compute
the flow and pressure fields, which is a standard way to
attack axisymmetric problems [34]. The first-order radial and
tangential velocity components are related to the stream-
function �SOF as follows:

vr,SOF = − 1

r2sinθ

∂

∂θ
�SOF; vθ,SOF = − 1

rsinθ

∂

∂r
�SOF.

(A1)

In terms of �SOF, the momentum balance equation [Eq. (15)]
becomes

iφE4�SOF = ∇ × [∇ · (
BN + bA2

N

)]
r sin(θ ). (A2)

The differential operator E4 is given by E4 = E2(E2), with
E2 = ∂2

∂r2 + sin(θ)
r

∂
∂θ

( 1
sin(θ)

∂
∂θ

), and iφ is the unit vector in the
azimuthal direction. Notice that Eq. (A2) is in fact a scalar
equation for the stream-function �SOF, since its right-hand
side is itself a vector with the φ component only.

The first-order boundary condition Eq. (19) on the squirmer
surface is also written in terms of the stream-function �SOF:

�SOF = −1

2
VSOF sin2(θ );

∂�SOF

∂ r
= −VSOF sin2(θ ), (A3)

and the quiescent condition far from the organism reads

�SOF

r2
→ 0 as r → ∞. (A4)

Finally, the force-free condition Eq. (17) can be written in
terms of the stream function as [34]

lim
r→∞

�SOF

r sin2(θ )
= 0. (A5)

The right-hand side of Eq. (A2) is a known function, which
can be written

∇ × [∇ · (
BN + bA2

N

)]
r sin(θ )

= iφ

27

4
(1 + b)β sin2(θ )

3∑
i=0

gi(r) P 0
i [cos(θ )], (A6)

where the functions gi(r) are

g0(r) = 24

r8
, (A7a)

g1(r) = β

(
88

r9
− 24

r7

)
, (A7b)

g2(r) = 40

r8
, (A7c)

g3(r) = β

(
72

r9
− 24

r7

)
. (A7d)

In view of Eq. (A6), we will look for a solution for �SOF in
the form

�SOF = 27

4
(1 + b)βsin2(θ )

3∑
i=0

Fi(r)P 0
i [cos(θ )]. (A8)

(a) (b)

FIG. 5. (Color online) Comparison of (a) Newtonian and (b) order De streamlines generated, in the swimming frame, by a puller with
β = 3, for b = −2. The solid circle represents the position of the stagnation point.
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(a) (b)

FIG. 6. (Color online) Comparison of (a) Newtonian and (b) order De streamlines generated, in the swimming frame, by a pusher with
β = −3, for b = −2. The solid circle represent the position of the stagnation point.

The specification of the functions Fi(r) in Eq. (A8) would
completely determine the stream-function �SOF.

It is interesting to note that the stream-function Eq. (A8),
and hence the flow field, is identically zero when (1 + b)β = 0,
which occurs when either β = 0 or b = −1. The former
condition states that the flow field generated by a neutral
squirmer is unchanged at first order in De. The latter condition,
on the other hand, leads to a well-known result for fluid-
dynamics problems with a second-order fluid [35], namely
that, when b = −1, the De-order flow field is zero, and only
the pressure is modified by viscoelasticity.

By inserting now Eqs. (A6) and (A8) in Eq. (A2), and by
equating term-by-term the coefficients of sin2(θ )P 0

i [cos(θ )]
(for i = 0, 3) in the resulting expression, we obtain the
following system of ODEs (in r):

d2

dr2
f0(r) − 2

r2
[f0(r) + f2(r)] = g0(r), (A9a)

d2

dr2
f1(r) − 6

r2
[f1(r) + f3(r)] = g1(r), (A9b)

d2

dr2
f2(r) − 12

r2
f2(r) = g2(r), (A9c)

d2

dr2
f3(r) − 20

r2
f3(r) = g3(r), (A9d)

with the gi(r) given in Eq. (A7), and the fi(r) defined as

f0(r) = d2

dr2
F0(r) − 2

r2
[F0(r) + F2(r)], (A10a)

f1(r) = d2

dr2
F1(r) − 6

r2
[F1(r) + F3(r)], (A10b)

f2(r) = d2

dr2
F2(r) − 12

r2
F2(r), (A10c)

f3(r) = d2

dr2
F3(r) − 20

r2
F3(r). (A10d)

The set of ordinary differential Eqs. (A9) together with
Eqs. (A10) yields a closed problem for the functions F0(r) −
F3(r). Elementary integration leads to

F0(r) = c3r
10 + 9(c7 + 2c11)r8 + 90c15r

6 − 45c8r
5 + 90c16r

3 + 18c12r + 5

90r4
, (A11a)

F1(r) = 5r(9c1r
11 + 33(c5 + 6c9)r9 + 462c13r

7 − 77c6r
4 + 462c14r

2 + 198c10) + 77β(r2 + 4)

2310r5
, (A11b)

F2(r) = c11 r4 + c12

r3
+ 5c3r

10 − 9c4r
3 + 15

90r4
, (A11c)

F3(r) = c9 r5 + c10

r4
+ 154β + 35c1r

12 − 55c2 r3 + 231βr2

770r5
. (A11d)

The constants c1–c16 are determined by applying the boundary conditions, Eqs. (A3) and (A4). We find

c2 = 7β

10
, (A12a)

c4 = −5

6
, (A12b)

c6 = −β

7
, (A12c)
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c8 = −3(b + 1)β − 10VSOF

45(b + 1)β
, (A12d)

c10 = −9β

20
, (A12e)

c12 = −1

4
, (A12f)

c14 = β

420
, (A12g)

c16 = −21(b + 1)β − 20VSOF

540(b + 1)β
, (A12h)

c1 = c3 = c5 = c7 = c9 = c11 = c13 = c15 = 0. (A13)

We still need to determine the velocity VSOF of the squirmer. To this end we simply insert �SOF, as previously obtained, in
Eq. (A5) (the force-free condition), which gives

VSOF = 3
10 (1 + b)β. (A14)

Equation (A14) is the same result obtained in Sec. V, Eq. (30), thus giving an independent verification of the results obtained in
the main text of the present paper.

According to Eq. (A1), the first-order radial and tangential velocity components are

vr,SOF = 3(b + 1)β

(
1

5r3
− 1

10r6

)
P 0

1 [cos(θ )] + 9(b + 1)β2

(
− 1

14r7
+ 1

7r5
− 1

28r4
− 1

28r2

)
P 0

2 [cos(θ )]

+ 27(b + 1)β

(
− 1

10r6
+ 3

20r5
− 1

20r3

)
P 0

3 [cos(θ )] + 27(b + 1)β2

(
− 1

7r7
+ 9

28r6
− 3

14r5
+ 1

28r4

)
P 0

4 [cos(θ )],

(A15)

vθ,SOF = 3(b + 1)β

(
1

5r6
− 1

10r3

)
P 1

1 [cos(θ )] + 3(b + 1)β2

(
5

28r7
− 3

14r5
+ 1

28r4

)
P 1

2 [cos(θ )]

+ 9(b + 1)β

(
1

10r6
− 9

80r5
+ 1

80r3

)
P 1

3 [cos(θ )] + 27(b + 1)β2

(
1

28r7
− 9

140r6
+ 9

280r5
− 1

280r4

)
P 1

4 [cos(θ )].

(A16)

The first-order pressure field is readily calculated from the equation

∇pSOF = ∇2vSOF − ∇ · (
BN + bA2

N

)
, (A17)

where the right-hand side is now a known function. The radial and tangential components of Eq. (A17) (the azimuthal component
of the equation is an identity) are readily integrated. Keeping into account the boundary condition pSOF → 0 for r → ∞, it is

pSOF = −3{140(2b + 3)β2 + 3(17b + 20)β2r4 − 10r2[33β2 + 2b(12β2 − 5) − 15]}
20r10

+P 0
1 [cos(θ )]

[
18β(9br2 − 20b + 12r2 − 30)

5r9

]

+P 0
2 [cos(θ )]

(
−3{200(2b + 3)β2 + 6(b + 1)β2r7 + 3(31b + 34)β2r4 − 8r2[66β2 + 2b(24β2 − 7) − 21]}

28r10

)

+P 0
3 [cos(θ )]

{
−9β[b(15r5 − 96r2 + 160) + 15r5 − 128r2 + 240]

40r9

}

+P 0
4 [cos(θ )]

{
27β2[b(7r5 − 36r4 + 80r2 − 60) + 7r5 − 30r4 + 110r2 − 90]

70r10

}
. (A18)

The order De velocity field given in Eqs. (A15) and (A16)
is visualized in Fig. 5 (right panel) for a puller with β =
3. In the same figure, the order-zero velocity field (the
Newtonian case) is also reported (left panel). The velocity

fields clearly share the same features, with a stagnation
point behind the advancing squirmer. The first-order field,
however, shows velocities directed opposite with respect
to the Newtonian case. The overall effect will be that of
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reducing the velocity of the squirmer, as indeed reported
in Eq. (30) of the main text. In Fig. 6, the Newtonian
and SOF velocity fields are reported for a pusher β = −3.

The first-order velocity is now in the same direction as
the Newtonian velocity, and hence the pusher velocity will
increase.
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