
Geophys. J .  Int. (1997) 131,618-642 

Sensitivities of seismic traveltimes and amplitudes in reflection 
tomography 

Yanghua Wang and R. Gerhard Pratt 
Department of Geology, Imperial College of Science, Technolog) and Medicine, London S W 7  2BP, UK E-mail y h untlg(ci ic ac uk 

Accepted 1997 June 27. Received 1997 June 12; in original form 1996 June 4 

S U M M A R Y  
Seismic traveltimes and amplitudes in reflection-seismic data show different dependences 
on the geometry of reflection interfaces, and on the variation of interval velocities. These 
dependences are revealed by eigenanalysis of the Hessian matrix, defined in terms of the 
Frechet matrix and its adjoint associated with different norms chosen in the model space. 
The eigenvectors and eigenvalues of the Hessian clearly show that for reflection tomo- 
graphic inversion, traveltime and amplitude data contain complementary information. 
Both for reflector-geometry and for interval-velocity variations, the traveltimes are 
sensitive to the model components with small wavenumbers, whereas the amplitudes 
are more sensitive to the components with high wavenumbers. The model resolution 
matrices, after the rejection of eigenvectors corresponding to small eigenvalues, give us 
some insight into how the addition of amplitude information could potentially contribute 
to the recovery of physical parameters. 

In order to cooperatively invert seismic traveltimes and amplitudes simultaneously, 
we propose an empirical definition of the data covariance matrix which balances the 
relative sensitivities of different types of data. We investigate the cooperative use of 
both data types for, separately, interface-geometry and 2-D interval-velocity variations. 
In both cases we find that cooperative inversions can provide better solutions than those 
using traveltimes alone. The potential benefit of including amplitude-data constraints in 
seismic-reflection traveltime tomography is therefore that it may be possible to resolve 
the known ambiguity between the reflector-depth uncertainty and the interval-velocity 
uncertainty better. 

Key words: Frkchet derivatives, inversion, perturbation methods, ray tracing, 
reflection seismology, seismic tomography. 

1 INTRODUCTION 

Seismic tomography in the reflection configuration with 
immediate relevance to many exploration problems attempts 
to recover both the velocity distribution above a reflecting 
horizon and the reflector geometry from the reflection data. It 
is generally restricted to the use of traveltimes (e.g. Bishop et al. 
1985), in which synthetic traveltimes are generated that best 
match the observed traveltime data. Reflection tomography 
suffers from several problems, including non-uniqueness, poor 
resolution and ambiguity between velocity and reflector 
position (e.g. Farra & Madariaga 1988; Williamson 1990; Stork 
1992a,b; Bube, Langan & Resnick 1995). The inclusion of 
amplitude information might provide better model resolution 
than is possible with traveltime data alone, without excessive 
additional computational time. 

Ray-amplitude data have previously been used in velocity 
inversion by Thomson (1983), Nowack & Lutter (1988) and 
Nowack & Lyslo (1989). Thomson (1983) and Nowack & 
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Lutter (1988) used the amplitudes of the direct arrivals to 
invert for velocity variation. Using a slightly perturbed model 
in which the velocity of two smoothly splined velocity hetero- 
geneities is increased by 1 per cent above a constant back- 
ground, Nowack & Lyslo (1989, Fig. lob) showed that it is 
possible to invert for velocity variation using reflection-seismic 
amplitudes. Wang & Houseman (1994, 1995) have investigated 
the efficacy of ray-amplitude inversion for, respectively, inter- 
face geometry and interval velocities, where traveltime data are 
excluded in the reflection inversion. 

In this paper we investigate and compare the sensitivities of 
seismic-reflection traveltimes and ray amplitudes with respect 
to both the interface geometry and the interval velocities (the 
slowness variations), and we show that traveltime and ampli- 
tude data do indeed contain complementary information, 
being sensitive to different features of the model. 

The analysis of sensitivity can be carried out by linearizing 
the problem in the vicinity of a computed solution. Given a 
model perturbation around the current estimate, the variations 
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of the predicted observations are calculated. The Frechet 
matrix, F (the partial derivatives of observed data with respect 
to the model parameters), is sometimes called the sensitivity 
matrix in forward and inverse problems. Evaluating the 
eigenvalues of the matrix FTF allows the sensitivity of obser- 
vations to model parameters to be analysed, since the eigen- 
values give a measure of the sensitivity of the corresponding 
eigenvectors. Most previous work on sensitivity has been done 
by means of singular value decomposition (SVD) of the 
Frechet matrix F, where the positive square root of the eigen- 
value of the matrix FTF (or F F') is commonly called the 
singular value of the matrix F. In the context of crosshole 
tomography, SVD analysis results were shown by Bregman, 
Bailey & Chapman (1989). Pratt & Chapman (1992) and Farra 
& Le Begat (1995) further applied the SVD analysis method 
to anisotropic crosshole traveltime inversion. For reflection 
tomography, Farra & Madariaga (1988) and Stork (1992a,b) 
showed SVD analysis results in traveltime inversion; Wang & 
Houseman (1994, 1995) applied the techniques of SVD in 
amplitude inversion. However, Delprat-Jannaud & Lailly 
(1992) and Pratt & Chapman (1992) showed, using the SVD 
of the Frechet matrix F (that is the evaluation of the eigen- 
values of the matrix FTF), that data sensitivities are strongly 
influenced by the way in which we parametrize the model. 

In iterative linearized inversion, the Hessian matrix (and 
not simply the Frechet matrix) measures the perturbation of 
the data misfit function resulting from a model perturbation 
applied to the current solution. Therefore, the sensitivity 
analysis can be performed by studying the Hessian matrix, 
which has different forms, dependent on the norm chosen in 
model space. The matrix FTF above is actually only one form of 
the Hessian, which follows from the use of the L2 norm (the 
Euclidian norm) in the model space. Delprat-Jannaud & 
Lailly (1992) showed that the eigensolution of the Hessian with 
L2 norm in model space is influenced by the chosen model 
discretization interval rather than by the physical problem 
under consideration, where they explored a case of traveltime 
inversion with a model defined by B-spline functions. To ensure 
the convergence of discrete eigenvalues and eigenvectors 
towards the solution of a continuum spectral problem, one 
then needs to introduce a different norm in the model space 
(supposed to be a Hilbertian norm associated with a scalar 
product of model components) physically, adding terms to the 
objective function that penalize large spatial derivatives. For 
instance, one can define a usual L2 norm in the Sobolev space 
Hi,  which is the space of L2 functions such that the spatial 
derivative of the function is L' (Tarantola 1987). Delprat- 
Jannaud & Lailly (1992) compared the Hi norm with the L2 
norm in the traveltime inversion, and showed that with the H' 
norm the influence of the model discretization interval is 
negligible (provided the discretization is sufficiently fine) and 
the model components are determined intrinsically by the 
traveltime data. In the following sensitivity investigation we 
will apply different norms in model space to both cases of 
traveltime inversion and amplitude inversion. Traveltime and 
amplitude data will show different sensitivities to different 
Fourier components of the model. 

We are interested in understanding what model parameters 
most influence reflection traveltimes and amplitudes. Given 
that this is the principal objective of this study, we shall make a 
number of simplifications. We assume that the ray theory is 
valid for a 2-D isotropic earth consisting of smoothly varying 

velocity regions bounded by discontinuities (interfaces). We 
consider amplitude variation due to geometrical effects only, 
with no inelastic attenuation, and we also explicitly exclude 
the occurrence of caustics. Furthermore, in this paper we treat 
only a single interface, with a single variable velocity region. 
This simplified model nevertheless would seem adequate for 
the purpose of demonstrating the principal sensitivities of 
reflection-seismic data. As with any geophysical inversion 
method, we would like to find models that are sufficiently 
simple to allow computations to be made in a reasonable time, 
and that are simultaneously sufficiently realistic for those 
computations to be meaningful. 

We begin this paper by presenting the calculation of the 
sensitivity matrix (the Frechet matrix F) in Section 2. A 
Lagrangian formulation of traveltime and its variation due to a 
model perturbation is reviewed. The Euler-Lagrange equation 
of ray tracing can be transformed, via the Legendre transform 
(Kline & Kay 1965), to a Hamiltonian formulation of the ray 
system. The first-order perturbation to the Hamiltonian 
formulation (Thomson & Chapman 1985; Farra & Madariaga 
1987; Nowack & Lutter 1988) is applied to describe paraxial rays 
and their perturbations, which in turn are used to estimate the 
amplitudes of seismic arrivals and their variations due to model 
perturbations. The Frechet derivatives are then given by the 
differences between perturbed and unperturbed observations. 
The Hessian matrix can be defined in terms of the Frechet 
matrix and its adjoint associated with different norms chosen in 
the model space, which are briefly described in Section 3. 

In Sections 4 and 5, we discuss the difference in sensitivities 
of traveltimes and amplitudes to reflection interfaces and to 
variations in the slowness field, respectively, by carrying out an 
eigenanalysis of the Hessian matrix with different norms 
chosen in the model space. The Hessian represents the local 
curvature of the data misfit function. Its eigenvalue distri- 
bution indicates how the different parameters contribute to 
the information content of the traveltime and amplitude 
data, and thus is important for predicting the performance of 
iterative inversion techniques. Finally, synthetic examples of 
cooperative inversions, both for interface geometry and for 
velocity variations separately, are described in Section 6. A 
cooperative inversion using both types of data, as shown in 
these sections, can efficiently resolve different model com- 
ponents by balancing the contribution, in terms of relative 
sensitivities, of both traveltimes and amplitudes. 

2 CALCULATION OF THE SENSITIVITY 
MATRIX 

In this section, we describe the forward calculation of tra- 
veltimes and ray amplitudes, and their partial derivatives with 
respect to model perturbations. The sensitivity matrix, F, that 
is the Frechet derivatives of reflection traveltimes and/or 
amplitudes with respect to the model parameters, can be built 
from these partial derivatives. 

2.1 Traveltime and its variation 

Introducing the Lagrangian L as 

(1) 
1 
2 

L(x, i, a) = - [P + u2(x)] , 
where a is an independent variable defined by da=u-'ds 
in terms of the slowness u(x) along the ray curve and the 
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arclength s, and differentiation with respect to a is denoted 
with a dot, the traveltime integral along the ray can be 
expressed as 

T = /Io L(x, k, a) do.  

Its first variation is 

--.a%+ --ax+ - SU do 
aL au 1 aL aL 

a? ax (3) 

Integrating the first term by parts this expression can be written 
as (Snieder & Spencer 1993) 

(4) 

where aLlau=u(x), from eq. (l), in the third integral term. 
From the Fermat condition that the traveltime is stationary 

for perturbations in the ray position, we have 6T = 0. For fixed 
endpoints and assuming no model (slowness and boundary) 
perturbations, the first and third terms on the right-hand side 
of eq. (4) are zero. A ray equation is then obtained, 

(5) 

known as the Euler-Lagrange equation. Describing the ray 
trajectory by the canonical vector y(a) = [x(a), p(a)JT in the 
position x and momentum p, the ray equation (5) can also be 
expressed in a Hamilton form (Chapman & Drummond 1982): 

k=V,H,  

p= -V,H, 

where the Hamiltonian function is defined as (Burridge 1976) 

(7) 
1 m, P, a) = 2 [P2 - U 2 W 1  , 

corresponding to the definition of the independent variable G 

we used in this paper. Transformation between eq. (5) and 
eq. (6) can be done by means of the Legendre transformation 
(Kline & Kay 1965, pp. 115-1 17): 

L(x, k, O) = - H(x, p, 0) + p k  . (8) 
The first-order perturbation to eq. (6) will be used later to 
describe paraxial rays for the calculation of ray amplitudes. 

For a ray with fixed endpoints, the perturbation of travel- 
time for a variation in material slowness, u(x) = UO(X) + 6u(x), is 
given by the third term on the right-hand side of eq. (4), 

6T = u(x)6uda, (9) 

where the integral may be computed along the original 
unperturbed ray trajectory in the unperturbed reference 
medium. 

Suppose a smooth interface is defined by fo(x)=O. The 
perturbation of traveltime due to the interface perturbation, 
6f(x), is given by the first term on the right-hand side of eq. (4). 
From the‘legendre transformation eq. (S), 

the perturbation of traveltime for a ray with fixed endpoints 
can be expressed as 

a- 6T = [ p d ~ ] : ~  = [P*~X],,; + [P.~X];: 
(1 1) 

= I P - q , )  - [P*6XI(,+) > 

where oa- refers to the incident side of the interface and G: 
refers to the reflected or transmitted side of the interface. This 
calculation of the effect on traveltime due to the change of 
boundary requires that the ray path be retraced through 
the layers. Approximating to first order and assuming that 
the effect on traveltime is restricted to the effect of the extra 
distance travelled, we have 

6 T = [PO - f i o l . 6 ~ ~  (12) 

where po and are the slowness vectors along the unperturbed 
ray on the incident side and on the reflected/transmitted side of 
the interface, respectively. Developing the slowness vectors po 
and @O along the normal and the tangent plane to the interface, 
the difference between them is 

(13) 

which follows from the use of Snell’s law, po x Vfo = fro x Vfo, 
where ( I )  and x denote the inner product and the cross- 
product. Expanding the perturbed interfacefo(x) + Sf(x) = 0 to 
first order, we obtain 

(14) 6 f +  (Vfo px) = 0 .  

Substituting eqs (13) and (14) into eq. (12), we then obtain the 
variation of traveltime due to the interface perturbation, 

This formula is comparable with the one used by Bishop et al. 
(1985) for interface inversion and has been used by Farra, 
Virieux & Madariaga (1989). 

2.2 Ray amplitude and its variation 

In the ray approximation, denoting A(a0) the amplitude at go 

along the ray and close to the source point, the amplitude A(a) 
of a multiply reflected and transmitted ray can be written 
(Cerveny 1985) 

where u is the wave velocity, C is the product of reflection and 
transmission coefficients at the interfaces, calculated by 
Zoeppritz’s equations (Cerveny & Ravindra 1971), and D is the 
ray-geometric spreading function, which is derived in this 
subsection from the ray propagator describing the property 
of paraxial rays around a reference ray. Eq. (16) here does 
not consider the frequency-dependent inelastic attenuation 
factor, 
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Paraxial rays y(a) = yo(a) + Sy(o), with the perturbation 
6y=[Sx,6plT, can be obtained by solving the ray system of 
eq. (6). Linearizing the system we have (Thomson & Chapman 

partial derivatives. It was also pointed out by Neele, VanDecar 
& Snieder (1993a) that for amplitude Frechet derivatives the 
perturbed ray path must be computed. In the numerical 

1985) 

Sji=AGy, 

where 

- V,V,H - VpV, H 
A= [ 
The solution of eq. (17) can 
propagator as 

SY(4 = n(o, 00) Sy(ao) > 

examples shown in this paper, we simply re-do the ray tracing 
through the perturbed model to determine the perturbed two- 
point rays. Using the fast, robust ray-tracing algorithm pro- 
posed by Wang & Houseman (1995), the process of tracing a 
perturbed two-point ray needs half the computational time of 
that of using a ray-perturbation theory, which is somewhat 
sophisticated. Readers should refer to Farra & Madariaga 
(1987), Nowack & Lutter (1988), Nowack & Lyslo (1989), 
Farra et al. (l989), Snieder & Sambridge (1992, 1993), Snieder 
& Spencer (1993) and Farra & Le Begat (1995), amongst many 
others, for different versions of the ray-perturbation theory. 

(I7) 

(18) 

be written in terms Of the ray 

(19) 

where n(a, ao) is the 6 x 6 propagator matrix of the paraxial 
system (Gilbert & Backus 1966; Aki & Richards 1980). In the 
case of a ray crossing K interfaces, the propagator along the 
entire ray is computed using 

n(a, aO)=n(a, O K )  fi z k n ( o k ,  o k - 1 )  , (20) 
k = K  

where z k  is the 6 x 6 transformation matrix representing the 
geometrical continuity condition for a ray across the kth 
interface. Different versions of the transformation matrix have 
been given in Farra et al. (1989), Gajewski & Psencik (1990), 
Wang & Houseman (1995) and Farra & Le Begat (1995). A 
generalized expression given by Farra & Le Bkgat (1995) keeps 
the general properties of the propagator matrix (see Thomson 
& Chapman 1985). Therefore, the ray-geometric spreading can 
be defined by 

D =  det ~ { 
Partitioning the propagator matrix as 

where Q and P are 3 x  3 matrices which act on x and p 
separately, the ray-geometric spreading can be written as 

D=[det(Q~ + Q ~ M O ) ] ~ / ~ ,  (23) 

where Mo determines the initial shape of the ray beam, 
Gp(ao)= MoSx(a0). For an initial point source in a constant- 
slowness medium (Farra et al. 1989), 

where uo(a0) is the slowness at 00, and so(a0) is the arclength 
measured from a = 0. 

The variation of the ray amplitude due to the model per- 
turbation is calculated in terms of the difference between 
the perturbed and unperturbed observations (logarithm of 
amplitudes). The perturbed amplitude, in terms of the pertur- 
bation to geometric spreading and to the reflection coefficient, 
is calculated along the perturbed ‘two-point’ ray. Nowack 
& Lyslo (1989) gave explicit numerical examples illustrating 
that, for reflected/transmitted rays, the perturbed reflection/ 
transmission coefficients for the two-point ray must be used in 
the complete amplitude calculation or for the calculation of 

The Frechet derivatives of the observed data with respect 
to the model parameters are given by [FIV=Sdi/6mj,  where 
6d, is the variation of the ith observation (traveltime or loglo 
amplitude) due to the j th model-parameter perturbation, hm,. 
The model parameters are described in Sections 4 and 5, where 
we discuss the relative sensitivity of model components to 
observations, by means of eigenanalysis of the Hessian matrix 
discussed in the following section. 

3 
M O D E L  S P A C E  

Our sensitivity analysis is carried out by means of eigenanalysis 
of the Hessian matrix, which relates the influence of each 
model perturbation to perturbations of the objective function. 
In this section we discuss the linearized inverse problem in 
terms of the least-squares formulation, and then form the 
Hessian matrix in terms of the Frechet matrix and its adjoint 
(associated with a chosen norm in the model space). 

THE H E S S I A N  A N D  THE N O R M  IN 

3.1 The linearized problem and the Hessian 

Given a set of observed data, we want to find a model that 
best matches the data. The least-squares formulation of 
the problem is to find a model that minimizes the objective 
function (Tarantola 1987): 

(25) 
1 

s (m)=-  2 Ilf(m>-dobsllk 3 

where dabs is the observed data set and f(m) is the forward 
prediction. The objective function S(m) measures the misfit 
between observed and calculated data. Its definition calls for 
the choice of a norm 11 11; in the data space 9. This norm is 
associated with a scalar product ( , ),, 

where CD is a symmetric definite positive matrix normally 
chosen to describe the covariances of the elements of 9. In the 
following numerical analysis, for inversions using one type of 
data (traveltimes or amplitudes) performed on modelled data, 
free of noise, CD is chosen as an identity matrix with dimension 
(data)2. In cooperative inversions, in which we include both 
types of data simultaneously, a balancing factor, controlling 
the contribution to the objective function of observations 
with different physical dimensions, is used to manipulate the 
corresponding elements in the identity matrix. 

The inverse problem, being non-linear, is solved by 
successive linearizations. We generally assume that f(m) is 
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differentiable around a current estimate mo. We denote the 
Frechet derivative matrix F = V,f, which is a linear map such 
that the approximate equality 

f(mo + 6m) = f(mo) + F 6m (27) 

is valid for small perturbations, am. The linearized inverse 
problem consists of minimizing the objective function 

where the data residual, Sd=d,b, -f(mo), is the difference 
between the data and the prediction of the current model, and 
the parameter perturbation 6m is the 'model' to be solved. We 
may make a quadratic approximation to this objective function 
at point Smo in the form of a Taylor series, 

S(6m) = S(6mo) + gT(Sm - 6mo) 

1 
2 

+ -(6m-Smo)TH(Gm-6mo), 

in terms of the gradient vector 2 and the Hessian matrix H. 

product ( , )M in the model space A? by 
Introducing the adjoint F+ of F associated with the scalar 

allows expression of the gradient vector as 

2 = F+ C;'( F6m - Sd) , 

and the Hessian matrix as 

H = F+c;'F. (32) 

This Hessian matrix measures the influence of a pertur- 
bation about the solution model on the objective function (28). 
The solution of a linearized inverse problem can be obtained 
from g(Sm)=O, that is 

F+ C,' F Sm= F+ C,' Sd , (33) 

and hence the perturbation Sm-Gmo makes a change to the 
objective function (eq. 29) equal to 

A S  = S(6m) - S(Gm0) 

(34) 

If a model perturbation gives rise to a large perturbation 
of the objective function, it is a sensitive component in 
the model and well determined in the solution. Similarly, a 
perturbation that has a small or no effect on the objective 
function is a less sensitive or insensitive component, and 
correspondingly poorly determined or not determined in the 
solution. 

Ideally such a sensitivity analysis can be evaluated at each 
iteration of a linearized inversion, where an optimum solution 
from the linearized problem (33) is Sm=Smo, so that A S  in 
eq. (34) equals zero. In the following numerical analysis, 
however, we evaluate the Hessian matrix at the true solution 
point, m, the optimal model found at the global minimum of the 
non-linear misfit function (25). In the vicinity of the solution 
point the curvature of the misfit function, defined by the 
Hessian, shows the sensitivity of the objective function to the 

traveltime and amplitude data, 

AS(m) = S(m + Am) - S(m) 

= -AmrHAm. 
1 
2 ( 3 5 )  

Since the misfit function (25) is rather non-linear for the model, 
the relative sensitivities evaluated at the global minimum may 
not apply for all iterations of the linearized inversion if the 
initial estimate is remote from the solution m. 

The Hessian, the local curvature of the data misfit function, 
describes all possible combinations of parameter perturbations 
(or model parameters) that give rise to the same change A S  as 
seen in eq. (34) (or in eq. 3 9 ,  and represents an M-dimensional 
ellipsoid (where M is the total number of model parameters). 
An eigenanalysis of H will give the lengths and the directions of 
the principle axes of the ellipsoid, 

(H - l j  I)vj = O  , (36) 

where i j  is the eigenvalue and vi is the associated eigenvector. 
Eigenvectors corresponding to large and small eigenvalues 
give, respectively, well- and poorly determined parameter 
combinations. 

If we rewrite eq. (36) by matrices, H =VAVT, where A is a 
diagonal matrix consisting of the eigenvalues ii and V is the 
matrix of associated eigenvectors, the solution of a linearized 
inverse problem (eq. 33) can be expressed as 

6fi= (F+ Cil F)-' F+ C, ISd 

=H-'H Sm=VVTSm, (37) 

where the matrix V VT is called the model resolution matrix of 
the problem. The calculated model resolution matrix, after the 
rejection of eigenvectors corresponding to small eigenvalues, 
can give us insight into how the relative sensitivity actually 
translates into accuracy and efficiency in a real inversion 
problem. 

3.2 The Hessian and the norm in model space 

The Hessian matrix used for the sensitivity analysis described 
above for determining the sensitive and insensitive model 
components is defined by eq. (32) in terms of the FrCchet 
matrix and its adjoint, associated by eq. (30) with the scalar 
product ( , )M in the model space A. The scalar product is, 
however, related to the choice of the norm 1 1  in the dual 
space A" (see Appendix A). Following Delprat-Jannaud & 
Lailly (1992), we define the norm /I ] Iw in M by a weighted sum 
of two integral terms, in which one term is the sum of the L2 
scalar product of the model components and the other is the 
sum of the L2 scalar product of the first spatial derivatives 
of the model components (see eq. Al). The scalar product 
depends on the weighting parameter LY, which can take values 
within [0, 1). When cc=O it defines the L2 norm. When cr=O.5 it 
corresponds to the usual norm in the Sobolev space H ' ,  which 
is equal to the sum of the usual L2 norm of the function and of 
the L2 norm of its spatial derivative (Tarantola 1987). This 
process can be physically understood to penalize both the data 
misfit and the first derivatives of the solution in the inversion, 
that is we search for model perturbations with small spatial 
derivatives. This is consistent with the ray theory, which 
requires a locally smooth model. 
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Denoting {p,(x), V i( 1 5 i 5 M ) }  to be basis functions 
(harmonic functions in our case, as shown in the following 
sections) defining the model, we build an M x M symmetric 
positive definite matrix D, with elements defined by 

[D1,1, = ( P m  P , m T  3 

V i( 1 5 i<M),  V j (  1 r j  5 M )  , (38) 

where the scalar product ( , ), is defined by eq. (AS), and the 
subscript SI records the dependency on the value of x chosen 
to define the scalar product. As shown in the appendix, with 
the operator D, the Hessian matrix in eq. (32) can then be 
expressed as 

H = D;' F~C;' F , (39) 

in terms of the Frechet matrix and its transposition. The matrix 
CD is assumed equal to the identity matrix in this paper, for one 
type of noise-free data. 

Delprat-Jannaud & Lailly (1992) have concluded that one 
cannot define a continuum spectral problem associated with 
the operator FTF, and that the numerical solutions are then 
strongly dependent on the discretization and do not converge 
as the discretization is refined. However, one can define a 
continuum spectral problem for the Hessian F+ F associated 
with the scalar product ( , ),, (0 < SI < l), and obtain accurate 
numerical solutions of this continuum spectral problem. They 
have shown the results of eigenanalysis of F+F with the 
H' norm, compared to that with the L2 norm, in their tra- 
veltime inversion with a model parametrized as a B-spline 
interpolation of discretized points. In the following sections 
these two norms are applied also in the case of traveltime 
inversion, but with a different model parametrization, and are 
extended to the case of amplitude inversion for the analysis of 
traveltime and amplitude sensitivities to interface and slowness 
distributions. 

4 SENSITIVITIES TO INTERFACE 
GEOMETRY 

4.1 Interface parametrization and the Hessian operator 

In this section we attempt to investigate the sensitivities of 
reflection traveltime and ray-amplitude data to the geometry 
of a reflecting interface. The relative sensitivity is measured by 
the magnitude of eigenvalues of the Hessian matrix for the 
linearized equation. The analyses for traveltimes and ampli- 
tudes are initially considered separately. The relative sensitivity 
of the amplitudes compared to the traveltimes is then evaluated 
by means of a cooperative inversion including both types of 
data. The model resolution matrix for the pseudo-inverse using 
a truncation of the SVD is also given in each case. 

We consider a 2-D stratified velocity structure consisting of 
variable-thickness layers, and assume that the depth of the 
interface dividing the layers varies continuously. A continuous 
interface, band-limited in wavenumber, may be approximated 
by the Fourier series for its periodic continuation, 

Z(x)  = 

N 
[a, cos (nnkox) + b, sin (nnkox)] , (40) 

n = O  

where a, and b, are amplitude coefficients of the nth harmonic 
term (a basis function used in eq. 38) with a wavenumber 
equal to an integer multiple of fundamental wavenumber ko 

(the reciprocal of the fundamental wavelength), and N is the 
number of harmonic terms. We chose this parametrization in 
order to study carefully the scale dependence of the traveltime 
and amplitude variation. 

In order to illustrate the calculation of the Frechet matrix for 
the study of sensitivities, we consider a model with a constant 
velocity (2500 m SKI)  and a single flat reflector at a depth of 
2000 m as a reference model for the following perturbation 
analysis. The velocity within the layer below the reflector is set 
equal to 2800 m s - I .  (We will return to this geometry and this 
reference model for a number of synthetic examples, which are 
shown in Section 6.) We generate a synthetic experiment with 
a realistic reflection-acquisition geometry in which 10 shots 
are located on the surface at intervals of 1000 m, with data 
recorded at 25 receivers for each shot. The minimum and 
maximum shot-receiver offsets are equal to 100 and 2500 m. 
Thus, we have 250 traveltime and 250 amplitude observations. 
The Hessian matrix, determined with the model estimate equal 
to the solution, is calculated using eq. (39), in terms of the 
Frechet matrix and the operator D,, relating to different norms 
in the model space. 

Following the definition of the scalar product in the model 
space (given explicitly in the appendix), the scalar product 
of the model perturbations can be written in terms of the 
correlation matrix of the perturbations of interface depth and 
the correlation matrix of their slopes, correlating along the 
spatial direction. Considering a reflector parametrized by 
eq. (40), these two correlation matrices, denoted as 60 and 
Bx respectively, can be explicitly written in terms of basis 
functions: 

where Z, is that part of the interface from which rays are 
reflected. In the analysis to follow, we will show only the results 
associated with the coefficients of cosine terms, and thus set 
p(x)= cos(nnk0x) in eq. (41). Because a sine function is a 
phase-shifted cosine function, the sensitivity of observations to 
the coefficients of sine terms is similar to that of the coefficients 
of cosine terms. The question of the independence of the 
sine and cosine terms, related to the phase (that is the lateral 
position of the anomalies), will be discussed later. 

In the following numerical experiments the two correlation 
matrices in eq. (41) are scaled as follows: 

where E can be arbitrarily set in the range 1.0 to M for the 
M x M matrix to avoid floating-point overflow in the matrix 
inverse calculation. The effect of the scaling operation in 
eq. (42) is to normalize the two matrices so that they are 
relatively balanced and dimensionless. Thus, the operator D, is 
built by 

D, = (1 - s I ) B ~  + x B X .  (43) 

The first of the two terms in eq. (43) penalizes large pertur- 
bations and the second penalizes solutions with large gradients 
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(slopes). The scalar product used in eqs (41)-(43) can alter- 
natively be understood as a working definition of the model 
covariance matrix, C;', if we set C,' as D, times an identity 
matrix with dimension (model parameter)-' (see Section 6.1 
for a further discussion of this point). Penalizing solutions with 
a non-zero value of a implies that a near-horizontal solution is 
to be preferred and non-horizontal slopes are undesirable. The 
choice of parameter a for the scalar product in model space 
allows emphasis on the model perturbations or on their spatial 
derivatives. 

Note that the model parametrization in eq. (40) should 
include high-order components so that the discretized solution 
approximates the continuum solution. This differs from a 
possible inversion practice in which one may try to obtain a 
long-wavelength solution by truncating the high-wavenumber 
components in the parametrization. In the following sensitivity 
analysis, we use wavenumbers up to k,,, = 5 km-' . The lateral 
resolving power of any reflection method based on ray theory 
will be limited to the first Fresnel zone width, given by 
[(1/2)ih]'i2, where 1 is the seismic wavelength and h is the 
depth of the reflector (Sheriff & Geldart 1995). Assuming 
a dominant wavelength of 100 m (for realistic exploration 
frequencies), the Fresnel-zone width will be of the order of 
300 m for this example. Thus, a wavenumber of 5 k n -  I ,  which 
corresponds to an interface wavelength of 200 m, is an 
adequate high-wavenumber limit. 

4.2 Interface inversion with the L2 norm chosen in 
model space 

Consider an interface with wavenumbers ranging from zero 
to 5 km-' and discretized by eq. (40) with the number of 
harmonic terms N = 80, corresponding to a discretization 
interval ko equal to 1/16 km-'. The eigenvalues and associated 
eigenvectors of the Hessian matrix, with the L2 norm chosen 
in the model space, and the model resolution matrix of 
reflection-traveltime and amplitude inversions for the interface 
geometry are shown in Fig. 1. Resultant eigenvalues shown 
in the upper part of the figure are normalized relative to 
the maximum value and ordered in decreasing size. Each 
associated eigenvector shown in the middle part of the figure is 
represented as a column of pixels, ranging from zero wave- 
number at the top to maximum wavenumber at the bottom. 
The eigenvector is normalized for each eigenvalue, with darker 
shades representing positive values (up to + 1) of the element in 
an eigenvector and lighter shades representing negative values 
(down to -0.6). The model resolution matrices of traveltime 
and amplitude inversion are shown in the bottom of the figure. 

Let us first examine the traveltime sensitivity to the reflection 
interface (left-hand side of Fig. 1). Since we only have a finite 
number of data, the solution will be underdetermined. The 
sharp decrease in the magnitude of eigenvalues of the Hessian 
(after the 53rd) clearly indicates that a null space exists for such 
an over-fine discretization. To determine the geometry of a 
reflection interface with such densely sampled wavenumber 
components, more observations would naturally be helpful 
for a traveltime inversion. However, for a fixed experimental 
geometry, one has little choice but to deal with this null space in 
some manner. Re-parametrization using a coarser set of basis 
functions would be one choice; alternatively, one could just 
ignore the null space, as in a pseudo-matrix inversion by SVD 
with truncation. 

If we ignore the null space by truncated SVD, biases in 
the solution are inevitable (Ory & Pratt 1995). The model 
resolution matrix indicates the reliability of the solution. To 
obtain the model resolution matrix, we arbitrarily ignore the 
eigenvectors with relative eigenvalues smaller than lo-', set 
approximately corresponding to the obvious discontinuity 
appearing in the eigenvalue curve. The diagonal elements of the 
model resolution matrix shown in Fig. 1, for traveltime, are 

1.00; 0.98; 0.81; 0.63; . . . ;  0.67 
(1) (2) (3) (4) (5-65) (66) 

0.75-0.88; 0.90-0.97; 0.98; 
{ 

(67 - 73) (74-80) (81) } 
and the magnitude for elements 5-65 is around 0.63-0.67. Each 
component amj is the combination of its true solution hmj and 
neighbouring components. The magnitudes show that tra- 
veltime inversion can relatively better determine the interface 
components with wavenumbers equal to or close to zero and 
the components with very short wavelengths (step changes 
causing reflections), compared to the rest of the components. 

From the eigenvalues and the associated eigenvectors we 
see that the objective function in traveltime inversion is 
most sensitive to the components with wavenumbers of 
zero and ko. The first eigenvector for traveltime is given as 
a normalized vector of {0.52,0.38, . ., [with the remaining 
elements< O(O.Ol)]}. The most significant elements are the 
first and second elements. The 53rd-55th eigenvectors 
(representing higher-wavenumber components) have small 
eigenvalues (close to lop3) and indicate that high-wavenumber 
components have relatively weak sensitivities in traveltime 
inversion. For the remaining eigenvalues, there is no clear 
dependence of reflection traveltime on the wavenumber. 

In the case of amplitude inversion, the ray amplitudes are 
significantly more sensitive to interface components with higher 
wavenumbers (shorter wavelengths), as demonstrated by the 
distribution of the eigenvalues and associated eigenvectors 
of the Hessian matrix shown in the right-hand side of Fig. 1. 
The eigenvector pattern shows that the amplitude sensitivity 
decreases quasi-exponentially with wavenumber. This may be 
expected as the curvature of interface has a large effect on 
the recorded amplitude because of consequent focusing or 
defocusing of the beam. However, in the case of traveltime 
inversion with the L2 norm chosen, there is no such dependency. 

In amplitude inversion, the eigenvalues decrease smoothly 
without the obvious discontinuity that appears in traveltime 
inversion. We then follow the traveltime-inversion case and 
truncate the eigenvectors vi for i2 56 associated with the 
smallest eigenvalues, representing those components with the 
weakest sensitivities, in the calculation of the model resolution 
matrix. The diagonal elements of the model resolution matrix 
are 

0.00; 0.01; 0.02; 0.16; 0.58; 
(1-13) (14) (15) (16) (17) (..) 

0.70; 0.86; 0.98; 
{ 

(41) (42) (43) (A!:)} ' 

where the values for elements 1 8 4 0  gradually increase from 
0.60 to 0.70. The model resolution matrix clearly shows 
that amplitude inversion with the L2 norm can constrain all 
wavenumber components well except those components with 
small wavenumbers. 
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Figure 1. Independent sensitivities of reflection traveltimes and amplitudes to interface wavenumber components, in terms of the eigenvalues and 
eigenvectors of the Hessian matrices and the model resolution matrices in linearized inversion, where the L2 norm (cc=O) in model space is chosen. 
The eigenvalues, in order of decreasing magnitude, are normalized relative to the maximum value. Each eigenvector is represented as a vertical 
column below the associated eigenvalue. In each eigenvector column, wavenumbers of the model components increase from top to bottom. The model 
resolution matrices for the problems are shown in the lower half of the figure. Integers along the sides refer to the wavenumber indices. 

0 1997 RAS, GJI 131,618-642 



626 Y. Wang and R.  G. Pratt 

4.3 
derivatives 

The same sensitivity analysis but with the H' norm (as E = 0.5 
in eq. 43) chosen in the model space, which takes into account 
not only the depth variation but also the slope of the reflector, 
is shown in Fig. 2. 

In the previous subsection we have seen that, ifwe choose the 
L2 norm in model space for the calculation of the Hessian matrix 
for traveltime inversion, the objective function is most sensitive 
to the mean depth of a reflection horizon and the component 
with fundamental wavenumber ko, but there is no simple 
dependence on the other non-zero wavenumbers. The clear 
dependence of the amplitude L2 objective-function sensitivity 
on wavenumber is provided in traveltime inversion with the 
choice of HI norm in the model space, as shown in Fig. 2. 

Although the choice of a norm in model space is essential 
to the process of traveltime inversion, as can be seen by com- 
paring the trends of eigenvectors of the Hessian with the L2 
norm (Fig. 1) and the H' norm (Fig. 2), for the case of ampli- 
tude inversion we see that the value of tl has only a slight 
influence on the trend of eigenvalues. Even with the L2 norm in 
model space, a strong dependence of reflection ray amplitude 
on the wavenumber of interface components exists. Therefore, 
the constraint term of the reflector slope is not necessarily 
required in the objective function for amplitude inversion, 
although the introduction of an H' norm in the model space 
slightly improves the condition number, as seen from the 
comparison of eigenvalue curves. In the case of amplitude 
inversion the condition number of the Hessian matrix is 
for the L2 norm and 

Figs 1 and 2 also depict the model resolution matrix for 
each problem. These matrices show the extent to which each 
model parameter (that is each Fourier coefficient) is uniquely 
resolved; a perfectly resolved parameter has a single non-zero 
value of 1.0 on the main diagonal of the corresponding row of 
the resolution matrix, and off-diagonal values show the extent 
to which the parameter is non-unique with respect to other 
model parameters. The model resolution matrices show some 
apparent improvement in resolution as the H' norm is intro- 
duced, when compared with the results from the L2 norm. 
Traveltime inversion using the H' norm appears to resolve the 
first two components, as the value of the first two diagonal 
elements of the model resolution matrix are equal to 1.0. In the 
case of amplitude inversion the model resolution matrix is also 
improved for components with intermediate and small wave- 
number. These improvements are due to the use of the gradient 
penalization term in the inversion; they indicate that amplitude 
inversion, coupled with a constraint on the gradient of the 
solution, will apparently resolve the low wavenumbers. It 
should be noted, however, that the additional information does 
not come from the data, but from the constraints. 

In practice, the choice of E is perhaps arbitrary, depending 
only on the fact that one desires to minimize the magnitude 
of the perturbations, or their slopes. We now consider a case of 
interface inversion in which interface gradients are more 
heavily penalized in the inversion. Note that E =  1.0 does not 
constrain the magnitude of the model perturbations at all, and 
therefore results in a singular matrix. For the results shown in 
Fig. 3, we set a=0.99 in eq. (43). (Experiments have shown 
that if tl takes a value of 0.9 the result is similar to Fig. 3; 
a choice of ~ = 0 . 9 9 9  results in a singular matrix.) With this 

Interface inversion with the constraint of spatial 

for the H' norm with ~ = 0 . 5 .  

level of penalization on the spatial derivatives, the small- 
wavenumber components are emphasized and the corre- 
sponding eigenvalues (at small indexes for traveltime and at 
large indexes for amplitude) are increased relative to the 
rest. In this case, the eigenvector pattern of the reflection 
traveltime clearly shows linear dependence on the wave- 
number. Traveltime inversion can now apparently determine 
the 17 lowest-wavenumber components, as the first 17 diagonal 
elements of the model resolution matrix are equal to 1.0. Also 
evident is the suppression of the high-wavenumber com- 
ponents, as seen from a comparison between model resolution 
matrices in the case of a=0.99 and in the cases of a=0.5 
(Fig. 2) and a=O (Fig. 1). In the case of amplitude inversion 
the model resolution matrix is almostly an identity matrix, 
except for 13 components with the lowest wavenumbers. Once 
again, the large level of penalization on the interface gradient 
will cause models with no gradient to be generated perhaps, in 
spite of the data. 

In summary, with an L2 norm in the model space, reflected 
traveltimes are most sensitive to the mean depth of a reflector, 
whereas reflected amplitudes are most sensitive to the 
shorter wavelengths. By introducing the constraint of spatial 
derivatives in the definition of the Hessian ( t l#O.O) ,  the 
traveltime sensitivities will have a dependence on the wave- 
number of the interface components. Such a dependence is in 
the opposite direction to the sensitivity of ray amplitudes to the 
interface wavenumber components. Therefore, the information 
contents in reflection traveltimes and reflection amplitudes are 
indeed complementary in linearized inversion, being sensitive 
to different components of the interface. 

4.4 Cooperative inversion of amplitudes and  
traveltimes (for interface geometry) 

The numerical examples shown above have treated two types 
of data separately. Another point that we should address in this 
paper is the relative value of including amplitude and tra- 
veltime data in a cooperative inversion. Let us see what will 
happen if we take the examples of Fig. 1 and Fig. 2 and use 
both types of data simultaneously, d =  [dampi, dtimcJT, in the 
definition of the objective function. 

If both physical data types are included, the relative effects 
will be determined, at least partly, by the statistical reliability 
of the two data types. Ideally, one would seek to incorporate 
such statistical information. In practice, such information is 
usually unavailable or unreliable. As a working solution, we 
characterize these statistics using a covariance matrix defined 
as a diagonal matrix, CD =diag{$}, in terms of the estimated 
uncertainty of the j th  measurement oj. Without data noise, we 
first set the standard deviation o, as the rms values of obser- 
vation data, denoted as oamPl and ctime, two constants corre- 
sponding to amplitudes and traveltimes, respectively. This 
procedure can be physically understood to remove the physical 
dimensions so that both types of data make a similar contri- 
bution in a cooperative inversion. With this model we carried 
out a number of experiments which revealed that reflection 
amplitudes absolutely dominate the inversion for interface 
geometry, and traveltimes only weakly influence the mean 
depth of interfaces. Based on this observation we then propose 
an alternative to the definition for the data covariance matrix, 
which balances the data contributions not directly by the data 
magnitudes but by the data sensitivities. 
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Figure 2. Independent sensitivities of reflection traveltimes and amplitudes to the interface wavenumber components, where the H’ norm (u =0.50) 
in model space is chosen. See Fig. 1 caption for comments. 
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Figure 3. Independent sensitivities of reflection traveltimes and amplitudes to the interface wavenumber components, where ~ = 0 . 9 9  is set in the 
scalar product in the model space. See Fig. 1 caption for comments. 
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We denote the data covariance matrices for amplitudes and 
traveltimes respectively as C,&',, and Cc&. The combined 
covariance matrix for including both types of data is then 
defined as 

(44) 

where K is a dimensionless balancing factor, and p can be 
understood as a second, somewhat arbitrary, weighting factor. 
If we normalize C;dPl and C;:, to the maximum value, or set 
them to identity matrices after we suppress data errors [see the 
real data examples shown in Wang, White & Pratt (1998)], the 
dimensionless balancing factor K is given by 

(45) 

where the ratio of matrix traces is an empirical quantity 
indicating the relative sensitivities of the traveltimes compared 
to the amplitudes. In our numerical example, the ratio of the 
matrix traces is K =  1.685 x lop2, which indicates that the 
amplitudes are much more sensitive to variations in the inter- 
face model than the traveltimes are. The larger p is, the more 
the influence of the traveltimes is included. Experiments have 
shown that the optimal value ofp  is in the range 0.25 to 0.75 for 
the interface inversion. 

Fig. 4 shows the eigenanalysis results of the Hessian for the 
cooperative inverse problem using both data types, in which we 
chose p=0.75. The sensitivity patterns for both the L2 norm 
and the HI norm are modified from those observed in Figs 1 
and 2. Comparing the patterns of eigenvectors obtained for the 
cooperative problem with those observed for the individual 
traveltime and amplitude problems, we see that the amplitudes 
appear to dominate the eigenvector patterns for the com- 
ponents with high wavenumbers and the traveltimes are 
dominant for those with low wavenumbers. With the L2 norm 
the components with small wavenumbers are less sensitive than 
those using the HI norm in the model space, shown by the 
comparison of the eigenvalues corresponding to the combi- 
nation of the small-wavenumber components. The model 
resolution matrices for the cooperative inversion appear to be a 
combination of those in the previous (individual) inversions. 
With the HI norm, the resolution of inversion to model 
components of small wavenumber is enhanced, since the 
penalization of spatial derivatives equally emphasizes the 
model components with small wavenumbers in the inversion. 
Therefore, if we choose a=0.99, as in Fig. 3, the model 
resolution matrix of the cooperative inversion will be close to 
an identity matrix. 

In the case of cooperative inversion including amplitude 
data and traveltime data, or in the case of inversion using only 
reflection amplitudes, the largest eigenvalue of the Hessian 
corresponds to the interface component with the highest 
wavenumber. A situation in which the maximum sensitivity is 
for the shortest wavelength would not necessarily lead to a 
stable inversion using iterative matrix inversion methods. A 
requirement of stability is that it is possible to truncate the 
parametrization at an arbitrary high wavenumber without 
significantly changing the answer. If maximum sensitivity is at 
the short-wavelength parameter, the answer will depend to a 
high degree on the choice of truncation wavenumber. The 
amplitude-inversion examples given by Wang & Houseman 

(1994) have shown, however, that declaring different groups 
of interface components with different ranges of sensitivity 
magnitude into separate subspaces can effectively stabilize 
the inversion procedure, where it is assumed that components 
with sufficiently high wavenumbers to fit the continuous inter- 
face (up to the limit of the Fresnel-zone width) are included 
in the model parametrization. An alternative approach is 
also possible: a traveltime inversion is first performed to 
reconstruct the longer-wavelength components, and then 
amplitude data are used in the inversion to constrain 
high-wavenumber components of the model. 

4.5 Determination of the phase 

In the parametrization of eq. (40), we did not explicitly express 
the phases of the harmonic terms, which control the lateral 
position of any anomalies on a reflector. Naturally, the smaller 
the coefficient, the less important the phase, defined by 
qi = tan-'(bi/ai), in describing the overall reflector geometry. 
If both ai and bi are independently sensitive components of 
the model, then the corresponding phase qi would be well 
determined by inversion. Fig. 5 shows the eigenanalysis of 
the Hessian matrix with a=OS (the H' norm), in which the 
coefficients of both sine and cosine terms (a total of 161 
parameters) have been included. Only 61 of the largest eigen- 
values and the corresponding eigenvectors of the Hessian are 
shown in the figure. This plot is similar to previous figures, but 
in this case each eigenvector here is plotted with two columns: 
the left-hand column shows the coefficients of the cosine terms 
and the right-hand column shows the coefficients of the sine 
terms (note that the zero wavenumber has no sine coefficient). 
This result is again for the uniform single-layer model with a 
single reflector. 

From Fig. 5 we can see that the eigenvalues and associated 
eigenvectors of the sine functions have the same trends as those 
of the cosine terms in each of the three cases of traveltime 
inversion, amplitude inversion and cooperative inversion 
using both types of data. The eigenvectors for traveltime 
data contain a natural progression from small wavenumbers 
(associated with large eigenvalues) to large wavenumbers 
(associated with small eigenvalues). The trend is reversed for 
amplitude data and for cooperative amplitude and traveltime 
inversion. In the case of traveltime inversion, the cosine and 
sine terms do not appear to be independently resolved. For 
the amplitude data, there is some mixing of sine and cosine 
terms at  the^ largest eigenvalues, associated with the short 
wavelengths. As the eigenvalues decrease, the cosine and 
sine terms become better resolved from each other. In the case 
of cooperative inversion, at low wavenumbers the model 
components are not distinct either. However, the inversion 
example in Section 6 will show that the cooperative inversion 
can better resolve the interface structure. 

5 SENSITIVITIES TO 2-D SLOWNESS 
VARI AT10 N 

5.1 

In this section we investigate the sensitivities of seismic- 
reflection traveltimes and amplitudes to 2-D, smoothly varying 
slowness variations within the layers, again by analysing the 
eigenvalues in the model space of the Hessian described by 

Slowness representation and the Hessian operator 
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Figure 4. Joint sensitivity analysis of reflection traveltimes and amplitudes to the interface wavenumber components. See Fig. 1 caption for 
comments. 
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for interface geometry, when both sine and cosine terms are included. Each eigenvector, including the 81 cosine coefficients {un, (n=O,  80)} and 
the 80 sine coefficients {b,,, (n= 1, 80)) in the interface parametrization, is diagrammatically shown as two columns, the left column 
showing the cosine coefficients and the right showing the corresponding sine terms. Only 61 of the largest eigenvalues and associated eigenvectors 
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different norms in the model space. We represent the slowness 
distribution within a layer by a truncated 2-D Fourier series, 

N N  

+ c c [amn cos (k-r) + b,, sin (k-r)] , (46) 
m = - N  n = 1  

where the location-vector r = xi + zj, the wavenumber-vector 
k=mnkoi+nnkoj and urn, and b,, are amplitude coefficients 
of the (m,n)th harmonic term. We assume that slowness 
varies continuously, and that any discontinuity is explicitly 
represented by a smooth interface. For the calculation of the 
Frechet derivatives that follows, we use the same uniform 
single-layer model defined in the previous section. Writing the 
perturbation of ray amplitudes with respect to the velocity 
perturbation within the layer above the reflector, we keep the 
velocity below the interface constant. 

Considering only 2-D slowness variations, the correlation 
matrices of the model variation and its derivatives in 
horizontal and vertical directions are 

(47) 

where I, x I, is the rectangular area through which rays 
propagate. The operator D, can then be expressed as 

D, =( 1 - .)Bo + .(Bx + B,) , (48) 

where Bo=(l/wo)Bo, B,=(l/w,)B, and Bz=(l/wz)Bz, with 
scale factors, w, defined by the trace of the matrices as in 
eq. (42). Similar to the analysis of the interface sensitivities in 
the previous section, in the following numerical experiments 
we only show the results associated with the coefficients of 
cosine terms. The symmetry inherent in the model para- 
metrization of 2-D Fourier series implies that only a quarter of 
the k-plane (kz 2 0, k, 2 0) is required. However, we will show 
the result on half the k-plane (kz 2 0 )  in the following analysis 
as we wish to gain an insight into the dependence on the phase 
(spatial location) of the slowness variation. 

5.2 

Fig. 6 shows the eigenvalues and associated eigenvectors of the 
Hessian matrix and the model resolution matrices for tra- 
veltime and amplitude inversions. The L2 norm (a=O.O) is 
chosen in the model space. For the slowness model, the 
maximum wavenumber under consideration is 5.0 km-' . The 
discretization interval of wavenumber ko = 1 .O km- ' ( N  = 5) is 
set in eq. (46). Therefore, 61 (= 5 x 5 + 6 x 6) cosine coefficients 
umn are determined in the eigenanalysis. In each eigenvector 
square, horizontal wavenumbers of model components 
increase from left to right (with the wavenumber range from 
- 5 to 5 km-') and vertical wavenumbers increase from top to 
bottom (from zero to 5 km-'). Only those 20 eigenvectors 
associated with the largest eigenvalues of the Hessian are 

Sensitivity analysis with the L2 norm 

shown in the figure. These eigenvectors are the linear combi- 
nations of the model parameters which have the most influence 
on the traveltime and amplitude data. The model resolution 
matrices for each inversion are displayed as a 61 x 61 matrix 
split into several panels, each corresponding to a constant 
horizontal wavenumber k,. The diagonal elements of the 
resolution matrices are displayed in an inset in these figures. 

From the eigenvalues and associated eigenvectors of 
the Hessian shown in Fig. 6 we see that in a traveltime 
inversion the objective function is most sensitive to the model 
components with smaller wavenumber, typically to the zero- 
valued component. However, in amplitude inversion the most 
sensitive components seem to prefer large k, values but mid- 
range k, values, as seen from the first and second eigenvectors 
associated with the largest eigenvalues. For the surface 
geometry that was employed, both mid-range k, and large k ,  
cause large transverse slowness derivatives, which focus or 
defocus energy. Neele et al. (1993a) explicitly showed the 
dependence of amplitudes on the higher transverse derivatives 
of the slowness field and, therefore, on the higher-wavenumber 
components. This dependence is also illustrated in their 
inversions using real data (Neele, VanDecar & Snieder 1993b). 

To calculate the model resolution matrix of a pseudo-matrix 
inversion, we truncate eigenvalues at as in the previous 
section with interface inversion, indicated by a dash-dotted line 
in Fig. 6. The model resolution matrices shown in the bottom 
of the figure clearly tell us which slowness component can or 
cannot be constrained by the pseudo-inverse. Slowness com- 
ponents of vertical variation at higher (absolute) horizontal 
wavenumber k, can be resolved by both traveltime and 
amplitude inversions with the L2 norm chosen in model space. 
When the (absolute) horizontal wavenumber decreases, the 
constraint on vertical variation becomes weaker and weaker. 
When k,  = 0, neither inversion can constrain the vertical 
variation. These observations are summarized by the 6 x I1 
matrix-like rectangle shown in the inset on each model 
resolution matrix, consisting of the diagonal elements of the 
model resolution matrix. When the diagonal element is equal 
to 1, the corresponding component of the solution is the true 
model parameter. If the element is zero, the inversion cannot 
constrain the model component at all. The diagonal elements 
clearly show that neither inversion can resolve wavenumbers in 
the purely vertical direction and that traveltimes cannot con- 
strain any vertical variation with high wavenumber k,, but that 
amplitude inversion can apparently constrain the vertical 
variation of slowness at a high horizontal wavenumber k,. 

5.3 
derivatives 

Let us now examine the sensitivities shown in Fig. 7, in which 
the H' norm was chosen in the model space. In the travekime 
inversion, the sensitivities to the wavenumber appear almost 
identical to the case with the L2 norm shown in Fig. 6. For the 
amplitudes, the eigenvectors corresponding to the largest 
eigenvalues show that they are still sensitive to the combination 
of the components with high-wavenumber k, as with the L2 
norm, but that additional sensitivity to the components of 
intermediate wavenumber has been created. The sensitivity to 
the intermediate components is due to the use of the smoothing 
regularization. If the degree of smoothing increases, the 
inversion is still more sensitive to the small-wavenumber 

Sensitivity analysis with the penalization of spatial 
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Figure 6.  Eigenvalues and eigenvectors of the Hessian matrix and the model resolution matrices for traveltime and amplitude inversions for 
slowness variation. The L2 norm is chosen in the model space. In each eigenvector image, horizontal wavenumbers of the model components increase 
from left to right (with the wavenumber ranging from -5 to 5 km-*) and the vertical wavenumbers increase from top to bottom (from zero to 
5 k n - I ) .  Only those 20 eigenvectors associated with the largest eigenvalues of the Hessian are shown. The diagonal elements of each resolution 
matrix, computed using a pseudo-inverse by SVD truncation, are shown in the matrix-like rectangular inset. 

components, as can be seen from the result with CI =0.99 shown slowness aoo, as seen from the first and second eigenvectors. 
in Fig. 8. This apparent sensitivity is due to the constraints. The ampli- 

In a reflection amplitude inversion, when we set a=0.99 tudes are still sensitive, however, to the slowness components 
in the scalar product of model perturbation, the objective with larger (absolute) wavenumbers (shorter wavelengths), as 
function is sensitive to perturbations in the background shown in eigenvectors 1 and 2.  For the traveltime inversion, 

0 1997 RAS, GJZ 131,618-642 



634 Y. Wung and R. G. Pratt 

Amplitude Inversion Traveltime Inversion 
10' I 

(a =0.5, Hi norm) 

1 10 20 30 40 50 61 
Index of Eigenvalues 

?? 
0 
0 
a, 
> C 
a, 
0, 
W 

+- 

11 12 13 14 15 

16 17 16 19 20 

Index of Parameters 
1 10 20 30 40 50 61 

10' 3 

1 10 20 30 40 50 I 

Index of Eigenvalues 
n (kdc 

e e 
0 
a, > 
C 
a, 
EIt w 

11 12 13 14 15 

17 18 19 20 

Index of Parameters 
1 10 20 30 40 50 61 

-0kO -0:40 -0:20 O.'OO OY20 Oh0 0:60 0:60 1 :oo 

Figure 7. Eigenvalues, associated eigenvectors of the Hessian matrix, and the model resolution matrices for traveltime and amplitude inversions for 
slowness variation. The H' norm (a=0.50) is chosen in the model space. See Fig. 6 caption for comments. 

the absolute value of the largest eigenvalue is increased, due 
to the stronger penalization of the spatial derivatives. The 
model resolution matrices, after the rejection of eigenvectors 
associated with small eigenvalues (Fig. 8), show that the 
traveltime inversion can only constrain the slowness com- 
ponents defining horizontal variation with n = 0 and n = 1. 
However, the amplitudes provide information on the high- 
wavenumber components. The model resolution matrices for 

the amplitude inversion, for both a=0.50 and u=0.99, are 
almost an identity matrix. The different information content of 
amplitudes and traveltimes is again evident. 

From the sensitivities shown in Figs 6, 7 and 8 we see that 
the eigenvectors clearly show a symmetrcal pattern for 
k,  > 0 and k,  < 0 in each case. Therefore, ambiguities 
between different harmonic components inevitably exist in 
the inversion. 
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Figure 8. Eigenvalues, associated eigenvectors of the Hessian matrix, and the model resolution matrices for traveltime and amplitude inversions for 
slowness variation, where u=0.99 is used. See Fig. 6 caption for comments. 

5.4 Cooperative inversion of amplitudes and 
traveltimes (for slowness variations) 

and is determined by using the ratio of the traces of the two 
sensitivity matrices, Ftime and Fampl. 

For the cooperative inversion of both traveltimes and 
For a cooperative inversion using both amplitude data and 
traveltime data simultaneously, the same definition of the 
data covariance matrix as eq. (44) is used here for slowness 
variation. In eq. (44) the parameter K is used to balance the 
relative contributions of the traveltime and the amplitude data 

amplitudes for interface geometry (shown in previous section), 
we determined a value of K =  1.685 x lo-*; the traveltimes were 
not as sensitive to the geometry as the amplitudes were. In 
contrast, for this example in which we are inverting the same 
data for the interval slowness variation, we find the ratio of 
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traces of the sensitivity matrices is K =  16.81; the traveltimes 
are significantly more sensitive to the slowness model than 
the amplitudes are. The lower sensitivity of amplitudes to 
the slowness variations is probably due to the fact that ampli- 
tudes sense slowness gradients and curvatures, rather than 
the absolute values of the slownesses. Once again, this is an 
indication that amplitudes and traveltimes are sensitive to 
different physical parameters. This is an important result, with 
the potential benefit that it may be possible to resolve the 
known ambiguity between reflector depth uncertainty and 
interval velocity uncertainty better by including amplitude 
data in seismic-reflection traveltime tomography. 

We performed experiments that show that the range 
0.75-1.25 for the second balancing factor p is appropriate in 
this case. For p <  1.0, the contributions of traveltimes and 
amplitudes when the L2 norm is used are balanced, whereas 
traveltimes dominate the inversion with the H' norm. For 
p > 1.0, amplitudes dominate the inversion with the L2 norm, 
whereas traveltimes and amplitudes are balanced in the case of 
inversion with the H' norm. The result with the balancing 
factor p = 1 .0 is shown in Fig. 9. 

From Fig. 9 we see that, with the L2 norm used in the 
model space, the objective function is most sensitive to the 
background slowness aoo, dominated by traveltime data, and 
then to components with high-wavenumber k, dominated by 
amplitude data. With the HI norm in the inversion, the most 
significant parameters in the slowness model are the back- 
ground slowness a00 and those components defining the 
horizontal variation of the slowness. The sensitivities to the 
variation with high-wavenumber k are reduced relative to 
the background slowness. 

6 INVERSION EXAMPLES 

In previous sections we have considered a cooperative inver- 
sion using both traveltimes and amplitudes simultaneously. In 
this section, we will show some synthetic examples of inversion 
for interface geometry and velocity variation separately, and 
explore how the inclusion of amplitudes in the tomography 
improves the solution of traveltime inversion. 

6.1 Inversion formula 

The solution for the linearized inverse problem (eq. 33) may be 
given by 

(49) 
where p is a dimensionless damping factor introduced to 
stablize the inverse procedure, i is the identity matrix with 
units of (model and C,' is the data covariance 
matrix containing the two weighting parameters, K and p ,  
discussed earlier. Eq. (49) contains the full Hessian matrix 
H=F+CD'F=D;'FTCD1F. In spite of the use of the 
additional constraint D, (a #O.O), we still require a strategy for 
selecting the damping factor, p; as we have seen, even with the 
H' norm, the Hessian is a singular matrix. The choice of p is 
addressed below. 

Because the adjoint F+ of the matrix F is given by 
F+ = D; FT (eq. A1 l), eq. (49) can be expressed as 

6m = ( FTCD1 F + pD,i)-' FTCI,'Sd, 

where the operator D, is introduced to penalize the first spatial 

derivatives of the model, and can then be alternati\ely under- 
stood as a working definition of the model cowi-i:incc tnatrix. 
Ci', expressing expected correlations between difc'er-ent model 
parameters. In  fact, if we set C,' = D,i. eq. (50 )  will be the 
solution of well-known stochastic inversion (Friinklin I 970; 
Jackson 1979; Tarantola & Valette 1982; Tarantola 1987), 
which stablizes the inverse problem by adding a term to the 
data misfit function that depends on the ( I  pv iov i  model. m,cr, 
and its covariance matrix, 

1 
s(m)= -{(f(m)-d,b,)TCD'(f(m)-d,b,) 2 

+ pL(m - mreflT Ci (m - mref)) , (51)  

where the scalar ,LL acts as a trade-off parameter that controls 
the relative weights of a priori information and the observed 
data. The model covariance matrix has been extensively used to 
remove numerical instabilities by damping poorly constrained 
parameters towards the reference model, and allowing only 
well-constrained parameters to be controlled by the data. 
However, the dependence of the second term in eq. (51) on the 
reference model mref may result in unwarranted structure. 
In contrast, the model regularization given by the operator 
D, is defined by the scalar product of the basis functions 
(pi(x), V i(l S i s M ) }  (and not by the model m or the pertur- 
bation 6m, see eq. 38). Thus, the form of the constraint we 
used in eq. (50) does not depend on the starting model or on 
any arbitrary reference model. This would appear to be more 
appropriate for examining lateral variations in seismic struc- 
ture, especially when no strong a priori model exists for the 
region (Constable, Parker & Constable 1987; Sambridge 1990). 

In the following synthetic examples we use the inversion 
formula eq. (50), in which CI = 0.50 (the HI norm) is arbitrarily 
chosen in the scalar product D,, which contains an inter- 
mediate degree of penalization of the spatial derivatives. 
The parameters K and p used for C,' are the same as in the 
sensitivity analyses. The trade-off parameter p is determined 
using the relation p = p / r ,  where 

trace(D,i) 
trace( FTCD F) 

r =  

is an empirical quantity used to normalize the matrices. 
Eq. (50) is thus rewritten as 

6m = r(r FTC, ' F + p D,i)-' FTCG1 ad, (53) 

where the dimensionless factor p easily controls the total 
amount of regularization in the inversion. 

6.2 Interface inversion 

Consider an interface (shown in Fig. 10a) which is simply 
defined by eq. (40), where the amplitude coefficients ao, al ,  a2, 

a20 and a40 are 1980, 50, 15, 15 and 5 m, respectively, the 
remaining coefficients are zero and the fundamental wave- 
number ko is 1 116 km-'. The amplitude coefficients a, of the 
cosine terms and b, of the sine terms are also shown, plotted 
against wavenumbers in the figure. For the calculation of syn- 
thetic data, we used the same observation configuration as in 
the previous sections. In the inversion, the starting model is 
given by a flat straight reflector at a depth of 2000 m (the same 
uniform structure used in sensitivity analyses). The number of 
harmonics in the parametrization is set at N = 80 in eq. (40). 
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Figure 9. Eigenvalues and eigenvectors of the Hessian matrix, and the model resolution matrices in the case of a cooperative inversion of traveltime 
and amplitude data for slowness variation. See Fig. 6 caption for comments. 

We therefore have 161 parameters (81 cosine and 80 sine terms) 
in the inversion. 

The solutions of traveltime inversion, amplitude inversion 
and the cooperative inversion using both types of data are 
shown in Figs 10(b), 1O(c) and 10(d), respectively. Although 
the problem would normally be solved iteratively, the results 
after only one iteration are sufficient to show the dramatic 
differences between the inversions. These inversions were run 

with the factor p in eq. (53) set equal to 0.01. Recall that in the 
case of traveltime inversion with the H' norm, the zero- and 
low-wavenumber components are the most sensitive com- 
ponents (see Fig. 5a). However, from Fig. 10(b) we see that 
the solutions, after the first iteration, for the components with 
zero wavenumber and low wavenumber are compromised. In 
practice, more iterations may be needed, and the Frirchet 
matrix for each iteration will need to be recalculated. In the 
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case of the amplitude inversion shown in Fig. 1O(c), we see that 
slight changes to interface components with intermediate 
wavenumber have been obtained and that the long-wavelength 
components were not obtained. In the cooperative inversion 
using both types of data, however, the solution (Fig. 10d) is 
dramatically improved in a single iteration. The significance of 
these figures is that neither inversion alone (Figs 10b and c) is 
successful in resolving the two smallest wavenumbers from 
each other, but that the cooperative inversion (Fig. 10d) does 
begin to resolve these uniquely. 

Fig. 11 shows the comparison of cooperative inversions with 
different values of p applied. Penalizing first derivatives, 
introduced by C,' or the operator D, (a=0.5, the H' norm) 
in eq. (53), implies that a near-horizontal solution is to be 
preferred. As the value of p decreases from 1.0 (Fig. l la)  to 

E 50 1. . ~-~ . .(cosJI 7 1 . ._ -~~ . . (sin), 

" -50 wavenumber (km'l) 5.0 

v 

$ 0  
0 

-50 wavenumber (km-l) 5.0 
LYLLY- 

...................... ................... . ............................. .......--~ 

0.001 (d), the inversion gradually allows the inclusion of larger 
slopes. In this case, the slope of the interface is dominated by 
the amplitude coefficients of harmonic terms with small wave- 
numbers. It is clearly seen from the figure that those amplitude 
coefficients gradually increase as p decreases. 
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6.3 Slowness inversion 

To demonstrate the inversion for velocity variation, we show a 
synthetic model in Fig. 12(a), simply defined by eq. (46), in 
which we set a00=0.4, u10 = -0.001, a20 =0.005, a13 = -0.004, 
a23 = -0.005, blo =O.O04, b20= -0.006, b12 = -0.008 and 
b22=0.002 (s km-') and the remaining coefficients are zero- 
valued and ko = 1.0 km-'. A graphical representation of the 
amplitude coefficients umn and b,, is also shown in the figure. 
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In the inversion we set N = 5 in the model parametrization, 
therefore a total of 121 parameters (61 cosine coefficients umn 
and 60 sine coefficients b,,,) will be determined. The starting 
model is given by the constant background slowness (uoo). The 
Frtchet matrix based on this starting model was used in 
the previous section for the sensitivity analysis. 

The results of traveltime and amplitude inversions and the 
cooperative inversion, after the first iteration, are shown in 
Figs 12(b), 12(c) and 12(d), respectively. In those inversions 
p = 0.01 is used. From Fig. 12 we see that both traveltime and 
amplitude inversions show some image of velocity variation, 
but far from the true model. It is interesting to note that the 
amplitude inversion seems to recover anomalies close to the 
surface, and close to the interface, whereas the traveltime 
inversion seems to recover the anomalies in between. The 
cooperative inversion shows an encouraging result, in which 
the basic features of the velocity variation are reconstructed. 
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Fig. 13 presents four solutions of the cooperative inversion 
using both traveltime and amplitude data simultaneously, 
which differ in the value of p used. Compared with the syn- 
thetic model (Fig. 12a), we see that the anomalous structure is 
clearly reconstructed by using the constraint of both types of 
datawhenweset p=O.1 (b)orp=0.01 (c).Whenp=l.O(a) the 
inversion gives the smoothest model (in the sense of the first 
derivatives of the slowness), whereas when p =0.001 (d) it gives 
the roughest structure. Clearly, the value of p cannot be 
indefinitely reduced; it is required in order to stabilize the 
inversion in the presence of noise. 

In this section we have considered a simultaneous inversion 
for the slowness variation, using both types of data (travel- 
times and amplitudes). However, the numerical analyses carried 
out by Neele et al. (1993a) suggest that, when amplitudes and 
traveltimes are combined in an inversion for the velocity 
structure, a non-linear traveltime inversion must be performed 
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before amplitude data are included, ensuring that the non-linear 
behaviour of amplitudes due to ray shift induced by slowness 
perturbations is minimized. This is because traveltimes show 
a more linear dependence on slowness perturbations than 
amplitudes do, whereas amplitudes depend on the spatial 
derivatives of slowness distribution. The success in the simul- 
taneous inversion shown in this paper is partially due to the 
application of operator D,, which penalizes the first derivatives 
of slowness variation, and partially due to the data covariance 
matrix that we proposed, which balances the contribution, in 
terms of relative sensitivities, of different types of data. 

7 C O N C L U S I O N S  

The sensitivities of reflection-seismic amplitudes and tra- 
veltimes to the variation of interface geometry and slowness 
distributions have been compared. In general, the information 
content of the traveltimes and the amplitudes are comple- 
mentary, being sensitive to different features of the model. 
Traveltimes are more sensitive to model components with 
smaller wavenumbers, but amplitudes are more sensitive to the 
components defined by the larger wavenumbers. 

The ray theory used in this paper does not account for 
the finite extent of the Fresnel zone. Under the ray approxi- 
mation, the sensitivity of amplitudes to lateral slowness or 
interface variations is then always dominated by the high-end 
k, values. The amplitude depends on the second derivatives of 
the traveltime function; short-wavelength structure has the 
largest effect on these derivatives, causing large amplitude 
fluctuations. The way around this is to include the Fresnel zone 
in the computations of the Frechet derivatives, removing the 
local character of ray theory. Snieder & Lomax (1996) present 
a way to do this in an intuitive fashion, but more exact methods 
are possible, although expensive. In this way, the sensitivity of 
amplitudes would become a maximum for scale-lengths com- 
parable to the size of the Fresnel zone, with lower sensitivity for 
both larger and smaller scale-lengths, without the need for 
elaborate weighting schemes or roughness penalization terms 
in the misfit function. Our solution of cutting off the para- 
metrization of the model at scale-lengths comparable to the 
size of the Fresnel zone is a first step towards a more complete 
and accurate description of the dependence of amplitudes on 
slowness and discontinuity structure and, therefore, the main 
conclusions of the present paper would be unaltered if a more 
exact forward method were used. However, the size of the 
amplitude Frtchet derivatives would naturally be different. 

The investigation here of amplitude sensitivity confirms the 
observations from the inversion examples reported by Wang 
& Houseman (1994, 1995). Although the previous work 
showed that seismic amplitude data contain information which 
independently constrains aspects of both reflector geometry 
and slowness variation, the amplitude inversion should not be 
viewed as an alternative to reflection traveltime tomography. It 
should be viewed as a complementary set of constraints on the 
inversion problem for reflector geometry and interval slowness. 
For the cooperative inversion using both traveltime and 
amplitude data simultaneously, an empirical definition of the 
data covariance matrix which balances the relative sensitivities 
of different types of data has been proposed. The inversion 
results shown in this paper suggest that in this manner a 
cooperative inversion can provide a much better solution than 
that using one type of data alone. 

Amplitudes and traveltimes are also sensitive to different 
physical parameters. The ratio of traces of the sensitivity 
matrices has shown that traveltimes are more sensitive to 
variations in the slowness model than amplitudes are, whereas 
amplitudes are more sensitive to variations in interface 
geometry than traveltimes are. Therefore, we may design a cost- 
effective joint inversion for slowness variation and interface 
geometry, using both types of data, in which traveltimes 
dominate the determination of the slowness variation and 
amplitudes dominate the determination of the interface 
geometry. Because amplitudes can provide better constraints 
on model components with shorter wavelengths, and tra- 
veltimes are more sensitive to longer-wavelength components, 
the cooperative inversion may resolve the known ambiguity 
between reflector depth uncertainty and interval slowness 
uncertainty better in seismic-reflection traveltime tomography. 
This prospect needs to be investigated by further inversion tests. 
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Velocity Inversion 
(a) Synthetic Model Slowness 
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(b) Traveltime Inversion 

(c) Amplitude Inversion 

(d) Jraveltime+Amplitude Inversion 

velocity (ds) 2400 

slowness 
coefficient (slkm) -0.006 -0.004 -0.002 0.000 0.002 0.004 

Figure 12. An example of velocity inversion: (a) synthetic model; (b) traveltime inversion; (c) amplitude inversion; and (d) the cooperative inversion 
using both traveltime and amplitude data simultaneously, where p = 0.01 is used in the inversion (eq. 53) to control the amount of regularization in the 
inversion. Model parameters, the coefficients of the Fourier components, are graphically represented as images on the right side of the figure. 
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Figure 13. Four results of the cooperative inversion using both traveltime and amplitude data simultaneously for velocity variation which difel- i l l  

the value of p used in inversion formula (eq. 53). 
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APPENDIX A: 
THE HESSIAN MATRIX H 

A1 The operator D, 

We have seen that the form of the Hessian H depends on the 
definition of the scalar product ( , )M in the model space A 
(see eq. 30). We will relate this scalar product in A to a norm 
11 in A?, the dual space of Af. Following Delprat-Jannaud 
& Lailly (1992, 1993), we define the Hilbertian norm for 1 1  l l w ;  
A' is thus a Hilbert space. Considering two model pertur- 
bations 6U(')(x) and SU(*)(x), which are the perturbations of 
reflector geometry or slowness variation or their combination 
(in general, not simply the perturbations of the model para- 
meters 6m), the norm ~ISU(X)I(~, in the dual space &' is defined 
as 

THE OPERATOR D, A N D  

(SU(')(X), SU(2)(X)), = (1 -a)  6U(')(x)6U(2)(x)dR s, 
+ tl J, VxGU~"(x)Vx6U~~~(x)d~, 

V(6U('), 6U(*)) E A' x Jtr , ('41) 

where R is a generic term consisting of the reflector-geometry 
component and the slowness component of the model, and a is 
a weighting parameter which can take values within [0, 1). 

Suppose we adopt the model parametrization defined by 
M 

u(x>= C ciBi(x) > (A21 
i =  1 

where ci is the amplitude coefficient of the ith basis func- 
tion &(x). Denoting the projections on basis functions 
(&(x), V i ( l <  i < M ) }  as vectors (of the model parameters), 

for 6U(')(x) and 6U(2)(x) respectively, the scalar product 
eq. (Al) is then given by 

(SU(')(x), ~5U(~)(x)), = (D,Sm('), am(')) 

V(6U, 6m) E A%" x A, (A41 

where D, is an M x M symmetric definite positive matrix with 
tensors defined by 

Note that the correlation matrices in the definition for the 
operator D, are scaled in this paper so that the quantities are 
dimensionless and matrices are balanced with respect to each 
other. In a particular case of model parametrization using 
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regular discrete grids, the vector 6U and the vector 6m in 
eq. (A4) would be identical. 

A2 The Hessian matrix H 

Denoting the transpose FT of F associated with the inner 
product ( , ) defined by 

(CDi6d, F6m)D=(FTCD16d, 6m),  

V(6m, 6d) E Af x 9, ('46) 

and comparing with eq. (30), 

(C,'6d, Fbm)D=(F+CD'6d, 6m), , 

V(6m, 6d) E Af x 9, ('47) 

we have 

( FTCD ' 6d, 6m) = (F+ CG1 6d, 6m), , 

V(6m, 6d) E Af x 9 

We now define the scalar product ( , ),,,, in the model space 
. & a s  

(6m('), 6m(')), = (D,6m('), 6m(*)) , 

V(6m('), 6m"') E .A' , (A91 

where ( , ) is the duality product between A' and //' 
(Delprat-Jannaud & Lailly 1992). We then have 

(FTC,'6d, 6m)=(D,F+CG'Gd, 6m), 

and the following equality: 

F + = D,- F~ . 

The Hessian matrix (eq. 32) can thus be expressed as 

H = D; F~C, F . (A 12) 
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