
In this article, we propose an inversion scheme to replace
the adaptive subtraction approaches which are widely used
in conventional two-step (prediction + subtraction) multi-
ple elimination methods. This new method, named SIMP
(simultaneous inversion for multiples and primaries),
inverts seismic data using constraints (e.g., modeled mul-
tiples and/or geologic discriminants) for multiples and pri-
maries simultaneously. SIMP incorporates pattern
recognition and shaping filters into one concise and prac-
tically solvable formulation. Its main advantages are that
no orthogonality between multiples and primaries is
assumed and that wavelet information is not necessary for
the inversion.

Figure 1 compares conventional prediction plus sub-
traction and the SIMP approaches. In the conventional
method (Figure 1a), predicted multiples are generated first,
the shaping filters are derived second, and finally the pri-
mary component is obtained by subtracting the multiples
shaped by the filters from the input data. In one SIMP pro-
cedure (SIMP I, Figure 1b), the predicted multiples are gen-
erated first, but the shaping filters (not the multiples) and
the primaries are inverted simultaneously by a constrained
inversion approach. A general SIMP approach (SIMP II,
Figure 1c) inverts for multiples and primaries simultane-
ously assuming proper constraints are available.

Modern multiple elimination methodologies are firmly
rooted in the principles of wave theory. In general, these mul-
tiple removal schemes involve two basic steps: multiple
prediction and adaptive subtraction. The multiple predic-
tion can be model-driven or data-driven. During the pre-
diction step, the kinematic part of the multiples (traveltimes)
is obtained. The adaptive subtraction step aims to obtain the
dynamic part of the multiples (e.g., amplitudes and wave-
form shaping).

Once multiple-model traces are predicted, based on the
original seismic data and/or a subsurface model, they need
to be “shaped” in order to “match” the actual multiples. This
is usually achieved with an adaptive least-squares subtrac-
tion approach and the matching filter may be represented
as

where y(t) is a raw data trace, m(t) are modeled multiple
traces, N is the number of channels involved in matching,
f(t) are operators for adapting the group of N traces m(t) to
the desired output y(t), * indicates convolution, and p(t) is
the matching residual (primaries).

The filter coefficients, f(t), are calculated using the well-
known minimum-energy criterion. The fundamental prob-
lem with minimizing the energy of the primary p(t) is the
assumption that multiples and primaries in the data are
orthogonal. This assumption will be violated in most field

data sets and, consequently, primaries overlapping modeled
multiples will be wrongly subtracted from the data. Thus,
a “leakage” will always be present. To overcome this prob-
lem, Spitz (1999) proposed a “pattern recognition” subtrac-
tion based on prediction error filters (PEF).

In the following, we start from shaping filtering concepts
and develop a concise formulation that does not require the
orthogonal assumption. After that, a more general formula
is developed to estimate multiples and primaries by using
PEF, instead of explicitly modeled multiples. This is simi-
lar to Spitz’s pattern recognition work but has the flexibil-
ity to incorporate more constraints in a systematic fashion. 

Theoretical development. The system of equations in (1) is
highly underdetermined since both f(t) and p(t) are
unknown. To avoid this problem, multichannel Wiener fil-
tering is traditionally used to minimize the following mis-
fit function:

After some routine treatment in the least-squares sense,
the minimization problem above yields the following lin-
ear system of equations:

M is a matrix with N columns of vectors which are win-
dowed seismic traces, Y is a vector whose elements are

814 THE LEADING EDGE SEPTEMBER 2003

Simultaneous inversion of multiples and primaries: Inversion
versus subtraction
YI LUO and PANOS G. KELAMIS, Saudi Aramco, Dhahran, Saudi Arabia
YANGHUA WANG, Robertson Research, Kent, England, U.K.

ACQUISITION/PROCESSING
Coordinated by William Dragoset

Figure 1. Block diagram of conventional method (a) and SIMP methods
(b and c).
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amplitude samples of the input trace within a sliding win-
dow, and F is the desired filter. The superscript T denotes
the transpose of a matrix. Equation 3 often can be readily
solved with well-established algorithms.

The key to the emergence of equation 3 as a solvable lin-
ear system of equations is the assumption that primaries and
multiples have to be orthogonal. If so, dot multiplication of
both sides of equation 1 by the multiples m(t) will produce
equation 3 because, if p(t) and m(t) are orthogonal, their dot
product is zero.

Figure 2 illustrates the orthogonal assumption underly-
ing equations 2 and 3. The original data vector minus the
multiple model vector results in the primary reflection vec-
tor. The power-minimized solution of equation 2 is the dot-
ted line that has the shortest norm.

However, in most cases, the orthogonal assumption is
not valid, and (as shown in Figure 2) the dotted line differs
from the solid arrow p. To resolve this fundamental prob-
lem, we revisit equation 1 and propose an alternative solu-
tion. The new solution, instead of minimizing the power of
primaries (the J1), minimizes the following function
(Claerbout, 1992):

Thus, our key requirement is that the nonpredictable
energy in the data (the result after applying PEF) be as small
as possible. That is

The misfit functions in equation 4 can be minimized

together. However, J3 and J4 do not necessarily need to be
enforced simultaneously and they can be used selectively
based on the data. The PEF can be determined using vari-
ous ways. The simplest PEF is the derivative operator,
(d/dx), which means that the seismic events have minimal
discontinuities laterally. Improved PEFs can be determined
using other geologic discriminants. For instance, if we know
the dip of a multiple generator, we can minimize the direc-
tional derivative of the multiples along the dip direction.
This can be done to primaries as well.

As an example, let us write the system of equations
derived from the optimization problem (4a) and (4b).
Dropping J3 and using the R (roughness) operator to repre-
sent the PEF, we get:

Of course, a more general set of equations can be
obtained if we take into account the J4 term. The optimiza-
tion problem of J2, J3, and J4 can be rewritten in the form of
the matrix:

here, R and Z represent the PEFs of primaries and multi-
ples respectively. R and Z can be derived from a priori
knowledge, including (but not limited to) modeled multi-
ples, modeled primaries, and/or geologic models derived
from seismic interpretation. With equation 6, we invert
simultaneously for both multiples and primaries using geo-
logic constraints. This is the reason the acronym SIMP (simul-
taneous inversion of multiple and primary) is adopted for
this method, although we can also invert for shaping filters
(Figure 1b) with primaries simultaneously.

Synthetic examples. A series of numerical examples sup-
ports the predictions of the theory. In all the synthetics, we
use the simplest PEF operator (i.e., d/dx) and equation 5.

Figure 3c shows a synthetic data set consisting of a pri-
mary (Figure 3a) and a multiple event (Figure 3b). The
robustness of the proposed SIMP inversion is tested using
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Figure 2. Inverted
primary (dotted line)
and true primary
(solid line). The
energy of inverted
primary is always
less than the true one
(they are equal if and
only if primary and
multiple events are
orthogonal). This
raises a serious problem in practice since the application of least-squares
subtraction introduces “leakage” between primaries and multiples.
(Modified from Spitz.)

Figure 3. (a) Isolated primary in the
input data. (b) Isolated multiple in
the input data. (c) Input data con-
tains both primary and multiple. (d)
Modeled multiple. (e) Modeled mul-
tiple with randomized amplitude.
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Figure 4. Inverted primary (left) and multiple (right) with single-channel
(top), multichannel (middle), and SIMP methods (bottom). The modeled
multiple used in the inversion is shown in Figure 3d. The desired right
answers are Figures 3a and 3b, respectively.
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two modeled multiples. Figure 3d shows a multiple model
obtained by multiplying the true amplitude of Figure 3b by
a scalar factor. Figure 3e is the same as Figure 3d except that
the amplitude is now modulated randomly. Figure 4 shows
the inverted primary and multiple events using single-trace,
multichannel, and SIMP approaches, respectively. In this
example, the simple modeled multiple in Figure 3d is used
as input for the inversion. Notice the exact estimation of both
events offered by the SIMP algorithm. Figure 5 is the same
as Figure 4, but now the modeled multiple used is the one
in Figure 3e. This is a more difficult case since the ampli-
tude of the modeled multiple is far from the true one. Again
the SIMP results are superior than those obtained via the
single and multichannel predictions.

Figure 6 shows another synthetic data set consisting of
a primary (Figure 6a) and a multiple event (Figure 6b). This
is a tough model because the multiple and primary com-
pletely overlap. Figure 6d shows a multiple model that is a
scaled version of Figure 6b. Figure 6e shows the PEF of the

modeled multiple. The PEF can be derived from either the
modeled multiple (e.g., through an fx-deconvolution
approach) or from some type of geologic model (e.g., the
dip of the multiple generator).

Figure 7 shows the inverted primary and multiple using
single-trace, multichannel, and SIMP approaches, respec-
tively. In this example, the simple modeled multiple (Figure
6d) is input for the inversion. Comparison with the right
answers (Figures 6a and 6b) show that the SIMP approach
produced almost perfect results while both conventional
methods failed. Figure 8 shows the results of SIMP inver-
sion using the PEF of the modeled multiple (Figure 6e).
Again the recovered primary and multiple events are almost
perfect. In this example, the more general SIMP method
(Figure 1c) has been adopted with no direct information per-
tinent to multiple prediction and wavelet.

Summary. A concise theoretical formulation for direct esti-
mation of primaries and multiples is presented that avoids
the orthogonality assumption of the least-squares adaptive
subtraction. Thus, it has the potential to minimize the “leak-
age” of primary energy when there is considerable crosstalk
between primaries and multiples. Basically, the “processing”
approach of the conventional least-squares subtraction is
replaced with an “inversion” type algorithm. Its only
assumption is the predictability of primary and multiple
events. Additional a priori geologic knowledge (dip of mul-
tiple generator, regional trend of primaries, etc.) can be
incorporated in the proposed inversion algorithm to achieve
more accurate results. SIMP is not sensitive to amplitude
errors in the modeled multiples as shown in Figure 5 where
the amplitudes of predicted multiples are randomized.
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Figure 5. Inverted primary (left) and multiple (right) with single-channel
(top), multichannel (middle), and SIMP methods (bottom). The modeled
multiple used in the inversion is shown in Figure 3e, which contains
random amplitudes. The desired right answers are Figures 3a and 3b,
respectively.

Figure 6. (a) Single primary in the input data. (b) Single multiple in the
input data. (c) Input data contains both primary and multiple. Notice the
complete overlap of the events. (d) Modeled multiple. (e) PEF of modeled
multiple with samples (-1, 1.05).

Figure 7. Inverted primary (left) and multiple (right) with single-channel
(top), multichannel (middle), and SIMP methods (bottom). The modeled
multiple used in the inversion is in Figure 5d. The desired right answers
are Figures 5a and 5b, respectively.

Figure 8. Inverted primary (a) and multiple (b) with SIMP method. The
PEF of the modeled multiples (Figure 6e) is used in the inversion.
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However, time errors in predicted multiple models can be
handled if the SIMP II method is used as shown in Figure
8.
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