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Abstract 
We report progress in using the isotopic composition and concentration of Pb in the dentine and 
enamel of deciduous teeth to provide a high resolution time frame of exposure to Pb during fetal 
development and early childhood. Isotope measurements (total Pb and 208Pb/206Pb, 207Pb/206Pb 
ratios) were acquired by laser ablation inductively coupled mass spectrometry at contiguous 
100micron intervals across thin sections of the teeth; from the outer enamel surface to the pulp 
cavity. Teeth samples (n=10) were selected from two cohorts of children, aged 5-8 years, living in NE 
England. By integrating the isotope data with histological analysis of the teeth, using the daily 
incremental lines in dentine, we were able to assign true estimated ages to each ablation point (first 
2-3 years for molars, first 1-2 years for incisors + pre-natal growth). Significant differences were 
observed in the isotope composition and concentration of Pb between children, reflecting 
differences in the timing and sources of exposure during early childhood. Those born in 2000, after 
the withdrawal of leaded petrol in 1999, have the lowest dentine Pb levels (<0.2µgPb/g) with 
208Pb/206Pb (mean ±2σ: 2.126-2.079)  208Pb/206Pb (mean ±2σ: 0.879-0.856) ratios that correlate very 
closely with modern day Western European industrial aerosols (PM10, PM2.5) suggesting that diffuse 
airborne pollution was probably the primary source and exposure pathway.  Legacy lead, if present, 
is insignificant. For those born in 1997, dentine lead levels are typically higher (>0.4µgPb/g) with 
208Pb/206Pb (mean ±2σ: 2.145-2.117) 208Pb/206Pb (mean ±2σ: 0.898-0.882) ratios that can be modelled 
as a binary mix between industrial aerosols and leaded petrol emissions. Short duration, high 
intensity exposure events (1-2 months) were readily identified, together with evidence that dentine 
provides a good proxy for childhood changes in the isotope composition of blood Pb. Our pilot study 
confirms that laser ablation Pb isotope analysis of deciduous teeth, when carried out in conjunction 
with histological analysis, permits a reconstruction of the timing, duration and source of exposure to 
Pb during early childhood. With further development, this approach has the potential to study larger 
cohorts and appraise environments where the levels of exposure to Pb are much higher. 
 

Keywords 
Lead isotopes, Laser ablation ICP-MS, Biomarkers, Deciduous teeth, Childhood exposure, Source 
apportionment 
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1 INTRODUCTION 

This paper describes our progress in reconstructing detailed chronologies of pre- and post-natal 

childhood exposure to Pb using the stable Pb isotope composition of dentine and enamel in 

deciduous teeth. The primary aim was to measure age-related changes of the biomarker that shed 

light on sources of exo- and endogenous Pb from ‘in utero’ to several years after birth.  

Subsequent to the publications of Gulson and Wilson (1994), Gulson (1996)  and Farmer et al. (1994) 

documenting Pb exposure using the isotopic composition of Pb in deciduous teeth, comparatively 

few, more recent studies (Grobler et al., 2000; Gulson et al., 2004; Farmer et al., 2006; Robbins et 

al., 2010) have  addressed  the issue of variation in exposure source. With the exception of Grobler 

et al. (2000), these have used either large (mg) sub-samples of whole tooth (dentine+enamel) or 

transverse sections (mm slices) of dentine-free enamel. Enamel has tended to be the preferred 

tissue because it develops over a relatively short period of time and ceases to form once the tooth 

has erupted into the oral cavity. Neither of these types of sample is optimal for resolving fine, time-

scale chemical variation accompanying pre- and post-natal tooth growth. Advances in instrumental 

analysis, most notably laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), 

now permit the acquisition of elemental and isotope data at high spatial resolution (less than 

100µm) without the need for sample digestion. Of those papers detailing  the concentration of Pb in 

dental tissues by LA-ICP-MS, we refer to Arora et al. (2004, 2006, 2014); Dolphin et al. (2005); Hare 

et al. (2011); Humphrey et al. (2008a); Kang et al. (2004); Shepherd et al. (2012). These papers raise 

the interesting question “If the micro-technology exists to measure the isotopic abundance of 

elements in very small samples, why are there so few publications relating to the isotope 

composition of Pb in children’s teeth?” We argue that progress has been constrained by three main 

issues: lowered perceptions of health risk of Pb, analytical challenges and insufficient use of dental 

histology for chronological sampling.  

With regard to the first issue, the phasing out of leaded petrol in Western Europe in the 1980-90’s 

and abatement in the use of leaded paints and solders, environmental levels of Pb have fallen 

dramatically. Pb in air, for example, has decreased from 0.31 μg/m3 prior to 1990 to 0.045 μg/m3 in 

2007 (Bierkens et al., 2011). Over the same period, blood Pb levels in European children have 

continued to decline. In Sweden for example, Stromberg et al. (2008) report a decrease from 

5.8µg/dL in 1978–1982, 3.4 µg/dL in 1989 to less than 1.5µg/dL in 2005 for children living in an 

urban environment. This has led to a perception of lowering risk about the chronic health effects of 

exogenous Pb on children at low levels of exposure (Lamphear, 2007). Challenging this complacency, 

there is now a wealth of clinical evidence that documents the irreversible damage to cognitive 

development (Canfield et al., 2003; Lamphear et al., 2005; Chandramouli et al., 2009) and delayed 
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neurodevelopment in infants (Jedrychowski et al., 2008 ) with blood Pb values significantly lower 

than 10µg/dL. Of increasing concern is the pre-natal exposure to Pb through the placental transfer of 

endogenous blood Pb from mother to child during pregnancy, which can result in poor birth 

outcomes (Hu, 2002; Xie et al., 2013). Using a combination of blood Pb concentrations and Pb 

isotope ratios Manton et al. (2003) and Gulson et al. (2015) have demonstrated very convincingly   

the importance of maternal bone restructuring during pregnancy and lactation on the release of Pb 

from skeletal reservoirs and its transfer to the infant. Thus the intensity, timing and duration of low 

level exposure to Pb, especially during the first few years of life, are factors as important now as they 

were before the introduction of the major public health interventions. 

 

The second issue concerns the analytical sensitivity and precision needed to identify individual 

sources of environmental Pb.  Meaningful application of stable Pb isotopes to exposure studies 

depends on there being measurable differences in the isotopic composition of a limited number of 

anthropogenic and/or geogenic sources (Gulson et al., 2004). In Western Europe the markedly 

different isotopic composition of leaded petrol compared to other anthropogenic sources made it 

relatively easy to calculate its contribution to total body burdens (Campbell and Delves, 1989;  

Delves and Campbell, 1993). However, excluding base metal mining/smelter environments, the 

current situation in a post-leaded petrol era is very different. Sources are often little above elevated 

background concentrations and broadly similar in isotopic composition (Ayrault et al., 2012). If teeth 

are to be routinely used as reliable biomarkers of low level exposure, there is a need for better 

isotope discrimination. 

 

The third issue relates to the temporal relationship between point analyses as performed by laser 

ablation micro-sampling and the development history of the tooth. As demonstrated by Humphrey 

et al. (2008b) and Shepherd et al. (2012), to extract temporal information on trace elements in 

dental tissue it is essential to assign an estimated age to the point of analysis as well as having an 

understanding of the processes controlling their incorporation into the tooth matrix.  

 

Our study sought to assess these issues by acquiring Pb concentration and Pb isotope data for 

dentine and enamel in deciduous teeth for which we could apply histological control on the timing of 

tissue growth. In doing so we acknowledge the constraints on interpretation imposed by the small 

number of samples analysed and the analytical limitations of LA-ICP-MS. 

 

2 MATERIAL AND METHODS 
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2.1 Materials 

We analysed 6 deciduous incisors and 4 deciduous molars donated by children living in NE England 

for which ethical approval had previously been granted. On completion of the original projects, the 

teeth were entered into the Newcastle University Faculty of Medical Sciences Biobank and 

anonymised according to standard ethical procedures. The Biobank records include the name of the 

person who collected the tissues but do not permit identification of the donor. We therefore do not 

have postcode data for the sample but do know the general area in which the children who donated 

the teeth lived at the time of collection.  

The incisors were a sub-sample of a larger collection of naturally exfoliated deciduous teeth acquired 

during the 2005 Newcastle ‘Tooth Fairy’ Study; a joint project between the University of Newcastle, 

Public Health England and Newcastle City Council with the aim of examining the relationship 

between parental socio-economic status, place of residence and Pb in children’s teeth as a measure 

of environmental Pb exposure (Hodgson et al., 2015; County Durham and Darlington Local Research 

Ethics Committee: ref nº. 05/00904/10). The cohort comprised 69 children, aged 5-8 years, living in 

the city and inner urban areas of Newcastle upon Tyne. Though little evidence now remains of the 

city’s once industrial past, its environs carry a legacy of environmental heavy metal pollution. By 

contrast, the molars had been surgically extracted and were a sub-sample of 15 children, aged 6-8 

years, attending a dental clinic in Billingham, Teesside, in 2009 for treatment (Shepherd et al., 2012; 

County Durham & Tees Valley Research Ethics Committee: ref nº. 09/H0905/42). Though we lack 

residential postcode data for this cohort, they are inferred to reside primarily in the immediate 

urban and rural areas. Prior to the present study the teeth from both cohorts had been analysed by 

LA-ICP-MS and provisional data were acquired for the concentration of Pb in enamel and dentine 

(Shepherd et al., 2012; Hodgson et al., 2015).  Comparison with published data indicated that the 

mean dentine Pb for the Newcastle cohort (0.26±0.16µg/g; n=69) and Billingham cohort 

(0.18±0.07µg/g; n=15) were significantly lower than the mean value of 2.23±1.32μg/g for deciduous 

teeth of children living in non-polluted areas of South Africa (Grobler et al., 2000) and the overall 

means reported for primary school children in Taipei and Boston of 4.4±3.5μg/g and 3.3±2.5μg/g 

respectively (Rabinowitz et al., 1991). From these comparisons we concluded that our cohorts are 

representative of low exposure populations. Samples were selected from the upper quartile of teeth 

having the higher dentine Pb levels. For the incisors this corresponded to a range 0.18-0.95 µgPb/g 

(n=6); for the molars 0.05-0.22 µgPb/g (n=4), excluding a maximum outlier of 0.69µgPb/g. Time 

frames of childhood exposure also differed (Newcastle 1997-2005; Billingham 2001-2009) (see Table 

1). This disparity, though precluding absolute time comparisons, still permits between-cohort 

comparisons and a critical assessment of the analytical limitations at very low blood Pb levels.      
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2.2 Stable Lead Isotope Analysis 

Analysis was performed directly on the tooth blocks remaining from teeth that had been used in the 

previous studies. These had been cut parallel to the long axis of the tooth through the cusp tips and 

dentine horn. Samples were ultrasonically cleaned in methanol to remove all traces of surface 

debris, especially the removal of fine particles trapped within exposed dentine tubules. Using a 100 

µm diameter laser beam, contiguous point analyses were then made from the enamel surface to the 

pulp cavity, following the growth orientation of the dentine tubules. Each ablation transect (one per 

tooth) crossed the enamel/dentine junction (EDJ), continued across the neonatal line in dentine 

(Birth) and terminated at the dentine/pulp junction (DPJ) (Figure 1) Unlike our earlier work 

(Shepherd et al., 2012) we did not polish the samples, relying instead on a low power pre-ablation 

lasering of the cut surface. This procedure created a smooth and flat surface for isotope analysis and 

resulted in fewer spikes in ion intensity during data acquisition. 

Measurement of Pb isotopes utilised a Nu Instruments Attom single-collector ICP-MS coupled to a 

New Wave Research 193nm excimer laser ablation system. Isotopic measurement was achieved in E-

scan mode (i.e. with a fixed magnet position), measuring the following masses 206Pb, 207Pb and 208Pb, 

with dwell times of 700ns, 700ns and 400ns, respectively. Each datum reflects 200 sweeps of this 

mass range, meaning a 30 second ablation is roughly the mean of 60 values. Pre-ablation was 

achieved using 150μm spots ablated at low power (2-3 J/cm2) for 10 seconds. Ablation parameters 

for analyses were 100μm spots, 30 seconds ablation, using 5 J/cm2 at 10 Hz. A 10 second washout 

was allowed between each ablation, and the gas blank was measured for 60 seconds before every 

set of ca. 15 ablations. 

A standard-sample bracketing routine was used for normalisation, using the reference material NIST 

Glass 614 (Woodhead and Hergt, 2001) for Pb isotope ratios. Normalisation of Pb concentrations 

(µg/g) utilised NIST 614 (Jochum et al., 2011) and the abundance of 208Pb, but since the matrix of this 

glass is different to that of the teeth, a correction factor (0.58 for enamel and 0.54 for dentine) was 

calculated and applied to the concentrations. This correction factor was determined by prior analysis 

of teeth dentine and enamel measuring both 208Pb and stochiometric 44Ca, and comparing the 

concentrations between internally standardised data and those that were simply normalised relative 

to NIST. This approach, compared to internal standardisation, probably adds a small (5-10%) degree 

of uncertainty to the absolute concentrations, but will have negligible impact on the relative 

concentrations between ablations. Visual analyses of the ablation pits revealed <10% variation in 

ablated volume.     
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All four stable isotopes of lead 204Pb, 206Pb, 207Pb, 208Pb were measured in initial tests. However, 

because Pb concentrations in dentine and enamel were generally <0.5 µg/g, analytical errors 

associated with the minor isotope 204Pb were too large for variation in 206Pb/204Pb, 207Pb/204Pb, 

208Pb/204Pb ratios to be confidently interpreted, partly due to low intensity but also to the necessity 

to correct for 204Hg interference that is present in the argon carrier gas. The sample analyses were 

thus obtained without measurement of 204Pb, and are discussed with reference to the more robust 

207Pb/206Pb and 208Pb/206Pb ratios. Uncertainties on the reported 207Pb/206Pb and 208Pb/206Pb ratios 

include measurement uncertainty and propagation of the reproducibility of the reference material 

analyses as excess scatter. The reproducibility of the reference material averaged 0.36% and 0.38% 

(2σ) for 207Pb/206Pb and 208Pb/206Pb, respectively. 

2.3 Histological Analysis 

Detailed histological analysis of dentine was performed on three teeth (Table 2: molars HT 05-54 and 

HT 12-84, incisor 033-04B).  Because histological sections had already been prepared for our 

previous analyses, the current analysis was done by mirror imaging the ablation transects on the 

blocks to the appropriate area on the sections themselves. Measurements made along the 

enamel/dentine junction (EDJ) to the ablation transect were made on the block, and then 

transferred to the section. A line was marked across the section representing the ablation transect 

and divided into intervals representing each ablation pit.  The age for each interval was calculated 

using the daily incremental lines (von Ebner lines), using the neonatal line as point zero (birth). The 

ages were then combined into age categories that encompassed the maximum and minimum age 

range of an interval. The mean daily secretion rate (DSR) in the two molars was 3.2-3.3µm/day then 

dropped postnatally to between 2.4-2.7 µm/day.  The incisor dentine formed at a slightly higher rate 

postnatally ~3µm/day.  For the molars, our ablation transects provide a continuous record for the 

first 2-3 years of childhood and our incisors the first 1-2 years. Histological analysis after ablation 

also avoids the risk of including analyses which contain secondary or tertiary dentine for which there 

is little or no age control.    

 

3 RESULTS 

A total of 162 individual point analyses were performed on the teeth; the exact number per tooth 

being by determined by the diameter of the laser ablation pit (100µm) and the width (thickness) of 

the dentine and enamel layers along the line of the transect. Table 2 summarises the mean  

208Pb/206Pb, 207Pb/206Pb ratios and error statistics for each tooth. For discussion, the analyses are 

presented as 3 variable graphs (Figures 2a-d) where the Y’ and Y’’ axes correspond to the 208Pb/206Pb 

and Pb concentration respectively, and the X axis displays the sequence of ablation analyses (1 to n) 
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along the transect from the enamel surface to the pulp cavity. Additionally, in Figures 2a-c, the 

ablation sequence in dentine has been converted into days at two fixed points after birth, as 

estimated by histological analysis. Finally, to illustrate source apportionment, Figure 3 is a bivariate 

plot of 208Pb/206Pb -207Pb/206Pb.  Error bars where shown are the 2σ uncertainty estimates and vary 

according to Pb concentration (i.e. a function of ion signal/background ratios). For concentrations >1 

µgPb/g the relative 2σ errors for 208Pb/206Pb and 207Pb/206Pb are 0.5-0.6%. For concentrations <1 

µgPb/g and >0.2 µgPb/g the errors are typically 0.6-1.0% but increase rapidly to > 2.0% close to the 

limit of detection (~ 0.02 µgPb/g).   

Owing to the very low Pb concentrations and correspondingly high 2σ errors, the 208Pb/206Pb ratios 

for individual laser ablation points in enamel are not discussed but have been included in Figures 2a-

d for completeness. 

 

4  DISCUSSION 

Blood Pb isotope analyses have been widely used for identifying sources of Pb exposure (Rabinowitz,  

1995;  Gulson et al., 1996, Gulson et al., 2006;  Gwiazda and Smith, 2000; Glorennec et al., 2010). 

However, because blood Pb has a short half life of ~30-40 days (Barbosa et al., 2005), single samples 

are unsuitable for detecting changes in near recent or previous high-level, short duration exposure 

events. To provide an effective and complete picture of exposure requires serial blood samples, 

which are impractical in most circumstances. For retrospective studies therefore, LA-ICP-MS 

techniques applied to the analysis of teeth offer a means of reconstructing childhood exposure at 

high temporal resolution (weeks, months). To realise the full potential of this approach, the age of 

individual laser ablation points must be known. 

 

4.1 Histology 

An important conclusion to be drawn from the detailed histological analysis of the Newcastle and 

Billingham teeth is that the secretion of primary dentine, defined as that dentine secreted before 

apical closure of the tooth root (Arana-Chavez and Massa, 2004), ceases well before the age of 8 

years, irrespective of whether the teeth are surgically extracted or naturally exfoliated. This 

observation is supported by an earlier study of 15 molars from the Billingham cohort which 

demonstrated that primary dentine (as estimated by daily growth increments) is a true record of the 

first 2-3 years of tooth development (Shepherd et al., 2012 ). There is slight variation in the initiation 

and completion of the four types of deciduous incisors and therefore the position of the neonatal 

line as well as slight variation between individuals in its position due to variation in gestation length. 

Studies reviewed by Hillson (2014) show a standard deviation of 0.07 yrs for the age at crown 
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completion in the lower second deciduous incisor, 0.20 for the lower first, and 0.24 for both upper 

incisors. The mean age at apical closure of the root occurs between 1.98 and 2.58 yrs for all 

deciduous incisors. We believe the data for Incisor 033-04, albeit a single sample, are in keeping with 

this generalised sequence of growth and that the incisors analysed in this study are a faithful record 

of the first 1-2 years of childhood. 

 

4.2 Lead Concentration  

For all 10 children, Pb levels are consistently higher in dentine than in enamel (Newcastle: enamel 

mean 0.05µg/g, dentine mean 0.26µg/g; Billingham: enamel mean 0.03µg/g, dentine mean 

0.09µg/g). As noted by other researchers (Arora et al., 2006; Hare et al., 2011, Shepherd et al., 2012) 

this is also accompanied a distinctive step wise change in concentration at the EDJ (see Figures 2a-c). 

The marked difference in mean dentine Pb levels between the Newcastle and Billingham children 

indicates that the former were exposed to higher levels of environment lead during the first 2-3 

years (1997-1999) of early childhood (see Table 1). Constrained by the small number of samples 

however, we are unable to test for statistically meaningful differences between pre-natal and early 

post-natal Pb concentrations. One of the advantages of LA-ICP-MS is the ability to screen out 

analyses close to the DPJ (i.e. the lead enriched ‘circum-pulpal zone’) without the need for the 

physical removal of dental tissue. When used in conjunction with histological analysis this allows for 

better estimation of cumulative exposure and a more informed understanding of time-averaged 

dentine Pb differences. With regard to cumulative exposure, dentine-only analyses are difficult to 

compare with analyses obtained for the whole tooth or different parts of the tooth (crown, root, 

enamel). However, if we assume that primary dentine Pb concentrations tend to be 16% higher than 

whole tooth concentrations (Grobler et al., 2000), the children of Newcastle and Billingham provide 

compelling evidence of a major reduction in environmental lead since the 1970-80’s, in good 

agreement with UK blood Pb data (Delves et al., 1996). The magnitude of this reduction can be 

judged by the decrease in whole tooth Pb (mean 5.1µg/g) for London in the 1970’s (Smith et al., 

1983) compared with the 1997-99 estimated mean (0.24µg/g) for this study. Table 3 summarises 

some of the extensively published information for lead in modern and historical deciduous teeth. 

Clearly evident is the decrease in whole tooth Pb from a high level in the 1960’-70’s (~5-15µg/g) to 

lower values in the 1980’s (~2-6µg/g), culminating in a sharp drop in the 1990’s (~0.25-2µg/g). These 

changes are directly attributable to sustained governmental measures to reduce the sale of leaded 

petrol and its final withdrawal from domestic markets in the USA and most of western Europe by the 

late 1990s. Looking further back in time, one has to return to Prehistoric periods to match values for 
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enamel as low as those determined for children presently living in NE England (Montgomery et al., 

2010).    

 

4.3 Lead Isotope Ratios 

Unlike previous Pb isotope studies that have used carefully selected mg samples of dental tissue  to 

identify and quantify the sources of environmental Pb, this study sought to explore the possibility of 

acquiring similar high precision data by laser ablation without the need for sample dissolution. By 

combining this approach with histological analysis we hoped to map Pb concentration-Pb isotope 

data onto a high resolution time frame for each tooth; thus providing an exact record of pre-natal 

and post-natal exposure. Overall the results are encouraging but due to statistical constraints we 

have been unable to demonstrate differences between exposure to endogenous Pb during fetal 

development and exogenous Pb after birth. The problem is a consequence of low dentine Pb 

concentrations. For concentrations <0.5µg/g the calculated 2σ errors are too high to allow statistical 

discrimination between points along a transect. As demonstrated in Figure 2a there is total overlap 

of the 2σ error bars. At higher dentine Pb levels (>0.5µg/g) the error bars are significantly smaller 

(Figure 2d) and we confidently predict that LA-ICP-MS performed on teeth from higher exposure 

cohorts, would have the sensitivity and precision comparable to that afforded by whole tissue 

analysis. Two important outcomes of our study are shown in Figures 2a and 2b. Firstly, the 

methodology is capable of capturing short, high intensity exposure events. In Figure 2a the 2µgPb/g 

peaks at ablation points 11 and 12 (an approximately 2 month interval) are not accompanied by a 

change in 208Pb/206Pb ratios. This indicates that the source of Pb to which the child was exposed did 

not change significantly throughout early childhood but was temporally high at about 200 days after 

birth. This was an event specific to that child. The second outcome relates to the use of circum-

pulpal dentine (i.e. immature dentine). Whereas total Pb concentrations rise exponentially on 

approaching the DPJ making it difficult to draw comparisons with mean dentine concentrations 

(Shepherd et al., 2012), the related isotope signals are unaffected by dentine maturity (Figure 2b). 

This observation was noted for all 10 teeth. Assuming no change in the source of lead, circum-pulpal 

dentine affords a reliable isotope proxy for blood Pb at the cessation of primary dentine secretion.  

Over and above the limitations imposed by 2σ errors, there appear patterns and changes in lead 

isotope composition with age that invite comment; albeit very speculative. For example, all 4 molars 

as typified by HT 05-54 (Figure 2a) including incisors 040-07, 067-23 and 053-23 (Figure 2d) display 

mean 208Pb/206Pb ratios for individual laser ablation points in both pre-natal and post-natal dentine 

that occupy a relatively narrow range of 208Pb/206Pb ratios (~2.12-2.09).  Since the principal source of 

cross-placental Pb is linked to the restructuring of the mother’s bones (Gulson et al., 1999, 2015; 
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Chuang, 2001; Hu et al., 2002; Tellez-Rojo, 2004) we tentatively suggest this may be an indication 

that mother and child were exposed to the same ambient source of environmental lead for an 

extended period of time.  In contrast, the 3 other incisors (033-04B, 009-09, 006-15) display a 

different age-related pattern. From birth, the 208Pb/206Pb ratios appear to increase steadily from 

~2.12 at birth to peak between 2.16 and 2.18 during the first year of tooth development, before 

decreasing again to ~2.12 at the DPJ. This pattern is illustrated by incisor 033-04B (Figure 2b).  

Another feature that cannot readily be described as a random analytical artefact is the apparent 

decrease in 208Pb/206Pb ratios 100-200 days after birth as shown in Figure 2a.  This pattern is very 

similar to that shown by molar HT 12-84 (Figure 2c) and whilst we cannot validate this apparent 

decrease due to overlapping 2σ errors, the similarity shown by 2 of 4 molars poses the possibility ‘Is 

there an underlying process’ worthy of further investigation. 

We wish to emphasise that the above comments, based on the mean dentine values at each 

ablation point, are speculative but draw attention to the potential application of higher precision 

laser ablation studies. One way of increasing precision would be to use a larger diameter laser beam, 

thereby increasing the signal/background ratio but only at the expense of poorer age resolution. 

Another way would be to use laser ablation coupled to a multicollector ICP-MS. It comes down to a 

trade off between precision (typically <0.1%) obtained for the analysis of solutions prepared by the 

dissolution of dental tissue by thermal ionization mass spectrometry or multicollector ICP-MS 

(Kamenov and Gulson, 2014), and a lower precision (>0.2%) obtained by single collector LA-ICP-MS 

(this study) for detailed time-scale chronologies.  

 
4.4 Source Apportionment 
 
Environmental Pb is a multi-component mix of discrete sources some of which may have greater or 

lesser numerical control on the bulk isotopic composition. To deconvolute the individual sources 

requires high precision analyses and a reference database of the most likely sources. Ideally this is 

undertaken using all four Pb isotopes; expressed conventionally as 208Pb/204Pb, 207Pb/204Pb, 

206Pb/204Pb ratios. This affords a reliable test for multiple sources and mixing relationships (Ellam, 

2010). Without the minor 204Pb isotope, the resultant three isotopes, and ratios 208Pb/206Pb, 

207Pb/206Pb, can only used to model binary mixing with isotopic fields distributed along linear arrays. 

This is the case for our study. Nevertheless, as discussed below, one can eliminate possible sources 

and conclude ‘best fit’ scenarios. Figure 3 brings together data for the Newcastle and Billingham 

children, data for the most likely sources of environmental Pb and relevant historical data.  

From this simple bivariate graph, it can be seen that the Newcastle and Billingham teeth occupy 

different isotopic fields. Of possible anthropogenic sources, coal is unlikely to account for the 
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observed range of dentine values. For more than 150 years, NE England has been an important coal 

mining region and until recently, mines supplied several local coal-fired power stations. Since 2000, 

UK coal production has declined dramatically and more than 50% of the coal now used is imported 

from Columbia, USA, Australia and Russia (Kerai, 2013). In general, both local and imported coals 

have 208Pb/206Pb ratios <2.08 and 207Pb/206Pb ratios <0.85 (Shepherd et al., 2009; Farmer et al., 1999; 

Diaz-Somoano et al., 2007).   

All 4 Billingham molars (including 3 Newcastle incisors) plot within or strongly overlap the isotopic 

domain for UK and western European airborne particulates; sometimes referred to as ‘diffuse 

pollution’. Following the withdrawal of leaded petrol, the importance of industrially generated air 

borne particulates as a source of Pb has been documented by several European studies. National 

statistics compiled by MacCarthy et al. (2012) indicate that from 2001-2003 industrial processes and 

industrial combustion accounted for >80% of total lead emissions with transport emissions reduced 

to <2%. In France, industrial aerosols sampled in 2004 had 208Pb/206Pb, 207Pb/206Pb ratios of 2.112-

2.093 and 0.874-0.858 respectively (Widory et al., 2004). A slightly wider range (208Pb/206Pb 2.125-

2.106, 207Pb/206Pb 0.885-0.866) was reported by Bollhofer et al. (2001) for 1994-1998; the higher 

values corresponding to a tail-off in the use of leaded petrol. Whilst in central London (2000-2001), 

Noble et al. (2008) found values (208Pb/206Pb 2.123-2.109, 207Pb/206Pb 0.881-0.868) for airborne 

particulates indistinguishable from those in western Europe. We contend therefore that the 

similarity between airborne particulates and the mean (±2σ) range of 208Pb/206Pb ratios (2.126-2.080) 

and 207Pb/206Pb ratios (0.879-0.856) for the Billingham molars suggests that regional diffuse pollution 

was probably the principal source of Pb to which this cohort was exposed.  

By contrast, analyses for the Newcastle incisors are distributed along an array projecting from the 

field for airborne particulates to the field for UK leaded petrol (Sugden et al., 1993; Monna et al., 

1997). In the absence of significant contributions of Pb from other sources, we believe the analyses 

lie on a mixing line between industrial aerosols and leaded petrol; the cluster having the higher 

208Pb/206Pb, 208Pb/206Pb ratios corresponding to a petrol Pb component of 30-45%. Because early 

childhood for this cohort (1997-99) corresponds to the final sales of leaded petrol in the UK, we are 

unable to say whether this is an environmental legacy of leaded petrol (MacKinnon et al., 2011) or 

concurrent exposure to leaded petrol emissions. Whichever pathway applies, the evidence implies 

exposure to a significant component of petrol Pb within the children’s residential environment. The 

variability shown by the Newcastle cohort ( a subset of the Tooth Fairy study)  is in keeping with the 

conclusions of Hodgson et al. (2015) which drew attention to the wide range of differing exposure 

levels and/or exposure sources across this population.      
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For children exposed to environmental Pb in the 1980’s, contemporary blood Pb data provide a 

useful comparison.  Delves and Campbell (1993) report a mean blood Pb 207Pb/206Pb ratio of 0.889 

for children living in inner London (1981-82). This value, as seen in Figure 3, falls within the  upper 

range for the Newcastle cohort and which, according to their modelling, equates to a petrol 

contribution of 30% to total blood Pb; a percentage in good agreement with our own estimate. From 

a greater historical perspective, analyses of human dental enamel (1-19thcen AD) define a very 

narrow range of 207Pb/206Pb ratios (0.855-0.840) consistent with exposure to lead derived almost 

exclusively from indigenous UK lead ores (Farmer et al., 2006; Millard et al., 2014; Montgomery et 

al., 2010; Rohl, 1996). These low ratios then persist until the introduction of leaded petrol in the mid 

20th century. 

 

Lacking data for the most common sources of Pb within the home environment (household dust, 

diet, drinking water) and limited by the small number of samples included in this pilot study, we are 

unable to critically assess possible exposure pathways. However, given that the isotopic ratios for 

both cohorts can be linked to domains characterised by airborne Pb emissions, it is highly likely that 

inhalation and/or ingestion of particulates is a major factor in determining the concentration and 

isotopic composition of Pb in the dentine of their deciduous teeth. This conclusion is consistent with 

the extensive study of lead in modern teeth from Europe, North and South America, and Australia 

carried out by Kamenov and Gulson (2014) which demonstrated an unequivocal isotopic link 

between tooth enamel and leaded petrol emissions. Together, these two studies reinforce the view 

that inhalation and ingestion of airborne particulates constitute exposure pathways equal to, if not 

more important than traditional pathways such as diet and drinking water.         

 

5. Conclusions 
 
Our study successfully demonstrates that the LA-ICP-MS analysis of deciduous teeth when combined 

with dental histology constitutes a powerful tool for acquiring  information on the intensity and fine 

scale chronology (1-2 monthly intervals) of pre-natal and early life exposure to Pb. Dentine is the 

preferred tissue, having a regular and measurable rate of secretion allowing age-related isotope 

ratio measurements to be made from ‘in utero’ to the cessation of primary dentine growth 

depending upon the precision and degree of discrimination required.  Short duration-high intensity 

exposure events can easily be identified and assessed with respect to possible changes in the source 

of lead. The study also confirms that dentine maturation has no influence on the isotopic 

composition of Pb and that 208Pb/206Pb, 207Pb/206Pb measurements provide robust proxies for blood 

Pb. Problems we encountered  are not considered an intrinsic weakness of the methodology; simply 
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a consequence of the analysis of teeth having very low concentrations of Pb. For children exposed to 

higher levels of environmental Pb, the analytical errors will be correspondingly less, thus giving 

greater confidence to the interpretation of changes during the fetal and early years of childhood. 

Whilst unable to prove isotopic differences between pre- and post-natal dentine for the same child, 

there are significant ‘between-cohort’ differences in the source apportionment of Pb.  The post-2001 

Billingham cohort have an isotope signature consistent with exposure to industrially generated 

airborne particulates whereas the earlier post-1997 Newcastle cohort are characterised by exposure 

to pollution comprising a mix of leaded petrol emissions and industrial particulates. Lacking evidence 

for a petrol lead component in the dentine of children from Billingham, we conclude that ‘legacy 

lead’, if present, is very minor. Extending this methodology to larger cohort studies will depend on 

improvements in the ease of laser ablation (e.g. software programmable ablation) and developing a 

protocol that simplifies the histological analysis. Both lines of research are currently under 

investigation. The importance and value of a high resolution time frame cannot be understated. It 

allows for better assessment of the association between dentine Pb levels, residential, dietary and 

lifestyle characteristics, and in doing so focuses attention on the most likely exposure pathways.   
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TABLES 
Table 1. Timeframe of exposure for Newcastle and Billingham cohorts with reference to UK leaded 

petrol 

 
Table 2. Summary statistics for isotope measurements in enamel and dentine 
 
Table 3. Modern and historical changes in lead concentrations in dentine, enamel and whole teeth 
 
FIGURES 
Figure 1. 

Illustrative cross section through a deciduous molar showing the major tissue compartments and 
histological features referred to in the text. Key: E enamel;  D dentine; PC pulp cavity; EDJ enamel-
dentine junction; DPJ  dentine-pulp junction; NLe neonatal line in enamel. Note: The corresponding 
neonatal line in dentine, though less prominent than the NLe in this specimen, generally follows the 
contours of the EDJ some 10 to several hundred microns beneath the EDJ. 
 
Figures 2a-d. 

Graphs showing co-variation in 208Pb/206Pb and Pb concentration (µg/g). Ablation sequence 1-n along 
the x axis. Vertical grey lines are the 208Pb/206Pb 2σ error bars. Filled circles  208Pb/206Pb ratios in 
dentine, open circles in enamel. Filled squares Pb concentrations (µg/g) in dentine, open squares in 
enamel. 

2a. Molar HT 05-54 Billingham cohort. Enamel/Dentine junction is between points 4 and 5. 

2b. Incisor 033-04B Newcastle cohort. Enamel/Dentine junction is between points 2 and 3. 

2c. Molar HT 12-84 Billingham cohort. Enamel/Dentine junction is between points 6 and 7. 

2d. Incisor 053-23 Newcastle cohort. Enamel/Dentine junction is between points 1 and 2. 
  
Figure 3. 

Source apportionment graph (208Pb/206Pb -207Pb/206Pb) showing the relationship between 
deciduous tooth dentine and major sources of UK environmental lead. 
Solid filled diamonds - Newcastle cohort (incisors). Open circles - Billingham cohort (molars). 
Light grey errors bars are the 2σ uncertainty limits. Lead ores - indigenous lead ores from 
the north of England Pennine orefields (Shepherd et al., 2009; Rohl, 1996). Coal – local and 
imported coal (Shepherd et al., 2009; Diaz-Somoano et al., 2007). Range 207Pb/206Pb for 
historic tooth enamel (Montgomery et al., 2010). Range 207Pb/206Pb for blood Pb for children 
living in inner London from 1981-82 (Delves and Campbell, 1993).  
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1   Timeframe of exposure for Newcastle and Billingham cohorts with reference to UK leaded 

petrol 

 

    
  Newcastle  Billingham  
    
1997 1 D.O.B.  
1998    
1999 2   
2000 3   
2001   D.O.B. 
2002    
2003    
2004    
2005  Exfoliated  
2006    
2007    
2008    
2009   Extracted 
    
1. From 1990 onwards sales of leaded petrol decreased 
2. Leaded petrol withdrawn from UK market in 1999 
but not fully banned until mid 2000 
3. 1990 to 2000 UK traffic-related atmospheric lead 
emissions decreased by >99% (MacCarthy et al., 2012) 
D.O.B.  Date of birth 
Exfoliated    Deciduous incisors naturally exfoliated 
Extracted    Deciduous molars surgically extracted 

Table



 

 

 

           
Cohort Tooth  Enamel  Enamel  Dentine  Dentine  

   
207

Pb/
206

Pb 
mean 

2σ 
% 

208
Pb/

206
Pb 

mean 
2σ 
% 

207
Pb/

206
Pb 

mean 
2σ 
% 

208
Pb/

206
Pb 

mean 
2σ 
% 

Newcastle 033-04B I 0.880 1.9 2.096 2.0 0.895 1.0 2.142 1.0 
Newcastle 040-07 I 0.871 1.7 2.107 1.5 0.874 0.8 2.115 0.8 

Newcastle 009-09 I 0.895 1.5 2.145 1.6 0.900 1.0 2.148 1.0 

Newcastle 053-23 I 0.866 1.5 2.097 1.6 0.871 0.6 2.108 0.6 

Newcastle 006-15 I 0.875 1.4 2.131 1.3 0.891 0.7 2.138 0.8 

Newcastle 067-23 I 0.873 1.5 2.094 1.6 0.865 0.8 2.107 0.8 

Billingham HT-14-74 M 0.875 2.1 2.102 1.8 0.867 1.5 2.103 1.4 

Billingham HT-12-84 M 0.874 2.4 2.099 2.2 0.870 1.6 2.108 1.5 

Billingham HT-13-84 M 0.865 1.7 2.109 1.7 0.868 1.0 2.096 0.8 

Billingham HT-05-54 M 0.859 3.1 2.087 2.5 0.865 1.2 2.094 1.2 

           
I    Incisor M    Molar  2σ %   2 sigma errors      

 

 

Table 2   Summary statistics for isotope ratio measurements in enamel and dentine 

Table



 

 

      

Location Childhood Dentine   Enamel  Whole tooth  Ref 

 Exposure mean Pb mean Pb mean Pb  

   (µg/g)  (µg/g)  (µg/g)  

      

Boston, USA 1960's 16.9  14.6 1 

Iceland (rural) 1960's 5.4  4.6 1 

Boston, USA early 1970's 12.7  10.9 2 

London, UK 1970s   5.1 3 

Dusseldorf, Germany 1970's   6.2 4 

Edinburgh, Scotland late 1970's   9.3 5 

Norway (urban) 1970's   3.8 6 

Sassuolo, Italy early 1980's   6.1 7 

Boston, USA  1980's 2.8  2.4 8 

Broken Hill, Australia late 1980's  1.2**  9 

Germany 1980's   2.1 10 

Edinburgh, Scotland 1980's    3.2 11 

Wupperthal, RSA (rural) 1990's 2.2 0.33 1.9 12 

Norway 1990's   1.6 13 

Broken Hill, Australia late 1990's 0.39
b
** 0.11

b
** 0.33 14 

Mexico City, Mexico late 1990's 0.27
b*  0.25 15 

England, UK 1997-1999
a 0.26 0.05 0.24 16 

England, UK 2001-2003
a 0.09 0.03 0.08 16 

      

Britain 14-15th cen   4.69*  17 

Britain 1-11th cen   1.78*  17 

Britain Prehistoric  0.07*  17 

 

* median values;  **  low exposure population; 
 a 

first 3years of childhood;
  b

 post- 

natal; Values in italics calculated as [dentine x 0.86] after Grobler et al. 2000   

 
1 Shapiro et al. 1973; 2 Needleman et al. 1979; 3 Smith et al. 1983; 4 Winneke et al. 
1983; 5 Fulton et al. 1989; 6 Fosse and Justesen 1978; 7 Bergomi et al. 1989; 8 
Rabinowitz et al. 1989; 9 Gulson 1996; 10 Begerow et al. 1994; 11 Farmer et al. 1994; 
12 Grobler et al. 2000; 13 Tvinnereim et al. 1997; 14 Arora et al. 2006; 15 Arora et al. 
2014; 16 This study; 17 Montgomery et al. 2010. 

 

Table 3  Modern and historical changes in lead concentration in  dentine, enamel and whole teeth 

 

Table



 

 

 

 

 

Figure 1.  Illustrative cross section through a deciduous molar showing the major tissue 
compartments and histological features referred to in the text. Key: E enamel;  D dentine; PC pulp 
cavity; EDJ enamel-dentine junction; DPJ  dentine-pulp junction; NLe neonatal line in enamel. Note: 
The corresponding neonatal line in dentine, though less prominent than the NLe in this specimen, 
generally follows the contours of the EDJ some 10 to several hundred microns beneath the EDJ. 
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Figure 2a. Molar HT 05-54 Billingham cohort. Enamel/Dentine junction is between points 4 and 5. 
 

 
 
Figures 2a-d. 

Graphs showing co-variation in 208Pb/206Pb and Pb concentration (µg/g). Ablation sequence 1-n along 
the x axis. Vertical grey lines are the 208Pb/206Pb 2σ error bars. Filled circles  208Pb/206Pb ratios in 
dentine, open circles in enamel. Filled squares Pb concentrations (µg/g) in dentine, open squares in 
enamel. 
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Figure 2b. Incisor 033-04B Newcastle cohort. Enamel/Dentine junction is between points 2 and 3. 
 

 
 
Figures 2a-d. 

Graphs showing co-variation in 208Pb/206Pb and Pb concentration (µg/g). Ablation sequence 1-n along 
the x axis. Vertical grey lines are the 208Pb/206Pb 2σ error bars. Filled circles  208Pb/206Pb ratios in 
dentine, open circles in enamel. Filled squares Pb concentrations (µg/g) in dentine, open squares in 
enamel. 
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Figure 2c. Molar HT 12-84 Billingham cohort. Enamel/Dentine junction is between points 6 and 7. 

 

 

Figures 2a-d. 

Graphs showing co-variation in 208Pb/206Pb and Pb concentration (µg/g). Ablation sequence 1-n along 
the x axis. Vertical grey lines are the 208Pb/206Pb 2σ error bars. Filled circles  208Pb/206Pb ratios in 
dentine, open circles in enamel. Filled squares Pb concentrations (µg/g) in dentine, open squares in 
enamel. 
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Figure 2d. Incisor 053-23 Newcastle cohort. Enamel/Dentine junction is between points 1 and 2. 
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Figures 2a-d. 

Graphs showing co-variation in 208Pb/206Pb and Pb concentration (µg/g). Ablation sequence 1-n along 
the x axis. Vertical grey lines are the 208Pb/206Pb 2σ error bars. Filled circles  208Pb/206Pb ratios in 
dentine, open circles in enamel. Filled squares Pb concentrations (µg/g) in dentine, open squares in 
enamel. 
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 Figure 3. Source apportionment graph showing the relationship between deciduous 

tooth dentine and major sources of UK environmental lead. 

 Solid filled diamonds - Newcastle cohort (incisors). Open circles - Billingham cohort 

(molars). Light grey errors bars are the 2σ uncertainty limits. Lead ores - indigenous 

lead ores from the north of England Pennine orefields (Shepherd et al. 2009; Rohl 

1996). Coal – local and imported coal  (Shepherd et al. 2009; Diaz-Somoano et al. 

2007). Range 207Pb/206Pb for historic tooth enamel (Montgomery et al. 2010). Range 
207Pb/206Pb  blood Pb - children living in inner London from 1981-82 (Delves and 

Campbell 1983).  
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