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1 Introduction

Compartment models play an important role in the modeling of many biologi-
cal systems ranging from pharmacokinetics to ecology [1,11,12]. Key values in
understanding the dynamics of these systems are the transit time: the mean
time a particle spends in the compartmental system measured as the mean
time from entry into the system to leaving the system [4,9], and the mean age:
the mean age of particles still in the system [4,9]. It is well known that these
quantities need not be the same [4,9,26].

We are motivated by an interest in studying the dynamics of the terres-
trial carbon cycle which is typically modeled as a number of discrete pools
of carbon in plant biomass, litter and soil organic matter. Many of the best
studied models of the dynamics of carbon are linear, which reflects the fact
that changes in carbon pools are proportional to the pool size [5]. Additionally,
most analyses make the further assumption that all parameters describing the
dynamics (and the input fluxes) are constant in time, leading to a model in the
form of an autonomous linear differential equation. In this autonomous case,
it is possible to derive analytic formulae giving expressions for the transit time
[10,17]. These formulae for transit time are given in terms of (constant) trans-
fer coefficients among compartments and analogous formulae are available for
the mean age of particles in the system.

Many applications of models of terrestrial carbon relate to situations in
which constant model parameters are replaced by time-dependent functions.
Perhaps the most well-known examples are studies of how terrestrial carbon
dynamics respond to climate change. In these, it is often assumed that the
specific rates (per unit carbon) of carbon inputs and losses from the system
change over time as a function of changes in climate, such as temperature. For
example, increases in temperature are normally assumed to increase the rates
of soil decomposition [14,19,26]. As a consequence, the compartmental models
of interest are nonautonomous, i.e. they depend on time [15,16,30]. Nonau-
tonomous compartmental systems are special cases of linear nonautonomous
differential equations [13], which, in contrast to the linear autonomous case,
cannot be solved analytically in general. Yet, both the mean age of particles
in the system and the transit time remain of great interest for these time-
dependent systems, as both quantities can be potentially measured in the
actual systems being modeled [26,29].

In this paper, we develop a theory for transit times and mean ages of mass
in nonautonomous compartmental systems. As noted in one of the first papers
to study transit time [4], there is obviously a close connection between age
distribution and transit time in compartment models. We will build on this
relationship to develop an approach for understanding the definition of tran-
sit time. We define a time-dependent version of transit time as the mean age
of mass leaving the compartmental system. We use a time-dependent version
of the McKendrick–von Förster equation [6,18,28], the classic first-order par-
tial differential equation describing age distributions, to prove that the mean
age of mass satisfies an (inhomogeneous) linear nonautonomous differential
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equation. We show that under weak conditions, this equation is exponentially
stable. Starting with demographic models highlights another important aspect
of our approach. As is well known, solutions of demographic models depend on
initial conditions, so quantities like the mean age and transit time also depend
on initial conditions, but conventional definitions of these quantities ignore
the influence of the initial conditions. For this reason, our nonautonomous
approach also provides additional insight for autonomous compartmental sys-
tems that are not in equilibrium.

We apply the theory we have developed to numerically study transit times
for a nine-dimensional compartmental system model of the carbon cycle, which
is a modified version of the Carnegie–Ames–Stanford approach (CASA) model
[7,21,24]. We compare our nonautonomous quantities to the classical notion
of transit time for autonomous systems, where we freeze the nonautonomous
system in time to obtain an autonomous system, and we assume that we are
in equilibrium. Our simulations illustrate the different and sometimes diverg-
ing trajectories of the autonomous and nonautonomous quantities over time.
Our results demonstrate the necessity of our theory for the computation of
transit times in nonautonomous compartmental systems and in autonomous
compartmental systems that are not in equilibrium.

This paper is organized as follows. In Section 2, we first review the the-
ory of transit times for autonomous compartmental systems, and we provide a
heuristic derivation of the transit time formula. We then define nonautonomous
compartmental systems in Section 3. In Section 4, we prove that under the
assumption that the compartmental system is lower block triangular, and the
diagonal blocks a diagonally dominant, the nonautonomous compartmental
system is exponentially stable. In Section 5, we prove that the mean ages satisfy
a linear nonautonomous differential equation, and we then use the stability cri-
terion from Section 4 to prove exponential stability of the mean age equation.
We define the concept of a transit time for nonautonomous compartmental
systems in Section 6. In Section 7, we show that our nonautonomous theory is
consistent with the autonomous case, in the sense that we get exactly the well-
known autonomous transit time formula when applying the nonautonomous
transit time to an autonomous system. Finally, in Section 8, we apply the the-
ory to compute transit times for a nonautonomous compartmental model of
the carbon cycle, which is a simplified version of the Carnegie–Ames–Stanford
approach (CASA) model.

2 Transit times and mean ages for autonomous compartmental
systems

An open (linear) autonomous compartmental system with both inputs and
outputs [1,11,12] and with d pools is described by an inhomogeneous linear
differential equation

ẋ = Bx+ s , (1)
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where B ∈ Rd×d is an invertible matrix, 0 ̸= s ∈ [0,∞)d, and the entries
{bij}i,j∈{1,...,d} of the matrix B satisfy

• bii < 0 for all i ∈ {1, . . . , d},
• bij ≥ 0 for all i ̸= j ∈ {1, . . . , d},
•
∑d

i=1 bij ≤ 0 for all j ∈ {1, . . . , d}.
The i-th row of the matrix B describes the dynamics of the mass in pool i:

bij is the rate at which mass moves from pool j to pool i, and bii is the rate at
which mass leaves the pool i which includes transfer to other pools and losses
from the system. The flux at which mass enters from outside the system to
pool i is given by si.

We assume that the homogeneous linear system ẋ = Bx is exponen-
tially stable, i.e. all eigenvalues of B have negative real parts (this is fulfilled
e.g. when the matrix B is strictly diagonally dominant). This means that (1)
has the exponentially stable equilibrium x∗ = −B−1s.

The concept of transit time for compartmental systems describes the mean
time a particle spends in the compartmental system before it is released. There
is a huge amount of literature on this topic, see e.g. [1,4,9,10,17], but to our
knowledge, the following simple derivation of the transit time formula has not
been written down before.

Define ri as the mean (remaining) transit time in the system for a particle
that has entered pool i either from outside the system or from another pool,
and note that the transit time in pool i for a particle that has entered pool i
either from outside the system or from another pool is given by − 1

bii
. Let pij

be the probability that a particle that enters pool i goes next to pool j, and
note that

pij = −bji
bii

.

Next, note that the transit times for particles entering any pool i must
satisfy the equation

ri = − 1

bii
+
∑
j ̸=i

pijrj ,

reflecting the fact that a particle in pool i spends the average time − 1
bii

in
pool i, before it either leaves the system or moves with the probability pij to
pool j, after which it spends the mean time rj before it leaves the system.
This reads as

r =


0 p12 p1d
p21 0 p2d

. . .

pd1 pd2 0

 r −


1
b11
...
1

bdd

 ,

and multiplying the i-th row of this equation with −bii yields

0 = BT r + (1, . . . , 1)T .

Hence rT = −(1, . . . , 1)B−1.
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Let βi be the fraction of particles that enter the system from outside di-
rectly into pool i, i.e.

βi =
si∑d
i=1 si

for all i ∈ {1, . . . , d} ,

and let β = (β1, . . . , βd)
T . Then the transit time for the whole system is given

by

R = −rTβ = −(1, . . . , 1)B−1β . (2)

Note that this transit time is equal to the turnover time U =
(1,...,1)(x∗

1 ,...,x
∗
d)

T

(1,...,1)(s1,...,sd)T

(see [4]), which follows directly from x∗ = −B−1s.

We will show later that if the linear compartmental system (1) is in the
equilibrium x∗ = −B−1s, then the mean age of the particles in the system is
given by

M = −(1, . . . , 1)B−1η , (3)

where η = (η1, . . . , ηd)
T , defined by

ηi =
x∗
i∑d

j=1 x
∗
j

for all i ∈ {1, . . . , d} ,

describes how mass is distributed when the system is in equilibrium. It is well-
known that the mean ageM is unequal to the transit time R [4,26], and we will
demonstrate this now by means of two very simple compartmental systems.

Example 1 (Transit times and mean ages) Consider the two compartmental
systems

ẋ =

(
−1 2
0.5 −2

)
x+

(
1
0

)
(4)

and

ẋ =

(
−1 1
1 −2

)
x+

(
1
0

)
. (5)

It is easy to see that the transit times r1 and r2 for the two pools satisfies
r1 < r2 for (4) and r1 > r2 for (5). This follows either from using the above
explicit formula for the vector r, or by considering the fact that particles can
only leave from pool 1 in (4) and from pool 2 in (5). Since the transit time
is given in both cases by r1, and the mean age is a convex combination of r1
and r2, the transit time will be smaller than the mean age in (4), in contrast
to the situation in (5).
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3 Nonautonomous compartmental systems

In contrast to the autonomous case, both the coefficient matrixB and the input
vector s of a nonautonomous compartmental system are allowed to depend on
time.

Definition 1 (Nonautonomous compartmental system) Let I :=
(τ,∞) with τ ∈ {−∞} ∪ R be a time interval, B : I → Rd×d be a bounded
continuous function of invertible matrices and s : I → [0,∞)d be a bounded
continuous function. A (linear) nonautonomous compartmental system with d
pools is given by an inhomogeneous linear nonautonomous differential equation

ẋ = B(t)x+ s(t) , (6)

where we assume that the entries {bij(t)}i,j∈{1,...,d} of the matrix B(t) sat-
isfy

• bii(t) < 0 for all i ∈ {1, . . . , d} and t ∈ I,
• bij(t) ≥ 0 for all i ̸= j ∈ {1, . . . , d} and t ∈ I,

•
∑d

i=1 bij(t) ≤ 0 for all j ∈ {1, . . . , d} and t ∈ I.

Let Φ : I × I → Rd×d denote the transition operator of the corresponding
homogeneous equation ẋ = B(t)x, i.e. the function t 7→ Φ(t, t0)x0 is the solu-
tion to ẋ = B(t)x fulfilling the initial condition x(t0) = x0. Then the maximal
solution to (6) satisfying the initial condition x(t0) = x0 is given by

φ(t, t0, x0) := Φ(t, t0)x0 +

∫ t

t0

Φ(t, u)s(u) du for all t ∈ I . (7)

In contrast to the autonomous case, nonautonomous compartmental sys-
tems of dimension two or higher are not explicitly solvable in general. Solutions
can be obtained for systems with no feedbacks between pools, as the following
example demonstrates.

Example 2 (Explicitly solvable nonautonomous two-pool model) The nonau-
tonomous compartmental system

ẋ =

(
b11(t) 0
b21(t) b22(t)

)
x+

(
0

s2(t)

)
,

where b11(t), b22(t) < 0, b21(t) ≥ 0 and s2(t) > 0 for all t ∈ I, can be solved
explicitly as follows: the general solution of the first equation is given by

x1(t) = x0
1 exp

( ∫ t

t0
b11(u) du

)
,

and thus, the second equation reads as

ẋ2 = b22(t)x2 + b21(t)x
0
1 exp

( ∫ t

t0
b11(u) du

)
+ s2(t) ,

and can be solved using (7), since the equation is one-dimensional.
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4 Exponential stability of nonautonomous compartmental systems

In this section, we provide a sufficient condition for global exponential stability
of the nonautonomous compartmental system (6). This criterion will concern
only the homogeneous part of (6), i.e. the matrix-valued function B, from
which stability for the inhomogeneous equation follows. Since the result holds
also for linear systems which are not compartmental systems, we formulate it
more generally.

Theorem 1 (Sufficient condition for exponential stability) Consider
the linear nonautonomous differential equation

ẋ = B(t)x (8)

with transition operator Φ : I × I → Rd×d. Suppose that the function B is of
the form

B(t) =


B11(t) 0 0 0
B21(t) B22(t) 0 0
B31(t) B32(t) B33(t) 0

. . .

Bm1(t) Bm2(t) Bm3(t) Bmm(t)

 (9)

for m ≥ 1 with bounded functions Bij : I → Rdi×dj . Note that
∑m

i=1 di = d.
We assume that the linear subsystems ẋn = Bnn(t)xn, n ∈ {1, . . . ,m}, are
strictly diagonally dominant, i.e. there exists a δ > 0 such that

(i) (Bnn(t))ii < 0 for all t ∈ I and i ∈ {1, . . . , dn},
(ii) (Bnn(t))ij ≥ 0 for all t ∈ I and i ̸= j ∈ {1, . . . , dn},
(iii)

∑dn

j=1(Bnn(t))ij ≤ −δ for all t ∈ I and i ∈ {1, . . . , dn}.
Then the linear system (8) is exponentially stable, i.e. there exist constants
K ≥ 1 and γ > 0 such that

∥Φ(t, t0)∥ ≤ Ke−γ(t−t0) for all t ≥ t0 > τ . (10)

Proof Assume first that I is bounded below, and consider the linear systems

ẋ = Bii(t)x (11)

for each i ∈ {1, . . . ,m}. These systems are strictly diagonally dominant, and
it follows from [8, Proposition 3, page 55] that there exist Ki ≥ 1 and γi > 0
such that

∥Φi(t, t0)∥ ≤ Kie
−γi(t−t0) for all t ≥ t0 > τ ,

where Φi is the transition operator of (11). Next [22, Theorem 4.1] or [3,
p. 540] yields that the dichotomy spectrum of (8) is bounded above by
−mini∈{1,...,m} γi. This in turn implies the claimed estimate (10). In case
I = R, the results from [22, Theorem 4.1] and [3, p. 540] are not applica-
ble directly, since they require the system to be defined on a half line, but
the result follows by considering the two time intervals (−∞, 0) and (0,∞)
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separately (note that we are not interested in the dichotomy spectrum for the
entire line, which is not determined by the block diagonal system; we only
require an upper bound, which we get from the block diagonal system).

The estimate (10) for the homogeneous system (8) implies that any two so-
lutions of the compartmental system (6) converge to each other exponentially.
More precisely, given two solutions µ1, µ2 : I → Rd of (6), then

∥µ1(t)− µ2(t)∥ ≤ Ke−γ(t−t0)∥µ1(t0)− µ2(t0)∥ for all t ≥ t0 > τ ,

which follows from the fact that the difference of these two solutions is a
solution of the homogeneous system (8), for which the estimate (10) holds.
This implies that any solution is forward attracting, and in case the interval I
is unbounded below, then there also exists a unique pullback attracting solution

ν(t) :=

∫ t

−∞
Φ(t, u)s(u) du for all t ∈ I , (12)

see [2]. This solution pullback attracts bounded sets B ⊂ Rd, in the sense of

lim
t0→−∞

dist
(
φ(t, t0, B), {ν(t)}

)
= 0 for all t ∈ I ,

where φ denotes the maximal solution defined in (7) and dist denotes the
Hausdorff distance. We refer to [13,23] for an introduction to forward and
pullback attractors of nonautonomous dynamical systems.

5 The mean age system

We prove in this section that the mean ages of mass in a nonautonomous com-
partmental system are solutions of a linear nonautonomous differential equa-
tion, which we call the mean age system. We derive this result from the evo-
lution of age distributions, given by the well-known McKendrick–von Förster
equation [18,6,28], which is a linear first order partial differential equation. We
also prove that the mean age system is exponentially stable under additional
weak assumptions, by applying the theory developed in Section 4.

The mean age system is pivotal for the analysis of transit times for nonau-
tonomous compartmental systems, since in order to compute the average time
the mass spends in the system, we do not need to look at the full age distri-
bution of ages, but only at the mean ages.

Let pi(a, t) be the density function on age a for the mass in pool i at
time t, where the age is the time since the mass entered the system. Note
that the following formulation is valid in principle even if all rates are age-
dependent, i.e. bij also depends on a, but we will not treat this situation here.
The McKendrick–von Förster equation is given by

∂pi
∂t

+
∂pi
∂a

=

d∑
j=1

bij(t)pj (13)
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with boundary condition

pi(0, t) = si(t) . (14)

Note that one also needs to specify initial conditions pi(a, 0).
A componentwise solution can be written as follows. Note that if there are

no loops, the solution is explicit, otherwise it is only implicit. The formula for
t > a is

pi(t, a) = si(t− a) exp(
∫ t

t−a
bii(u) du)

+
∑
j ̸=i

∫ a

0

(
bij(t− σ)pj(a− σ, t− σ) exp(

∫ t

t−σ
bii(u) du)

)
dσ .

Note that an analogous formula for a < t exists.
We are particularly interested in the transit time of (6) at a particular

time t, which corresponds to the mean age of mass leaving the system at time
t. For this purpose, we do not need the full age distribution determined by
(13), since the situation is fully described by the mean age of mass in pool i,
denoted as āi(t). The following theorem says that the evolution of the mean
ages is determined by an ordinary differential equation.

Theorem 2 (Mean age system) Consider the nonautonomous compart-
mental system (6) with a fixed solution t 7→ (x1(t), . . . , xd(t)) of positive en-
tries. Let pi(a, t) be the density function on age a for the mass in pool i at
time t (note that

∫∞
0

pi(a, t) da = xi(t)), and define the mean age of mass in
pool i by

āi(t) =

∫∞
0

api(a, t) da∫∞
0

pi(a, t) da
for all i ∈ {1, . . . , d} .

Then the mean ages ā(t) = (ā1(t), . . . , ād(t)) solve the ordinary differential
equation

˙̄a = g(t, x, ā) , (15)

with

gi(t, x, ā) = 1 +

∑d
j=1(āj − āi)bij(t)xj(t)− āisi(t)

xi(t)
for all i ∈ {1, . . . , d} .

Proof By using
∫∞
0

a∂pi

∂a (t, a) da = −xi(t) (integration by parts), it follows
that

˙̄ai(t) =
xi(t)

∫∞
0

a∂pi

∂t (t, a) da− āi(t)xi(t)ẋi(t)

x2
i (t)

=
xi(t)

∫∞
0

a
(
−∂pi

∂a (t, a) +
∑d

j=1 bij(t)pj(t, a)
)
da− āi(t)xi(t)ẋi(t)

x2
i (t)

=
x2
i (t) +

∑d
j=1 bij(t)xi(t)

∫∞
0

apj(t, a) da− āi(t)xi(t)ẋi(t)

x2
i (t)
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= 1 +

∑d
j=1 bij(t)xj(t)āj(t)− āi(t)

(∑d
j=1 bij(t)xj(t) + si(t)

)
xi(t)

= 1 +

∑d
j=1(āj(t)− āi(t))bij(t)xj − āi(t)si(t)

xi(t)
.

This finishes the proof.

Combining the equations (6) and (15) yields(
ẋ
˙̄a

)
=

(
B(t)x+ s(t)
g(t, x, ā)

)
, (16)

which is a 2d-dimensional ordinary differential equation of skew product type,
i.e. the x-equation does not depend on ā, but the equation for ā depends
on x. Note that (16) is a nonlinear equation, but given a solution x(t) =
(x1(t), . . . , xd(t)) of (6), the age equation (15) is an inhomogeneous linear
nonautonomous differential equation, which reads as

˙̄a = A(t, x(t))ā+ (1, . . . , 1)T ,

where

A(t,x(t))=X(t)−1


−s1(t)−

∑
j ̸=1 b1j(t)xj(t) b12(t)x2(t) b1d(t)xd(t)

b21(t)x1(t) −s2(t)−
∑

j ̸=2 b2j(t)xj(t) b2d(t)xd(t)

. . .

bd1(t)x1(t) bd2(t)x2(t) −sd(t)−
∑

j ̸=d bdj(t)xj(t)



with X(t) := diag(x1(t), . . . , xd(t)) for all t ∈ I.

We will show now that under additional weak assumptions, the mean age
equation is exponentially stable.

Theorem 3 (Exponential stability of the mean age system) Consider
the nonautonomous compartmental system (6) with a fixed solution t 7→ x(t) =
(x1(t), . . . , xd(t)) of positive entries that are bounded and bounded away from
zero, and suppose that (6) satisfies the assumptions of Theorem 1 with δ > 0.
In addition, assume that

(a) si(t) ≥ δ for all t ∈ I and i ∈ {1, . . . , d1}, and
(b) for all n ∈ {2, . . . ,m} and i ∈

{
1+

∑n−1
k=1 dk, 2+

∑n−1
k=1 dk, . . . ,

∑n
k=1 dk

}
,

there exists a j ∈ {1, . . . ,
∑n−1

k=1 dk} such that bij(t) ≥ δ for all t ∈ I.

Then the mean age system (15) is exponentially stable. More precisely, there
exist δ̄ ∈ (0, δ) and K̄ > 0 such that the transition operator Ψ : I × I → Rd×d

of the homogenous equation ˙̄a = A(t, x(t))ā satisfies the estimate

∥Ψ(t, t0)∥ ≤ K̄e−δ̄(t−t0) for all t ≥ t0 > τ .
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Proof We show now that the three conditions (i)–(iii) of Theorem 1 are sat-
isfied with δ replaced by δmin{1,mint∈I,i∈{1,...,d} |xi(t)|}. Note first that the
matrix A(t, x(t)) has the same block decomposition as the matrix B(t), which
is described in (9).

Condition (i) of Theorem 1 follows from (a) (in case of n = 1) or (b) (in case
n > 1; note that the sum of the entries in the i-th row of the matrix A(t, x(t))
equals to −si(t), and (b) guarantees that the diagonal entry is negative even
though si(t) might be zero). Condition (ii) of Theorem 1 follows from the fact
that the original system (6) is a compartmental system, and the solution x(t)
of (6) has positive entries. Finally, condition (iii) of Theorem 1 follows from
fact that the sum of the i-th row of the matrix A(t, x(t)) equals to −si(t),
and the positive contribution of at least bij(t)xj(t) ≥ δmint∈I,i∈{1,...,d} |xi(t)|,
with i and j chosen as in (b), will not be considered in the sum in condition
(iii) of Theorem 1 and for this reason contributes negatively to this sum.

A natural choice for the solution t 7→ x(t) in the above theorem is the
exponentially stable solution defined in (12) if the interval I is unbounded
below. If the interval I is unbounded below, this will be the only bounded
solution of the system, i.e. the norm of all other solutions converges to ∞
in the limit t → −∞, so the solution (12) is the only solution to which the
theorem can be applied. However, if the interval I is bounded below, then
all solutions of the nonautonomous compartmental system (6) are bounded
and exponentially stable, and they are also bounded away from zero due to
assumption (a) of Theorem 3.

6 Nonautonomous transit times

We define transit time as the mean age of mass leaving the system at a partic-
ular time t. Note that in our nonautonomous context, this quantity depends
on the actual time t. We also provide a formula that corresponds to the mean
age of mass currently residing in the compartmental system.

Definition 2 (Nonautonomous transit time and mean age) Consider
the skew product system (16) consisting of the nonautonomous compartmental
system (6) and the mean age system (15). The transit time of a solution
(x1(t), . . . , xd(t), ā1(t), . . . , ād(t)), t ∈ I, of this system is then defined as

Rt :=

∑d
i=1 āi(t)xi(t)

∑d
j=1 bji(t)∑d

i=1 xi(t)
∑d

j=1 bji(t)
for all t ∈ I ,

and then mean age of this solution is defined by

Mt :=

∑d
i=1 āi(t)xi(t)∑d

i=1 xi(t)
for all t ∈ I .
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The transit time Rt is the mean age of carbon leaving the system at time
t, where as the mean age Mt is the mean age of carbon in the system at time
t.

Note that, in general, Rt and Mt are different, see Example 1 for the
autonomous case. In the following example, we show that transit times and
mean ages are the same for one-dimensional compartmental systems.

Example 3 (Transit time and mean ages for one-dimensional compartmental
systems) Let I ⊂ R be an interval, and consider the one-dimensional nonau-
tonomous compartmental system

ẋ = b(t)x+ s(t) ,

where b : I → (−∞, 0) and s : I → (0,∞) are bounded continuous functions.
Fix a positive solution t 7→ x(t) of this system. Note that the solution is given
explicitly by

x(t) = x(t, t0, x0) = exp
( ∫ t

t0
b(u) du

)
x0 +

∫ t

t0

exp
( ∫ t0

u
b(v) dv

)
s(u) du , (17)

where t0 and x0 are initial time and condition. Then the mean age equation
is given by

˙̄a = − s(t)

x(t)
ā+ 1 ,

and also this equation can be solved explicitly using (17). Note that, in this
one-dimensional context, the formulae for transit time and mean age from
Definition 2 are given by exactly the solution to this equation:

Rt = Mt = ā(t) for all t ∈ I .

7 Consistency with the autonomous case

In this section, we derive simple expressions for the transit time and mean age
from Definition 2 in the special case of an autonomous compartmental system.
The expression for the autonomous transit time coincides with the heuristically
obtained formula (2), and we confirm the expression for the mean ages stated
in (3).

Consider an autonomous compartmental system

ẋ = Bx+ s (18)

with an invertible matrix B ∈ Rd×d and s ∈ Rd. We assume that the homo-
geneous system ẋ = Bx satisfies the assumptions of Theorems 1 and 3. Note
that (18) has the exponentially stable equilibrium x∗ := −B−1s.
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Lemma 1 Consider the autonomous differential equation (18). Then the
mean age equation (15) for the equilibrium x∗ reads as

˙̄a =
(
X∗)−1

BX∗ā+ (1, . . . , 1)T ,

and has the exponentially stable equilibrium

ā∗ := −
(
X∗)−1

B−1X∗(1, . . . , 1)T ,

where X∗ := diag(x∗
1, . . . , x

∗
d).

Proof Note that the mean age equation (15) is given by

˙̄a =
(
X∗)−1


−s1−

∑
j ̸=1 b1jx

∗
j b12x

∗
2 b1dx

∗
d

b21x
∗
1 −s2−

∑
j ̸=2 b2jx

∗
j b2dx

∗
d

. . .

bd1x
∗
1 bd2x

∗
2 −sd−

∑
j ̸=d bdjx

∗
j

 ā+

1
...
1

 .

Since Bx∗ = −s, we get −si −
∑

j ̸=i bijx
∗
j = biix

∗
i for all i ∈ {1, . . . , d}, so the

mean age equation (15) gets simplified to

˙̄a =
(
X∗)−1


b11x

∗
i b12x

∗
2 b1dx

∗
d

b21x
∗
1 b22x

∗
2 b2dx

∗
d

. . .

bd1x
∗
1 bd2x

∗
2 bddx

∗
d

 ā+

1
...
1


=

(
X∗)−1

BX∗ā+ (1, . . . , 1)T .

Hence the attractive equilibrium of (15) is given by

ā∗ := −
(
X∗)−1

B−1X∗(1, . . . , 1)T ,

which finishes the proof of this lemma.

Let βi be the fraction of particles that enter the system from outside di-
rectly into pool i, i.e.

βi =
si∑d
i=1 si

for all i ∈ {1, . . . , d} ,

and let β = (β1, . . . , βd)
T . Moreover, define η = (η1, . . . , ηd)

T by

ηi =
x∗
i∑d

j=1 x
∗
j

for all i ∈ {1, . . . , d} ,

which describes how mass is distributed when the system is in equilibrium.
Note that

∑d
i=1 βi =

∑d
i=1 ηi = 1.



14 Martin Rasmussen et al.

Proposition 1 (Autonomous transit times and mean ages) Consider
the autonomous compartmental system (18). The transit time with respect to
the equilibrium solution t 7→ (x∗, ā∗) does not depend on time and is given by

R = −(1, . . . , 1)B−1β ,

and the mean age of mass is given by

M = −(1, . . . , 1)B−1η .

Proof Using Definition 2, we have

Rt =
(1, . . . , 1)BX∗ā∗

(1, . . . , 1)Bx∗ = − (1, . . . , 1)X∗(1, . . . , 1)T∑d
i=1 si

= − (1, . . . , 1)x∗∑d
i=1 si

= − (1, . . . , 1)B−1s∑d
i=1 si

= −(1, . . . , 1)B−1(β1, . . . , βd)
T for all t ∈ R

for the transit time and

Mt =
(1, . . . , 1)X∗ā∗

(1, . . . , 1)x∗ = − (1, . . . , 1)B−1X∗(1, . . . , 1)T∑d
i=1 x

∗
i

= − (1, . . . , 1)B−1x∗∑d
i=1 x

∗
i

= −(1, . . . , 1)B−1(η1, . . . , ηd)
T for all t ∈ R

for the mean age. Note that both quantities do not depend on t, and this
finished the proof of this proposition.

Note that derivation of the autonomous quantities for transit time R and
mean age M in Proposition 1 required the autonomous compartmental sys-
tem (18) to be in equilibrium, and the classical approach to transit times, as
outlined in Section 2, is not applicable for autonomous systems not in equilib-
rium. It is very important to note that Definition 2 is useful for autonomous
systems also, since it is applicable to systems that are not in equilibrium. For
such autonomous systems, transit times and mean ages will depend on time
in general, and although they converge to R and M in the limit t → ∞, they
might be very different to R and M .

8 Mean ages and transit times for the CASA model

Here we illustrate predicted changes in the mean age of carbon leaving and
remaining in the system for a terrestrial carbon model under a climate change
scenario. We consider a modification of the CASA model as used in [7] globally
without resolving the spatial details of carbon pools using nine pools repre-
senting the global terrestrial carbon (e.g. three pools for plant biomass, or
litter or soil organic matter). This caused the model to be precisely of the
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form of (6). Climate change was simulated by increasing atmospheric CO2

over time, which affected both B(t) and s(t) in (6). Increased CO2 directly
increases carbon inputs s(t) through carbon dioxide fertilization. They also di-
rectly increase mean global temperatures. This increases the carbon loss rates
from some of the carbon pools, changing components of B(t), and also has an
effect on s(t). Thus increased CO2 alters the input and loss rates of compo-
nents of the terrestrial carbon cycle, making both the sign and magnitude of
the net change in carbon storage dependent the sensitivity of carbon inputs
and loss rates.

We simulated changes in atmospheric CO2 using

xa(t) = 1715 exp
(
0.0305t/(1715 + exp(0.0305t)− 1)

)
,

where xa(t) is the atmospheric carbon dioxide concentration in parts per mil-
lion and t is years since the year 1850. This represents a plausible time course
of atmospheric CO2 from year 1850 (t = 0) to 2500 (t = 650) under a zero-
mitigation, business as usual global change scenario [25] (illustrated in Fig. 1a).

The effect of CO2 on mean global temperatures is modelled as

Ts(t) = Ts0 +
σ

ln(2)
ln(xa(t)/285) , (19)

where Ts0 = 15 is the mean land surface temperature in 1850, and σ is the
sensitivity of global temperatures to xa(t). We chose an upper extreme of
σ = 4.5 based on the literature because the resulting simulation emphasises
well the interplay between increased carbon input rates and carbon loss rates
[27]. Changes in carbon input rates are simulated using

s(t) = (s1(t), s2(t), s3(t), 0, 0, 0, 0, 0, 0) (20)

with si(t) = fiαs0(1 + β(xa(t), Ts(t)) ln(xa(t)/285)), where fi = 0.33 is the
proportion of carbon input going to the different carbon pools, α = 0.5 is the
proportion of gross primary production that remains after respiration and β
is the sensitivity of s(t) to xa(t) and Ts(t), given by

β(xa(t), Ts(t)) =
3ρxa(t)Γ (Ts(t))

(ρxa(t)− Γ (Ts(t)))(ρxa(t) + 2Γ (Ts(t)))
,

where x = 0.65 is the ratio of the intracellular CO2 to xa(t), and Γ (Ts(t)) is
given by

Γ (Ts(t)) = 42.7 + 1.68(Ts(t)− 25) + 0.012(Ts(t)− 25)2 ,

see [20]. The solution of (20) with changes in xa(t) and Ts(t) as described
above is illustrated in Fig. 1b. The matrix controlling the rates of carbon
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Fig. 1 Forcing functions and solution of the simplified CASA model. a) Nonautonomous
dynamics are driven by changes in atmospheric CO2 over time as given by xa(t). b) The
increased CO2 alters total carbon inputs per unit time via Σs(t). c) Increasing CO2 also
increases temperatures which increases litter and soil carbon decomposition rates via ξ(t).
d) the resulting solution of total terrestrial carbon over time. Parameters for this model are
as given in the text but also with b11 = −0.67, b22 = −0.2, b33 = −0.04, b41 = 0.5092,
b42 = 0.0260, b44 = −2.5, b51 = 0.1608, b52 = 0.1740, b55 = −0.4, b63 = 0.04, b66 = −0.25,
b74 = 1.1250, b75 = 0.1530, b76 = 0.06, b77 = −0.7, b78 = 0.0103, b79 = 0.0002, b85 = 0.042,
b86 = 0.07, b87 = 0.3525, b88 = −0.023, b97 = 0.0045, b98 = 0.0001, b99 = −0.0004.

transfer and loss from the system is given by

B(t)=



b11 0 0 0 0 0 0 0 0
0 b22 0 0 0 0 0 0 0
0 0 b33 0 0 0 0 0 0
b41 b42 0 b44ξ(Ts(t)) 0 0 0 0 0
b51 b52 0 0 b55ξ(Ts(t)) 0 0 0 0
0 0 b63 0 0 b66ξ(Ts(t)) 0 0 0
0 0 0 b74ξ(Ts(t)) b75ξ(Ts(t)) b76ξ(Ts(t)) b77ξ(Ts(t)) b78ξ(Ts(t)) b79ξ(Ts(t))
0 0 0 0 b85ξ(Ts(t)) b86ξ(Ts(t)) b87ξ(Ts(t)) b88ξ(Ts(t)) b89ξ(Ts(t))
0 0 0 0 0 0 b97ξ(Ts(t)) b98ξ(Ts(t)) b99ξ(Ts(t))


,

indicating that it is the loss rates of pools i = {3, . . . , 9} that change with
time. The coefficients bij are listed in the legend to Fig. 1, and

ξ(Ts(t)) = ξ
0.1Ts(t)−2
b , (21)
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where ξ(Ts(t)) is the scaling of decomposition rates at Ts = 20 degrees Celsius.
Equation (21) is illustrated in Fig. 1c.

To define the model initial conditions we assume that xa(t) = xa(0) for
all t < 0 and that x(0) has reached the positive equilibrium solution of the
resulting system of autonomous equations. The model is then simulated for-
ward from this initial condition using (19) as the forcing function. Under this
simulated scenario, total land carbon increases then decreases over time as
shown in Fig. 1d. This would represent an initial net uptake of carbon from
the atmosphere due to carbon dioxide fertilization followed ultimately by a
net carbon loss from the land back to the atmosphere due to global warming
(Fig. 2 shows how this carbon change over time is distributed amongst the
different components of x(t)).
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Fig. 2 Breakdown of the contributions of the different vegetation carbon pools to the change
in the overall terrestrial carbon storage dynamics illustrated in Fig. 1d. Pools x1, x2 and
x3 are carbon in leaves, roots and wood, respectively; pools x4 to x6 are carbon in different
forms of litter, and pools x7 to x9 are carbon in different forms of soil.
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Calculations of the transit time Rt and mean age Mt of carbon in the
system (according to Definition 2), for the nine-pool model for the climate
change simulation described above, show an order of magnitude difference in
the absolute values of Rt and Mt (Fig. 3). This indicates that the average age
of carbon stored on land is much older than the average age of carbon leaving
the land. Note that at t = 0 (corresponding to the year 1850), we assumed
that M0 = M , where M is the mean age of the equilibrium solution at t = 0
according to Proposition 1.
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Fig. 3 Mean transit time Rt, and mean age Mt, compared with the instantaneous quantities
R and M .

Perhaps surprisingly, the monotonic forcing of B(t) and s(t) translates into
non-monotonic effects on Rt and Mt. A detailed mathematical investigation
of this phenomenon is outside the scope of the present study.

The nonautonomous properties Rt and Mt show contrasting trajectories
to the instantaneous properties R and M (which we computed according to
Proposition 1, but note that, since the system is nonautonomous, the assump-
tions of this proposition are not fulfilled). For example the latter properties
change monotonically over time. This must be because the long term outcome
of an increase in the input rate of young carbon and an increase in the output
rate of old carbon is a decrease in the age of carbon both leaving and remain-
ing in the system. Over the course of the simulation the numerical values of
the autonomous and nonautonomous properties become visibly different (Fig.
3). This is because it will take a long time for the values of Rt and Mt to
approach R and M due to the small loss rate of the ninth soil pool.
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9 Conclusions

Models for terrestrial carbon cycling have led to renewed interest in the prop-
erties of compartment models. Key quantities that have been studied over
many years in compartment models with parameters fixed in time [9,4,1] are
the mean age of particles in the system and the transit time of particles leaving
the system. Formulae for these quantities that give the mean age and transit
time in terms of parameters of the system in the long time limit have led to
insights, but cannot be applied to the case of changing parameters.

As parameters change, for example in a model of carbon cycling due to
climate change, it is not correct to calculate the mean age or transit time
from the instantaneous parameter values. Using the theory of nonautonomous
differential equations as a tool, and beginning with time dependent age struc-
tured models, we are able to define and derive formulae for the transit time
and mean age for particles in the case of temporally changing parameters.
These definitions lead to quantities that reduce to the analogous formulae for
the autonomous (constant parameter) case when parameters do not change
in time. However, the formulae for the nonautonomous case also highlight the
fact that even in the constant parameter case the transit time and mean age
do depend on initial conditions; some of the standard formulae do not include
this dependence.

The difference between a transit time or mean age that is computed based
on the parameters at a given instant and the better approach of taking into
account the history of the system can be substantial as we illustrate using a
variant of the CASA model. Thus, the approach we develop here is not just of
mathematical interest but is of substantial practical importance as well.
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22. C. Pötzsche, Dichotomy spectrum of triangular equations, Discrete and Continuous
Dynamical Systems 36 (2016), no. 1, 423–450.

23. M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems,
Springer Lecture Notes in Mathematics, vol. 1907, Springer, Berlin, Heidelberg, New
York, 2007.



Transit times and mean ages for compartmental systems 21

24. J.R. Randerson, M.V. Thompson, C.M. Malmstrom, Field C.B., and I.Y. Fung, Sub-
strate limitations for heterotrophs: implications for models that estimate the seasonal
cycle of atmospheric CO2, Global Biogeochemical Cycles 10 (1996), no. 4, 585–602.

25. M.R. Raupach, J.G. Canadell, P. Ciais, P. Friedlingstein, P.J. Rayner, and C.M.
Trudinger, The relationship between peak warming and cumulative CO2 emissions, and
its use to quantify vulnerabilities in the carbon-climate-human system, Tellus 63 (2011),
no. 2, 145–164.

26. D.H. Rothman, Earth’s carbon cycle: a mathematical perspective, Bulletin of the Amer-
ican Mathematical Society 52 (2015), no. 1, 47–64.

27. M. Scheffer, V. Brovkin, and P.M. Cox, Positive feedback between global warming and at-
mospheric CO2 concentration inferred from past climate change, Geophysical Research
Letters 33 (2006), no. 10, L10702.

28. H.R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and
Computational Biology, Princeton University Press, Princeton, New Jersey, 2003.

29. S. Trumbore, Age of soil organic matter and soil respiration: radiocarbon conatrants
on belowground C dynamics, Ecological Applications 10 (2000), no. 2, 399–411.

30. Jianyang Xia, Yiqi Luo, Ying-Ping Wang, Ensheng Weng, and O. Hararuk, A semi-
analytical solution to accelerate spin-up of a coupled carbon and nitrogen land model to
steady state, Geoscientific Model Development 5 (2012), 1259–1271.


