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Abstract

The complement C3-like protein TEP1 of the mosquito Anopheles gambiae is required for defense against malaria parasites
and bacteria. Two forms of TEP1 are present in the mosquito hemolymph, the full-length TEP1-F and the proteolytically
processed TEP1cut that is part of a complex including the leucine-rich repeat proteins LRIM1 and APL1C. Here we show that
the non-catalytic serine protease SPCLIP1 is a key regulator of the complement-like pathway. SPCLIP1 is required for
accumulation of TEP1 on microbial surfaces, a reaction that leads to lysis of malaria parasites or triggers activation of a
cascade culminating with melanization of malaria parasites and bacteria. We also demonstrate that the two forms of TEP1
have distinct roles in the complement-like pathway and provide the first evidence for a complement convertase-like
cascade in insects analogous to that in vertebrates. Our findings establish that core principles of complement activation are
conserved throughout the evolution of animals.
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Introduction

The mosquito Anopheles gambiae is the main vector of Plasmodium

falciparum malaria in sub-Saharan Africa and hence directly

responsible for the death of hundreds of thousands of people

every year and for a devastating socioeconomic burden especially

in endemic countries. Mosquitoes launch a potent immune attack

leading to the killing of the majority of invading Plasmodium

parasites. Multiple mechanisms are thought to participate in

these anti-Plasmodium reactions, amongst them a latent pathway

resembling vertebrate complement [1]. RNAi knockdown (kd)

studies, based on the injection of double stranded RNA (dsRNA)

into adult A. gambiae mosquitoes, have revealed important roles of

components of the complement-like pathway in defense against

the murine malaria parasite Plasmodium berghei [2–6]. There is also

significant evidence for a role of this pathway in defense against

the human parasite, P. falciparum, in laboratory infections of A.

gambiae [3,7–9].

Recent studies with natural A. gambiae populations revealed

that the gene encoding the C3-like protein TEP1, a key player of

the complement-like pathway, and the genomic locus encoding

its interacting partner APL1C are under strong directional

selection in an M form population but subject to balancing

selection in another S form population [10,11]. Despite the fact

that distinct TEP1 alleles have been associated with resistance to

Plasmodium parasites [2,8,11–13], the selective pressure on TEP1 is

hypothesized to be driven by pathogens in larval habitats rather

than those encountered by adults. This is further supported by the

rather generic immune specificity of TEP1 that functions also in

anti-bacterial [3,14] and anti-fungal defense [15]. The polymor-

phic nature of TEP1 also suggests that the different alleles might

follow different kinetics in interacting with LRIM1/APL1C as well

as other TEP1 regulatory proteins, which could influence the

efficiency of parasite killing or microbial clearance. Therefore, a

better understanding of the mechanisms regulating complement

activation and identification of the proteins involved will permit

deciphering the functional relevance to Plasmodium of allelic

interactions within this immune module on resistance.

The hallmark of activation of the mosquito complement-like

pathway is the binding of TEP1 to microbial surfaces through a

thioester bond, a reaction that is tightly linked to microbial killing

[14]. TEP1 circulates in the mosquito hemolymph in two forms:

the full-length form TEP1-F and the proteolytically processed

form TEP1cut, corresponding to pro-C3 and the mature C3

protein after processing in the ER, respectively [14,16]. Unlike

C3, TEP1 lacks an anaphylatoxin domain and the exposed

thioester bond of TEP1cut is unstable [17]. TEP1cut is stabilized in

the hemolymph through interactions with a heterodimer of the

leucine-rich repeat (LRR) proteins LRIM1 and APL1C, which

seems to confer specificity upon TEP1 activity [5,16]. While the

structure and function of TEP1 and its C3 homolog are largely

conserved from insects to mammals, LRIM1 and APL1C are
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thought to be specific to mosquitoes [18] raising interesting

questions about the degree of structural and/or functional

conservation between other modules of the complement pathway

such as those that stabilize or amplify complement on microbial

surfaces. The research presented here aimed to address these

questions and provide novel mechanistic insights into the

activation of the mosquito complement pathway during infection.

Results

SPCLIP1 is a component of the complement-like pathway
To identify novel components of the mosquito complement

pathway, we searched for genes that exhibited significant co-

regulation with LRIM1 in a developmental transcriptome dataset

of Expressed Sequence Tags (ESTs; [19]). Pearson correlation

coefficient (PCC) identified 4 EST clusters showing similarity to

LRIM1 developmental expression greater than 0.95. Importantly,

3 of the 4 clusters were found to encode proteins that had

been previously shown to physically interact with LRIM1,

including APL1C (PCC 0.964), TEP1 (PCC = 0.978) and

TEP4 (PCC = 0.965) [5,16,20]. The fourth EST cluster

(PCC = 0.980) did not correspond to any gene model in the A.

gambiae genome. It encodes a protein with CLIP and serine

protease domains, previously identified as SPCLIP1 and shown to

be involved in defense against P. falciparum, P. berghei, Escherichia coli

and Staphylococcus aureus [3]. SPCLIP1 maps within a genomic

region encompassing 12 additional genes encoding proteins with

CLIP and serine protease domains (Figure S1A). All residues

corresponding to the serine protease catalytic triad (Asp-His-Ser)

are substituted in SPCLIP1 indicating that it is non-catalytic

(Figure S1B). Phylogenetic analysis places SPCLIP1 in the highly

divergent CLIPE subfamily of non-catalytic CLIP-domain serine

protease homologs (SPHs; Figure S1C).

Co-regulation with LRIM1 and the previously reported knock-

down phenotypes [3] were suggestive of SPLCLIP1 involvement

in the A. gambiae complement-like pathway. To characterize

SPCLIP1, we raised a polyclonal antibody against the entire

protein and used it in western blots of adult mosquito hemolymph

separated by non-reducing SDS-PAGE. The results showed that

SPCLIP1 migrates at approximately 45 kDa, near its predicted

42 kDa molecular weight (Figure 1A). We examined whether the

steady state levels of SPCLIP1 in the hemolymph are affected

by silencing LRIM1 or TEP1. While TEP1 kd had no effect on

SPCLIP1 levels, these were markedly reduced in LRIM1 kd

(Figure 1B). This decrease of SPCLIP1 parallels the near complete

loss of TEP1cut from the hemolymph of LRIM1 or APL1C kd

mosquitoes due to its accumulation on self-tissues (Figure 1B)

[5,16]. To determine if the reduction of SPCLIP1 in LRIM1 kd

is dependent on TEP1, we silenced LRIM1 and TEP1 simulta-

neously. Under these conditions, SPCLIP1 was restored to its

baseline levels (Figure 1C). In contrast, silencing LRIM1 and

SPCLIP1 together did not restore TEP1cut levels, suggesting that

SPCLIP1 functions downstream of TEP1cut, and that in LRIM1 kd

mosquitoes SPCLIP1 is likely to be sequestered on self-tissues

together with TEP1cut.

SPCLIP1 and TEP1 localization to ookinetes is mutually
dependent

We investigated the role of SPCLIP1 in TEP1 binding to P.

berghei. It has been previously established that TEP1 binds to the

surface of P. berghei ookinetes as they traverse the mosquito midgut

epithelium and come into contact with the hemolymph [2]. In

SPCLIP1 kd mosquitoes, TEP1 staining on the ookinete surface

was inhibited (Figure 2A). This, together with the TEP1-

dependent reduction of SPCLIP1 from the hemolymph following

LRIM1 kd, led us to hypothesize that SPCLIP1 is recruited to the

parasite surface during infection. To test this, SPCLIP1 was

immunolocalized in midgut epithelium 26 h after infection. We

observed robust SPCLIP1 signal on dead ookinetes, judged by the

Figure 1. SPCLIP1 is a component of the mosquito complement
cascade. (A) Western analysis of mosquito hemolymph collected 4
days after injection with LacZ or SPCLIP1 dsRNA. The blot was initially
probed with a polyclonal antibody raised against recombinant SPCLIP1
(top panel) and re-probed with an APL1C antibody (bottom panel) to
confirm equal loading. (B)(C) Mosquito hemolymph collected 4 days
after injection of LacZ dsRNA or silencing SPCLIP1, LRIM1 or TEP1 (or
combinations of those) was analyzed by western blot using SPCLIP1,
APL1C and TEP1 antibodies. Blots were re-probed with SRPN3 and PPO6
antibodies to confirm equal loading. The labels on the right indicate
protein or complex detected. Images are representative of three
independent biological replicates.
doi:10.1371/journal.ppat.1003623.g001

Author Summary

Mosquitoes are vectors of numerous human diseases
including malaria. Disease transmission requires that
microbes overcome the robust mosquito immune system.
In the African malaria mosquito, the TEP1 protein that is
homologous to mammalian complement factor C3 is
shown to play a central role in mosquito immunity to
malaria parasites and bacteria. In this study, we report that
another mosquito protein belonging to a class of non-
catalytic enzymes that are specific to arthropods is a core
component of the mosquito complement-like immune
pathway. We found that this new protein, named SPCLIP1,
regulates the accumulation of TEP1 on malaria parasites
and bacteria, and show that this can lead to distinct
defense reactions including lysis and melanization of the
pathogen. This work is valuable because it reveals novel
insight into the regulation of mosquito complement on
microbial surfaces such as those of the malaria parasites.
Unraveling the molecular mechanisms regulating these
defense responses may ultimately lead to the design of
novel disease blocking strategies in the vector.

SPCLIP1 Regulates Mosquito Complement Recruitment
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loss of their cytoplasmic GFP signal (Figure 2B). Given that TEP1

is also highly prevalent on dead ookinetes, this result indicates that

SPCLIP1 and TEP1 likely co-localize to the same ookinetes;

however, we could not simultaneously assay their distribution since

both antibodies were raised in the same host species. No SPCLIP1

staining was observed in midgut epithelia dissected from SPCLIP1

kd mosquitoes, showing that the antibody is specific. Importantly,

SPCLIP1 staining on the ookinete surface was inhibited after

TEP1 kd. This suggests that the localization of TEP1 and

SPCLIP1 to ookinetes is mutually dependent (Figure 2B).

SPCLIP1 is required for the utilization of TEP1-F
TEP1 present on microbial surfaces during infection may

originate either from the TEP1cut or the TEP1-F pools. To clarify

this point and investigate further the functional relationship

between the two forms of TEP1 and SPCLIP1, we developed an

alternative infection model that allowed us to monitor temporally

and quantitatively the dynamics of the examined proteins after

injection of E. coli bioparticles (chemically killed bacteria) into the

hemocoel. This infection model offers the advantage of tight

temporal monitoring of rapid immune responses such as those of

complement, which occur within minutes of microbial exposure to

the hemolymph. Hemolymph was collected from groups of

mosquitoes at 15, 60, 120, 240 and 360 minutes post injection

with bacteria or PBS (i.e. control) and proteins were analyzed

by western blot. The results showed strong reduction in SPCLIP1,

the LRIM1/APL1C complex, and TEP1-F levels in mosquito

hemolymph after injection of E. coli bioparticles (Figure 3A). A

marked reduction of these proteins was already observed at

60 min after injection and persisted up to 240 min when LRIM1/

APL1C and TEP1-F levels began to rise. The kinetics of TEP1-

F reduction demonstrate that this form of TEP1 is consumed

quickly in the immune response to infection, in contrast to

TEP1cut, which does not seem to vary significantly during that

process, at least within the examined timeframe. In addition to the

well-defined TEP1-F and TEP1cut bands, we also observed a

broadly stained TEP1-specific smear at 50–60 kDa exhibiting

depletion kinetics following bioparticle challenge similar to that of

TEP1-F (Figure 3A). These C-terminal TEP1 fragments have been

previously described [14]; whether they represent functional forms

of TEP1 or are products of TEP1-F turnover remains to be

determined.

LRIM1/APL1C and SPCLIP1 exhibited similar depletion

kinetics as TEP1-F following bioparticle injections (Figure 3A),

suggesting that these proteins are either required for TEP1-F

utilization or are independently consumed in the immune

reactions. To address this, we monitored the effect of SPCLIP1

silencing on the infection-dependent depletion of TEP1-F.

Western blot analysis of hemolymph collected from SPCLIP1

and control LacZ kd mosquitoes challenged with E. coli bioparticles

demonstrated that the loss of TEP1-F is abolished in SPCLIP1 kd

mosquitoes compared to controls (Figure 3B), indicating that

SPCLIP1 acts upstream of TEP1-F and is indeed required for the

infection-induced loss of this protein. In contrast, the depletion of

LRIM1/APL1C was not restored in the hemolymph of SPCLIP1

kd mosquitoes. Together, these data suggest that activation of

mosquito complement by the LRIM1/APL1C/TEP1cut complex

is a separate event upstream of the SPCLIP1-dependent comple-

ment amplification process that is poised to transform initial

pathogen recognition into a robust attack.

SPCLIP1 is required for TEP1-F to TEP1cut conversion on
microbial surfaces

An important aspect of the complement system is its specific

activation on microbial surfaces. In order to address whether the

observed reduction in SPCLIP1 and TEP1-F levels in the

hemolymph after injection of E. coli bioparticles is due to their

sequestration on bioparticle surfaces, we designed an assay that

allows quantitative assessment of E. coli-bound versus hemolymph

soluble pools of these proteins. E. coli bioparticles were injected

into mosquito hemocoel, and hemolymph was extracted 15 min

after injection. Bioparticles were separated from the hemolymph

by centrifugation, washed extensively and their surface-bound

proteins eluted for western blot analysis (Figure 4A). The results

showed that SPCLIP1 was present in the E. coli-bound fraction

in dsLacZ control mosquitoes (Figure 4B), which explains its

reduced levels in the hemolymph after bacterial challenge and

is consistent with its localization to ookinetes. In TEP1 kd

mosquitoes, SPCLIP1 was lost from the E. coli-bound fraction and

became enriched in the soluble fraction, indicating that TEP1 is

required for SPCLIP1 recruitment to bacterial surfaces.

This assay also allowed us to monitor which of the two forms of

TEP1 associates with the bacterial surface. In dsLacZ treated

mosquitoes, TEP1-F was not detected in the E. coli-bound fraction,

despite being almost fully depleted from the soluble material, in

contrast to TEP1cut, which was clearly present. These data are

Figure 2. TEP1 and SPCLIP1 localization on dead parasites is
mutually dependent. (A) TEP1 immunolocalization on the surface of
GFP-expressing P. berghei parasites invading the mosquito midgut 26 h
after infection. TEP1 positive parasites (arrows) do not express GFP and
appear fragmented indicating that they are killed, while TEP1 negative
parasites express GFP and are considered live. There is a dramatic
reduction in TEP1 signal in mosquitoes treated with dsSPCLIP1. Lack of
TEP1 signal in dsTEP1 treated mosquitoes confirms the specificity of the
antibody. A rare TEP1, GFP double positive parasite is visible in the
upper left panel of the dsLacZ control. (B) SPCLIP1 immunolocalization
on the surface of GFP-expressing P. berghei parasites invading the
mosquito midgut epithelium 26 h after infection. SPCLIP1 positive
parasites (arrows) are fragmented and lack GFP signal indicating they
are dead. There is a dramatic reduction in SPCLIP1 signal in mosquitoes
treated with dsTEP1. Lack of SPCLIP1 signal in the dsSPCLIP1 treated
mosquitoes confirms the specificity of the antibody. The background
staining observed in all panels is non-specific antibody trapping by the
trachea and muscle fibers present on the basolateral surface of the
mosquito midgut. For both TEP1 and SPCLIP1 immunolocalization
assays two independent biological replicates were performed with 5–10
midguts for each dsRNA. Panels are representative confocal projections
of an approximately 20 mm thick section of the midgut basolateral
surface. The scale bar is 10 mm.
doi:10.1371/journal.ppat.1003623.g002

SPCLIP1 Regulates Mosquito Complement Recruitment
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consistent with those reported previously using a cell culture assay

and showing that bacteria only bound TEP1cut when incubated

with the conditioned medium of a hemocyte-like cell line that

contained both forms of TEP1 [14]. Importantly, TEP1cut signal

in the bound material was dramatically reduced by SPCLIP1 kd,

concomitant with the detection of TEP1-F in the soluble fraction.

These data indicate that TEP1cut accumulating on the surface of

E. coli is generated from TEP1-F and that its conversion requires

recruitment of SPCLIP1 and a yet unidentified protease to the

bacterial surface.

Microbial infection promotes SPCLIP1 interaction with
TEP1

The functional association between SPCLIP1 and TEP1

including their cooperative recruitment to microbial surfaces

suggested that these two proteins might physically interact. To

examine this possibility, we performed an immunoprecipitation

(IP) assay on hemolymph samples collected from mosquitoes

following challenge with E. coli bioparticles using beads cross-

linked to an affinity purified SPCLIP1 antibody. IP beads lacking

antibody and mock bioparticle challenge (PBS injection) served as

controls. The results revealed that SPCLIP1 was less abundant in

the unbound fraction and significantly enriched in the bound

fraction (Figure 5). In contrast, SPCLIP1 was not detected on

control beads and the protein remained highly abundant in the

unbound fraction. When samples were probed for TEP1, a signal

for TEP1cut and a faint but clear TEP1-F signal were observed in

the SPCLIP1 IP bound fraction. These bands were detectable only

in samples collected from bioparticle challenged mosquitoes.

These data indicate that SPCLIP1 and TEP1 can interact and that

this interaction is induced by infection. These data raise the

Figure 3. SPCLIP1 is required for the utilization of TEP1-F. (A) Western blot analysis of hemolymph collected from mosquitoes after injection
with PBS (left) or E. coli bioparticles (right) using a panel of different antibodies. Full-length and processed TEP1 are indicated as TEP1-F and TEP1cut,
respectively. Re-probing with SRPN3 was used to confirm equal loading. (B) Western blot analysis of hemolymph collected from control LacZ dsRNA-
injected (left) and SPCLIP1 kd (right) mosquitoes after injection with E. coli bioparticles. Re-probing with PPO6 was used to confirm equal loading.
Images are representative of three independent biological replicates.
doi:10.1371/journal.ppat.1003623.g003

Figure 4. SPCLIP1 and TEP1cut are localized on the surface of E.
coli bioparticles. (A) Schematic overview of sample preparation.
Hemolymph containing E. coli bioparticles was recovered 15 min after
injection into mosquitoes after gene silencing. The bacteria were
separated by centrifugation and the soluble fraction was collected. The
bacterial pellet was washed with buffer and extracted for analysis. (B)
Western blot analysis of soluble and bioparticle bound fractions using
antibodies against TEP1 and SPCLIP1. Images are representative of two
independent biological replicates.
doi:10.1371/journal.ppat.1003623.g004

Figure 5. SPCLIP1 and TEP1 interact after challenge with E. coli
bioparticles. IP beads containing SPCLIP1 antibody or control beads
were used to capture proteins from hemolymph 15 min after injection
with E. coli bioparticles (+) or PBS (2). The beads were separated and
samples of the unbound and bound fractions were analyzed by western
blot under reducing and non-reducing conditions for TEP1 and SPCLIP1,
respectively. Images are representative of two independent biological
replicates.
doi:10.1371/journal.ppat.1003623.g005

SPCLIP1 Regulates Mosquito Complement Recruitment
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possibility that these proteins interact first in the hemolymph

prior to their localization on microbial surfaces. Alternatively,

membrane-bound complexes containing TEP1 and SPCLIP1 may

leach off the surface during sample preparation. Whether this

interaction is direct or mediated by another factor remains to be

determined.

SPCLIP1 is required for activation of the melanization
cascade

It has been previously shown that bacterial inoculation into

the mosquito hemolymph leads to rapid activation cleavage of

CLIPA8, a key SPH regulator of bacteria [21] fungi [15], and

Plasmodium melanization [22]. We examined whether SPCLIP1 is

required for CLIPA8 activation in the mosquito hemolymph

following E. coli bioparticle injection. As shown in Figure 6A,

silencing SPCLIP1 inhibited completely CLIPA8 cleavage, sug-

gesting that SPCLIP1 is required for activation of the melanization

cascade.

The final steps of melanization are catalyzed by phenoloxidase

(PO) which is secreted as a pro-enzyme (PPO) and activated by

proteolytic cleavage in response to infection. We directly examined

whether SPCLIP1 is essential for PPO activation by monitoring

PO activity in the mosquito hemolymph after bacterial injection.

Indeed, SPCLIP1 kd resulted in a strong decrease in PO activity

relative to dsLacZ-injected controls, which is comparable to that

observed in CLIPA8 kd mosquitoes (Figure 6B). Similar to

SPCLIP1 kd, silencing TEP1 also resulted in strong inhibition of

both CLIPA8 cleavage and PPO activation (Figure S2). These

data demonstrate that activation of the melanization cascade is

dependent on SPCLIP1-mediated TEP1 accumulation on the

bacterial surface.

We next tested the function of SPCLIP1 in P. berghei melani-

zation using as a model CTL4 kd mosquitoes which melanize

nearly all ookinetes soon after they traverse the mosquito midgut

and before they develop into oocysts [4]. Indeed, silencing CTL4

alone resulted in a marked decrease of the oocyst numbers and a

reciprocal increase in melanized ookinetes, but concomitant

silencing of SPCLIP1 completely blocked ookinete melanization

and led to an increase in oocysts comparable to that of SPCLIP1 kd

alone (Figure 6C). A similar inhibition of parasite melanization has

been observed after silencing TEP1 or LRIM1/APL1C [2,4,5].

These data reveal that, as with bacterial melanization, SPCLIP1-

mediated accumulation of TEP1 on the ookinete surface is

required for parasite melanization.

Discussion

Here we characterize SPCLIP1, a non-catalytic CLIP-domain

serine protease of the malaria vector mosquito A. gambiae, which

localizes to the surface of P. berghei ookinetes and E. coli promoting

rapid accumulation of the complement C3-like protein TEP1. Our

results demonstrate that SPCLIP1 regulates a complement

convertase-like activity henceforth referred to as TEP1 convertase.

The TEP1 convertase is functionally analogous to the vertebrate

C3 convertase, the formation of which is triggered by binding of

antibodies or innate pattern recognition proteins on the microbial

surfaces, or by spontaneous activation of C3 following hydrolysis

of its thioester. The trigger for the formation of the TEP1

convertase is thought to be the binding on the microbial surface of

TEP1cut which circulates in the mosquito hemolymph together

with the LRIM1/APL1C complex (Figure 7). LRIM1 and APL1C

possess LRR domains, a feature that is versatile in its binding

properties and common in pattern recognition receptors

involved in host defense in animals and plants [23]. Therefore,

the LRIM1/APL1C complex may play a dual role in the mosquito

complement-like pathway by stabilizing TEP1cut in the hemo-

lymph and delivering it to the microbial surface upon infection.

Given that the LRIM1 and APL1C belong to a mosquito-specific

family of LRR proteins [5] whereas TEPs are widely conserved

[24], different triggers of complement activity are likely to exist in

other insects. A number of different putative pattern recognition

receptors have been identified to play a role in TEP1-dependent

defense against bacteria and malaria parasites [4,6,25–27] raising

the possibility that mosquitoes may also have multiple recognitions

systems that can activate the TEP1 convertase. It has been

proposed that nitration of malaria parasites during their passage

through the mosquito midgut epithelium is required for TEP1

binding [28]. Whether microbe nitration can trigger recognition

by LRIM1/APL1C or other putative recognition receptors

remains to be determined.

A study using recombinant proteins and an allele of TEP1 from

mosquitoes that are refractory to Plasmodium has shown that

the LRIM1/APL1C complex binds TEP1cut lacking an intact

thioester, and that TEP1cut precipitates out of solution in the

absence of LRIM1/APL1C [17]. A more recent study using a

TEP1cut allele from susceptible mosquitoes has revealed that the

Figure 6. SPCLIP1 is required for triggering the melanization
cascade. (A) Reducing western blot analysis of CLIPA8 in hemolymph
collected from control LacZ dsRNA-injected (top) and SPCLIP1 kd
mosquitoes (bottom) after injection with E. coli bioparticles. Full-length
and cleaved CLIPA8 are labeled CLIPA8-F and CLIPA8-C, respectively.
Images are representative of two independent biological replicates. (B)
PO activity measured in hemolymph samples collected from dsLacZ,
dsSPCLIP1 and dsCLIPA8 treated mosquitoes 6 h after injection with
bacteria. Data are representative of two independent biological
replicates. See also Figure S2. (C) GFP-expressing P. berghei oocysts
(green circles) and melanized ookinetes (gray squares) in dsLacZ,
dsSPCLIP1, dsCTL4 and dsCTL4/dsSPCLIP1 injected mosquitoes 7 days
post infection were counted. Lines indicate median infection intensity
values. Data were combined from three independent biological
replicates. For statistical analysis, dsCTL4 and dsSPCLIP1 injected
mosquitoes were compared to dsLacZ while dsCTL4/dsSPCLIP1 injected
mosquitoes were compared to dsCTL4. Asterisks indicate Kruskal-Wallis
P-values,0.01.
doi:10.1371/journal.ppat.1003623.g006

SPCLIP1 Regulates Mosquito Complement Recruitment
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LRIM1/APL1C complex can interact with TEP1cut with an active

thioester [29]. These in vitro studies have led the authors to

speculate that a complex between LRIM1/APL1C and TEP1cut

may function in vivo as a TEP1 convertase. It remains unknown

whether TEP1cut lacks an intact thioester in vivo, and whether its

localization on mosquito tissues in the absence of LRIM1/APL1C

is the result of protein precipitation or autoimmune attack by an

active thioester motif [5,16]. The TEP1cut dependent SPCLIP1

depletion favors the hypothesis of an autoimmune attack that is

tightly regulated to prevent collateral damage to host tissues.

Indeed, SPCLIP1 loss from the hemolymph following artificial

induction of TEP1cut attack of self-tissues is not accompanied by

TEP1-F depletion, suggesting that downstream negative regulators

prevent the full formation of the TEP1 convertase and/or that

additional positive factors similar to vertebrate properdin may be

required to stabilize the convertase on microbial surfaces.

SPCLIP1 lacks catalytic serine protease activity and likely acts

as a regulatory component of the TEP1 convertase. Hence, an

unidentified protease and possibly other factors are expected to

also contribute to the mature convertase, catalyzing the activation

cleavage of TEP1-F. The role of non-catalytic serine proteases as

cofactors for active proteases is well documented in insects with

examples from Holotrichia diomphalia [30], Manduca sexta [31] and

Drosophila melanogaster [32].

The SPCLIP1-dependent rapid loss of TEP1-F from the

hemolymph of bioparticle injected mosquitoes and the observation

that SPCLIP1 kd in naive mosquitoes does not alter TEP1-F levels,

suggests that the TEP1cut cargo circulating as a complex with

LRIM1/APL1C is generated through a different mechanism than

that produced by the TEP1 convertase. Of note, while bioparticle

injection almost depletes TEP1-F from the hemolymph, only a

minor reduction in TEP1cut levels is observed most significantly

at 60 min post injection. A plausible explanation for this

observation is that TEP1-F is converted to TEP1cut prior to

binding the bacterial surface, a fraction of which remains soluble

in the hemolymph throughout the timeframe of the experiment.

Regardless of the activation mechanism, the C3 and TEP1

convertases function in very similar ways to recruit additional C3

and TEP1, respectively, from precursor pools onto the microbial

surface, and to initiate diverse effector cascades. In vertebrates,

accumulation of the C3 cleavage product, C3b, on microbial

surfaces triggers phagocytosis as well as assembly of the membrane

attack complex that causes microbial lysis. In mosquitoes, in

addition to triggering phagocytosis of bacteria [14,33] and lysis of

malaria parasites [2,3], TEP1 accumulation on microbial surfaces

triggers the PO cascade leading to melanization. Therefore, the

strategy of complement driving diverse effector functions is ancient

and not specifically co-opted by vertebrates. It remains to be

further investigated whether this system is indeed an example of

convergent evolution rooted to the functional conservation of

thioester-containing proteins, a hypothesis consistent with our

earlier findings that this pathway appears to have evolved de novo in

each mosquito species by ‘‘bricolage’’ assemblages of the most

suitable available components [34].

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the United

Kingdom Animals (Scientific Procedures) Act 1986. The protocols

for maintenance of mosquitoes by blood feeding and for infection

of mosquitoes with P. berghei by blood feeding on parasite-infected

mice were approved and carried out under the UK Home Office

License PLL70/7185 awarded in 2010. The procedures are of

mild to moderate severity and the numbers of animals used are

minimized by incorporation of the most economical protocols.

Opportunities for reduction, refinement and replacement of

animal experiments are constantly monitored and new protocols

are implemented following approval by the Imperial College

Ethical Review Committee.

Mosquito maintenance, gene silencing and infection
A. gambiae G3 strain was maintained and assayed for infection

with P. berghei CONGFP strain as described previously [20]. Single

and double knockdown experiments and parasite counts in

dissected midguts were performed as described previously [5].

Primers used for synthesis of double stranded RNA have been

reported elsewhere LRIM1, TEP1, CTL4 [4,35]; SPCLIP1 [3].

Generation and purification of SPCLIP1 antibody
The entire SPCLIP1 open reading frame lacking the endogenous

signal peptide and stop codon was cloned into the pIEx10 insect

cell expression plasmid (Novagen) incorporating a C-terminal 106
HIS-tag using the primers:

For: GACGACGACAAGATGAACTTCCCCGTTGGGAA

ATTTC

Rev: GAGGAGAAGCCCGGTTTATCGAAGCTGATCG-

GATCGGG

The underlined sequences are extensions to allow ligase-

independent cloning [5]. Sf9 cells adapted for growth in

Figure 7. Model of TEP1 convertase formation. In steady state hemolymph a pool of TEP1-F is processed by an unknown protease to generate
TEP1cut, which interacts and circulates with the LRIM1/APL1C complex. Recognition of microbial surfaces leads to deposition of LRIM1/APL1C and
TEP1cut and subsequent recruitment of SPCLIP1. An unknown catalytically active protease is then recruited generating the mature TEP1 convertase,
which processes TEP1-F causing it to rapidly interact with nearby surfaces. Steady state processing of TEP1-F and that performed by the TEP1
convertase are distinct, as only the latter requires SPCLIP1. Formation of the TEP1 convertase is required for phagocytosis, lysis, or CLIPA8 cleavage by
an unknown protease and subsequent activation of the melanization cascade.
doi:10.1371/journal.ppat.1003623.g007
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serum-free medium (Invitrogen) stably secreting SPCLIP1HIS were

generated by selection with 1 mg/mL G418 following co-

transfection using Escort IV (Sigma) of pIEx10-SPCLIP1HIS and

pIE1-neo (Novagen). Clones of resistant cells were analyzed by

western blot for the presence of SPCLIP1HIS in their conditioned

medium and the line with the highest expression was chosen for

protein production. SPCLIP1HIS was purified from 500 mL of

conditioned medium using a 1 mL HisTrap column attached to

an ÄKTA purifier (GE Healthcare). Bound protein was eluted in

15 mL of PBS containing 500 mM imidazole pH 8.0. Purified

SPCLIP1HIS was quantified by Bradford assay and by coomassie

staining of SDS-PAGE gels. The purified protein was used to

generate a rabbit polyclonal antibody (Eurogentec). SPCLIP1

antibody was affinity purified from the positive immune serum by

passage over an AminoLink column (Pierce) containing covalently

bound SPCLIP1HIS.

Bioparticles challenge
A 20 mg/mL suspension of fluorescein or pHrodo labeled E. coli

K-12 strain bacterial bioparticles (Invitrogen) in sterile PBS was

injected into the mosquito hemocoel (,46105 bacteria in 69 nL).

Hemolymph was collected directly into non-reducing SDS-PAGE

sample buffer from groups of 30–40 mosquitoes 15, 60, 120, 240

and 360 min after the challenge and analyzed by reducing and

non-reducing western as described previously [5]. Bioparticles

surface extraction was performed by collecting in protein LoBind

tubes (Eppendorf) hemolymph from 60 mosquitoes into 60 mL of

15 mM Tris (pH 8.0) containing 16 protease inhibitor cocktail

(complete EDTA free, Roche) 15 min after bacterial injection.

The soluble (unbound) fraction was collected after pelleting the

bacteria by centrifugation for 4 min at 6000 g at 4uC and then

supplemented with SDS-PAGE buffer. The bacterial pellet

was washed with 400 mL of 15 mM Tris (pH 8.0) and the

bound fraction was extracted with 25 mL SDS-PAGE sample

buffer. Western blot analysis was performed using 25 mL of each

sample.

Immunoprecipitation and western analysis
Western blot analysis for TEP1, LRIM1/APL1C, SRPN3,

CLIPA8 and PPO6 was performed as previously described [5,21].

The affinity purified rabbit a-SPCLIP1 antibody was used to

probe western blots at a 1:1000 dilution of antibody in PBS

containing 0.05% Tween 20 and 3% milk for 1 h at room

temperature using. Co-immunoprecipitation reactions were per-

formed using the Pierce Co-IP kit according to the manufacturer’s

protocol (ThermoScientific). Hemolymph was collected from 100

mosquitoes into 200 mL ice-cold PBS containing 0.05% Triton X-

100, supplemented with 16 protease inhibitor cocktail 15 min

after PBS or E. coli bioparticle injection (69 nL of 4 mg/mL;

,86104 particles). The samples were centrifuged at 4000 g for

5 min to remove mosquito and bacterial cells. 40 mL of a 1:1

slurry of PBS and agarose beads containing crosslinked affinity

purified a-SPCLIP1 antibody or control beads were added to the

cleared hemolymph samples and mixed overnight at 4uC on a

rotating wheel. The unbound fraction was collected and supple-

mented with SDS-PAGE buffer. Then the beads were washed five

times with collection buffer and bound material was eluted two

times with 100 mL of elution buffer (0.2% SDS and 0.1% Tween-

20 in 50 mM Tris pH 8.0). The eluents were pooled and

supplemented with SDS-PAGE buffer. Western blot analysis was

performed by loading 40 mL of each sample. Reducing samples

were made by addition of 2-mercaptoethanol to a final concen-

tration of 2.5%.

PPO activation and CLIPA8 cleavage
Cleavage of CLIPA8 was assayed in samples of hemolymph

analyzed under reducing conditions as described previously [21].

PPO activation was determined assaying the conversion of L-

DOPA to Dopachrome in samples of mosquito hemolymph

collected after bacterial challenge [36].

Immunolocalization of TEP1 and SPCLIP1
TEP1 and SPCLIP1 were immunolocalization to ookinetes

26 h after P. berghei infection. Mosquito midguts were prepared

and analyzed as previously described [5]. The SPCLIP1 antibody

was used at a 1:250 dilution. Images were acquired on a Zeiss

LSM 710 META confocal.

VectorBase gene identifiers
LRIM1, AGAP006348; APL1C, AGAP007033; TEP1,

AGAP010815; TEP4, AGAP010812; CLIPA1, AGAP011791;

CLIPA2, AGAP011790; CLIPA4, AGAP011780; CLIPA5,

AGAP011787; CLIPA6, AGAP011789; CLIPA7, AGAP011792;

CLIPA8, AGAP010731; CLIPA9, AGAP010968; CLIPA12,

AGAP011781; CLIPA13, AGAP011783; CLIPA14, AGAP011

788; CLIPB2, AGAP003246; CLIPB3, AGAP003249; CLIPB4,

AGAP003250; CLIPB8, AGAP003057; CLIPB9, AGAP013442;

CLIPB10, AGAP003058; CLIPB13, AGAP004855; CLIPB14,

AGAP010833; CLIPB15, AGAP009844; CLIPC1, AGAP008835;

CLIPC2, AGAP004317; CLIPC3, AGAP004318; CLIPC5,

AGAP000571; CLIPC6, AGAP000315; CLIPC9, AGAP004719;

CLIPC10, AGAP000572; CLIPD4, AGAP002811; CLIPD6,

AGAP002813; CLIPD7, AGAP008998; CLIPD8, AGAP002784;

CLIPE2, AGAP011782; CLIPE4, AGAP010530; CLIPE5,

AGAP010547; CLIPE6, AGAP011785; CLIPE7, AGAP011786;

PPO6, AGAP004977; CTL4, AGAP005335; SRPN3, AGA

P006910.

Supporting Information

Figure S1 SPCLIP1 genomic organization, multiple
sequence alignment, and phylogenetic analysis. (A) In

the top diagram genes are indicated above and below a 55 kb

region of A. gambiae chromosome 3L depending on whether they

are encoded by the positive or negative DNA strand, respectively.

The bottom diagram shows an expanded view of an 8.2 kb region

indicated in red in the top diagram to illustrate the experimentally

derived intron-exon boundaries of SPCLIP1 and its tail-to-tail

orientation with CLIPA7. Coding regions are depicted with dark

gray boxes, untranslated regions with white boxes, and introns

with black lines. Features within both diagrams are drawn to scale.

The SPCLIP1 gene does not correspond to any gene model in the

A. gambiae genome annotation and is only present as a SNAP

prediction. (B) Alignment of SPCLIP1 with representative

members of the CLIP subfamilies A–D. The N-terminal CLIP

domain is indicated by a blue background. Shaded residues

indicate consensus similarity, light gray; consensus identity, dark

gray; conserved cysteine, yellow; CLIPA and SPCLIP1 conserved

tyrosine, red. Stars indicate the positions of the catalytic triad

residues and lines connect cysteines involved intramolecular

disulfide bonds. The black outline indicates the predicted

activation cleavage position in the CLIPB, C and D zymogens.

(C) Unrooted tree generated from analysis of the protease domain

of 35 members of the A. gambiae CLIP family. Colored regions

highlight the major subfamilies: CLIPA, yellow; CLIPB, blue;

CLIPC, green; CLIPD, orange. White circles indicate bootstrap

values .80.

(TIF)
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Figure S2 TEP1 is required for CLIPA8 and PPO
activation. (A) Reducing western analysis of CLIPA8 in

hemolymph collected from control dsLacZ injected and TEP1

and CLIPA8 kd mosquitoes after injection with E. coli bioparticles.

CLIPA8-C indicates the CLIPA8 cleavage product which is

markedly reduced in TEP1 silenced mosquitoes. Blot was re-

probed with an antibody against SRPN3 to confirm equal loading.

(B) PO activity measured in hemolymph samples collected from

dsTEP1, dsCLIPA8 and control dsLacZ treated mosquitoes 6 h

after injection with bacteria.

(TIF)
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