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Abstract— This paper is concerned with guaranteed param-
eter estimation in nonlinear dynamic systems in a context of
bounded measurement error. The problem consists of finding—
or approximating as closely as possible—the set of all posdé
parameter values such that the predicted outputs match the
corresponding measurements within prescribed error bound.
An exhaustive search procedure is applied, whereby the pa-
rameter set is successively partitioned into smaller boxeand
exclusion tests are performed to eliminate some of these bes,
until a prespecified threshold on the approximation level is
met. Exclusion tests rely on the ability to bound the solutia
set of the dynamic system for a given parameter subset and
the tightness of these bounds is therefore paramount. Equigl
important is the time required to compute the bounds, therely
defining a trade-off. It is the objective of this paper to investigate
this trade-off by comparing various bounding techniques baed
on interval arithmetic, Taylor model arithmetic and ellips oidal
calculus. When applied to a simple case study, ellipsoidaina
Taylor model approaches are found to reduce the number of
iterations significantly compared to interval analysis, y¢ the
overall computational time is only reduced for tight approxi-
mation levels due to the computational overhead.

I. INTRODUCTION
Process model development has become an integral par

modern process design methodologies as well as for contrgl

system design and operations optimization. A typical mod
namely specification of the model structure and estimatfon

also known as model fitting, normally proceeds by determi
ing parameter values for which the model predictions close

. : r
match the observed process. Failure to find an acceptabFe
agreement calls for a revision of the model structure, an

the parameter estimation is then repeated.
Most commonly, the parameter estimation problem i

eter values minimizing the gap between the measureme
and the model predictions, for instance in the least-squ

sense. Nonetheless, several factors can jeopardize assticc

ful and reliable estimation procedure. First of all, steuat
model mismatch is inherent to the modeling exercise, and
would be an illusion to seek for the ‘true’ parameter values i

e
development procedure is divided into two main phases
0

the unknown/uncertain model parameters. The latter phar?zedrametric ODEs belongs to the class of computationally

Imtensive problems (nonconvex optimization problem). In

S
posed as an optimization problem that determines the para

this context. Even in the absence of model mismatch, fitting
a set of experimental data exactly is generally not possible
due to various sources of uncertainty. A measurement’s
accuracy is always tied to the resolution of its correspogdi
measuring apparatus. Moreover, measured data are typicall
corrupted with noise, for instance Gaussian white noise or
more generally colored noise, let alone the presence of
systematic offsets or temporal drifts caused by faulty or
poorly calibrated sensors.

Among the possible approaches accounting for uncertainty
in parameter estimation, the focus in this paper isgoar-
anteedparameter estimation [1], namely the determination
of all parameter values—referred to as the solution set
subsequently—that are consistent with the measurements
under given uncertainty scenarios. More specifically, we
consider the case that the uncertainty enters the estimatio
problem in the form of bounded measurement errors. In
small-scale applications, the problem of approximating th
solution set by a box partition, at an arbitrary precisioss h
been shown to be tractable by Walter and coworkers [1], [2]
usfing set inversion techniques based on exhaustive search.
ese authors [2] also identify the computation of bounds on
e solutions to the dynamic system as the main bottleneck
in terms of convergence speed and accuracy of the resulting

i

Solution set approximation.
Computing exact bounds on the solution set of nonlinear

sponse to this, approximate methods that overestimate th
Splution set of parametric ordinary differential equation
DEs), yet provide sufficiently tight bounds, have been
developed over the years. These methods differ in the shape

of the enclosing sets, for instance interval boxes [3], [4],

r:ﬁ]%ylor models [5]—-[7] or ellipsoids [8], and also in the
a\%aDy these sets are propagated through the flow of the

e

Es. Interval bounds derived from Taylor models were first
Used by Lin and Stadtherr [9] in the context of guaranteed
;I)tarameter estimation.

The main emphasis in the paper is on so-called bound-

then-discretize methods, whereby auxiliary (nonparaigjetr
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Operarions, guaranteed parameter estimation is stated in Sect. Il and

the numerical solution procedure is also outlined. Theoesi

original parametric ODEs. Specifically, we consider cleasisi
differential inequalities [3], [4] and their combinatiomsth
Taylor models as described in [10], as well as the ellipdoida
bounding technique proposed in [8].

The rest of the paper is organized as follows. The problem



bounding techniques for parametric ODEs are described im;(t)
Sect. Ill. A comparison of these techniques on a simple case
study is presented in Sect. IV and the results are discussed.
Finally, Sect. V concludes the paper.

Il. GUARANTEED PARAMETER ESTIMATION
A. Problem Statement

Consider a model of the observed process described by |
parametric ODEs of the form L

©(t) = f(z(t),p),  =(to) = h(p), (1a) b | y

y(t) = g(x(1).p), (1) W T
wherex denotes the,,-dimensional vector of process states; |\ &
p, the n,-dimensional vector of process (a priori unknown) AN B
parameters; andy, the n,-dimensional vector of model L
outputs (predictions). N

Given a set of output measurememts at N time points t

t1,...,tn, Classicalparameter estimation seeks famepar- P2
ticular instancep, of the parameters for which the (possibly
weighted) normed difference between these measurements
and the corresponding model outpdtss minimized. This
optimization problem, for instance in the least-squaressgn
is given by:

P e IP>int

N
. R N2
po € arg min ; 'y (t:) — 9(t:)13, (2a)
s.t. model (1) (2b)

where the interval boXP, := [p{, pf/] denotes the a priori
set of admissible values for the parameters. (The supptscri
L and U representing the lower and upper bounds of an
interval box are understood component-wise throughout.)

In contrastguaranteedbounded-error) parameter estima-
tion accounts for the fact that the actual process outgts,
are only known within some bounded measurement errors
e € E = [el eY], so that

Yp(ti) € ym(t:) +[e" eV] = Y. (3) P

Here. the main Objective is to estimate the gt of all Fig. 1. lllustration of guaranteed parameter estimationcepts in the
! . space of output trajectories (top plot) and parametergdimoplot).

possible parameter valugssuch thaty(t;) € Y; for every

i1=1,...,N; that is,

dz,y with the 2-norm of a compact s&¢ C R" defined as
&(t) = f(x(t), p), =(to) = h(p),

P.:={p€Po| y(t:) = g(z(t:),p), : X2 := max |-y (6)
@(tl) €Y, ne
vt € [to, tn], Vi€ {1,...,N} Obtaining an exact characterization of the #t is not

4) possible in general, and one has to resort to approximation
Depicted in red on the top plot of Figure 1 is the set of alfechniques to make the problem computationally tractable.

output trajectories satisfying(t;) € Y;, i =1,...,N, and EXxisting algorithms providing such approximations usbesit
on the bottom plot the corresponding $&t projected in the set inversion techniques based on (4), or global optinunati
(p1,p2) space. methods based on (5). The focus in the remainder of the

In the case thaf. is nonempty, this set turns to be thepaper is on the former.
same as the set of all global minimizers of the problem
B. Algorithmic Procedure

N
. . 2
2ePy Z 1Y = y(t)]2, (5a) We consider a variant of the Set Inversion Via Interval
=1 Analysis (SIVIA) algorithm by [1] in order to approximate
s.t. model (1) (8b)  as closely as possible the solution #&t. Let F'; denote the



mapping associated to the ODE model (1), such that

Vp e Py: Fyi(p) =y(t), (7)

for eacht € [to, tn]. It follows that characterizind?,, via (4)
is equivalent to intersecting the inverse imagétsl(Yi) of
Y, via Fy, for eachi=1,..., N,

P, = (ﬂ F;l(Yl-)> N Py.

The algorithm proceeds as follows:

(8)

Input: Termination toleranceg,ox > 0 andepng > 0
Initialization: Set partitionPpng = {Po}, Pint = Pout = 0;
Set iteration counk = 0
Main Loop:
1) Select a parameter badR in the partitionPpnq and
remove it fromPpng

2) Compute enclosure¥ (t;) 2 F,, (P), for each
i=1,...,N
3) Exclusion Tests:
a) If Y(t;) CY,;forallie{1,...,N}, insert
P into P,
b) Else if Y(t;) N'Y; = 0 for somei ¢
{1,..., N}, insert P into Py
c) ElsebisectP and insert subsets back intggq
4) Termination Tests:

a) If Pyng= 0, stop
b) If Vina := > pep,,, VOIUMEP) < €bna, StOP
c) If width(P) < epox for all P € Pypg, Stop

5) Increment countek+ = 1; return to step 1
Output: PartitionsPi,; andPy,g; Iteration countk

An illustration of parameter subboxes belonging to th?

partitionsPiy;, Ppndg, @andPey; is shown on the bottom plot in

Figure 1, together with the corresponding output trajeéesor
on the top plot using the same color code. Upon termination,, ,

this algorithm returns partitionB,; andPyng such that

the total volumé/,,q of the boxes in the partitioRyng,

with corresponding thresholgng. In contrast, stopping
the algorithm when a minimum box width is reached
does not give any guarantee on the approximation level
because of the overestimation in step 2.

Variants of this algorithm exist that improve its conver-
gence rate by introducing additional exclusion tests. One
such test involves checking whether the interval gradiént o
the objective function in (5) for a given subbadR does
not contain0, in which caseP € P,,—this is because
there cannot exist any global optimizer of (5) I in this
case. Interval contractors based on interval gradientg wer
also proposed in [2]. The downside of these heuristics is the
need to compute enclosures of the first-order sensitivities
of model (1), which can cause a significant computational
overhead.

IIl. BOUNDING PARAMETRIC ODES

This section describes various techniques for enclosing
the solution set of parametric ODEs, as needed in step 2
of the guaranteed parameter estimation algorithm. The main
difficulty is to compute bounds on the state trajectotigs
since bounds on the output trajectorigare easily computed
from the state and parameter bounds when the fungtitn
tree-decomposable.

A. Interval Bounds

It is well known that interval bounds for (1) can be
computed by application of the following classical result
from the theory of differential inequalities [3], [4].

Theorem 1:Consider the parametric ODEs (1), wheffe
D x P — R™ is a continuous vector function and satisfy
a uniqueness condition ab x P, with D C R"=. Let the
unctionsz”, ¥ : R — R"= be continuous on some open
set containingty, ty] and satisfy[z”(t), 2V ()] c D for
all t € [to, tn]. If 2 (to) < h(p) < xY(t,) for all p € P

:E»LL(t) Smln{fz(zvp) | pc P7Z € [vamU]vzi = ‘T'LL(t)}v

UPgPeg<UP>U<UP>. (9) (10)
PEPiy PEPin PEPg i (t) >max {fi(z,p) | p€ P,z € [z", "],z = 2{ (1)},
A number of remarks are in order: (11)
« Multiple heuristics can be used regarding the selectiofyr almost allt € [to.tn] andi = 1,...,n,, thenz(t) €
of a parameter box in step 1 or the bisection in step 3¢z~ (¢), 2V (¢)] for all (¢,p) € [to, tn] x P. o

Here, we select the widest parameter box in step 1 and|n practice, bounds on the right-hand sides of the dif-
bisect at the mid-point along the least reduced axis iferential inequalities can be obtained via natural interva
step 3c. extensions. Alternatively, centered forms [11] can be ueed

« Step 2 involves bounding the solution set of the paragbtain tighter bounds ol. Although simple to implement,
metric ODEs (1) for the current parameter bBxNote  the bounds obtained with the method of differential inegual
that the algorithm will terminate finitely if the output ties only converge to the exact state bounds at a linear sate a
enclosuresY'(¢;) shrink as||P|| — 0. This is the case ||P|| — 0in general. This motivates the use of Taylor model-

for all of the bounding techniques detailed later on irhased approaches, which enjoy higher-order convergence.
Sect. Il

. Test 4b is an addition to the original SIVIA algo- B- Taylor Model-based Bounds
rithm [1], which interrupts the iterations when a spec- Given a non-empty seP ¢ R™ and aC?*! function
ified level of approximation of the solution s&®, is ¢ : X — R, with ¢ > 0, the pair(Pg,P,RZ),P) is called a
reached. The level of approximation is measured here ath-order Taylor model o) on P if [12]



« then,-variate polynomialP} p is such that

9%¢(p") oy
VpeP: Plplp)= > PP
KEN"P
le|<q
(12)
for somep* € P, with multi-index notation used,;
« the remainder intervaky ,- is such that

VpeP: ¢(p)—Pipp) EREp.  (13)
Similar to interval analysis, Taylor models can be cond&dc

recursively for factorable functions, which are defined by

finite recursive composition of binary sums, binary product
and a given library of univariate intrinsic functions such a
exp(-), v/, etc. This recursive procedure is initiated with a
known Taylor model, which can be the Taylor model of a
variable or, in the case of a composite function, a Taylor

model of the inner function.

An extension of the theory of differential inequalities was S(t) = 9
recently proposed in [10], which allows their combination

with Taylor models.

defines am,-dimensional ellipsoid centered atand with
shape matrix@. A technique for computing ellipsoidal
enclosures for the solution set of nonlinear parametric ©DE
was recently proposed by [8].

Theorem 3:Consider the parametric ODEs (1), whefre
D x P — R™ is a(C? vector function, withD C R"=,
Let Q : [to,tn] — ST, S : [to,tn] — R}"™"™ and z*
[to,tn] — R™=, and defineX (¢) such that

Xi(t) = VQul-1,11 4+ Si(t)[P — p] + 2] (),  (17)
or eachi =1,...,n, and allt € [t, tn]. Suppose thaf),
andx* satisfy
Q) = w0 @)+ @) L@ 1),
1Trath .
W Q(t) + diag[radRy] 1/trQ(¢), (18)
e )80+ @ 0p) 9
z"(t) = f(z"(1),p"), (20)

Theorem 2:Consider the parametric ODEs (1), wherefor almost everyt e [to,tN] as well as the initial conditions

f: Dx P — R" isaCt! vector function, withD C R"=
andg > 0. For eachi = 1,...,n, and each € [ty,tn], let
P;fi(t),P : P — R be then,-variate polynomial of ordeg
matching the truncated Taylor expansionagft) at some
p* € P. Let alsor?, vV : R — R" be differentiable
functions on some open set containing ¢ ], which satisfy

f) p)+[rt(t),rY ()] c Dforall (t,p) € [to, tn]x P.
If 7% (to) < h(p) =P,y p(P) <1V (to) forall p € P and

iE) < min{f; (P2 p(0) +2.0) = P2y p(P) |
peP,ze [r (t),rU(t)],zi = riL(t)},
(14)
";zU(t) > max{fi (Pzi(t),p(p) + zap) _ﬁzi(t)7p(p) |
pe P, zert(t),r 1),z = (1)},
(15)
for almost everyt € [tg,tn] and alli = 1,...,n,, then
(Pagy.po I rL(t),rY (¢)]) is agth-order Taylor model ofc(t )
on P'for all ¢ € [to, t].

Taylor model methods are appealing in that the overestl 1(t) =
p converges to zero at

mation in the remainder termR!
order (at leasty+ 1 as||P|| — 0 [12] However, in order to

derive interval bounds from a Taylor model, the polynomi
part must be bounded. Because computing the exact ral
of a multivariate polynomial iV’P hard, approximate range
bounders are used in practice; for instance, the linear al
diagonal quadratic terms can be bounded exactly, and t
remaining terms estimated using natural interval exterssio

as proposed in [6].
C. Ellipsoidal-based Bounds

Given a positive semi-definite matri@ < S’ and a
vectorc € R"=, the set

£Q,c)={c+Q%v|FweR™ v Tv<1}, (16)

r\%eeasurements corresponding to the times= 1,...,
?nthetic experimental data are generated by simulatiag th
h

Q(to) = diaglradRo]2, S(to) = 22(p*) and x(ty) =
h(p*), whereR; and R, denote, respectively, the remainder
term in a lst-order Taylor model of on X(t) x P at
(z*(t),p*) and the remainder term in a 1st-order Taylor
model ofh on P atp*. Then,z(t) € X (¢) for all (¢,p) €
[ﬁo, ﬁN] x P. <

The convergence rate of such ellipsoidal bounds to the
exact state bounds is typically quadratic |g3|| — 0, and
they are advantageous in terms of computational overhead
compared with Taylor model-based bounds. A comparison of
these three bounding techniques in a context of guaranteed
parameter estimation is presented in the next section for a
simple case study.

IV. CASE STuDY

A. Problem Definition

A dynamic model involving two state variables =
(z1,22)" and three uncertain model parametess =
(p1,p2,p3)T € [0.01,1]% is considered [2]:

— (p1 +p3)z1(t) + paza(t), 21(0) =1,
=p121(t) — pawa(t), x2(0) = 0.

(21a)

T (t) (21b)

The system has a single output variaplevhich corresponds

0 the state variablers, §(t) = z2(t), with N = 15
15.

odel (21) with parameter valugs’ = (0.6,0.15,0.35)T,
d then rounding the outpytt;) up or down to the nearest
value by retaining two significant digits only.

B. Numerical Implementation

The guaranteed parameter estimation algorithm in Sect. Il-
B is implemented in a C++ program, which uses the
PROFIL/BIAS library [13] for (validated) interval computa
tions and the MC++ libraryrt t p: / / www3. i nperi al .



ac. uk/ peopl e/ b. chachuat / resear ch) for compu-
tations involving Taylor models. Moreover, the code call
the ODE integration methods in the GNU Scientific Library
(GSL) to bound the parametric ODEs based on the tecl
nigues outlined in Sect. Ill. All of the numerical resultspr 5
sented next use the explicit embedded Runge-Kutta-Fehlbe_
(4,5) method, with both the relative and absolute tolerance®
set to1l x 107°. All the reported results are obtained on 2
workstation Intel Xeon CPU X5660 with 2.80 GHz andi’:D
16 GB RAM. —%— DI
Exclusion tests based on gradientinformation (see Sect.  ,| | —¢— pi+T™1

B) are also implemented as a means to enhance the con —%— DI+TM2
gence of the algorithm. However, this was found to hav * B:jm
an adverse effect on the overall execution time due to tr EL

need for bounding first-order sensitivity equations of thi -~ —21 i
dynamic model (21). Further research is clearly warrante

. . : log;( €bnd

in order to reduce the associated computational overhes~

possibly by using adjoint-based sensitivity. In particutae 4

T T

. . —— DI
results_ reported hereafter do not consider such gradiesgeb —5— DI+TM1.
exclusion tests. —%— DI+TM2
—— DI+TM3
. _ —%— DI+TM4
C. Comparative Analysis — 3F EL 1

The algorithm is run with ODE bounding techniques base;

on classical differential inequalities, ellipsoidal tedues, %
and differential inequalities with Taylor models, for Tayl 2
model orders ofg = 1,...,4. In order to allow for fair §° 2 1

comparisons, termination criteria are defined in terms ef tt

level of accuracyy,,q of the solution set in the range x

107 to 1 x 103, while termination criteria in terms of the

minimum box sizee;,, are set td). 1
The number of iterations and CPU time for the variou: i i i

methods are reported on the top and bottom plots of Figure - | -4 -3

respectively, as a function of the required accuragy;. It 0810 bnd

is evident that classical differential inequalities reguby Fig. 2. Comparison of guaranteed parameter estimationritigo for

far the largest number of iterations at any accuracy levelarious bounding techniqueSop: Number of iterations vs. convergence

Despite this large number of iterations, this method remairi"résholdBottom: CPU time vs. convergence threshold.

the fastest for accuracies,,q > 10~ mainly due to its

simplicity. At higher accuracy levels, bounding technigue

based on ellipsoidal calculus and Taylor model arithmeti®f iterations is much larger compared to 2nd-order Taylor

which exhibit faster convergence rates, are seen to becor@dels.

competitive. At an accuracy level efng = 1 x 1072, for The performance with ellipsoidal techniques is also com-

instance, the use of classical differential inequalitiguires parable with that of 2nd-order Taylor model, both in terms of

over 900,000 iterations and 15 hours to terminate; moreov&@omputational effort and number of iterations. This sutges

a case Withepng = 5 x 1076 could not be run till completion a good potential for improvement of calculating bounds on

with this bounding technique. the solutions of parametric ODEs by combining these two
A significant reduction in the number of iterations istechniques. A bounding of Taylor model remainders using

obtained when differential inequalities with Taylor maslel ellipsoidal calculus might be investigated in the futurerkvo

are used. As expected, the reduction gets larger as therTaylo The top and bottom plots in Figure 3 show the projections

model order increases. However, the observed trend is algb the approximate solution set®n; and Ppng are shown

that the reduction becomes marginal as Taylor model ordessing the same color code as in Fig. 1—on the, 62)

greater thary = 3 are used. At the same time, it is evidentand {, p3) subspaces, respectively, for different levels of

from the bottom plot of Figure 2 that higher-order Tayloraccuracyepng. Note first that, for each reportegng the

model incur a significant computational overhead. In termgarameter valuep® used to generate the experimental data

of the overall computational efficiency, the best tradeisff are part of the solution set. The solution set for this proble

obtained forq = 2 here. Note that the performance with 1stturns out to be disconnected, thereby suggesting a poten-

order Taylor models is comparable, even though the numbgal structural identifiability problem. Interestinghjhis non-




connectedness of the solution sets can only be detected wherbe the fastest for obtaining coarse approximations of the

the accuracy levelyng is 5 x 10~° or less, which again calls

solution set. On the other hand, the latter two techniques

for the use of Taylor model and ellipsoidal techniques whoseere found to greatly reduce the number of iterations and

convergence rate is faster. More generally, these redglis a

the overall computational time when more accurate approx-

support the use of guaranteed parameter estimation as a tooations are sought. From these results, which ought to be

for analyzing structural identifiability. Another intetegy
observation is thaPj,; remains empty when the threshold
level epng is greater than x 1076,

0.45¢ ]
0.4r 1
0.35r i
& 0.3t ]
0.25¢ ]
0.2t ]
0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65
Y4

_ -4
045} I:]and(sbnd_5X1o ) |

’ _ -5
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0.4r — —6y |

-and(sbnd_sxj'o )

-6
0.35} I:I PiEpng=>X10 ) |
g 03} 1
0.25¢ 1
0.21 1
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0.1 i : : : : : :
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p2
Fig. 3. Guaranteed parameter set for the case stegy & 5 x 1076,

Top: Projections into 41, p2) space (top plot) andp¢, p3) space (bottom
plot).

V. CONCLUSIONS

This paper has considered the problem of guaranteed

parameter estimation, where one seeks for all parame

confirmed on more complex parameter estimation problems,
the development of hybrid approaches combining various
bounding techniques appears promising. In order to further
enhance the convergence of these algorithms, the applicati
of efficient domain reduction techniques and other hegssti
from the area of branch-and-bound in global optimization
will also be investigated as a part of future work.
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