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Abstract: This paper presents the application of a plant-wide model-based methodology to
wastewater treatment plants. The focus is on a tertiary activated sludge plant with anaerobic
sludge treatment, owned and operated by Sydney Water. A dynamic plant-wide model is first
developed and calibrated using historical data. A scenario-based optimization procedure is
then applied for computing the effect of key discharge constraints on the minimal net power
consumption, via the repeated solution of a dynamic optimization problem. The results show a
potential for reduction of the energy consumption by about 20%, through operational changes
only, without compromising the current effluent quality. It is also found that nitrate (and
hence total nitrogen) discharge could be reduced from its current level around 22 mg(N)/L
to less than 15 mg(N)/L with no increase in net power consumption, and could be further
reduced to <10 mg(N)/L subject to a 15% increase in net power consumption upon diverting
part of the primary sludge to the secondary treatment stage. This improved understanding
of the relationship between nutrient removal and energy use will feed into discussions with
environmental regulators regarding nutrient discharge licensing.
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1. INTRODUCTION

Traditionally, the operation of wastewater treatment
plants (WWTPs) has been assessed primarily in terms of
effluent quality, subject to technical feasibility and cost
constraints. A shift is currently under way, whereby more
emphasis is being given to sustainability issues in wastew-
ater treatment, including energy consumption, treatment
chemical use, and green house gas (GHG) emissions. In the
UK, for instance, about 1% of the overall electricity con-
sumption is used for treating sewage wastewater, making
it the fourth most energy intensive sector (Parliamentary
Office of Science and Technology, 2007). In an objective
to continuously improve surface water quality, effluent
regulations are likely to be tightened in future years, which
will increase the energy footprint of WWTPs even further.

Among the alternatives for the sewage industry to reduce
their energy consumption without compromising effluent
quality, the development of improved operational and
control strategies holds much promise. Activated sludge
aeration can account for a fraction ranging between 45%-
75% of a plant’s energy expenditure (Owen, 1982), and it
has been suggested that the overall energy consumption
of many WWTPs could be reduced by 10%-40% through
operational improvements (WEF, 2009).

WWTPs consist of a large number of treatment and sep-
aration units, involving a great variety of processes acting

on different time scales and interacting with each other via
recycling loops. Developing plant-wide operational strate-
gies is clearly necessary to account for these interactions,
but doing so can defy engineering intuition. In response to
this, plant-wide simulation models, such as BSM2 (Jepps-
son et al., 2007), have started playing an increasingly im-
portant role in recent years (Descoins et al., 2012; Olsson,
2012; Flores-Alsina et al., 2014; Puchongkawarin et al.,
2014). An important hurdle to the widespread application
of such models for full-scale WWTPs is their calibration
based on routine measurements only (Mannina et al.,
2011; Sochacki et al., 2013). Despite carrying significant
uncertainty, plant-wide models can still provide invaluable
insight in assessing and comparing different control strate-
gies.

In this paper, we apply a plant-wide optimization method-
ology to an activated sludge plant with anaerobic sludge
treatment, owned and operated by Sydney Water. The ob-
jective is two-fold, namely (i) quantify the impacts of key
operating variables on effluent quality and energy use in
order to develop a better understanding of their interplay,
and (ii) develop optimized operational strategies in order
to compromise these conflicting objectives. The rest of the
paper is organized as follows. Sect. 2 is concerned with
the plant-wide model development based on BSM2 and
presents the calibration/validation of this model based on
existing plant-data. Then, Sect. 3 describes the scenario-



based optimization approach and discusses the results in
the light of the aforementioned objectives. Finally, Sect. 4
concludes the paper, summarizing how the results give us
an improved understanding of the relationship between
energy use and nutrient removal. This will feed into dis-
cussions with environmental regulators regarding nutrient
discharge licensing and feed into decisions around treat-
ment plant operation and asset management.

2. PLANT-WIDE MODEL DEVELOPMENT

The WWTP under consideration in this paper is a ter-
tiary plant owned and operated by Sydney Water, which
is designed to treat a nominal pollution load of 210,000
population-equivalent and discharges the treated effluent
into coastal waters. The general layout of this plant can
be seen in Fig. 1 or 2. After screening and primary sedi-
mentation, the wastewater undergoes secondary treatment
into one of five parallel aerobic/anoxic tanks (modified
Ludzack-Ettinger process) for carbon and nitrogen re-
moval, and is finally polished by sand filtration and UV
disinfection. In addition, both the primary sludge and
secondary sludge are mixed and digested anaerobically
before disposal. It is noteworthy that the treated effluent
is usually of a much higher quality than the foregoing
standards, especially with regards to ammonia discharge
(see Fig. 2). This WWTP is flexible enough for exploration
of a wide range of scenarios, and it presents excellent po-
tential for optimization due to large interactions between
the different liquid and sludge treatment stages.

The developed plant-wide model is based on the Bench-
mark Simulation Model No.2 (BSM2; Jeppsson et al.,
2006), which allows prediction of the energy consumption
of the plant as well as the effluent quality. Note that
modifications of the BSM2 model were necessary in order
to reflect the layout of the full-scale WWTP of interest.
This model has been implemented in the equation-oriented
process simulator gPROMS (http://www.psenterprise.
com), whose built-in optimization capabilities are used in
order to carry out both the calibration and the scenario-
based analysis.

2.1 Calibration Procedure and Results

Calibration of the plant-wide model is based on histor-
ical plant data for a 6-month period, as obtained from
Sydney Water’s data management system. The historical
data is routinely collected from online measurement (e.g.
daily flow, pH and dissolved oxygen) and from laboratory
analysis of an extensive range of biological and chemical
testing. The laboratory analysis is conducted on site at the
WWTP and at a laboratory accredited by the Australian
National Association of Testing Authorities. Then, the
data for calibration is subjected to statistical elaboration
as reported in Table 1 in terms of their mean values and
standard deviations. Given the rather large uncertainty
regarding the wastewater composition for the calibration
data set, we follow a two-step calibration procedure in
order to capture the main trends in the plant, focusing
primarily on mass conservation and flow splitting (Dochain
and Vanrolleghem, 2001; Vanrolleghem et al., 2003).

The first step involves calibration of the models of the
physical separation units, including the primary sedimen-

Table 1. Average wastewater composition
based on historical data.

WW Characteristics COD TSS N-NH+
4 TN

mg/L mg/L mg/L mg/L

Mean 569.0 296.0 42.9 61.3
St-Dev 40% 24% 26% 24%

tation tanks, thickener units, dissolved-air flotation (DAF)
units, secondary clarifiers, and tertiary filters. Specifically,
we proceed by adjusting the solids removal efficiency or
other sludge settling parameters as appropriate, in order
for the predicted flows and solids concentrations to match
the available data—here in the least-squares sense. The
calibration results are shown in Fig. 1, and the correspond-
ing calibrated parameters for each unit are reported in
Table 2.

Table 2. Calibrated model parameters in sep-
aration units.

Unit Parameter Value

Primary settling fcorr (Correction factor) 0.61
Clarifier fns (Non-settleable fraction) 0.01

DAF ηTSS (TSS removal efficiency) 0.99
Thickener ηTSS (TSS removal efficiency) 0.98

Filter ηTSS (TSS removal efficiency) 0.94
Dewatering ηTSS (TSS removal efficiency) 0.98

The calibrated flows and solids concentrations are found
to be in good agreement with the corresponding measure-
ments for all the separation units, and similar calibration
results have been obtained for other historical data sets too
(not shown). Besides the use of simple separation models
(static input-output maps) and the fact that a single
parameter is adjusted for each one of them, the observed
mismatch between the predictions and measurements from
one day to the next can also be attributed to the use of
daily averages for the flows and concentrations.

The second step involves calibration of the biological pro-
cesses in the plant-wide model, as described by ASM1
and ADM1 for the aerobic/anoxic tanks and the anaero-
bic digesters, respectively. The idea is to adjust selected
parameters in order for the predicted MLSS and efflu-
ent concentrations and the biogas production to match
their corresponding measurements. Given the rather large
uncertainty on wastewater composition (see Table 1),
the focus here is on adjusting the influent fractionation,
while keeping the kinetic and stoichiometric parameters
in ASM1/ADM1 at their default values. Although fine-
tuning certain kinetic or stoichiometric parameters can
help further close the gap between the predictions and
measurements, we find that the resulting estimates fail to
be statistically meaningful given the lack of plant data
here, which could be detrimental to the prediction capa-
bility (robustness) of the model.

Fractionation of the influent in BSM2 is based on the
state variables in ASM1 (Jeppsson et al., 2007). Apart
from the inlet concentrations of ammonia and alkalinity
whose values can be directly determined from the in-
fluent measurements, we assume that no heterotrophic
biomass, autotrophic biomass, products of biomass decay,
or nitrates are brought in with the influent. This leaves
us with the following 6 influent fractions to determine:
inert soluble organic matter (fSI); readily biodegradable



Fig. 1. Calibration of liquid and solid flows in physical separation units.

substrate (fSS); inert particulate organic matter (fXI);
slowly biodegradable substrate (fXS); soluble biodegrad-
able organic nitrogen (fSND); and slowly biodegradable
organic nitrogen (fXND). Moreover, these fractions must
satisfy the following relationships (Henze et al., 2007):

fSI
+ fSS

+ fXI
+ fXS

= 1 ,

0.75 (fXI + fXS) = 1 ,

fSND + fXND + 0.06
COD

TN
fXI +

N-NH+
4

TN
= 1 .

When the inlet concentrations of COD, TSS, TN and N-
NH+

4 are specified, the influent fractionation problem thus
has 3 degrees of freedom only.

The fractionation results obtained by considering the mean
influent concentrations in Table 1, together with default
kinetic/stoichiometric parameters in ASM1 and ADM1,
are reported in the ‘Set #1’ column in Table 3; the
corresponding model predictions are shown on Fig. 2
(red trend line). A good agreement is observed overall
between the model predictions and the measurements
during the 6-month period. The main trends appear to be
captured well by the plant-wide model, with the exception
of biogas production whose rate is underestimated by 25-
30% during the first 120 days. Nonetheless, the fact that
the predicted MLSS concentration in the aeration tank
follows the measurements well during the same period
indicates that such a discrepancy could be due to the
mean COD and/or TSS influent concentrations in Table 1
being underestimated themselves. To confirm it, both
influent COD and TSS concentrations have been estimated
along with their fractionation in a separate calibration.
These results are reported in the ‘Set #2’ column in
Table 3, with the corresponding model predictions also
shown on Fig. 2 (green trend line). The optimized COD
and TSS inlet concentrations are expectedly larger than
the mean values used in initial calibration, yet within the
standard deviation range of Table 3, thereby leading to a
reduction in the biogas production rate mismatch. Both

calibration sets are considered subsequently for the plant-
wide analysis and optimization.

Table 3. Calibrated parameters of wastewater
influent and its fractionation.

Parameter Unit Set #1 Set #2

fSI g(COD)/g(COD) 0.06 0.05
fSS g(COD)/g(COD) 0.25 0.16
fXI g(COD)/g(COD) 0.07 0.07
fXS g(COD)/g(COD) 0.62 0.72
fSND g(N)/g(N) 0.16 0.11
fXND g(N)/g(N) 0.10 0.15
COD mg/L 569 597
TSS mg/L 296 350

3. PLANT-WIDE ANALYSIS AND OPTIMIZATION

The developed plant-wide model provides a means of quan-
tifying the effect of key operating variables on both the
effluent quality and energy use/production in the WWTP.
As such, the model can be used to improve the plant’s per-
formance through the application of systematic optimiza-
tion methods based on mathematical programming. This
section describes the optimization problem and presents
the results of two scenario-based optimization studies that
identify strategies for reducing the net energy consumption
and for enhancing nutrient removal.

3.1 Optimization Problem Statement and Solution

A verbal statement of the optimization problem for opti-
mal operation of the WWTP is as follows:

“Find the optimal operational decision variables minimiz-
ing the plant’s average daily power consumption, while
meeting the effluent guidelines and subject to operational
restrictions.”

It should be noted that this formulation gives rise to a
challenging, constrained nonlinear optimization problem



Fig. 2. Calibration of effluent quality and biogas production in the WWTP. Calibration Set #1 (red trend line): mean
COD and TSS influent from Table 2; Calibration Set #2 (green trend line): optimized influent COD and TSS.

with differential equations embedded. The decision vari-
ables, objective function, and constraints of the problem
are detailed next.

Decision Variables To keep the optimization results as
practical as possible, the focus is on variables that are
commonly manipulated in WWTPs. A description of the
selected variables and their nominal values, is given in
Table 4. We note that internal recycling of the mixed liquor
from the aerated zone back to the anoxic zone is currently
not in use on this plant. In addition to the above variables,
we shall also consider the effect of solids capture efficiency
(SCE) in the primary sedimentation tanks.

Table 4. Decision variables and nominal values.

Variable Description Nominal value

DO DO setpoint 2 mg/L
WAS Waste activated sludge 2,272 m3/day
RAS Recycle activated sludge 58,000 m3/day
MLR Internal recycle flowrate 0 m3/day

Objective Function The net power consumption is the
difference between the average daily power consumption
of the main units and the average daily power recovered
from the biogas produced in the anaerobic digesters. Here,
the power consumption associated to both mixing and
pumping is computed based on correlations derived from
historical plant data. Both the power consumption of the
aeration system and the power recovered from the biogas
produced are computed based on the relationships devel-
oped by Gernaey et al. (2014) as a first approximation.

Effluent Standards and Operational Constraints In order
to cope with the current regulations of the New South
Wales’s Environment Protection Authority (EPA), con-
straints are defined on the BOD (15 mg(BOD)/L), TSS (10
mg(TSS)/L) and ammonia concentrations (45.7 mg(N)/L)
in the treated effluent. Other constraints are defined on
the actual range of the control variables DO, WAS, RAS
and MLR in order to account for equipment limits and/or
in agreement with current engineering practice. Moreover,
operational ranges are defined for two key process oper-
ation indicators, namely the sludge age (SRT) and the

MLSS concentration. These limits and ranges are reported
in Table 5 below.

Table 5. Operational limits and ranges.

Decision DO WAS RAS MLR
variables mg/L m3/day m3/day m3/day

min 0.5 – – –
max 3.0 4,142.7 103,680 100,000

Operation MLSS SRT
variables g/L day

min 2 7
max 5 15

Scenario-based Solution and Analysis Instead of carry-
ing out a single optimization based on the problem state-
ment, we consider a scenario-based procedure whereby
variable discharge levels are imposed for ammonia or ni-
trates. Note that each scenario involves solving a separate
(dynamic) optimization problem, here using gPROMS.

3.2 Strategies for Energy Saving

In the current mode of operation, the plant-wide power
consumption is dominated by the aeration of the activated
sludge reactors. Although partly compensated by the
biogas production in the anaerobic digesters, this power
consumption appears to be relatively high compared to
the current effluent quality, thereby suggesting a good
potential for improvement.

The effect of varying the ammonia discharge concentration
on the plant’s minimal net power consumption is presented
on the left plot of Fig 3, and the corresponding optimal
decision and operational variables are shown on the plots
opposite. The optimization results are seen to follow a
similar trend for both calibration sets (see Sect. 2.1 and
Table 3). Quantitatively, the larger organic load in Cal-
ibration Set #2 allows for a higher biogas production,
and therefore a lower net power consumption, compared to
Calibration Set #1. Quite remarkably though, the optimal
decision and operational variables are nearly identical, sug-
gesting a certain robustness of the model-based predictions
despite the uncertainty on influent composition.



Fig. 3. Effect of ammonia discharge level on the net power consumption (left plot) and on the decision/operational
variables (right plots), for the two calibration sets in Table 3.

From Fig. 3 the tight interplay between net power con-
sumption and ammonia discharge is clear. For comparison,
the actual plant’s net power consumption is estimated to
be 2.18×104 kWh/day (daily average) and the treated
effluent contains 0.9 mg(N)/L (daily average). Therefore,
a reduction in the net power consumption around 20-25%
could be achieved, through operational changes, without
compromising the ammonia concentration in the effluent.
Conversely, a reduction of the ammonia discharge by over
50% (0.4 mg(N)/L) could also be obtained without in-
creasing the net power consumption. These results suggest:
(i) treating ammonia down to residual concentrations of
ca. 1 mg(N)/L may only incur a mild penalty in power con-
sumption for this plant; (ii) a good compromise between
energy saving and nutrient removal might be found for
the plant as long as the ammonia discharge limit remains
larger than ca. 0.6 mg(N)/L; and (iii) the plant may not
produce an effluent with residual ammonia levels less than
ca. 0.35 mg(N)/L through operational changes only.

Closer inspection of the decision/operational variable
trends on the right plots of Fig. 3 reveals that the op-
timal DO setpoint increases significantly as the ammonia
discharge concentration is lowered. Quite expectedly, the
largest energy saving involves lowering the DO setpoint
to 0.5-1 mg(O2)/L here. Operating the activated sludge
reactors at longer SRTs is also found to be advantageous
from a plant-wide perspective, despite the corresponding
reduction in biogas production due to a higher endogenous
respiration and thus a lower sludge production (WAS
flowrate). Conversely, the RAS flowrate increases signifi-
cantly as the ammonia discharge concentration is reduced,
thus maintaining an optimal MLSS concentration around
3 g/L. Finally, the optimal strategy does not involve re-
cycling the mixed-liquor back to the anoxic zone since no
limit is currently defined with regards to nitrate discharge
and MLR would entail extra pumping costs.

3.3 Strategies for Enhanced Nutrient Removal

Because residual ammonia levels are already quite low,
typically around 1 mg(N)/L, most of the potential for en-
hancing nutrient removal lies with reducing nitrate levels.

This subsection investigates to what extent such reduc-
tions can be achieved through operational improvements.

The effect of varying the nitrate discharge concentration
on the plant’s minimal net power consumption, at a con-
stant ammonia discharge concentration of 0.9 mg(N)/L,
is presented on the left plot of Fig. 4; the corresponding
optimal decision and operational variables are reported on
the plots opposite. Note that these results are based on
Calibration Set #2 (see Sect. 2.1) and turn out to be
similar to those produced with Calibration Set #1 (not
shown). Moreover, the two curves on the plots correspond
to the optimal operation in terms of the decision vari-
ables DO, RAS, WAS and MLR, without (red solid line)
and with (green dotted line) SCE as an extra decision
variable—the nominal value of 55% capture efficiency is
used in the former case.

As previously with ammonia discharge, Fig. 4 shows a
tight interplay between net power consumption and ni-
trate removal. For comparison, the current plant’s net
power consumption is estimated to be 2.18×104 kWh/day
(daily average) and the treated effluent contains as much
as 22.1 mg(N)/L (daily average). The optimization re-
sults suggest that a reduction of the nitrate concentration
down to ca. 14 mg(N)/L could be obtained, without in-
creasing the net power consumption, through operational
changes. These changes involve increasing the recirculation
of mixed-liquor back to the anoxic zone as a source of
carbon for denitrification; mainly an increase in the RAS
flowrate here, whereas the MLR starts increasing only
once RAS is maximum (see Table 5). In this instance, the
additional pumping energy is balanced by a reduction of
the compression energy (DO setpoint down to 0.5 mg/L).

Regarding solids capture efficiency finally, a lower SCE
means that a larger fraction of particulate organic pollu-
tion entering the plant will be sent to the secondary treat-
ment, thereby increasing the amount of carbon available
for denitrification in the anoxic tanks. On the other hand,
the BOD load sent to the anaerobic digestion will decrease,
and so will the biogas production. These considerations
explain why nitrate concentrations lower than 10 mg(N)/L
could be achieved if the SCE were to be reduced to <30%,



Fig. 4. Effect of nitrate discharge level on the net power consumption (left plot) and on the decision/operational variables
(right plots), at constant ammonia discharge level of 0.9 mg(N)/L and for Calibration Set #2 in Table 3.

although this would be at the cost of a >15% increase of
the net power consumption of the plant. In practice, this
strategy should be compared to the direct addition of a
fresh carbon source (e.g., methanol) in the anoxic tanks.

4. CONCLUSIONS

This paper has presented the application of a model-
based methodology to a full-scale activated sludge plant
combined with anaerobic sludge digestion, in the objec-
tive to quantify the effect of key operational variables on
effluent quality and energy consumption, and to deter-
mine improved operational strategies on account of these
conflicting objectives. The results of the scenario-based
optimization show good potential for further improve-
ments, with reduction of the energy consumption around
20% through operational changes (DO setpoint, and WAS,
RAS and MLR flowrates) if the effluent targets were to
remain at the same level. It is also found that the nitrate
concentration in the effluent could be reduced to less than
15 mg(N)/L with no increase in net power consumption.
Our analysis suggests that the nitrate concentration could
even be reduced to 10 mg(N)/L or less upon decreasing the
solids capture in the primary sedimentation tanks to 30%
only, subject to a 15% increase in net power consumption.

As part of future work, we will compare the enhanced
nitrate removal strategy with the direct addition of fresh
carbon in the anoxic tank in terms of operating cost. Our
current investigations are also concerned with improving
the robustness of the plant-wide model predictions through
the application of robust optimization methods that di-
rectly account for the uncertainty of influent composition.
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