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Abstract. We show that if G is a non-archimedean, Roelcke precom-
pact, Polish group, then G has Kazhdan’s property (T). Moreover, if G
has a smallest open subgroup of finite index, then G has a finite Kazh-
dan set. Examples of such G include automorphism groups of countable
ω-categorical structures, that is, the closed, oligomorphic permutation
groups on a countable set. The proof uses work of the second author on
the unitary representations of such groups, together with a separation
result for infinite permutation groups. The latter allows the construction
of a non-abelian free subgroup of G acting freely in all infinite transitive
permutation representations of G.

1. Introduction

1.1. Main results. A topological group G is non-archimedean if it has a
base of open neighbourhoods of the identity consisting of subgroups. The
symmetric group Sym(X) on a set X, consisting of the group of all permu-
tations of X, equipped with the topology of pointwise convergence, is an
example of such a group: pointwise stabilizers of finite sets form a base of
open neighbourhoods of the identity. It is well-known that a Polish group
G is non-archimedean if and only if it is isomorphic to a closed subgroup
of Sym(X) for some countable X. Moreover, such groups are exactly auto-
morphism groups of first-order structures on X.

A group G ≤ Sym(X) is said to be oligomorphic (in its action on X)
if G has only finitely many orbits on Xn, for all n ∈ N (where the action
on Xn is the diagonal action). Such groups have been extensively studied
from the point of view of infinite permutation groups, combinatorics, model
theory, and topological dynamics (see, for example, the references [4], [11]
and [9]). They arise as automorphism groups of ω-categorical structures and
model-theoretic methods produce a wide variety of examples of these.

In [13], the second author studied the unitary representations of oligo-
morphic permutation groups, showing that they are completely reducible
and giving a description of the irreducible representations. Many of the re-
sults of [13] hold under a weaker (and more intrinsic) assumption than that
of being an oligomorphic group: that of Roelcke precompactness (see Defini-
tion 1.5 here). For G ≤ Sym(X) this means that whenever Y is a union of
finitely many G-orbits, then G acts oligomorphically on Y (see Lemma 1.6).
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We note that in the interesting cases, Roelcke precompact groups are not
locally compact: more precisely, a Roelcke precompact topological group is
locally compact iff it is compact.

Using this description of the unitary representations, the paper [13] shows
that Kazhdan’s property (T) holds for a natural class of closed, oligomorphic
permutation groups G ≤ Sym(X) ([13, Theorem 6.6]; for the definition of
property (T), see Definition 4.2 here). Furthermore, [13, Theorem 6.7] gives
some examples — including the automorphism groups of the rational order-
ing (Q,≤) and the random graph — of such groups with strong property
(T), where the Kazhdan set can be taken to be finite. In the latter case,
the proof proceeds by finding a non-abelian free subgroup of G which acts
freely on X, an idea that goes back to Bekka [1]. We use a similar method
here, combined with techniques from permutation group theory, to prove
the following general result.

Theorem 1.1. Suppose that G is a non-archimedean, Roelcke precompact,
Polish group and G◦ is the intersection of the open subgroups of finite index
in G. Then G and G◦ have Kazhdan’s property (T) and G◦ has a finite
Kazhdan set.

While so far property (T) has found most of its applications in the realm
of locally compact groups, we note that there are some interesting conse-
quences in our setting as well. Combining Theorem 1.1 with the results of
Glasner and Weiss [5], we obtain the following.

Corollary 1.2. Let G be a non-archimedean, Roelcke precompact group
and G y X a continuous action on a compact Hausdorff space X. Then
the simplex of G-invariant measures on X is a Bauer simplex, i.e., the set
of its extreme points is closed.

The extreme points of the simplex of invariant measures are exactly the
ergodic measures (a measure µ is ergodic if every µ-invariant measurable
set A ⊆ X is null or co-null; a set A is µ-invariant if for every g ∈ G,
µ(A4 gA) = 0). While Glasner and Weiss only state their theorem for
locally compact groups, the proof works equally well in general; see the
book of Phelps [12] for the general version of the ergodic decomposition
theorem needed in the proof.

We also note that while amenable locally compact groups with property
(T) must be compact, this is not necessarily true in our setting. Indeed,
there are a number of automorphism groups of ω-categorical structures that
are amenable: for example, this is true if the structure has the so-called
Hrushovski property, see [8] for more details. Amenability is relevant for
Corollary 1.2 because it ensures that the simplex of invariant measures is
non-empty for any G-flow X.

Apart from the description of the representations of non-archimedean,
Roelcke precompact, Polish groups given in [13] (see Theorem 4.1 here), the
main ingredient in the proof is the following, which is the main contribution
of the current paper.
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Theorem 1.3. Suppose G is a non-archimedean, Roelcke precompact Polish
group and G◦ is the intersection of the open subgroups of finite index in G.
Suppose G◦ 6= {1G}. Then there exist f, g ∈ G◦ which generate a (non-
abelian) free subgroup F of G◦ with the property that if H ≤ G is open and
of infinite index, then F acts freely on the coset space G/H.

Here, recall that a group F acting on a set Y is acting freely if for all
non-identity g ∈ F and y ∈ Y we have gy 6= y. Thus each F -orbit on Y is
regular.

Theorems 1.1 and 1.3 answer Questions (1) (for non-archimedean groups)
and (2) at the end of [13].

Recall that an action of a group G on a discrete space X is called
amenable if there is a G-invariant finitely additive measure on X. As a
further corollary to Theorem 1.3, we note:

Corollary 1.4. Suppose G is a non-archimedean, Roelcke precompact Pol-
ish group which is acting continuously on the discrete space X. Suppose the
action of G on X is amenable. Then X contains a finite orbit.

The proof of Theorem 1.3 rests ultimately on Neumann’s Lemma (see
Lemma 2.1), a very general result about separating finite sets in an infinite
permutation group.

The required consequences of this for closed, Roelcke precompact per-
mutation groups are given in Section 2. These results can be deduced from
‘folklore’ results in model theory, but we provide proofs of them in the lan-
guage of permutation groups. Theorem 1.3 is proved in Section 3 along with
Corollary 1.4. Section 4 discusses Kazhdan’s property (T) and contains the
proof of Theorem 1.1.

Notation. Our notation for permutation groups is fairly standard. Groups
act on the left. If G is a group acting on X and A ⊆ X, then GA is the
pointwise stabilizer {g ∈ G : ga = a for all a ∈ A}. If A = {a} is a singleton,
we denote this by Ga. If G is the automorphism group of some structure M
with domain X, then we write G = Aut(M) and use the alternative notation
Aut(M/A) for GA. We do not usually distinguish notationally between a
structure and its underlying set.

Acknowledgements. Both Authors thank Dugald Macpherson for help-
ful discussions about some of the material in this paper. The paper was
completed while the Authors were participating in the trimester programme
‘Universality and Homogeneity’ at the Hausdorff Institute for Mathematics,
Bonn. We are also grateful to the anonymous referee for carefully reading
the paper and making useful suggestions.

1.2. Background.

Definition 1.5. The topological group G is called Roelcke precompact if
for every open neighbourhood U of the identity, there is a finite set E such
that G = UEU .
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If G is non-archimedean, so G ≤ Sym(X) for some X, then U in Defini-
tion 1.5 can be taken to be an open subgroup and the condition for Roelcke
precompactness says that there are only finitely many double cosets of U in
G. In fact, if we take ā ∈ Xn and U = Gā its stabilizer, then the condition
says that there are finitely many G-orbits on Y 2, where Y is the G-orbit on
Xn containing ā. Recall that a group G is said to act oligomorphically on a
set Y if G has finitely many orbits on Y n for all n ∈ N. The following is a
restatement of [13, Theorem 2.4]:

Lemma 1.6. Suppose G ≤ Sym(X). Then G is Roelcke precompact if and
only if whenever Y is a union of finitely many G-orbits on X, then G acts
oligomorphically on Y .

If G is acting on X as in the above, then we say that G is locally oligo-
morphic on X. Note that in this case, if A ⊆ X is finite, then its pointwise
stabilizer GA is also locally oligomorphic on X (this follows easily from
Roelcke precompactness).

We summarise the above as:

Corollary 1.7. A topological group G is non-archimedean, Polish and Roel-
cke precompact if and only if it can be represented as a closed, locally oligo-
morphic subgroup of Sym(X), for countable X.

Closed subgroups of Sym(X) are precisely automorphism groups of first-
order structures on X. Indeed, if G ≤ Sym(X), we consider the canonical
structure which has a relation for each G-orbit on Xn, for all n ∈ N. Then
G is a closed subgroup of Sym(X) if and only if it is the full automor-
phism group of this canonical structure. If X is countable, then, by the
Ryll-Nardzewski Theorem, G is oligomorphic if and only if this canonical
structure is ω-categorical. (The book [4] is a convenient reference for this
material.)

The following fact is an easy consequence of Roelcke precompactness;
see [13, Corollary 2.5] for a proof.

Lemma 1.8. Suppose X is countable and G ≤ Sym(X) is locally oligomor-
phic. Then G has only countably many open subgroups.

We also note that for such G, there is a ‘universal’ choice for the set X.

Lemma 1.9. Suppose G is a non-archimedean Polish group with countably
many open subgroups. Then there is a faithful action of G on a countable set
X = X(G) with the property that for every open subgroup U ≤ G, there is
a ∈ X such that U = Ga. Moreover, G is closed in Sym(X) in this action.

Proof. Let (Ui : i ∈ I) be a system of representatives for the set of conjugacy
classes of open subgroups of G. Let X(G) be the disjoint union of the (left)
coset spaces G/Ui. So X(G) is countable and if U ≤ G is open there is a
unique i ∈ I such that U is conjugate to Ui, so U = gUig

−1 for some g ∈ G.
Then U is the stabilizer of the coset a = gUi ∈ X(G).

It remains to prove that G is a closed subgroup of Sym(X(G)). As G is
Polish, it suffices to show that the original topology of G is the same as the
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one inherited from Sym(X(G)). Indeed, if {gn} is a sequence in G converging
to 1 in Sym(X(G)), then it eventually enters every open subgroup of G,
which, as G is non-archimedean, means that gn → 1 in G.

�

Remarks 1.10. It is worth noting that if M is a countable ω-categorical
structure and G = Aut(M), then the action of G on X(G) (as in Lemma 1.9)
is essentially that of G on M eq.

We finally observe that our setting is slightly more general than the
classical one of oligomorphic groups (and ω-categorical structures). Locally
oligomorphic groups can be represented as inverse limits of oligomorphic
ones (which, however, are not necessarily closed in Sym(X)). Examples can
be obtained by taking the disjoint union of countably many ω-categorical
structures (in disjoint languages); then the automorphism group of this
structure is the direct product of the automorphism groups of the individual
structures and is locally oligomorphic. Perhaps more interestingly, consider
the abelian group M which is a direct sum of countably many copies of the
Prüfer p-group Z(p∞) (complex roots of 1 of order a power of p) for some
prime p. It can be checked that Aut(M) acts locally oligomorphically on
M . Another example is given by the ℵ0-partite random graph (with named
parts). Further interesting structures can be constructed from inverse limits
of finite covers of ω-categorical structures.

2. Algebraic closure and Neumann’s Lemma

The following result is sometimes called Neumann’s Lemma (cf. Corol-
lary 4.2.2 of [6]). It is equivalent to a well known result of B. H. Neumann
on covering groups by cosets; an independent, combinatorial proof can be
found in [3], or [4, 2.16].

Lemma 2.1. Suppose G is a group acting on a set X and all G-orbits on
X are infinite. Suppose A,B ⊆ X are finite. Then there is some g ∈ G with
gA ∩B = ∅.

The result has the following model-theoretic consequence, which can be
regarded as ‘folklore’.

Lemma 2.2. Suppose M is a countable, saturated first-order structure and
A,B,C ⊆M are algebraic closures of some finite subsets of M with B ⊆ C.
Then there is g ∈ Aut(M/B) such that g(C) ∩ A = B ∩ A.

Here, the algebraic closure in M of a set E is the union of the finite
E-definable subsets of M . Saturation means that if E is finite and S is
a family of E-definable subsets of M with the finite intersection property,
then

⋂
S 6= ∅. It implies that the algebraic closure of a finite E ⊆ M

is the union of the finite Aut(M/E)-orbits (where Aut(M/E) denotes the
pointwise stabilizer of E in the automorphism group Aut(M)).

We give an analogous result for locally oligomorphic permutation groups.
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Definition 2.3. Suppose G ≤ Sym(X) is locally oligomorphic on X. If
E ⊆ X is finite, the algebraic closure acl(E) of E in X is the union of the
finite GE-orbits.

Note that, with this notation, if Y is a G-orbit on X, then acl(E)∩ Y is
finite.

Lemma 2.4. Suppose M is countable and G ≤ Sym(M) is closed and
locally oligomorphic on M . If E ⊆ M is finite, then Gacl(E) is also locally
oligomorphic on M and has no finite orbits on M \ acl(E) .

Proof. Let B = acl(E). Note that B is the union of a chain E = E0 ⊆ E1 ⊆
E2 ⊆ · · · of finite GE-invariant sets.

Claim 1: Suppose ā ∈ Mn is a finite tuple and let Ai be the GEi
-orbit

containing ā. Then there is N ∈ N such that Ai = AN for all i ≥ N .
Indeed, note that GEi

is a normal subgroup of finite index in GE. It
follows that {gAi : g ∈ GE} is a GE-invariant partition of A0 (with finitely
many parts). As GE has finitely many orbits on A2

0, there are only finitely
many possibilities for such a partition, so as Ai ⊇ Ai+1, they must be equal
for sufficiently large i. (2Claim 1.)

It is worth noting that the N here depends only on the GE-orbit con-
taining ā, not the particular representative ā. As GB =

⋂
iGEi

, it follows
that in each GE-orbit, the GB-orbits coincide with the GEN

-orbits, and as
GEN

has finite index in GE, there are only finitely many of them, showing
that GB is locally oligomorphic and that GB · ā is infinite whenever GE · ā
is.

If a ∈M \acl(E), then by the Claim, Gacl(E) ·a = GEN
·a for some N ; as

GEN
has finite index in GE and GE · a is infinite, this means that Gacl(E) · a

is also infinite. �

Lemma 2.5. Suppose M is countable and G ≤ Sym(M) is closed and
locally oligomorphic on M . Suppose A,B,C are algebraic closures in M of
some finite subsets of M and B ⊆ C. Then there is g ∈ GB such that
g(C) ∩ A = B ∩ A.

Proof. Let ā, c̄ be finite tuples with A = acl(ā) and C = acl(c̄) (where
algebraic closure is from the action of G on M , of course). Consider the
action of H = GB on M . By Lemma 2.4, H is locally oligomorphic on M
and has no finite orbits on M \ B. Let S be the H-orbit containing c̄ and
let S1, . . . , Sk be the Hā-orbits on S (note that there are finitely many of
these, as H is oligomorphic on the union of the H-orbits which contain the
elements of the tuples ā, c̄).

Write M \ B as the union of a chain X0 ⊆ X1 ⊆ X2 ⊆ · · · of subsets
each of which is a finite union of H-orbits. Recall that the intersection of
A,C with each Xi is finite. So by Lemma 2.1, for each j ∈ N, there is some
c̄′ ∈ S such that

(Xj ∩ acl(c̄′)) ∩ (Xj ∩ acl(ā)) = ∅.
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Thus, for each j ∈ N there is some i ≤ k such that this holds for all c̄′ ∈ Si.
So there is some i ≤ k such that this holds for all j and for all c̄′ ∈ Si. In
particular, there is c̄′ ∈ S such that acl(c̄′) ∩ acl(ā) ⊆ B, as required. �

Remarks 2.6. The result can be derived from the model-theoretic state-
ment Lemma 2.2, though some care is required as the canonical structure
for a locally oligomorphic G ≤ Sym(X) is not saturated if there are in-
finitely many G-orbits on X. However, if we regard it as a multi-sorted
structure (with a sort for each of the G-orbits on X), then it is saturated
(as a multi-sorted structure) and Lemma 2.2 also holds in this context. Nev-
ertheless, it seems worthwhile to offer a direct proof which does not use the
model-theoretic terminology.

Definition 2.7. Suppose G is a topological group. Then G◦ denotes the
intersection of the open subgroups of finite index in G.

Lemma 2.8. Suppose G is a non-archimedean, Roelcke precompact Polish
group. Consider G as a closed subgroup of Sym(X(G)) (as in Lemma 1.9).
Then G◦ = Gacl(∅) and it is Roelcke precompact. Moreover (G◦)◦ = G◦.

Proof. By definition, an element of X(G) is in acl(∅) if and only if its stabi-
lizer is open and of finite index. Moreover, any such subgroup is the stabilizer
of some point of X(G), so the first statement is immediate from Lemma 2.4.

For the second statement, suppose U ⊆ G◦ is open and of finite index.
The topology on G◦ is the subspace topology so there is some e ∈ X(G)
such that Ge ∩ G◦ ≤ U ≤ G◦. Let D be the U -orbit on X(G) containing
e; let C be the G◦-orbit and E the G-orbit. Note that by Claim 1 in the
proof of Lemma 2.4, C is equal to the GX-orbit containing e, for some
finite, G-invariant X ⊆ acl(∅). Thus {gC : g ∈ G} is a finite partition of
E. So as U is of finite index in G◦, we have that {gD : g ∈ G} is also a
finite partition of E. Let V be the setwise stabilizer of D in G. So this is
an open subgroup of finite index in G and V ∩ G◦ = U . (To see this, let
v ∈ V ∩ G◦. Then there is u ∈ U such that v · e = u · e, so u−1v ∈ Ge.
Therefore v ∈ uGe ∩G◦ = u(Ge ∩G◦) ⊆ U .) But V ≥ G◦, so U = G◦. �

Lemma 2.9. Let G be a non-archimedean, Roelcke precompact, Polish group
and π : G→ K be a continuous homomorphism to a compact Polish group.
Then π(G) is closed in K. In particular, G/G◦ is a compact, profinite group.

Proof. Without loss of generality, we may assume that π(G) is dense in K.
Let V ≤ G be an open subgroup. As G is Roelcke precompact, there is a
finite F ⊆ G such that V FV = G. Using that K is compact, we obtain

K = π(V )π(F )π(V ) = π(V )π(F )π(V ).

So K is the disjoint union of finitely many double cosets of the compact
group π(V ), which are closed and, therefore, open. In particular, π(V ) is
open.

The open subgroup V ≤ G was arbitrary, so for all V , π(V ) is somewhere
dense. As G is Polish, this implies that π(G) is non-meager in K (see, for
example, [8, Proposition 3.2]). As π(G) is also a Borel subgroup of K, it
must be open and closed [7, 9.11], implying that π is surjective.
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For the last statement, let K = lim←−G/N , where the inverse limit is
taken over all finite index, open, normal subgroups of G directed by reverse
inclusion. (Note that, as G is Roelcke precompact, it has only countably
many open subgroups, so K is Polish.) Then there is a natural injective
homomorphism π : G/G◦ → K with dense image. By the main statement
of the lemma, π is also surjective, and, therefore, a topological group iso-
morphism. �

3. Constructing automorphisms without fixed points

Theorem 3.1. Suppose M is a countable set and G ≤ Sym(M) is closed
and locally oligomorphic. Suppose G◦ 6= 1. Then there exist elements f, g ∈
G◦ generating a non-abelian free subgroup F of G◦ which acts freely on
M \ acl(∅).

Suppose that M and G are as in the theorem. Note that by Lemma 2.4,
G◦ is closed and locally oligomorphic on M \ acl(∅). Also, by Lemma 2.8,
(G◦)◦ = G◦. So for the rest of the proof we may assume without loss of
generality that G = G◦ and acl(∅) = ∅. Note that the assumption that
G◦ 6= 1 means that some G◦-orbit is infinite.

We will regard M as a first order structure with automorphism group G
(for example, by giving it its canonical structure).

Let A = {acl(E) : E ⊆ M finite} be the set of algebraic closures of
finite subsets of M . By a partial automorphism of M we mean a bijection
P → Q between elements of A which extends to an element of G. We build
f, g in the theorem by a back-and-forth argument as the union of a chain
of partial automorphisms, ϕ : A → B and γ : A′ → B′ (approximating f, g
respectively). It will suffice to show how to extend the domain of one of ϕ, γ
in the ‘forth’ step (by symmetry, the argument for extending images in the
‘back’ step will be the same).

Consider F2 = 〈a, b〉, the free group on generators a, b. The non-identity
elements of F2 can be thought of as reduced words ω(a, b) in a, b: so ex-
pressions ω(a, b) = c1c2 · · · cr where ci ∈ {a, b, a−1, b−1} and ci 6= c−1

i+1 for
all i < r. If ϕ, γ are partial automorphisms of M then by ω(ϕ, γ) we mean
the composition obtained by substituting ϕ for a and γ for b in ω(a, b). We
refer to this as a reduced word in ϕ, γ. This is a bijection between subsets of
M which extends to an element of G (of course, it could be empty); a fixed
point of this is an element x ∈ M such that ω(ϕ, γ)x is defined and equal
to x.

Theorem 3.1 follows from the following:

Proposition 3.2. Suppose M is as above and ϕ : A→ B, γ : A′ → B′ are
partial automorphisms of M such that no reduced word in ϕ, γ has a fixed
point. Suppose A ⊆ C ∈ A. Then there is an extension ϕ̃ : C → D of ϕ to
a partial automorphism with domain C such that no reduced word in ϕ̃, γ
has a fixed point.

Proof. First we show that we can choose D (and ϕ̃) so that D ∩ (C ∪ B ∪
A′ ∪ B′) = B. As ϕ extends to an element of G, there is some partial
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automorphism ϕ′ : C → D′ extending ϕ. So B ⊆ D′ and by Lemma 2.5
there is g ∈ GB with gD′ ∩ (C ∪ B ∪ A′ ∪ B′) = B. Let D = gD′ and
ϕ̃ : C → D be the composition g ◦ ϕ′. This has the required property.

Now we show that this choice of ϕ̃ works.

We first note the following:

Observation: If ϕ̃−1z is defined and z ∈ C ∪ B ∪ A′ ∪ B′, then z ∈
(C ∪ B ∪ A′ ∪ B′) ∩ D = B. So z ∈ B and therefore ϕ−1z is defined and
ϕ̃−1z = ϕ−1z ∈ A. Similarly, if ϕ̃w is defined and ϕ̃w ∈ C∪B∪A′∪B′ then
ϕ̃w ∈ (C ∪B ∪ A′ ∪B′) ∩D = B, so w ∈ A, ϕw is defined and ϕw = ϕ̃w.

Now suppose π1π2 · · · πr is a reduced word in ϕ̃, γ and x, y ∈M are such
that

(∗) π1π2 · · · πrx = y.

So πi ∈ {ϕ̃, ϕ̃−1, γ, γ−1} and πi+1 6= π−1
i . We show that most of the terms

ϕ̃, ϕ̃−1 in this equation can be replaced by ϕ, ϕ−1 without changing the
validity of the equation.

Claim: Suppose πi = ϕ̃−1 and i < r. Then we can replace πi by π′i = ϕ−1

in (∗). Similarly, if πj = ϕ̃ and j > 1 then we can replace πj by π′j = ϕ in
(∗).

To see this, note that as the word is reduced, πi+1 is equal to γ, γ−1, or
ϕ̃−1 (as we will want to repeat this argument we also consider the possibility
that it is ϕ−1). If z = πi+1 . . . πrx then z is in the image of πi+1, so z ∈
A′ ∪ B′ ∪ C. By the observation, it follows that ϕ−1z is defined (and equal
to ϕ̃−1z), so we can replace πi by ϕ−1 as required. Similarly πj−1 is equal
to γ, γ−1 or ϕ̃ (or ϕ). So w = πj+1 . . . πrx is such that ϕ̃w is defined and in
the set A′ ∪B′ ∪C. So by the observation, ϕw is defined (and equal to ϕ̃w)
and we can make the required replacement. (2Claim)

Now make all of the replacements allowed by the Claim. The only pos-
sible ϕ̃−1 remaining is if πr = ϕ̃−1 and the only possible ϕ̃ remaining is if
π1 = ϕ̃.

Thus, after the replacements we have

(∗∗) ϕ̃sβϕ̃−tx = y,

where s, t ∈ {0, 1} and β is a (possibly trivial) reduced word in ϕ, γ. Sup-
pose, for a contradiction, that x = y.

We consider various cases. If β is trivial, then exactly one of s, t is 1
and (possibly after rearranging (∗∗)) we have ϕ̃x = x. Then x ∈ C ∩D, so
x ∈ B and ϕx is defined. Thus ϕx = x, contradicting the assumption on
ϕ, γ. Suppose now that β is non-trivial. If s = t = 1, then we can rearrange
(∗∗) to obtain βz = z where z = ϕ̃−1x. As β is a non-trivial reduced word
in ϕ, γ, this is a contradiction. We also have a contradiction if s = t = 0.
For the remaining cases, by rearranging (∗∗) if necessary, we can assume
s = 1 and t = 0, that is, ϕ̃βx = x. Then x ∈ D ∩ (A ∪ B ∪ A′ ∪ B′), so
x ∈ B, βx ∈ A and ϕ(βx) is defined, with ϕβx = x. But ϕβ is a non-trivial



10 DAVID M. EVANS AND TODOR TSANKOV

reduced word in γ, ϕ (it comes from the same word as π1 . . . πr) so we have
a contradiction. �

Proof of Theorem 3.1. Recall that we are assuming (without loss of gener-
ality) that acl(∅) = ∅ and M is infinite (the latter from the assumption that
G◦ 6= 1). We build chains of partial automorphisms

ϕ1 ⊆ ϕ2 ⊆ ϕ3 ⊆ · · · and γ1 ⊆ γ2 ⊆ γ3 ⊆ · · ·

such that f =
⋃

i ϕi and g =
⋃

i γi are automorphisms. At each stage we use
Proposition 3.2 to extend the domain or image of one of ϕi, γi so that f, g will
be automorphisms. We can start off with ϕ1, γ1 so that no reduced word in
ϕ1, γ1 has any fixed points. To do this, we just ensure (using Lemma 2.5) that
the domains and images of φ1, γ1 are all disjoint. Then by the Proposition,
the same will be true of all the ϕi, γi, and therefore of f, g. So no reduced
word in f, g has any fixed points: in particular, every reduced word in f, g
is not the identity so f, g freely generate a free group whose non-identity
elements have no fixed points on M . �

We can now prove Theorem 1.3 from the introduction.

Proof of Theorem 1.3: Consider G as acting as a closed, locally oligomorphic
subgroup of Sym(X(G)), where X(G) is as in Lemma 1.9. Let f, g be as
given by Theorem 3.1 with M = X(G). Suppose H ≤ G is open and of
infinite index and 1 6= k ∈ F . By construction of X(G), there is an injective
G-morphism from the coset space G/H to X(G). As H is of infinite index
in G, clearly the image of this is in M \acl(∅). It follows that k has no fixed
points on G/H, as required. 2

We now obtain Corollary 1.4 from the introduction.

Proof of Corollary 1.4. Suppose G is as in the statement of the Corollary. If
G◦ = 1, then by Lemmas 2.4 and 2.8, every orbit of G is finite. Otherwise, by
Theorem 1.3 there is a non-abelian free subgroup F of G as in Theorem 1.3.
If all orbits of X are infinite, then F acts freely on X. But this is impossible
if the action of G (and therefore of F ) on X is amenable. �

As a further application of Theorem 1.3, we note the following.

Corollary 3.3. Suppose G is a non-archimedean, Roelcke precompact Pol-
ish group. Then G is not equal to the union of its open subgroups of infinite
index.

Proof. Open subgroups of infinite index are exactly the stabilizers of ele-
ments of X(G) \ acl(∅). So the statement follows once we know that some
element of G fixes no element of X(G)\acl(∅). But we just showed that there
is a free group of rank 2 with this property, which is more than enough. �
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Note that very little is used in the proof of Theorem 3.1 apart from Neu-
mann’s Lemma, in the form of Lemma 2.5. As the corresponding result holds
for countable, saturated structures (Lemma 2.2) or, more generally, count-
able multi-sorted structures which are saturated as multi-sorted structures,
the proof of Theorem 3.1 also gives the following.

Corollary 3.4. Suppose M is a countable saturated structure with some
infinite sort. Then there exist f, g ∈ Aut(M/acl(∅)) such that F = 〈f, g〉 is
the free group on f, g and every non-identity element of F fixes no elements
of M eq \ acleq(∅). 2

Example 3.5. We give an example of a countable (non-saturated) structure
with a rich automorphism group for which the above corollary fails. Let L
be a language with countably many binary relation symbols (Ei : i ∈ N).
Consider the class C of finite L-structures A where each Ei is an equivalence
relation on A and only finitely many of the Ei are not the universal relation
A2 on A. Then C has countably many isomorphism types and it is easy to
check that it is a Fräıssé amalgamation class. Let M be the Fräıssé limit.
Then M is a countable, homogeneous L-structure.

As M is constructed as the union of a chain of finite structures in C,
if a, b ∈ M then there exists n such that En(a, b). In particular, M is not
saturated. If g ∈ Aut(M) and a ∈M , then En(a, ga) for some n, therefore g
fixes the En-class which contains a. It is easy to see that the En-classes are
non-algebraic elements of M eq, therefore every automorphism of M fixes a
non-algebraic element of M eq. In particular, Aut(M) is the union of proper
open subgroups of infinite index.

Note that, of course, Neumann’s Lemma fails for M eq in this example:
acleq(a) contains the En-equivalence classes of a and we have just observed
that there is no automorphism which moves this to a set disjoint from it
(over acleq(∅)).

4. Property (T) for non-archimedean, Polish, Roelcke
precompact groups

The book [2] is a convenient reference for the background to this section.

A unitary representation of a topological group G is a homomorphism
π : G → U(H) to the unitary group of some Hilbert space H which is
strongly continuous, meaning that for every ξ ∈ H the map G → H given
by g 7→ π(g)ξ is continuous. If H is an open subgroup of G, consider the
action of G on the coset space Y = G/H. Then Y is a discrete space and the
action of G on Y is continuous. It is easy to check that the corresponding
action of G on `2(Y ) gives a unitary representation of G (called the quasi-
regular representation λG/H).

From [13], we have the following:
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Theorem 4.1. Suppose G is a non-archimedean, Roelcke precompact, Pol-
ish group. Then every unitary representation of G is a direct sum of irre-
ducible unitary representations. Moreover, every irreducible unitary repre-
sentation of G is a subrepresentation of `2(G/H), for some open subgroup
H of G.

Proof. The first statement is part of [13, Theorem 4.2]. The rest of the proof
is similar to that of [13, Proposition 6.2]. If π : G→ U(H) is an irreducible
unitary representation of G, then by [13, Theorem 4.2], π is isomorphic to
an induced representation IndG

K(σ) for some open subgroup K of G and
irreducible representation σ of K which factors through a finite quotient
K/H of K. In particular, π is a subrepresentation of IndG

K(IndK
H(1H)) (where

1H is the trivial representation of H), which is the same thing as `2(Y ) with
Y = G/H. �

We now recall the definition of property (T) for topological groups.

Definition 4.2. Suppose G is a topological group, Q ⊆ G and ε > 0. If
π : G → U(H) is a unitary representation of G, we say that a non-zero
vector ξ ∈ H is (Q, ε)-invariant (for π) if supx∈Q‖π(x)ξ − ξ‖ < ε‖ξ‖.

We say that (Q, ε) is a Kazhdan pair if for every unitary representation
π of G, if π has a (Q, ε)-invariant vector, then it has a (non-zero) invari-
ant vector. We say that G has Kazhdan’s property (T) (respectively, strong
property (T)) if there is a Kazhdan pair (Q, ε) with Q compact (respectively,
finite).

The following fact will be useful (see Proposition 1.7.6 and Remark 1.7.9
in [2]).

Lemma 4.3. Let G be a completely metrizable group and N � G a closed
normal subgroup. If both N and G/N have property (T), then so does G.

In [13, Theorem 6.6], it was shown that automorphism groups of certain
ω-categorical structures (those without algebraicity and with weak elimi-
nation of imaginaries) have property (T). Furthermore, [13, Theorem 6.7]
gave some examples of ω-categorical structures M whose automorphism
groups G have strong property (T). In the latter case, the proof proceeded
by exhibiting a free action of a non-abelian free group on the structure. We
use the same idea, together with Theorem 1.3 to prove the second part of
Theorem 1.1: if X is countable and G ≤ Sym(X) is closed and Roelcke
precompact, then G◦ has strong property (T). This generalises the results
in [13].

Proof of Theorem 1.1. Suppose G is a non-archimedean, Roelcke precom-
pact Polish group. By Lemma 2.9, the quotient group G/G◦ is compact and
therefore has property (T). In view of Lemma 4.3, to prove the theorem,
it remains to show that G◦ has property (T). By Theorem 1.3, there exists
a set Q = {f1, f2} ⊆ G◦ which generates a non-abelian free subgroup F
of G◦ with the property that if H is a proper, open subgroup of G◦, then
F acts freely on the coset space G◦/H. Following an argument similar to
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the one in [1], we show that (Q,
√

2−
√

3) is a Kazhdan pair for G◦. By
Theorem 4.1, it suffices to show that for any proper open subgroup H ≤ G◦

and all ξ ∈ `2(G◦/H),

(1) max
i=1,2
‖π(fi) · ξ − ξ‖ ≥

√
2−
√

3 ‖ξ‖.

By Theorem 3.1, the restriction of π to F is a direct sum of copies of the
left-regular representation of F and Kesten’s theorem [10] tells us that

‖π(f1) + π(f−1
1 ) + π(f2) + π(f−1

2 )‖ = 2
√

3.

A simple calculation using the Cauchy–Schwartz inequality (see [1, pp. 515–
516] for details) yields

2∑
i=1

‖π(fi) · ξ − ξ‖2 ≥ 4− 2
√

3,

thus proving (1). �

References

[1] M. B. Bekka, Kazhdan’s property (T) for the unitary group of a separable Hilbert
space, Geom. Funct. Anal. 13 (2003), no. 3, 509–520.

[2] Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T ), New
Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008.

[3] B. J. Birch, R. G. Burns, Sheila Oates Macdonald, and Peter M. Neumann, On the
orbit-sizes of permutation groups containing elements separating finite subsets, Bull.
Austral. Math. Soc. 14 (1976), no. 1, 7–10.

[4] Peter J. Cameron, Oligomorphic permutation groups, London Mathematical Society
Lecture Note Series, vol. 152, Cambridge University Press, Cambridge, 1990.

[5] E. Glasner and B. Weiss, Kazhdan’s property T and the geometry of the collection
of invariant measures, Geom. Funct. Anal. 7 (1997), no. 5, 917–935.

[6] Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications,
vol. 42, Cambridge University Press, Cambridge, 1993.

[7] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathemat-
ics, vol. 156, Springer-Verlag, New York, 1995.

[8] Alexander S. Kechris and Christian Rosendal, Turbulence, amalgamation and
generic automorphisms of homogeneous structures, Proc. Lond. Math. Soc. 94
(2007), no. 2, 302–350.

[9] Alexander S Kechris, Dynamics of non-archimedean Polish groups, European Con-
gress of Mathematics Kraków, 2–7 July, 2012, 2014, pp. 375–397.

[10] Harry Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92
(1959), 336–354.

[11] Dugald Macpherson, A survey of homogeneous structures, Discrete Math. 311
(2011), no. 15, 1599–1634.

[12] Robert R. Phelps, Lectures on Choquet’s theorem, Second, Lecture Notes in Math-
ematics, vol. 1757, Springer-Verlag, Berlin, 2001.

[13] Todor Tsankov, Unitary representations of oligomorphic groups, Geom. Funct. Anal.
22 (2012), no. 2, 528–555.



14 DAVID M. EVANS AND TODOR TSANKOV

Department of Mathematics, Imperial College London, London SW7 2AZ,
UK.

E-mail address: david.evans@imperial.ac.uk
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