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Abstract 

 

Typically a ‘smaller is strong’ size effect is seen when testing objects at the micro and nanoscales. This 

has significant consequences when using these tests to replicate and understand component level 

performance, for instance in materials discovery programmes. In this computational plasticity study, 

we follow the micro-cantilever experimental approach of Gong et al. for determination of size-

dependent hcp crystal slip strengths and replicate size sensitivity using length scale dependent crystal 

plasticity modelling. A fundamental derivation of the back stress term required to harden slip systems 

according to the mechanism of dislocation pile up is introduced. Model micro-beam single crystals in 

Ti-6Al under four-point bending were examined which showed that the size-independent slip strength 

could be correctly determined but that the size-strengthening effect was under predicted. This was 

attributed to the averaging of discrete dislocation behaviour in to the continuum slip rule required within 

the crystal plasticity formulation  

 

A systematic study of grain size effects in polycrystal performance has been performed where the grain 

size was varied from micron scale to millimetres. At the micron scale, length scale-dependent 

hardening, from the presence of geometrically necessary dislocations (GNDs), leads to classical length 

scale effects. At longer length scales, such as when the grain size becomes a significant fraction (1/20th 

or more) of the ligament width, relative geometry effects become significant leading to marked impact 

on material properties and behaviour. These two bounds provide important contributions to our 

understanding of component performance and alloy design, particularly in cold dwell facet fatigue in 

aero titanium alloys and blocky alpha zirconium alloys for nuclear energy.  
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1. Introduction 

 

Understanding the role of materials at the microstructural length scale is critical to delivering the next 

generation of alloys needs across a wide range of industries. This can either be in leading edge 

applications, where extracting peak performance is vital such as jet engines, or in increasing 

requirements for miniaturisation of technology in computing systems, wearable technology, and 

biomedical tools and implants. Understanding the mechanics at the microstructural length scale for in-

service performance plays a vital role in ensuring that these new technologies are fit for purpose and 

this can be delivered through the parallel development of improved experimental and computational 

tools. In this study, we provide a systematic case study of size effects and length scale plasticity that 

can aid our understanding of state-of-the-art micro-cantilever tests and in tandem extend our knowledge 

to understand critical microstructural features for real-world component performance and lifetime 

prediction. 

  

For metallic single crystals, the key length scale is often absolute single crystal or grain size, whereas 

for polycrystals, it is likely both absolute grain size and grain size relative to load-bearing ligament size. 

The earliest attempt to develop a theory of length scale was the pioneering work done separately by 

Hall (1951) [1] and Petch (1953) [2], commonly referred to as the Hall-Petch effect. This work linked 

a range of experimental observations of strength and grain size in mild steel and fitted an empirical 

relationship:  

𝜎𝑦 = 𝜎0 + 𝑘
√𝑑

⁄  

in which y = yield stress, 0 = initial strength, k = Hall-Petch slope, and d = average grain size.  

 
Since this work, much more effort has been undertaken to rationalise this across a wide range of material 

systems and loading regimes. Recent work by Dunstan et al. [3] provides a systematic review of many 

existing experiments and points out that there is no conclusive evidence for a general inverse square 

root-dependence of strength upon grain size; rather there are several possible power law fits for various 

materials. This indicates that the basic premise that ‘smaller is stronger’ and that microstructure 

refinement is key, however the precise size dependence may vary from system to system depending on 

the micromechanical mechanism at play. 
 

This recent work highlights the need for new mechanistic insight from appropriate modelling strategies 

to ensure that experiments are properly understood and enable physical insight to be extended towards 

service performance. This paradigm shift will enable extension of this mechanistic understanding to 

complex loading regimes and enable design and lifing engineers to capture state-of-the-art experimental 

and modelling results appropriately. 

 

Many component designs start with conventional plasticity laws, which are perfectly valid for many 

types of engineering problems where the dimensions analysed are of the order of millimetres and 

metres. However, their constitutive behaviour must be informed with empirical data from many curve 

fits to expensive experimental testing campaigns. One principal weakness is the lack of length scale 

effects in the constitutive model. This weakness is exemplified in testing with small samples where 

length scale effects are clearly observed. For example the observed results of a copper wire torsion test 

performed by Fleck et al. [4], which demonstrated that as the cross-sectional area of the wire was 

reduced, a strengthening effect may be seen.  

 

These experiments have highlighted the need for a length scale in modern crystal plasticity, and the 

most prevalent theory to date is the strain gradient theory of plasticity. In this approach, when the length 

scale associated with deformation is large, and the plastic strain gradient is small, then size-dependent 

hardening is negligible. Conversely, where high plastic strain gradients exist, at a length scale not 

insignificant compared to the sample size, then strong size effects develop. A mechanistic 

understanding of strain gradients has been established by Nye, Fleck, Ashby and others [5]–[8]. They 

postulate that it is the storage of dislocations that is responsible for accommodating plastic strain 

gradients that result from inhomogeneous plastic deformation of a crystal (known as geometrically 
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necessary dislocations or GNDs). Plastic strain gradients, and as such GNDs, result from the geometry 

of deformation, and they may be observed in a variety of circumstances such as two-phase alloys due 

to the compatibility of heterogeneous deformation , in micro-indentation or as will be discussed in this 

work, micro-beam bending. To capture these effects an intrinsic length scale effect is incorporated 

naturally into a strain gradient crystal plasticity model and this length scale effect is independent of 

material properties. Much excellent work has been done recently in the computational strain gradient 

plasticity field; however in the interests of brevity the authors would like to highlight to some of the 

most significant pieces: [9]–[17]. 

 

Recent experimental work by authors such as Gong et al. and Motz et al., [18]–[21] has been on 

establishing the critical resolved shear stress (CRSS), the threshold stress required for slip to occur on 

a specific slip system. The use of focused ion beam (FIB) milling in concert with electron backscatter 

diffraction (EBSD) analysis has enabled the creation of beam samples orientated for single slip on a 

predetermined slip system. Systematic studies in which the key dimension, beam cross-section width, 

is progressively reduced have shown that the size dependent contribution to the flow stress scales 

approximately inversely with the beam width. The explanation provided by Motz et al. for the origin of 

these effects is that during plastic deformation in single crystal micro-beams, dislocations develop and 

tend to pileup at a diffuse barrier, the neutral axis, thus creating a back-stress. This pile-up effect has 

been observed in a recent 2D discrete dislocation plasticity models and analysis by Tarleton et al. [22] 

and the TEM observations of the dislocations in deformed micro-cantilevers by Ding et al. [23], [24].  

 

Earlier work on micro-columns compressed by indenters has demonstrated size effects which would 

appear to exist in the absence of strain gradients [25]–[28]. However, these experiments may not 

necessarily represent a true demonstration of uniaxial deformation behaviour and more complex 

mechanisms are taking place, such as the development of highly localised slip which leads to high 

stresses and strain gradients. A potential explanation posed is the ‘dislocation starvation mechanism’. 

It refers to the high surface-to-volume ratio of small samples which allows the majority of the 

dislocations to escape through the surfaces (starvation); fewer and fewer dislocations remain inside the 

crystal, prohibiting further plastic deformation. This mechanism may well apply but it is important to 

note that the micro-pillars in question represent a more complex system than a simple uniaxial 

compression test. Indeed, most studies neglect to subtract the influence of the substrate on the pillar and 

as such overestimate the strain such that the pillar acts effectively like a blunt punch [29]. The results 

must therefore be interpreted in terms of structural size effects, as opposed to just a direct material 

behaviour. This is emphasised though relatively simple analysis of the length effect scaling, where a 

simple power law is used for interpreting size effect and this would  naturally leading to vanishingly 

small strengths at the continuum level which are clearly unphysical [19]. 

 

In addition to the well-known observations of small-grain size effects, this study is also concerned with 

large grain effects or relative geometry effects. Again conventional continuum approaches fail to 

capture the anisotropic effects of crystalline slips and therefore variable components strengths when 

grain size approaches the component size. This effect is technologically very important, as highlighted 

with the following three case.  Firstly, an in-service issue in zirconium nuclear fuel cladding is the 

development of blocky-[30]. Blocky- is -phase in hcp alloys that is considerably larger and more 

polygonal than the primary alpha in the sample, quite similar to the large  grains observed in 

commercially pure titanium. It is thought to arise from exposure in the  phase field, e.g. heat treatments 

with insufficient deformation such as welding of components. The second area relates to the issue of 

cold dwell fatigue of titanium alloys, a well-known problem in the aero-engine industry [31]. This 

phenomenon refers to a reduction in fatigue life as a result of a stress hold in the regular fatigue cycle 

at ambient temperatures. Empirical and anecdotal evidence from our industrial collaboration [32] 

suggests a link between large grain size and failure stress.  

 

Finally, the study of the micromechanical behaviour of cardiovascular stents has yielded some research 

in size effects as related to component ductility [33], [34]. These studies, however, are concerned with 

relative grain size with respect to component (stent) size; an effect we herein term ‘relative geometry’ 
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(as opposed to classical length scale) effect. Interestingly, classical grain size effects are also important 

in stent applications (for example, [35], [36]) such that in these technological systems, both classical 

length scale and relative geometry effects are both evident and must be treated appropriately in design 

and modelling of component performance. It is noted that these stent materials are commonly face-

centred cubic stainless steel or cobalt-chrome alloys. 

 

In this paper, we first investigate if dislocation-based length scale crystal plasticity modelling can 

successfully reproduce the size effects observed in micro-bending experiments and hence whether size-

dependent slip strengths may be predicted. We then carry out a systematic study of polycrystal grain 

size effects, from microns to millimetres, in order to demarcate and to differentiate the various 

mechanistic contributions in the broad term of “size effects”. The polycrystal models, differentiates 

between what we term “relative geometry effects”, i.e. those effects originating from key 

microstructural features such as grains, with length scale becoming a significant fraction of over 1/20th 

of stress-bearing ligament size,  and the more familiar “length scale effects” which are those introduced 

through the development of GNDs. Through the systematic study we differentiate between and 

demarcate the average grain size ranges pertaining to the relative geometry effect and length scale 

effects. Finally, some examples are discussed of technological significance for which either or both the 

size effects addressed are relevant and important. 

 

 

 

 

 

2 Crystal Plasticity Framework 

 

2.1 Slip rule 

 

The crystal plasticity framework utilised in this study has previously seen use in a range of earlier works, 

for example: [36]–[42], therefore only a brief description will be presented here.  

 

Dislocation pinning is taken to occur through the presence of lattice obstacles, which may include solute 

atoms, the sessile statistically stored dislocations (SSDs) and their associated structures, as well as 

GNDs, incorporated in the slip rule as an overall obstacle density.   The resultant slip rule determining 

the slip rate of a given slip system takes the form 

 

𝛾̇𝑖 = {

0, |𝜏𝑖| < (𝑥 + 𝜏0)

𝜌𝑠
𝑚𝑏𝑖2𝜈 𝑒𝑥𝑝 (−

∆𝐻

𝑘𝑇
) sinh(

(|𝜏𝑖| − 𝑥 − 𝜏0)∆𝑉𝑖

𝑘𝑇
) , |𝜏𝑖| > (𝑥 + 𝜏0)

 

1 

with 

 
∆𝑉𝑖 = 𝛾0 𝑙𝑏

𝑖2 , where  𝑙 =
1

√𝜌0

  
2 

in which 𝜌𝑠
𝑚 is the mobile SSD density, 𝜌0 the initial sessile dislocation density, bi the Burgers vector 

magnitude for slip system i, 𝜈 the frequency of attempts (successful or otherwise) by dislocations to 

jump the energy barrier, ΔH the Helmholtz free energy or activation energy, k the Boltzmann constant, 

T the temperature in Kelvin (K), τi the resolved shear stress, 𝑥𝑖 the back-stress on slip system i, 0 the 

size-independent critical resolved shear stress, γ0 the shear strain that is work conjugate to the resolved 

shear stress, ΔV the activation volume (note: Δ𝑉 ≈ 18𝑏3, consistent with Conrad’s range of values for 

-Ti [43]) and l the pinning distance. Each slip system becomes active when the resolved shear stress 

is equal to or greater than the combined effects of the back stress and the size-independent critical 

resolved shear stress (|𝜏𝑖| ≥  𝑥𝑖 + 𝜏0 ). The crystal model is implemented within an Abaqus user-defined 

element (UEL), which facilitates strain gradient calculations.  
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2.2 Strain gradients and GNDs 

The standard formulation for GNDs relates the closure failure, as defined by Nye [5] (i.e. the 

discontinuity due to dislocations in a particular plane per unit area), to the gradient of the plastic 

deformation tensor. This is written here for multiple slip systems:  

 
 ∑𝒃𝑖 ⊗ 𝝆𝐺𝑁𝐷

𝑖 = 𝑐𝑢𝑟𝑙 (𝑭𝑃

𝑛

𝑖=1

) 
3 

Therefore the density of GNDs is determined from knowledge of the spatial gradient of the plastic 

deformation gradient
P

F . 

 

A convenient solution scheme suggested by Arsenlis and Parks is used [8]. Rewriting equation (3), the 

dislocation density may be phrased in terms of a linear operator A, which is the Burgers vector 

dislocation dyadic terms ( 𝒅𝑖 = 𝒃𝑖⨂𝒕𝑖 ), reassembled into a single matrix: 

  

  𝑨𝝆 =  𝑐𝑢𝑟𝑙(𝑭𝒑) 4 

Solution of this equation requires knowledge of the generalised inverse or pseudo-inverse of the A 

matrix. This is not necessarily a unique problem, as there are may be fewer gradients than there are 

active slip systems. We choose to use a singular value decomposition (SVD) based pseudo-inverse of 

the A matrix, which is a specific case of least-squares minimisation. This is relatively straightforward 

to calculate as each matrix has a SVD, and the inverse is thus:  

 

  𝑨 = 𝑼𝚺𝑽𝑇     ,     𝑨−1 = 𝑽𝚺−1𝑼𝑇 5 

The Fortran library LAPACK was used to calculate the SVD [44]. It should be noted that the dislocation 

equation represents a potentially over-determined system, and the possibility of a unique solution is 

limited by the number of terms in the Nye tensor (m = 9). Therefore for cases of n slip systems > m, i.e. 

multiple active slip systems, the solution may be non-unique but will have the minimum least squares 

difference, as it is the solution of: 𝑚𝑖𝑛(‖𝑨𝝆 − 𝑐𝑢𝑟𝑙(𝑭𝒑)‖2). 
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2.3 Back stress development  

 

In the discussion on potential hypotheses for the understanding of the hardening process in micro-

beams, it was stated that dislocations piling up at the neutral axis are believed to generate a back-stress.  

 

The relationship between back-stress and pile-up length was addressed by Motz et al. [21] in the context 

of micro-beam bending.  By considering a single slip plane active in the bent beam, and the two 

principal forces that act on dislocations on the active slip plane, Motz et al. showed that the pile-up 

stress,pu,  or equivalently, back stress, xi,  is inversely related to the pile-up length, Lpu:  

 𝜏𝑝𝑢 = 𝑥𝑖 ≅ 𝛽(𝑁)𝐿𝑝𝑢
−1 6 

where 𝛽(𝑁) is a function of the number, N, of dislocations 

 

In the formulation developed in this paper, the back stress resulting from the build-up of dislocations 

along an individual prism slip system is established from the analytical approach of Stroh [45].  

 

The shear stress 𝜏𝑠 developing on a slip plane under remote uniaxial loading may be expressed in terms 

of the number of dislocations, N, the shear modulus, G, Poisson’s ratio 𝜈  and Burgers vector b and the 

length of the dislocation pile-up, Lpu, (see Appendix A.1 for detail), and is found to be:  

 
𝜏𝑠 =

𝐺𝑏𝑁

𝜋(1 − 𝜈)𝐿𝑝𝑢
 

7 

 

Appendix A.1 presents a validation of this relationship using an independent discrete dislocation 

plasticity analysis.  We estimate the mean free distance between dislocations to be given by: 

 
𝐿𝑓 =

1

√𝜌𝑡𝑜𝑡𝑎𝑙

 
8 

 

such that the pile-up length may be determined from the product of the number of dislocations in the 

pile-up and the mean free distance from: 

 
𝐿𝑝𝑢 = 𝑁𝐿𝑓 =

𝑁

√𝜌𝑡𝑜𝑡𝑎𝑙

 
9 

 

Now, using equation 9, equation 7 is re-arranged to yield an expression for the back stress which leads 

to:  

 
 𝑥𝑖 = 𝛼𝐺𝑏√𝜌𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐺𝑏√𝜌𝐺𝑁𝐷

𝑖  + 𝜌𝑆𝑆𝐷 
10 

where  𝛼 =
1

𝜋(1−𝜈)
 , which for this material is approximately 0.5.   

 

Equation 10 has the same form as the classical Taylor hardening model but it should be noted that the 

physical arguments used to derive it are completely different. For the subsequent studies, a distinction 

in the hardening relation may be made. For the single crystal study, a self-hardening type relation is 

observed such that the dislocation accumulation on the specified slip system alone contributes to the 

hardening. However for the polycrystal study, latent hardening is observed such that hardening on slip 

system i increases the slip strength of all other systems. 

 

The GND density is determined from geometry and plastic strain gradients as presented above in 

Section 2.2. In our single crystal study, the immobile SSD density evolution is taken to be negligibly 

small, since the experimental single-crystal data show little hardening (see later). However, in the 

polycrystal studies, some evolution of hardening is observed in independent experiments, and so the 

density of sessile statistically stored dislocations is allowed to accumulate in proportion to the 

accumulated slip, p with hardening factor, 𝛾′, representing grain boundary interaction effects such that 

it is nonzero only in the case of polycrystals. The equation is given below (in rate form):  
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  𝜌̇𝑆𝑆𝐷 = 𝛾′𝑝̇ 11 

 

The hardening factor is chosen to ensure the experimentally observed hardening is reproduced. It is well 

understood that SSD evolution is a function of plastic slip, however, the precise nature of this function 

is less clear (and likely varies with temperature, strain rate, and material system). There are limited 

quantitative experimental techniques and studies of the SSD evolution with strain, as opposed to GNDs 

where EBSD based methods have shown excellent results [46], [47]. We argue that incorporation of a 

more complicated evolution rule with additional fitting factors for dislocation density without further 

mechanistic understanding does not add much value. 

 

2.4 Materials 

 

This work focuses on the near-alpha titanium alloy Ti-6Al which is hexagonal close packed (hcp), and 

has 24 slip systems. Due to the level of alpha stabiliser in the alloy it is assumed that there is no twinning 

[48]. The <a> and <c+a> type systems are differentiated (c/a ratio of 1.593 is used), and the slip 

systems for a single hcp crystal are shown in Fig. 1.  

 

 

 
Figure 1 - Hexagonal close packed titanium slip systems [49] 

 

Hasija et al. [50] conducted mechanical tests with samples of single-phase α-Ti–6Al, for both single 

crystal and polycrystalline samples. The single crystal tests were carried out at constant strain rate, for 

basal and prismatic slip <a>, and pyramidal slip <c+a>, and the results of these tests established the 

base critical resolved shear stress; also as hardening is hardly observed in the tests, the hardening 

coefficient  𝛾′ in the SSD hardening rule is set to a small non-zero value of 0.05. The polycrystal tests 

are compression of samples at three strain rates, 8.4x10-4, 1.5x10-4 and 1.68x10-5 s-1, and have been used 

in combination with a representative polycrystal model [51] to determine the activation energy, H, 

relating to strain rate sensitivity (see Eqn. 1).  

 

Equal strengths are assumed here for basal and prismatic <a> slip systems for simplicity, since the 

difference between them has been observed to be small in the experiments of Hasija et al.  The slip 

strength of pyramidal <c+a> systems is often observed to be about three times that for basal or prismatic 

systems, recently demonstrated experimentally by Gong et al [52].  
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Figure 2 - Experimental and CPFE model curves for 

prismatic <a> and pyramidal <c+a> slip system response 

based on single crystal creep experimental data from 

Hasija et al., [50] 

 
 

Figure 3 - Strain rate sensitivity calibration results, 

(ABQ refers to Abaqus simulations [51] and OSU refers 

to experimental data of Hasija et al., 2003) 

 

The polycrystal model rate sensitivity with an activation energy H = 9.91x10-20 J/atom is shown for 

the three strain rates indicated in Fig. 3, providing a good representation of the polycrystal average 

stress-strain response. The small amount of strengthening observed is captured simply by means of the 

contribution from grains badly orientated for slip within the polycrystal, such that the hardening 

factor, 𝛾′ remains as would be expected from the single crystal tests. Latent hardening is considered for 

the polycrystal models such that hardening on the ith slip system increases the slip strength of all other 

systems. Elastic moduli and slip rule constants for the representative Ti-6Al are given in Appendices 

A.2 and A.3 respectively.  

 

 

3 Micro-beam bending analysis: the classical length scale effect 

 

The micro-cantilever experiments described by Gong et al. [18], [19], [52], [53] serve as the basis for 

this section of the study.  

 

 

 

 

(a) (b) 
Figure 4 – (a) In-situ image of development of well-ordered slip on the <a> prismatic system (b) schematic of beam 

studied [53] 

 

In their work, regions in various single crystal titanium and zirconium alloys were selected by EBSD 

so that the resulting beams would activate individually specified slip systems. FIB milling techniques 

were used to machine out triangular cross-section beams, where the depth of the beams range in a 
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decade of sizes all less than 20m. The ratio of length to depth is maintained at 6:1 to ensure that 

manufactured beams are commensurate with Timoshenko classical beam theory and thus reducing 

contributions of compliance within the ‘built-in’ end, which is explicitly modelled, and simplify the 

analysis. The samples are then passed to a nano-indenter that applies a displacement to the free end of 

the cantilever. Load-displacement data is generated in each case, such that a systematic comparison 

may be generated for either different cross-section sizes, different representations of alloys [19], 

chemical effects [54], or perhaps a particular slip system [24]. These observations all include a general 

trend that ‘smaller is strong’ due to length scale effects. 

 

 

Figure 5 – Load-displacement data from micro-cantilever testing of pure zirconium. Results from 0.5µm cross-section 

width cantilevers. Black curve is the experimental result, dashed purple line is CPFE fitting and red curve is a 

comparison using 0 from 5 µm <a> prismatic beams [53] 

 

Each cantilever beam is explicitly modelled with a different length scale CPFE simulation to generate 

force-displacement data which are then matched with the experimental data until a good fit is reached, 

after varying the threshold resolved shear stress (𝜏0) in the CPFE model. Fig. 5 shows an example of 

this process, in which the purple dashed line represents the best fit to the experimental results, as 

opposed to the red line, which is the force-displacement data generated from a CPFE model with a very 

different and inappropriate value of 0. As this approach to extract 0 uses a length scale independent 

model, values of 0 have been extracted and then a description of the size effect based upon the work 

of Motz et al. has been used to extract bulk flow stresses and the scaling parameter, according to the 

equation: 𝜏𝑓 = 𝜏0 + 𝐴
𝑑⁄ . 

 

As a complementary contrast, it would be useful to include an explicit length scale dependent crystal 

plasticity model to simplify fitting and improve our confidence in the underlying model. In this study 

we start with our proposed length scale dependent (GND-based) model to generate some force-

displacement curves for a range of object sizes. We then follow a similar approach to Gong et al. and 

use a length scale independent model to fit force-displacement curves. This second fitting extraction of 

size-dependent slip strengths and then post-facto comparison to length scale models and thereby 

provides a thorough test of the length scale dependence of the crystal model in predicting size-dependent 

slip strengths. 

 

In experiment, cantilevers are used as they are simple to manufacture and test. Choice of a bend 

geometry in both cases is required to create a soft pile-up and resulting back stress, resulting in the 

bending size effect. The size of this back stress is amplified when the strain gradients are increased. 

These effects are also seen in real microstructures, where refinement in grain sizes results in larger 

strain gradients and therefore, hardening. Here we use four-point bending test specimens in the CPFE 

model as this provides a simple mechanical test object to analyse and rigorously discuss. The particulars 

of this choice are discussed below.  
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Figure - 6(a) Four point bending beam, square cross-section and schematic representations of the development of 

plasticity in beams (b) Beam mesh used for CPFE simulations 

 

Under four-point bending, beams undergo constant bending moment between the loading points, as 

indicated by the diagram above (Fig. 6(a)). Along with constant moment, there is constant bending 

stress and with an appropriately dimensioned beam (length ~ 20 x height), linear variation of stress 

through the mid-line, which coincides with the neutral axis. Shear is thus minimised due to the use of 

sufficiently long beams (as with the cantilever study). Under plasticity (shown as perfect plasticity for 

simplicity in the schematic) the stress variation through the mid-section is as shown in Fig. 6(a).  

 

A range of single crystal beams sizes are considered: 1, 2.5, 5, 10, 15, 20, 100, and 200m. In each case 

mesh element resolution remains the same as the only difference is that nodal coordinates are scaled 

appropriately to give the required size. Mesh resolution is required to be fine, and in each case over 

95,000, 20-node hexahedral elements were used†, as shown in Fig 6(b). The crystallographic orientation 

of each beam remains the same and has been chosen to ensure slip on two identical prismatic systems 

(due to the symmetry of the reference configuration of the hcp crystal). This specified crystallographic 

orientation is shown schematically in Fig. 6(b). 

                                                           
† Proper execution of the GND calculation requires very fine spatial and temporal resolution, i.e. resolution of the mesh and 

the time steps in the integration procedure respectively; this relatively large problem was tackled by the parallel direct sparse 

solver in Abaqus/Standard utilising a HP Z620 workstation with an Intel Xeon E5 3.60GHz multi-core processor and 32.0GB 
RAM 
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Each model is executed with GND evolution and consequent hardening as described previously, and 

the model parameters are given in the Appendix. The beams are displaced at the points indicated in Fig. 

6(a) until a significant amount of plasticity occurs. These models form the ‘pseudo-experimental’ data 

set. The purpose of this study is to examine whether similar behaviour may be observed as in the 

cantilever micro-mechanical experimental tests.  

 

The pseudo-experimental force displacement curve is fitted with a curve generated by size-independent 

crystal plasticity until good agreement is reached, in the same manner as the cantilever experiments. 

The results obtained are shown in Fig. 7, and note that they are presented in terms of normalised bending 

moment and normalised displacement for comparison convenience. Normalised bending moment is 

given as: 

 
 𝑀∗ =

𝑀

𝑏𝑡2
, where M=(force) x (lever arm) 

12 

 

Normalised displacement is simply the displacement at a point in time divided by the maximum 

displacement (the displacement applied to each beam varies appropriately with the cross-section size).  

Fig. 7 (a) – (h) show normalised bending moment versus normalised displacement for a range of beam 

cross-section size (1m to 100m). Solid black lines show the size-independent CP normalised bending 

moment results for values of 0 which form upper and lower and bounds about the pseudo-experimental 

results, which are shown by the black star symbols. The red square symbols correspond to the best fit 

size-independent CP model results from which the corresponding size-dependent slip strength is then 

extracted, and given in the figures. 
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Figure 7 – Size independent CPFE comparisons with the ‘pseudo-experimental’ GND models 
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It is argued throughout this paper that the development of GND densities contribute to the hardening 

observed at small length scales and are thus key to understanding the size effect. Thus it is prudent at 

this point to examine GND activity in more detail. 

 

 

  
(a) (b) 

 

Figure 8 - (a) GND evolution in beam midpoint over time, refer to Fig. 6(a), which highlights this location with a red 

square and (b) GND density at end of loading, compared with cross-section depth 

Consider the two figures 8(a) and 8(b). Fig. 8(a) shows the development of GND density versus 

normalised displacement for each beam. Early stages of the analysis remain elastic therefore giving 

zero GND density, as GNDs are required only to support plastic strain gradients. Once the stress at the 

extreme fibres is such that plasticity occurs, owing to the nature of beam bending, a plastic strain 

gradient is induced and GND density develops accordingly. A very strong relationship between cross-

section size and plastic strain gradient magnitude results, and this point is very clearly illustrated in Fig. 

8(b). This figure shows the GND density at the end of the displacement, and the magnitude of densities 

is shown to be minimal once a beam width of ~10m is achieved, i.e. the GND density in the 1m beam 

substantially exceeds that of the 100m beam. The length scale crystal model therefore provides the 

argument that size effects are really only apparent in sample sizes less than ~20m. An inverse 

relationship is observed to hold between the GND density and the cross-section depth. 

 

The size-dependent values of slip strength are then collated, and plotted against beam cross section-

depth in Fig 9(a). The data are then fitted with a curve:  𝜏0 + 𝐴
𝑑𝑛⁄  , with A=97, n=1, giving a size-

independent prism slip strength of 0=287MPa. The corresponding results obtained in the experiments 

of Gong et al [9,10] are shown in Fig 9(b), showing the same size-independent slip strength, but giving 

a much higher sensitivity to beam size, or strength parameter, A=354. Motz et al [21] also determined 

a much higher strength parameter but for copper, shown in Fig. 9(c).  
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(a)  

  
                                                (b)                                                                                        (c) 
Figure 9 - Scale-dependent slip strengths versus micro-beam depth (a) determined from length scale crystal plasticity 

for model Ti-6Al, (b) from experiments and CP modelling by Gong et al. [19] and (c) by Motz et al. [21] for pure 

copper. 

 

The difference between the CPFE determined and measured strength parameters for Ti-6Al likely 

originates from the hardening model derived in Eqn. (10). The back stress development on an individual 

prism slip system is mechanistic and has been validated using discrete dislocation plasticity. However, 

it is implemented within a continuum crystal slip model in which the discrete nature of the dislocations 

is then lost.   

 

This section addressed classical length scale effects through evolution of GNDs supporting plastic strain 

gradients. These are predominantly associated with fine grain microstructures, but as grain size 

increases, so these effects diminish such that polycrystal behaviour tends to become size independent. 

However, with further increasing grain size with respect to fixed sample geometry, ultimately a further 

size effect becomes significant, in which behaviour becomes critically dependent on the local 

microstructure features (e.g. grain orientation, or morphology). In order to differentiate this effect from 

the classical length scale effect, we label it the relative geometry effect and it is explored further in the 

next section.  
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4 Polycrystal studies: classical length scale to relative geometry effects 

 

As mentioned in the introduction, it is now of key industrial interest to examine the behaviour of 

polycrystals with a range of grain sizes, whether to critically assess the strengthening effects of small 

grain size or the potential deleterious impact of large coarse grains in a sample or component (for 

example, occurring in blocky alpha zirconium). 

 

This study seeks to address a broad spectrum of grain sizes, from the micron scale, below 10m, for 

which classical length scale effects pertain, through to large grains, of the order of millimetres, with 

respect to a fixed sample size for which a millimetre-sized grain begins to form a significant fraction 

(e.g. >10%) of the load-bearing ligament width. The nature of the study is described schematically in 

the figure below.  

 

 

Figure 11 - Polycrystal model schematic outline, (a) illustrating the definitions of fine, medium and coarse grains (b) a 

typical polycrystal representation and the location of the embedded ‘rogue pair’, and (c) the displacement-controlled 

loading, macro strain 

 

We consider a representative HCP polycrystal sample with fixed in-plane ligament width of 10000m, 

subject to uniaxial displacement controlled loading up to 1.5% strain, in which the effect of changing 

average grain size is investigated. Fig. 11 indicates the range of average grain size considered, showing 

schematically a fine grain size with many thousands of small grains within the ligament width, through 

to large grain size of order 3000m. The extreme coarse ‘average’ grain size is that for which the grain 

size is equal to the ligament width; i.e. the polycrystal has reduced to a single crystal. We anticipate 

three distinct regimes: (i) fine grain size leading to length scale effects, but for which a representative 

volume element (RVE) has been established, (ii)  a medium grain size with respect to ligament width 

for which the length scale effect has become negligible but for which an RVE has still been maintained, 
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and (iii) large grain size for which no classical length scale effect exists, but an RVE is no longer 

maintained, such that the response of the sample becomes crucially dependent on local crystallographic 

orientation and grain morphology. The latter case we refer to as relative geometry effects (to 

differentiate from size effects) and is representative of blocky alpha zirconium in small ligament widths 

for which large property variations (yield, strength, fracture) result from small variations in 

microstructure.  

 

The aim of the study is to establish the demarcations between the three regimes, and to provide guidance 

on the average grain size (with respect to ligament width) for which length scale or relative geometry 

effects become important in influencing material response. Naturally, the study is confined to single-

phase HCP polycrystals for grain size distributions with small standard deviations, though aspects of 

extreme in-sample grain size variation are addressed later. This study addresses microstructure 

quantities thought to be far more sensitive indicators of local behaviour. Particularly, we consider a 

combination of two grains buried within the polycrystal orientated such that one is favourable for slip 

and the other is not; this grain couple is indicated in Fig 11(b), and path AA’ indicates where key stress 

magnitudes are extracted for analysis. Fig. 11 shows grains in 2D but the model is fully pseudo-3D, i.e. 

grains have a directionally solidified structure and rectangular morphology, giving prismatic grains, 

such that the geometry of the grain morphology varies on the x-y plane and all grains have the same 

depth in the out of plane direction. The nature of ‘realistic’ grain morphology has been addressed by 

Sauzay and co-workers [55] who have found that it contributes little to the overall mechanistic 

behaviour.  

 

Each polycrystal model developed for the study, typically having a different average grain size, requires 

a different finite element mesh, and care has to be taken to ensure that the mesh resolution is consistent 

throughout, but particularly for the grain couple and immediately surrounding grains under analysis. 

Apart from the grain couple with specific misorientation, all other grains in the model are assigned 

pseudo-random orientations, but with the imposed constraint of having c-axes inclined to the remote 

loading direction at an angle > +/-20o in order to favour slip. The material properties and slip rule are 

identical to those utilised for the single crystal Ti-6Al study earlier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 17 of 28 
 

4.1 Relative geometry effects 

 

Firstly, larger average grain size models are examined. These represent samples of average grain size 

of between approximately 800 to 3000m, leading to within 12 to 130 grains in the model with a 

consequent 3 to 10 grains within the sample ligament width. With these large grain sizes with respect 

to the sample ligament width, it becomes clear that it is the ratio of grain size to ligament width which 

is key in determining material behaviour.  

 

Macro stress strain curves for these polycrystals are shown in Fig. 12 for two cases. Firstly, Fig. 12(a) 

shows the stress strain curves for various differing numbers (from 12 to 132) of grains in the polycrystal.  

 

 
 

  
 

(a) 

 

(b) 

Figure 12- Macro stress strain responses for: (a) number of grains in polycrystal model (b) rotation of hard unit in 12 

grain model 

 

Macro response converges quickly – only 30 grains are required after which the addition of further 

grains has no significant impact on the macro response, which tends to approximate to that of single 

crystal  behaviour when orientated well for slip (with a tensile strength of ~650MPa). However, one of 

the centrally-based grains (see Fig 11(b) for schematic) in the twelve-grain model (i.e. very large grain 

size) is then progressively rotated away from a hard orientation (with all other microstructural features 

remaining the same) leading to the macro-response shown in Fig 12(b).  Modest variation in macro-

level stress response is therefore seen, but locally, at the boundary of the rotated grain, very much more 

significant change occurs, and this is addressed next. 

 

Consider the graphs in Fig. 13, which show distributions of both yy-stress and accumulated plastic 

strain along the path AA’, which passes through the grain couple shown schematically in Fig 11(b), for 

which one of the grains is orientated badly for slip (c-axis parallel to loading), while the second is well-

orientated for slip. 
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Figure 13 – Effect of relative geometry on (a) Stress (yy) and (b) Accumulated plastic strain (p) along Path AA’ 

The macro stress strain curves (Fig 12(b)) would not seem to indicate much of a grain size effect, 

however of more significance is the local stress and plastic strain development, at the boundary of the 

soft-hard grain pair. Considering Fig. 13(a), there is considerable stress redistribution from the soft 

grain onto the hard grain, and the peak boundary stress difference from the coarsest to a finer grain size 

is almost 150 MPa. This occurs because of the load sharing between hard and soft grains and, as the 

grain size increases with respect to fixed sample ligament size, so the balance changes because of the 

increasing role of free boundary effects. Fig. 13(b) shows the accumulated plastic strain, p, distributed 

along path AA’, given by:  

 

 𝑝 ≡ ∫√
2

3
(𝜺̇𝑝: 𝜺̇𝑝)

𝑡

0

d𝑡 

13 

 

The soft grain in the coarse grained sample accumulates a very large amount of plastic strain, locally, 

compared with the overall macro applied strain of ~1.5%. The increase in local strain with increasing 

grain size results from the smaller proportion of plastic load-bearing capacity, since the badly orientated 

grain does not deform plastically. As the number of grains in the polycrystal increases so the local 

plastic strain in adjacent softer grains decreases. This relative geometry effect occurs only because the 

grain size forms a significant fraction of the sample ligament width. A useful question, therefore, to 

address is what is the critical grain size, with respect to ligament width, for which this phenomenon is 

observed to occur, since it is likely to have significant implication for homogeneity of deformation, 

strength and fracture properties, and this is addressed shortly. However, next, the classical length scale 

effect in polycrystals is briefly summarized in order to enable the range of polycrystal deformation from 

fine to coarse grain size to be unified. 

 

 

4.2 (Classical) length scale effects 

 

From the previous study, it is seen that as the grain size diminishes with respect to the ligament width, 

so the relative geometry effect diminishes away such that local, grain-level stresses become independent 

of grain size. This point is observed when the average grain size (AGS) is approximately 1/20th of the 

sample ligament width. However, as the average size continues to decrease, size effects resulting from 

the establishment of plastic strain gradients supported by GND development, begin to influence local 

stresses through slip system hardening   
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The earlier single crystal study, beam bending, showed that for beam widths of greater than about 

100m, there was found to be low GND density development. Therefore this polycrystal study pursues 

grain size down to the micron level in which size effects are known to be of significance, within the 1-

50m ranges. The establishment of the representative polycrystal model shown in Fig. 11 with AGS 

1m would lead to models containing ~4 million grains. This is not realistically achievable with 

practical computing resource, and as a result, utilising the knowledge of the necessary model size with 

respect to given AGS to eliminate relative geometry effects, we establish a series of dimensionally 

scaled sub-models with varying AGS 5, 10, 15, 30, 100, and 200m respectively. In the same way as 

for the study in Section 4.1, the local stresses at the boundary of a grain couple badly and well orientated 

for slip respectively are examined, and shown in Fig 14(a), together with local GND density 

distributions along the path AA’ in Fig 14(b), for the AGS shown. 

  
Figure 14– Length scale effects demonstrated for three average grain sizes, 5, 15, and 100m, with (a) stress (yy) and 

(b) GND accumulation along Path AA’ 

The GND density is of the anticipated magnitude of ~10m-2 (i.e. 1x1013 m-2) as would be expected 

from micro-beam studies. A consequence is the increase in local grain boundary stress with decreasing 

grain size, resulting from the classical length scale effect.  

 

Hence, in summary, in the model single-phase polycrystals examined in Sections 4.1 and 4.2 in which 

AGS is varied from microns to millimetres in a sample of fixed ligament width of 10,000m, scale 

effects of differing physical origins play a role particularly at the extremes of AGS. At small absolute 

grain size, classical length scale effects are important, but for coarse AGS (with respect to the ligament 

width), relative geometry effects predominate in controlling properties and behaviour. In the next 

section, we therefore attempt to unify the results from above for the complete range of grain sizes in 

order to demarcate the key separations and dominances occurring in model polycrystal deformation.   

 

 

4.3 From length scale to relative geometry effects in polycrystals 

 

A systematic study over the range of grain size is carried out. This focusses particularly on local 

microstructure-level grain couple boundary stresses as before in order to draw comparisons. This covers 

a range of grain sizes from 5m up to coarse grained and includes single crystal behaviour. A length 

scale dependant crystal plasticity model has been used.  

 

The results obtained for this systematic study are shown in Fig. 15(a), together with a schematic 

demarcating the key grain size ranges in Fig. 15(b). Starting at the fine-grained region, local grain 

boundary stress is dependent on grain size from classical length scale effects. As the grain size increases, 

so the local GND hardening diminishes and the local stress decreases and saturates at the length scale 

independent level at an effective AGS of about 20m.  No substantial change to local stress emerges 
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then until the AGS has increased to a level of about 500m. The magnitude of this critical AGS depends 

on the sample ligament width (here 10,000m) so that this demarcation is relative and not absolute in 

the sense of length scale effects. The key quantity determining the demarcation is the ratio of grain size 

to ligament width, which is about 1/20th. After this AGS, the local stresses, and indeed material 

properties such as yield, strength and fracture become highly sensitive to the details of the 

microstructure.  

 

In order to demonstrate this, for several polycrystal models with large AGS, the badly orientated grain 

in the grain couple is systematically rotated (as indicated by the symbols and crystal schematics in Fig 

15(a)) and the local boundary stresses determined. These are also shown in Fig 15(a) for AGS larger 

than about 700m, and the sensitivity to microstructure becomes clear, and of course is seen to increase 

dramatically as the AGS increases. The local stress results for increasing AGS are bounded by two 

extreme cases; those of single crystal response with HCP crystal c-axis normal and parallel to the 

applied loading respectively, and these two points terminate the graph for ‘AGS’ of 10,000m.  The 

extremes result from the slip strength anisotropy in Ti in which typically slip strength differences may 

be expressed 𝜏0 <c+a> = 3 * 𝜏0 <a>.    

 

 

 
 

Figure 15 - Overall results showing peak boundary stress across the full range of length scales. The larger grain sizes 

are plotted on a log10 scale for clarity.  

 

The length scale effects shown in Fig. 15(a) for small AGS show the considerable strengthening due to 

GNDs. GND densities generate high stresses as a result of the hardening, and it is a strengthening effect 
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as it inhibits strain accumulation. This is relevant for the understanding of failure in cold dwell fatigue, 

for example, for which failure is currently thought to result from both localisation of slip at hard-soft 

gran boundaries, and potentially from stress-based fracture criteria. The small AGS study supports a 

conclusion that smaller grain sizes are beneficial for dwell fatigue as higher operational stresses would 

be required to nucleate a facet. 

 

This may be contrasted with the hardening behaviour observed for large AGS on the right hand side of 

Fig.15 (a) and in Fig. 13. Hardening in this instance is as a result of a build-up of strain in the soft grain. 

The soft grains surrounding the hard grain yield and once they do, they creep, accumulating large 

amounts of plastic strain and due to compatibility constraints, there is a consequent local rise in stress 

in the soft / hard interface. Examining the stress distribution in Fig. 13(a), it may be seen that the large 

grain sample has much higher boundary stresses and much lower soft grain stresses, than for 

comparison, the 5m AGS sample (Fig. 14(a)), where there is a corresponding stress rise in both the 

soft and hard grain, but less pronounced. 

 

The so-termed relative size effects potentially poses a serious concern for blocky alpha in areas of small 

ligament width, such as the fillet of a weld in a zirconium fuel clad or the bore of a compressor disk in 

an aero-engine. Strain accumulation can lead to increased residual stresses at bad pairings of grain 

orientation due to the elastic and plastic anisotropies of the hcp alpha phase of both titanium and 

zirconium. The presence of residual stresses that may be higher than design tolerances ultimately affect 

fatigue life. Accurate prediction of likely residual stress states at the intergranular level is thus of much 

interest to aeroengine manufacturers and nuclear reactor designers (from discussions with our 

collaborators in Rolls-Royce plc).   
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5 Conclusions 

 

This manuscript presents a rigorous physical explanation of the size effect from single crystal studies 

and then demonstrates how this is important in polycrystals.  

 

Firstly, this paper introduces a fundamental derivation of the back stress term required to harden slip 

systems according to the mechanism of dislocation pile up. Next, single crystal micro-beam 

deformation has been considered in order to explore the Gong et al approach for property extraction 

and length scale dependent crystal plasticity size effects. Finally, model polycrystals are addressed 

across a broad range of average grain sizes such that both length scale and relative geometry effects 

(where grain size is a fraction of 1/20th or greater of the stress-bearing ligament width) have been 

examined systematically.  

 

The length scale dependent single crystal micro-beam studies show that: 

• The CP model demonstrates that the size effect is most pronounced for effective lengths smaller 

than 10m, in agreement with Fleck et al. [4]  

• The CP model reproduces qualitatively the observed A/d relationship from micro-scale testing 

(by e.g. Gong et al., Motz et al.) 

• The size-sensitive strengthening parameter A determined is smaller than experimentally 

measured, and it is argued that this results from the averaging of discrete dislocation behaviour 

in to the continuum slip rule required within the crystal plasticity formulation. In addition, 

decreased volumes have reduced possibilities of dislocation sources, driving up stress. Tarleton 

et al. [22] suggest that the size effect in micro-beam samples is a combination of GND storage 

and source limitation or truncation. The latter mechanism is also not accounted for in this crystal 

model. 

 

Model Ti-6Al polycrystals have also been developed to address size effects originating from both length 

scale and relative geometry effects. A systematic study of grain size effects in polycrystal behaviour 

has been carried out in which average grain size is progressively increased from micron scale to 

millimetres, for a given stress-bearing ligament width. These studies show that: 

 For the former micron scale, GND development leads to classical length scale effects while for 

the latter millimetre scale, for which the grain size becomes a fraction of 1/20th or more of the 

ligament width, relative geometry effects become significant leading to marked impact on 

material properties and behaviour.   

 Considering as an example uniaxial polycrystal straining in a sample of defined ligament width 

and average grain size, the regimes of grain size for which length scale and relative geometry 

effects predominate have been demarcated and quantified, thus providing guidelines for alloy 

users.   

Key technological drivers for which such information is important include cold dwell facet fatigue in 

aero titanium alloys, and blocky alpha zirconium alloys used in nuclear reactor components. 
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Appendix 

 

 

A.1 Derivation of back stress and pile-up length relationship 

 

The shear stress field due to an edge dislocation [56] is given as: 

 
𝜎𝑥𝑦 =

𝐺𝑏

2𝜋(1 − 𝜈)

𝑥(𝑥2 − 𝑦2)

(𝑥2 + 𝑦2)2
 

A1 

Consider a dipole that consists of two opposite edge dislocations which reach the equilibrium state 

under the applied shear stress, 𝜏.  

 

Figure A.1 – Two dislocations of opposite sign 

Using Eqn. A1, the shear stress on one dislocation from the other is: 

 
𝜏′ =

𝐺𝑏

2𝜋(1 − 𝜈)𝑟
 

A2 

in which 𝑟 is the length of the dipole, noting that x = r and y = 0. At the equilibrium position, the 

attraction stress is balanced with the applied stress which gives: 

 
𝜏 =

𝐺𝑏

2𝜋(1 − 𝜈)𝑟
 

A3 

Take the half length of the dipole, i.e. 𝑟/2, as the unit length and assume 𝑁 positive edge dislocations 

are piling up on a slip plane with the angle 𝜃 with respect to the positive x-axis. The leading dislocation 

is pinned at the origin while the rest are free to move along the slip plane under the remote uniaxial 

loading 𝜎𝑥𝑥 = 𝜎0. The length of the pile up can be solved from the zeros of the derivative of the 𝑛th 

Laguerre polynomial which is given by Stroh [45] as:  

 𝐿𝑝𝑢 = 4𝑁 A4 

Combining A3 and A4, the pile-up length may now be stated as: 

 
𝐿𝑝𝑢 =

𝐺𝑏𝑁

𝜋(1 − 𝜈)𝜏𝑠
 

A5 

 

For completeness, the Stroh-based description for the length of a pile-up has been validated with a 2D 

discrete dislocation (DD) plasticity model.  

 

A two-dimensional discrete dislocation model has been built to validate the analytical solution for the 

pile-up length 𝐿0 as shown in Fig. A.2. A pile-up group consists of 𝑁 positive edge dislocations which 

are distributed evenly along one prism slip plane oriented at 𝜃 = 60°. The leading dislocation is fixed 

at the central node of the model and the rest are free to move along the slip plane. Uniaxial stress-

controlled loading is applied along the 𝑥-direction. The boundary condition problem is solved using the 

superposition method developed by Van Der Giessen et al. [57].  
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Figure A.2 - Schematic of DD model 

In the numerical DD model developed, the region around the pile-up group was highly refined and 

contains 104 elements in a region of 0.5μm × 0.5μm. The region modelled may be considered as an 

analogous subset of the plastic zone of the beam in bending. An adaptive time step was used to obtain 

the equilibrium position. The final pile-up distance is recorded versus number of dislocations in the 

pile-up as shown in Fig. A.3. 

 

Figure A.3 – Comparison between analytical solution and DD simulations  

𝐿𝑝𝑢 is shown to be linearly related to the number of dislocation 𝑁 and there is a good agreement between 

the analytical solution and the DD simulations.  
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A.2 Elastic moduli 

 

𝑫 =

[
 
 
 
 
 
134 76 65 0 0 0
76 134 65 0 0 0
65 65 160 0 0 0
0 0 0 29 0 0
0 0 0 0 40 0
0 0 0 0 0 40]

 
 
 
 
 

𝐺𝑃𝑎 

 

Elastic moduli matrix reproduced from Ohio State University experiments on single crystal Ti-6Al [50]. 

The stiffness matrix reproduced here is of the form appropriate for implementation in Abaqus software, 

noting that (D11- D22) / 2 = D44 as appropriate for a transversely isotropic material. 

 

A.3 Slip Rule parameters 

 
Parameters Value 

𝝆𝒎𝒐𝒃𝒊𝒍𝒆
SSD 5.0 m-2 

𝝆𝐢𝐧𝐢𝐭𝐢𝐚𝐥 
SSD 0.01 m-2 

𝝆𝐢𝐧𝐢𝐭𝐢𝐚𝐥 
GND 0.0 m-2 

𝝊 1.0 x 1011 Hz 

b <a> 3.2 x 10-4 m 

b <c+a> 5.1 x 10-4 m 

H 9.913 x 10-20 J 

k 1.381x1023 J K-1 

T 293 K 

𝜸𝟎 6x10-4 

𝜸′ 0.05 

𝝉𝟎 <a> 280 MPa 

𝝉𝟎 <c+a> 840 MPa 

G 29000 MPa 
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