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Abstract 

The Sih, Paris and Irwin analytical solution for cracks in anisotropic elastic media has been 

developed for an hcp Ti single crystal and shown to lead to crack tip normal stresses which 

are independent of crystal orientation but other stress components which are dependent. 

Detailed finite element studies confirm that the stress intensity remains independent of crystal 

orientation but ceases to do so in an edge-cracked bi-crystal.  

The incorporation of crystallographic slip demonstrates that single-crystal crack tip stresses 

largely remain independent of crystal orientation but that the plastic zone size and shape 

depends greatly upon it. Significant differences result in both the magnitude and extent of the 

plasticity at the crack tip with crystallographic orientation which can be quite different to that 

predicted using Mises plasticity. For an edge crack terminating in a bi-crystal, the slip fields 

which result depend upon both crystal mis-orientation and morphology. 

 

Keywords: Stress intensity; crystal plasticity; anisotropy; titanium alloys; cold dwell fatigue; 

crystallographic slip. 
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Nomenclature 

𝜎𝑖𝑗  = Stress in the direction indicated by the subscript, x-y Cartesian and r- for polar 

𝜀𝑖𝑗  = Strain in the direction indicated by the subscript, x-y Cartesian and r- for polar 

𝜑1,2  = Euler angle 

𝑠𝑖𝑗  = Element of the compliance matrix 

𝜇𝑗  = Roots of the characteristic equation, j = 1, 2, 3, 4  

𝐾𝑗  = Stress intensity factor, j = I or II depending on mode 

𝑹 = Rotation matrix 

𝑻 = Transformation matrix 

𝑺 = Rotated compliance matrix 

𝑎, 𝑏 = Crack length and plate width, respectively  
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1. Introduction 

Since the 1950s, titanium has been the mainstay for critical rotating components such as discs 

and blades, in the low to high pressure sections of the compressor of gas turbine engines [1]. 

Titanium alloys offer several key advantages including reduced density, high fracture 

toughness, high strength and corrosion resistance. Indeed, the latter two qualities have led to 

extensive titanium use in biomedical devices [2]. Particular alloys may be used throughout 

aircraft production, such as landing gear, nacelles and fuselage [3]. The ‘workhorse’ of the 

aerospace industry is the alloy Ti-6Al-4V which in some instances may make up 80-90% of 

the titanium used on an aircraft [3], and accounts for approximately 56% of the market share 

of all titanium production [2]. Commercially pure (CP) titanium only accounts for 26%, with 

the remainder largely occupied by various alpha and alpha-beta alloys. 

 

Cold dwell fatigue [1,4-10] refers to a failure mode observed in titanium alloy components 

due to a stress hold (dwell) at peak stress during cyclic loading at ambient temperatures. This 

issue, first recognised in the early 1970s after the uncontained failure of two titanium alloy 

aero-engine fan discs [1], remains a serious concern for all engine manufacturers [4]. 

 

 

Figure 1 - S-N curves illustrating dwell-debit [5] 

Fig. 1 shows the results of a fatigue performance study on disc samples of the titanium alloy 

IMI834 [5] in which the effect on lifespan of the two minute dwell may be clearly seen.  

Research efforts have been focused on producing a quantitative predictive relationship 

between structure, texture and properties, but have not been completely successful. Aero-

engine manufacturers such as Rolls-Royce consequently rely on expensive and time 
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consuming component tests which attempt to establish empirical relations that may be 

incorporated in the design methodologies [6]. 

 

The mechanistic origin of the cold dwell debit is argued to be fatigue facets which are micro 

cracks occurring in areas of near-uniform crystallographic orientation in titanium alloys [12] 

and have been observed in experiment many times [5], [11]–[13]. Fig. 2, taken from an 

experiment conducted by Sinha et al. [13], shows a facet fracture surface on a sample of Ti-

6242 (or Ti-6Al-2Sn-4Zr-2Mo). This dwell-fatigue test included a load control of a peak 

stress of 869 MPa and included a dwell of two minutes at this peak stress. The dwell fatigue 

specimen failed in 447 cycles whereas the normal, cyclically loaded, fatigue specimen failed 

after 24,000 cycles; a dwell-debit of 54. These two specimens had the same specimen 

geometry and were machined from the same forging. It is noted by Sinha et al [13] that while 

the precise values for lifespan reduction (dwell-debit) vary, they are consistently large. 

 

Figure 2 - Dwell-fatigue fracture surface, faceted initiation site marked by a dashed line, after [13] 

Cold dwell facets are thought to develop progressively (as opposed to instantaneously) but 

nonetheless very much more rapidly than under conventional fatigue regimes. Once 

nucleated, in a region usually characterised by uniform basal crystallographic orientation, 

they are sometimes found to remain unchanged during subsequent cyclic loading, but other 

times to propagate into adjacent grains.  

 

Early pioneering work by Rice et al. in the 1980s [14-17] developed and applied asymptotic 

analyses to solve for crack tip fields in elastic-ideally plastic fcc and bcc single crystals; this 

approach was extended to hcp and layered materials by Gupta [18]. Cuitino and Ortiz [19] 

investigated three dimensional crack tip fields in single crystal copper specimens under four-

point bending test conditions; their numerical results agreed with that of the earlier analytical 
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studies of Rice et al. The present work builds upon the analytical HRR-fields based research 

of Rice et al by utilising the full computational power of crystal plasticity finite element 

methods. 

 

The first to address crack nucleation in a rigorous manner was Stroh [20]. Later studies have 

addressed facet nucleation criteria (e.g. Kirane and Ghosh [21], and Dunne and Rugg [22]) in 

particular, hypothesised the role of normal and shear stress relative to a basal plane in 

nucleation. However, the mechanics of nucleated facets, either partially developed across a 

region of uniform crystallographic orientation, or subsequently propagating into adjacent 

grains, has not received attention. Particularly, the stresses and stress intensities and localised 

(plastic) slip at the crack tip generated by a facet, and influenced by local crystallographic 

details of morphology and orientation, leading to very strong elastic and plastic anisotropy, 

have not been addressed.  

 

This paper therefore presents a fundamental assessment of stress and stress intensity 

generated by an existing facet within, initially, a single crystal in which the crystallographic 

orientation is varied with respect to remote loading direction. The work is extended to 

consider the presence of a facet within bi-crystals with specified and varied crystallographic 

orientations and sizes in order to investigate the roles of grain constraint and crystallographic 

orientation in stress and stress intensity local to the crack tip. Finally, the anisotropic nature 

of the slip developed local to the facet tip is investigated with respect to crystallographic 

orientation.  

 

In the next section, the fundamental analysis of stress intensities in anisotropic media are 

addressed, which are specialised for hexagonal close packed (hcp) elastic anisotropy. An 

analytical analysis is presented of the stresses local to an edge crack in an elastically 

anisotropic hcp single crystal and their dependence on crystallographic orientation is 

investigated. An edge crack in an elastically anisotropic Ti hcp bi-crystal is then addressed 

using a finite element model in order to investigate the role of the combination of 

crystallographic orientation on stress and stress intensity at the crack tip. This is followed by 

a brief description of the crystal plasticity slip model which is employed to investigate the 

accumulated slip fields ahead of the crack tip, taking full account of the anisotropic nature of 

the slip activity. We then address the nature of the crystal slip fields established at the crack 

tip, and their dependence on crystallographic orientation and relative grain size. In passing, 
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the slip fields so determined are compared with the plastic strain fields obtained from Mises 

plasticity, but while maintaining the elastic anisotropy of the crystals. Finally, a quantitative 

analysis of accumulated slip at the crack tip as a function of crystallographic orientation is 

also presented. 

 

2. Analytical Crack-tip Stress Fields in 2D Anisotropic Media 

In this section, elastic anisotropy associated with hcp crystal structure is considered since this 

is of importance in the context of Ti alloy facet nucleation. An edge crack is first considered 

in a homogeneous single crystal with arbitrary crystallographic orientation with respect to the 

crack direction and remote loading. 

 

2.1 Stress Field Formulation 

Consider a plate, with its major dimensions lying in the xy plane and the z-axis directed into 

the page, as shown in Fig. 3(a). The x and y axes are parallel and normal to the crack surface 

respectively.  
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Figure 3 - (a) General description of an edge crack in a half-plane, (b) elemental stresses in polar and Cartesian 

coordinates, (c) Euler angles, (d) crystal rotation and (e) the hcp crystal anisotropic slip systems 

 

Assuming plane stress (i.e. 𝜎𝑧 = 0), the solution is formed from an Airy stress 

function 𝑈(𝑥, 𝑦) which satisfies the equations of equilibrium and as such the stresses are 

defined as: 

 
𝜎𝑥  =  

𝜕2𝑈

𝜕𝑦2
   ,   𝜎𝑦  =  

𝜕2𝑈

𝜕𝑥2
   ,   𝜎𝑥𝑦  =  −

𝜕2𝑈

𝜕𝑥 𝜕𝑦
  

1 

For the xy plane, the compatibility equation takes the form: 

 𝜕2𝜀𝑥

𝜕𝑦2
+ 

𝜕2𝜀𝑦

𝜕𝑥2
= 

𝜕2𝛾𝑥𝑦

𝜕𝑥 𝜕𝑦
 

2 

Combining the compatibility and equilibrium equations using anisotropic Hooke’s Law, we 

obtain the governing differential equation for the anisotropic theory of elasticity 

(c) (d) 

(e) 
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𝑠22

𝜕4𝑈

𝜕𝑥4
− 2𝑠26

𝜕4𝑈

𝜕𝑥3𝜕𝑦
+ (2𝑠26 + 𝑠55)

𝜕4𝑈

𝜕𝑥2𝜕𝑦2
− 2𝑠16

𝜕4𝑈

𝜕𝑥 𝜕𝑦3
+ 𝑠11

𝜕4𝑈

𝜕𝑦4
= 0 

3 

where, 𝑠𝑖𝑗 are the components of the stress-strain compliance matrix for an anisotropic 

material (a similar equation may be obtained for plane strain).  The 4th order differential 

equation may be solved by means of a characteristic equation which is: 

 𝑠11𝜇𝑗
4 − 2𝑠16𝜇𝑗

3 + (2𝑠12 + 𝑠55)𝜇𝑗
2 − 2𝑠26𝜇𝑗 + 𝑠22 = 0 4 

noting that  𝜇𝑗 are the roots of this equation and represent the material properties in the stress 

field equations. Lekhnitskii [23] has shown that the roots of Eq.4 are complex conjugate pairs 

of the form: 

 𝜇1 = 𝛼1 + 𝑖𝛽1,     𝜇2 = 𝛼2 + 𝑖𝛽2,     𝜇3 = 𝜇
1
,     𝜇4 = 𝜇

2
 5 

Further details of the derivation are available in Liebowitz [24], but the pertinent equations 

for Mode I are: 

 
𝜎𝑥𝑥 =

𝐾𝐼

√2𝑟
𝑅𝑒 [

𝜇1𝜇2

𝜇1 − 𝜇2
(

𝜇2

√(𝑐𝑜𝑠𝜃 + 𝜇2𝑠𝑖𝑛𝜃)
−

𝜇1

√(𝑐𝑜𝑠𝜃 + 𝜇1𝑠𝑖𝑛𝜃)
)] 

6 

 
𝜎𝑦𝑦 =

𝐾𝐼

√2𝑟
𝑅𝑒 [

1

𝜇1 − 𝜇2
(

𝜇1

√(𝑐𝑜𝑠𝜃 + 𝜇2𝑠𝑖𝑛𝜃)
−

𝜇2

√(𝑐𝑜𝑠𝜃 + 𝜇1𝑠𝑖𝑛𝜃)
)]  

7 

 
𝜎𝑥𝑦 =

𝐾𝐼

√2𝑟
𝑅𝑒 [

𝜇1𝜇2

𝜇1 − 𝜇2
(

1

√(𝑐𝑜𝑠𝜃 + 𝜇2𝑠𝑖𝑛𝜃)
−

1

√(𝑐𝑜𝑠𝜃 + 𝜇1𝑠𝑖𝑛𝜃)
)]  

8 

 

The proceeding investigation utilises polar coordinates, see Fig. 3(b); this transformation 

involves using the following equations: 

 𝜎𝑟𝑟 = 𝜎𝑥𝑥𝑐𝑜𝑠2𝜃 + 𝜎𝑥𝑥𝑠𝑖𝑛
2𝜃 + 𝜎𝑥𝑦𝑠𝑖𝑛2𝜃  9 

 𝜎𝜃𝜃 = 𝜎𝑥𝑥𝑐𝑜𝑠2𝜃 + 𝜎𝑥𝑥𝑠𝑖𝑛
2𝜃 − 𝜎𝑥𝑦𝑠𝑖𝑛2𝜃  10 

 𝜎𝑟𝜃 = (𝜎𝑦𝑦 − 𝜎𝑥𝑥)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝜎𝑥𝑦𝑐𝑜𝑠2𝜃  11 

 

This is the first study to apply the original Sih et al. [25] derived equations to the particular 

case of a transversely isotropic material; Lempidaki et al. [26] investigated cubic materials.  

In this paper we assess the effects of rotating the hcp crystal in 3D space on the crack-tip 

stress state and investigate the effects of crystallographic orientation.  
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Any rotation of a crystal in three-dimensional Euclidean space may be obtained by patterns of 

successive rotations; indeed there are many possible approaches, such as Rodriguez 

parameters or quaternions, but the approach used in this study follows the Bunge convention, 

common in materials science [27]. This approach considers three rotations about the Z-X-Z’ 

axes, where Z’ is the new local Z-axis (refer to Fig. 3(c)). The product of these individual 

rotations gives the overall rotation matrix R given by 

 𝑹 = 𝑹𝜑1
𝑹𝜑𝑹𝜑2

 12 

Consider the rotation of the stress tensor 

 𝝈′ = 𝑹  𝝈  𝑹𝑇 13 

Converting the stress tensors to vector form yields: 

 σ′ = 𝑻 𝜎 14 

The T matrix now contains the details of the rotation applied to the stress vector  so that the 

compliance matrix, for example, is rotated using the following relation: 

 𝑺3𝐷 𝑅𝑜𝑡 = 𝑻−1𝑺 𝑻 15 

The above procedure now allows the calculation of the compliance matrix for any specified 

crystallographic rotation - further details of the rotation are provided in Appendix A. 

 

It has been demonstrated by Sih et al. [25] that the stress intensity factors for isotropic and 

anisotropic materials are identical under conditions of self-equilibrating loads. Therefore, if 

the stress intensity factor is already known for a problem involving an isotropic medium, then 

it may be applied to that of an anisotropic one. This is contrary to the results of Bao et al. 

[28], in which it is shown that independence is lost, but this is due to notch geometry. For the 

case of an infinitesimal crack, as Sih et al have shown, the stress intensity remains 

independent of the elastic properties, be they anisotropic or isotropic.  

 

As the above equations (6-8) describe the general stress state near a crack tip for a central 

crack in an infinite medium [25], appropriate selection of stress intensity factor is necessary 

to apply them the case of an edge crack. In this study the function for 𝐾𝐼 used is that which 

was developed by Brown and Srawley [29]: 

 
𝐾𝐼 = 𝜎0√𝜋𝑎 (1.12 − 0.23(𝑎 𝑏⁄ ) + 10.6(𝑎 𝑏⁄ )

2

− 21.7(𝑎 𝑏⁄ )
3

+ 30.4(𝑎 𝑏⁄ )
4

) 
16 
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2.2 Stresses at Crack Tip in hcp Single Crystal Titanium 

The elastic anisotropic stress field theory allows for the calculation of the stress components 

local to the crack tip in a single hcp crystal subject to remote uniaxial loading. The crystal is 

200 x 200m in size, with an edge crack of length 10m, under a 100MPa tensile load, as 

depicted in Fig. 3(a). The crystallographic orientation is specified as shown schematically in 

Fig. 3(d). The anisotropic elastic properties used for a representative titanium alloy are given 

in Appendix B; these properties are specified in the reference configuration. The rotation 

scheme described in the previous section is used to generate the correct rotated 𝑠𝑖𝑗 values for 

the characteristic equation (Eq. 4). Upon solving this quartic equation, the required 𝜇𝑗 

material parameters may be inserted into the stress field equations. Using this methodology, 

the y-direction stress components were calculated for differing crystallographic orientations 

(i.e. φ = 0°, 45°, 60°, 90°) along a line 𝜃 = 0, and are given in Fig. 4. For clarity, we focus 

predominantly on one axis of rotation in order to show the variation due to rotation in detail. 

The angular ranges are chosen to capture the shift of <a> type deformation to <c+a> type, 

i.e., considering the c-axis parallel to the z-axis in the first instance and parallel to the y-axis 

in the second. However, an arbitrary rotation (φ1 = 30°, φ = 45°, φ2 = 55°) is included for 

completeness. 

 

Figure 4 - Stress ahead of the crack tip along the line θ= 0, refer to Fig. 3(b) 

 

It is clear that changes in the orientation have no effect on this component of stress. However, 

due to the fact that stress is an inverse function of the square root of the distance from the 
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crack tip it was felt that calculations in polar co-ordinates would give a better description of 

the stress state.  As before, a varied series of crystallographic orientations (i.e. φ = 0°, 30°, 

45°, 60°, 90°) were considered and polar stresses at a specified distance from (r = 0.5m) and 

in a full circle around the crack tip were calculated (Eq. 9-11). The distance of 0.5 µm was 

selected so as to be fully representative of the K-field. In Fig. 5(a)-(c), the polar components 

of stress are shown against the circumferential distance around the crack tip. The radial 

stresses in Fig. 5(a) show the biggest variation in magnitude for varying crystallographic 

orientation, but remain modest; this is echoed by the shear stresses. The hoop stresses are 

independent of crystallographic orientation.  
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Figure 5 - Normalised radial (𝜎𝑟𝑟/𝜎0), circumferential (𝜎𝜃𝜃/𝜎0) and shear  (𝜎𝑟𝜃/𝜎0) stress components at a 

fixed distance from the crack tip, r=0.5 µm 

Considered in parallel were the stress intensity factors for the elastic single crystal. These 

were assessed by means of a finite element model, shown in Fig. 6. The hcp crystal 

orientation was specified as in the above analytical study. The stress intensity factor was 

calculated using the J-integral approach developed by Rice [30], which has been incorporated 

within the ABAQUS finite element software. In ABAQUS, a ring of elements is used to 

calculate the SIF, using the J-integral method. Twenty contours were considered to ensure 

that the value calculated was stable and consistent. 

 

Figure 6 - The finite element discretisation in the region of the crack 
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Using this method, the stress intensity factors for three particular crystallographic orientations 

(φ=0°, 60°, 90°) have been calculated and compared with that of a single crystal isotropic 

elastic plate (which agrees with the Brown and Srawley solution [29]) over various crack 

length to plate width aspect ratios (a/b). Results are shown in Fig. 7, and no variation is 

apparent for the differing aspect ratios.  

 

 

 

 

 

 

 

 

 

Figure 7 - Variations of the stress intensity factor KI versus crack length/plate width (a/b). 

 

The second case is that of an angled central crack, shown in Fig. 8, in which the crack is 

orientated at an angle β to the applied tensile stress direction. The angled crack is defined 

such that the Mode I crack opening is orientated perpendicularly to the crack, and the Mode 

II sliding is parallel to the crack.  
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Figure 8 - Angled crack in a plate held in tension 

 

Comparisons of stress intensity results for the isotropic and hcp anisotropic models for the 

crystallographic orientations are shown in Table 1, for two different planar crack orientations.  

 

Angled Crack   

( = 22.5°) 
KI / K0 KII / K0 

Isotropic 0.322 0.627 

𝜑 = 0° 0.356 0.632 

𝜑 = 60° 0.341 0.632 

𝜑 = 90° 0.315 0.622 

   Angled Crack   

( = 67.5°) 
KI / K0 KII / K0 

Isotropic 1.616 0.615 

𝜑 = 0° 1.638 0.608 

𝜑 = 60° 1.631 0.609 

𝜑 = 90° 1.612 0.624 

 

Table 1: Stress intensity factors for angle cracks 
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As with the edge crack model, the computational results confirm that the stress intensity 

factor is indeed independent of the crystallographic orientation, first demonstrated 

theoretically by Sih et al [19].  In both case, horizontal and angled crack, the results presented 

are normalized as:  

 
𝐾̃𝑖 =

𝐾𝑖

𝜎0√𝜋𝑎
=

𝐾𝑖

𝐾0
, 

17 

 

where i = I, II  indicates intensity mode, σ0 is the remote applied stress and a the crack length 

for an edge crack or half crack length for a centre crack. 

 

Hence, in the context of edge- and centre-cracked elastically anisotropic hcp single crystal, 

the stress intensity is independent of crystallography. However, it is anticipated that for a 

facet crack contained within the bulk of a polycrystal, and terminating within a single grain, 

that the surrounding grains and their crystallographic orientations likely play a role in the 

stresses local to the crack tip and in the stress intensity. This is investigated in §2.3 with a 

finite element bi-crystal model shown schematically in Fig. 9.  
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2.3 Stress Intensity Factors in a hcp Bicrystal 

 

Figure 9 - Schematic diagram of an edge crack in a bi-crystal with dimensions shown and a possible 

combination of crystal orientations 

 

An edge crack is again considered, but this time traversing grain A, and terminating within 

grain B shown in Fig. 9. Note that for the purposes of stress intensity factor calculation, the 

mesh is very fine local to the tip so the contours that were used for the J-integral calculation 

do not traverse the grain boundary. Example hcp crystallographic orientations for the two 

grains are shown in the figure. The stress intensity is calculated for the case such that grain B 

is fixed in two orientations and grain A is progressively rotated about the x-axis from its 

reference configuration (c-axis parallel to the z-direction) through to 90o (resulting in its c-

axis parallel to the y-axis), as shown in Fig. 3(c). The results of the calculations are shown in 

Fig. 10(a) where some changes can be seen to the stress intensities resulting from 

neighbouring grain orientations. Different stress intensities exist for the two initial and 

differing crystallographic orientations.  
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Figure 10 - Effect of the crystallographic orientation on the stress intensity factor for bi-crystal model for (a) the 

crystallographic orientation of grain A with 8 µm width while grain B has fixed orientation, and (b) the width of 

grain A when both grains have fixed orientations 

 

The size of grain A relative to B (Fig. 9) is investigated next for two differing 

crystallographic orientation combinations. The resulting stress intensities are shown in Fig. 

10(b). The variations are more substantial here showing the strong dependence of stress 

intensity on local features of grain morphology.  This is potentially important in the context 

of facet fatigue crack growth (and to a lesser extent nucleation) in Ti alloys. Indeed, Kirane 

and Ghosh [21] presented a stress-based criterion for facet nucleation which is mixed-mode 

in nature, reflecting the contributions of both mode I and II, but these stresses and the 

corresponding stress intensities (for microstructurally short crack growth) are needed at the 

microstructural level (e.g. within a specific grain). Hence, the analyses above showing the 

dependency of the stress intensities on local microstructural features such as grain 

morphology and crystallographic orientation confirm that accurate stresses and corresponding 

intensities can only be obtained by taking due account of key local microstructural features. 

Facet fatigue nucleation is known to be a progressive process taking place over a number of 

cycles as the crack which has nucleated at a hard grain – soft grain interface propagates 

through the hard-orientated grain. Hence, the driving stress intensity is likely to be mixed 

mode and dependent on the local morphology and crystallographic orientations, as shown 

above. 

  

So far, the analyses carried out have allowed for anisotropic elastic behaviour. We next wish 

to investigate the crack tip stresses, and the effects of crystallographic orientation, when 
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crystallographic slip also is allowed to develop at the crack tip, and for this reason, a brief 

overview of the crystal plasticity model adopted is given in the next section.  

 

3.0 Crystal Plasticity Model 

Full details of the crystal plasticity model incorporating strain-gradient plasticity can be 

found in Dunne et al [10]. The crystal plasticity framework used in this study is based on the 

multiplicative kinematic decomposition of the deformation gradient into elastic (𝑭𝑒) and 

plastic (𝑭𝑃) tensors such that 

 
𝑭 =

𝜕𝒙

𝜕𝑿
= 𝑭𝒆𝑭𝒑 

18 

Assuming crystallographic slip accounts for deformation, and for now considering just single 

slip, 

 𝑭𝒑 = 𝑰 + 𝛾(𝒔𝒏) 19 

in which s and n are slip direction and plane normal respectively, and  is the magnitude of 

the slip. Since the material properties at a point are time dependent, it is convenient to write 

the plastic deformation gradient in rate form as 

 𝑭̇𝒑 = 𝛾̇(𝒔𝒏) 20 

For a spatially varying velocity field, the velocity gradient is defined and decomposed into 

the symmetric and anti-symmetric parts as 

 𝑳 = 𝑭̇(𝑭 )−1 = 𝑠𝑦𝑚(𝑳) + 𝑎𝑠𝑦𝑚(𝑳) 21 

The plastic part of the velocity gradient takes the form 

 
𝑳𝒑 = ∑𝛾̇𝑖𝒔𝑖 𝒏𝑖

𝑛

𝑖=1

 
22 

which consists of contributions from all active slip systems, with normal vectors ni and slip 

direction vectors si corresponding to the ith slip system, and is computed according to a 

defined slip rule. The flow rule used to describe the slip rate on a slip system is given by 

 
𝛾̇𝑖 = 𝜌𝑠

𝑚𝑏𝑖2𝜈𝑒𝑥𝑝 (−
∆𝐹

𝑘𝑇
) sinh (

(𝜏𝑖 − 𝜏𝑐
𝑖)𝛾0∆𝑉𝑖

𝑘𝑇
) 

23 

with 

 
∆𝑉𝑖 = 𝑙𝑏𝑖2  where  𝑙 =

1

√𝜓𝜌𝑠
𝑠
 

24 
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in which 𝜌𝑠
𝑚 and 𝜌𝑠

𝑠 are the mobile and sessile statistically-stored dislocation (SSD) densities, 

bi the Burger’s vector magnitude for slip system i, 𝜈 the frequency of attempts (successful or 

otherwise) by dislocations to jump the energy barrier, ΔF the Helmholtz free energy, k the 

Boltzman constant, T the temperature in Kelvin (K), τi the resolved shear stress, 𝜏𝑐
𝑖  the critical 

resolved shear stress, γ0 the shear strain that is work conjugate to the resolved shear stress, ΔV 

the activation volume, l the pinning distance, and ψ is a coefficient that indicates that not all 

statistically stored dislocations (SSDs) necessarily act as pinning points. Note that each slip 

system becomes active when the resolved shear stress is equal or greater than the critical 

resolved shear stress (τi  ≥  𝜏𝑐
𝑖 ). Further detail of the subsequent implicit integration of the 

constitutive equations and the determination of the consistent elastic-plastic tangent stiffness 

can be found in Dunne et al [10].  The crystal model is implemented within an ABAQUS 

user-defined subroutine (UMAT) which facilitates finite element modelling of single and bi-

crystals in this study. The material properties used for the slip rule in the crystal plasticity 

model are given in Appendix B where the <a> and <c+a> type systems are differentiated (a 

c/a ratio of 1.593 is used), and the slip systems for an hcp single crystal are shown in Fig. 

3(d). The critical resolved shear stresses for a representative near-alpha titanium alloy were 

taken from the experimental results of Gong and Wilkinson [31] and nominal strain γ0 has 

been fixed for simplicity. Burger’s vector magnitudes, frequency of dislocation jumps, and 

initial density of SSDs are obtained from standard property data and included in Appendix B. 

In some of the plasticity analyses carried out (which is made explicitly clear in the text), 

Mises perfect plasticity is assumed,  and in this case a yield stress of 462 MPa is employed 

which corresponds to the critical resolved shear stress for single-crystal  a-type slip.   

 

3.1 Edge Crack Crystallographic Slip and its Crystal Orientation Dependence 

We return to the edge crack problem in a homogeneous single crystal schematically shown in 

Fig. 6 but now allow for the development of plasticity in two ways. Firstly, the crystal 

plasticity model described above is employed which takes full account of the anisotropy of 

slip in hcp crystals and secondly, by employing standard isotropic Mises plasticity (while in 

both cases retaining the effects of elastic anisotropy). To begin, the x-direction stresses are 

determined using both approaches, and in the case of the crystal model, the hcp grain is 

orientated at φ=45°; that is, with its c-axis at 45o to the x-direction shown in Fig. 3(d). The 

results are shown in Fig. 11 in which near-identical stresses are developed.  



Page 20 of 31 
 

 

Figure 11 - Comparison of normalized 𝜎𝑥𝑥 stresses obtained from crystal and Mises plasticity models along the 

x-direction from the crack tip. 

 

The behaviour is explored further in Fig. 12 in which field variations of the y-direction 

stresses are shown for purely (anisotropic) elasticity, for crystal plasticity and for Mises 

plasticity, for the four crystallographic orientations (φ=0°, 45°, 60°, 90°) shown in the figure. 

The first (and expected) clear feature is the elimination of the highly localised stress 

concentration by incorporation of plasticity. The second is that the incorporation of 

anisotropic hcp crystal slip (as opposed to Mises plasticity) has limited effect on the resulting 

crack tip stress distributions, even as the crystallographic orientation is varied. Note that the 

width of the contour plots in Fig. 12 is 0.21 µm, so showing very local stresses. 
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Figure 12 - Field variations of the direct stress component 𝜎𝑦𝑦 around the crack tip for the single crystal model 

 

In order to provide more detailed and quantitative assessments of the stresses determined  

using Mises elasto-plastic versus crystal plasticity, the normalized stress components 

(𝜎𝑥𝑥/𝜎0) and (𝜎𝑦𝑦/𝜎0) along the x-direction from the crack tip are extracted and shown for 

the crystallographic orientations (φ=0°, 45°, 60°, 90°) in Fig. 13 (a-b).  
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Figure 13 - Comparison between Mises and crystal plasticity models along the x-direction from the crack tip for 

the normalized stress components of (a) 𝜎𝑥𝑥 and (b) 𝜎𝑦𝑦 
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Some differences in the stresses arise between the two models very close to the crack tip, but 

largely they are near-identical remote from the crack tip in the elastic zone. The small 

differences in the plastic region result from the hcp crystal anisotropy for which the differing 

strengths of the <a>-type and <c+a>-type slip are accounted. However, much more 

significant differences are anticipated in the plastic fields, and these are assessed next. 

 

Fig. 14 shows the accumulated plastic strains calculated using the crystal and Mises plasticity 

models respectively for the crystallographic orientations (φ=0°, 45°, 60°, 90°) shown. Here, 

quite different distributions of plastic strain are observed resulting from the incorporation of 

crystal slip, and a strong dependence on crystal orientation exists which naturally the Mises 

model fails to capture. The crystal plasticity result for the particular asymmetric crystal 

orientation (φ= 60°) shows the development of a correspondingly asymmetric plastic strain 

field. It is also interesting to note the very different plastic fields developed for the two 

extreme crystal orientations of φ=0° and 90°. For the former, the slip is accommodated by a-

type prismatic systems whereas in the latter, because of orientation, the slip occurs on the 

pyramidal slip systems with a significantly higher strength than that for the prismatics. As a 

result, the slip is much more localised and largely constrained to occur in a vertical band.   

 

Figure 14 - Accumulated plastic strains obtained from the Mises and crystal plasticity models for the single 

crystal crystallographic orientations shown (0.1m width plots). 

Also, the highest values of the plastic strains are obtained for the reference crystal orientation 

(φ=0°) in which the grain is well-orientated for a-type slip. The magnitude of the 

accumulated plastic strain reduces with crystal orientation about the x-axis and takes the 

minimum value at φ=90°. In fact, the Mises plasticity results show a somewhat similar trend 

in plastic strain magnitude, but nothing like to the same extent. This follows from the effect 
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of the elastic anisotropy influencing stress state at the crack tip as a result of the crystal 

orientation.    

 

Figure 15 - Comparison of accumulated plastic strains along the x-direction from the crack front for the single 

crystal crystallographic orientations shown using the crystal plasticity model. 

 

Fig. 15 shows the comparison of the effective plastic strains developed along the x-direction 

for the crystal orientations shown from the crystal plasticity model. Again it can be seen that 

the largest and smallest plastic strains at the crack front develop for the crystallographic 

orientations φ=0° and 90° respectively. While for these two cases, the accumulated plastic 

strains decay in a short distance from the crack front, the plastic strain field for φ=45° persists 

considerably further resulting from the favourable crystal orientation facilitating prismatic 

and basal slip. A comparison of the effective plastic strain distributions along the x-direction 

from the crack front resulting from crystal and Mises plasticity for the case of the reference 

crystal orientation (φ=0°)  is shown in Fig. 16. Both models lead to similar trends of plastic 

strain but the crystal model demonstrates more localisation and the Mises model 

overestimates both the magnitude and extent of plasticity at the crack tip. 
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Figure 16 - Effective plastic strain distributions along the x-direction from the crack front for the crystal and 

Mises plasticity models for crystal orientation φ=0° 

 

3.2 Edge Crack Crystallographic Slip in a Bi-crystal 

Finally, we consider the bi-crystal shown schematically in Fig. 9 and investigate the effects of 

differing combinations of crystal orientations and the size of grain A relative to grain B using 

the crystal model. For this purpose, four different widths of the grain A were utilized (5, 7.5, 

9 and 9.5 µm respectively). Firstly, the crystallographic orientations of grains A and B are 

selected to be φ=0° and 90° respectively and the results for this configuration are shown in 

Fig. 17(a).  Secondly, Fig. 17(b) shows results for the configuration in which the 

crystallographic orientations of grains A and B are φ=90°and 0° respectively.  Similar to 

results shown for stress intensity factors presented above, it can be seen that the accumulated 

plastic strains local to the crack tip are strongly affected by the crystallographic orientation 

combinations of two adjacent grains. Grain neighbours containing a crack can therefore have 

a significant effect on the plastic strain fields developed local to the crack tip. 
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Figure 17 - Effect of the size of Grain A on the accumulated plastic strain local to the crack tip in Grain B for (a) 

Grain A φ=0°, Grain B φ=90° and  (b) Grain A φ=90°, Grain B φ=0° width) 

 

4. Conclusions  

An analytical solution for an edge crack in a representative hcp Ti single crystal subject to 

remote uniaxial stress shows that the stresses normal to the crack are independent of 

crystallographic orientation but small variations in the other stress components result. The 

stress intensity, however, remains independent of crystallographic orientation.  

 

Studies of an edge crack in a bi-crystal show that the stress intensity depends on both the 

crystallographic orientation of the grain in which the crack tip terminates, and on the 

misorientation of the bi-crystal. The stresses local to an edge crack in a single crystal in 

which plasticity is allowed to develop show little dependence on crystallographic orientation 

such that the results obtained from both crystal and Mises plasticity are largely 

indistinguishable. 

 

The plastic zone which develops at the tip of an edge crack in the hcp single crystal is 

strongly dependent on crystallographic orientation and is typically much more localised than 

that observed using Mises plasticity. Significant differences result in both the magnitude and 

extent of the plasticity at the crack tip with crystallographic orientation which can be quite 

different to that predicted using Mises plasticity. For an edge crack terminating in a bi-

crystal, the slip fields which result depend upon the misorientation and grain morphology. 

 



Page 27 of 31 
 

5. Acknowledgements 

We are grateful to the Engineering and Physical Sciences Research Council (EP/G004676/1), 

and Rolls-Royce plc for financial support. 

 

6. References 

[1] M. Bache, ‘A review of dwell sensitive fatigue in titanium alloys: the role of 

microstructure, texture and operating conditions’, International Journal of Fatigue, vol. 25 

(9–11), pp. 1079–1087, 2003. 

[2] G. Lütjering and J. J. C. Williams, Titanium : Springer, 2007. 

[3] R. R. Boyer, ‘An overview on the use of titanium in the aerospace industry’, Materials 

Science and Engineering: A, vol. 213 (1–2), pp. 103–114, 1996. 

[4] S. Ghosh, M. Mills, S. Rokhlin, V. Sinha, W. O. Soboyejo, and J. C. Williams, ‘The 

evaluation of cold dwell fatigue in Ti-6242’, U.S. Dept. of Transportation / Federal 

Aviation Authority report, DOT/FAA/AR-06/24, 2007. 

[5] M. Bache, M. Cope, H. Davies, W. Evans, and G. Harrison, ‘Dwell sensitive fatigue in a 

near alpha titanium alloy at ambient temperature’, International Journal of Fatigue, vol. 

19 (93), pp. 83–88, 1997. 

[6] D. Rugg, M. Dixon, and F. P. Dunne, ‘Effective structural unit size in titanium alloys’, 

The Journal of Strain Analysis for Engineering Design, vol. 42 (4), pp. 269–279, 2007. 

[7] V. Hasija, S. Ghosh, M. J. Mills, and D. S. Joseph, ‘Deformation and creep modeling in 

polycrystalline Ti–6Al alloys’, Acta Materialia, vol. 51 (15), pp. 4533–4549, 2003. 

[8] V. Sinha, M. J. Mills, and J. C. Williams, ‘Understanding the contributions of normal-

fatigue and static loading to the dwell fatigue in a near-alpha titanium alloy’, 

Metallurgical and Materials Transactions A, vol. 35 (10), pp. 3141–3148, 2004. 

[9] G. Venkataramani, D. Deka, S. Ghosh, and J. B. Nordholt, ‘Crystal plasticity based FE 

model for understanding microstructural effects on creep and dwell fatigue in Ti-6242’, 

ASME Journal of Engineering Materials and Technology, vol. 128 (3), pp. 356-365, 

2006. 

[10] F. P. E. Dunne, D. Rugg, and A. Walker, ‘Lengthscale-dependent, elastically 

anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in 

Ti alloys’, International Journal of Plasticity, vol. 23 (6), pp. 1061–1083, 2007. 



Page 28 of 31 
 

[11] D. L. Davidson and D. Eylon, ‘Titanium alloy fatigue fracture facet investigation by 

selected area electron channeling’, Metallurgical Transactions A, vol. 11 (5), pp. 837–

843, 1980. 

[12] W. J. Evans and M. R. Bache, ‘Dwell-sensitive fatigue under biaxial loads in the near-

alpha titanium alloy IMI685’, International Journal of Fatigue, vol. 16 (7), pp. 443–452, 

1994. 

[13] V. Sinha, J. E. Spowart, M. J. Mills, and J. C. Williams, ‘Observations on the faceted 

initiation site in the dwell-fatigue tested Ti-6242 alloy: Crystallographic orientation and 

size effects’, Metallurgical and Materials Transactions A, vol. 37 (5), pp. 1507–1518, 

2006. 

[14] J. R. Rice, “Tensile crack tip fields in elastic-ideally plastic crystals,” Mech. Mater., 

vol. 6, no. 4, pp. 317–335, Dec. 1987. 

[15] J. R. Rice and M. Saeedvafa, “Crack tip singular fields in ductile crystals with taylor 

power-law hardening. I: Anti-plane shear,” J. Mech. Phys. Solids, vol. 36, no. 2, pp. 189–

214, 1988. 

[16] M. Saeedvafa and J. R. Rice, “Crack tip singular fields in ductile crystals with taylor 

power-law hardening: II: Plane strain,” J. Mech. Phys. Solids, vol. 37, no. 6, pp. 673–

691, 1989. 

[17] J. R. Rice, D. E. Hawk, and R. J. Asaro, “Crack tip fields in ductile crystals,” in Non-

Linear Fracture, W. G. Knauss and A. J. Rosakis, Eds. Springer Netherlands, 1990, pp. 

301–321. 

[18] V. Gupta, “Tensile crack-tip fields in elastic-ideally plastic hexagonal crystals and 

layered materials,” Acta Met. Mater., vol. 41, no. 11, pp. 3223–3236, Nov. 1993. 

[19] A. M. Cuitiño and M. Ortiz, “Three-dimensional crack-tip fields in four-point-

bending copper single-crystal specimens,” J. Mech. Phys. Solids, vol. 44, no. 6, pp. 863–

904, Jun. 1996. 

[20] Stroh, AN, ‘The formation of cracks as a result of plastic flow’, Proceedings of Royal 

Society A, vol. 223, pp. 404-414, 1954. 

[21] K. Kirane and S. Ghosh, ‘A cold dwell fatigue crack nucleation criterion for 

olycrystalline Ti-6242 using grain-level crystal plasticity FE model’, International 

Journal of Fatigue, vol. 30, pp. 2127-2139, 2008. 

[22] F.P.E. Dunne and D. Rugg, ‘On the mechanisms of fatigue facet nucleation in 

titanium alloys’, Fatigue & Fracture of Engineering Materials & Structures, vol. 31, pp. 

949-958, 2008. 



Page 29 of 31 
 

[23] S.G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body, First English 

Language. Mir, 1981. 

[24] H. Liebowitz, Fracture, an advanced treatise. Academic Press, 1968. 

[25] G.C. Sih, P.C. Paris, and G.R. Irwin, ‘On cracks in rectilinearly anisotropic bodies’, 

International Journal Fracture, vol. 1 (3), pp. 189–203, 1965. 

[26] D.E. Lempidaki, N.P. O’Dowd, and E.P. Busso, ‘Crack Tip Stress Fields for 

Anisotropic Materials with Cubic Symmetry’, 15th European Conference of Fracture, 

Stockholm, Sweden, 2004. 

[27] H. J. Bunge, Texture analysis in materials science: mathematical methods. 

Butterworths, 1982. 

[28] G. Bao, S. Ho, Z. Suo, and B. Fan, “The role of material orthotropy in fracture 

specimens for composites,” Int. J. Solids Struct., vol. 29, no. 9, pp. 1105–1116, 1992. 

[29] W. F. Brown and J. E. Srawley, ‘Plane Strain Crack Toughness Testing of High 

Strength Metallic Materials’. American Society for Testing and Materials, 1966. 

[30] J.R. Rice, ‘A path independent integral and the approximate analysis of strain 

concentration by notches and cracks’, Journal of Applied Mechanics, vol. 35, pp. 379-

386, 1968.  

[31] J. Gong and A.J. Wilkinson, ‘Anisotropy in the plastic flow properties of single-

crystal alpha titanium determined from micro-cantilever beams’, Acta Materialia, vol. 57 

(19), pp. 5693-5705, 2009. 

 

 

 

 

 

 

 

 

 

 

 



Page 30 of 31 
 

 

 

APPENDIX A – 3D Rotations 

 

 

 

 

 

 

 

 

 

 

 

 

𝑹𝜑1
= [

cos𝜑1 sin𝜑1 0
−sin𝜑1 cos𝜑1 0

0 0 1
] ;  𝑹𝜑 = [

1 0 0
0 cos𝜑 sin𝜑
0 −sin𝜑 cos𝜑

]; 𝑹𝜑2
= [

cos𝜑2 sin𝜑2 0
−sin𝜑2 cos𝜑2 0

0 0 1
]  

 

Combining all three rotations: 

 𝑹 = 𝑹𝜑1
𝑹𝜑𝑹𝜑2

 A.1 

such that the full rotation matrix is: 

 

𝑹 = [

cos𝜑1 cos𝜑2 − sin𝜑1 sin𝜑2 cos𝜑 sin𝜑1 cos𝜑2 +cos𝜑1 sin𝜑2 cos𝜑 sin𝜑2 sin𝜑
−cos𝜑1 sin𝜑2 −sin𝜑1 cos𝜑2 cos𝜑 −sin𝜑1 sin𝜑2 +cos𝜑1 cos𝜑2 cos𝜑 cos𝜑2 sin𝜑

sin𝜑1 sin𝜑 − cos𝜑1 sin𝜑 cos𝜑
] 

 

(In future entries from this matrix will be abbreviated as R11, R12 etc.)  

 

And as before define stress rotations as: 

𝝈′ = 𝑹  𝝈  𝑹𝑇 

 

Such that: 
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𝜎′ = [

𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

] [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

] [

𝑅11 𝑅21 𝑅31

𝑅12 𝑅22 𝑅32

𝑅13 𝑅23 𝑅33

] 
A.2 

 

Gathering the rotation terms and converting the stress tensors to vectors: 

  

 σ′ = 𝑻 𝜎 A.3 

 

where: 

𝑻 =

[
 
 
 
 
 
 

𝑅11
2 𝑅12

2 𝑅13
2 2𝑅12𝑅13 2𝑅11𝑅13 2𝑅11𝑅12

𝑅21
2 𝑅22

2 𝑅23
2 2𝑅22𝑅23 2𝑅21𝑅23 2𝑅21𝑅22

𝑅31
2 𝑅32

2 𝑅33
2 2𝑅32𝑅33 2𝑅31𝑅33 2𝑅31𝑅32

𝑅21𝑅31 𝑅22𝑅32 𝑅23𝑅33 𝑅23𝑅32 + 𝑅22𝑅33 𝑅23𝑅31 + 𝑅21𝑅33 𝑅22𝑅31 + 𝑅21𝑅32

𝑅11𝑅31 𝑅12𝑅32 𝑅13𝑅33 𝑅13𝑅32 + 𝑅12𝑅33 𝑅13𝑅31 + 𝑅11𝑅33 𝑅12𝑅31 + 𝑅11𝑅32

𝑅11𝑅21 𝑅12𝑅22 𝑅13𝑅23 𝑅13𝑅22 + 𝑅12𝑅23 𝑅13𝑅21 + 𝑅11𝑅23 𝑅12𝑅21 + 𝑅11𝑅22]
 
 
 
 
 
 

 

 

 [𝑺]3𝐷 𝑅𝑜𝑡 = [𝑻]𝑇[𝑺][𝑻] A.4 

This is the matrix used to calculate the rotated compliance matrix, its derivation may be found in 

standard mechanics texts. 

 

APPENDIX B – Material Properties 

 

Elastic stiffness matrix 

 

𝐶 =

(

  
 

162530 92000 70000 0 0 0
92000 162530 70000 0 0 0
70000 70000 181660 0 0 0

0 0 0 35270 0 0
0 0 0 0 46700 0
0 0 0 0 0 46700)

  
 

 MPa 

 

 

Slip rule material properties 

 𝜏𝑐 

(MPa) 
b (µm) k (JK-1) ΔF (J) 

v 

(s-1) 

𝜌𝑠
𝑚 = 𝜌𝑠

𝑠 

(µm-2`) 
γ0 𝜓 

<a> slip 

<c+a> slip 

200 

500 

3.2x10-4 

5.1x10-4 
1.38x10-23 3.456x10-20 1011 0.05 8.33x10-6 1.5x10-4 

 


