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A Study of the Sensitivity of Response Spectral Amplitudes on

Seismological Parameters Using Algorithmic Differentiation

by Christian Molkenthin, Frank Scherbaum, Andreas Griewank,
Nicolas Kuehn, and Peter Stafford

Abstract Response spectra are of fundamental importance in earthquake engineer-
ing and represent a standard measure in seismic design for the assessment of structural
performance. However, unlike Fourier spectral amplitudes, the relationship of re-
sponse spectral amplitudes to seismological source, path, and site characteristics is not
immediately obvious and might even be considered counterintuitive for high oscillator
frequencies. The understanding of this relationship is nevertheless important for
seismic-hazard analysis. The purpose of the present study is to comprehensively char-
acterize the variation of response spectral amplitudes due to perturbations of the causa-
tive seismological parameters. This is done by calculating the absolute parameter
sensitivities (sensitivity coefficients) defined as the partial derivatives of the model
output with respect to its input parameters. To derive sensitivities, we apply algorithmic
differentiation (AD). This powerful approach is extensively used for sensitivity analysis
of complex models in meteorology or aerodynamics. To the best of our knowledge, AD
has not been explored yet in the seismic-hazard context. Within the present study, AD
was successfully implemented for a proven and extensively applied simulation program
for response spectra (Stochastic Method SIMulation [SMSIM]) using the TAPENADE
AD tool. We assess the effects and importance of input parameter perturbations on the
shape of response spectra for different regional stochastic models in a quantitative way.
Additionally, we perform sensitivity analysis regarding adjustment issues of ground-
motion prediction equations.

Introduction

The prediction of the expected ground motion for a
given earthquake scenario (distance R, magnitudeMw,…) at
a site of interest and the estimation of the maximum response
of a structure to that input ground motion are of fundamental
interest in earthquake engineering and seismic-hazard analy-
sis. In this context, a response spectrum is a widely accepted
measure for the severity of strong ground motion as it pro-
vides information about the response of structural or geo-
technical systems to the imposed seismic loads. However,
the relationship of response spectral amplitudes to seismo-
logical source, path, and site characteristics is, in contrast to
Fourier spectral amplitudes, not immediately obvious and
might even be considered counterintuitive for high oscillator
frequencies. The quantitative dependence of response spec-
tral amplitudes on seismological parameters that are known
to influence ground motion is not well investigated. Its
understanding is nevertheless important for seismic-hazard
analysis, and the development of a complete understanding
of this relationship still poses a significant challenge.

There are mainly two approaches that are currently em-
ployed to model high-frequency ground motions (greater

than a few hertz) in the seismic-hazard context: (1) empirical
prediction models or (2) ground-motion simulations such as
those using the stochastic point source approach.

In the first approach, ground-motion prediction equa-
tions (GMPEs) are derived empirically through regression
analysis on strong ground motion data sets. These prediction
models give reliable estimates of the distribution of response
spectral amplitudes if strong-motion data are abundant, as-
suming that future events will behave like those of the past.
Empirical ground-motion relations are based only on a few
input parameters and give an estimate of the ground-motion
variability, which makes them very attractive for probabilis-
tic seismic-hazard analysis (PSHA). However, not all of the
model coefficients have a clear physical meaning, making it
difficult to relate them to the underlying physical processes.
Strictly speaking, one should expect GMPEs to be reliable
only for the physical setting represented by the database used
to derive them. As a consequence, this often prohibits the
extrapolation or adjustment of the equation to a different re-
gion. Hence, a simple scaling of one GMPE to render it rel-
evant for application in a different seismological environment
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is not easily performed. In such cases, stochastic ground-
motion models are often employed, which in theory allow
ground-motion predictions to be made for a broad range
of scenarios and have been found to be reliable in simulating
ground motions of engineering interest (see table 5 in Boore,
2003; Atkinson and Boore, 2006; Edwards and Fah, 2013).
The stochastic simulation technique (Boore, 2003) uses a
seismological model to characterize the mean Fourier ampli-
tude spectrum (FAS) of the strong motion affecting the site.
In turn, the response spectral amplitudes can be directly es-
timated from the underlying FAS model of the ground motion
using random vibration theory (RVT; Boore, 1983, 2003). The
FAS model is based on the physics of the earthquake process
and wave propagation, and it can inherently account for
regional differences in the seismological attributes.

Indeed, strong-motion data are often scarce in many
parts of the world and might not be sufficient for the develop-
ment of reliable indigenous GMPEs. Campbell (2003) pro-
posed an approach that employs GMPEs from other regions for
performing seismic-hazard analysis. The selection and the ad-
justment of such imported or host GMPEs to a target region is a
major challenge, because it needs to consider the regional
differences in seismological characteristics like source, path,
and site effects. Campbell’s hybrid empirical method uses
adjustment factors derived through stochastic ground-motion
simulations for this purpose.

One could further improve the efficiency and accuracy
of ground-motion scaling and adjustment of GMPEs if the
sensitivity of the stochastic ground-motion simulations with
respect to seismological attributes was known. Work along
this line has been previously pursued in Douglas and Jousset
(2011), in which sensitivity information revealed helpful in-
sights for the development of GMPEs.

In addition, the accurate prediction of ground motion is a
key component in PSHA (e.g., Bommer and Abrahamson,
2006). For low exceedance rates, the epistemic uncertainties
of overall hazard are dominated by uncertainties regarding
the ground-motion modeling (Toro, 2006). Hence, if a sto-
chastic model is employed, uncertainties in the seismological
parameters will directly map into uncertainties in the hazard
results. Therefore, it is important to understand the effect that
small perturbations of these parameters will have on the re-
sponse spectrum and thus ultimately on the hazard. However,
even though the stochastic ground-motion simulation tech-
nique is based on a relatively simple seismological model
of the FAS, the mapping of perturbed seismological param-
eters into variations of response spectral amplitudes through
the RVT framework is not easily accessible nor simply an-
swered. Basically, RVT is a nonlinear mapping from the FAS
to the response spectrum, which makes it difficult to assess
the sensitivity of the latter to small perturbations in seismo-
logical parameters.

One way to perform sensitivity analysis for the response
spectrum with respect to the seismological parameters is to
calculate first-order derivatives, which may serve as a proxy
for local differences in the output when there are small

changes in the input. However, deriving exact partial deriv-
atives of complex models for a differential sensitivity analy-
sis (DSA) can be very difficult. Differentiating symbolically
or by hand is often not possible, and although computing the
derivatives by finite differences (FDs) may be easy to imple-
ment, the approach is plagued by drawbacks such as the
step-size dilemma (round-off error, truncation error). Fur-
thermore, to apply FD is computationally expensive or not
even feasible if the output depends on a large number of in-
put parameters.

To overcome these problems, we propose in this study
to apply algorithmic differentiation (AD; Griewank and
Walther, 2008). This extremely powerful approach is exten-
sively used in sensitivity analysis of complex models, such as
those used in meteorology (Marotzke and Giering, 1999) or
in the field of aerodynamics (Gauger et al., 2008). Sambridge
et al. (2007) was the very first application of AD in geophys-
ics. To the best of our knowledge, AD has not been explored
yet in the context of seismic-hazard analysis. Given a com-
puter implementation of a model, AD makes it possible,
through a source code transformation, to obtain exact quan-
titative estimates of first-order sensitivities. The analysis and
transformation of the computer code is done by a compiler-
like AD tool (source-to-source code translator). As a result,
one obtains a second computer code that evaluates the de-
sired derivative information and the model output. This
makes AD both theoretically and practically an invaluable
tool. Considering a scalar model output (as in this study), AD
directly delivers the sensitivities with respect to all of the
input parameters in a very efficient way, independently of
the number of input parameters.

The efficient calculation of sensitivities using AD repre-
sents a significant advantage over approaches based upon
Monte-Carlo (MC) simulation. Because of the curse of di-
mensionality, MC simulations have the drawback of being
computationally expensive if the number of inputs is high.
The efficiency issue is even more important for highly com-
plex models, for which a simulation is computationally
very costly and, therefore, the calculation of sensitivities
via MC simulations can become computationally infeasible.
However, AD is only one way to study effects of parametric
changes. For example, in contrast to AD, MC simulation does
not require differentiability of the model and is able to assess
global sensitivities.

The purpose of the present study is the quantitative
characterization of response spectral amplitude variations
simulated by a stochastic ground-motion model, due to per-
turbations in seismological parameters. We carry out a
sensitivity analysis for the well known and extensively ap-
plied stochastic ground-motion simulation program called
Stochastic Method SIMulation (SMSIM; Boore, 2003). This
is done using a source code transforming AD tool. Absolute
and normalized sensitivity coefficients for different seismo-
logical parameters and for different regional models are
derived. Furthermore, we perform a sensitivity analysis re-
garding adjustment issues of GMPEs.
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Stochastic Ground-Motion Simulation

Response spectral amplitudes ymax, defined as the maxi-
mum response of a single-degree-of-freedom (SDOF) system
due to strong ground motion, can be simulated using the sto-
chastic method. For this study, we adopt the well-known
ground-motion simulation program SMSIM to estimate the
response spectral amplitudes.

The stochastic spectrum simulation method has been ex-
tensively used in a broad range of applications in different
tectonic regions and for a large range of magnitudes to
predict response spectra (ground motions) worldwide as
summarized, for example, in Silva et al. (1997) and Boore
(2003). The simulation method is simple and has been
proven to be reliable as its results are in close agreement with
observations (Boore, 2003). The simulation technique has
been developed over decades, and the version we describe
here is based on RVT. We will give only a brief overview, a
more thorough description of the method and the theory
behind it can be found elsewhere (Rice, 1944; Cartwright
and Longuet-Higgins, 1956; Boore, 1983, 2003).

The stochastic method assumes that high-frequency far-
field ground motions (e.g., S-wave motions) of an earthquake
scenario of magnitudeMw and hypocentral distance R can be
described and modeled as a stationary bandlimited Gaussian
noise of finite duration. Given the FAS of this stochastic proc-
ess and its duration, response spectral amplitudes can be di-
rectly obtained using RVT. Therefore, SMSIM consists of
three main components: (1) a model for the FAS of the strong
motion (the stochastic model) (jY�ΘS;Mw; R; fj), (2) dura-
tion models estimating the ground-motion duration (Dgm)
and the duration used to compute the root mean square (rms)
of the oscillator response (Drms), and (3) the frequency re-
sponse function of the SDOF system H�f; fosc� (Fig. 1).
In the FAS model, the vector ΘS represents the set of seismo-
logical parameters defining the source, path, and site character-
istics of the ground-motion generation process, for example,
ΘS ��stress parameter;quality factor; geometrical spreading;
kappa;…�. The natural frequency of the SDOF oscillator is de-
noted by fosc, and f represents a frequency of the input ground
motion.

The peak amplitude of the SDOF oscillator response in
the time domain ymax can be estimated using RVT as follows:

ymax�Θ; Mw; R; fosc� � γ�Θ;Mw; R; fosc�
× yrms�Θ;Mw; R; fosc�; �1�

in which yrms is the rms response and γ represents the peak
factor relating ymax to yrms. The vector Θ includes all param-
eters of the model, that is, the seismological parameters ΘS

that define the FAS model as well as any additional param-
eters needed for the duration models. The peak factor γ as
defined by Boore (2003) is as follows:

γ �
���
2

p Z ∞
0

1 −
�
1 −

m2������������
m0m4

p e�−z
2�
��1π ����

m4
m2

p
Dgm�

dz �2�

and yrms is modeled as:

yrms �
����������
m0

Drms

r
; �3�

in which mk in both equations stands for the kth spectral
moment:

mk�ΘS;Mw; R; fosc� � 2

Z ∞
0

�2πf�kjY�ΘS;Mw; R; f�j2

× jH�f; fosc�j2df: �4�

The core of the method is the seismological FAS model
that is used to define the spectral moments (equation 4).
From a physical point of view, the FAS describes the radiated
source spectrum and its amplitude changes in the frequency
domain due to wave propagation from the source to the site
of interest. Thus, the FAS model considers source, path, and
site attributes of the earthquake process. The underlying
bandlimited mean FAS, jY�ΘS;Mw; R; f�j, for a point source
can be modeled in the following form as a sequence of filters:

jY�ΘS;Mw; R; f�j � E�ΘE;Mw; f� × P�ΘP; R; f�
× G�ΘG; f� × I�f�; �5�

in which E�ΘE;Mw; f� represents the source, P�ΘP; R; f�
the path, and G�ΘG; f� the site contribution. The final filter,
I�f�, accounts for the type of ground motion or response
being simulated. For example, for the simulation of acceler-
ation spectral ordinates I�f� � �2πf�2. The seismological
parameterization of source, path, and site properties is rep-
resented by the vectors ΘE, ΘP, ΘG, respectively, in which
ΘS � �ΘE;ΘP;ΘG�. In the present study, the radiated point-
source spectrum E�ΘE;Mw; f� is defined using Brune’s sin-
gle-corner ω-square model with constant stress parameter
(Brune, 1970, 1971):

E�ΘE;Mw; f� �
CM0

1� � ffc�2
; �6�

in whichM0 is the seismic moment that has units of dyn·cm
(when the coefficients of the following two equations are
adopted) and is related to the moment magnitude Mw as fol-
lows (Hanks and Kanamori, 1979):

Figure 1. Sketch of stochastic ground-motion simulation model
SMSIM. The color version of this figure is available only in the elec-
tronic edition.

2242 C. Molkenthin, F. Scherbaum, A. Griewank, N. Kuehn, and P. Stafford



Mw � 2

3
log10 M0 − 10:7: �7�

The corner-frequency fc of Brune’s source spectrum in hertz
is given by

fc � 4:9 × 106βS�Δσ=M0�1=3; �8�
in which Δσ is the stress parameter in units of bar, and βS is
the shear-wave velocity in the vicinity of the earthquake
source given in kilometers per second. The constant scaling
factor C introduced in equation (6) is defined as

C � hRΘΦiVF
4πρSβ

3
SR0

; �9�

in which hRΘΦi represents the average radiation pattern
for far-field shear waves (hRΘΦi � 0:55), V is the partition
of total shear-wave energy into horizontal components
(V � 1=

���
2

p
), F represents the effect of the free surface

(F � 2) whereas ρS and βS are the density and shear-wave
velocity of the source location, respectively, and R0 is a refer-
ence distance for geometrical spreading (usually R0 � 1 km).

The loss of energy due to the simplified path effect
P�ΘP; R; f� of the wave propagation through a geological
medium is modeled as a product of geometrical spreading
(simplified here as 1=Rη) and a crustal damping function:

P�ΘP; R; f� �
1

Rη exp
�
−

πfR
Q0fαcq

�
; �10�

in which the regional quality factor Q�f� � Q0fα accounts
for anelastic attenuation and wave energy loss due to scatter-
ing in the crust, and cq is the shear-wave phase velocity used
in the determination of Q�f�.

The site effects are modeled by

G�ΘG; f� � A�f� exp�−πfκ0�; �11�
in which the exponential expression (e−πfκ0 ) represents the
kappa filter introduced by Anderson and Hough (1984). This
filter describes the distance-independent high-frequency
decay of the spectrum due to near-surface attenuation. The
frequency-dependent site-specific amplification due to the
vertical velocity gradient in the crust A�f� can be modeled
using a generic rock site frequency-response function as

Â�VS30; f�, with VS30 (the time-averaged shear-wave veloc-
ity of the upper 30 m of geomaterial) as the main controlling

parameter. In this study, Â�VS30; f� is constructed in such a
way that for VS30 � 620 m=s and VS30 � 2800 m=s it con-
verges to the western and eastern United States generic rock
models, respectively, of Boore and Joyner (1997). For each

VS30 in that range, Â�VS30; f� is interpolated between these
limiting cases. For details of the derivation, see Cotton et al.
(2006). This model is restricted to generic rock sites with
VS30 values greater than 620 m=s, consequently soil sites
are not considered.

Besides the description of the Fourier spectrum, the du-
ration models forDgm andDrms are important components of
the method; see equations (2), (3), and Figure 1. According
to Boore (2003), the ground-motion duration (Dgm) is mod-
eled as the sum of source duration, which is inversely related
to the source corner frequency fc, and path duration as
follows:

Dgm�Mw;Δσ; βS; τ; R� �
1

fc�Mw;Δσ; βS�
� τR; �12�

in which the parameter τ controls the path-dependent dura-
tion, R represents the source-to-site distance in kilometers,
and the magnitudeMw and the stress parameterΔσ define the
source corner frequency fc (equation 8). Drms can be mod-
eled in different ways (see Boore and Joyner, 1984; Liu and
Pezeshk, 1999; Boore and Thompson, 2012). In this study,
Drms is set to Dgm for simplicity.

The absolute value of the frequency response function of
an SDOF oscillator used to derive pseudospectral acceleration
from an FAS of acceleration is given by

jH�f; fosc�j �
f2osc����������������������������������������������������

�f2 − f2osc�2 � �2ffoscζ�2
p ; �13�

in which ζ represents the damping ratio of the SDOF system.

Algorithmic Differentiation and Sensitivity Analysis

Algorithmic differentiation is a powerful tool for per-
forming DSA of the model behavior due to (slight) parameter
variations. Sensitivities measure how much a slight change in
the input parameters changes the model output. Appreciating
the robustness of a model involves identifying the highly sen-
sitive parameters. Furthermore, derivative information pro-
cured with AD can be used with numerical optimization
algorithms for estimating model parameters given a set of
observed data. To quantify the impact of slight seismological
parameter variations on response spectral amplitudes, we dif-
ferentiate the stochastic ground-motion simulation program
SMSIM using AD. Evaluating the differentiated program
enables the derivation of sensitivities for a DSA in a very
efficient way.

Broadly speaking, the key question in DSA is how the
output of a given response function (or model), f�x�, with
input x, varies with respect to a given slight change in the
model inputs δx. For simplicity, we assume a scalar model
output. Mathematically, parameter sensitivities or local, first-
order sensitivity coefficients Si are defined as the partial
derivatives of the model output f�x� with respect to its input
parameters xi as follows:

Si �
∂f�x�
∂xi

����
x0

: �14�
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This estimated local behavior of the model corresponds to a
linear approximation as a first-order Taylor expansion at the
reference point x0 and is generally not valid for parameter
ranges far from x0. We assert, therefore, that in this context
DSA is a method for assessing local sensitivities.

Deriving absolute sensitivities Si allows one to assess
the impact of perturbations of the individual parameters on
the response. Furthermore, Si can be directly used for model
fitting (inversion) purposes or for first-order uncertainty
analysis. However, physical input parameters are generally
not directly comparable with each other, either because they
are expressed in different scales or units or because they ex-
press different physical quantities. Thus, comparing absolute
sensitivities for an importance analysis of the inputs might be
difficult to understand and may possibly be misleading. To
remove these effects in problematic cases, it is advisable to
calculate the so-called relative (logarithmic) sensitivities Φi.
These are absolute sensitivities Si normalized by xi;0=y0
defined as follows (Frank, 1978; Saltelli, 2000):

Φi � Si ×
xi;0
y0

≈
Δy
y0

�
Δxi
xi0

�−1
; �15�

in which Si stands for the absolute sensitivity with respect to
the input parameter xi, y0 is the model output (y0 � f�x0�)
evaluated at the reference point x0, and xi;0 is the ith com-
ponent of x0. In this way, a fractional or percentage change
Δxi=xi;0 of the input parameter (as fixed fraction of its base
value) is related to the fractional or percentage change of the
output Δy=y0. For the Φi to be defined, the model output y0
must be nonzero, which is the case in our study. There is no
silver bullet, however, for representing sensitivities. Indeed,
there exist several ways to scale absolute sensitivities includ-
ing a normalization to the standard deviation or to the range
of the inputs (Morgan, 1990; Helton, 1993; Saltelli, 2000). In
this study, absolute sensitivities are not normalized to the
range or to the variation of the inputs as the obtained deriv-
atives are local estimates. Moreover, the considered regional
stochastic models are themselves point estimates.

The partial derivatives (equation 14) can be calculated
by AD, which has been proven to be an extremely powerful
tool for this purpose, enabling very efficient evaluation with
machine accuracy (Griewank et al., 2012). The method has
been extensively applied for evaluating sensitivities to per-
turbations in independent variables of complex models, for
example, empirical parameters, boundary, or initial condition
problems (Marotzke and Giering, 1999). AD is a chain rule-
based method and has the enormous advantage that it can be
applied directly on existing computer code for a model in-
dependent of its complexity, at least in principle. Moreover,
AD does not suffer from accuracy drawbacks nor does it have
additional increment parameters found in FD techniques.
Because of the associativity of the chain rule of differentia-
tion, derivatives can be propagated either in forward direc-
tion together with the function evaluation (from the inputs to
the outputs) or in reverse direction after the function was

evaluated (from the output to the inputs). Thus, two funda-
mental modes of AD exist: the forward mode constructing
the tangent-linear model (TLM) and the reverse mode con-
structing the adjoint model (ADM).

Generically speaking, AD differentiates programs. The
original program, here SMSIM, is transformed into a new pro-
gram, SMSIM_SENS, which computes not only the model
output but also the required derivative values (sensitivities) in
floating point arithmetic (Fig. 2). Differentiation of the pro-
gram can take place as either source code transformation
or via operator overloading. Doing this manually is very time
consuming, tedious, and error prone. However, over the past
decades, several mature AD tools have been developed that
can be applied to complex models built with elaborate source
code (e.g., ≥100;000 lines of FORTRAN code). Below, we
give a brief introduction into AD, and for a more detailed
view, we recommend that the interested reader consults
Griewank and Walther (2008).

The basic assumption behind AD is that every computer
program can be seen as the composition of elementary func-
tions φi, composed either of a set of intrinsic functions (e.g.,
sin, cos, exp), arithmetic operations (e.g., �, −, ×, =), or a
combination of these, that deliver intermediate numerical
values vi. Following the notation of Griewank and Walther
(2008), a program is a composite function y � f�x� with
f:Rn → Rm that involves n� l intermediate values vi and
consists of three parts: initialization, evaluation, and extrac-
tion, as given in Table 1. The second column of Table 1 shows
the general formalization of a function evaluation on a com-
puter. To illustrate this formalism in an easy way, we also show
a corresponding evaluation procedure (i.e., list of elementary
calculations) for a simple example (y � x1 × sin�x1 � x2�) in
the third column. The initialization part copies the inputs (i.e.,
independent variables) to internal variables (v−1; v0). The ac-
tual calculation is performed in the evaluation part �v1; v2; v3�.
The last part (extraction) copies the resulting values to the out-
put (i.e., dependent variables). In the example, a single scalar-
valued output is considered (y1 � v3). The symbol j≺i
denotes that vi depends directly on vj, in which vj is a pre-
decessor of vi and enters directly into the calculation of vi,
such that ∂φi=∂vj ≠ 0. The evaluation of each elemental
function φi results in a corresponding intermediate value vi.
The n-independent inputs xi, initialized in the first loop, are
mapped ontom-dependent outputs yk, extracted in the last part.
The extraction simply means the copy of the last intermediate
values to the output of the function. For the differentiation, AD

Figure 2. Algorithmic differentiation (AD) sketch for SMSIM.
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simply applies the chain rule to the composition of φi. To that
end, the rules of differential calculus for arithmetic operations
(e.g., product rule,…) and a library of derivatives for the
intrinsic functions (symbolic differentiation) are used.

In the forward mode, the original program code is
augmented by statements for the evaluation of the derivative
values _vi for each intermediate vi. The derivative values _vi
are accumulated in the forward direction simultaneously with
the intermediate values vi (from the inputs to the outputs).
The generated code is called TLM. The corresponding TLMs
to the evaluation procedures given in Table 1 are listed in
Table 2 (for a general case and for a simple example). Similar
to Table 1, the initialization part copies the inputs to internal
variables (v−1, v0, _v−1, _v0). There are additional inputs _x1
and _x2, which define the direction of the derivative. Before
using the TLM, the direction of the partial derivative has to be
selected by the initialization of the corresponding _xi to one
while all other components of _x are set to zero (seeding). A
single run of the TLM gives, in addition to the model outputs,
the partial derivatives of all m outputs with respect to one
input parameter, for example ∂y1=∂x1;…; ∂ym=∂x1 in the
case of x1. This corresponds to a column of the Jacobian ma-
trix supposing f:Rn → Rm or to a single entry of the gradient
in the case of f:Rn → R (as in our case). In Table 2 (third
column), to obtain ∂y1=∂x1 one has to choose _x1 � 1 and
_x2 � 0 (seeding). After a single run of TLM, ∂y1=∂x1 is given
by the third column last row (�∂y1=∂x1� � sin�x1 � x2�×
1� x1 cos�x1 � x2��1� 0�). This procedure (seeding and
a TLM run) has to be repeated for each input to get a complete
gradient of a scalar model output. The computational cost for
evaluating forward sensitivities by the TLM increases linearly
with the number of inputs n (independent variables) and can
become infeasible for very large n. Thus, the TLM approach is
suitable for models with only a few inputs but with many out-
puts. The computational complexity is comparable with that of
FD, but still the advantage of no loss of accuracy and no addi-
tional increment parameter remains.

However, using AD in the case ofm � 1 (a model with a
scalar-valued output y � f�x�), the gradient can be obtained

in a very efficient way using the reverse mode of AD. An
ADM is constructed by applying the chain rule backward
(from the output to the inputs). Each intermediate value vi
is associated with an adjoint variable �vi � ∂y=∂vi and by
definition �y � 1. The adjoints will be propagated in the
reverse direction through the evaluation procedure. This re-
quires one to process the original code backward (program
reversal) with the intermediates vi in reverse order. Thus, the
reverse mode of AD consists of two stages. The first stage
derives and stores the intermediates vi (forward sweep) as
given in Table 1. It is essentially a copy of the original code.
The second part evaluates the adjoints backward through the
evaluation procedure (return sweep) using intermediates vi,
derived in the first part. The return sweep of the ADM cor-
responding to Table 1 is given in the nonincremental form in
Table 3 (for a general case and for a simple example). The
symbol j≻i denotes that vj is a direct successor of vi in the
original code. Hence, one collects all contributions to the ac-
tual adjoint �vi by summing over all successors j≻i. The par-
tial derivatives of the scalar output with respect to all inputs
are given directly by �vi for i � n − 1;…; 0, shown in the last
rows of Table 3 (extraction part).

The enormous advantage of the ADM for a scalar-valued
output is that one run gives directly the model sensitivities
(gradient) with respect to all inputs, independently of the
number of inputs. The computational cost to evaluate the
ADM is only a small factor higher (usually <10) than the
evaluation costs for the original model itself (Griewank and
Walther, 2008; Naumann, 2012). This makes the adjoint
mode of AD very appealing for the evaluation of the gradient
for scalar-valued objective functions, which is the case in our
study. The disadvantage of the reverse mode (ADM) is that it
requires one to keep the intermediate variables vi in storage,
which can be challenging for highly complex models, but
this is not the case for SMSIM.

Practical Implementation of AD for SMSIM

Powerful and mature AD tools for the differentiation of
computer code (mainly for programs written in FORTRAN
or C) are freely available. For the construction of the ADM
for SMSIM, which is written in FORTRAN, we used the
source code transforming AD tool TAPENADE (Hascoët and
Pascual, 2004). It is a flexible and efficient AD tool for
FORTRAN code, providing the means to apply both the for-
ward and reverse modes.

Some minor code modifications were necessary to
clarify the differential dependencies in the code. In addition,
we had to substitute an ordinary differential equation (ODE)
solver routine, which computes the spectral moments, as the
embedded method proved unstable when combined with AD.
The adaptive ODE solver was replaced by a numerical quad-
rature routine that made the ADM stable without sacrificing
any accuracy in the spectral moment computation. Theoreti-
cally, the AD methodology interprets the actual evaluation
process as a straight-line code with a finite and fixed number

Table 1
General Evaluation Procedure of Computer Code for a

Function f:Rn → Rm Illustrated by an Example of a Simple
Function Evaluation of Expression y � x1 sin�x1 � x2�
Part General Form Example

f:Rn → Rm f:R2 → R
y � f�x� y � x1 sin�x1 � x2�

Initialization for i � 1;…; n
vi−n � xi v−1 � x1

v0 � x2
Evaluation for i � 1;…; l

vi � φi�vj�j≺i v1 � φ1�v−1; v0� � v−1 � v0
v2 � φ2�v1� � sin�v1�
v3 � φ3�v−1; v2� � v−1v2

Extraction for i � m − 1;…; 0
ym−i � vl−i y1 � v3
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of elementary instructions. Typically, real world codes incor-
porate program branches and other adaptive elements so that
the input–output relation is only piecewise differentiable.
Very often, the derivative of the smooth pieces still reflects
quite well the sensitivities of the outputs with respect to the
inputs. However, sometimes the computed derivative may be
erratic and unusable, for example if an ODE is solved with
strongly adaptive step size selection. Generally freezing grids
during the evaluation of derivatives is likely to produce ac-
ceptable results. In our problem, numerical integration was
performed using a quadrature algorithm with fixed abscissas
and weights rather than an adaptive ODE solver.

In addition to the possibility of encountering stability
issues such as that just mentioned, there are some additional
practical limitations, or considerations, that relate to the use

of AD. First, the complete source code for the simulation
model must be available, preferably in one procedural lan-
guage (e.g., FORTRAN or C). Second, as in the case of par-
allelizable data, dependencies should be recognizable to the
AD tool. For example, indirect addressing into work arrays or
inconsistent common block partitioning may degrade runtime
performance and lead to excessive storage requirements, es-
pecially when run in reverse mode. Finally, taking liberties
with the language standards may inhibit the AD tool from pro-
ducing correct derivatives, even if the undifferentiated code
executes correctly.

In the case of SMSIM, the source code to source code
transformation using the AD tool TAPENADE worked with-
out trouble, following the relatively minor code modification
mentioned previously. The transformation of the enhanced

Table 2
Formalized Forward Mode of AD (TLM) for the General Case and for the Simple Example of Table 1

Part General form Example

f:Rn → Rm f:R2 → R
y � f�x� y � x1 sin�x1 � x2�

Initialization for i � 1;…; n

vi−n � xi v−1 � x1
v0 � x2

_vi−n � _xi _v−1 � _x1
_v0 � _x2

Evaluation for i � 1;…; l

vi � φi�vj�j≺i v1 � φ1�v−1; v0� � v−1 � v0

_vi �
P

i:j≺i ∂
∂vj φi�vj�j≺i _vj _v1 � ∂φ1�v−1 ;v0�∂v−1 _v−1 � ∂φ1�v−1 ;v0�∂v0 _v0 � _v−1 � _v0

v2 � φ2�v1� � sin�v1�

_v2 � ∂φ2�v1�∂v1 _v1 � cos�v1�_v1
v3 � φ3�v−1; v2� � v−1v2

_v3 � ∂φ3�v−1 ;v2�∂v−1 _v−1 � ∂φ3�v−1 ;v2�∂v2 _v2 � v2 _v−1 � v−1 _v2
Extraction for i � m − 1;…; 0

ym−i � vl−i y1 � v3
_ym−i � _vl−i _y1 � _v3 � sin�x1 � x2�_x1 � x1 cos�x1 � x2��_x1 � _x2�

Table 3
Return Sweep of Reverse Mode (ADM) for a General Case and for the Simple Example of Table 1

Part General form Example

Evaluation �y1 � 1:0 �y1 � 1:0

�vl � �y1 �v3 � ∂y1∂v3 � �y1
for i � l − 1;…; 1 − n

�vi �
P

j:j≻i �vj ∂
∂vi φj�vi�i≺j �v2 � ∂y1∂v2 � �v3

∂φ3�v−1 ;v2�∂v2 � �v3v−1

�v1 � ∂y1∂v1 � �v2
∂φ2�v1�∂v1 � �v2 cos�v1�

�v0 � ∂y1∂v0 � �v1
∂φ1�v−1 ;v0�∂v0 � �v1 × 1

�v−1 � ∂y1∂v−1 � �v1
∂φ1�v−1 ;v0�∂v−1 � �v3

∂φ3�v−1 ;v2�∂v−1 � �v1 � �v3v2
Extraction for i � n;…; 1

�xi � �vi−n �x2 � ∂y1∂x2 � �v0 � x1 cos�x1 � x2�
�x1 � ∂y1∂x1 � �v−1 � x1 cos�x1 � x2� � sin�x1 � x2�
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source code by the AD tool is very fast and takes less than
10 s on a 2011 iMac with 8 GB of RAM and 2.5 GHz
processor.

The accuracy of the derived ADMwas validated by com-
parisons between the derivatives it produces and those ob-
tained by (1) the TLM and (2) FDs with decreasing step size.
The derivative values obtained by ADM and TLM are iden-
tical and coincide with those obtained by FD when an opti-
mal step size is employed. Results of an example experiment
proving the accuracy are given in Table 4. The input param-
eter values correspond to the regional parameterization of
western North America (WNA) with a magnitude–distance
scenario of Mw 6 and R � 10 km. As shown in Griewank
et al. (2012), the forward and reverse modes are backward
stable in that the numerically computed derivatives corre-
spond to the exact values for a slightly perturbed evaluation
procedure.

Application: Sensitivity of Response Spectral
Amplitudes

In this section, we present the results of the sensitivity
analyses that have been conducted using the derived ADM to
study variations in the response spectral amplitudes due to
slight changes in the seismological parameters.

Sensitivities of Different Regional Stochastic Models

First, we investigate the behavior of response spectral
variations for two different regional stochastic models. For
this purpose, we calculate the derivatives of the spectral ac-
celeration with respect to the different seismological param-
eters using the ADM and assess their sensitivities according
to equation (14). To facilitate simple comparisons with
GMPEs, we consider ln�ymax� as the model output. In addi-
tion, we derive the relative sensitivities of ymax according to
equation (15). We use the parameters proposed by Campbell
(2003) for WNA and eastern North America (ENA), because
these models represent different tectonic units (active crustal
and stable continental, respectively). From an AD viewpoint,

there are approximately 15–20 inputs (i.e., independent var-
iables) for these regional models, which map to a single sca-
lar output (i.e., the dependent variable) for each considered
oscillator frequency. However, note that the method can be
applied to any regional model, including more complex sto-
chastic models.

The different input parametersΘS for the two models are
summarized in Table 5. For simplicity, we use the same du-
ration model for both the ground-motion durations Dgm and
the rms duration Drms (Table 5).

We calculate first-order absolute (Si) and relative sensi-
tivities (Φi) for response spectral amplitudes with respect to
Mw,Δσ,Q0, and κ0. Results are shown in Figures 3 and 4 for
different magnitudes (Mw 6 and 7) and distance scenarios
(Rhypo � 10 km and 100 km). Figure 3 shows the change
of the model output (ln ymax) due to small absolute changes
of the inputs. Considering ymax instead of ln ymax, Figure 3
depicts the fractional change (relative error) of ymax due to an
absolute change in the inputs. One can assess and compare
the impact of each individual parameter on the output for the
different scenarios or settings. However, one must take cau-
tion when making direct comparisons between the sensitiv-
ities for different parameters as these absolute sensitivities
have different units and scales. Thus, to get a more complete
picture, we also show relative sensitivities in Figure 4, which
relates a percentage change of an input (relative error) to
the percentage change of ymax (relative error of the output).

Table 4
Partial Derivative Values of the Model Output (Spectral

Acceleration) with Respect to the Input Δσ (Stress Parameter)
for Different Oscillator Frequencies

Method* Step Size 1 Hz 3 Hz 10 Hz 100 Hz

ADM – 1.561843 3.883376 4.512044 1.775013
TLM – 1.561843 3.883376 4.512044 1.775013
FD 1 × 10−01 1.561524 3.882863 4.511507 1.774784
FD 1 × 10−03 1.561839 3.883371 4.512039 1.775011
FD 1 × 10−05 1.561843 3.883376 4.512044 1.775013
FD 1 × 10−07 1.561840 3.883378 4.512043 1.775014
FD 1 × 10−09 1.561801 3.883883 4.512231 1.775391
FD 1 × 10−11 1.568878 3.944933 4.547474 1.807621
FD 1 × 10−13 1.705303 4.547474 4.547474 3.126388

*ADM, adjoint model; TLM, tangent linear model; FD, finite
differences.

Table 5
Parametrization of ENA and WNA after Campbell (2003)

Parameter WNA with ΘWNA* ENA with ΘENA
†

Source spectrum Brune ω-square,
point source

Brune ω-square,
point source

Stress parameter,
Δσ (bar)

100 150

Average radiation
pattern, hRΘΦi

0.55 0.55

Partition of total shear-
wave energy, V

1=
���
2

p
1=

���
2

p

Effect of the free
surface, F

2 2

Geometrical
spreading, η

1=Rη � 1=R 1=Rη � 1=R

Ground-motion
duration, Dgm (s)

1=fc � 0:05R 1=fc � 0:05R

Rms duration, Drms (s) Drms � Dgm Drms � Dgm

Path attenuation
quality factor, Q

180f0:45 680f0:36

Shear velocity,
βS (km=s)

3.5 3.6

Density, ρS (g=cc) 2.8 2.8
Site attenuation, κ0 (s) 0.04 0.006
Site amplification Generic rock site Generic rock site

VS30 � 620 m=s VS30 � 2800 m=s
Quarter-wavelength

approximation
Quarter-wavelength

approximation

*Input parameters ΘWNA for western North America
†Input parameters ΘENA for eastern North America
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Positive/negative sensitivity values indicate increase/decrease
of the model output due to a slightly increased input param-
eter value. The term small perturbation refers to a local
change of an input δΘi for which the model behavior (change
in the output) can be still approximated by a first-order Tay-
lor expansion in an acceptable way (with an acceptable
error). Accordingly, the magnitude of acceptable local
changes in the inputs also depends on the reference point.
For example, a rough approximation of upper bounds on small
perturbations in the parameters Δσ, Q0, and κ0 that lead to
an acceptable Taylor approximation for WNA and ENA is
δΔσ ≈ 26 (38) bar, δQ0 ≈ 46 (184), and δκ0 � 0:0033
(0.00067) s (values for the ENA model are given in parenthe-
sis). These values are proposed assuming that an error of
≤1:5% of the surrogate model (Taylor expansion) is tolerable
and are based on the consideration of a magnitude–distance
scenario of Rhypo � 10 km and Mw 6.

One of the first trends to notice in Figure 3 is that for
short distances and large magnitudes, slight changes in the
parameter κ0 cause large changes in the response spectral

amplitudes for high oscillator frequencies. This is expected,
as κ0 controls the high-frequency attenuation of the input
ground-motion FAS (Anderson and Hough, 1984). The impact
of κ0 becomes more significant with decreasing values of κ0.
For small values of κ0, such as that commonly used for ENA
(κ0 � 0:006), only a small portion of the high-frequency input
motion is filtered out at short distances, which leads to the
large sensitivity to κ0 for ENA. On the other hand, for the
WNA model (κ0 � 0:04) the sensitivity to κ0 is much smaller
because a larger amount of high-frequency input motion is
already filtered out. Thus, slight absolute changes in κ0 have
a smaller effect on the response spectrum. However, the same
slight relative error (relative change) in κ0 cause a larger rel-
ative error (relative change) of ymax for the WNA model than
for ENA for values of fosc < 50 Hz (Fig. 4). The base values
of κ0, which are the reference for relative changes, are very
different for WNA (κ0 � 0:04) and ENA (κ0 � 0:006). Con-
sequently, the same considered relative change in κ0 for both
the models is equivalent to a much larger absolute change
in κ0 for the WNA model (factor >6:6) than for ENA. The
sensitivity of the spectral acceleration to κ0 decreases with

0.01 1 10 100
−4

0

4

8
ln

 y
m

ax

10 km

0.01 1 10 100
0

2

4

∂ 
ln

 y
m

ax
 / 

∂  
M

W

0.01 1 10 100
0

0.005

0.01

∂ 
ln

 y
m

ax
 / 

∂ 
Δσ

0.01 1 10 100
0

0.005

0.01

∂ 
ln

 y
m

ax
 / 

∂ 
Q

0

 

 

WNA Mw=6

WNA Mw=7

ENA Mw=6

ENA Mw=7

0.01 1 10 100
−200

−100

0

fosc [Hz]

∂ 
ln

 y
m

ax
 / 

∂ 
κ 0

0.01 1 10 100
−4

0

4

8
100 km

0.01 1 10 100
0

2

4

0.01 1 10 100
0

0.005

0.01

0.01 1 10 100
0

0.005

0.01

0.01 1 10 100
−200

−100

0

fosc [Hz]

Figure 3. First row shows simulated response spectra for differ-
ent magnitude–distance scenarios for ENA and WNA, respectively.
Corresponding sensitivities with respect to magnitude (Mw), stress
parameter (Δσ),Q0, and κ0 are shown in second to fifth rows. (Left)
for 10 km and (right) for 100 km. The vertical lines indicate the
source corner frequencies of the input ground-motion FAS (fc),
solid lines for WNA, and dotted for ENA, Mw 6 (light shade) and
Mw 7 (dark shade). The color version of this figure is available only
in the electronic edition.
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Figure 4. Relative sensitivitiesΦi of ENA and WNAwith respect
to magnitude (Mw, first row), stress parameter (Δσ, second row),Q0

(third row), and κ0 (fourth row). (Left) for 10 km and (right) for
100 km. The vertical lines indicate the position of source corner
frequencies of the input ground motion (fc), black for Mw 7 (solid,
WNA; dotted, ENA) and similarly gray for Mw 6 (solid, WNA; dot-
ted, ENA). The color version of this figure is available only in the
electronic edition.
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distance, which may be explained by the additional impact of
path-introduced high-frequency attenuation. This effect also
makes the estimation of κ0 very hard if there is not enough
station coverage near the source (Ktenidou et al., 2014). At
100 km for example, the relative sensitivities for Q0 are
larger than those of κ0 (Fig. 4). Furthermore, sensitivity func-
tions with respect to κ0 depend strongly on fosc and are
peaked for large fosc (Figs. 3 and 4). Thus, slight changes in
κ0 strongly affect the response spectral shape at high fosc and
have a strong influence on the position of critical points like
the maximum (fMX) or the high-frequency inflection point
(fhIP) of the characteristic shape of response spectra. The
sensitivities with respect to Q0 have very small values at
short distances where path effects are negligible (Fig. 3). As
distance increases, the effect of Q becomes more important,
in contrast to the influence of the other parameters (κ0, Mw,
Δσ). The sensitivities due to Q0 display a peak in the high-
frequency range of the response spectrum. Consequently, the
shape of the response spectrum is altered for high oscillator
frequencies by slight changes in Q0. The WNA model shows
larger sensitivities with respect toQ0 than ENA. The position
of the peak of the sensitivity function with respect to Q0

shifts to smaller fosc with distance. This can be explained by
the fact that high-frequency content of the input ground mo-
tion is diminished with increasing distance due to the path-
related attenuation described by the quality factor Q�f�.
Indeed, these peaks appear in different positions for WNA
and ENA due to different Q0 base values.

The sensitivities to the source-related parameters like the
stress parameter (Δσ) and magnitude (Mw) have a relatively
flat behavior (that is almost independent of fosc) for values of
fosc above the source corner frequency fc of the input FAS
(Figs. 3 and 4). However, these sensitivity functions display a
sharp increase and decrease close to fc. The results indicate
thatMw is the main influencing parameter (Fig. 4). The stress
parameter Δσ mainly, but not exclusively, affects the
response spectral amplitudes at oscillator frequencies larger
than fc. The level of this relatively constant effect of Δσ for
fosc > fc is stronger for WNA than for ENA, considering the
same absolute change in Δσ (Fig. 3). In contrast, no regional
difference can be observed for Mw in Figures 3 or 4. The
constant influence of Mw for large fosc is approximately
the same for both models and depends only slightly on Mw

at small distances. However, the sensitivities with respect to
Mw increase slightly with distance. The influence ofMw and
Δσ on response spectral amplitudes for low oscillator
frequencies is explained by the fact that Mw and Δσ define
the source corner frequency fc of input ground motion. For
both regional models, we observe that parameters controlling
the high-signal frequency content of the input FAS (κ0, Q0)
alter the characteristic shape of response spectral amplitudes
in terms of fMX and fhIP for large oscillator frequencies.
However, Mw and Δσ have a constant effect in this part
of the response spectrum independent of fosc. Thus, Mw

and Δσ only slightly affect the position of the critical points
(fhIP, fMX), which determine the characteristic overall shape

of the response spectrum for high oscillator frequencies. The
influence of relative changes (relative errors) of the different
inputs can be compared based on Figure 4. The impact of
the same relative change is quite similar for WNA and ENA
regarding Mw and Δσ, whereas Q0 and κ0 show a strong
regional dependence in their relative sensitivities.

Observing the partial derivative ∂ymax=∂κ0, we see the
maximum effect of κ0 occurs in the vicinity of the fhIP of the
response spectrum (Fig. 5). For high κ0 values they even
coincide. Figure 5 shows the position (fosc) of the maximum
of ∂ymax=∂κ0 for different κ0 together with the variation of
fhIP andfMX with κ0 at Rhypo � 10 km for different Mw

(5 ≤ Mw ≤ 8:5). Indeed, for moderate-to-large earthquakes
(Mw ≥5) and small distances (e.g., R � 10 km) where path
effects can be assumed negligible, κ0 correlates strongly with
the fhIP and fMX as depicted in Figure 5. This effect is almost
independent of magnitude for large events. The frequency
bandwidth between these two critical points (fMX, fhIP) de-
creases with increasing κ0 values. Thus, in addition to these
observations, the position of fhIP and of fMX can be used as a
rough proxy to estimate κ0 at near-source distances for large
events. An estimation of the linear trends in log–log space
between κ0 and fMX or fhIP for WNA and ENA is given in
Figure 5. This analysis is based on a simulated data set for
WNA and ENA for Mw between 5 and 8.5 and different κ0
values ranging from 0.001 to 0.1, respectively. These rela-
tions, fitted at 10 km, hold up to approximately 25 km for
ENA and 23 km for WNA, allowing an error of 20% for the
estimation of κ0. For greater distances, however, the high-
frequency content of the input signal is also controlled by the
quality factor.As a consequence, the positions of fhIP and fMX

are related to t� (t� � κ0 � R=�Q × cq�) rather than to κ0.

Sensitivities for Adjustment Issues of GMPEs

Stochastic ground-motion simulations are often applied
for addressing adjustment issues of GMPEs for regions where
the paucity of strong-motion data (Mw >5) does not allow
one to develop a reliable and indigenous GMPE. A popular
framework to address this issue is the hybrid empirical
approach (HEA) of Campbell (2003), which adjusts a GMPE
of a host region to the region of interest (target region). To
account for differences in seismological attributes, an adjust-
ment factor Ψ � ymax;target=ymax;host is applied, which is
derived through stochastic ground-motion simulations. From
an AD viewpoint, there are approximately 15–20 inputs (i.e.,
independent variables) for the regional models considered in
the following example. The inputs map to a single scalar out-
putΨ (i.e., dependent variable) for each considered oscillator
frequency.

For example, in seismic-hazard studies using the HEA, it
is a common practice to calculate the adjustment factor Ψ for
a single PSHA-relevant magnitude–distance scenario and ap-
ply this factor to all scenarios considered later in the seismic-
hazard analysis. This procedure does not take into account
the possible dependency of Ψ with respect to input variables
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like distance and magnitude. Figure 6 shows the sensitivities
of the adjustment factor Ψ for a reference scenario of Mw 6
and R � 20 km. In this example, WNA and ENA are consid-
ered as the host and target regions, respectively. See Table 5
for regional input parameter definition.

The partial derivatives of Ψ with respect to magnitude
(∂Ψ=∂M) and distance (∂Ψ=∂R) do not vanish for all freque-
ncies, as indicated in Figure 6 (second row). Thus, the adjust-
ment factor is magnitude and distance dependent. In the ex-
ample shown, an increase in earthquake magnitude of �0:5
results in an increase of about 10% inΨ for frequencies in the
range close to fc around 0.2–0.5 Hz and a decrease for high
fosc (>30 Hz) of about 2%–3% in Ψ. An increase in R of
�20 km results in an increase of Ψ of about 10%–20% for
fosc in the range of 2 < fosc < 25 Hz, whereas Ψ decreases
by a factor of 5%–10% for fosc in range of 50–130 Hz. For
low frequencies (fosc < 1 Hz), the adjustment factor Ψ in-
creases by about 5%.

As a consequence, an adjustment factor derived from a
single scenario could be misleading if the hazard disaggrega-
tion results in the identification of multiple relevant scenarios.
Hence, in particular cases, it is reasonable to analyze these
dependencies in more detail. Those estimated sensitivities
are local approximations, tied to the chosen magnitude–
distance scenarios, and they will probably change if the sce-
nario is changed.

Furthermore, sensitivities of Ψ with respect to seismo-
logical host and target parameters can be very different.
Thus, the effect of the parameter-associated uncertainties
on the adjustment factor can strongly differ. In the example
depicted in Figure 6, the last row shows the relative sensi-
tivities of Ψ with respect to host and target κ0 and α. These
parameters control the high-frequency content of the FAS of
ground motion, see equations (11) and (10) for κ0 and α, re-
spectively. It can be easily seen that the effect of variations
in the host and target parameters on the adjustment factor
is very different. For example, an uncertainty of 10%

associated with host κ0 can be approximately related to an
uncertainty in Ψ of	5% to	14% for oscillator frequencies
greater than 4 Hz. A similar uncertainty in target κ0 leads to
an uncertainty in Ψ of	5% to 	10% for oscillator frequen-
cies greater than 30 Hz (Fig. 6). A 10% uncertainty in host α
can be approximately related to an uncertainty in Ψ of 	3%

to 	4:9% for oscillator frequencies in the range of
8 < fosc < 35 Hz (Fig. 6). However, a similar uncertainty
in target α Ψ of about 	3% to 	5:7% for fosc > 30 Hz.

The different impact of host and target parameters on the
adjustment factor can be easily estimated by the ADM and are
relevant for particular earthquake scenarios in the disaggre-
gation of seismic hazard. In particular, sensitivities can show
which parameters matter most and should be addressed with
a full assessment of their uncertainty.

Conclusions

The characterization of response spectral amplitude var-
iations due to changes in seismological parameters is impor-
tant for seismic-hazard analysis. In this study, we constructed
an ADM using AD, which gives precise quantitative estimates
of these variations (sensitivities) in an efficient way. The ad-
joint code was developed based on SMSIM, a proven and
extensively applied simulation program for response spectra
using the AD tool TAPENADE. To the best of our knowl-
edge, this is the first time that AD has been explored in the
context of seismic-hazard analysis, and its feasibility and
power have been demonstrated using different sensitivity
analysis examples.

The AD-based sensitivity study identified those seismo-
logical parameters that mostly influence the characteristic
shape of acceleration response spectra in terms of the posi-
tion of their maximum and high-frequency inflection point.
The analysis was done for moderate-to-large earthquakes of
engineering significance. Our results identify the parameter
κ0 as a critical parameter when using the stochastic method to
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Figure 5. Variation in the position of fhIP and fMX with κ0 for magnitudes 5 ≤ Mw ≤ 8:5 for (left) ENA and (right) WNA at R � 10 km.
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generate response spectral amplitudes for high oscillator
frequencies at short distances. This implies the need for a
better understanding of the physical origins of κ0.

Regarding adjustment issues of GMPEs, it was shown
that adjustment factors developed using the HEA depend
upon magnitude and distance. This fact can be of importance
in particular situations if the disaggregation of the seismic
hazard suggests that multiple magnitude and distance scenar-
ios make significant contributions to the hazard at a given
return period. The use of adjustment factors that have been
derived from the consideration of a single or even a small
number of earthquake scenarios in seismic-hazard studies
may not be justified in such cases. Uncertainties in seismo-
logical parameters can affect the adjustment in very different
ways, and the AD-based ADM is a helpful tool to assess these
uncertainties.

However, one has to keep in mind that the DSA is a local
method. Indeed, our analyses give an estimate of first-order
effects, and results may not be valid for situations far from
the base case. That said, the efficiency of the approach

dictates that it is not computationally expensive to consider
multiple-base cases.

In the present work, we showed how a sensitivity analysis
of ground-motion simulation models using the stochastic
method can be carried out with the help of AD. AD delivers
the otherwise unattainable derivatives of complex models,
which holds great potential for other applications. For
instance, we are currently working on using the ADM in opti-
mization codes for estimating parameters of the stochastic
method and their associated uncertainty. Another ongoing
effort is the sensitivity analysis of hazard curves: PSHA may
beviewed as a framework composed ofmodules with ground-
motion prediction being the most critical one. Generally
speaking, AD is capable of calculating the sensitivities of
modules separately and combining them via the chain rule
to obtain sensitivities for the entire system. Knowledge of
the sensitivities of ground-motion prediction is therefore a
prerequisite toward obtaining the sensitivities of a complete
PSHA. We plan to couple AD with the PSHA framework to
develop a sensitivity tool that would be of great value to the
fields of engineering seismology and earthquake engineering.

Data and Resources

Ground-motion simulations are based on a modified
version of the FORTRAN source code SMSIM provided by
David Boore http://www.daveboore.com/software_online.html
(last accessed December 2013). The AD tool TAPENADE
http://www-sop.inria.fr/tropics/ (last accessed December 2013)
is used for the algorithmic differentiation. A thorough overview
of AD tools and AD methodology is given at http://www.
autodiff.org (last accessed December 2013).
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