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Short Note

Sensitivity of Probabilistic Seismic Hazard Obtained

by Algorithmic Differentiation: A Feasibility Study

by Christian Molkenthin, Frank Scherbaum, Andreas Griewank,
Nicolas Kuehn, Peter J. Stafford, and Hernan Leovey

Abstract Probabilistic seismic-hazard analysis (PSHA) is the current tool of the
trade used to estimate the future seismic demands at a site of interest. A modern PSHA
represents a complex framework that combines different models with numerous in-
puts. It is important to understand and assess the impact of these inputs on the model
output in a quantitative way. Sensitivity analysis is a valuable tool for quantifying
changes of a model output as inputs are perturbed, identifying critical input param-
eters, and obtaining insight about the model behavior. Differential sensitivity analysis
relies on calculating first-order partial derivatives of the model output with respect to
its inputs; however, obtaining the derivatives of complex models can be challenging.

In this study, we show how differential sensitivity analysis of a complex frame-
work such as PSHA can be carried out using algorithmic/automatic differentiation
(AD). AD has already been successfully applied for sensitivity analyses in various
domains such as oceanography and aerodynamics. First, we demonstrate the feasibil-
ity of the AD methodology by comparing AD-derived sensitivities with analytically
derived sensitivities for a basic case of PSHA using a simple ground-motion prediction
equation. Second, we derive sensitivities via AD for a more complex PSHA study
using a stochastic simulation approach for the prediction of ground motions. The pre-
sented approach is general enough to accommodate more advanced PSHA studies of
greater complexity.

Introduction

Probabilistic seismic-hazard analysis (PSHA) underpins
a wide range of applications within the fields of earthquake
engineering and engineering seismology. It is the basis for
the seismic-hazard maps embedded within seismic code pre-
scriptions, and its components are used extensively within
probabilistic seismic risk analyses for both individual sites
and spatially distributed portfolios. Having a clear under-
standing of which parameters drive the hazard results under
various circumstances is therefore essential for understand-
ing what parameters ultimately drive the results of these ap-
plications that build upon the hazard. In order to evaluate the
impact that several inputs to PSHA have on the computed
hazard, one needs to carry out a sensitivity analysis. Sensi-
tivity analysis can identify critical inputs, provide insight to
the model behavior, and help understand underlying mech-
anisms. This is important, particularly at the early stage of a
PSHAwhere essential modeling decisions must be made. The
Senior Seismic Hazard Advisory Committee (SSHAC; Bud-
nitz et al., 1997) report, which is a standard providing meth-
odological guidance on how to conduct a PSHA in a proper

way, emphasizes that sensitivity analysis for PSHA is crucial,
both during the modeling process (for preliminary hazard
calculations) and for understanding the final hazard results
that are obtained.

Over recent decades, different approaches have been
suggested to assess sensitivity issues in PSHA and for com-
ponents of PSHA. The approaches that have been considered
include using analytical expressions of the hazard integral for
simple cases of PSHA (Cornell and Vanmarcke, 1969; Ordaz,
2004) and using factorial design (Rabinowitz and Steinberg,
1991); Cramer et al. (1996) carried out a sensitivity study for
a regional seismic-hazard assessment by using classical
Monte Carlo methods; Rabinowitz et al. (1998) pointed out
the duality between an efficient construction of logic trees
and sensitivity analysis in PSHA; Scherbaum et al. (2005)
examined sensitivity issues based on Monte Carlo methods
and a two-level factorial design regarding epistemic uncer-
tainties in a key component of a PSHA, namely, ground-
motion prediction; Rohmer et al. (2014) applied variance-
based global sensitivity analysis relying on quasi-Monte
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Carlo simulations to a regional earthquake loss assessment;
and the SSHAC report gave examples of sensitivity analysis
based on partial derivatives of the hazard results with
respect to input parameters using finite-differences methods
(Budnitz et al., 1997).

However, techniques such as Monte Carlo methods, fac-
torial design, or finite differences are often computationally
demanding because their costs increase with the number of
considered inputs. This can render these approaches infea-
sible for a large-scale PSHA. Therefore, herein, we demon-
strate the use of an efficient method for differential sensitivity
analysis (DSA), which is computationally feasible for large-
scale seismic-hazard analysis because its computational cost
is effectively independent of the number of inputs.

Typically, when performing a DSA, one calculates first-
order derivatives of the model output with respect to its
inputs; that is, one is interested in how small changes to the
inputs affect the model output. Nevertheless, there exist com-
plex models where the calculation of such derivatives is prob-
lematic, and thus sensitivity analysis becomes challenging.
Differentiating by hand or even symbolically is often impos-
sible or, at least, very tedious and error prone. Approximating
the partial derivatives by finite differences is computationally
expensive and is plagued by accuracy problems associated
with the selection of the step size (cancellation error, trunca-
tion error). PSHA itself represents a complex model; therefore,
we resort in this work to the use of algorithmic differentiation
(AD; Griewank and Walther, 2008). This extremely powerful
and flexible approach has been extensively used for perform-
ing sensitivity analyses of complex models in other domains
such as oceanography (Marotzke and Giering, 1999) and aero-
dynamics (Gauger et al., 2008). Two of the first applications
using AD in seismology are from Sambridge et al. (2007) and
Molkenthin et al. (2014). A major advantage of AD is that it
can be applied directly on the computer source code represen-
tation of a model. In contrast to analytical differentiation, no
clear set of explicit equations is needed. AD delivers highly
accurate derivatives in an efficient manner through a source
code transformation (Griewank et al., 2012). Furthermore,
introducing modifications or extensions to the code can be
easily accommodated by AD with minimal programming
effort. The AD methodology assumes continuous input vari-
ables and an input–output relation that is at least piecewise
differentiable.

In this study, we employ AD to perform DSA for PSHA.
To investigate the feasibility of using AD in the present con-
text, we first study the sensitivities obtained analytically for
the hazard integral of a point-source PSHA (Ordaz, 2004)
with the sensitivities obtained via AD. Analytical solutions
are only possible for highly idealized, or simplified, cases
of PSHA where closed-form solutions of the hazard integral
exist. In a second application, we evaluate sensitivities of
PSHA in a more complex setting where derivatives cannot be
obtained analytically. This latter example involves a PSHA
for an area source, with a more sophisticated ground-motion
attenuation model (as opposed to a simple ground-motion

prediction equation [GMPE] employed in the first analytical
case). Specifically, we use the ground-motion simulation tech-
nique based on the stochastic method (e.g., Boore, 2003). This
method is widely applied in a broad range of applications in
different tectonic regions in order to predict ground motions.
In particular, ground-motion simulations based on the stochas-
tic method are often employed in regions in which strong-
motion data are scarce. The sensitivity analysis is undertaken
by constructing the so-called adjoint model of the PSHA
within the AD methodology. We derive relative sensitivity
coefficients for different input parameters (seismicity param-
eters as well as those related to the ground-motion model).
This study builds on the work of Ordaz (2004), which pro-
vided closed-form solutions for simple cases of PSHA, and
the study of Molkenthin et al. (2014), which successfully
implemented AD for a widely employed stochastic ground-
motion simulation model in order to obtain sensitivities of
response spectra using AD.

Algorithmic Differentiation and Differential
Sensitivity Analysis

AD gauges how much a slight perturbation in the input
parameters changes the model output. For simplicity, we as-
sume a scalar model output y: for example, the annual rate of
exceedance for a particular level of a response spectral ordi-
nate at a fixed oscillator frequency:

y0 � f�x0�; �1�
in which y0 is the model output evaluated at x0, and x0 is a
vector containing the values of the input parameters for the
model. Mathematically, parameter sensitivities Si are defined
as the partial derivatives of the model output f�x� (or y0) with
respect to each of its input parameters xi:

Si �
∂f�x�
∂xi

����
x0
: �2�

The first-order nature of these expressions dictates that these
sensitivities are inherently accurate only in very close vicin-
ity of the reference point x0. Hence, DSA is geared toward
assessing local sensitivities, which can be used for first-order
uncertainty analysis.

Handling absolute sensitivities, like those computed
above, in an importance analysis of the inputs can be mis-
leading due to the fact that, in practice, fixed increments in
the particular units of the basic variables xi, correspond to
very different levels of relative change for these variables.
In order to remove the effects of different units or scales,
one usually works with the so-called relative (logarithmic)
sensitivities Φi. These are the absolute sensitivities Si
normalized by x0i=y0 (Frank, 1978; Saltelli, 2000):

Φi �
∂ ln y
∂ ln xi � Si ×

x0i
y0

≈
Δy
y0

�
Δxi
x0i

�−1
; �3�
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in which y0 is the model output at the reference point x0, and
x0i is the ith component of x0. In this way, a percentage
change of an input parameter is related to a percentage
change of the model output.

The partial derivatives (equation 2) of the output of a
complex model with respect to its inputs can be efficiently
and accurately obtained via AD (Griewank et al., 2012): for
example, in the case of a general circulation model for an
ocean (Marotzke and Giering, 1999). An additional, more
contextually relevant, example of applying this approach
is given by Molkenthin et al. (2014), in which sensitivities
for predicted ground motions computed using the Stochastic
Method SIMulation (SMSIM; Boore, 2003) technique are
obtained. AD is a chain-rule-based method and has the ad-
vantage that it can, in principle, be applied directly to
existing computer code of a model, irrespective of the model
complexity. AD differentiates program code automatically
using a compilerlike process (source code transformations).
The transformed source code not only represents the model
output itself but also the required derivative values (sensitiv-
ities) in floating point arithmetic. Subsequently, the trans-
formed source code can be compiled by standard compilers
into executable code.

The basic idea behind AD is that every computer pro-
gram can be seen as the composition of a finite set of elemen-
tary calculations or instructions φi, computing a chain of
intermediate values vi � φi�vj�j≺i, before the final output
y is returned. Each value vi is obtained by applying an op-
eration φi to some set of arguments vj, with vj being a direct
predecessor of vi (denoted by j≺i as direct dependency of vi
on vj) and, consequently, ∂φi=∂vj ≠ 0.

This sequence of instructions in a computer code
algorithm is realized programmatically by a set of intrinsic
functions (e.g., sin, cos, exp) and arithmetic operations
(e.g., ×, �, −):

φi ∈ f×;�;−; =;
��
·

p
; sin; cos; exp;…g: �4�

The repeated application of the chain rule to this sequence
yields the desired partial derivatives of the model output with
respect to its inputs. At the elementary level, the rules of dif-
ferential calculus for arithmetic operations (e.g., the product
rule) and a library of derivatives for the intrinsic functions
(symbolic differentiation) are used.

The chain rule, due to its associativity, can be applied in
two directions: (1) in the forward mode (that is, starting at
input x and working toward output y), like in the original
model); or (2) in the reverse mode of the original evaluation.
The forward mode of AD gives the tangent linear model
(TLM), whereas the reverse mode results in the adjoint model
(ADM). The computational costs for calculation of the partial
derivatives by TLM increase linearly with the number of in-
puts O�n�, in which n is the number of inputs. In contrast,
using ADM in the case of a scalar-valued output, one can
evaluate the complete gradient of the model output independ-
ently of the number of inputs with minimal overhead O�c�

(usually c < 6) (Griewank and Walther, 2008). All partial
derivatives together with the model output can be evaluated
in only one run of the ADM. ADM requires knowledge of the
intermediate values vi in reverse order. Thus, the reverse
mode of AD consists of two stages: the forward sweep, which
derives and stores the intermediates vi; and the return sweep,
when the chain rule is applied in reverse. Generally speaking,
the program reversal in the return sweep as well as the re-
quired storage of the intermediates can be a major challenge
for highly complex models.

In order to demonstrate the fundamental concepts of TLM
and ADM, we present a simple illustrative example of AD for
the function y � f�x� � x1 cos�x1 � x2� in Table 1. For a
more comprehensive background to AD, we refer the interested
reader to work by Griewank and Walther (2008). In Table 1,
the first column shows the original code of the model. The
model can be decomposed into six steps with five intermediate
values vi. The second column corresponds to the TLM of the
source code, which is the original code augmented by statements
to evaluate the derivatives _vi for each intermediate vi. In the
example, _x1 is set to 1, whereas _x2 is set to zero, which corre-
sponds to a seeding in order to obtain the partial derivative
_y � �∂y=∂x1� � 1 × cos�x1 � x2� � x1 × �− sin�x1 � x2��×
�0� 1�. Thus, one run of TLM gives one component of
the gradient. Subsequently, the seeding is changed to com-
pute the second component of the gradient (_x1 � 0 and

Table 1
Example of Algorithmic Differentiation for

y � f�x� � x1 cos�x1 � x2�: Original Evaluation Code,
Tangent Linear Model, and Adjoint Model

Original Code
TLM with Seeding
for _y � �∂y=∂x1� ADM Part of ADM

Seeding: _x1 � 1;
_x2 � 0

v−1 � x1 v−1 � x1 v−1 � x1 Forward
sweep

_v−1 � _x1
v0 � x2 v0 � x2 v0 � x2

_v0 � _x2
v1 � v0 � v−1 v1 � v0 � v−1 v1 � v0 � v−1

_v1 � _v0 � _v−1
v2 � cos�v1� v2 � cos�v1� v2 � cos�v1�

_v2 � − sin�v1�_v1
v3 � v−1 × v2 v3 � v−1 × v2 v3 � v−1 × v2

_v3 � _v−1 × v2
�v−1 × _v2

y � v3 y � v3 y � v3
_y � _v3

�y � 1 Return
sweep

�v3 � �y
�v2 � v−1 × �v3
�v1 � − sin�v1� × �v2
�v0 � 1 × �v1
�v−1 � 1 × �v1 � v2
�x1 � �v−1
�x2 � �v0

TLM, tangent linear model; ADM, adjoint model.

1812 Short Note



_x2 � 1) by a second run of TLM (_y � �∂y=∂x2� � 0� x1×
�− sin�x1 � x2�� × �1� 0�). Hence, the evaluation of the
complete gradient of a scalar-valued output requires n runs,
in which n is the number of inputs needed in the model.

The last two columns of Table 1 present the ADM of the
original code, with the forward sweep being a copy of the
original code, and the return sweep with the program reversal
and additional statements calculating the adjoints �vi � ∂y=∂vi
for each intermediate vi. A single run of the ADM calculates
the adjoints �x1 and �x2, which correspond to the partial deriv-
atives (complete gradient) of the model output with respect
to its inputs (�∂y=∂x1� � �x1 � 1 × �− sin�x1 � x2�x1 × 1�
cos�x1 � x2��, �∂y=∂x2� � �x2 � 1× �− sin�x1 � x2�x1 × 1�).

The analysis and the transformation of the computer
code, as shown in Table 1, is done automatically by the AD
tool. Nevertheless, one must keep in mind that current AD
tools do not operate in a fully automated way where the user
simply supplies code and the desired result follows. It is
often the case that the code must be prepared in advance; for
example, redefining function headers, returned values, and
modules of code (like in our case).

For the differentiation of computer codes, several
powerful and mature AD tools are freely available, mainly for
FORTRAN or C codes. A link for a comprehensive overview
of AD tools and AD methodology, as well as AD applications
is given in Data and Resources. In our study, we applied the
FORTRAN AD tool Tapenade (Hascoët and Pascual, 2004)
because we used FORTRAN code to compute the PSHA. The
source code for the hazard computation has been pro-
grammed stepwise, assuring at each stage that the differential
dependencies in the code are clearly defined and are recog-
nizable to the AD tool. In this way, the source code has been
successively extended. The differentiated code at each stage
was tested against analytical solutions or finite differences
with decreasing step size to deliver correct derivatives. The
time required to develop the computational model as de-
scribed above is comparable to the time one would spend to
develop the traditional source code in a conventional way.
However, specific attributes of code elements (e.g., solvers
for ordinary differential equations [ODEs] that have a
strongly adaptive step-size selection) can sometimes produce
erratic derivatives. This was the case we encountered when
looking to apply AD to the source code of the ground-motion
simulation model using the stochastic method (Boore, 2003).
The problematic code elements first had to be identified, and
then the related problems to apply AD on the source code
could be addressed. For the particular example given above,
the adaptive ODE solver was subsequently changed by another
quadrature rule with fixed abscissas and weights in order to
avoid problems with AD in the reverse mode. The source code
transformation for the PSHA cases concerned in this study
takes less than 12 s. The accuracy and correctness of ADM
was corroborated via comparisons between derivatives it eval-
uates and those obtained by (1) analytical solutions, (2) finite
numerical differences with decreasing step size, and (3) TLM.
For the second application in this study (PSHA for an area

source), the runtime of the TLM evaluating the partial deriv-
atives of the scalar-valued model output with respect to 11
inputs is ≈20:9 times the runtime of the original (primal)
model. On the other hand, the ADM requires only ≈5:6 times
the runtime of the original model for the same task using a
2011 iMac with 8 GB of RAM and a 2.5 GHz processor.

Model for Seismic-Hazard Computation: PSHA

The seismic hazard at a site of interest is usually ex-
pressed in terms of the expected number of ground-motion
exceedances per year at a specified target level aT of an
intensity measure. This number is called the annual rate of
exceedance ν�aT�, and its inverse is the return period
T � 1=ν�aT�. Typically, ν�aT� is computed for different
values for a selected ground-motion parameter aT, and the
resulting set of values collectively defines the hazard curve
for the given intensity measure. This measure is most com-
monly a particular response spectral ordinate or the peak
ground acceleration (PGA) (see Fig. 1a).

Annual rates of exceedance ν�aT�, which are of interest
in hazard studies, generally range between 0.01 and 10−8

(although exceptions for serviceability and safety critical
scenarios exist at either end of this range). Specifically,
for critical facilities such as nuclear power plants or particu-
lar waste repositories, typical target rates are ν�aT� ≤ 10−6,
whereas rates of ν�aT� ≈ 0:002 (T � 475 years) or ν�aT� ≈
0:0004 (T � 2475 years) are typically considered for con-
ventional buildings.

The current state of practice for deriving ν�aT� is by
means of PSHA (Cornell, 1968; McGuire, 2004). The results
of a PSHA are dependent upon choices and modeling deci-
sions related to the following components: (1) models for the
geometrical characterization of possible earthquake sources,
(2) models for the seismic activity of these sources, and
(3) models to predict the distribution of ground motions
for each considered earthquake scenario. The PSHA calcula-
tion is performed by integrating the probability of exceeding
the target level of motion aT over all earthquake scenarios.

In this formulation, the geometrical characterization of
an earthquake source is given by a probability density func-
tion fR�R;ΘfR� of possible source-to-site distances R, which
is characterized by a given set of distribution parametersΘfR .
It is generally assumed that earthquake hypocenters are uni-
formly distributed within the source zone. The parameteriza-
tion of fR depends on the specific geometry of the source
zone and will be given later for the geometrical settings con-
sidered in this study.

Second, the seismic activity (seismicity) in each poten-
tial source is usually given in terms of a magnitude exceed-
ance rate λ�M;Θλ�, which refers to the average annual
number of earthquakes with a magnitude equal to or greater
than M generated in the source. The vector Θλ includes all
seismicity input parameters (described later) necessary to
specify λ�M;Θλ�. The relative frequency of different earth-
quake magnitudes of the seismic source is modeled as a ran-
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dom variable with a source-specific probability density func-
tion fm�M;Θfm� in which the vectorΘfm represents the input
parameters that are required to define fm.

In this study, we use a doubly truncated exponential dis-
tribution (the modified Gutenberg–Richter model) to charac-
terize the seismic activity of a source, which can be
parameterized based on Θλ � �α; β;Mmin;Mmax� as follows
(McGuire, 2004):

λ�M;Θλ� � λMmin
�α; β; Mmin��1 − Fm�M;Θfm��; �5�

in which λMmin
is the annual activity rate of the source (num-

ber of earthquakes per year with M ≥ Mmin); Fm is the
cumulative distribution function of the magnitude, and it
is related to the integral of the probability density function
fm�M;Θfm� with Θfm � �β; Mmin; Mmax�; α � ln�10�aGR is
a measure of activity level (a value); β � ln�10�bGR repre-
sents the exponential decay rate of the distribution and
controls the relative likelihoods of large and small magnitude
earthquakes (b-value); and Mmin and Mmax represent the
lower and upper limits of the truncation, respectively. The
parameters aGR and bGR correspond to the parameters of
the traditional Gutenberg–Richter relation that defines the
number N of earthquakes of magnitude M or greater per
unit time as N�≥ M� � 10aGR10−bGRM. Correspondingly,
the number of earthquakes per unit time with M ≥0 is
10aGR � exp�α�.

The magnitude density fm in our case corresponds to a
doubly truncated exponential function (at Mmin, Mmax):

fm�M;Θfm� �
1

K
β exp�−β�M −Mmin��; �6�

in which K � 1 − exp�−β�Mmax −Mmin��. The activity rate
λMmin

is defined as

λMmin
�α; β;Mmin� � exp�α − βMmin�: �7�

The third part of a PSHA is the model that predicts the
ground-motion distribution for each earthquake scenario. The
level of shaking at a site due to an earthquake of magnitudeM
and source-to-site distance R is taken as a log-normally dis-
tributed random variable characterized by its two parameters
μg (location parameter, mean of the logarithmic ground mo-
tion) and σg (scale parameter, standard deviation of the log-
arithmic ground motion). The two parameters are given by
ground-motion models, usually empirically derived GMPEs.

Within the ground-motion model, the parameter
μg � μg�M;R;Θg� is given as a function of magnitude M,
source-to-site distance R, and parameters included in Θg,
in which the following relation between the mean of the
logarithmic ground motion (μg�M;R;Θg�) and the median
of the ground motion, denoted by g�M;R;Θg�, holds
μg�M;R;Θg� � ln g�M;R;Θg�. The second parameter σg
(standard deviation of the logarithmic ground motion) that de-
fines the lognormal distribution is often assumed to be con-
stant across earthquake scenarios and is provided by the
ground-motion model in terms of natural or base-10 loga-
rithms, depending upon the formulation of the model. In this
study, we use two different ground-motion models, or at least
two different approaches to defining the ground-motion dis-
tribution, a simple GMPE that was used by Ordaz (1989), and
a simulation-based ground-motion model representing an im-
plementation of the stochastic method (Boore, 2003).

Finally, we compute the seismic hazard, following the
Cornell–McGuire approach, for a single area source as
follows:

ν�aT;Θ�� λMmin
�α;β;Mmin�

Z
R

Z
Mmax

Mmin

fm�M;Θfm�fR�R;Θfr�

×Pr�A>aT jM;R;Θg;σg�dMdR; �8�
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Figure 1. (a) Hazard curve ν�aT;Θ� for peak ground acceleration (PGA) considering a point source located at a distance of R � 30 km,
σg � 0:7, and Θ as given in Tables 2 and 3. (b) Comparison of analytically derived relative sensitivities of a probabilistic seismic-hazard
analysis (PSHA) model (continuous line) with those evaluated via algorithmic differentiation (AD) methodology traced with markers. We note
that the markers fall exactly on the continuous line.
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in which Pr�A > aT jM;R;Θg; σg� is the probability that
generated ground motion A at the site of interest exceeds
the target level aT for a given magnitude, distance, σg, and
Θg. For simplicity, we are ignoring finite-fault effects.

By performing this integration, we take into account all
possible hazard-relevant magnitude–distance scenarios. The
probability, that aT is exceeded, is given by

Pr�A>aT jM;R;Θg;σg��1−Φ
�
1

σg
fln�aT�−ln�g�M;R;Θg��g

�

�Φ
�
1

σg
ln
g�M;R;Θg�

aT

�
; �9�

in which Φ�·� is the cumulative distribution function of the
standard normal distribution N�0; 1�, and g�M;R;Θg� is the
median of the ground motion.

Sensitivity Analysis for the Point-Source Model
of Ordaz (2004)

We first demonstrate the feasibility of deriving sensitiv-
ities for the hazard integral in PSHAvia AD. For this purpose,
we compare the obtained sensitivities using the AD method-
ology with those obtained analytically. Such a test is only
possible for very simple cases of PSHA where closed-form
solutions of the hazard calculation exist. To that end, we
use the analytical expression for the hazard integral derived
by Ordaz (2004) for a simple case of PSHA concerning a
point source together with a simple ground-motion relation.

We derive the sensitivities (partial derivatives) of the
model output ν�aT;Θ� with respect to its input parameters
Θ � �α; β;Mmin;…�, according to equations (2) and (3),
via both methods, whereas the analytical solutions are taken
as the reference.

We use the same settings as Ordaz (2004). The point
source is located at a source-to-site distance R. Given that we
consider a point source and ignore rupture effects, there is only
one distance that is relevant to our problem, and we can sim-
plify our hazard integral to only consider an integration with
respect to magnitude. Thus, equation (8) reduces to

ν�aT;Θ� � λMmin
�α; β;Mmin�

Z
Mmax

Mmin

fm�M;Θfm�

× Pr�A > aT jM;R;Θg; σg�dM: �10�
The seismicity of the source is characterized by a doubly trun-
cated exponential Gutenberg–Richter model as given in

equations (5), (6), and (7). The corresponding input parameter
values are presented in Table 2.

We employ the same simple GMPE as Ordaz (2004), in
order to describe the ground-motion attenuation of PGA
(Ordaz, 1989):

ln g�M;R;Θg� � c1 � c2M � c3 lnR� c4R; �11�

in which g�M;R;Θg� is the median ground motion, R is the
source-to-site distance, and Θg � �c1; c2; c3; c4� are the co-
efficients of the GMPE, given in Table 3.

Solving the integral results in a closed-form solution for
a point-source PSHA in terms of ν�aT;Θ� as follows (Ordaz,
2004):

ν�aT;Θ� � λMmin
�α; β; Mmin�

1 − exp�−βΔ�

�
exp�η2=2�

�
g�M;R;Θg�

aT

�
β=c2

×
�
Φ
�
1

σg
ln
g�Mmax; R;Θg�

aT
� η

�

− Φ
�
1

σg
ln
g�Mmin; R;Θg�

aT
� η

��

� Φ
�
1

σg
ln
g�Mmin; R;Θg�

aT

�

− exp�−βΔ�Φ
�
1

σg
ln
g�Mmax; R;Θg�

aT

��
; �12�

in which η � βσg=c2 and Δ � Mmax −Mmin.
For this simple case, partial derivatives (first-order ab-

solute sensitivities) can be obtained analytically from equa-
tion (12). For example, the absolute sensitivity with respect
to the parameter c1 can be derived as follows:

∂ν�aT;Θ�
∂c1 �λMmin

�α;β;Mmin�
1−exp�−βΔ� ×

1

σg

�
exp�η2=2�

�
g�M;R;Θg�

aT

�
β=c2

×�δφ�Mmin;Mmax;R;Θg;σg;η;aT�
�ηδΦ�Mmin;Mmax;R;Θg;σg;η;aT��
�φ� ~u�Mmin;R;Θg;σg;aT��

−exp�−βΔ�φ� ~u�Mmax;R;Θg;σg;aT��
�
; �13�

in which ~u�M;R;Θg; σg; aT� � 1
σg
ln g�M;R;Θg�

aT
, φ�x� repre-

sents the probability density function of the standard normal
distribution N �0; 1�, and

Table 2
Input Parameter Values of the Seismicity Model

Θλ � �α; β;Mmin;Mmax�
Parameter

α β Mmin Mmax

Value 8=yr 2 4 8

Table 3
Input Parameter Values of the Ground-Motion

Attenuation Θg � �c1; c2; c3; c4�
Parameter

c1 c2 c3 c4

Value 4.053 0.691 −1.000 −0.0071
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δφ�Mmin;Mmax; R;Θg; σg; η; aT�

� φ

�
1

σg
ln
g�Mmax; R;Θg�

aT
� η

�

− φ

�
1

σg
ln
g�Mmin; R;Θg�

aT
� η

�

δΦ�Mmin;Mmax; R;Θg; σg; η; aT�

� Φ
�
1

σg
ln
g�Mmax; R;Θg�

aT
� η

�

− Φ
�
1

σg
ln
g�Mmin; R;Θg�

aT
� η

�
:

In a similar manner, we obtain the sensitivities for all input
parameters of the PSHA model analytically: that is, for all
entries in Θ � �α; β;Mmin;Mmax; c1; c2; c2; c4; σg�.

In addition, we constructed an ADM of the considered
PSHA via AD in the reverse mode. Based on the ADM, we
compute the sensitivities of ν�aT;Θ� with respect to the
input parameters of the PSHA, according to equation (2).

The comparison of the sensitivities obtained via the two
methods are depicted in Figure 1 and Table 4. We show the
relative sensitivities of the input parameters for a point
source, with a source-to-site distance of 30 km and the cor-
responding hazard curve. The base case values of the input
parameters Θ are given in Tables 2 and 3, and the standard
deviation of the logarithmic ground motion is σg � 0:7 (in
natural logarithmic units). The sensitivities obtained by AD
are depicted by markers, whereas the analytically obtained
sensitivities are shown as solid lines (Fig. 1). For the same
setting, absolute sensitivities of ν�aT;Θ� with respect to Θ
are given in Table 4 for aT � 490:5 cm=s2 ≈ 0:5g, in which g
stands for the gravitational acceleration. Sensitivities are ob-
tained (1) analytically, (2) using AD in the reverse mode
(ADM), and (3) via AD in the forward mode (TLM). It can
be easily seen that the results obtained from both methods
are virtually identical.

Hazard Computation for an Area Source Using a
Stochastic Ground-Motion Model: Sensitivity

Analysis

In this section, we carry out a sensitivity analysis for the
case of an area source with uniform seismicity and a geom-
etry given in Figure 2, following the geometric settings of
Ordaz (2004). The area source has the shape of a disk with
a radius Rmax and is situated at a depth of H beneath the site
of interest (Fig. 2). Instead of using a simple GMPE like that
used in the point-source example presented in the previous
section, we use a more complex approach for modeling the
ground motions, namely, the stochastic ground-motion sim-
ulation technique (e.g., Boore, 2003).
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A computer implementation of the stochastic method for
ground-motion simulation is SMSIM (Boore, 2003). AD has
been successfully implemented for SMSIM based on an en-
hanced version of its computer source code in order to obtain
sensitivities of response spectra (Molkenthin et al., 2014).
For detailed information regarding AD of SMSIM the reader
is referred to Molkenthin et al. (2014).

In this study, we employed the enhanced version of
SMSIM that enables AD for this PSHA component. The fol-
lowing application demonstrates the flexibility and simplicity
of the AD methodology for dealing with model adjustments or
model extensions, for example, using more complex ground-
motion models.

In order to calculate the hazard for an area source, one can
assume uniformly distributed point sources over the source
zone, each having a source-to-site distance R �

�����������������
H2 � r2

p
and integrate their solutions for the whole area, in which r
is the shortest distance between the assumed point source and
the center of the area source (Fig. 2). After some manipulation
(change of variables), the source-to-site distance distribution
fR can be derived analytically for the given geometry (Fig. 2)
(Ordaz, 2004):

fR�R;ΘfR� � 2R=R2
max: �14�

For characterizing the seismicity of the source zone, we
apply a doubly truncated exponential model according to
equations (6) and (7). Thus, the hazard integral is

ν�aT;Θ;fosc��exp�α−βMmin�

×
2

R2
max

Z
R0

H

Z
Mmax

Mmin

βexp�−β�M−Mmin��
1−exp�−β�Mmax−Mmin��

R

×Φ
�
1

σg
ln
g�M;R;Θg;fosc�

aT

�
dMdR; �15�

in which H and R0 are the limits for R, g�M;R;Θg; fosc� is
the median spectral acceleration, and fosc stands for the natu-
ral frequency of a single-degree-of-freedom oscillator.

The ground-motion scaling is modeled using the sto-
chastic method for ground-motion simulation (Boore, 2003).
The target ground-motion parameter aT is the spectral accel-
eration for a number of different oscillator frequencies. We
employ a stochastic model that is based on Brune’s source
model (Brune, 1970, 1971), a stress parameter Δσ, and path
and site attenuation filters (modeled by geometrical spreading
1=Rη, a frequency-dependent quality factorQ�f� � Q0fαq and
a site-specific κ0), and the generic rock site amplification (Boore
and Joyner, 1997; Cotton et al., 2006) (see Table 5). Simple
duration models are adopted. The parameter values are consis-
tent with those typically used in western North America (an
active tectonic setting) and are taken from Campbell (2003).

We note that our approach can also accommodate other
attenuation relations (e.g., GMPEs) or other (more complex)
stochastic models as well as other seismicity models or geo-
metrical source characterizations besides the given choice
here. Using GMPEs for describing ground-motion attenua-
tion even simplifies the implementation of AD for PSHA, as
GMPEs have a less complex structure than a stochastic
ground-motion simulation model.

Below, we use AD to calculate sensitivities of
ν�aT;Θ; fosc� with respect to the seismicity parameters
Θλ � �α; β;Mmin;Mmax�, seismological parameters
Θg � �Δσ; η; Q0; αq; κ0�, σg (standard deviation of the loga-
rithmic ground motion), and H (depth of the area source),

Figure 2. Geometric setting of the PSHA (in perspective view):
area source (disk) with uniform seismicity and radius Rmax. The disk
is situated parallel to the surface (dashed line) at depthH. The PSHA
is computed at the site situated at the surface directly above the
center of the area source. Each point source within the disk has
a source-to-site distance R �

�����������������
H2 � r2

p
, in which r is the shortest

distance between the point source and the center of the area source.
The distribution of possible source-to-site distances is bounded by
H (lower bound) and R0 (upper bound). The color version of this
figure is available only in the electronic edition.

Table 5
Parametrization of WNA after Campbell (2003)

Parameter WNA with ΘWNA*

Source spectrum Brune ω-square, point source
Stress parameter, Δσ (bar) 100
Geometrical spreading, η 1=Rη � 1=R; (η � 1)
Ground-motion duration Dgm (s) 1=fc � 0:05R
Drms (s) Dgm

Path attenuation quality factor
Q�f� � Q0fαq

180f0:45; (Q0 � 180,
αq � 0:45)

Shear velocity, βS (km=s) 3.5
Density, ρS (g=cc) 2.8
Site attenuating, κ0 (s) 0.04
Site amplification Generic rock site

VS30 � 620 m=s
Quarter-wavelength

approximation

WNA, western North America
*Input parameters ΘWNA for western North America.
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according to equations (2) and (3). In the case of a general
PSHA, partial derivatives (sensitivities) cannot be obtained
analytically.

Figure 3 shows several hazard curves ν�aT;Θ; fosc� and
their corresponding relative (logarithmic) sensitivities with re-
spect to a set of inputs for various fosc using the previously
described stochastic model for the ground-motion prediction.
The input parameter values for the stochastic model are given

in Table 5, and the standard deviation of the logarithmic ground
motion is again taken as σg � 0:7. The seismicity parameters
are given in Table 2. The geometric setting is defined by H �
20 km and Rmax � 30 km (Fig. 2), and the finite-rupture di-
mensions of events of all magnitudes are not considered.

From Figure 3, one can easily assess the impact of a
slight relative change in each individual input on the hazard
curve (relative change of the output) for different target
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Figure 3. Relative sensitivities of ν�aT;Θ; fosc� with respect to several input parameters of the PSHA model for different fosc with
following settings: σg � 0:7, H � 20 km, Rmax � 30 km. The corresponding hazard curves ν�aT;Θ; fosc� are depicted in the first row,
first column. Parameterization of the stochastic ground-motion model corresponds to western North America (WNA). The input parameters
are α, β, minimum magnitude (Mmin), maximum magnitude (Mmax), standard deviation of the logarithmic ground motion (σg), exponent of
the geometric spreading (η), stress parameter (Δσ), and site-specific high-frequency attenuation (κ0). The color version of this figure is
available only in the electronic edition.
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values aT and for various natural frequencies fosc. The direc-
tion of the influence (positive or negative sign) as well as a
quantitative estimate in terms of a relative change of the out-
put due to a slight relative change in the inputs (equation 3)
are also given in Figure 3. For example, a slight relative
increase in seismicity parametersMmax or α has a positive ef-
fect on the model output (increase of ν�aT;Θ; fosc�), whereas
a slight increase in β has a negative influence on ν�aT;Θ; fosc�
for all aT and fosc.

As can be seen in Figure 3, the hazard curves for low aT
(equivalent to short return periods) are mainly influenced by
seismicity parameters (β, α, Mmin) and the ground-motion
attenuation parameter η (geometrical spreading). However,
the influence of Mmin on hazard curves is only present for
low aT in conjunction with high fosc (≥3 Hz), but it is still
much lower than the impact of perturbing α or β. For low
values of aT , parameter Mmax has a small impact on
ν�aT;Θ; fosc�. However, Mmax becomes very important as
aT increases. The hazard curve ν�aT;Θ; fosc� is highly influ-
enced by Mmax for low fosc (e.g., 0.5 Hz) at large values of
aT . With increasing fosc the relative influence of Mmax de-
creases and, in contrast to this, for very high fosc (100 Hz) the
relative sensitivity increases.

For large values of aT , the influence of ground-motion
attenuation parameters becomes stronger; the main influenc-
ing factors are η and σg. The sensitivities to these parameters
vary with fosc: sensitivities are large for both low fosc (0.5
and 1 Hz) and high fosc (100 Hz). The relative sensitivity to
Δσ is moderate, increasing with aT and reveals hardly any
dependency on fosc. In contrast, the relative sensitivity to κ0
shows a strong dependency upon fosc. For low fosc (<3 Hz),
the influence of κ0 is negligible, whereas for high fosc, slight
relative changes in κ0 have a noticeable influence; the impact
of κ0 increases for large values of aT .

The parameter σg has a significant influence on the
computed hazard ν�aT;Θ; fosc� for large values of aT . In ad-
dition, from Figure 4, we observe that σg affects the strength
of the impact of Mmax. The relative sensitivities of
ν�aT;Θ; fosc� toMmax decrease significantly as σg increases.
This reflects the fact that as the aleatory variability σg of the
ground motion prediction increases, the upper bound (Mmax)
of the magnitude distribution becomes less influential.

A simple and straightforward approach to assess the
change in the model output due to changes in the inputs
would be directly through perturbation calculations. Pertur-
bation calculation means perturbing an input (e.g., increasing
or decreasing an input value) and subsequently calculating
the change in the model output. Results are often depicted
in so-called tornado plots, which show the influence of
the different parameters using horizontal bars (Fig. 5). Such
analyses can be very demanding from a computational per-
spective because the number of model runs increases linearly
with the number of inputs. In Figure 5, we compare the
change of the model output (ν�aT;Θ; fosc�) obtained from
a perturbation calculation for a change of�5% for each input

with the sensitivities derived by using the ADM concerning
first-order effects.

For the perturbation calculation, we compute the hazard
(ν�aT;Θ; fosc�) for a base case scenario using the parameter
setting as described earlier (modified Gutenberg–Richter re-
lation, area source, WNA stochastic model). Subsequently,
we calculate the hazard by first changing one parameter at
a time to its lower bound (−5%) and then to its upper bound
(�5%). It requires in total 2n� 1 runs, in which n is the
number of inputs. In contrast, the sensitivity-based estimate
for the change in the model output, can be obtained by a sin-
gle run of the constructed ADM of the PSHA independent of
the number of inputs.

We considered 11 input parameters for the PSHA model
�α; β; Mmin;Mmax; σg; η;Δσ; Q0; αq; κ0; H�. The results are
shown as tornado plots for different values of aT and fosc
(Fig. 5). In this particular case, the results depict how a
change of 5% in the inputs effects the hazard estimates.
The increased or decreased model outputs are given at the
extremes of bars. The light-shaded bar corresponds to the
calculated change of ν�aT;Θ; fosc� perturbing the corre-
sponding parameter by �5%, whereas the dark-shaded bar
gives the estimated change of the model output based on sen-
sitivities. The vertical line gives the hazard for the base case.

The sensitivity-based estimates (dark-shaded bars) com-
pare reasonably well with the computed changes (light-
shaded bars) in the output from the perturbation calculations.
One can observe that, for different values of aT and fosc, the
ranking based on the scaled sensitivities coincide with the
actual ranking computed for each perturbation. The quanti-
tative estimates for the change in the model output based on
the scaled sensitivities agree in an acceptable way for the
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Figure 4. Relative sensitivities of ν�aT;Θ; fosc� with respect to
Mmax for different standard deviations of the logarithmic ground
motion σg and several fosc for aT � 490:5 cm=s2 ≈ 0:5g (g is gravi-
tational acceleration). Parameterization of the stochastic ground-
motion model corresponds to WNA. Seismicity parameters are given
in Table 2.
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input parameters. In the case of the parameters α, β, and η,
the estimated change in the model output due to the pertur-
bation in the inputs have to be treated with caution as the two
approaches result in noticeable differences.

However, the ranking of the influencing factors and the
overall picture regarding parameter importance are the same
for the sensitivity-based estimates for the model change com-

pared with the actual change of the model obtained by the
perturbation calculation (concerning first-order effects).

Conclusion

Sensitivity analysis plays an important role for gaining in-
sights into the behavior of a model and to assess the influence

Figure 5. Tornado plots comparing the change of ν�a;Θ; fosc� due to 5% changes in the inputs (gray bars) with sensitivity estimates
derived via AD (black bars) for different aT and fosc for the WNA case. The input parameters are α, β, minimummagnitude (Mmin), maximum
magnitude (Mmax), standard deviation of the logarithmic ground motion (σg), exponent of the geometrical spreading (η), stress parameter
(Δσ), parameters defining the frequency-depending quality factor (Q0, αq), site-specific high-frequency attenuation (κ0), and depth of the
area source (H).
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of the model inputs on the model output. In this study, we
showed how differential sensitivity analysis in PSHA can be
carried out in an efficient way using AD. We illustrated the
feasibility and applicability of AD for sensitivity analysis in
the context of a closed-form solution PSHA using a simple
GMPE. Subsequently, we also investigated the case of PSHA
for an area source using a more complex ground-motion model
based on a stochastic ground-motion simulation technique; for
such a situation, the sensitivities cannot be derived analytically
but are obtained efficiently via AD. The influence of the various
input parameters on the hazard calculation is identified for dif-
ferent scenarios; primarily seismicity parameters (activity level
α and exponential decay rate β) and geometric spreading in-
fluence the hazard result; for low annual rates of exceedance,
small changes in other parameters predicting the ground-mo-
tion median and the ground-motion aleatory variability, as well
as the depth of the source, have a significant impact. Never-
theless, one has to keep in mind that the DSA is a local method:
it gives an estimate of first-order effects.

This study demonstrates the flexibility and efficiency of
the AD approach for assessing sensitivities in PSHA. In par-
ticular, this becomes important in a real application of PSHA
in which the number of input parameters increases rapidly
with the number of sources, and the individual PSHA model
components grow in complexity. The computational cost for
the evaluation of the sensitivities via AD in the reverse mode
is independent of the number of inputs. We feel that the re-
sults of this study illustrate the great potential of AD for use
in PSHA. As a consequence, we are currently working on the
application of the AD approach to a large-scale hazard code.

Data and Resources

The AD tool Tapenade http://www‑sop.inria.fr/tropics/
(last accessed September 2014) is used for the algorithmic
differentiation. Ground-motion simulations are based on a
modified version of the FORTRAN source code Stochastic
Method SIMulation (SMSIM) provided by David Boore
http://www.daveboore.com/software_online.html (last ac-
cessed September 2014). A thorough overview of AD tools
and ADmethodology is given at http://www.autodiff.org (last
accessed September 2014).
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