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Short Note

Extension of the Random-Effects Regression Algorithm to Account

for the Effects of Nonlinear Site Response

by Peter J. Stafford

Abstract The random-effects regression algorithm, made popular within engineering
seismology by Abrahamson and Youngs (1992), is arguably the most commonly used
approach for developing empirical ground-motion models. The original presentation of
this algorithm relates to the most simple application of a far more general mixed-effects
model formulation. In recent years, it has become increasingly common to incorporate
nonlinear site response effects within empirical, or semi-empirical, ground-motion mod-
els, but the original random-effects algorithm does not apply to cases in which the ran-
dom effects enter the model in a nonlinear manner. This article presents a more general
algorithm for fitting mixed-effects models that can accommodate nonlinear site effects
(among other effects). The presented algorithm deliberately mirrors that of Abrahamson
and Youngs (1992) but allows for the treatment of far more elaborate variance structures.

Introduction

The application of regression algorithms that partition
the overall variability of ground motions among interevent
and intraevent components are now common place in engi-
neering seismology. Within the community, these algorithms
are commonly referred to as random-effects approaches, but
within the statistical literature they would be referred to more
generally as mixed-effects models.

A brief overview of the evolution of mixed-effects ap-
proaches within engineering seismology has recently been
presented by Stafford (2014), and it was noted therein that
the most commonly used algorithm is that of Abrahamson
and Youngs (1992), which builds upon the earlier work of
Brillinger and Preisler (1984, 1985).

However, in recent years, the inclusion within ground-
motion models of functional terms that reflect the effects of non-
linear site response has become more common. As shown by
Chiou and Youngs (2008), these nonlinear effects complicate the
variance structure within a regression analysis, and this has re-
sulted in some confusion about how one should interpret the vari-
ous components of the variance, as discussed by Al Atik and
Abrahamson (2010). An important issue that has not yet received
attention, however, is the fact that the standard algorithm ofAbra-
hamson and Youngs (1992) cannot be directly applied in the case
in which nonlinear site response is included within the ground-
motion model (assuming a traditional treatment of these effects).

The purpose of this short note is to demonstrate how the
commonly used algorithm of Abrahamson and Youngs (1992)
can be modified in order to make it appropriate for models that
have a more complex variance structure. In particular, the ar-
ticle focuses upon the treatment of nonlinear site effects.

The algorithm of Abrahamson and Youngs (1992) is
used to define the parameters of the generic model:

EQ-TARGET;temp:intralink-;df1;313;409yi � μ�Xi; β� � bi � εi; �1�
in which the subscript i denotes that this expression holds for the
records from an individual event. The yi is an ni × 1 vector of
the observed (usually logarithmic) motions for this event, and μ
represents the functional form of the model and takes the ni × p
dimension matrix Xi of predictor variables for the event. The
number of observations from the ith event is denoted by ni.
The term bi is the random effect for the event and is assumed
to be distributed according to a normal distribution with zero
mean and variance τ2, and the εi is an ni × 1 vector of residual
errors that are also assumed to be zero-mean normally distrib-
uted with a variance of σ2. The overall set of parameters that
must be estimated for this model are the elements of β (the fixed
effects) as well as the variance components τ and σ.

The algorithm itself involves the following steps:

1. Obtain starting estimates of the model parameters β using
a fixed-effects regression analysis.

2. For this β, maximize the log-likelihood function in equa-
tion (2) in order to obtain τ and σ:

EQ-TARGET;temp:intralink-;df2;313;160 lnL � −
N
2
ln�2π� − 1

2
ln jCj − 1

2
�y − μ�TC−1�y − μ�:

�2�
Note the covariance matrix C is a block-diagonal matrix
defined only in terms of τ and σ.

3. Given β, τ, and σ, compute the values of bi for each
event using equation (3), in which yij denotes the jth
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element of the vector yi and Xij denotes the jth row of
the matrix Xi:

EQ-TARGET;temp:intralink-;df3;55;709bi �
τ2
Pni

j�1 yij − μ�Xij; β�
niτ2 � σ2

: �3�

4. Obtain an updated estimate of β using a fixed-effects regres-
sion analysis on the adjusted observations yi → yi − bi.

5. Repeat steps 2–4 until the log-likelihood function is
maximized.

A detailed discussion of how the inclusion of nonlinear
site response influences the variance components of a
ground-motion model has been provided by Al Atik and
Abrahamson (2010), and what is important to take from that
discussion for now is the fact that one might formulate a re-
gression model in a manner that leads to nonconstant values
of τ and σ that cannot be used directly within equation (3) for
estimating the random effects for each event. For that reason,
Abrahamson and Silva (2007, pp. 167) state the following (in
which their equation 4-24 corresponds to equation 3 above).

If the standard deviations are not constant (e.g., the
data are heteroskedastic), then eq. 4-24 is modified to
use the mean value of τ and σ for each event. For just
magnitude dependence, this is just τ�M� and σ�M�. If
there is also an amplitude dependence (e.g., due to
non-linear site response), the mean value of τ and σ
is computed based on the sampling of recordings for
each event.

Although this is an apparently straightforward solution to this
problem, it is technically not a correct solution. To demonstrate
this, a more generic framework for the regression analysis can
be used (and will be presented in the following sections), but
it is important to first understand more about the structure of
the variance components in the case that the ground-motion
model includes nonlinear site response effects.

Impact of Nonlinear Site Response

As shown by Al Atik and Abrahamson (2010), the
ground motion recorded at the Earth’s surface can be viewed
as the result of some motion arriving at a particular horizon
beneath the surface that is then modified as it propagates
through the near-surface materials. This reference horizon is
often assumed to correspond to the underlying bedrock at a
site, but this is not necessarily the case. We do, however,
need to assume that the seismic waves have only interacted
with the propagating medium in a linear manner when they
arrive at this reference horizon. Under this condition, we can
then assume that the variations that we should expect from
earthquake to earthquake at this horizon are representative of
the interevent variability of the source motions.

In a manner consistent with the treatment of Chiou and
Youngs (2008), Al Atik and Abrahamson (2010) show that
the logarithmic surface motion yS�T� can be decomposed in
terms of the predicted logarithmic motion at the reference hori-

zon ŷR�T�, the predicted site amplification ln cAF�TjŷRij�T0��,
and some error components (or residual contributions). These
error components relate to event-to-event effects ηRi , intraevent
effects on motions at the reference horizon level ξRij, and vari-
ability in the site amplification ζij and the effects of their
propagation when the overall nonlinear functional form is lin-
earized about the median-predicted reference motion, ŷRij�T0�:
EQ-TARGET;temp:intralink-;df4;313;640

ySij�T� � ŷRij�T� � ln cAF�TjŷRij�T0��

� ∂ lnAF�TjŷRij�T0��
∂yRij�T0�

�ηRi �T0� � ξRi �T0�� � ηRi �T�

� ξRij�T� � ζij�T�: �4�
In this framework, the site amplification function is de-

fined for a given response period in terms of the amplitude of
motions at the level of the reference horizon for potentially
another response period T0 (although T0 can be made equal
to T as well).

The terms ηRi �T0� and ξRij�T0� can be represented as
functions of variates at the actual response period of interest
T using the relations in equations (5) and (6):

EQ-TARGET;temp:intralink-;df5;313;462ηRi �T0� � ρη=τ�T; T0�
τ�T0�
τ�T� η

R
i �T� �5�

and

EQ-TARGET;temp:intralink-;df6;313;417ξRij�T0� � ρξ=σ�T; T0�
σ�T0�
σ�T� ξ

R
ij�T�: �6�

The overall expression for the observed surface motions
can then be recast into the following form that is a linear com-
bination of the random variables ηRi �T�, ξRi �T�, and ζij�T�:
EQ-TARGET;temp:intralink-;df7;313;349

ySij�T� � ŷRij�T� � ln cAF�TjŷRij�T0��

�
�
1� ∂ lnAF�TjŷRij�T0��

∂yRij�T0�
ρη=τ�T; T0�

τ�T0�
τ�T�

�
ηRi �T�

�
�
1� ∂ lnAF�TjŷRij�T0��

∂yRij�T0�
ρξ=σ�T; T0�

σ�T0�
σ�T�

�
ξRi �T�

� ζij�T�: �7�
In the case in which we predict the site amplification at

response period T, in terms of reference horizon motions also
at a period of T (so that T � T0), this expression simplifies to
become

EQ-TARGET;temp:intralink-;df8;313;185ySij�T� � ŷRij�T� � ln cAF�TjŷRij�T��
�

�
1� ∂ lnAF�TjŷRij�T��

∂yRij�T�
�
ηRi �T�

�
�
1� ∂ lnAF�TjŷRij�T��

∂yRij�T�
�
ξRi �T� � ζij�T�: �8�

Although the actual equation is still relatively compli-
cated, the regression framework that is implied by this for-
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mulation is significantly improved over the case that T0 is
considered. In fact, the previous model that requires consid-
eration of T0 presents some very significant barriers. For ex-
ample, some studies (e.g., Abrahamson and Silva, 2007)
previously stated that the correlation coefficients ρη=τ and
ρξ=σ can be computed from the interevent and intraevent re-
siduals, respectively. However, when one considers the
framework presented above, this is not strictly true. In fact,
the correlation ρξ=σ�T; T0� is supposed to reflect the correla-
tion between ξRij�T� and ξRij�T�, which are both unobserved
except for the special case in which there is no site response.

Generic Mixed-Effects Model Formulation

Rather than working with the regression model of equa-
tion (1), it is preferable to use the more general representation
shown as

EQ-TARGET;temp:intralink-;df9;55;529yi � μ�Xi; β� � Zibi � εi; �9�
in which Xi is an ni × p dimension matrix of predictors that
combines with the vector (not necessarily p-dimensional) of
fixed-effects regression coefficients β to estimate the mean log-
arithmic motions μ≡ μ�Xi; β�. In a similar manner, Zi is an
ni × q dimension matrix of predictors for the q-dimensional
vector of random effects bi. Finally, the ni-dimensional vector
εi contains the residual errors. The subscript i here denotes that
this expression is relevant for the ith group. In the develop-
ment of ground-motion models, this ith group is simply the
ith earthquake.

The theoretical properties of models of this form have
been studied in detail by Pinheiro and Bates (2000), and the
interested reader is directed to that text for a far more rigor-
ous treatment than what is provided here. The focus of the
present article is to extract just the pertinent characteristics of
these quite elaborate models to render them applicable for the
most common cases of interest in engineering seismology.

As opposed to the framework considered by Abrahamson
and Youngs (1992), the framework of equation (9) allows for
multiple random effects within the vector bi. It should be noted
that although the random effects are represented in a linear man-
ner here, the random effects can be included within the nonlin-
ear model formulation in μ. However, as shown in the previous
section and was done by Al Atik and Abrahamson (2010), it
then becomes necessary to linearize the model using a first-or-
der expansion so that the linear form of equation (9) is satisfied.

Now, the random effects bi and the residual errors εi are
assumed to be zero-mean random vectors that are distributed
according to the multivariate normal distributions

EQ-TARGET;temp:intralink-;df10;55;147bi ∼N �0;Ψ� and εi ∼N �0; σ2Ini�: �10�

Pinheiro and Bates (2000) provide a very detailed theo-
retical description of how mixed-effects models are defined
and fitted from a computational perspective. In this description,
they state that the model parameters and random effects can be

estimated using a pseudodata approach in which the original
data and response matrices are augmented by pseudodata.

When using this augmented pseudodata, the governing
likelihood function is given by

EQ-TARGET;temp:intralink-;df11;313;685

L�β; θ; σ2jy� �
YM
i�1

absjΔj
�2πσ2�ni=2

Z
1

�2πσ2�q=2 exp�−∥~yi − ~μi

− ~Zibi∥2=2σ2�dbi; �11�

in which the ~yi, ~μi, and ~Zi are the augmented vectors and
matrices defined by

EQ-TARGET;temp:intralink-;df12;313;592

~yi �
n yi
0

o
; ~μi �

nμi

0

o
and ~Zi � Zi

Δ

� �
; �12�

and the term Δ is referred to as the relative precision factor
and is any matrix that satisfies the condition

EQ-TARGET;temp:intralink-;df13;313;521

Ψ−1

1=σ2
� ΔTΔ: �13�

Although this likelihood function appears far more com-
plex than that shown previously within the definition of the
Abrahamson and Youngs (1992) algorithm, it is actually an
equivalent formulation. It should also be noted that the use of
the augmented pseudodata is effectively a clever way to re-
move a nested product operation from the likelihood function.

The conditional modes of the random effects are then
defined from the expression

EQ-TARGET;temp:intralink-;df14;313;384b̂i � � ~ZT
i
~Zi�−1 ~ZT

i �~yi − ~μi�: �14�
As mentioned previously, within the field of empirical

ground-motion modeling, it is common to consider just a single
random effect that accounts for the variations in ground mo-
tions leaving the source of an earthquake of some magnitude.
This source variation is often attributed to variations in dynamic
stress drop from event to event but also to the specific features
of the dynamic evolution during a rupture, among other things.
In this particular case, the term Zibi consists of a column vector
of length ni (that is Zi � 1ni ) being multiplied by a scalar con-
stant (which is bi � bi). However, Stafford (2014) demon-
strated that the structure of Zibi can be far more complex
than this and can be used to reflect our understanding of how
ground motions might vary from place to place.

The algorithm of Abrahamson and Youngs (1992) is
subsumed within the more generic framework just presented.
For the traditional case of a single additive random effect, the
covariance matrix of the random effects is simply Ψ � τ2,
which then implies that

EQ-TARGET;temp:intralink-;df15;313;132

Ψ−1

1=σ2
� ΔTΔ � 1=τ2

1=σ2
�

�
σ

τ

�
2

⇒ Δ � σ

τ
: �15�

Because we also have Zi � 1ni , it is easy to show that the
term ~ZT

i
~Zi is given by ni � �σ=τ�2 and that
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EQ-TARGET;temp:intralink-;df16;55;733� ~ZT
i
~Zi�−1 �

1

ni � �σ=τ�2 : �16�

In addition, the term ~ZT
i �~yi − ~μi� �

Pni
j yij − μij. Therefore,

we have our estimates of bi ≡ bi, given by the expression

EQ-TARGET;temp:intralink-;df17;55;675b̂i �
Pni

j yij − μij

ni � �σ=τ�2 � τ2
Pni

j yij − μij
niτ2 � σ2

; �17�

which is exactly equivalent to the expression used by Abra-
hamson and Youngs (1992), and it can be appreciated that
the generic framework presented above is therefore able to
reduce to the special case considered by Abrahamson and
Youngs (1992).

Extension for Nonlinear Site Response

To relate our extended expression for the surface mo-
tions, including the influence of the site response to this
generic regression framework, it is necessary to recognize
the following equivalencies, starting with yi ≡ ySij�T�:

EQ-TARGET;temp:intralink-;df18;55;487μi � μi�Xi; β� � ŷRi �T� � ln cAF�TjŷRi �T0��; �18�

EQ-TARGET;temp:intralink-;df19;55;439Zibi �
�
1ni �

∂ lnAF�TjŷRi �T0��
∂yRi �T0�

ρη=τ�T; T0�
τ�T0�
τ�T�

�
ηRi �T�;

�19�
and

EQ-TARGET;temp:intralink-;df20;55;365

εi �
�
1ni �

∂ lnAF�TjŷRi �T0��
∂yRi �T0�

ρξ=σ�T; T0�
σ�T0�
σ�T�

�
ξRi �T�

� ζi�T�: �20�

For this elaborate case, the covariance matrix for the ran-
dom effects is still just given byΨ � τ2, which has important
implications for the apparent confusion discussed by Al Atik
and Abrahamson (2010). However, the Zi vector is no longer
1ni , but is instead defined as

EQ-TARGET;temp:intralink-;df21;55;231Zi � 1ni �
∂ lnAF�TjŷRi �T0��

∂yRi �T0�
ρη=τ�T; T0�

τ�T0�
τ�T� ; �21�

and the variance of εi has now changed completely from its
original σ2Ini to

EQ-TARGET;temp:intralink-;df22;55;161var�εi� � σ2Λi � σ2

λ1 0 � � � 0

0 λ2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � λni

2
6664

3
7775; �22�

in which the various λj terms are defined from

EQ-TARGET;temp:intralink-;df23;313;733

λj �
�
1� ∂ lnAF�TjŷRij�T0��

∂yRij�T0�
ρξ=σ�T; T0�

σ�T0�
σ�T�

�
2

� σ2lnAF�T�
σ2�T� : �23�

This complex variance for the residual errors means that
the regression model must be adjusted to account for the fact
that the residual errors are no longer independently and iden-
tically distributed (i.i.d.). In order to recast this problem so
that the residual errors are i.i.d., the generic regression model
must be whitened by premultiplying the terms of the regres-
sion equation by the transpose of Λ−1=2

i .
The generic regression model is now represented by

EQ-TARGET;temp:intralink-;df24;313;574y	i � μ	
i � Z	

i bi � ε	i ; �24�
in which the new terms y	i , μ	

i , Z
	
i , and ε	i are related to their

earlier counterparts through

EQ-TARGET;temp:intralink-;df25;313;518

y	i � �Λ−1=2
i �Tyi; μ	

i � �Λ−1=2
i �Tμi;

Z	
i � �Λ−1=2

i �TZi and ε	i � �Λ−1=2
i �Tεi: �25�

The random effects and residual error terms are now dis-
tributed according to

EQ-TARGET;temp:intralink-;df26;313;439bi ∼N �0;Ψ� and ε	i ∼N �0; σ2I� �26�
due to the fact that

EQ-TARGET;temp:intralink-;df27;313;396

var�ε	i � � E�ε	Ti ε	i � � �εTi Λ−1=2
i �Λ−1=2

i �Tεi� � E�εTi Λ−1
i εi�

� E�σ2Ini �: �27�
With this whitened form of the regression model, the

estimates of the random effects can be found again through
the use of augmented vectors and matrices using pseudodata:

EQ-TARGET;temp:intralink-;df28;313;312

~y	i �
n y	i
0

o
; ~μ	

i �
nμ	

i
0

o
and ~Z	

i � Z	
i
Δ

� �
: �28�

The conditional modes of the random effects are then
defined as

EQ-TARGET;temp:intralink-;df29;313;229b̂i � � ~Z	T
i

~Z	
i �−1 ~Z	T

i �~y	i − ~μ	
i �: �29�

In this general framework, it helps to understand a little
more clearly what the nature of Λi, its inverse, and square
roots are. Although we could see earlier that the individual
elements of Λi are rather elaborate terms (λj), the matrix it-
self is diagonal. Therefore, its inverse is simply given by

EQ-TARGET;temp:intralink-;df30;313;133Λ−1 �

1=λ1 0 � � � 0

0 1=λ2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1=λni

2
6664

3
7775; �30�
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and the square root of this matrix is

EQ-TARGET;temp:intralink-;df31;55;721Λ−1=2 �

1=
�����
λ1

p
0 � � � 0

0 1=
�����
λ2

p � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1=
������
λni

p

2
6664

3
7775: �31�

Thus, the premultiplication by the formidable looking term
�Λ−1=2

i �T amounts to a relatively innocuous operation involv-
ing a scalar multiplication on each element of our vectors.

As was done previously when demonstrating the equiv-
alence of this general approach with that of Abrahamson and
Youngs (1992), an expression for the random effects can be
obtained from consideration of the form of the two main
terms in equation (29).

The first term requires that we have defined ~Z	
i . In the

present case, this is a column vector that has individual
elements defined by

EQ-TARGET;temp:intralink-;df32;55;512

~Z	
i �

�
1� ∂ lnAF�TjŷRi1�T0��

∂yRi1�T0� ρη=τ�T; T0� τ�T0�
τ�T�

�
=

�����
λ1

p
�
1� ∂ lnAF�TjŷRi2�T0��

∂yRi2�T0� ρη=τ�T; T0� τ�T0�
τ�T�

�
=

�����
λ2

p

..

.�
1� ∂ lnAF�TjŷRini �T0��

∂yRini �T0� ρη=τ�T; T0� τ�T0�
τ�T�

�
=

������
λni

p
σ�T�=τ�T�

2
666666666664

3
777777777775
;

�32�
which dictates that the term ~Z	T

i
~Z	
i is defined by

EQ-TARGET;temp:intralink-;df33;55;365

~Z	T
i

~Z	
i �

Xni
j

1

λj

�
1� ∂ lnAF�TjŷRij�T0��

∂yRij�T0�
ρη=τ�T;T0�

τ�T0�
τ�T�

�
2

�
�
σ�T�
τ�T�

�
2

: �33�

The term ~Z	T
i �~y	i − ~μ	

i � is also more simple than it first
appears due to the presence of the 0 values in the augmented
entities. That is, we can drop the tilde from the various terms
and also factor out the whitening term to obtain

EQ-TARGET;temp:intralink-;df34;55;236

~Z	T
i �~y	i − ~μ	

i � � Z	T
i �y	i − μ	

i � � ZT
i Λ

−1
i �yi − μi�: �34�

This second term is then equivalent to a sum of weighted
residuals:
EQ-TARGET;temp:intralink-;df35;55;177

ZT
i Λ

−1
i �yi −μi� �

Xni
j

1

λj

�
1� ∂ lnAF�TjŷRij�T0��

∂yRij�T0�
ρη=τ�T;T0�

×
τ�T0�
τ�T�

�
�yij −μij�: �35�

Combining equations (33)–(35) through equation (29), the
final expression for the estimates of the random effects is
then given by

EQ-TARGET;temp:intralink-;df36;313;733b̂i �
Pni

j
1
λj

�
1� ∂ lnAF�TjŷRij�T0��

∂yRij�T0� ρη=τ�T; T0� τ�T0�
τ�T�

�
�yij − μij�

Pni
j

1
λj

�
1� ∂ lnAF�TjŷRij�T0��

∂yRij�T0� ρη=τ�T; T0� τ�T0�
τ�T�

�
2

� �σ�T�τ�T��2
:

�36�
In the case in which T � T0 the expression simplifies to

become

EQ-TARGET;temp:intralink-;df37;313;636b̂i �
Pni

j
1
λj

�
1� ∂ lnAF�TjŷRij�T��

∂yRij�T�

�
�yij − μij�

Pni
j

1
λj

�
1� ∂ lnAF�TjŷRij�T��

∂yRij�T�

�
2

� �σ�T�τ�T��2
: �37�

What should be clear from inspection of either equa-
tion (36) or (37) is that neither of the expressions can be
rearranged into a form in which the heteroskedasticity is ac-
commodated through the use of the mean values of the inter-
and intraevent standard deviations.

With these expressions for the conditional modes of the
random effects now defined, the principle component of the up-
dated regression algorithm that is yet to be defined is the covari-
ance matrix that will enter into the computation of the log
likelihood previously defined in equation (2). This covariance
matrix can be developed by recognizing that in the most general
case that has been considered herein, the random effects and
residual errors have been distributed according to

EQ-TARGET;temp:intralink-;df38;313;416bi ∼N �0;Ψ� and εi ∼N �0; σ2Λi�: �38�
With the variance components represented in this manner,

the conditional distribution of logarithmic ground motions,
given known fixed and random effects, can be defined as

EQ-TARGET;temp:intralink-;df39;313;352�yijμi;Zi; β; bi� ∼N �0; σ2Λi�: �39�
In a similar manner, the marginal distribution of the motions
given the unknown random effects is defined as

EQ-TARGET;temp:intralink-;df40;313;297�yijμi;Zi; β� ∼N �0;ZT
i ΨZi � σ2Λi�: �40�

Therefore, the covariance of the logarithmic motions for a
given event is defined using

EQ-TARGET;temp:intralink-;df41;313;241var�yijXi;Zi; β� � ZT
i ΨZi � σ2Λi � Ci: �41�

The likelihood for an entire dataset is the product of the
likelihoods for the individual events. Therefore, the log like-
lihood is the sum of the logarithmic contributions from each
event. The overall covariance matrix in this case is related to
the event-specific covariance matrices by C � C1⊕C2⊕…
(in which ⊕ is the direct sum operator). The determinant of
C is also defined by the product of the determinants of theCi.
That is, jCj � QM

i�1 jCij, and the inverse of C is composed
of the inverses of the individual block matrices that represent
its block diagonal form.

The log-likelihood function above can therefore be writ-
ten as
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lnL�−
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2
ln�2π�−1

2

XM
i�1

ln jCij−
1

2

XM
i�1

�yi−μi�TC−1
i �yi−μi�:

�42�
The equations linking the overall covariance matrix to

the covariance matrices for each event would require modi-
fication in the case in which random effects for site, or
regional, terms were considered (Stafford, 2014).

New Regression Algorithm

Building upon the results of the previous section, it is
now possible to propose the updated form of the random-
effects regression algorithm of Abrahamson and Youngs
(1992). The new algorithm is shown below.

1. Obtain starting estimates of the model parameters β using
a fixed-effects regression analysis.

2. For this β, maximize the log-likelihood function defined
in equation (42) in order to obtain the elements ofΨ (cor-
responding to just τ when only nonlinear site response is
considered) and σ.

3. Given β,Ψ (or just τ), and σ, compute the values of bi (or
just bi) for each event using equation (36) or equation (37),
or use a more elaborate expression derived in a similar
manner if multiple random effects are considered.

4. Obtain an updated estimate of β using a fixed-effects re-
gression analysis on the adjusted observations yi → yi −
Zibi (or just yi → yi − Zibi when only nonlinear site re-
sponse is considered).

5. Repeat steps 2–4 until the log-likelihood function is
maximized.

Example Application

To briefly demonstrate the difference between the rigor-
ous algorithm just presented and the approximate solution of
Abrahamson and Silva (2007) discussed earlier, a simple ex-
ample application is performed. The functional form used for
this exercise is similar to that used by Stafford (2014) but
includes nonlinear site response terms based upon those used
by Chiou and Youngs (2008).

The functional expression for the reference motion is
given as
EQ-TARGET;temp:intralink-;df43;55;216

lnyref � β1 � βMMw � �β4 � β5�Mw − 6:75�� ln
�������������������
R2
rup � β26

q
� β7Fnm � β8Frv � b: �43�

The nonlinear site response is a function of this refer-
ence motion and is defined as

EQ-TARGET;temp:intralink-;df44;55;148 ln y � ln yref � β9 ln
�
V lim

1100

�
� β10fexp�β11�V lim − 360��

− exp�β11�1100 − 360��g ln
�
yref � β12

β12

�
; �44�

in which the term V lim � min�VS30; 1100�. In this equation,
the coefficient βM is equal to β2 in the case in which
Mw ≤6:75 and is equal to β3 otherwise. The predictor variables
are the moment magnitude Mw, the rupture distance Rrup, the
average shear-wave velocity VS30, and binary variables for nor-
mal Fnm and reverse Frv events. The predicted quantity ln y is
the logarithmic peak ground acceleration. The random effect b
features in the expression for the reference motion, but this ef-
fect also appears nonlinearly within the site response terms. The
database used for the regressions is a subset of the Next Gen-
eration Attenuation (NGA)-West database (see Data and Re-
sources; Chiou et al., 2008) described in detail elsewhere (e.g.,
Stafford and Bommer, 2009; Stafford et al., 2009).

The model parameters obtained through application of the
rigorous approach presented in this article as well as through
the use of the approximate method of Abrahamson and Silva
(2007) are presented in Table 1. These results have been ob-
tained, in both cases, by fixing the value of σlnAF to 0.3. The
specific values of the coefficients are not of particular interest
and are only presented here to highlight the fact that the differ-
ent algorithms influence all aspects of the model, the fixed ef-
fects, variance components, and random effects. Although,
with that being said, the standard errors shown in Table 1 dem-
onstrate that the obtained fixed-effects coefficients are not sta-
tistically different from each other for this particular example.

The random effects, bi, obtained from both algorithms
are compared in Figure 1 by plotting these against the mag-
nitude of the event from which they came. It is clear from this
figure that the application of these two different approaches
also leads to different estimates of the random effects. The
differences that will be encountered in any particular case
will depend upon the fraction of records that are influenced
by nonlinear site effects, as predicted by the model.

Table 1
Coefficients from This Study and the Approach of

Abrahamson and Silva (2007)

Parameter This Study* Abrahamson and Silva (2007)*

β1 2.7179 ± 0.5267 2.4267 ± 0.5438
β2 −0.2145 ± 0.0871 −0.1576 ± 0.0915
β3 −0.2176 ± 0.0866 −0.1603 ± 0.0913
β4 −1.1666 ± 0.0398 −1.1841 ± 0.0419
β5 0.2557 ± 0.0227 0.2434 ± 0.0236
β6 5.3972 ± 0.8171 5.4670 ± 0.8372
β7 0.1831 ± 0.0558 0.1649 ± 0.0561
β8 0.1658 ± 0.0292 0.1587 ± 0.0294
β9 −0.5410 ± 0.0357 −0.5434 ± 0.0357
β10 −0.3812 ± 0.0932 −0.4258 ± 0.1091
β11 −0.0039 ± 0.0011 −0.0032 ± 0.0011
β12

† 0.1 0.1
τ 0.4282 ± 0.0423‡ 0.4304 ± 0.0427‡

σ 0.4736 ± 0.0106‡ 0.4774 ± 0.0106‡

*The
 values represent standard errors in the estimated coefficients.
†The value of β12 is fixed at 0.1 in both cases.
‡The standard errors presented for τ and σ are mapped values given

that the regression solves for ln�τ2� and ln�σ2�.
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A point that is interesting to note is that Table 1 indicates
that the variance components obtained from the new algorithm
are smaller than for the Abrahamson and Silva (2007) ap-
proach. However, visual inspection of the random effects in
Figure 1 appears to suggest the contrary. These differences can
arise for a number of reasons. Small differences in the total
residuals exist due to the slightly different fixed-effects coeffi-
cients, and the random effects are partitioned from these total
residuals. The records for any given event are associated with
differing degrees of modeled nonlinearity in the soil response.
Events that generate motions strong enough to develop nonlin-
ear site response are often widely recorded, and the more distant
recordings tend to have linear response. Taking the mean of the
variance components for all records from a given event can
lessen the influence of the records with the strongest nonlinear-
ity. Both of these causes depend upon the particular dataset and
may result in positive or negative differences. However, the
main reason for the systematic pattern of larger random effects
for the method of this study can be most easily appreciated from
consideration of equations (3) and (37) for the case in which an
event is singly recorded. In this case, it can be shown that the
ratio of random effects found using the mean of the interevent
and intraevent standard deviations to those from this study is
1�∂lnAF�TjŷRij�T��=∂yRij�T�. Given that the partial derivative
is zero or negative (for the vast majority of cases in reality), the
random effects computed using Abrahamson and Silva (2007)
are smaller. This example serves as an important reminder that
the interevent variance of a ground-motion model is not simply
the variance of the random effects.

Conclusions

The inclusion of nonlinear site response effects within
ground-motion models has resulted in the complexity of the
variance structures of these models increasing considerably.
A side effect of this increased complexity is that the most
commonly used regression algorithm for fitting these models
is no longer strictly valid. The more generic framework pre-

sented in this article allows for this common algorithm to be
extended to handle the more elaborate variance structures
that are now encountered during the development of sophis-
ticated ground-motion models that incorporate nonlinear site
response and other nonlinear effects.

Data and Resources

The ground-motion data was taken from the Pacific
Earthquake Engineering Research (PEER) Next Generation
Attenuation (NGA) database (http://peer.berkeley.edu/nga,
last accessed June 2013).
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Figure 1. Comparison of random effects computed using the
method of the present study and that of Abrahamson and Silva
(2007; AS2007). The color version of this figure is available only
in the electronic edition.
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