1 2 3	Recovery of cardiac function in cardiomyopathy due to titin truncation							
4	Leanne E Felkin, PhD ¹ , Roddy Walsh, MSc ² , James S Ware, PhD MRCP ¹ , Magdi H							
5	Yacoub, FRS ¹ , Emma J Birks, PhD FRCP ³ , Paul JR Barton, PhD ^{2*} , Stuart A Cook, PhD							
6	MRCP ^{4*}							
7								
8	1. National Heart and Lung Institute, Imperial College London, London, England.							
9	2. NIHR Biomedical Research Unit in Cardiovascular Disease at Royal Brompton and							
10	Harefield NHS Foundation Trust and Imperial College London, London, England.							
11	3. University of Louisville, Louisville, Kentucky, USA.							
12	4. National Heart Centre Singapore, Singapore.							
13	*These authors contributed equally to the work.							
14 15	Corresponding Author							
16	Professor Stuart A Cook							
17	National Heart Centre Singapore							
18	5 Hospital Drive							
19	Singapore, 169609							
20	Tel: +65 60748000							
21 22	Email: <u>stuart.cook@duke-nus.edu.sg</u>							

- 24 Word count = 577

25	Introduction: Dilated cardiomyopathy (DCM) is a frequent cause of heart failure and
26	a common indication for heart transplantation. DCM has a strong genetic basis and
27	the most common disease-causing mutations are variants that truncate the
28	sarcomeric protein titin (TTN truncating variants (TTNtvs); prevalence in familial or
29	idiopathic DCM 25% ¹ and 13% ² , respectively). The prognosis of DCM is poor, but
30	functional recovery from end-stage failure has been reported following both optimal
31	medical therapy ³ and left ventricular assist device (LVAD) support ^{4,5} , though the
32	determinants of successful recovery are unknown. It has been proposed that
33	recovery from genetic cardiomyopathy may not be expected since the underlying
34	cause is irreversible; whereas recovery may be more likely when DCM is due to
35	reversible, non-genetic factors (e.g. myocarditis) ⁶ . To address this directly, we
36	sequenced TTN in end-stage DCM patients who either recovered or did not recover
37	following LVAD support.
37 38	following LVAD support.
	following LVAD support. Methods: We sequenced TTN in 70 cases referred to the Royal Brompton and
38	
38 39	Methods: We sequenced TTN in 70 cases referred to the Royal Brompton and
38 39 40	Methods: We sequenced TTN in 70 cases referred to the Royal Brompton and Harefield National Health Service Trust between 1998 and 2010 for LVAD
38 39 40 41	Methods: We sequenced TTN in 70 cases referred to the Royal Brompton and Harefield National Health Service Trust between 1998 and 2010 for LVAD implantation due to non-ischaemic, medically refractory, end-stage DCM. Of these,
 38 39 40 41 42 	Methods: We sequenced TTN in 70 cases referred to the Royal Brompton and Harefield National Health Service Trust between 1998 and 2010 for LVAD implantation due to non-ischaemic, medically refractory, end-stage DCM. Of these, 29 patients recovered cardiac function during LVAD support and had their LVAD
 38 39 40 41 42 43 	Methods: We sequenced TTN in 70 cases referred to the Royal Brompton and Harefield National Health Service Trust between 1998 and 2010 for LVAD implantation due to non-ischaemic, medically refractory, end-stage DCM. Of these, 29 patients recovered cardiac function during LVAD support and had their LVAD explanted. The other 41 patients did not recover cardiac function and were
 38 39 40 41 42 43 44 	Methods: We sequenced TTN in 70 cases referred to the Royal Brompton and Harefield National Health Service Trust between 1998 and 2010 for LVAD implantation due to non-ischaemic, medically refractory, end-stage DCM. Of these, 29 patients recovered cardiac function during LVAD support and had their LVAD explanted. The other 41 patients did not recover cardiac function and were transplanted or died while on LVAD support. A pharmacological regime designed to
 38 39 40 41 42 43 44 45 	Methods: We sequenced TTN in 70 cases referred to the Royal Brompton and Harefield National Health Service Trust between 1998 and 2010 for LVAD implantation due to non-ischaemic, medically refractory, end-stage DCM. Of these, 29 patients recovered cardiac function during LVAD support and had their LVAD explanted. The other 41 patients did not recover cardiac function and were transplanted or died while on LVAD support. A pharmacological regime designed to promote recovery (combination therapy ^{4,5}) was used in 35/70 patients and

49	known coding exons in TTN ² . Genetic variants in NGS data were identified as
50	previously described ² and were confirmed independently. Statistical comparisons
51	between groups were tested using Fisher's exact test, ANOVA and unpaired t-test as
52	appropriate. Differences in survival rates were tested using the Mantel-Cox test.
53	Statistical significance was defined as a P-value of <0.05.
54	
55	Results: We identified TTNtvs in 10 out of 70 cases (14% of total; Table 1). All TTNtvs
56	were either novel or very rare ${}^{\alpha}$ and located in exons constitutively expressed in the
57	heart and, as such, considered disease-causing ² . Of the patients with a TTNtv, $6/10$
58	recovered sufficient cardiac function to enable LVAD explanation. There was no
59	statistical difference in TTNtv frequency between recovery cases and those who
60	were transplanted or died on the device (6/29 [21%] vs. 4/41 [10%] respectively,
61	P=0.30), and no evidence of clinical differences between TTNtv-positive and TTNtv-
62	negative cases at the time of LVAD implantation (Table 1). Comparing the transplant-
63	free survival rate in recovered patients, we found no difference between TTNtv-
64	positive and TTNtv-negative cases; at three years post-explant, 4/6 (67%) TTNtv-
65	positive cases were free from death and transplantation compared to 17/23 (74%)
66	TTNtv-negative cases (Figure 1; P=0.74).
67	
68	Discussion: Sustained improvement in cardiac function is observed in end-stage
69	DCM following medical therapy and LVAD support, but it was previously unknown
70	whether recovery could be achieved in DCM due to a genetic cause. Here, we show

- that recovery is possible in DCM due to a truncating mutation in the TTN gene. We
- also present the preliminary findings that DCM with a TTNtv is as equally recoverable

- 73 as DCM without a TTNtv and that the long-term durability of recovery is also
- 74 comparable. These observations now require replication in multi-centre prospective
- 75 studies. Since TTNtvs are the most common genetic cause of DCM these results have
- 76 important implications for patient selection for recovery programs.
- $^{\alpha}$ Nine TTNtvs were not present in ExAC, whilst one variant had a minor allele
- 78 frequency of 0.0000166 (<u>http://exac.broadinstitute.org/</u>).
- 79

80 Author contributions

- 81 Dr Felkin had full access to all of the data in the study and takes responsibility for the
- 82 integrity of the data and the accuracy of the data analysis.

83 Funding/Support

- 84 This work was supported by the Fondation Leducq, Heart Research UK, the
- 85 Wellcome Trust and the National Institute for Health Research Cardiovascular
- 86 Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation
- 87 Trust and Imperial College London.

88 Role of the Funders/Sponsors

- 89 The funders had no role in the design and conduct of the study; collection,
- 90 management, analysis, and interpretation of the data; preparation, review or
- 91 approval of the manuscript; and decision to submit the manuscript for publication.

92 Additional Contributions

- 93 We thank all the patients who participated in this study as well as Rachel Buchan
- 94 (Royal Brompton Hospital), for technical support and Paula Rogers (Harefield
- 95 Hospital) for assistance in the collection of patient data. These contributors received
- 96 no compensation for their assistance aside from employment at the institutions
- 97 where the study was conducted.
- 98

100	1.	Herman DS, Lam L, Taylor MR et al. Truncations of titin causing dilated
101		cardiomyopathy. N Engl J Med 2012;366(7):619-28.
102		
103	2.	Roberts AM, Ware JS, Herman DS et al. Integrated allelic, transcriptional, and
104		phenomic dissection of the cardiac effects of titin truncations in health and
105		disease. Sci Transl Med 2015;7(270):270ra6.
106		
107	3.	Merlo M, Stolfo M, Anzini M et al. Persistent recovery of normal left
108		ventricular function and dimension in idiopathic dilated cardiomyopathy
109		during long-term follow-up: does real healing exist? J Am Heart Assoc 2015;
110		4(1):e001504.
111		
112	4.	Birks EJ, Tansley PD, Hardy J et al. Left ventricular assist device and drug
113		therapy for the reversal of heart failure. N Engl J Med 2006;355(18):1873-84.
114		
115	5.	Birks EJ, George RS, Hedger M et al. Reversal of severe heart failure with a
116		continuous-flow left ventricular assist device and pharmacological therapy: a
117		prospective study. Circulation 2011;123(4):381-90.
118		
119	6.	Mann DL, Barger PM, Burkhoff D. Myocardial recovery and the failing heart:
120		myth, magic, or molecular target? J Am Coll Cardiol 2012;60(24):2465-72.
121 122		

123

124 **Table 1:** TTNtv status and clinical features of LVAD-supported, end-stage DCM

125 patients who either recovered cardiac function and were successfully explanted

- 126 (recovered), or who were transplanted or died with the device *in situ* (not
- 127 recovered).

128

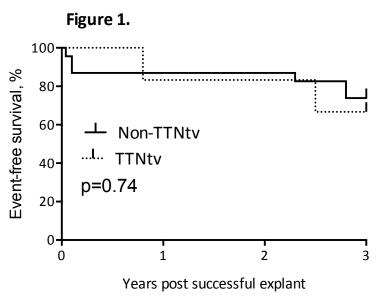
129

- 130 **Figure 1. TTNtv and survival in recovered DCM patients.** In the three years
- 131 following successful LVAD explanation, the actuarial rate of survival and freedom
- 132 from transplantation at 1, 2 and 3 years post-explant in TTNtv-positive cases was
- 133 83%, 83% and 67%. In TTNtv-negative cases, the rate was 88%, 88% and 75%.
- 134 Differences between the survival rates were tested using the Mantel-Cox test.

135

136

137 **Table 1.**


	TTNtv, n=10		No TTNtv, n=60		
Variable	Recovered	Not recovered	Recovered	Not recovered	P value
Number of patients	6	4	23	37	0.30 ^A
Male, n (%)	6 (100)	4 (100)	18 (78)	30 (81)	0.29 ^A
Clinical comments	-	1 post-chemo	2 PPCM	3 PPCM 2 post-chemo	
Family history, n (%)	2 (33)	0 (0)	2 (8.7)	1 (2.7)	1.0 ^A
Survived > 30 days post LVAD implant, n (%)	6 (100)	2 (50)	23 (100)	34 (92)	0.13 ^A
Received combination therapy ³ , n (%)	6 (100)	2 (50)	23 (100)	14 (38)	0.69 ^A
Age at diagnosis, mean (SD), years	31.7 (10.8)	37.3 (15.6)	31.6 (12.5)	34.5 (11.9)	0.77 ^B
Age at implant, mean (SD), years	33.0 (12.2)	38.6 (17.3)	35.5 (12.8)	37.5 (12.8)	0.83 ^B
Implant LVEF, mean (SD), %	25.6 (13.3)	19.7 (9.5)	20.8 (10.1)	18.8 (9.6)	0.58 ^B
Implant FS, mean (SD), %	10.3 (4.6)	8.5 (3.4)	9.3 (3.9)	8.6 (4.2)	0.90 ^B
Implant LVEDD, mean (SD), mm	69.8 (6.6)	72.3 (10.4)	73.1 (14.3)	71.7 (9.6)	0.95 ^B
Time on LVAD, mean (SD), days	214 (125)	212 (313)	317 (151)	520 (532)	0.11 ^B
Explant LVEF, mean (SD), %	64.0 (4.2)	n/a	65.9 (9.5)	n/a	0.64 ^C
Explant FS, mean (SD), %	29.5 (3.3)	n/a	31.9 (7.3)	n/a	0.53 ^C
Explant LVEDD, mean (SD), mm	44.5 (6.4)	n/a	54.3 (8.9)	n/a	0.05 ^C

TTNtvs in cohort who recovered: c.87624C>A*; c.49346-1G>A*; c.76383_76386delTAAT*; c.46782C>A*; c.81518delC*; c.71326G>T.

TTNtvs in cohort who did not recover: c.69976G>T; c.67495C>T*; c.41641C>T; c.58172delA*. Titin variant position is given according to locus reference genomic (LRG) sequence 391_t1. A detailed overview of TTN gene structure, including the isoforms and protein domains affected by the TTNtvs described here, can be found at <u>http://cardiodb.org/titin</u>. *Variants reported in Roberts *et al*². P-values calculated with Fisher's exact test^A, ANOVA^B and unpaired t-test^C. **Abbreviations:** TTNtv=titin truncating variant, LVAD=left ventricular assist device, DCM=dilated

Abbreviations: TTNtv=titin truncating variant, LVAD=left ventricular assist device, DCM=dilated cardiomyopathy, PPCM=peri-partum cardiomyopathy, LVEF=left ventricular ejection fraction, FS=fractional shortening, LVEDD=left ventricular end diastolic dimension, n/a=not applicable.

139

