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Abstract

This thesis makes manifest the roles of the normed division algebras R,C,H and

O in various supergravity theories. Of particular importance are the octonions O,

which frequently occur in connection with maximal supersymmetry, and hence also

in the context of string and M-theory. Studying the symmetries of M-theory is

perhaps the most straightforward route towards understanding its nature, and the

division algebras provide useful tools for such study via their deep relationship with

Lie groups.

After reviews of supergravity and the definitions and properties of R,C,H and

O, a division-algebraic formulation of pure super Yang-Mills theories is developed.

In any spacetime dimension a Yang-Mills theory with Q real supercharge compo-

nents is written over the division algebra with dimension Q/2. In particular then,

maximal Q = 16 super Yang-Mills theories are written over the octonions, since

O is eight-dimensional. In such maximally supersymmetric theories, the failure of

the supersymmetry algebra to close off-shell (using the conventional auxiliary field

formalism) is shown to correspond to the non-associativity of the octonions.

Making contact with the idea of ‘gravity as the square of gauge theory’, these

division-algebraic Yang-Mills multiplets are then tensored together in each spacetime

dimension to produce a pyramid of supergravity theories, with the Type II theories

at the apex in ten dimensions. The supergravities at the base of the pyramid have

global symmetry groups that fill out the famous Freudenthal-Rosenfeld-Tits magic

square. This magic square algebra is generalised to a ‘magic pyramid algebra’, which

describes the global symmetries of each Yang-Mills-squared theory in the pyramid.

Finally, a formulation of eleven-dimensional supergravity over the octonions is

presented. Toroidally compactifying this version of the theory to four or three

spacetime dimensions leads to an interpretation of the dilaton vectors (which or-

ganise the coupling of the seven or eight dilatons to the other bosonic fields) as the

octavian integers – the octonionic analogue of the integers.
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1. Introduction

1.1. Supergravity, Superstrings and M-Theory

The goal of high energy physics is arguably to determine the fundamental micro-

scopic constituents of the universe and the basic rules that govern their interactions.

For most theorists, the hope is that there are simple, logical organising principles

underlying the structure of these elementary building blocks, which might allow us

to paint an essentially complete picture of their properties and behaviour in the

form of one or two short equations – a ‘theory of everything’.

Quantum field theory and the Standard Model of particle physics have given

us a powerful description of this microscopic world, bringing into focus the realm

of quarks, leptons and gauge bosons, the ingredients required to explain all non-

gravitational phenomena observed so far. To incorporate gravity into this quantum

picture requires a marriage between the Standard Model and Einstein’s theory of

general relativity, which stipulates that at the macroscopic scale gravity is the man-

ifestation of the smooth curvature of spacetime. However, the basic frameworks of

quantum field theory and general relativity are infamously incompatible; unlike the

field theories describing electromagnetism and the weak and strong nuclear forces,

general relativity is not renormalisable, and hence any naive attempt to calculate

graviton scattering amplitudes (beyond one loop [2, 3]) is thwarted by untameable

divergences.

In the early 1980s many physicists believed that a candidate ‘theory of everything’

was Cremmer and Julia’s theory of eleven-dimensional supergravity [4, 5]. The

vital ingredient in this theory, and a protagonist in this thesis, is supersymmetry, a

symmetry which unites fermions and bosons. Intriguingly, supersymmetry requires

the existence of Einstein’s gravity [6], as well as placing an upper limit [7] of eleven

on the number of spacetime dimensions D. The ultraviolet (UV) behaviour of

supersymmetric quantum field theories also tends to be good [8], due to cancellations

between divergences coming from bosons and divergences coming (with the opposite

sign) from fermions, so it was hoped that this might render D = 11 supergravity

renormalisable.
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Far from being a disadvantage, the seven extra dimensions of the theory are a

potentially great asset, thanks to the techniques of Kaluza-Klein reduction [9, 10,

11, 12, 13]. Supposing that the extra dimensions take the form of some compact

seven-manifold M7 of length scale L, then at scales much larger than L the low-

energy effective theory is not only four-dimensional, but also turns out to have a

gauge symmetry: the isometry group [14] of M7. In other words, the existence

of extra dimensions might reveal the origin of the Standard Model’s mysterious

SU(3) × SU(2) × U(1) gauge symmetry, which serves as its (slightly ad hoc) or-

ganising principle; in the low-energy four-dimensional physics this symmetry would

be a remnant of the underlying higher-dimensional gravitational theory’s invariance

under general coordinate transformations.

One seemingly attractive feature of D = 11 supergravity came from Witten’s

discovery [14] that seven extra dimensions are the minimum required to produce

the Standard Model’s gauge group via Kaluza-Klein reduction. This means that a

world with eleven spacetime dimensions is singled out both from above and below,

by supersymmetry and the Kaluza-Klein theory of the Standard Model, respectively.

Is this a profound clue about nature, or just a strange coincidence? Or both? The

answer remains to be seen.

For a while, interest in eleven-dimensional supergravity faded as it appeared to be

non-renormalisable after all, and there were difficulties obtaining the chiral fermions

of the Standard Model by Kaluza-Klein reduction [14]. Moreover, by 1984 ten-

dimensional superstring theory was gaining popularity [15, 16, 17, 18] and seemed

promising as a unified and apparently UV-finite theory of all particles and interac-

tions, including quantum gravity. Its central idea is that at the Planck scale any

individual particle is a tiny one-dimensional (supersymmetric) string, and that the

particular quantum-mechanical vibrational mode of this string dictates its corre-

sponding particle type. It is in this sense that string theory’s description of particle

physics is unifying; each particle type is a different manifestation of the same un-

derlying object. In particular, there is a vibrational mode with the properties of

a massless spin-2 particle, which may be identified with the graviton. Better yet,

quantum consistency of superstring theory demands that its low-energy field theory

approximation is equivalent to general relativity – or rather to its supersymmetric

generalisation in ten spacetime dimensions.

Unlike the unique D = 11 supergravity theory, there are several (anomaly-free)

D = 10 supergravities, each of which is the low-energy description of one of five

distinct consistent string theories known as Type I, Heterotic SO(32), Heterotic

E8 × E8, Type IIA and Type IIB [15, 16, 17, 18]. The five string theories are

14



distinguished by fundamental assumptions regarding basic features of their strings,

such as whether the strings are oriented or unoriented, or whether they may be open

line segments or only closed loops. Remarkably in the 1990s it was discovered that

the five theories are connected to one another via a web of dualities, that is, they are

equivalent to one another upon taking various limits [19, 20, 21, 22]. For example the

Type I theory in the limit of strong coupling is equivalent to the Heterotic SO(32)

theory with weak coupling [19, 21], and vice versa. Because of this web of dualities,

the five string theories are now understood to be limiting cases of a single theory,

dubbed M-theory, which is yet to be properly defined.

At its fundamental level M-theory is thought to include extended vibrating objects

of various dimensionalities called branes [22, 23]. Just as the D = 10 supergravity

field theories correspond to the low-energy physics of strings, it is believed that the

low-energy physics of M-theory is described by none-other than D = 11 supergrav-

ity. For this reason, there is as much interest in supergravity in ten and eleven

dimensions today – and in supergravity more generally – as there was in the 1970s

and 1980s. These supersymmetric generalisations of Einstein’s theory are perhaps

the best handle we have on working towards an understanding of M-theory, as well

as its hoped eventual reduction to the Standard Model.

1.2. Octonions and Supergravity

Complex numbers, ubiquitous in modern physics, generalise the real line to the

complex plane. It is natural to ask whether this can be taken further; are there

higher-dimensional number systems whose mathematics may have some utility or

significance in physical theories? In fact, there is a set of precisely four such number

systems, the so-called normed division algebras – the real numbers R, the complex

numbers C, the quaternions H and the octonions O – and they all have roles to play

in physics1.

A recurring theme in the study of supersymmetry and string theory is the con-

nection to these four special algebras. See, for example, references [24, 25, 26, 27,

28, 29, 30, 31, 32, 33, 34]. The octonions, titular in this thesis, are perhaps the most

intriguing and the most mysterious of these. Not only do they hold an exceptional

status as the largest division algebra, but they may be used to describe representa-

tions of the Lorentz group in spacetime dimensions D = 10, 11 – dimensions that are

1In fact, there is actually another useful series of algebras that generalise R, C and H: the Clifford
algebras, Cl(N). They begin as Cl(0) ∼= R, Cl(1) ∼= C, Cl(2) ∼= H, but they depart from the
division algebras at Cl(3) ∼= H⊕H and continue from there on to N →∞ in terms of matrices
over R, C and H. These will be introduced in Chapter 4.
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themselves distinguished as those preferred by string and M-theory, as well as be-

ing the maximum dimensions typically allowable for rigid and local supersymmetry,

respectively.

The aim of this thesis is to make manifest the roles of the four normed division al-

gebras R,C,H and O in various supergravity theories. The octonions will frequently

appear in connection with maximal supersymmetry, and hence also in the context

of string and M-theory. Studying the symmetries of these theories is perhaps the

most straightforward route towards understanding their nature, and the division

algebras provide natural building blocks for such study via their deep relationship

with Lie groups. In particular, as will be demonstrated in the chapters to come,

exceptional groups such as E8 are inherently octonionic in structure and often arise

as the symmetries of supergravities [4, 35], strings [36] and M-theory [37, 38].

After a brief review of supersymmetry and supergravity in Chapter 2, Chapter

3 will provide a detailed introduction to the normed division algebras and their

relationship with triality, a pivotal cog in the machinery of string theory [36, 39, 16].

Chapter 4 will build on a well-established description of minimally supersymmetric

Yang-Mills theories in dimensions D = 3, 4, 6 and 10 in terms of R,C,H and O [24,

31], and by dimensional reduction extend this description to incorporate additional

supersymmetries and to include any spacetime dimension 3 ≤ D ≤ 10. Maximally

supersymmetric Yang-Mills theories, which are descended from D = 10, are all

written over the octonions in this formalism.

Chapter 5 will introduce the idea of ‘gravity as the square of gauge theory’, and in

this spirit the division-algebraic Yang-Mills multiplets will be ‘multiplied’ together

to produce supergravity theories valued over tensor products of division algebras. In

D = 3 this leads to a set of supergravities whose global symmetry groups correspond

to a famous set of Lie algebras called the Freudenthal-Rosenfeld-Tits magic square2,

which will also be introduced in Chapter 5.

In D = 3 there are four super Yang-Mills theories (N = 1, 2, 4, 8), while in D = 10

there is just one (N = 1); hence ‘squaring Yang-Mills’ in the range 3 ≤ D ≤ 10 leads

to a pyramid of supergravity theories, which will be the subject of Chapter 6. Type

II supergravity sits at the apex in D = 10, while the magic square supergravities

populate the 4 × 4 base of the pyramid in D = 3. The magic square algebra of

Freudenthal-Rosenfeld-Tits will be generalised to a ‘magic pyramid algebra’, which

describes the global symmetries of each Yang-Mills-squared theory.

Finally, in Chapter 7, a formulation of eleven-dimensional supergravity over the

2Note that the magic square has appeared before in supergravity in an almost entirely different
context [25, 26], with each of its four rows in a different dimension D = 3, 4, 5, 6 (and with
different real forms of its Lie algebras).
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octonions will be presented. Toroidally compactifying this version of the theory to

four or three spacetime dimensions leads to an effective Lagrangian written in terms

of the octavian integers [40, 41] – the octonionic analogue of the integers.

1.3. Conventions and Units

All physics in this thesis will be expressed in natural units, with c = ~ = G = 1. The

metric will have ‘mostly plus’ signature (−,+,+, · · · ,+) in any number of spacetime

dimensions D.

When dealing with decompositions of Lie algebras, the direct sum symbol ⊕ will

be reserved to sit between commuting Lie subalgebras, while + will denote the direct

sum for subspaces that do not commute with these subalgebras – for example,

so(m+ n) ∼= so(m)⊕ so(n) +Rm ⊗Rn. (1.1)

Similarly, the symbol 	 between two commuting Lie algebras will denote ‘direct

subtraction’, e.g.

u(n)	 u(1) ∼= su(n), (1.2)

while the symbol − will denote the removal of a subspace that does not commute

with the rest of the algebra, as in

so(m+ n)−Rm ⊗Rn ∼= so(m)⊕ so(n). (1.3)

Also note that direct sums and direct products of vector spaces will be used inter-

changeably wherever such operations are essentially indistinguishable – for example

R2 ∼= R⊕R.
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2. A Review of Supersymmetry

and Supergravity

This chapter reviews the basic ideas and features of supersymmetric theories, mostly

at the classical level. Although the quantum properties of supersymmetric field

theories make up a rich subject, they will mostly be beyond the scope of this thesis,

whose focus is at the level of Lagrangians and their symmetries.

The first section is an illustration of the basic features of a theory with a global

supersymmetry by means of a simple ‘toy’ model, roughly following the exposition

in [42]. Then comes a brief introduction to super Yang-Mills theory, followed by a

review of supergravity and the all-important eleven-dimensional theory. The final

two sections will demonstrate the techniques of Kaluza-Klein reduction on a torus

T d and examine the symmetries of the resulting lower-dimensional theories.

2.1. The Basics of Rigid Supersymmetry

Consider the simple theory of a free scalar field φ and Dirac spinor field ψ, both of

mass m:

S =

∫
d4x

(
−1

2
∂µφ∂

µφ− iψ̄γµ∂µψ − 1
2
m2φ2 + imψ̄ψ

)
. (2.1)

The Lagrangian is invariant – up to a total derivative – under the following trans-

formations [8]:

δφ = iε̄ψ, δψ = 1
2
(γµ∂µ +m)φε, (2.2)

where ε is some constant spinor parameter. This is called a supersymmetry. The

transformations ‘rotate’ a bosonic field into a fermionic one, and vice versa. In

general the set of fields rotated into one another by supersymmetry transformations

is called a supermultiplet – in this case this is just the pair {φ, ψ}. Thanks to

Noether’s theorem, this symmetry implies the existence of a conserved current

J µ = (γν∂νφ−mφ)γµψ. (2.3)
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Note that this supercurrent is a vector-spinor quantity. There is also a corresponding

conserved spinor supercharge, which can be expressed in the usual form:

Q =

∫
d3xJ 0(x, t). (2.4)

The total number of supercharges – equal to the number of independent super-

symmetries – is usually denoted by N . The theory above has N = 1 since there

is just one set of transformations and one corresponding spinor supercharge. The

supercharge generates the supersymmetry transformations via Poisson brackets,

δφ = [ε̄Q, φ]PB = iε̄ψ, δψ = [ε̄Q, ψ]PB = 1
2
(γµ∂µ +m)φε, (2.5)

where the Poisson bracket between any two functions F and G of the fields and their

conjugate momenta is defined as

[F,G]PB :=

∫
dD−1~x

(
δF

δΦi(~x)

δG

δΠi(~x)
− δF

δΠi(~x)

δG

δΦi(~x)

)
, (2.6)

where the sum i runs over all fields Φi in a given theory and their momenta Πi.

Of course, to see any interesting physics one must consider an interacting field

theory, such as that introduced in the following section.

2.2. Super Yang-Mills Theory

Super Yang-Mills theory (SYM) is, as the name suggests, the supersymmetric gen-

eralisation of pure Yang-Mills theory. As such, the four-dimensional N = 1 theory

contains a massless gauge boson AAµ , where the index A = 1, · · · , dim[G] labels the

adjoint representation of some simple, compact, non-Abelian gauge group G. Its

‘superpartner’ is a massless Majorana spinor λA sometimes called a ‘gaugino’. The

action is

S =

∫
d4x

(
−1

4
FA
µνF

Aµν − i
2
λ̄AγµDµλ

A
)
, (2.7)

with the covariant derivative and field strength given by the usual expressions

Dµλ
A = ∂µλ

A + gfBC
AABµ λ

C ,

FA
µν = ∂µA

A
ν − ∂νAAµ + gfBC

AABµA
C
ν .

(2.8)

Again up to a total derivative, the Lagrangian is invariant under the supersymmetry

transformations

δAAµ = − i
2
ε̄γµλ

A, δλA = 1
4
FA
µνγ

µνε, (2.9)
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where in general the matrix γµ1µ2...µr is defined as the antisymmetrised product of r

gamma matrices

γµ1µ2...µr := γ[µ1γµ2 . . . γµr] (2.10)

and is called the rank-r Clifford algebra element. A very important term of the form

fBC
A
(
λ̄Bγνλ

C
) (
ε̄γνλA

)
arises in the variation of the Lagrangian, which vanishes by

virtue of a special spinor identity [15] that holds only in dimensions D = 3, 4, 6, 10.

A proof of this will be given in Chapter 4.

The fact that a super Yang-Mills theory with supermultiplet {Aµ, λ} exists only

in these particular dimensions can be understood by counting the on-shell degrees

of freedom of the fields; it is a basic requirement for a non-trivial supersymmetric

theory that the numbers of bosonic and fermionic on-shell degrees of freedom are

equal – see Section 2.4. In D dimensions a vector field carries D−2 on-shell degrees

of freedom, which matches that of a single spinor only when D− 2 = 1, 2, 4, 8, since

the number of degrees of freedom for a spinor is always a power of 2.

This is a first hint that the division algebras R,C,H,O might be related to super-

symmetry; the number of bosonic (fermionic) on-shell degrees of freedom in SYM

can be either 1, 2, 4 or 8 – precisely the dimensions of R,C,H and O. This is indeed

no coincidence, as will be demonstrated in Chapter 4.

2.3. Supersymmetry Algebras

It is instructive to consider the commutator of two successive supersymmetry trans-

formations with independent parameters ε1 and ε2. In the case of the SYM example

above, a straightforward calculation using the supersymmetry transformations gives

δ1(δ2A
A
µ )− δ2(δ1A

A
µ ) = − i

2
(ε̄1γ

νε2)FA
νµ,

δ1(δ2λ
A)− δ2(δ1λ

A) = − i
2
(ε̄1γ

µε2)Dµλ
A +

(
i
2
(ε̄2γ

µDµλ
A)ε1 − (1↔ 2)

)
,

(2.11)

which, on substitution of the fermionic equation of motion γµDµλ
A = 0, becomes

simply:

[δ1, δ2]AAµ = aνFA
νµ,

[δ1, δ2]λA = aµDµλ
A, with aµ := − i

2
ε̄1γ

µε2.
(2.12)

The commutator of the two supersymmetry transformations is thus a translation

– in this case a gauge-covariant one. That a supersymmetry transformation is the

‘square root of a translation’ demonstrates the crucial point that supersymmetry is

to be regarded as a spacetime symmetry rather than an internal one. This can also
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be seen from the fact is that the associated conserved charge is a spinor, and hence

transforms non-trivially under the Lorentz group, meaning supersymmetry does not

commute with Lorentz transformations.

Using equation (2.5) one can write the transformations in terms of Poisson brack-

ets with the supercharge Q:

[δ1, δ2]AAµ =
[
ε̄1Q, [ε̄2Q,A

A
µ ]PB

]
PB
− (1↔ 2)

=
[
[ε̄1Q, ε̄2Q]PB, A

A
µ

]
PB
.

(2.13)

However, this gives a translation by aµ, which can be written as

[
[ε̄1Q, ε̄2Q]PB, A

A
µ

]
PB

= − i
2
ε̄1γ

νε2 [Pν , A
A
µ ]PB, (2.14)

where the momentum Pµ is the conserved charge associated with translational sym-

metry, obtained from the energy-momentum tensor Tµν :

Pµ =

∫
d3xTµ0. (2.15)

In fact, equation (2.14) holds not just for AAµ , but for any field in a supersymmetric

theory; thus in general

[ε̄1Q, ε̄2Q]PB = − i
2
ε̄1γ

νε2 Pν . (2.16)

Then, since ε1 and ε2 are arbitrary, one can strip them from this equation (making

use of the anti-commutativity of fermionic quantities) and conclude that:

{Qα, Q̄
β}PB = − i

2
(γµ)α

βPµ, (2.17)

where α, β are spinor indices and curly braces denote the Poisson bracket of two

fermionic quantities. Equation (2.17) expresses the relationship between supersym-

metry and translations – the former as the ‘square root’ of the latter – at the level

of classical conserved charges. Similarly one can show that

{Qα, Qβ}PB = 0, [Qα, Pµ]PB = 0, (2.18)

and since Qα transforms as a spinor under Lorentz transformations, its Poisson

bracket with the associated conserved charge Jµν , the angular momentum tensor, is

given by

[Qα, Jµν ]PB = − i
2
(γµν)α

βQβ. (2.19)

Along with the usual brackets between Pµ and Jµν , equations (2.17), (2.18) and
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(2.19) make up the classical N = 1 super-Poincaré algebra in terms of conserved

charges. When the theory is quantised, the fields – and hence also the conserved

charges – become operators acting on a Fock space. The charge operators act as

generators for the symmetries to which they each correspond via Noether’s theorem,

and their Poisson brackets usually become algebraic commutators: [·, ·]PB → −i[·, ·].
However, because the supersymmetry generators Qα are anti-commuting spinor

quantities, the [Q,Q] Poisson brackets become anti-commutators in the quantum

theory:

{Qα, Q̄
β} = 1

2
(γµ)α

βPµ, {Qα, Qβ} = 0. (2.20)

For theories with extended supersymmetry, meaning N > 1, there are N super-

charges QI
α with I = 1, · · · ,N . These obey the algebra

{QI
α, Q̄

β
J} = 1

2
(γµ)α

βPµ δ
I
J , (2.21)

while for the {QI
α, Q

J
β} bracket the index structure suggests the new possibility of

including antisymmetric ‘central charges’ ZIJ = −ZJI appearing on the right-hand

side:

{QI
α, Q

J
β} = CαβZ

IJ , (2.22)

where Cαβ is the charge conjugation matrix, which raises and lowers Majorana spinor

indices. The central charges are ‘central’ in the group-theoretic sense in that they

commute with all the generators of the super-Poincaré group1.

In general there is a group R of linear transformations that preserve the super-

algebra – its automorphisms. This automorphism group (excluding the Poincaré

group itself) is called the R-symmetry. Its transformations simply act like rotations

on the set of supercharges and commute with the Poincaré generators Pµ and Jµν .

To see the R-symmetry in D = 4 it is useful to choose the Weyl representation

representation for the gamma matrices:

γµ =

(
0 σµ

σ̄µ 0

)
, (2.23)

where σµ are the set of Pauli matrices σi, i = 1, 2, 3, with the identity included for

the zero-component:

σ̄µ = σµ = (+1, σi),

σµ = σ̄µ = (−1, σi).
(2.24)

1In general the center of a group G is the set of elements Z(G) that commute with every element
of the group: Z(G) = {z ∈ G | ∀ g ∈ G, zg = gz}.
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Then one finds that since the supersymmetry generator QI
α is a Majorana spinor it

has the form

QI
α =

(
QI

1, Q
I
2, Q

†
I2,−Q

†
I1

)
. (2.25)

Thus, since the second two components are Hermitian conjugates of the first two

(still considering the supercharges as quantum operators), any complex linear trans-

formation of the generators will need to transform the second two components in

a conjugate representation to that of the first two. Then for any QI satisfying the

(anti-)commutators (2.21) and (2.22) above, the algebra is invariant under(
QI

1, Q
I
2

)
→ U I

J

(
QJ

1 , Q
J
2

)
, (2.26)

where U is a unitary matrix UU † = U †U = 1. Thus the algebra has a chiral U(N )

R-symmetry when D = 4.

In the case of N = 1 supersymmetry in D = 4, although there is only one Q there

is still a U(1) R-symmetry. Here equation (2.26) can be written in terms of the full

Majorana spinor Q

Q→ eiθγ∗Q, θ ∈ R, (2.27)

where γ∗ (sometimes called γ5) is

γ∗ = iγ0γ1γ2γ3 =

(
1 0

0 −1

)
. (2.28)

This U(1) symmetry is realised in the N = 1 super Yang-Mills theory by the invari-

ance of the Lagrangian (2.7) and transformation rules (2.9) under

λA → eiθγ∗λA. (2.29)

Note that θ is a constant so this is a global symmetry. In most supersymmetric

theories in this thesis the R-symmetry will appear as a global symmetry of the

Lagrangian.

2.4. Supermultiplets

A natural question to ask when constructing theories is what kind of supermulti-

plets exist in four spacetime dimensions when there are N supersymmetries. Only

massless multiplets will appear in this thesis. The simplest way to derive the pos-

sible supermultiplets is to consider quantum particle states transforming under the

supersymmetry generators. These states must form a representation of the su-
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persymmetry algebra, i.e. transform into one another under the action of the QI

operators, so the goal is to determine a basis for such a set of states transforming

irreducibly under supersymmetry.

Since the supercharges QI commute with translations Pµ, supersymmetry trans-

formations must preserve the momentum of on-shell states. As a result one may

simply set pµ = (|E|, 0, 0, E) for any state for the remainder of this discussion with-

out loss of generality. Then, since all particle states are assumed to have momentum

pµ of this form, a one-particle state |h〉 is entirely specified by its helicity h = ±s,
where s is the particle’s spin. Helicity can be defined as the eigenvalue under the

operator J3 = J12, which generates the little group SO(2) – the subgroup of SO(1, 3)

that preserves the form of pµ above2.

Using the Weyl basis (2.23) and the corresponding form of QI in (2.25), the

{QI
α, Q̄

β
J} anti-commutator becomes

{QI
1, Q

†
J1} = 0, {QI

2, Q
†
J2} = δIJ |E|, (2.30)

for the components QI
1 and QI

2. The QI
1 operator produces unphysical states of zero

norm, since for any state |ψ〉,

〈ψ|{QI
1, Q

†
I1}|ψ〉 = 2

∣∣Q†I1|ψ〉∣∣2 = 0, (no sum on I). (2.31)

Hence QI
1 and Q†I1 can be ignored. As for the QI

2 operator, it is useful to define a

normalised version αI := |E|−1/2QI
2 so that

{αI , α†J} = δIJ , {αI , αJ} = {α†I , α
†
J} = 0. (2.32)

Then, using the super-Poincaré algebra it is easy to show that

[J3, α†I ] = −1
2
α†I , [J3, αI ] = 1

2
αI , (2.33)

i.e. one may view αI as having helicity 1/2 and α†I as having helicity -1/2. Thus each

supersymmetry generator QI
α corresponds to an anti-commuting lowering (raising)

operator α†I (αI), which lowers (raises) the helicity of a state by 1/2. Define the

‘vacuum’ state |h0〉, with h0 any positive or negative integer or half-integer, to be

such that

αI |h0〉 = 0, J3|h0〉 = h0|h0〉, ∀ I = 1, · · · ,N . (2.34)

2Note that the little group in D dimensions is actually ISO(D−2), but the translation generators
are neglected since they annihilate physical states, leaving only SO(D − 2) with a non-trivial
action.
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The representation will then have a basis built up by acting with successive α†I
operators on |h0〉:

|h0〉, α†I |h0〉, α†Iα
†
J |h0〉, α†Iα

†
Jα
†
K |h0〉, · · · , α†I1α

†
I2
· · ·α†IN |h0〉. (2.35)

A state with m lowering operators has helicity h0 − 1
2
m. The lowering operators

anti-commute with one another, so each level comes with its I, J,K, · · · indices

antisymmetrised. Thus the multiplicity of states at level m is the binomial coefficient(N
m

)
, and there are 2N states in total. Furthermore, since the α†I operators transform

under R-symmetry U(N ) ∼= SU(N )× U(1) as

α†I → eiθ UI
Jα†J , UI

J ∈ SU(N ), θ ∈ R, (2.36)

the states at level m transform as the m-index antisymmetric tensor representation

of SU(N ) with charge m under the U(1) factor:

α†I1α
†
I2
· · ·α†Im |h0〉 → eimθ UI1

J1UI2
J2 · · ·UImJmα

†
J1
α†J2
· · ·α†Jm|h0〉 (2.37)

For every supermultiplet the total number of bosonic and fermionic states must

be equal; if h0 is an integer then states with odd numbers of α†I operators have

half-integer helicity and there are 2N−1 of these in total, while states with even

numbers of α†I operators have integer helicity and again there are 2N−1 of these.

The argument is the same with (odd and even reversed) when h0 is a half-integer.

As an example, consider h0 = 1 with N = 2 – so I = 1, 2 and the R-symmetry

group is U(2). There is one state |1〉 with helicity 1, two states |1/2〉I = a†I |1〉
with helicity 1/2 and one state |0〉IJ = α†Iα

†
J |1〉 with helicity 0 (note that the N -

index antisymmetric tensor is a singlet under SU(N ) since it is proportional to

the invariant epsilon tensor εI1I2···IN ). Group theoretically these transform as the

representations 11,0, 2 1
2
,1 and 10,2, where the first subscript indicates the helicity

and the second is the charge under the U(1) factor of the R-symmetry U(2) ∼=
SU(2)× U(1).

There is slight a subtlety in the above example: since any physical space of states

must include both helicities h = ±s, one must add to the irreducible multiplet above

its CPT-conjugate, giving a reducible representation of the supersymmetry algebra.

The CPT-conjugate multiplet is obtained by starting with |−h0〉 as the vacuum and

acting successively with αI operators, raising the helicity of the states. Thus the

CPT-conjugate representations for h0 = 1 and N = 2 are 1−1,0, 2− 1
2
,−1 and 10,−2.

In total this means that the corresponding theory’s field content should be a spin-
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1 vector Aµ, two spin-1/2 fermions λI and a complex scalar field φ, transforming

on-shell as the representations

Aµ : 11,0 + 1−1,0, λI : 2 1
2
,1 + 2− 1

2
,−1, φ : 10,2, φ∗ : 10,−2 (2.38)

of U(1)ST × U(2), where U(1)ST
∼= SO(2) is the spacetime little group. This is the

field content of N = 2 super Yang-Mills theory, which will appear several times in

the coming chapters.

For typical supermultiplets the CPT-conjugate must be added as above. However,

in the special cases when N = 4|h0|, the initial multiplet in (2.35) is already self-

conjugate. For example, consider the special case of N = 4 and h0 = 1 with

multiplet content

Aµ : 11,0 + 1−1,4, λI : 4 1
2
,1 + 4̄− 1

2
,3, φ[IJ ] : 60,2. (2.39)

These are the fields of N = 4 super Yang-Mills. Note that it is the maximal theory

containing spins s = |h| no greater than 1; starting from h0 = 1, if N were any

greater then the helicities would be lowered beyond −1. Again there is a subtlety,

which is that the U(1) R-symmetry charges do not match up for the positive and

negative helicity states. This means that this group is not compatible with the

spacetime little group U(1)ST and hence cannot be a physical symmetry. The charges

on the right may simply be discarded. In general then for multiplets with N = 4|h0|,
the physical R-symmetry group is SU(N ) rather than U(N ).

The other particular case of interest is N = 8, h0 = 2 with R-symmetry SU(8).

Here the multiplet content is

gµν : 12 + 1−2,

ΨµI : 8 3
2

+ 8̄− 3
2
,

Aµ[IJ ] : 281 + 28−1,

λ[IJK] : 56 1
2

+ 56− 1
2
,

φ[IJKL] : 700.

(2.40)

Since the highest spin in this multiplet is 2, it contains a graviton and hence corre-

sponds to a supergravity theory. Also note the presence of eight spin-3
2

fields. These

represent fermionic vector-spinors called ‘gravitinos’ (or sometimes ‘gravitini’ is used

for the plural), which will be discussed in the following section. Any multiplet with

h0 = 2 must contain N gravitino fields transforming in the fundamental rep of the

R-symmetry U(N ) (or SU(N )), since they correspond to the states |3/2〉I = α†I |2〉.

26



By the same argument used for N = 4 super Yang-Mills above, the N = 8

multiplet is the largest containing spins s = |h| no greater than 2. Because consistent

interacting theories with spins greater than 2 are very difficult – if not impossible –

to write down, the N = 8 theory is considered the maximally supersymmetric field

theory.

Before moving onto supergravity proper there is a little terminology to define. A

supermultiplet is often referred to by the name of its field with the highest spin. A

gravity multiplet has highest spin 2; a vector multiplet has highest spin 1; a chiral

multiplet (or Wess-Zumino multiplet) has highest spin 1/2 (this particular name

is reserved only for N = 1); a hyper-multiplet has highest spin 1/2 (this time for

N = 2 only). Analogous multiplets also appear in spacetime dimensions D 6= 4 –

see [43] for the original and complete survey.

2.5. Local Supersymmetry: Supergravity

In the field theories discussed above, the supersymmetry parameter ε is a constant

spinor; the symmetry is global. However, since any realistic field theory must ulti-

mately contain gravity, the problem arises that on a non-trivial spacetime manifold

a ‘constant’ spinor is no longer well-defined in general3. This is easy to see, since if

ε(x) is constant in the whole of some coordinate patch U1 with coordinates x, then on

the overlap with another coordinate patch U2 with coordinates x′, in general, ε(x′)

will not be constant. Therefore, if gravity is to be included in a supersymmetric

field theory one must replace ε→ ε(x), making supersymmetry local.

Conversely, by the following argument, local supersymmetry requires gravity. The

commutator of two supersymmetry transformations with parameters ε1 and ε2 yields

a spacetime translation by aµ = − i
2
ε̄1γ

µε2. Thus letting ε1 and ε2 depend on the

spacetime coordinates x results in a local translation, i.e. an infinitesimal general co-

ordinate transformation4. Therefore local supersymmetry implies general coordinate

invariance and hence requires gravity. Supergravity is this marriage of supersym-

metry and gravity.

A local symmetry needs a gauge field, which acts like a connection, allowing one

to define covariant derivatives. In the case of local supersymmetry this gauge field

is the fermionic vector-spinor gravitino Ψµ. Also known as a Rarita-Schwinger field,

3The closest thing to a ‘constant spinor’ is a covariantly constant spinor, but this will still in
general depend on the manifold’s coordinates.

4For any tensor field T , the change due to an infinitesimal local translation along a vector field ξ
is a Lie derivative δT = LξT , but this is just the change under an infinitesimal diffeomorphism.
Therefore infinitesimal local translations and diffeomorphisms have the same effect.
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in four dimensions the gravitino is a spin-3
2

field and is sometimes referred to as the

‘superpartner’ of the spin-2 graviton. As demonstrated in the previous section, any

supersymmetric multiplet that contains the graviton – and has spins ≤ 2 – must

also contain at least one gravitino. More precisely, a theory with extended local

supersymmetry N > 1 must have N gravitino fields – one to gauge each of the N
independent supersymmetries.

The action for a free massless Rarita-Schwinger field in D-dimensional Minkowski

spacetime is [42]

S = −
∫
dDx iΨ̄µγ

µνρ∂νΨρ, (2.41)

where γµνρ is the rank-3 Clifford algebra element

γµνρ = γ[µγνγρ]. (2.42)

Note that (2.41) is the most obvious action to write down that is Lorentz-invariant,

quadratic in Ψµ, Hermitian and first order in derivatives; this is everything one

might reasonably expect from the action of a relativistic fermion, given the features

of the Dirac action for an ordinary massless spin-1
2

field. In this thesis all Rarita-

Schwinger fields will be massless, but in general a mass term −mΨ̄µγ
µνΨν may also

be added.

Just as the Maxwell action has a gauge symmetry under the replacement Aµ →
Aµ + ∂µθ, the Rarita-Schwinger action (2.41) is invariant up to a total derivative

under

Ψµ → Ψµ + ∂µε, (2.43)

where ε(x) is an arbitrary spinor parameter. This gauge symmetry makes the grav-

itino a suitable gauge field for local supersymmetry.

For a supergravity theory the gravitino and any other fermions must be described

in curved spacetime. In general in a gravitational theory, since a spinor is defined

to transform in the double cover of the Lorentz group Spin(1, D − 1), it must be

described by its components in a local Lorentz frame. This requires the vielbein

field eaµ(x), which relates the curved-space metric gµν(x) to the ordinary Minkowski

metric ηab = diag(−1, 1, · · · , 1):

gµν(x) =: eaµ(x)ebν(x) ηab. (2.44)

This equation is invariant under local Lorentz transformations eaµ(x)→ Λa
b(x)ebµ(x).

Thus the indices a, b are referred to as local Lorentz indices and are raised and

lowered using ηab and ηab, respectively.
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In the vielbein formalism for general relativity, eaµ becomes the central dynamical

field in place of gµν and carries the same information. As a 4×4 matrix eaµ has a priori

D2 components in D dimensions, but since it is only defined up to a local Lorentz

transformation one must subtract dim[O(1, D−1)] = 1
2
D(D−1) components, leaving

a total of 1
2
D(D + 1) – precisely the same number as the usual symmetric matrix

gµν .

The analogue of the affine connection Γµνρ in this language is the spin connection

ωµ
ab, which is defined to be the gauge field associated with local Lorentz transfor-

mations, and thus transforms as

ωµ
a
b → Λ−1a

c ∂µΛc
b + Λ−1a

c ωµ
c
d Λd

b, (2.45)

i.e. as a Yang-Mills field with gauge group O(1, D − 1). The covariant derivatives

of Lorentz vectors and tensors may then be defined in the usual way; for example,

DµV
a := ∂µV

a + ωµ
a
bV

b. (2.46)

For a metric-compatible connection, the spin connection is related to the connection

coefficients Γµνρ by

ωµ
a
b = eaν

(
∂µe

ν
b + Γνµρe

ρ
b

)
= eaν∇µe

ν
b , (2.47)

where eµa is the inverse of the vielbein.

Since the generators of Lorentz transformations for spinors are 1
2
γab, the Lorentz-

covariant derivative for a spinor field ψ(x) is defined as

Dµψ :=
(
∂µ + 1

4
ωµ

abγab
)
ψ. (2.48)

With the above definitions in place, it is simple to write down the action for

D = 4, N = 1 supergravity with the single gravity multiplet {gµν ,Ψµ} or {eaµ,Ψµ}:

S =

∫
d4x
√
−g
(
R− iΨ̄µγ

µνρDνΨρ

)
, (2.49)

where R is the Ricci scalar. The supersymmetry transformations are

δeaµ = i
2
ε̄γaΨµ, δΨµ = Dµε. (2.50)

Note that the action (2.49) assumes a first order formalism in which eaµ and ωµ
ab are

treated as separate independent variables, with R = R(ω) treated as a function of

ω rather than e. To obtain a second order action one must vary first with respect to
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the spin connection to obtain its equation of motion, which may then be substituted

back into (2.49).

2.6. Eleven-Dimensional Supergravity

A spinor of the Clifford algebra inD dimensions has 2bD/2c components, where bD/2c
is defined to be the integer part of D/2, i.e. equal to D/2 when D is even and (D−
1)/2 whenD is odd. In Section 2.4 it was demonstrated that withD = 4 the maximal

supergravity has N = 8. Since a Majorana spinor in D = 4 has 4 components this

means that the 8 supercharges of the N = 8 theory make up 32 components in total.

This matches the dimension of a single spinor supercharge in D = 11, which means

that D = 11, N = 1 supergravity must have the maximum dimension possible for

a supersymmetric theory. This is equivalent to the requirement that there are no

spins greater than 2 in the supersymmetry multiplet.

Having established that D = 11 is the maximum dimension for supersymmetry

with a unique N = 1 theory, it is natural to ask what this theory’s field content and

Lagrangian look like. As an N = 1 supergravity theory it must contain a massless

graviton gµν and a gravitino Ψµ. The little group SO(D − 2) for D = 11 is SO(9)

and the graviton’s on-shell degrees of freedom must transform as the symmetric

traceless representation 44, while the gravitino’s transform as the vector-spinor 128.

This means there is mismatch of 84 degrees of freedom between the bosonic and

fermionic sectors. Fortunately there is a representation of precisely this dimension,

the 3-form Cµνρ, whose on-shell degrees of freedom transform as the irreducible 84

representation of SO(9). Thus one expects the supermultiplet in eleven dimensions

to have field content

{gµν , Cµνρ,Ψµ}. (2.51)

Cremmer and Julia derived the Lagrangian of the corresponding theory. Their

method was simply to write down the kinetic terms

L =
√
−g
(
R− iΨ̄µγ

µνρDνΨρ − 1
24
FµνρσF

µνρσ
)
, (2.52)

where Fµνρσ = 4∂[µCνρσ] is the field strength of the 3-form field. Then, a sensible

ansatz for the supersymmetry transformations is

δgµν = c1

(
iε̄γ(µΨν)

)
,

δCµνρ = c2

(
iε̄γ[µνΨρ]

)
,

δΨµ = c3Dµε+ Γνρστ µFνρστ ε,

(2.53)
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where c1, c2, c3 are constants to be fixed and Γνρστ µ is a linear combination of prod-

ucts of gamma matrices to be determined. Varying the Lagrangian with respect

to these transformations one finds that various corrections and interactions must

be added and eventually, after many calculations, the full supersymmetric theory

is obtained. The interaction terms are not given here but will be presented in an

octonionic formalism in Chapter 7.

As a theory with the maximal number of dimensions for maximal supersymmetry,

eleven-dimensional supergravity is certainly singled out as special. It should also be

the low-energy limit of M-theory, the speculated eleven-dimensional master theory

that contains in various limits the five ten-dimensional string theories. By the

process of dimensional reduction introduced in the following section, the D = 11

supergravity also leads to maximal supergravity theories for all D < 11 – including

the N = 8 theory in D = 4 – as well as truncations to a myriad of non-maximal

supergravities.

2.7. Kaluza-Klein Theory

String theory predicts that the world has ten spacetime dimensions, while its con-

jectured parent M-theory goes precisely one step further, predicting eleven. One

way to reconcile this with the apparent four-dimensional universe is to use Kaluza-

Klein theory. In general this is a technique for recovering a low-energy effective

D-dimensional theory from a higher-dimensional (D + d)-dimensional theory. The

most remarkable aspect of the idea is its scope for unification; gauge symmetries in

D dimensions are interpreted simply as gravitational symmetries in D + d dimen-

sions. The key is to assume that the (D + d)-dimensional spacetime MD+d locally

takes the form of a product manifold

MD+d ∼MD ×Md, (2.54)

whereMd is a compact d-manifold whose size (with respect to the metric onMD+d)

is very small compared to the energy scales of interest, such as those probed by cur-

rent particle accelerators. The resulting effective theory appears to have spacetime

MD, with only D observable dimensions.

As a simple example, consider the theory of a massless real scalar field Φ in D+ 1

flat dimensions satisfying the Klein-Gordon equation

�(D+1)Φ = 0, (2.55)
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where �(D+1) = ∂M∂
M with M = 0, 1, · · · , D. Suppose that the spacetime manifold

is a product of D-dimensional Minkowski space R1,D−1 and a circle S1,

MD+1 = R1,D−1 × S1. (2.56)

One may parameterise such that the first D coordinates xµ, µ = 0, · · · , (D − 1),

refer to R1,D−1 while the (D+ 1)th coordinate xD =: z is the coordinate on S1. This

means that z is periodic,

z ∼ z + 2πnR, n ∈ Z, R = constant, (2.57)

where R is the radius of the circle. One may Fourier expand Φ in the circular

dimension, so that

Φ(xµ, z) =
∑
n∈Z

Φn(xµ)einz/R (2.58)

for Fourier modes Φn(xµ), which depend only on the D extended dimensions. Sub-

stituting this into the Klein-Gordon equation (2.55) gives(
�(D) −

n2

R

)
Φn(xµ) = 0, (2.59)

where �(D) = ∂µ∂
µ. This is the equation of motion for a scalar field of mass |n|/R;

in the D-dimensional theory the massless (D + 1)-dimensional field Φ(xM) appears

as an infinite tower of massive scalars Φn(xµ). Since the extra dimension is intended

to be unobservable, R is taken to be very small compared to the physical scale of

interest, which means that the mass |n|/R is very large for n 6= 0. These modes

are not excited at low energies. Thus in the low-energy physics only the massless

zero mode Φ0(xµ) is detectable and one may truncate all Φn(xµ) with n 6= 0 from

the theory by setting them to zero. By equation (2.58) this is equivalent to setting

∂zΦ = 0, i.e. demanding that Φ is independent of the compact coordinate z. This is

the typical procedure of Kaluza-Klein reduction: a compactification and a truncation

to the massless sector5.

Since any free dynamical field satisfies the Klein-Gordon equation, the same ar-

gument must also apply to spinors, vectors, Rarita-Schwinger fields and tensor

fields on any (D + d)-dimensional background of the form R1,D−1 × T d, where

T d = S1 × S1 · · · × S1 is the d-torus. The set of higher-dimensional coordinates

5A subtlety is that these truncations must be consistent. That is, one must check in the field
equations that the massive modes are not sourced by the massless modes, as this would pre-
clude setting the massive modes to zero. However, for Kaluza-Klein reduction on a circle the
truncation is always guaranteed to be consistent.
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{xM} may be split into {xµ, zm}, where xµ are coordinates on R1,D−1 and zm are

coordinates on T d,

µ = 0, 1, · · · , (D − 1), m = 1, · · · , d, (2.60)

and the low-energy physics depends only on field configurations that are independent

of the zm directions. As a result one may formally just write ∂m ' 0 to obtain the D-

dimensional theory. However, for fields carrying non-trivial Lorentz representations

one must also decompose their components into irreducible representations of the

lower-dimensional Lorentz group.

For example, a massless Maxwell 1-form field AM becomes a D-dimensional 1-form

Aµ and d scalar fields Am. With ∂mAM = 0 the Lagrangian simply becomes

− 1
4
FMNF

MN = −1
4

(FµνF
µν + 2FµmF

µm) = −1
4
FµνF

µν − 1
2
∂µAm∂

µAm, (2.61)

as expected for the Lagrangian of d massless scalars and a Maxwell field in D

dimensions. Note that the scalar fields Am have an internal global SO(d) symmetry

under rotations Am → Om
nA

n with O ∈ SO(d). This is just the residual symmetry

from breaking the higher-dimensional Lorentz group SO(1, D+d−1) into SO(1, D−
1):

SO(1, D − 1)× SO(d) ⊂ SO(1, D + d− 1). (2.62)

The same logic applies to any p-form field AM1M2···Mp in D + d dimensions; in

the D-dimensional theory this becomes a p-form Aµ1µ2···µp , d distinct (p− 1)-forms

Aµ1µ2···µ(p−1)m,
(
d
2

)
distinct (p− 2)-forms Aµ1µ2···µ(p−2)mn, . . . and so on.

For spinor fields a complete and general treatment requires more detail on Clifford

algebras than will be presented here. However, the key is that a spinor λᾱ, where

ᾱ is a spinor index of SO(1, D + d− 1), may be written as λαa, where α is a spinor

index of SO(1, D − 1) and a is an internal spinor index of SO(d).

For a Rarita-Schwinger field ΨMᾱ the vector index must also be decomposed into

µ and m. A particularly relevent example is D = 4 and d = 7: the reduction of a

gravitino in eleven dimensions down to D = 4. In this case ᾱ = 1, · · · , 32. Then

one may write ᾱ as a composite index ᾱ = αa, where α = 1, · · · , 4 is the Majorana

spinor index of SO(1, 3) and a = 1, · · · , 8 (since 4 × 8 = 32). Thus the gravitino

ΨMᾱ = ΨMαa in D + d = 11 becomes eight D = 4 Majorana gravitinos Ψµαa (with

µ = 0, 1, 2, 3) and 7× 8 = 56 Majorana fermions Ψmαa (with m = 1, · · · , 7).

A more involved but more interesting torus reduction is that of gravity. Consider

pure Einstein gravity in D+d dimensions with a spacetime that is locally a (warped)

product MD × T d, where MD is a Lorentzian D-manifold. The full metric GMN
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decomposes into aD-dimensional metricGµν , d vector fields Gµm = Gmµ and 1
2
d2(d+

1) scalar fields packaged in a symmetric matrix Gmn = Gnm. As argued above, in

the low-energy physics each of these fields is independent of the torus coordinates

zm.

The following particular choice of metric ansatz turns out to give a straightforward

Lagrangian for the lower-dimensional fields:

GMN =

(
Gµν Gµn

Gmν Gmn

)
=

(
e2αϕgµν + e2βϕAmµ AnνMmn e2βϕMmnAmµ

e2βϕMmnAnν e2βϕMmn

)
, (2.63)

whereMmn =Mnm is taken to be in SL(d,R); its determinant has been factorised

to give the exponential factor e2βϕ, so that (e2βϕ)d is the volume of the d-torus as

a function on MD. After a suitable choice of the constants α and β in terms of D

and d, the Einstein-Hilbert Lagrangian becomes

√
−GRG =

√
−g
(
Rg − 1

2
∂µϕ∂

µϕ+ 1
4
∂µMmn∂

µMnm − 1
4
e2cϕFmµνMmnFnµν

)
,

(2.64)

where Fmµν = ∂µAmν − ∂νAmµ , the matrix Mmn is the inverse of Mmn and c is a

constant depending on D and d. This is precisely the Lagrangian one would hope

for: the D-dimensional Einstein theory coupled to scalars and Maxwell-like vectors.

Note however that the scalars couple non-canonically to the kinetic term of the

vector fields. This is not a problem in general, but was actually what ruled out

Kaluza and Klein’s original theory as a unification of gravity and electromagnetism

(the special case with D = 4 and d = 1).

The (D+ d)-dimensional gravity theory is of course invariant under general coor-

dinate transformations (GCTs). For a small change in the coordinates

δxM = −ξM(x), (2.65)

the metric transforms via a Lie derivative

δGMN = ξP∂PGMN +GPN∂Mξ
P +GMP∂Nξ

P . (2.66)

In general such a transformation does not preserve the metric ansatz (2.63) and so

will not be a symmetry of the D-dimensional theory. However, if ξ is chosen to

be independent of the zm coordinates, ∂mξ
M = 0, then the metric ansatz (2.63)

will be preserved. In this case, splitting equation (2.66) into its lower-dimensional
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components according to (2.63) gives

δgµν = ξρ∂ρgµν + gρν∂µξ
ρ + gµρ∂νξ

ρ,

δAmµ = ξρ∂ρAmµ +Amν ∂µξν + ∂µξ
m,

δMmn = ξρ∂ρMmn,

δϕ = ξρ∂ρϕ.

(2.67)

Thus the higher-dimensional GCT leads to a lower-dimensional GCT as well as a

gauge transformation for each of the Maxwell fields, δAmµ = ∂µθ
m with θm = ξm.

In this framework the U(1) ∼= S1 gauge symmetry of each vector field simply corre-

sponds to the residual general coordinate invariance of each circular extra dimension.

This demonstrates the powerful potential for unification offered by Kaluza-Klein the-

ory; gauge symmetries are simply special cases of higher-dimensional gravitational

symmetries.

There are in fact more (D+d)-dimensional GCTs that preserve the metric ansatz

(2.63). It is easy to check that one may allow the diffeomorphism parameters ξm to

depend linearly on the torus coordinates zm:

ξm = Smnz
n + θm, (2.68)

where Smn is a constant matrix belonging to the Lie algebra sl(d,R), i.e. real and

traceless (Smm = 0), and θm(xµ) depends only on the xµ coordinates. Again, taking

lower-dimensional components of equation (2.66) using (2.63) shows that this results

in

δAmµ = SmnAnµ,

δMmn = SpmMpn + SpnMmp,
(2.69)

while gµν and ϕ remain invariant (here θm has been set to zero). Thus the Lagrangian

(2.64) is invariant under the SL(d,R) transformations (2.69). Furthermore, the full

symmetry is GL(d,R) ∼= SL(d,R)×R, since the Lagrangian is also invariant under

constant shifts of ϕ combined with scaling Amµ :

ϕ(x)→ ϕ(x) + k, k ∈ R,

Amµ (x)→ e−ckAmµ .
(2.70)

Because (e2βϕ)d represents the volume of the d-torus, this shift corresponds to the

symmetry under scaling or ‘dilating’ its overall size6. The ϕ field is usually called a

6More precisely, this comes from combining the symmetry of the higher-dimensional Einstein
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dilaton due to this fact.

To gain a better understanding of the scalar kinetic term 1
4
∂µMmn∂

µMnm in

(2.64) it is useful to consider the higher-dimensional vielbein EM
A, satisfying

ηABEM
AEN

B = GMN , (2.71)

so that the A,B indices label local Lorentz frames. These indices then split into

a = 0, 1, · · · , (D − 1) and i = 1, · · · , d. Due to the local Lorentz-invariance of

equation (2.71) under EM
A → ΛA

B(x)EM
B with ΛC

A ηCD ΛD
B = ηAB, it is possible

to choose a gauge such that the vielbein corresponding to GMN above is upper-

triangular:

EM
A =

(
eαϕeaµ eβϕVmiAmµ

0 eβϕVmi

)
, (2.72)

where Vm
i ∈ SL(d,R) is like the vielbein for Mmn,

VmiVni =Mmn, (2.73)

and eaµ is the D-dimensional vielbein for the metric gµν . Equation (2.73) is invariant

under

Vmi → Oij(x)Vmj, (2.74)

where Oij is a d× d unimodular orthogonal matrix. This local SO(d) symmetry is

hence also a symmetry of the Lagrangian (2.64), and simply represents the redun-

dancy in using a unimodular d× d matrix Vmi to package fewer than d2 − 1 scalars

(1
2
d2(d + 1) − 1 scalars, to be precise). The higher-dimensional origin of this sym-

metry is that the upper-triangular gauge in (2.72) is preserved under block-diagonal

local Lorentz transformations EM
A → ΛA

B(x)EM
B of the form

ΛA
B(x) =

(
Λa

b(x) 0

0 Oij(x)

)
∈ SO(1, D − 1)× SO(d), (2.75)

where Λa
b is a Lorentz transformation in D dimensions and Oij is orthogonal.

The scalar fields in the kinetic term 1
4
∂µMmn∂

µMnm describe a non-linear sigma

model. This is a scalar field theory where the scalars are smooth maps from space-

time to another manifold, called the target space or ‘scalar manifold’. For example,

consider N + 1 scalar fields φi, i = 1, · · · , (N + 1), described by the Lagrangian

equations under scalings of the metric by a positive constant GMN → ek1 GMN , k1 ∈ R, with
uniform scaling of the torus δzm = k2z

m. The constant shift k of ϕ is then a linear combination
of k1 and k2. See [44] for more detail on this.
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L = −1
2
∂µφi∂

µφi subject to the constraint that φiφi = 1. These scalars are maps

from spacetime to the unit sphere SN . Since Vmi only appears in the Lagrangian

via Mmn, which is invariant under (2.74), Vmi and Oij(x)Vmj are physically indis-

tinguishable, and Vmi ∈ SL(d,R) is essentially only defined up to an SO(d) transfor-

mation. Thus the scalar fields in Vmi parameterise the non-compact coset manifold

SL(d,R)/ SO(d). Note that the coset SL(d,R)/ SO(d) has dimension 1
2
d2(d+ 1)−1,

as required, since this is the number of scalar fields described by the original matrix

Mmn.

To construct more traditional kinetic terms of the form −1
2
∂µφ∂

µφ+ · · · , a gauge

must be chosen for the coset representative Vmi, with a particular labelling of its

components in terms of the individual scalar fields it parameterises. This can be

achieved by working directly with the Lie algebra sl(d,R). As a specific example,

consider the d = 2 case. The Lie algebra sl(2,R) has basis

H =

(
1 0

0 −1

)
, E+ =

(
0 1

0 0

)
, E− =

(
0 0

1 0

)
, (2.76)

with commutators

[H,E+] = 2E+, [H,E−] = −2E−, [E+, E−] = H, (2.77)

so E+ is positive-root generator and E− is a negative root generator under the

Cartan subalgebra, which in this case consists of the only diagonal generator H. A

convenient choice of upper-triangular 2× 2 coset representative turns out to be

V = e
1
2
φ(x)Heχ(x)E+ =

(
e

1
2
φ 0

0 e−
1
2
φ

)(
1 χ

0 1

)
=

(
e

1
2
φ χe

1
2
φ

0 e−
1
2
φ

)
, (2.78)

which gives

Mmn = VmiVni =

(
eφ χeφ

χeφ χ2eφ + e−φ

)
. (2.79)

Substituting Mmn into the kinetic term gives

1
4
∂µMmn∂

µMnm = −1
2
∂µφ∂

µφ− 1
2
e2φ∂µχ∂

µχ. (2.80)

In this form the physical content is easier to see, but the SL(2,R) symmetry that

acted linearly on the matrixMmn is no longer manifest. Its action on the individual
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fields φ and χ is non-linear and rather complicated:

eφ → (Cχ+D)2eφ + C2e−φ,

χeφ → (Aχ+B)(Cχ+D)eφ + ACe−φ,
(2.81)

where A,B,C,D are the parameters of the finite linear transformation that acts on

Mmn: (
A B

C D

)
= (eS)mn ⇒ AD −BC = 1. (2.82)

In the general case, with Lie algebra sl(d,R), constructing the scalar coset La-

grangian works analogously. The Cartan subalgebra consists of the basis of traceless

d × d diagonal matrices ~H, written here all together as a (d − 1)-component vec-

tor. The positive-root generators are matrices Eij, i < j, which have components

(Eij)kl = δikδjl, i.e. the ijth element of Eij is equal to 1 and every other element is

zero. The commutators can be written as

[ ~H,Eij] = ~bijEij, i < j (no sum), (2.83)

where {~bij} with i < j is the set of positive root vectors.

In analogy with equation (2.78), a useful parameterisation of V is the upper-

triangular matrix

V = e
1
2
~φ(x)· ~H

∏
i<j

eχij(x)Eij . (2.84)

Then one may form M = VTV and the scalar Lagrangian can be written in terms

of the individual fields as

1
4
∂µMmn∂

µMnm = −1
2
∂µ~φ · ∂µ~φ− 1

2

∑
i<j

e
~bij ·~φ∂µχij∂

µχij. (2.85)

The root vectors ~bij in this context are often referred to as ‘dilaton vectors’, since

each of the φ fields is a dilaton representing the radius of one of the circles of the

d-torus (overall ϕ and ~φ are just the diagonal components of the original metric on

the torus). In Chapter 7 they will be connected with the octonions in a surprising

way.

It is also important to note that since all fields in a gravitational theory with mat-

ter couple to the metric (via GMN factors which contract their kinetic-term indices,

as well as the determinant factor
√
−G), one must use the ansatz (2.63) to carefully

determine the couplings of the various lower-dimensional fields. In particular, after

some field redefinitions, the lower-dimensional theory may be parameterised such
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that every bosonic field (except for the metric) has an exponential coupling e
~b·~φ as

a factor appearing in its kinetic term. Thus, each bosonic field has its own unique

dilaton vector.

2.8. U-Dualities

Having discussed the Kaluza-Klein theory of pure gravity, the next step is to turn

to eleven-dimensional supergravity and compactify on a d-torus to obtain maximal

supergravities in dimensions D = 11−d. This will not be carried out explicitly here,

but the general features of the resulting theories will be discussed. For a detailed

and pedagogical account see [44].

One particularly intesting aspect of these reductions is that scalars descended

from the 3-form field7 CMNP conspire with those descended from the metric gMN

to give an enlarged scalar coset sigma model with a greatly enlarged ‘hidden’ sym-

metry group. For example, consider the scalars of the D = 4 theory obtained from

reduction on the 7-torus. In the previous section it was demonstrated that the

Kaluza-Klein reduction of pure gravity on T 7 gives rise to an SL(7,R)/ SO(7) scalar

coset Lagrangian and the total global symmetry group was in fact GL(7,R). Thus

there are

dim[GL(7,R)]− dim[SO(7)] = 49− 21 = 28 (2.86)

scalar fields descended from the eleven-dimensional metric. There are also
(

7
3

)
= 35

scalars given by the 3-form’s internal components Cijk, where i, j, k = 1, · · · , 7.

Finally there are an additional seven scalar fields coming from the 2-forms Cµνi

by the process of dualisation; the 3-form field strengths Fµνρi = 3∂[µCνρ]i of these

2-form fields may be defined as the Hodge duals of seven 1-form field strengths

√
−ggµν∂νΦi = 1

3!
εµνρσe~ai·

~φFνρσi (2.87)

for seven scalar fields Φi, where ~ai is the dilaton vector found in the 2-form kinetic

term

− 1
2·3!

√
−g e~ai·~φFµνρiF µνρi. (2.88)

Differentiating (2.87) shows that the Bianchi identity for the 2-forms gives an equa-

tion of motion for the scalar fields,

∂µ

(
e−~ai·

~φ
√
−ggµν∂νΦi

)
= ∂µ

(
1
3!
εµνρσFνρσi

)
= ∂µ

(
1
2
εµνρσ∂[νCρσ]i

)
≡ 0, (2.89)

7Now labelled with capital M,N, · · · indices in preparation for decomposing into those of the
lower-dimensional spacetime µ, ν, · · · and internal indices i, j, · · · .

39



while the Bianchi identity for the scalar fields gives the equation of motion for the

2-forms:

εµνρσ∂µ∂νΦi = ∂µ

(√
−ggµνgρλgστe~ai·~φFνλτi

)
= 0. (2.90)

This means that the scalar kinetic term

− 1
2

√
−g e−~ai·~φ∂µΦi∂

µΦi (2.91)

will give equivalent overall equations of motion and Bianchi identities, and thus

the seven 2-forms may be replaced with the seven scalars Φi. In total this gives

7 + 35 + 28 = 70 scalar fields, just as required for the N = 8 supermultiplet derived

in Section 2.4. There it was shown that the 70 scalars transformed as the irreducible

70 representation of the R-symmetry group SU(8). Since SU(8) is a compact group,

the maximal compact subgroup SO(7) ⊂ GL(7,R) that is a symmetry of the naive

Lagrangian ought to be a subgroup of the SU(8) R-symmetry. Indeed there is a

subgroup SO(7) ⊂ SU(8) such that the 70 decomposes as

70→ 1 + 27 + 35 + 7, (2.92)

corresponding precisely to the scalars introduced above: ϕ, Mmn, Cijk and Φi,

respectively.

The various other fields obtained from the dimensional reduction of D = 11 to

D = 4 also assemble into SU(8) representations. This is easy to see at the on-shell

level where the D = 11 fields furnish representations of the little group SO(9)ST;

reduction to D = 4 simply corresponds to splitting SO(9) ⊃ SO(2)× SO(7) to give

the D = 4 little group SO(2) ∼= U(1)ST and the internal SO(7) symmetry. The

resulting representations then assemble into precisely those of SU(8)×U(1)ST given

in (2.40) – see Table 2.1.

Returning to the 70 scalars, one might guess that they belong to a larger coset

G/ SU(8), where G is a non-compact group whose maximal compact subgroup is

SU(8) – just as the 28 scalars descended from the metric belonged to the coset

GL(7,R)/ SO(7), where SO(7) is the maximal compact subgroup of GL(7,R). This

would mean that

dim[G]− dim[SU(8)] = dim[G]− 63 = 70, (2.93)

so G must be a non-compact group of dimension 133. There is only one simple

Lie group of this dimension whose maximal compact subgroup is SU(8): the excep-

tional group E7(7). Indeed it can be shown that the scalars of N = 8 supergravity
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gµν Ψµ Aµ λ φ
12 + 1−2 8 3

2
+ 8̄− 3

2
281 + 28−1 56 1

2
+ 56− 1

2
700

gMN 44 12 + 1−2 − 71 + 7−1 − 270 + 10

CMNP 84 − − 211 + 21−1 − 350 + 70

ΨM 128 − 8 3
2

+ 8− 3
2

− 48 1
2

+ 48− 1
2

−
+8 1

2
+ 8− 1

2

Table 2.1.: Little group representations of D = 4, N = 8 supergravity. The rows show the decom-
position of the D = 11 little group SO(9)ST representations into those of SO(7)×U(1)ST,
corresponding to dimensional reduction to D = 4, with little group U(1)ST. The
columns show the decomposition of the same N = 8 supergravity degrees of freedom
as representations of SU(8)×U(1)ST, as given in (2.40).

parameterise the 70-dimensional coset E7(7)/ SU(8) and thus their kinetic terms have

a global non-linearly realised E7(7) symmetry. In the context of M-theory and its

brane solutions, this symmetry is seen as a discrete subgroup E7(7)(Z) called the

U-duality group. However, throughout this thesis the term ‘U-duality’ will be used

mainly to refer to the continuous global symmetry groups of classical supergravity

theories.

In general the U-duality group is not a symmetry of the whole Lagrangian, only

of the equations of motion and the Bianchi identities. For example, there are 28

vector fields in N = 8 supergravity – Aiµ coming from the metric and Cµij coming

from the 3-form – but the smallest representation of E7(7) is the 56. The E7(7)

transformation actually rotates the 28 vector fields’ equations of motion into their

28 Bianchi identities as the 56, generalising electromagnetic duality.

D G H

10 SO(1, 1) 1

9 SL(2,R) SO(2)
8 SL(3,R)× SL(2,R) SO(3)× SO(2)
7 SL(5,R) SO(5)
6 SO(5, 5) SO(5)× SO(5)
5 E6(6) Sp(4)
4 E7(7) SU(8)
3 E8(8) SO(16)

Table 2.2.: U-duality groups G for the maximal supergravities obtained by torus reductions of the
D = 11 theory. The scalars in each case parameterise the coset manifolds G/H, where
H is the maximal compact subgroup of G.

The maximal D = 4, N = 8 theory is not the only maximal supergravity where
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such symmetry enhancements occur when reducing down from eleven dimensions.

The first case is D = 8 where there are six scalars descended from the metric

and one scalar C123 from the 3-form: seven scalars in total. Instead of the naive

GL(3,R)/ SO(3) coset expected from pure gravity, the seven scalars turn out to

parameterise the coset (SL(3,R)× SL(2,R)) / (SO(3)× SO(2)). Similar enhance-

ments occur for D ≤ 8 all the way down to D = 3 where the coset is E8(8)/ SO(16)

– see Table 2.2 for the complete list of cosets G/H, where G is a (maximally) non-

compact group and H its maximal compact subgroup. Note that in each case the

maximal compact subgroup H is also the R-symmetry group.

42



3. The Normed Division Algebras

The real numbers are the dependable breadwinner of the

family, the complete ordered field we all rely on. The complex numbers are a slightly flashier but

still respectable younger brother: not ordered, but algebraically complete. The quaternions, being

non-commutative, are the eccentric cousin who is shunned at important family gatherings. But the

octonions are the crazy old uncle nobody lets out of the attic: they are non-associative.

– John Baez, The Octonions

This purely mathematical chapter is dedicated to the normed division algebras

and their deep relationship with group theory. It loosely follows the treatment in

the excellent review [1] by Baez, but often uses – in that author’s words – the

‘index-ridden’ notation favoured by most physicists.

Section 3.1 contains the definition of the division algebras and a detailed intro-

duction to their basic properties, as well as a proof that they are indeed normed

division algebras. Next, Section 3.2 describes the close connection between the di-

vision algebras and the orthogonal groups that act naturally upon them, which in

Section 3.3 is discussed in relation to the notion of triality. The final two Sections,

3.4 and 3.5, review the broader relationship between division algebras and classical

Lie groups and their Lie algebras.

3.1. Definitions and Basic Properties

An algebra A is a vector space equipped with a bilinear multiplication rule and a

unit element. We say A is a division algebra if, given x, y ∈ A with xy = 0, then

either x = 0 or y = 0. A normed division algebra is an algebra A equipped with a

positive-definite norm satisfying the condition that the norm of a product xy is the

product of the respective norms of x and y,

‖xy‖ = ‖x‖ ‖y‖. (3.1)

One may see from setting ‖xy‖ = 0 that (3.1) also implies that A is a division

algebra, since the norm of any element is zero if and only if that element is itself
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zero. From now on in this thesis, the terms ‘division algebra’ and ‘normed division

algebra’ shall be used interchangeably, since the division algebras that arise will

always be normed unless stated otherwise.

Although condition (3.1) might not seem so stringent, there is a remarkable the-

orem due to Hurwitz [45], which states that there are only four normed division

algebras: the real numbers R, the complex numbers C, the quaternions H and the

octonions O – with dimensions n = 1, 2, 4 and 8, respectively.

Searching for a generalisation of the complex numbers, Hamilton discovered the

quaternions H in 1853. A quaternion is a linear combination of the basis vectors

{1, i, j, k}, where the three ‘imaginary’ units i, j and k are all square roots of −1,

i2 = −1, j2 = −1, k2 = −1, (3.2)

and they satisfy the associative, non-commutative multiplication rule

ij = −ji = k. (3.3)

It follows that cyclic permutations i → j → k → · · · of the above equation also

hold. The rule may be neatly summarised using the notation e1 = i, e2 = j, e3 = k:

eiej = −δij + εijkek, i = 1, 2, 3, (3.4)

where εijk is the permutation symbol with ε123 = 1. This is reminiscent of the algebra

of the three-dimensional vector cross product, or (up to a factor of i) equivalent to

that of the Pauli spin matrices σi:

σiσj = δij1+ iεijkσk, i = 1, 2, 3, (3.5)

where as usual

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
. (3.6)

Evidently the Pauli matrices give a complex representation of the quaternion algebra

with ei → −iσi. It makes sense that H can be represented by matrices, since it is

an associative algebra.

Inspired by Hamilton’s quaternions, later in 1853 Graves discovered the octonions

O with basis {1, e1, e2, · · · , e7}, equipped with the multiplication rule

eiej = −δij + Cijkek, i = 1, · · · , 7, (3.7)
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where the totally antisymmetric tensor Cijk is defined by

Cijk = C[ijk] :=

1 if ijk ∈ L := {124, 235, 346, 457, 561, 672, 713},

0 if σ(ijk) /∈ L for any permutation σ.
(3.8)

The Kronecker delta term in equation (3.7) says that each ei squares to −1, while

the Cijk term encodes relations such as

e1e2 = −e2e1 = e4, (3.9)

as well as all other possible multiplications, listed in Table 3.1. Note that any subal-

gebra of O spanned by {e0, ei, ej, ek} with ijk ∈ L is isomorphic to the quaternions

(this is apparent in equation (3.9) for the case ijk = 124). This will be important

for the dimensional reductions carried out in Chapter 4.

Figure 3.1.: The oriented Fano plane FO (image from [1]). Each oriented line corresponds to
a quaternionic subalgebra. For example, e1e2 = e4 and cyclic permutations; odd
permutations go against the direction of the arrows, giving a sign, e.g. e2e1 = −e4. It
is useful to remember that adding 1 (modulo 7) to each of the digits labelling a line
in L produces the next line. For example, 124→ 235.

The set L can be viewed as the seven oriented lines of a discrete space called the

oriented Fano plane FO – see Fig. 3.1. This is constructed from the (unoriented)

Fano plane F, which is the projective plane over the finite field with two elements,

Z2 = {0, 1}. In other words F, which one could call (Z2)P2, consists of undirected

lines through the origin (0, 0, 0) in (Z2)3 and thus has seven points and seven lines.

The seven lines are represented in the figure by the three sides of the equilateral

triangle, its three bisectors and the single central circle. Each point lies on three

lines and each line contains three points. Assigning the seven lines the orientations

shown in Fig. 3.1 defines the oriented Fano plane FO, which may be used as a as a

mnemonic for octonionic multiplication.
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e1 e2 e3 e4 e5 e6 e7

e1 −1 e4 e7 −e2 e6 −e5 −e3

e2 −e4 −1 e5 e1 −e3 e7 −e6

e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e2 −e1 −e6 −1 e7 e3 −e5

e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e5 −e7 e4 −e3 −e1 −1 e2

e7 e3 e6 −e1 e5 −e4 −e2 −1

Table 3.1.: The multiplication table of the seven imaginary basis octonions.

A brief inspection of the Fano plane reveals that the octonions are non-associative,

but they do exhibit a similar, weaker property called alternativity. An algebra A is

alternative if and only if for all x, y ∈ A the following relations are satisfied:

(xx)y = x(xy), (xy)x = x(yx), (yx)x = y(xx) (3.10)

(note that in fact any one of these conditions may be derived from the remaining

two [1]). This property is trivially satisfied by the three associative division algebras

R,C and H, and therefore all division algebras are alternative. This turns out to be

crucial for supersymmetry in D = 3, 4, 6, 10, as will be demonstrated in Chapter 4.

The three conditions (3.10) can be neatly summed up by defining a trilinear map

called the associator given by

[x, y, z] := (xy)z − x(yz), x, y, z ∈ A, (3.11)

which measures the failure of associativity. An algebra A is then alternative if and

only if the associator is an antisymmetric function of its three arguments, since

setting any two of the arguments to be equal then yields one of the three conditions

in (3.10).

Sometimes it will be useful to denote the division algebra of dimension n by

An. From the above discussion, it is clear that the division algebra An contains

An/2 as a subalgebra (excluding the n = 1 case). This is no coincidence. The

four division algebras can be constructed, one-by-one, using the so-called ‘Cayley-

Dickson doubling’ method, starting with R; the complex numbers are pairs of real

numbers equipped with a particular multiplication rule, quaternions are pairs of

complex numbers and octonions are pairs of quaternions. At the level of vector
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spaces,

C ∼= R2,

H ∼= C2 ∼= R4,

O ∼= H2 ∼= C4 ∼= R8.

(3.12)

The real numbers are ordered, commutative and associative, but with each doubling

one such property is lost: C is commutative and associative, H is associative, O

is non-associative. The Cayley-Dickson procedure yields an infinite sequence of

algebras, but in doubling the octonions to obtain the 16-dimensional ‘sedenions’

both alternativity and the division algebra property are lost.

It will be useful to introduce some general notation here for working with all

four division algebras. A division algebra element x ∈ An is written as a linear

combination of the n basis elements with real coefficients: x = xaea, xa ∈ R and

a = 0, · · · , (n − 1). The first basis element e0 = 1 is ‘real’1, while the remaining

(n− 1) basis elements ei are ‘imaginary’:

e2
0 = 1, e2

i = −1, (3.13)

where i = 1, · · · , (n−1). By analogy with the complex case, we define a conjugation

operation indicated by *, which is a linear involution that changes the sign of the

imaginary basis elements:

e0
∗ = e0, ei

∗ = −ei. (3.14)

It is natural then to define the linear projections

Re(x) :=
1

2
(x+ x∗) = x0, Im(x) :=

1

2
(x− x∗) = xiei, (3.15)

for x ∈ A. Note that this differs slightly with the convention typically used for

the complex numbers (since Im(x0 + x1e1) = x1e1 rather than just x1). A division

algebra element is said to be ‘real’ if it belongs to the subspace Re(A) ∼= R or

‘imaginary’ if it belongs to Im(A).

The multiplication rule for the imaginary basis elements of a general division

1Following the tradition favoured for complex numbers, authors often take the liberty of not
distinguishing between the basis element e0, which is a vector, and the number 1, which is of
course an element of R, the field over which the vectors are defined. In practice this is always
legitimate, since e0 is the multiplicative identity.
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algebra is:

eiej = −δij + Aijkek. (3.16)

where the tensor Aijk is totally antisymmetric, reflecting anti-commutativity. The

antisymmetry of Aijk means all of its components are identically zero for A = R,C.

For the quaternions Aijk = εijk, while for the octonions Aijk = Cijk:

Aijk(A) =


0 for A = R,C,

εijk for A = H,

Cijk for A = O.

(3.17)

It is clear from (3.16) that the commutator of two imaginary basis elements is

[ei, ej] = 2Aijkek, (3.18)

which shows that whenA is a non-commutative algebra, i.e. A = H,O, the subspace

Im(A) forms a closed algebra under commutation. In fact, (3.18) shows that Im(H)

under the commutator is just the Lie algebra su(2) ∼= so(3), since Aijk(H) = εijk.

This is exactly what one would expect given that the imaginary quaternions can be

represented by the Pauli matrices, which are of course the generators of su(2). Note

also that the ordinary vector cross product in R3 ∼= Im(H) is just ei× ej = 1
2
[ei, ej].

Including e0 = 1, the multiplication rule can be summarised as

eaeb = (+δa0δbc + δ0bδac − δabδ0c + Aabc) ec =: Γabcec, (3.19)

where the definition of Aijk is extended to Aabc, which is totally antisymmetric with

A0ab = 0, and the structure constants Γabc are defined2 as

Γabc := δa0δbc + δb0δac − δabδc0 + Aabc. (3.20)

These will have an important role to play in the next section. Taking the ab = ij

components of (3.19) returns the simpler pure-imaginary version of the rule, given

in (3.16). Note that

e∗aeb = (+δa0δbc − δ0bδac + δabδ0c − Aabc) ec =: Γ̄abcec,

eae
∗
b = (−δa0δbc + δ0bδac + δabδ0c − Aabc) ec = Γ̄cabec,

(3.21)

2The choice of index structure is for later convenience – see equations (3.96) and (3.102).
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where

Γ̄acb := Γabc. (3.22)

Using (3.19) one can easily verify that conjugation of a product of x, y ∈ A gives

(xy)∗ = y∗x∗. (3.23)

Again, just as for the complex numbers, the norm ||x|| of a division algebra element

x may be defined as:

||x||2 = xx∗ = x∗x = xaxa. (3.24)

This norm provides the notion of ‘division’ that gives these algebras their name;

each element x has a multiplicative inverse

x−1 :=
x∗

x∗x
⇒ x−1x = xx−1 = 1. (3.25)

In general, for any normed vector space, the polarisation identity gives a natural

inner product constructed from the norm [1]:

〈x|y〉 := 1
2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
= 1

2
(xy∗ + yx∗) = 1

2
(x∗y + y∗x) = xaya, i.e. 〈ea|eb〉 = δab.

(3.26)

This is just the canonical inner product on Rn, which is preserved by the orthogonal

group O(n). This group and its Lie algebra thus have a natural action on the division

algebra elements that will be explored in detail in the next section.

The proof that the normed division algebra condition (3.1) is satisfied contains

several identities that will be used throughout this work and so will be demonstrated

here. The calculation requires careful consideration for the non-associativity of the

octonions, so some discussion of the practicalities of this is beneficial. For a product

such as (xy)z, with x, y, z ∈ O, the brackets may be moved at the cost of adding an

associator term,

(xy)z = x(yz) + [x, y, z]. (3.27)

The properties of the associator often render this term benign. It clearly vanishes

if one if its arguments is real,

[x0, y, z] = 0 for x0 ∈ Re(O) ∼= R, (3.28)

so the associator actually only takes into account the imaginary parts of its argu-
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ments:

[x, y, z] = [Im(x), Im(y), Im(z)]. (3.29)

Thus conjugation of any one of its arguments has the effect of changing the sign,

[x∗, y, z] = [x, y∗, z] = [x, y, z∗] = −[x, y, z], (3.30)

which, when combined with alternativity, shows that the associator is always pure-

imaginary:

[x, y, z]∗ = ((xy)z)∗ − (x(yz))∗

= z∗(y∗x∗)− (z∗y∗)x∗

= −[z∗, y∗, x∗]

= +[z, y, x]

= −[x, y, z] ⇔ Re ([x, y, z]) = 0.

(3.31)

This also implies that the associator of an octonion x and its conjugate x∗ vanishes:

[x, x∗, z] = −[x, x, z] ≡ 0. (3.32)

Now, returning to the proof that the norm satisfies (3.1), consider x, y ∈ A, where

A = R,C,H,O. Their product xy ∈ A has norm-squared ‖xy‖2 given by

(xy)(xy)∗ = (xy)(y∗x∗), (3.33)

using (xy)∗ = y∗x∗. Since (xy)(y∗x∗) is a real number, it is equal to its real part,

(xy)(y∗x∗) = Re ((xy)(y∗x∗)) . (3.34)

The brackets can be moved using the associator:

Re ((xy)(y∗x∗)) = Re (x(y(y∗x∗))) + Re ([x, y, (y∗x∗)])

= Re (x(y(y∗x∗))) ,
(3.35)

since the associator is imaginary. Then, by (3.32), y(y∗x∗) = (yy∗)x∗, but since

(yy∗) is real it may be moved through any brackets. Putting all of this together,

(xy)(xy)∗ = Re (x(y(y∗x∗))) = Re (x((yy∗)x∗)))

= Re(xx∗)(yy∗)

= (xx∗)(yy∗).

(3.36)
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Thus the product of the norms is the norm of the product, as required. Note that

this proof relies on the alternativity of the division algebras, and thus would fail for

the 16-dimensional sedenions, which are non-alternative.

For the discussion of the relationships between the division algebras and various

Lie groups, it will be helpful to present a few more definitions and identities for

working with octonions and their components.

The complement of a line in the Fano plane is called a quadrangle. Thus the Fano

plane has seven points, seven lines and seven quadrangles. Just as multiplication

of the octonionic basis elements is encoded in the oriented lines of the Fano plane,

the associator of three octonionic basis elements is encoded in its seven oriented

quadrangles:

[ea, eb, ec] = 2Qabcded, (3.37)

where the tensor Qabcd is totally antisymmetric with Q0abc = 0, and the non-trivial

Qijkl are given by:

Qijkl = Q[ijkl] =

1 if ijkl ∈ Q = {3567, 4671, 5712, 6123, 7234, 1345, 2456},

0 if σ(ijkl) /∈ Q for any permutation σ.

(3.38)

Since a quadrangle is the complement of a line in the Fano plane, by definition, the

tensors Qijkl and Cijk are dual to one another in seven dimensions:

Qijkl = − 1

3!
εijklmnpCmnp, (3.39)

with ε1234567 = 1. The tensors Qijkl and Cijk are also related by various identities

that can be derived by carefully considering the Fano plane [46] (or by brute-force

computation, according to taste):

CijmCklm = δikδjl − δilδjk +Qijkl,

CijnQklmn = 3(Ci[klδm]j − Cj[klδm]i),

QijklQmnpl = 6δ[i
mδ

j
nδ

k]
p − CijkCmnp + 9Q[ij

[mnδ
k]
p] .

(3.40)

Note that, by convention, division-algebraic indices are raised and lowered with the

Kronecker delta, so the upper index placement in the final formula is only a matter

of notational convenience, i.e. Qijkl = Qijkl.
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3.1.1. Exponentials and Polar Form

One can define the exponential of x ∈ A using the power series definition,

ex :=
∞∑
m=0

xm

m!
. (3.41)

In the octonionic case non-associativity does not stop one from defining xm unam-

biguously, since all products of m copies of x are equivalent by alternativity. Now

consider any non-zero x ∈ A = H,O and write it as a sum of its real and imaginary

parts, x = Re(x) + Im(x). Its norm is then

‖x‖2 = Re(x)2 + ‖Im(x)‖2, (3.42)

One may parameterise these two terms using an angle θ ∈ [0, 2π], defined by

θ := tan−1

(
‖Im(x)‖
Re(x)

)
, (3.43)

which is of course chosen such that

Re(x) = ‖x‖ cos θ, ‖Im(x)‖ = ‖x‖ sin θ. (3.44)

Now, as a vector, the imaginary part Im(x) can easily be rewritten

Im(x) = Im(x)
‖x‖
‖Im(x)‖

‖Im(x)‖
‖x‖

= ‖x‖u sin θ, u :=
Im(x)

‖Im(x)‖
, (3.45)

where u manifestly has unit norm. Putting this together, the division algebra ele-

ment x is just

x = ‖x‖ (cos θ + u sin θ) . (3.46)

This looks very similar to Euler’s formula for complex numbers, but with the complex

unit i replaced by u. However, just like i, any unit-norm imaginary division algebra

element u also squares to −1:

u2 = uiei ujej = uiuj(−δij + Aijkek) = −uiui = −1, (3.47)

since uiuj is symmetric under the interchange i ↔ j while Aijk is antisymmetric.

Thus Euler’s formula applies as usual and x may be written in polar form

x = ‖x‖euθ. (3.48)
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This shows that a non-zero division algebra element may be expressed by a positive

real number ‖x‖, an imaginary axis u and an angle θ. There is a helpful geometrical

interpretation of this parameterisation: the real axis and the u axis are orthogonal

to one another, and since u2 = −1, they define a complex plane C ⊂ A on which

x = ‖x‖euθ is just the usual complex polar form; on this plane ‖x‖ is the modulus

while θ is the angle x makes with the real axis.

Equation (3.48) shows that a division algebra element has unit norm if and only

if it may be written as eα for some α ∈ Im(A) (excluding the real case). Thus the

identity (3.48) can also be thought of simply as the statement that any non-zero

x ∈ An can be written as a product of its norm ‖x‖ ∈ R+ and a unit element

euθ ∈ Sn−1, where Sn−1 is the unit sphere in An. More symbolically,

An − {0} ∼= Sn−1 ×R+. (3.49)

Since Im(H) ∼= su(2), a simple corollary of the above is the well-known fact that the

group SU(2) must be isomorphic to the 3-sphere,

SU(2) ∼= esu(2) ∼= eIm(H) ∼= S3, (3.50)

as is readily checked from the definition of SU(2) as 2×2 unitary matrices with unit

determinant.

3.2. Orthogonal Groups and Clifford Algebras

3.2.1. Symmetries of the Norm

As mentioned in the previous section, the norm of a division algebra element

x∗x = xx∗ = xaxa, x ∈ An, (3.51)

is manifestly invariant under

xa → Oa
bxb, (3.52)

where Oa
b ∈ O(n) is an orthogonal matrix. However, it is both enlightening and

useful to express these rotations in terms of division-algebraic operations such as

the multiplication rule defined on An.

Beginning with the trivial case, for the reals the O(1) ∼= Z2 symmetry just cor-

responds to the symmetry under multiplication by the unit-norm elements {1,−1},
i.e. x→ ±x.
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For any of the division algebras with n > 1, the full rotation group O(n) has two

connected components: the group of orientation-preserving rotations SO(n) (i.e.

determinant +1) and the component consisting of orientation-reversing reflections

(i.e. determinant −1). In terms of division-algebraic operations, conjugation x→ x∗

is clearly a discrete orientation-reversing symmetry of the norm (3.51). Thus any

reflection in O(n) is a product of a rotation in SO(n) and conjugation x→ x∗. The

remaining question then is how to write a general element of SO(n) purely in terms

of the multiplication rule of An.

Of course for the complex numbers SO(2) ∼= U(1) acts again as multiplication by

arbitrary elements of C with unit norm:

x→ eiθx, θ ∈ R. (3.53)

Or at the Lie algebra level, i.e. for small θ,

δx = iθx. (3.54)

It is clear that this preserves the squared norm (3.51).

The quaternionic analogue with SO(4) acting on H follows closely. It is easy to

see that the norm is preserved under multiplication of x from both the left and right

by arbitrary unit-norm quaternions, which may be parameterised as e−θ+ and eθ−

with θ± imaginary:

x→ e−θ+xeθ− , θ+, θ− ∈ Im(H). (3.55)

This means that at the Lie algebra level

δx = −θ+x+ xθ−. (3.56)

In fact, any SO(4) transformation may be written in this way. As can be verified us-

ing the quaternionic multiplication rule, an arbitary SO(4) rotation with parameters

θab = −θba is enacted by choosing

θ+ = 1
2

(
θ0i + 1

2
εijkθ

jk
)
ei, θ− = 1

2

(
−θ0i + 1

2
εijkθ

jk
)
ei. (3.57)

It is instructive to examine these transformations in a little more detail. Equation

(3.56) shows that the Lie algebra so(4) is isomorphic to two copies of Im(H): one for

left-multiplication by −θ+ and one for right-multiplication by θ−. Furthermore, they

commute because left- and right-multiplication commute in H, i.e. H is associative.
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Thus

so(4) ∼= Im(H)⊕ Im(H) ∼= su(2)⊕ su(2). (3.58)

This is a reflection of the fact that any antisymmetric 4× 4 matrix θab ∈ so(4) can

be split into its self-dual and anti-self-dual parts θab+ and θab− :

θab± := 1
2
(θab ± 1

2
εabcdθcd) ⇒ 1

2
εabcdθcd± = ±θab± , (3.59)

which each have only three independent components (rather than six) since they

obey

θ0i
± = ±1

2
εijkθjk± = 1

2

(
θ0i ± 1

2
εijkθ

jk
)
. (3.60)

It is easy to check that the sets of self-dual and anti-self-dual matrices not only com-

mute with one another, respectively, but each forms a closed subalgebra isomorphic

to su(2). With this in mind the particular expressions for θ+ and θ− in (3.56) make

sense: θ+ = θ0i
+ei corresponds to the su(2) generated by the self-dual part, while

θ− = θ0i
−ei corresponds to the su(2) generated by the anti-self-dual part. Returning

to the transformation at the finite group level, the SO(4) action x → e−θ+xeθ− is

specified by a pair of unit quaternions (e−θ+ , eθ−) ∈ S3×S3 ∼= SU(2)2, but since the

pairs (e−θ+ , eθ−) and (−e−θ+ ,−eθ−) induce the same SO(4) transformation, SU(2)2

must be the double cover of SO(4), i.e. SU(2)2 ∼= Spin(4).

Due to non-associativity the octonionic case is a little more complicated, but it

leads to some interesting considerations. In any normed division algebra A, by the

defining condition ‖xy‖ = ‖x‖ ‖y‖, multiplying x from the left and right by any

unit-norm elements eα and eβ clearly preserves the norm

‖eα(xeβ)‖ = ‖(eαx)eβ‖ = ‖eα‖ ‖x‖ ‖eβ‖ = ‖x‖. (3.61)

Along with conjugation x → x∗ this exhausted the symmetries of the norm for

R,C,H. However, for O left- and right-multiplication by unit elements eα and eβ

gives a set of symmetries isomorphic (up to a sign) to a pair of 7-spheres, S7 × S7,

but these do not close to form a group; for the octonions there are symmetries of

the norm that arise from non-associativity and hence cannot be written in such

a simple form. Since S7 × S7 is 14-dimensional and the total unimodular norm-

preserving group is SO(8), with dimension 28, the remaining symmetries must also

be 14-dimensional. These are the automorphisms of the octonions, forming the

exceptional group G2, which will be introduced in the following.
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3.2.2. Automorphisms and Derivations

The automorphisms Aut(A) of an algebra A are the group of linear transformations

g : A→ A that preserve multiplication in A:

g(xy) = g(x)g(y), x, y ∈ A. (3.62)

For the normed division algebra An, the automorphisms leave real elements x0

invariant, since by linearity

g(x0y) = x0g(y), x0 ∈ Re(An) ∼= R, (3.63)

but by definition

g(x0y) = g(x0)g(y), (3.64)

so that multiplying on the right by g(y)−1 gives

g(x0) = x0. (3.65)

This means that for the real numbers Aut(R) ∼= 1 is the trivial group. Furthermore

this shows that in a general division algebra automorphisms preserve the norm since

the norm is real:

g(x∗x) = g(x∗)g(x) = g(x)∗g(x) = x∗x ⇔ ‖g(x)‖ = ‖x‖. (3.66)

In other words Aut(An) is a subgroup of O(n). More specifically, since the real

part of a division algebra element is invariant under automorphisms, Aut(An) is a

subgroup of the O(n − 1) group that acts only on the imaginary subspace. This

means that in terms of the basis elements ei the automorphisms take the form

g(ei) = Oijej with Oij ∈ O(n− 1), i.e. OikOjk = δij. An automorphism is then just

an orthogonal rotation of the basis elements ei → g(ei) = Oijej such that the new

set of basis elements g(ei) satisfy the same multiplication rule (3.16) as the original

set:

g(ei)g(ej) = g(eiej), ⇔ Oikek Ojlel = −δij + Aijk Oklel. (3.67)

For the complex numbers there is only one imaginary basis element, e1 ∼ i, so

Aijk ≡ 0 and Aut(C) ∼= O(1) ∼= Z2 corresponding to the replacement i → −i; of

course −i squares to −1 and hence satisfies all that is required to do the job of i.

When Aijk 6= 0 (i.e. when An = H,O) multiplying (3.67) by two inverse rotations
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shows that it is satisfied if and only if

Oi′iOj′jOk′k Ai′j′k′ = Aijk. (3.68)

For the quaternions Aijk = εijk so the left-hand side is proportional to the determi-

nant of O:

Oi′iOj′jOk′k εi′j′k′ = det(O) εijk = εijk, (3.69)

which is satisfied only for det(O) = +1. Thus Aut(H) ∼= SO(3). To see how these

transformations act on an arbitrary quaternion x, note that the subgroup of SO(4)

matrices that leave the Re(H) subspace invariant is just those with Lie algebra

parameters θ0i = 0. Equations (3.55), (3.56) and (3.57) then give

x→ e−θxeθ ⇔ δx = [x, θ], θ ∈ Im(H), (3.70)

since θ0i = 0 implies θ− = θ+ =: θ in (3.57). This clearly transforms the imaginary

components xi as the adjoint of SO(3), i.e. as an ordinary spatial 3-vector. Because

these transformations are just a special case of the left- and right-multiplications by

unit elements discussed above, Aut(H) gives no new contribution to the symmetries

of the quaternionic norm.

For the octonions the structure tensor Aijk becomes Cijk and it is less clear which

matrices will satisfy (3.68). Unlike those of the quaternions, the automorphisms of

the octonions Aut(O) =: G2 give new norm-preserving transformations that can-

not be written as simple left- and right-multiplications. But what do these G2

transformations look like and how does one perform them? This question is easier

to answer at the infinitesimal level, where automorphisms become the Lie algebra

der(A) := aut(A) of derivations.

A derivation of an algebra A is a linear transformation d : A→ A such that

d(xy) = xd(y) + d(x)y, x, y ∈ A. (3.71)

Exponentiating this equation with g = ed recovers the finite version (3.62). For a

division algebra An, writing Oij = (eθ)ij with θij = −θji an arbitrary so(n − 1)

matrix, equation (3.68) becomes

δAijk = θilAljk + θjlAilk + θklAijl = 0 (3.72)

for small θ. Thus der(An) is the subalgebra of so(n− 1) consisting of antisymmetric

matrices θij satisfying (3.72).
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For the octonions, Aijk = Cijk, so der(O) ∼= g2 ⊂ so(7) is the Lie algebra of

antisymmetric matrices θij such that

δCijk = θilCljk + θjlCilk + θklCijl = 0. (3.73)

Contracting this equation with Cijm and using the first identity in (3.40) gives

2
3

(
δi[kδl]j − 1

4
Qijkl

)
θkl = θij. (3.74)

Viewing θij as a 21-component vector (as an antisymmetric 7 × 7 matrix it has(
7
2

)
= 21 independent components), this can be interpreted as a projection equation

P 14
ijklθ

kl = θij, where P 14
ijkl := 2

3

(
δi[kδl]j − 1

4
Qijkl

)
, (3.75)

where P 14 is a rank-14 projection operator on the 21-dimensional vector space of

antisymmetric 7× 7 matrices, satisfying

(P 14)2 = P 14 ⇔ P 14
ijklP

14
klmn = P 14

ijmn. (3.76)

That P 14 is rank-14 may be seen as follows. As a 21 × 21 matrix, P 14 is real

and symmetric – P 14
ijkl = P 14

klij – and therefore may be diagonalised by an SO(21)

transformation. Because it is a projector its diagonalised entries will each be equal

to either 1 or 0. Thus its trace is equal to its rank:

rank(P 14) = Tr(P 14) = δi[kδl]jP
14
ijkl = 2

3
× 21 = 14. (3.77)

In other words θij a priori has 21 components, but P 14 projects out 7 of these,

leaving 14 = dim[G2].

It is now easy to write down the generators of G2 in terms of those of SO(7).

The SO(7) generators J[ij] are labelled3 by the antisymmetric pair of indices [ij] and

an SO(7) transformation with parameters θij is enacted by the linear combination
1
2
θijJ[ij]. In the defining 7 representation of SO(7) the generators J[ij] are the 7× 7

matrices

(J[ij])kl = 2δi[kδl]j, (3.78)

since a 7-vector xi transforms as

δxi = 1
2
θkl(J[kl])ijxj = θklδi[kδl]jxj = θijxj. (3.79)

3I adopt the notation of writing antisymmetric generator labels in square brackets to distinguish
them from the generator components.
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If the parameters θij satisfy equation (3.75) then this is a G2 transformation. In

that case
1
2
θijJ[ij] = 1

2
θijP 14

ijklJ[kl] = 1
2
θijP 14

ijklP
14
klmnJ[mn], (3.80)

from which one can see that G2 has generators (G[ij])kl given by the linear combi-

nations

(G[ij])kl := P 14
ijmn(J[mn])kl = 4

3

(
δi[kδl]j − 1

4
Qijkl

)
. (3.81)

Thus under G2 ⊂ SO(7), the vector transforms as

δxi = 1
2
θkl(G[kl])ijxj = 2

3
θkl
(
δi[kδl]j − 1

4
Qijkl

)
xj. (3.82)

This is the defining 7 representation of G2.

Finally, this can be used to find the explicit form of the derivations of the octonions

in terms of the multiplication rule in O. This makes use of the commutator and the

associator, since they satisfy the identities

[ei, ej] = 2Cijkek and [ei, ej, ek] = 2Qijklel. (3.83)

It is then easy to verify that the following particular combination gives the correct

action of the G2 generators G[ij]:

Ĝ[ij] x := 1
2
[ei, ej, x]− 1

6
[[ei, ej], x] = (G[ij])klxl ek. (3.84)

where in general a ‘hat’ denotes a linear operator on O. This means that any pair

of imaginary octonions y1, y2 ∈ Im(O) generates a unique derivation, since one can

simply contract the free indices in equation (3.84) with arbitrary components yi1, yj2:

d̂y1,y2 x := 1
2
[y1, y2, x]− 1

6
[[y1, y2], x] . (3.85)

Furthermore, since any derivation may be written as a linear combination of the

generators G[ij], any derivation must take the form (3.85) for some y1, y2 ∈ Im(O).

This gives another way to see the dimension of G2; it takes 7 + 7 = 14 parameters

to specify the two imaginary octonions required to define a derivation.

Returning to the symmetries of the norm, the full so(8) can now be realised in

terms of octonions using derivations, combined with left- and right-multiplication by

imaginary octonions α, β ∈ Im(O). This corresponds to the decomposition SO(8) ⊃
G2:

28→ 14 + 7 + 7, (3.86)
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with the 14 corresponding to derivations and the two 7s corresponding to α and β.

For an SO(8) transformation parameterised by the antisymmetric matrix θab ∈ so(8):

δx = d̂x+ αx+ xβ, ⇔ δxa = θabxb (3.87)

where

d̂ = 1
2
θijĜ[ij], α =

(
−1

2
θ0i − 1

12
Cijkθ

jk
)
ei, β =

(
−1

2
θ0i + 1

12
Cijkθ

jk
)
ei. (3.88)

Due to non-associativity, exponentiating (3.87) to obtain a finite SO(8) transforma-

tion must be approached carefully. One fool-proof way to achieve this is to define

operators that multiply from the left and right,

L̂α x := αx R̂β x := xβ, (3.89)

so that δx may be written

δx = (d̂+ L̂α + R̂β)x. (3.90)

Now L̂α, R̂β and d̂ are just linear transformations of R8 ∼= O, so their composition

is by definition associative. This means they may be exponentiated as usual and

the finite SO(8) transformation is

x→ ed̂+L̂α+R̂βx. (3.91)

3.2.3. Spin(n) Spinors and Clifford Algebras

So far in the above discussion on SO(n), the group of symmetries of the norm of

An, the division algebra elements have transformed in the defining – or ‘vector’ –

representation of the group. However, the division algebras have an equally close

relationship with the spinor representations of Spin(n) and their associated Clifford

algebras. To see this, consider an arbitrary division algebra element ψ ∈ An, and

multiply it by the basis elements as follows (for n > 1):

e∗a(ebψ) + e∗b(eaψ) =
(
ΓacdΓ̄

b
de + ΓbcdΓ̄

a
de

)
ψe ec, (3.92)

where the structure constants Γabc and Γ̄abc are defined by the division-algebraic mul-

tiplication rules

eaeb = Γabcec, e∗aeb = Γ̄abcec. (3.93)
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Moving both sets of brackets on the left-hand side of (3.92) costs a pair of associators,

but they cancel with one another due to alternativity:

e∗a(ebψ) + e∗b(eaψ) = (e∗aeb)ψ + (e∗bea)ψ. (3.94)

The final line here can be factorised and then gives a Kronecker delta, since it is

proportional to the inner product of the basis elements:

(e∗aeb + e∗bea)ψ = 2〈ea|eb〉ψ = 2δabψ. (3.95)

Comparing (3.92) and (3.95) shows – perhaps surprisingly – that Γabc and Γ̄abc are

actually n× n ‘gamma matrices’ satisfying the familiar relations

ΓaΓ̄b + ΓbΓ̄a = 2δab1,

Γ̄aΓb + Γ̄bΓa = 2δab1 (3.96)

(where the second line comes from the other version of the inner product with

2〈ea|eb〉 = eae
∗
b + ebe

∗
a). This means that the 2n× 2n matrices

γa =

(
0 Γa

Γ̄a 0

)
(3.97)

satisfy the Spin(n) Clifford algebra,

γaγb + γbγa = 2δab1, (3.98)

and so may be used to form 2n × 2n generators of Spin(n) by the usual antisym-

metrised product

1
2
γ[aγb] =

(
1
2
Γ[aΓ̄b] 0

0 1
2
Γ̄[aΓb]

)
. (3.99)

However, as these matrices are block-diagonal, this is a reducible representation

of Spin(n); it decomposes into the n × n irreducible spinor and conjugate spinor

representations, with generators [46]

Σ[ab] := 1
2
Γ[aΓ̄b],

Σ̄[ab] := 1
2
Γ̄[aΓb],

(3.100)
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whose components can be found by explicit computation using the identities (3.40):

Σ
[ab]
cd = δc[aδb]d − δ0[aAb]cd + δ0[cAd]ab − 1

2
Qabcd + 4δ0[cδd][aδb]0,

Σ̄
[ab]
cd = δc[aδb]d + δ0[aAb]cd + δ0[cAd]ab − 1

2
Qabcd, (3.101)

where the Q terms vanish for n 6= 8.

The above discussion demonstrates that multiplying a division algebra element ψ

by the basis element ea has the effect of multiplying ψ’s components by the gamma

matrix Γ̄a:

eaψ = eaebψb = Γabcecψb = ecΓ̄
a
cbψb, (3.102)

which means one can represent an irreducible spinor ψa and conjugate spinor χa of

Spin(n) using division algebra elements ψ and χ, transforming as

δψ = 1
4
θabe∗a(ebψ) = 1

2
θabΣ

[ab]
cd ψd ec,

δχ = 1
4
θabea(e

∗
bχ) = 1

2
θabΣ̄

[ab]
cd χd ec.

(3.103)

These representations will be important for the fermions in the supersymmetric

theories presented in later chapters.

Looking at equations (3.103) more closely for the division algebras An with n > 1:

• For C, there is only one independent parameter θ := θ01 = −θ10, so the

transformations become simply (writing e1 as the usual complex unit i):

δψ = +1
2
iθψ,

δχ = −1
2
iθχ.

(3.104)

• For H, associativity means that

δψ = 1
4
θab(e∗aeb)ψ = 1

2

(
+θ0i − 1

2
εijkθ

jk
)
ei ψ = −θ−ψ,

δχ = 1
4
θab(eae

∗
b)χ = 1

2

(
−θ0i − 1

2
εijkθ

jk
)
ei χ = −θ+χ,

(3.105)

where θ+ and θ− are defined as in (3.57). This shows that the spinor and

conjugate spinor transform under the anti-self-dual and self-dual parts of θab,

respectively. The imaginary quaternions θ+ and θ− each generate an SU(2)

factor of the double cover of the norm-preserving group Spin(4) ∼= SU(2)2.

• For O, the transformations can once again be written in terms of derivations
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and multiplication from the left and right:

δψ = 1
4
θabe∗a(ebψ) = d̂ψ − βψ + ψ(α− β),

δχ = 1
4
θabea(e

∗
bχ) = d̂χ + αχ + χ(α− β),

(3.106)

where d̂, α and β are defined in equations (3.88). The derivations term is

common to the transformations of ψ, χ and x in (3.87); it is the terms in-

volving left- and right-mutliplication by various combinations of α and β that

distinguish the three representations. Another way to say this is that under

the subgroup G2 ⊂ Spin(8), the vector 8v, spinor 8s and conjugate spinor 8c

all decompose in the same way, i.e.

8v → 7 + 1, 8s → 7 + 1, 8c → 7 + 1. (3.107)

Note that the singlet 1 in each of these decompositions corresponds to the real

part, which is invariant under G2 (so d̂x0 = 0 for any x0 ∈ Re(O)); as far as

G2 is concerned, the 8v, 8s and 8c are all simply octonions on equal footing.

3.3. Triality

Having seen how to transform the vector, spinor and conjugate-spinor representa-

tions of Spin(n) using division algebras, the obvious next step is to see how the three

representations are related to one another. Consider the following octonion a, using

the multiplication rule (3.19):

a := χψ∗ = χbΓ̄abcψ
c ea, (3.108)

where ψ is an octonionic spinor and χ is a conjugate-spinor. As a gamma matrix

sandwiched between two spinors, this ought to transform as a vector under Spin(8)

(cf. the familiar spinor bilinear χ̄γµψ for Lorentz spinors χ, ψ). Indeed one may

verify that this is the case using the transformations (3.106). This highlights the

most elegant aspect of using division-algebraic representations of Spin(n): the rela-

tionships between the three fundamental representations may be expressed without

gamma matrices, simply using the multiplication rule. Assuming that ψ and χ have

unit norm (since this section is only concerned with their transformation properties),
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(3.108) may be written in three equivalent forms,

a = χψ∗ = χbψcΓ̄abcea = (χTΓ̄aψ)ea,

⇔ ψ = a∗χ = aaχbΓ̄abcec = (χT/a)a ea,

⇔ χ = aψ = aaψcΓ̄abceb = (/aψ)a ea,

(3.109)

where /a := Γ̄bab. This further demonstrates the intimate relationship between

division-algebraic multiplication and Spin(n).

As well as transforming covariantly under Spin(n), for the associative division

algebras, equations (3.109) are also invariant under (right-)multiplication of the

spinors by an arbitrary unit-norm element u ∈ An:

ψ → ψu, χ→ χu, u∗u = 1. (3.110)

Writing u = eθI in the complex and quaternionic cases this becomes

δψ = ψθI, δχ = χθI, θI ∈ Im(An), An = C,H, (3.111)

for small θI. At the Lie algebra level this means that equations (3.109) have an

extra u(1) and su(2) symmetry for An = C,H, respectively, which can be labelled

as ex(An) = Ø, u(1), su(2),Ø, for R,C,H,O, respectively. The total Lie algebra

so(n) ⊕ ex(An) combining so(n) with these extra symmetries is called the triality

algebra tri(An):

tri(R) = Ø,

tri(C) = u(1)⊕ u(1),

tri(H) = su(2)⊕ su(2)⊕ su(2),

tri(O) = so(8). (3.112)

Intuitively speaking, it makes sense that there is no extra symmetry in the octonionic

case, since a, ψ and χ each have 8 real components and are already transforming as

the irreducible vector 8v, spinor 8s and conjugate-spinor 8c representations of so(8);

there is ‘no room’ left for them to transform under any further group action. In

contrast, for the quaternions, the vector a transforms as the (2,2) representation of

so(4) ∼= su(2) ⊕ su(2), while the quaternionic spinors ψ and χ in (3.105) each only

transform as a (2,1) and (1,2). Since ψ and χ have 4 real components each, there

is room for them to transform also as a 2 under the third su(2) generated by θI.

Thus the three representations transform under tri(H) = so(4)⊕ su(2), isomorphic
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to su(2)⊕ su(2)⊕ su(2), as

a ∼ (2,2,1), ψ ∼ (2,1,2), χ ∼ (1,2,2), (3.113)

where the three slots in order correspond to θ+, θ− and θI.

In the mathematics literature, the triality algebras are usually introduced via a

more elegant definition, designed so as to generalise the algebra of derivations. This

is given as follows: tri(An) is the algebra of triples (Â, B̂, Ĉ) ∈ so(n)⊕so(n)⊕so(n)

such that

Â(xy) = x(B̂y) + (Ĉx)y, x, y ∈ An. (3.114)

The analogy with derivations is very clear – compare (3.114) with (3.71). Note that

Â, B̂ and Ĉ each belong to a different copy of so(n), and that each transformation is

taken a priori to be in the vector representation of each of the three copies. Hence,

in terms of three sets of antisymmetric parameters θabA , θabB and θabC , equation (3.114)

becomes

θabA (xy)b ea = x θabB yb ea + θabC xb ea y. (3.115)

Using the multiplication rule and factoring out the arbitrary coefficients xa and ya

gives

θadA Γ̄dbc + θbdB Γ̄adc + θcdC Γ̄abd = 0. (3.116)

Thus the triality algebras represent the overall symmetries of the structure constants

Γ̄abc under independent rotations of each of their indices, just as derivations are the

orthogonal transformations preserving Cijk – see (3.72). Equation (3.116) relates

the parameters θabA , θabB and θabC to one another, breaking so(n)⊕ so(n)⊕ so(n) to its

subalgebra tri(An), as given in (3.112).

To see how this works in terms of division-algebraic multiplication, consider the

octonionic case. Using (3.87) gives

Â(xy) = d̂A(xy) + αA(xy) + (xy)βA,

B̂y = d̂By + αBy + yβB,

Ĉx = d̂Cx+ αCx+ xβC ,

(3.117)

for three independent derivations dA, dB and dC and six independent imaginary

parameters αA, αB, αC , βA, βB, βC ∈ Im(O). Temporarily setting all but the deriva-

tions to zero (3.114) becomes

d̂A(xy) = x(d̂By) + (d̂Cx)y, (3.118)
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but by definition any derivation must satisfy the Leibniz rule (3.71) and one must

identify d̂A = d̂B = d̂C ; the subscript can then be dropped and all three of them

simply written as d̂. Temporarily setting d̂ = 0 and substituting the transformations

(3.117) into (3.114) gives

αA(xy) + (xy)βA = x(αB y + y βB) + (αC x+ x βC)y, (3.119)

but by alternativity,

α(xy) = (αx)y + (xα)y − x(αy),

(xy)β = x(yβ) + x(βy)− (xβ)y,
(3.120)

for any α, β, x, y ∈ O. This means αB, αC , βB, βC may be eliminated, leaving only

αA and βA:

αB = −(αA − βA), βB = βA,

αC = αA, βC = αA − βA.
(3.121)

Dropping the A subscripts, the triple of transformations then becomes

Â(xy) = d̂(xy) + α(xy) + (xy)β,

B̂y = d̂y − (α− β)y + yβ,

Ĉx = d̂x+ αx+ x(α− β).

(3.122)

In fact, the argument above works for any of the division algebras, since orthogonal

transformations can always be written in the form (3.117). Thus the triality triple

(Â, B̂, Ĉ) is determined entirely by a derivation d̂ and two imaginary parameters α

and β as in (3.122), i.e.

tri(An) ∼= der(An) + Im(An) + Im(An). (3.123)

It is easy to see that this leads to the algebras listed in (3.112) (note that derivations

are trivial for R and C).

To see how this relates to the discussion of Spin(n) representations above, simply

relabel x = χ and y = ψ∗ in (3.114) so that that xy = χψ∗ =: a – at this point these
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are just labels. Then the transformations (3.122) become

δa = Âa = d̂a+ αa+ aβ,

δψ∗ = B̂ψ∗ =
(
d̂ψ − βψ + ψ(α− β)

)∗
,

δχ = Ĉχ = d̂χ+ αχ+ χ(α− β).

(3.124)

In the octonionic case these are exactly the Spin(8) transformations of the vector

a, spinor ψ and conjugate-spinor χ representations, as seen in equations (3.87) and

(3.106). The statement of triality (3.114) then becomes an identity:

δa = δ(χψ∗) = δχψ∗ + χ δψ∗. (3.125)

In component form, this is equivalent to saying that (3.116) is solved by

θabA = θab, θabB = 1
2
θcdΣ

[cd]
ab , θabC = 1

2
θcdΣ̄

[cd]
ab , (3.126)

where Σ and Σ̄ are the spinor and conjugate-spinor generators defined in (3.101).

This picks out a single diagonal so(8) subalgebra in so(8) ⊕ so(8) ⊕ so(8), relying

on the fact that the Lie algebra elements transforming the vector aa, spinor ψa and

conjugate-spinor χa are all just 8× 8 (real) antisymmetric matrices.

Similarly for the quaternions any derivation is generated by a commutator with

an imaginary parameter θ ∈ Im(H), so

Âa = aθ − θa+ αa+ aβ,

B̂ψ∗ = (ψθ − θψ − βψ + ψ(α− β))∗ ,

Ĉχ = χθ − θχ+ αχ+ χ(α− β).

(3.127)

Identifying

θ − α = θ+, θ + β = θ−, θ + α− β = θI (3.128)

recovers the usual transformations of a, ψ and χ preserving a = χψ∗, as outlined in

the beginning of this section. A similar argument works for the complex numbers,

while the triality algebra of the reals is empty.

The triality algebras are so named because they each have a discrete symmetry

– called triality – isomorphic to the group S3 of permutations on three objects. For

An = H,O, the first hint of these outer automorphisms4 is in the manifest symmetry

4Group automorphisms are linear mappings A of a group G onto itself such that the multiplication
rule is preserved: A(g1g2) = A(g1)A(g2), g1, g2 ∈ G. Outer automorphisms are those that are
non-trivial in the sense that A(g) 6= hgh−1 for any h ∈ G. The same concept applies also at
the Lie algebra level.
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of the su(2) ⊕ su(2) ⊕ su(2) and so(8) Dynkin diagrams in Fig. 3.2. Furthermore,

for any An the relationship a = χψ∗ is invariant under the following representation

of S3: (
a ψ χ∗

a ψ χ∗

)
,

(
a ψ χ∗

ψ χ∗ a

)
,

(
a ψ χ∗

χ∗ a ψ

)
,(

a ψ χ∗

χ ψ∗ a∗

)
,

(
a ψ χ∗

ψ∗ a∗ χ

)
,

(
a ψ χ∗

a∗ χ ψ∗

)
,

(3.129)

since these permutations simply result in six equivalent versions of the same relation

a = (χ∗)∗ψ∗, ψ = a∗(χ∗)∗, χ∗ = ψ∗a∗

⇔ a∗ = ψχ∗, ψ∗ = χ∗a, χ = aψ.
(3.130)

Note that the cyclic permutations involve a, ψ and χ∗ (rather than a, ψ and χ)

and that odd permutations must be accompanied by conjugating all three of these

division algebra elements.

Figure 3.2.: The Dynkin diagrams for the Lie algebras so(8) (left) and su(2)⊕su(2)⊕su(2) (right).

Clearly the three representations a, ψ and χ∗ of tri(An) are isomorphic, since their

transformations

δa = d̂a+ αa+ aβ,

δψ = d̂ψ − βψ + ψ(α− β),

δχ∗ = d̂χ∗ − (α− β)χ∗ − χ∗α,

(3.131)

each involve a derivation, a left-multiplication by an element of Im(An) and a right-

multiplication by an element of Im(An). Thus exchanging the arbitrary parameters

α→ −β, β → α− β ⇒ α− β → −α, (3.132)
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results in

δa = d̂a− βa+ a(α− β),

δψ = d̂ψ − (α− β)ψ − ψα,

δχ∗ = d̂χ∗ + αχ∗ + χ∗β,

(3.133)

so that from this perspective the vector can be seen as a spinor, while the spinor

looks like a conjugate-spinor and the conjugate-spinor like a vector. The exchange

of parameters (3.132) simply corresponds to the order-two permutation

ϑ :=

(
a ψ χ∗

χ∗ a ψ

)
, (3.134)

from (3.129). The other permutations in (3.129) can be obtained by similar param-

eter redefinitions, resulting in the full S3 group of outer automorphisms. Explicitly,

letting

α→ α, β → α− β ⇒ α− β → β (3.135)

results in the order-one odd permutation

% :=

(
a ψ χ∗

χ ψ∗ a∗

)
(3.136)

and the six elements of S3 are then {1, ϑ, ϑ2, %, %ϑ, %ϑ2}.
As an aside, when constructing the exceptional groups it will be useful to define the

action of the particular elements ϑ and % above in terms of the triality transformation

triple (Â, B̂, Ĉ) in (3.122). The transformations (3.131) can be written

δa = Âa, δψ∗ = B̂ψ∗, δχ = Ĉχ, (3.137)

whereas the ϑ-permuted transformations (3.133) are

δa = (B̂a∗)∗, δψ∗ = Ĉψ∗, δχ = (Âχ∗)∗. (3.138)

Thus the action of ϑ is equivalent to

ϑ : (Â, B̂, Ĉ) 7→ (B̂?, Ĉ, Â?), (3.139)

where the ? of an operator is defined as

Ô?x := (Ôx∗)∗, Ô ∈ so(n), x ∈ A. (3.140)
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By similar logic, one may also easily derive that the action of % is equivalent to

% : (Â, B̂, Ĉ) 7→ (Ĉ, B̂?, Â). (3.141)

Both ϑ and % will be put to use in Chapter 5.

The triality algebras find utility in supergravity mainly through their relationship

with the exceptional groups and the magic square. Most importantly, the discrete

triality symmetry associated with the octonions is one of the fundamental ingre-

dients that allows the exceptional groups F4, E6, E7 and E8 to exist, as will be

shown in Chapter 5. The triality algebras are also the symmetries of N = 1 super

Yang-Mills theories (on-shell) in D = 3, 4, 6, 10. The various Lie algebras associated

with the division algebras that have appeared so far are summarised in Table 3.2.

An so(n) der(An) tri(An)
ex(An) :=

tri(An)	 so(n)

R − − − −
C so(2) − u(1)⊕ u(1) u(1)
H so(4) so(3) su(2)⊕ su(2)⊕ su(2) su(2)
O so(8) g2 so(8) −

Table 3.2.: Various Lie algebras associated with the division algebras. The ‘extra’ algebras
ex(An) := tri(An) 	 so(n) are the subalgebras of tri(An) that commute with so(n)
(for An = H,O there are of course three ways to embed the so(n) into tri(An), but
they are equivalent up to discrete triality transformations).

3.4. Division Algebras and Simple Lie Algebras

Above and beyond the action of the norm-preserving and triality algebras on R,C,H

and O, the division algebras have a close relationship with all simple Lie groups and

their Lie algebras. Consider the Lie group A(N,A) consisting of N × N ‘unitary’

matrices with entries in A = R,C,H:

A(N,A) :=
{
X ∈ A[N ]

∣∣X†X = XX† = 1
}
, (3.142)

where A[N ] denotes the set of N × N matrices with entries in A and x† is the

conjugate-transpose (xT)∗. Its Lie algebra is made up of N × N anti-Hermitian
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matrices with entries in A:

a(N,A) :=
{
x ∈ A[N ]

∣∣x† = −x
}
, (3.143)

The Lie brackets are taken using ordinary matrix commutation, [x, y] = xy − yx,

and despite the non-commutativity of the quaternions, the commutators satisfy the

required properties: bilinearity, antisymmetry and the Jacobi identity. In fact, for

the three different division algebras R,C,H, this definition encompasses all of the

classical (compact) Lie algebras [47]

a(N,R) ∼= so(N), a(N,C) ∼= u(N), a(N,H) ∼= sp(N). (3.144)

Aside from these infinite classical families, there are only five other simple Lie al-

gebras in existence (up to different real forms): those of the exceptional groups G2,

F4, E6, E7 and E8. The first of these G2 was introduced earlier as the automor-

phism group of O, so one might guess that the other four exceptional groups are

also somehow related to the octonions. Indeed this turns out to be the case; just

as the octonions themselves hold an exceptional status as the largest and only non-

associative division algebra, their existence gives rise to the five exceptional groups.

These will be introduced in Chapter 5.

3.5. Complex and Quaternionic Structures

An important concept for understanding the symmetries of super Yang-Mills theories

and the magic pyramid of supergravities is the idea of a complex structure, and its

generalisation to a quaternionic structure.

A complex structure defines an embedding of CN into R2N , where N is any natural

number. This defines a corresponding embedding of C[N ] into R[2N ]. Consider a

vector v ∈ R2N . Writing v = (x, y), with x, y ∈ RN , one can identify x and y with

the real and imaginary parts of a complex vector x+ iy ∈ CN . Multiplying v by the

real 2N × 2N matrix

E :=

(
0 −1
1 0

)
∈ R[2N ], (3.145)

which clearly satisfies E2 = −1, is equivalent to multiplying x+ iy by i:

(x+ iy)→ i(x+ iy) = −y + ix

⇔ v → Ev =

(
0 −1
1 0

)(
x

y

)
=

(
−y
x

)
.

(3.146)
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For an arbitrary real 2N × 2N matrix M ∈ R[2N ] acting on R2N to behave like a

complex N ×N matrix acting on CN , it must commute with the complex structure

matrix E. This is the purely real version of the statement that any complex matrix

commutes with multiplication by i. A quick calculation shows that if M commutes

with E then it must be of the form

M =

(
A −B
B A

)
, A,B ∈ R[N ]. (3.147)

In this case, acting on v with M is equivalent to acting on x + iy with the matrix

A+ iB ∈ C[N ]

(x+ iy)→ (A+ iB)(x+ iy) = (Ax−By) + i(Bx+ Ay)

⇔ v →Mv =

(
A −B
B A

)(
x

y

)
=

(
Ax−By
Bx+ Ay

)
.

(3.148)

Thus in general there is an algebra isomorphism

C[N ] ∼=
{
M ∈ R[2N ]

∣∣∣[M,E] = 0, E2 = −1
}
. (3.149)

In particular, for the Lie algebra of real antisymmetric 2N × 2N matrices so(2N),

this restricts to

u(N) ∼=
{
u ∈ so(2N)

∣∣∣[u,E] = 0, E2 = −1, E ∈ so(2N)
}
, (3.150)

where the commuting u(1) part of u(N) ∼= su(N)⊕u(1) is generated by the complex

structure E itself.

It is straightforward to generalise this notion to that of a quaternionic structure,

which embedsH[N ] into R[4N ]. This is simply a pair of 4N×4N complex structures

E1 and E2 that anti-commute with one another:

E2
1 = E2

2 = −1, E1E2 = −E2E1 =: E3. (3.151)

The three matrices E1, E2 and E3 then mimic the algebra of the quaternionic basis

elements i, j and k, and it is easy to prove that there is an algebra isomorphism

H[N ] ∼=
{
M ∈ R[4N ]

∣∣∣[M,E1] = [M,E2] = 0
}
. (3.152)

This time the requirement that M commutes with E1 and E2 (and hence also E3) is

the real version of the statement that left- and right-multiplication in H commute;
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E1, E2 and E3 represent right-multiplication of a quaternionic vector in HN by i, j

and k, which commutes with left-multiplying the vector by a quaternionic matrix5.

Similarly to the complex case, for the Lie algebra of real antisymmetric 4N × 4N

matrices so(4N), the isomorphism (3.152) restricts to

sp(N) ∼=
{
u ∈ so(4N)

∣∣∣[u,E1] = [u,E2] = 0, E1, E2 ∈ so(4N)
}
. (3.153)

The three quaternionic structure matrices E1, E2 and E3 themselves generate a copy

of sp(1) that commutes with the sp(N) above, corresponding to right-multiplication

by an imaginary quaternion.

There is no such straightforward generalisation to an ‘octonionic structure’, since

ordinary associative matrix multiplication can only represent the associative division

algebras.

5Note that E1, E2 and E3 may alternatively correspond to left-multiplication if the quaternionic

matrix is thought of as quaternionic-multiplying on the right, e.g. if the matrix

(
q1 q2
q3 q4

)
with

q1, q2, q3, q4 ∈ H is taken to act like the operator

(
R̂q1 R̂q2
R̂q3 R̂q4

)
.
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4. Super Yang-Mills, Division

Algebras and Triality

Over the years the relationship between supersymmetry and the division algebras

has been a recurring theme. See, for example, [24, 27, 28, 31, 32, 48]. In particular,

owing to the Lie algebra isomorphism

so(1, 1 + n) ∼= sl(2,An), n = dimAn = 1, 2, 4, 8, (4.1)

the normed division algebras An = R,C,H,O provide a natural framework for de-

scribing relativistic physics in D = n + 2 = 3, 4, 6 and 10 spacetime dimensions,

which will be introduced in Section 4.1. Furthermore, the classical Green-Schwarz

superstring and N = 1 super Yang-Mills (SYM) theories of a single vector and

spinor can exist only in these dimensions [15]. In Section 4.2 this division-algebraic

language is used to give a unified formulation of these N = 1 SYM theories. A

version using division-algebraic auxiliary fields is also given so that the supersym-

metry algebra closes off-shell1 in D = 3, 4, 6, while for D = 10 the failure to close is

explicitly demonstrated to be a result of the non-associativity of the octonions, as

hinted at in [49].

Finally in Section 4.3 these theories are dimensionally reduced to give a uni-

fied division-algebraic description of SYM theories with (D = 3, N = 1, 2, 4, 8),

(D = 4, N = 1, 2, 4), (D = 5, N = 1, 2), (D = 6, (N+N−) = (1, 0), (1, 1)) and

(D = 10, 9, 8, 7, N = 1). In particular the maximally supersymmetric theories in

each dimension, descended from D = 10, are formulated over the octonions and

thus the failure of the supersymmetry algebra to close in these cases is attributed

to the non-associativity of O. Consistent truncation to theories with fewer super-

symmetries then corresponds simply to finding H, C and R subalgebras of O. There

is a single ‘master Lagrangian’ for all of these theories with a single unified set of

supersymmetry transformation rules.

1Recall from Chapter 2 that the {Q, Q̄} anti-commutator only ‘closes’ to produce a translation
after the fermionic equation of motion /Dλ = 0 has been applied, i.e. on-shell. Using unphysical
auxiliary fields the algebra can be made to close off-shell.
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The important role of triality algebras as the symmetries of the on-shell degrees

of freedom of N = 1 SYM theories will also be discussed in Section 4.3. By defining

a new algebra int in terms of the usual triality algebras, the on-shell symmetries for

super Yang-Mills with any (D,N ) as above are summarised in a single formula.

4.1. Spacetime Fields in D = n + 2

The isomorphism (4.1) holds for the same reasoning commonly used in D = 4 for

so(1, 3) ∼= sl(2,C). In dimension D = n + 2 with n = 1, 2, 4, 8, a vector Xµ in

Minkowski spacetime can be represented by the components:

Xµ = (X0, X1, . . . , Xn, Xn+1) =: (t,Xa+1, z), a = 0, 1, . . . , (n− 1). (4.2)

However, the vector can just as well be parametrised by X ∈ h2(An), where h2(An)

is the set of 2× 2 Hermitian matrices [24, 50, 51, 48, 31] with entries in the division

algebra An:

X =

(
t+ z x∗

x t− z

)
where t, z ∈ R and x = Xa+1ea ∈ An. (4.3)

Then the determinant of the matrix is the Minkowski metric for D-dimensional

spacetime:

− detX = −t2 + z2 + |x|2. (4.4)

The group of determinant-preserving transformations SL(2,An) must then be equiv-

alent to the group of Lorentz transformations, although care is needed to define el-

ements of SL(2,An) and its Lie algebra, due to the general non-commutativity and

non-associativity of An.

In D = 4 the Pauli matrices {σ̄µ} are used as a basis for Hermitian matrices,

so that X = Xµσ̄µ. This suggests a generalised set of Pauli matrices for µ =

0, 1, · · · , (n + 1). The straightforward generalisation of the usual Pauli matrices to

all four normed division algebras is the linearly-independent basis [24, 51, 29]

σ̄µ = σµ = (+1, σa+1, σn+1),

or σµ = σ̄µ = (−1, σa+1, σn+1),
(4.5)

where

σa+1 :=

(
0 e∗a

ea 0

)
, σn+1 :=

(
1 0

0 −1

)
. (4.6)
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The notation is chosen so that in D = 4 (where n = 2 and A2 = C) the matrices

reduce to the usual Pauli basis:

σ1 =

(
0 e∗0

e0 0

)
=

(
0 1

1 0

)
, σ2 =

(
0 e∗1

e1 0

)
=:

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (4.7)

It is easy to check that the generalised Pauli matrices satisfy

σµσ̄ν + σν σ̄µ = 2ηµν1,

σ̄µσν + σ̄νσµ = 2ηµν1.
(4.8)

This means they can be used to generate Lorentz transformations. To see this,

consider a vector field Aµ transforming under an infinitesimal Lorentz transformation

as

δAµ = λµ
νAν , (4.9)

with λµ
ρηρν = λµν = −λνµ. The vector may be contracted with the Pauli matrices

σµ or σ̄µ to give Hermitian matrices

A = Aµσ
µ =

(
−A0 + An+1 Aa+1e∗a

Aa+1ea −A0 − An+1

)
,

Ā = Aµσ̄
µ =

(
+A0 + An+1 Aa+1e∗a

Aa+1ea +A0 − An+1

)
= A− (TrA)1.

(4.10)

Then A transforms under Lorentz transformations as

δA = 1
4
λµν
(
σµ(σ̄νA)− A(σ̄µσν)

)
. (4.11)

Of course the positioning of the brackets above is only important for the octonions.

To see that equations (4.9) and (4.11) are equivalent, one may add and subtract a

term in (4.11):

δA = 1
4
λµν

(
σµ(σ̄νA)− A(σ̄µσν) + σµ(Āσν)− σµ(Āσν)

)
= 1

4
λµν

(
σµ(σ̄νA+ Āσν)− (Aσ̄µ + σµĀ)σν

)
,

(4.12)

where the second line follows from alternativity. Then since

σµĀ+ Aσ̄µ = Aν(σ
µσ̄ν + σν σ̄µ) = 2ηµνAν1,

σ̄µA+ Āσµ = Aν(σ̄
µσν + σ̄νσµ) = 2ηµνAν1.

(4.13)

76



it follows that

δA = 1
2
λµν (σµAν − σνAµ)

= σµλµ
νAν ,

(4.14)

and hence by the linear independence of the sigma matrices one recovers (4.9). A

parallel argument also leads to

δĀ = 1
4
λµν
(
σ̄µ(σνĀ)− Ā(σµσ̄ν)

)
. (4.15)

Note the similarity with the familiar SL(2,C) formalism using the Pauli matrices.

For the spinor representations, consider constructing gamma matrices in D = n+2

modeled on the Weyl basis (2.23) using the generalised Pauli matrices:

γµ =

(
0 σµ

σ̄µ 0

)
, µ = 0, · · · , (n+ 1). (4.16)

Left-multiplication by these matrices generates the Clifford algebra

γµ(γνζ) + γν(γµζ) = 2ηµνζ ∀ ζ ∈ (An)4, (4.17)

and thus multiplying any 4-component ‘column-vector’ ζ valued in An by γµ has the

effect of multiplying ζ’s 4n real components by an ordinary real 4n×4n gamma ma-

trix. This means that ζ may be seen as a Dirac spinor, and the spinor representation

of Spin(1, n+ 1) will be given infinitesimally by

δζ = 1
4
λµνγ

µ(γνζ). (4.18)

However, this representation is reducible; writing ζ = (Ψ,X ) where Ψ,X ∈ (An)2

are 2-component spinors,

δζ = δ

(
Ψ

X

)
=

(
1
4
λµνσµ(σ̄νΨ)

1
4
λµν σ̄µ(σνX )

)
. (4.19)

Thus Ψ and X transform respectively as the irreducible left-handed spinor and

right-handed spinor representations of Spin(1, n+ 1):

δΨ = 1
4
λµνσµ(σ̄νΨ),

δX = 1
4
λµν σ̄µ(σνX ).

(4.20)

Again, the bracket positioning only matters in the octonionic case. Making the
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incorrect choice (σ[µσ̄ν])Ψ, one finds that the octonionic matrices σ[µσ̄ν] have only

31 independent components, rather than the required 45 = dim[SO(1, 9)]. The

14 missing generators are precisely those of G2, the automorphism group of the

octonions; this G2 subgroup is thus encoded in the non-associativity of the octonions.

Note that in D = 3, the 2× 2 matrices

Γµ := σµε with ε :=

(
0 − 1

1 0

)
(4.21)

already satisfy the Clifford algebra

ΓµΓν + ΓνΓµ = 2ηµν1, (4.22)

so using the two sets of matrices σµ and σ̄µ is not actually necessary, i.e. the spinor

and conjugate-spinor representations are isomorphic. However, it is convenient to

work with the sigmas for consistency with D = 4, 6, 10.

The framework presented above offers a nice picture of spinors in D = 3, 4, 6, 10;

in each case the minimal spinor is just a 2-component An-valued column [31]:

• An = R: Ψ is a Majorana spinor in D = 3

• An = C: Ψ, X are left- and right-handed Weyl spinors2 in D = 4

• An = H: Ψ, X are left- and right-handed Symplectic-Weyl spinors in D = 6

• An = O: Ψ, X are left- and right-handed Majorana-Weyl spinors in D = 10.

Finally, before moving on to describe super Yang-Mills theories it will be useful

to define octonionic operators:

σ̂µν = 1
2

[
σµ(σ̄ν ·)− σν(σ̄µ·)

]
,

ˆ̄σµν = 1
2

[
σ̄µ(σν ·)− σ̄ν(σµ·)

]
,

(4.23)

where the dots represent slots for left- and right-handed spinors, respectively (con-

tinuing with the convention from the previous chapter that octonionic operators are

written with hats). This means that 1
2
σ̂µν and 1

2
ˆ̄σµν are generators of Spin(1, n+ 1)

2The left- and right-handed spinors in D = 4 are related by complex conjugation, i.e. if Ψ is a
left-handed spinor then Ψ̃ := εΨ∗ (with ε given above) transforms like a right-handed spinor.
This is not true in D = 6 and D = 10 due to non-commutativity. Thus the ‘dotted’ and
‘un-dotted’ spinor index notation is not useful in the general case.
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and necessarily satisfy the Lorentz algebra

1
4
[σ̂µν , σ̂ρσ] = 1

2
(ησµσ̂ρν + ηνσσ̂µρ − ηρµσ̂σν − ηνρσ̂µσ),

1
4
[ˆ̄σµν , ˆ̄σρσ] = 1

2
(ησµ ˆ̄σρν + ηνσ ˆ̄σµρ − ηρµ ˆ̄σσν − ηνρ ˆ̄σµσ).

(4.24)

These can then be used to represent spacetime 2-forms such as a field strength Fµν :

F̂ := 1
2
Fµν σ̂

µν ,

ˆ̄F := 1
2
Fµν ˆ̄σµν ,

(4.25)

so that F̂ and ˆ̄F transform under commutation using the Lorentz algbra (4.24):

δF̂ = 1
4
λµν [F̂, σ̂µν ], δ ˆ̄F = 1

4
λµν [ ˆ̄F, ˆ̄σµν ]. (4.26)

For the other division algebras 2-forms can be written similarly, but the positioning

of the brackets is no longer important and the hats can be dropped.

4.2. Super Yang-Mills Theories in D = n + 2

4.2.1. N = 1 Lagrangian and Transformation Rules

Writing a spinor kinetic term in D = n+ 2 will require a real, Lorentz-scalar spinor

bilinear. For commuting spinors this is given by

Re(Ψ†X ) := 1
2
(Ψ†X + (Ψ†X )†) = 1

2
(Ψ†X + X †Ψ), (4.27)

where Ψ is a left-handed spinor, X is a right-handed spinor and the dagger denotes

the conjugate-transpose. It is simple to verify that this is Lorentz-invariant using

the transformations (4.20). Writing Ψ = Ψaea and X = Xaea in terms of their

division-algebraic components this becomes

1
2
(ΨT

aXb e∗aeb + X T
b Ψa e

∗
bea) = 1

2
ΨT
aXb(e∗aeb + e∗bea) = ΨT

aXa, (4.28)

which is clearly a real number. However, the first equality here relies on the compo-

nents Ψa and Xb being ordinary commuting real numbers; for physical spinor fields,

the components Ψa and Xb are anti-commuting Grassmann numbers and the scalar

product above must be replaced by

Re(iΨ†X ) = 1
2
(iΨ†X + (iΨ†X )†) = i

2
(Ψ†X − X †Ψ), (4.29)
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where the complex unit i in the above equation is independent of (and commutes

with) the division algebra An – the † operation is defined to conjugate the factor of

i as well as the elements of An. Note that for anti-commuting spinors

Re(iΨ†X ) = −Re(iX †Ψ). (4.30)

The Lagrangian for a left-handed spinor Ψ is then obtained by applying (4.29) to Ψ

and the right-handed spinor σ̄µ∂µΨ:

− Re(iΨ†σ̄µ∂µΨ) = − i
2

Ψ†(σ̄µ∂µΨ)− i

2
(Ψ†σ̄µ)∂µΨ + total derivative, (4.31)

where the association brackets on the left-hand side have been omitted since the

associator is pure-imaginary:

Re(xyz) := Re((xy)z) = Re(x(yz)), ∀ x, y, z ∈ An. (4.32)

The overall sign in (4.31) ensures energy-positivity and agreement with the usual

D = 4 expression −iΨ†σ̄µ∂µΨ.

The action for (n + 2)-dimensional N = 1 SYM with gauge group G over the

division algebra An is then

S =

∫
dn+2x

(
−1

4
FA
µνF

Aµν − Re(iΨ†Aσ̄µDµΨA)
)
, Ψ ∈ A2

n, (4.33)

where A = 0, · · · , dim[G] and the covariant derivative and field strength are given

by the usual expressions

DµΨA = ∂µΨA + gfBC
AABµΨC ,

FA
µν = ∂µA

A
ν − ∂νAAµ + gfBC

AABµA
C
ν .

(4.34)

The supersymmetry transformations are

δAAµ = Re(iΨA†σ̄µε), δΨA = 1
2
F̂Aε. (4.35)

For the associative division algebras An = R,C,H the action and transformation

rules are invariant under right-multiplication of the spinors by a unit-modulus divi-

sion algebra element u ∈ An

ΨA → ΨA u, ε→ ε u, u∗u = 1. (4.36)
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For An = C,H the unit u may be written as u = eθI with θI ∈ Im(An), so that for

small θI

δΨ = Ψ θI, δε = ε θI, θI ∈ Im(An), An = C,H. (4.37)

Thus there is an internal U(1) and Sp(1) ∼= SU(2) symmetry for An = C,H, re-

spectively. This is none other than the R-symmetry of N = 1 SYM in D = 4, 6.

Note the similarity with the triality algebras in Section 3.3 where there was an extra

algebra ex(An) = Ø, u(1), su(2),Ø for R,C,H,O, respectively.

An advantage of using division-algebraic spinors is that one may write the vector’s

transformation without sigma matrices simply by taking the outer product:

δAA = δAAµσ
µ = i(ΨAε† − εΨ†A). (4.38)

Using (4.10), reversing the trace gives this in terms of AA = Aµσ̄
µ:

δĀA = δAAµ σ̄
µ = i(ΨAε† − εΨ†A)− (trace)

= i(ΨAε† − εΨ†A) + i(ε†ΨA −Ψ†Aε)1,
(4.39)

where the trace term was computed as follows. Since i(ΨAε†− εΨ†A) is a Hermitian

matrix its trace is real:

Tr i(ΨAε† − εΨ†A) = Re Tr i(ΨAε† − εΨ†A). (4.40)

Then by the cyclicity property of the real part of a trace,

Re Tr i(ΨAε† − εΨ†A) = −Re Tr i(ε†ΨA −Ψ†Aε) = −i(ε†ΨA −Ψ†Aε), (4.41)

where the minus sign in the second equality follows from taking into account the

Grassmann nature of the spinors.

4.2.2. Proof of Supersymmetry

The following proof that the action (4.33) is supersymmetric follows the method

found in the literature [52, 31]. It turns out that the variation vanishes by virtue of

the alternativity of the division algebras. Varying the action gives

δS =

∫
dn+2x

(
δAAνDµF

Aµν − Re(igfBC
AΨ†AδĀBΨC + 2iΨ†Aσ̄µDµδΨ

A)
)
. (4.42)

Crucially, the ‘3Ψ’ term Re(igfBC
AΨ†AδĀBΨC) vanishes. First define the trace-

reversed Hermitian outer product of any two anti-commuting spinors Ψ1 and Ψ2
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by

Ψ1 ·Ψ2 = i(Ψ1Ψ†2 −Ψ2Ψ†1)− (trace)

= i(Ψ1Ψ†2 −Ψ2Ψ†1) + i(Ψ†2Ψ1 −Ψ†1Ψ2)1

= Re(iΨ†1σ̄µΨ2)σ̄µ.

(4.43)

Note that the trace −i(Ψ†2Ψ1 − Ψ†1Ψ2) is a real number. Then acting on a third

spinor Ψ3 and adding cyclic permutations gives zero

(Ψ1 ·Ψ2)Ψ3 + (Ψ2 ·Ψ3)Ψ1 + (Ψ3 ·Ψ1)Ψ2 ≡ 0. (4.44)

To see this, note that

(Ψ1 ·Ψ2)Ψ3 = i(Ψ1Ψ†2 −Ψ2Ψ†1)Ψ3 + i(Ψ†2Ψ1 −Ψ†1Ψ2)Ψ3

= i(Ψ1Ψ†2 −Ψ2Ψ†1)Ψ3 + iΨ3(Ψ†2Ψ1 −Ψ†1Ψ2),
(4.45)

so that adding cyclic permutations (c.p.) just results in a sum of associators:

(Ψ1 ·Ψ2)Ψ3 + c.p. = i
(

+[Ψ1,Ψ
†
2,Ψ3] + [Ψ2,Ψ

†
3,Ψ1] + [Ψ3,Ψ

†
1,Ψ2]

−[Ψ1,Ψ
†
3,Ψ2]− [Ψ2,Ψ

†
1,Ψ3]− [Ψ3,Ψ

†
2,Ψ1]

)
.

(4.46)

The six associators then cancel in pairs by alternativity. For example,

[Ψ1,Ψ
†
2,Ψ3]− [Ψ1,Ψ

†
3,Ψ2] = Ψ1iΨ

T
2jΨ3k[ei, e

∗
j , ek]−Ψ1iΨ

T
3jΨ2k[ei, e

∗
j , ek]

= −Ψ1iΨ
T
2jΨ3k[ei, ej, ek] + Ψ1iΨ

T
3jΨ2k[ei, ej, ek]

= Ψ1iΨ
T
3jΨ2k ([ei, ek, ej] + [ei, ej, ek])

= 0.

(4.47)

With a little more work, using the variation (4.39), the 3Ψ term can be rewritten

gfBC
ARe

(
iΨ†AδĀBΨC

)
= gfBC

ARe
(
iε†(ΨC ·ΨA)ΨB

)
, (4.48)

but since ΨA ·ΨB = −ΨB ·ΨA, this is just

1
3
gfBC

ARe
(
iε†
[
(ΨC ·ΨA)ΨB + (ΨA ·ΨB)ΨC + (ΨB ·ΨC)ΨA

])
= 0. (4.49)

Thus the 3Ψ term is zero by virtue of the alternativity of the division algebras.
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As for the remaining terms in δS, substituting in the variations of A and Ψ gives

δS =

∫
dn+2x

(
Re(iΨA†σ̄νε)DµF

Aµν − Re(iΨ†Aσ̄µDµ(F̂Aε))
)
, (4.50)

so by the Leibniz rule

δS =

∫
dn+2x

(
Re(iΨA†σ̄νε)DµF

Aµν − 1
2
Re(iΨ†Aσ̄µ(σ[ν(σ̄ρ]ε))DµF

A
νρ

− 1
2
Re(iΨ†Aσ̄µ(σ[ν(σ̄ρ]∂µε))F

A
νρ

)
,

(4.51)

where the ∂µε term has been retained (despite the fact ε is of course constant) since

this can be used to read off the supercurrent – see below. Then, invoking the identity

σ̄µ(σ[ν(σ̄ρ]Ψ)) = σ̄[µ(σν(σ̄ρ]Ψ)) + 2ηµ[ν(σ̄ρ]Ψ) ∀ Ψ ∈ (An)2, (4.52)

and applying it to the second term results in

δS =

∫
dn+2x

(
−1

2
Re(iΨ†Aσ̄[µ(σν(σ̄ρ]ε))D[µF

A
νρ] − 1

2
Re(iΨ†Aσ̄µ(σ[ν(σ̄ρ]∂µε))F

A
νρ

)
.

(4.53)

The first term then vanishes by the gauge Bianchi identity D[µF
A
νρ] ≡ 0 and the

second (which contains the supercurrent) because ε is constant. The supercurrent

term can be rewritten (by taking the dagger and repeatedly applying (4.32)) as

− 1
2
Re(iΨ†Aσ̄µ(σ[ν(σ̄ρ]∂µε))F

A
νρ = 1

2
Re(i∂µε

†σ̄[ρ(σν](σ̄µΨA)))FA
νρ, (4.54)

from which one may recover the supercurrent in this formalism,

J µ = ˆ̄FA(σ̄µΨA), (4.55)

and hence the supercharge

Q = −
∫
dn+1x ˆ̄FAΨA (4.56)

(since σ̄0 = −1). The supercharge is valued in (An)2 and hence has Q = 2n real

components.
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4.2.3. Supersymmetry Algebra and Off-Shell Formulation

Taking commutators of the supersymmetry transformations given in equation (4.35)

results in

[δ1, δ2]AAµ = Re(iε†2σ̄
νε1)FA

νµ,

[δ1, δ2]ΨA = Re(iε†2σ̄
µε1)DµΨA

+
(
i
2
[ε1, ε

†
2, (σ̄

µDµΨA)] + 1
2
ε1Im(iε†2(σ̄µDµΨA))− (1↔ 2)

)
.

(4.57)

As usual, the commutator of two supersymmetry transformations is a gauge-covariant

translation, but the algebra fails to close by terms proportional to the fermionic

equation of motion σ̄µDµΨA = 0. The difference between the number of fermionic

and bosonic degrees of freedom is

2n− (n+ 1) = n− 1, (4.58)

so if the algebra is to close off-shell, the counting suggests using an auxiliary Im(A)-

valued scalar field DA = DA
i ei. This idea was explored in [53, 29, 54]. Add to the

action (4.33) the term

SD =

∫
dn+2x

(
1
2
DA∗DA

)
, (4.59)

and modify the supersymmetry transformations to

δAAµ = Re(iΨA†σ̄µε),

δΨA = 1
2
(F̂Aε+ εDA),

δDA = Im((iDµΨA†σ̄µ)ε)

(4.60)

(note that Im(iz) = iRe(z) for some division algebra element z). It is straightforward

to check that the action S + SD is invariant under these new transformations. In

the D = 4, 6 cases DA ∈ Im(An) appears in δΨA just like a local R-symmetry

transformation (4.37) with θI → DA, so the auxiliary fields must transform in the

adjoint of the R-symmetry group, i.e. the singlet for U(1) and the 3 for Sp(1).

However, in the D = 10 case multiplying the octonionic objects ε and DA in the

transformations actually breaks Lorentz symmetry. Consider attempting to Lorentz-

transform δΨA. Left- and right-multiplication do not commute in O, i.e. O is non-

associative, so the term εDA only transforms like a spinor if DA itself transforms

under Lorentz transformations. The Lorentz group SO(1, 9) can be broken into

SO(1, 2)× SO(7), where the SO(1, 2) ∼= SL(2,R) is generated by real matrices and

the SO(7) is octonionic, generated by σ̂(i+1)(j+1). The only way to make sense of the
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εDA term is to break SO(1, 9) ⊃ SO(1, 2)×G2 and allow DA to transform as the 7

of G2. In conclusion, in the D = 10 octonionic theory the imaginary auxiliary field

is not a scalar at all but a G2 vector. It is interesting to consider the formalism

regardless.

The commutators of the supersymmetry transformations (4.60) are as follows:

[δ1, δ2]AAµ = Re(iε†2σ̄
νε1)FA

νµ − 1
2
Re
(
i[ε†2, σ̄µ, ε1]DA

)
, (4.61)

[δ1, δ2]ΨA = Re(iε†2σ̄
µε1)DµΨA +

(
i
2
[ε1, ε

†
2, (σ̄

µDµΨA)]− (1↔ 2)
)
,

[δ1, δ2]DA = Re(iε†2σ̄
µε1)DµD

A − i[ε†2, σ̄ν , ε1]DµFA
µν + i

2
Re
(

[ε†2, σ̄
µ, ε1]DµD

A
)
.

Thus the algebra is closed for the associative algebras R,C,H, corresponding to

D = 3, 4, 6, but fails to close by associators for D = 10 over O. Interestingly, in the

octonionic case all of these associators vanish if 7 of the 16 real components of the

supersymmetry parameters are set to zero by constraining one of the two octonionic

components of ε to be real:

ε =

(
εs

εc

)
→

(
Re(εs)

εc

)
(4.62)

(the subscripts s and c are chosen to reflect the little group representations – see the

following section). This is in agreement with [53, 29], where an imaginary octonionic

auxiliary field was used to close the algebra for 9 out of 16 supersymmetries.

4.3. Dimensional Reductions

4.3.1. Little Group Representations and Triality

Having established the Lagrangian and transformation rules for N = 1 super Yang-

Mills in D = 3, 4, 6, 10, it is interesting to move on to dimensional reduction. This

will result in every pure Yang-Mills theory with extended supersymmetry N ≥ 1 in

all dimensions 3 ≤ D ≤ 10. As an example, consider dimensional reduction from

D = 10 to D = 6. The Lorentz group in D = 6 is SL(2,H), which is clearly a

subgroup of SL(2,O) acting on the H subalgebra of O. Using the Cayley-Dickson

doubling procedure described in Chapter 3 an octonion can be constructed as a pair

of quaternions, and thus reducing from D = 10 to D = 6 is a case of ‘Cayley-Dickson

halving’ to split O into a pair of H constituents. Similar arguments apply for each

other case, although to obtain SYM for D 6= 3, 4, 6, 10 will require some additional

background on Clifford algebras.
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To perform these dimensional reductions it will be simpler to consider only the on-

shell degrees of freedom transforming under the little group SO(n)ST, but the process

may equally well be carried out using the full off-shell fields. The on-shell states

also have the advantage that they make the connection between super Yang-Mills

and triality manifest, and this is the focus of this subsection.

The little group is the subgroup of SO(1, 1 + n) generated by sums of Lie algebra

elements with parameters λ0µ = λn+1,µ = 0. For notational convenience define

θab := λa+1,b+1. (4.63)

Then, writing the spinor Ψ’s two components as ψ, χ ∈ An and setting λ0µ =

λn+1,µ = 0, Ψ transforms as

δΨ = 1
4
λµν σ̂µνΨ ⇒ δ

(
ψ

χ

)
= 1

4
θab

(
e∗a(ebψ)

ea(e
∗
bχ)

)
. (4.64)

These are just the transformations of the spinor ψ and conjugate-spinor χ repre-

sentations of SO(n) from Chapter 3. For a solution of the free momentum-space

equation of motion σ̄µpµΨ = 0 (with gauge indices suppressed) with momentum

pµ = (E, 0, · · · , 0, E), the form of the sigma matrices gives

pµσ̄
µΨ = 2E

(
0 0

0 1

)(
ψ

χ

)
= 0, (4.65)

i.e. χ = 0, so the on-shell fermionic content is just the single division algebra element

ψ.

Similarly, defining a := Aa+1ea, with λ0µ = λn+1,µ = 0 the vector A transforms as:

δ

(
A0 + An+1 a∗

a A0 − An+1

)
= 1

4
θab

(
0 e∗a(eba

∗)− a∗(eae∗b)
ea(e

∗
ba)− a(e∗aeb) 0

)
, (4.66)

which gives the transformation of the vector a of SO(n)ST:

δa = 1
4
θab
(
ea(e

∗
ba)− a(e∗aeb)

)
. (4.67)

After applying the radiation gauge and imposing the vector’s equation of motion,

the bosonic content also amounts only to a single division algebra element a.
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Then, writing the supersymmetry parameter as

ε =

(
εs

εc

)
, (4.68)

where εs, εc ∈ An transform respectively as the spinor and conjugate-spinor under

SO(n)ST, only supersymmetry transformations with parameter εs = 0 preserve the

solutions with pµ = (E, 0, · · · , 0, E). The supersymmetry transformations (4.35)

then reduce to

δa = −iεcψ∗, δψ = iE a∗εc. (4.69)

These are of exactly the same form as the triality relations from equations (3.109),

which were preserved by the triality algebra tri(An). This means that the overall

symmetry algebra of the on-shell supersymmetry transformations (4.69) should be

tri(An), and this is precisely the combination of the spacetime little group’s Lie alge-

bra so(n)ST with the R-symmetry ex(An). In conclusion, the total on-shell symmetry

of super Yang-Mills in D = n+ 2 is the triality algebra tri(An) ∼= so(n)ST ⊕ ex(An),

whose triples T = (Â, B̂, Ĉ) act on a, ψ, ε (dropping the subscript c on ε) via equation

(3.124):

δa = Âa = 1
4
θab
(
ea(e

∗
ba)− a(e∗aeb)

)
,

δψ = B̂?ψ = 1
4
θabe∗a(ebψ) + ψθI,

δε = Ĉε = 1
4
θabea(e

∗
bε) + εθI,

(4.70)

where θab ∈ so(n)ST and θI ∈ ex(An). Expanding θab → θ0i, θij, the spacetime little

group part of the these transformations may be written

δa = ÂSTa = −1
2
θ0i(eia+ aei)− 1

4
θij
(
ei(eja)− a(eiej)

)
,

δψ = B̂?
STψ = +1

2
θ0ieiψ − 1

4
θijei(ejψ)

δε = ĈSTε = −1
2
θ0ieiε − 1

4
θijei(ejε),

(4.71)

which it is useful to express as

δ(a, ψ∗, ε) = −1
2
θ0i Ti(a, ψ

∗, ε)− 1
4
θij TiTj(a, ψ

∗, ε), (4.72)

where

Ti = (Âi, B̂i, Ĉi) := (L̂ei + R̂ei , R̂ei , L̂ei) ∈ tri(An) (4.73)

and

T (x, y, z) := (Âx, B̂y, Ĉz) (4.74)
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for any T = (Â, B̂, Ĉ) ∈ tri(An) and (x, y, z) ∈ 3An. Better still, defining Tab = −Tba
with T0i := −Ti and Tij := −T[iTj] the so(n)ST transformation becomes

δ(a, ψ∗, ε) = TST(a, ψ∗, ε) = 1
4
θab Tab(a, ψ

∗, ε). (4.75)

Note that for n = 1 (i.e. D = 3) any sum of spacetime little group generators gives

TST = 0, corresponding to the trivial little group SO(1)ST
∼= 1. It will be convenient

in the later chapters to write the SO(n) generators Tab as follows:

Tab := (Ŝab, R̂ebR̂e∗a − R̂eaR̂e∗b
, L̂ebL̂e∗a − L̂eaL̂e∗b ), (4.76)

where

Ŝab x = 〈ea|x〉eb − 〈eb|x〉ea,= −1
2

(
ea(e

∗
bx) + x(e∗aeb)

)
, (4.77)

(which appears in (4.67) as the vector transformation) and L̂ and R̂ denote left- and

right-multiplication.

The appearance of tri(An) raises the question of the role the discrete triality

symmetry S3 plays in these theories. Here the spinor ψ and conjugate spinor ε have

anti-commuting components and hence cannot be exchanged with the vector a as in

(3.129) (and of course it would make no sense to exchange the constant parameter ε

with the spacetime-dependent solutions ψ and a regardless), but group theoretically

the transformations of the three representations are on completely equal footing. For

example, in the quaternionic case the symmetry is tri(H) ∼= su(2)⊕su(2)⊕su(2), with

two of the su(2) parts being the spacetime symmetry algebra so(4) ∼= su(2)⊕ su(2)

and the third being the R-symmetry ex(H); the three representations transform as

δa = −θ+a + aθ− ∼ (2,2,1),

δψ = −θ−ψ + ψθI ∼ (2,1,2),

δε = −θ+ε + εθI ∼ (1,2,2),

(4.78)

so the three su(2)s act democratically.

The triality algebra formalism is also suited to describing the various Lie algebras

that emerge in dimensional reduction. First consider the bosonic sector. Group

theoretically, on-shell dimensional reduction from D = n + 2 to D = N + 2 (with

1 ≤ N ≤ n) amounts to restricting the little group so(n)ST so that it preserves

an RN subspace of An, corresponding to breaking the higher-dimensional vector

a′ ∈ An into a lower-dimensional vector a ∈ RN and scalars φ ∈ Rn−N , where Rn−N

88



is the orthogonal complement of RN in An. Symbolically,

An = RN ⊕Rn−N ,

a′ = a+ φ = a
¯
ae

¯
a + φı̄eı̄,

(4.79)

where the index a = 0, 1, · · · , (n− 1) labelling the division-algebraic basis elements

has been split into

¯
a = 0, 1, · · · , (N − 1),

ı̄ = N, (N + 1), · · · , (n− 1),
(4.80)

so that span{e
¯
a} = RN , while span{eı̄} = Rn−N . This decomposition simply breaks

so(n)ST into the subalgebra

so(N)ST ⊕ so(n−N) ⊆ so(n)ST, (4.81)

with equality only for the trivial case of no dimensional reduction: n = N . This

subalgebra is obtained by decomposing the so(n)ST parameters θab → θ¯
a
¯
b, θ¯

aı̄, θı̄̄

and then setting θ¯
aı̄ = 0, in order to preserve the decomposition in (4.79). The

parameters θ¯
a
¯
b are those of the lower-dimensional spacetime little algebra so(N)ST,

which acts on the N -dimensional vector a and leaves the (n−N) scalars φ invariant;

the parameters θı̄̄ are those of an internal so(n−N) symmetry, which acts on φ and

leaves a invariant. Explicitly, the transformation of the higher-dimensional vector

with θ¯
aı̄ = 0 reduces to:

δa′ = 1
4
θab
(
ea(e

∗
ba
′)− a′(e∗aeb)

)
= 1

4
θ¯
a
¯
b
(
e

¯
a(e
∗

¯
ba)− a(e∗

¯
ae

¯
b)
)

+ 1
4
θ¯
a
¯
b
(
e

¯
a(e
∗

¯
bφ)− φ(e∗

¯
ae

¯
b)
)

+ 1
4
θı̄̄
(
eı̄(e

∗
̄a)− a(e∗ı̄ ē)

)
+ 1

4
θı̄̄
(
eı̄(e

∗
̄φ)− φ(e∗ı̄ ē)

)
= e

¯
aθ¯
a
¯
ba

¯
b + eı̄θ

ı̄̄φ̄,

(4.82)

so that a transforms as a vector under so(N)ST, while φ transforms as a vector under

so(n−N).

Hence, taking into account the ex(An) symmetry, the total internal symmetry of

such a theory in D = N + 2 is given by

intN(An) :=
{

(Â, B̂, Ĉ) ∈ tri(An)
∣∣Â(RN) = 0, RN ⊆ An

}
= so(n−N)⊕ ex(An).

(4.83)
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while the total on-shell symmetry is

so(N)ST ⊕ intN(An) ⊆ tri(An) (4.84)

(equal to tri(An) only for n = N). The extra internal symmetry algebra ex(An) living

in intN(An) acts only on the fermionic sector, whose field content may be understood

using the theory of Clifford algebras presented in the following subsection.

4.3.2. Clifford Algebras

For a real vector space V with a bilinear inner product 〈·|·〉, the Clifford algebra

Cl(V ) is the (associative) algebra of tensors T (V ) modulo the relation

vw + wv = −2〈v|w〉, ∀ v, w ∈ V. (4.85)

In other words the product in the algebra Cl(V ) is just the ordinary tensor product,

subject to the rule that the symmetric product of two vectors gives their inner

product (multiplied by −2). When V = RN , equipped with its canonical Euclidean

inner product, Cl(V ) is usually denoted Cl(N). For an orthonormal basis {em} of

RN with m = 1, · · · , N , the defining relation (4.85) becomes

emen + enem = −2δmn, (4.86)

and so Cl(N) is the unital associative algebra consisting of linear combinations of

products of N distinct anti-commuting square roots of −1: the ‘generating’ basis

elements em. It is easy to see that the first three Clifford algebras of this type are

the associative division algebras3

Cl(0) ∼= R, Cl(1) ∼= C, Cl(2) ∼= H, (4.87)

while O cannot be a Clifford algebra, since it is non-associative. The fourth Clifford

algebra is actually Cl(3) ∼= H⊕H, which is isomorphic to O as a vector space, but

as an algebra consists of diagonal quaternionic matrices under associative matrix

multiplication. The first eight Clifford algebras are listed in Table 4.1 (as in the

previous chapter, A[N ] denotes the set of N ×N matrices with entries in A).

Remarkably, the continuation of Table 4.1 for higher values of N obeys the fol-

3Note that for H there are two independent anti-commuting square roots of −1, namely i and
j, while the third imaginary basis element k ≡ ij is simply a product of the first two; hence
Cl(2) = H.
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N Cl(N) Generators {em} PN
pN :=

dimR[PN ]

0 R Ø R 1

1 C {i} C 2

2 H {i, j} H 4

3 H⊕H {iσ3, jσ3, kσ3} H⊕H 4+4

4 H[2] {iσ3, jσ3, kσ3, ε} H2 8

5 C[4]
{iσ3⊗σ1, σ3⊗ε, iσ3⊗σ3,

ε⊗1, iσ1⊗1}
C4 8

6 R[8]
{σ3⊗σ1⊗ε, σ3⊗ε⊗1, σ3⊗σ3⊗ε,

ε⊗1⊗1, σ1⊗1⊗ε, σ1⊗ε⊗σ1}
R8 8

7 R[8]⊕R[8]

{σ3⊗σ1⊗ε⊗σ3, σ3⊗ε⊗1⊗σ3,

σ3⊗σ3⊗ε⊗σ3, ε⊗1⊗1⊗σ3,
σ1⊗1⊗ε⊗σ3, σ1⊗ε⊗σ1⊗σ3, σ1⊗ε⊗σ3⊗σ3}

R8 ⊕R8 8+8

Table 4.1.: The Clifford (sub)algebras Cl(N) ∼= Cl0(N+1) as matrix algebras, their generators and
(s)pinor representations PN for the first Bott period, 0 ≤ N ≤ 7. Here σ1, σ2 =: iε and
σ3 are the usual Pauli matrices (3.6). The choice of generators is unique up to O(N)
orthogonal transformations em → Om

nen, which are the automorphisms of Cl(N).

lowing rule, known as Bott periodicity :

Cl(N + 8) ∼= Cl(N)⊗R[16], (4.88)

i.e. the algebra Cl(N+8) is made up of 16×16 matrices with entries in Cl(N). Thus

every Clifford algebra Cl(N) is isomorphic to a matrix algebra over the algebra DN ,

with

DN =



R, N = 0, 6 mod 8

C, N = 1, 5 mod 8

H, N = 2, 4 mod 8

H⊕H, N = 3 mod 8

R⊕R, N = 7 mod 8

(4.89)

where (for the cases N = 3, 7 mod 8) a matrix algebra ‘over’ a direct sum of two

division algebras is defined to be the direct sum of the two corresponding matrix

algebras; for example,

Cl(7) = D7[8] = (R⊕R)[8] := R[8]⊕R[8]. (4.90)
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Any Clifford algebra Cl(N) hence has a unique irreducible representation (or two

irreducible representations in the cases with N = 3, 7 mod 8) – that is, the vector

space these matrices naturally act upon. This is called the space of pinors PN , listed

in Table 4.1. Like the Clifford algebras that act upon them, the pinor representations

exhibit Bott periodicity: PN+8
∼= PN ⊗R16.

The dimension of Cl(N) is 2N , since the whole Clifford algebra has basis

{1, em, emen, · · · , em1em2 · · · emN}, (4.91)

with
(
N
r

)
basis elements at level r, i.e. elements of the form em1em2 · · · emr . Under

the involution em → −em, which corresponds to a space inversion of RN , the Clifford

algebra splits into two eigenspaces of dimensions 2N−1, called the even part Cl0(N)

and the odd part Cl′0(N):

Cl0(N) := {x ∈ Cl(N)| x→ +x for em → −em},

Cl′0(N) := {x ∈ Cl(N)| x→ −x for em → −em}.
(4.92)

The even part clearly forms a closed subalgebra, consisting of sums of products of

even numbers of generators em. Splitting the N generators {em} into {e
¯
m, eN} with

¯
m = 1, · · · (N − 1), it is easy to see that any element of Cl0(N) is a sum of products

of elements γ
¯
m := e

¯
meN , which satisfy

γ
¯
mγ

¯
n + γ

¯
nγ

¯
m = −2δ

¯
m

¯
n, (4.93)

and thus Cl0(N) is in fact a Clifford algebra itself, isomorphic to Cl(N − 1),

Cl0(N) ∼= Cl(N − 1), (4.94)

and hence may be represented by DN−1-valued matrices.

The group Spin(N) ⊂ Cl0(N) consists of all elements of Cl(N) that are a product

of an even number of unit vectors in RN . The irreducible representations of Spin(N),

known of course as spinors, are then the irreducible representations of Cl0(N) ∼=
Cl(N−1). In other words, a spinor in N dimensions is a pinor in N−1 dimensions4,

PN−1
∼= SN , (4.95)

4The group Pin(N) consists of all elements of Cl(N) that are a product of unit vectors in RN ,
and is the double cover of O(N), while its subgroup Spin(N) is the double cover of SO(N).
The irreducible representations of Pin(N), are the irreducible representations of Cl(N) – hence
the name pinors [1].
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where SN is the space of spinors. It will be useful to define:

pN := dimR[PN ], sN := dimR[SN ]. (4.96)

In the context of on-shell supersymmetric Yang-Mills multiplets, usually there

are N spinors ψI ∈ SN , I = 1, 2 · · · ,N , which may be packaged as a reducible

representation (SN)N of the Clifford algebra Cl0(N). The action of the generators

em on these spinors is simply left matrix multiplication: emψI (where the em here are

DN−1-valued matrices acting on the DN−1-valued spinors ψI). The largest algebra of

linear transformations MJ
I of (SN)N that commutes with the action of the Clifford

algebra Cl0(N) is the matrix algebra DN−1[N ], which, because of the potential non-

commutativity of DN−1, acts via right matrix multiplication: ψJM
J
I . It will be

of vital importance in this chapter and in Chapter 6 to consider how this looks in

terms of real matrices acting on RN sN ∼= (SN)N .

If a real vector space V has dimension dim[V ] = N sN for some natural numbers

N and N , then of course there exists a set of (N − 1) matrices Em ∈ R[N sN ]

satisfying

EmEn + EnEm = −2δmn1, (4.97)

which generates a reducible representation of N copies of the 2N−1-dimensional

Clifford algebra Cl(N). The Clifford algebra generated by the Em acts on a real

vector v ∈ V as if it were N spinors ψI valued in SN :

V ∼= RNpN ∼= (SN)N . (4.98)

For such a real vector space V with dim[V ] = N sN , one finds that

DN−1[N ] ∼=
{
M ∈ R[N sN ]

∣∣∣[M,Em] = 0
}
, (4.99)

for Em ∈ R[N sN ] satisfying (4.97). In other words, just as stated above, the largest

algebra of linear transformations of V ∼= (SN)N that commutes with the action of

the Clifford algebra Cl(N) is isomorphic to the matrix algebra DN−1[N ], which takes

DN−1-linear combinations of the N different spinors.

Equation (4.99) generalises equations (3.149) and (3.152) for complex and quater-

nionic structures in Section 3.5, since the complex numbers C = Cl(1) and quater-

nions H = Cl(2) are just Clifford algebras; both the complex and quaternionic

structures are simply matrices that obey the defining Clifford algebra relation (4.86)

for Cl(1) and Cl(2), respectively. Just as for complex and quaternionic structures,
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equation (4.99) restricts to

a(N ,DN−1) ∼=
{
M ∈ so(N sN)

∣∣∣[M,Em] = 0
}
, (4.100)

where a(N ,DN−1) is defined in (3.143).

For Chapter 6 it will be useful to generalise this to DN−1[NL,NR], the set of

rectangular NL×NR matrices with entries in DN−1, which maps (SN)NL and (SN)NR

into one another. In this case one requires both a left and right set of Clifford algebra

generators, Em ∈ R[NLsN ] and Ẽm ∈ R[NRsN ], each satisfying (4.97). Then one

finds that

DN−1[NL,NR] ∼=
{
M ∈ R[NLsN ,NRsN ]

∣∣∣EmM −MẼm = 0
}
. (4.101)

Equation (4.100) has an obvious application in supersymmetry. The R-symmetry

group – that is, the group of automorphisms of the N -extended supersymmetry

algebra – is the group of norm-preserving5 linear transformations of the spinor su-

percharges, which must commute with the Clifford algebra Cl0(D−2) ∼= Cl(D−3) ⊃
Spin(D − 2) corresponding to the spacetime little group Spin(D − 2). Thus the R-

symmetry for N supercharges in D dimensions has Lie algebra [43]

r(N , D) = a(N ,D), (4.102)

where D := DD−3 is the algebra associated with each spacetime dimension D, over

which Cl(D−3) may be formulated – see (4.89). The Clifford algebras for dimensions

3 ≤ D ≤ 10, along with their corresponding D algebras, spinor representations and

R-symmetry groups are presented in Table 4.2. Note that whenD is a direct sum, i.e.

in D = 6, 10, there exist chiral spinors. In this case the number of supersymmetries

N becomes an ordered pair (N+,N−), where N+ is the number of left-handed

chiral spinor supercharges and N− is that of the right-handed6. The R-symmetry

group preserves chirality in these dimensions, and so is given by so(N+)⊕ so(N−)

in D = 10 and sp(N+)⊕ sp(N−) in D = 6.

With the above machinery in hand, the question of dimensionally reducing on-

shell super Yang-Mills from D = n + 2 to D = N + 2 is fairly straightforward.

The higher-dimensional quantities (a′, ψ′∗, ε′) ∈ 3An transform under the lower-

5By definition, R-symmetry transformations must preserve the δIJ on the right-hand side of the

supersymmetry algebra’s anti-commutator {QIα, Q̄
β
J} = Pµ(γµ)α

βδIJ .
6Thus, strictly speaking, what was called N = 1 super Yang-Mills in D = 6, 10 sometimes in this

chapter should have been called (N+,N−) = (1, 0).
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D Cl0(D − 2)
∼= Cl(D − 3)

D
D − 2 spinor rep
∼= D − 3 pinor rep

R-symmetry
∼= a(N ,D)

10 R[8]⊕R[8] R⊕R R8 ⊕R8 so(N+)⊕ so(N−)
9 R[8] R R8 so(N )
8 C[4] C C4 u(N )
7 H[2] H H2 sp(N )
6 H⊕H H⊕H H⊕H sp(N+)⊕ sp(N−)
5 H H H sp(N )
4 C C C u(N )
3 R R R so(N )

Table 4.2.: The Clifford (sub)algebras, D, spinor representation and R-symmetry algebra for di-
mensions D = 3, · · · , 10.

dimensional little algebra so(N)ST ⊂ tri(An) as

δ(a′, ψ′∗, ε′) = 1
4
θ¯
a
¯
b T

¯
a
¯
b(a
′, ψ′∗, ε′)

= −1
2
θ0

¯
i T

¯
i(a
′, ψ′∗, ε′)− 1

4
θ̄i¯
j T

¯
iT

¯
j(a
′, ψ′∗, ε′),

(4.103)

where
¯
i = 1, 2, · · · , (N − 1). For the fermionic quantities this reads

δψ′ = 1
4
θ¯
a
¯
be∗

¯
a(e

¯
bψ
′) = −1

2
θ0

¯
iB̂?

¯
i ψ
′ − 1

4
θ̄i¯
jB̂?

¯
i B̂

?

¯
jψ
′,

δε′ = 1
4
θ¯
a
¯
be

¯
a(e
∗

¯
bε
′) = −1

2
θ0

¯
iĈ

¯
iε
′ − 1

4
θ̄i¯
jĈ

¯
iĈ

¯
jε
′,

(4.104)

since

T
¯
i = (Â

¯
i, B̂

¯
i, Ĉ

¯
i) := (L̂e

¯
i
+ R̂e

¯
i
, R̂e

¯
i
, L̂e

¯
i
) ∈ tri(An). (4.105)

These spacetime Clifford triality generators T
¯
i give rise to a representation of Cl(N−

1) on the higher-dimensional fermion ψ′ and supersymmetry parameter ε′:

(B̂
¯
iB̂

¯
j + B̂

¯
jB̂

¯
i)ψ
′∗ = −2δ

¯
i
¯
jψ
′∗,

(Ĉ
¯
iĈ

¯
j + Ĉ

¯
jĈ

¯
i)ε
′ = −2δ

¯
i
¯
jε
′, ∀ ψ′, ε′ ∈ An.

(4.106)

Thus each of B̂
¯
i and Ĉ

¯
i determines an isomorphism,

An
∼= (SN)N , (4.107)

where N = n/sN , just as in equation (4.98). In this way, the higher-dimensional

fermion ψ′ ∈ An breaks into N lower-dimensional spinors valued in SN – and similar

for the supersymmetry parameter ε′ – so the lower-dimensional theory hasN = n/sN

supersymmetries. For example, for D = N + 2 = 4 and N = 4, there is just one
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Clifford generator B̂1 (or Ĉ1), which generates Cl0(N) = Cl0(2) ∼= C, acting on the

reducible representation An = O. In this case B̂1 (Ĉ1) acts as a complex structure

on O, allowing one to reinterpret ψ′ ∈ O (ε′ ∈ O) as N = 4 complex spinors: O ∼= C4

(note that S2 = C, so s2 = 2).

Table 4.3 shows how the fermion fields in each D = N + 2 fit into the division

algebra An over which the theory may be written, and Appendix A.1 contains

explicit demonstrations of this. As outlined above, this is achieved via dimensional

reduction from D = n+2. The examples given are the maximal theories valued over

An = O and so are obtained from D = 10. The theories with fewer supersymmetries

can then be obtained simply by truncation to division subalgebras of O.

N Cl0(N)
O ∼= (SN )N

Q = 16
H ∼= (SN )N

Q = 8
C ∼= (SN )N

Q = 4
R ∼= (SN )N

Q = 2

8 R[8]⊕R[8] O ∼= S+8 ∼= R8 − − −
⇒ N = (1, 0)

7 R[8] O ∼= S7 ∼= R8 − − −
⇒ N = 1

6 C[4] O ∼= S6 ∼= C4 − − −
⇒ N = 1

5 H[2] O ∼= S5 ∼= H2 − − −
⇒ N = 1

4 H⊕H O ∼= S+4 ⊕ S
−
4
∼= H⊕H H ∼= S+4 ∼= H − −

⇒ N = (1, 1) ⇒ N = (1, 0)

3 H O ∼= (S3)2 ∼= H2 H ∼= S3 ∼= H − −
⇒ N = 2 ⇒ N = 1

2 C O ∼= (S2)4 ∼= C4 H ∼= (S2)2 ∼= C2 C ∼= S2 ∼= C −
⇒ N = 4 ⇒ N = 2 ⇒ N = 1

1 R O ∼= (S1)8 ∼= R8 H ∼= (S1)4 ∼= R4 C ∼= (S1)2 ∼= R2 R ∼= S1 ∼= R

⇒ N = 8 ⇒ N = 4 ⇒ N = 2 ⇒ N = 1

Table 4.3.: Division algebras An decomposed into spinor representations of Cl0(N).

For N > 1 (D > 3) the internal symmetry intN(An) is just the subalgebra of

tri(An) that commutes with so(N)ST:

intN(An) =
{
T ∈ tri(An)− so(N)ST

∣∣∣[T, so(N)ST] = 0
}
, N > 1

= so(n−N)⊕ ex(An),
(4.108)
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which acts on the a′, ψ′, ε′ as

δa′ = −1
4
θı̄̄
(
eı̄(ēa

′)− a′(eı̄ē)
)
,

δψ′ = −1
4
θı̄̄eı̄(ēψ

′) + ψ′θI

δε′ = −1
4
θı̄̄eı̄(ēε

′) + ε′θI.

(4.109)

There is more structure in the internal symmetry algebra intN(An) than this might

at first suggest. Specifically, intN(An) is a direct sum of Lie algebras, one of which

is sa(N ,D), as expected from the R-symmetry (4.102). This can be seen as follows.

From (4.103) it is clear that [T, so(N)ST] = 0 if and only if [T, T
¯
i] = 0 for every

¯
i.

Writing T = (Â, B̂, Ĉ), for the spinors this condition translates to

[B̂, B̂
¯
i] = 0, [Ĉ, Ĉ

¯
i] = 0, (4.110)

where B̂, Ĉ ∈ so(n). This means the internal symmetry is generated by the subset of

so(n) matrices that commutes with the Clifford algebra generators, which according

to (4.100) means that the internal symmetry contains a factor of sa(N ,D). Indeed

one finds that for N > 1

intN(An) = sa(N ,D)⊕ exN(An), (4.111)

where exN(An) is a possible commuting u(1):

exN(An) := intN(An)	 sa(N ,D) =

u(1), (N, n) = (2, 2), (2, 4), (6, 8)

Ø, otherwise.

(4.112)

For N = 2 (i.e. D = 4) these additional factors correspond to the inclusion of

the CPT conjugate. It is particularly convenient that the definition of intN(An)

is such that in D = 4 the internal symmetry works out to be the R-symmetry

u(1), u(2), su(4) for N = 1, 2, 4 super Yang-Mills; the missing u(1) in the CPT-self-

conjugate N = 4 theory is taken into account automatically:

intN(An) = a(N ,D)	 δ4,Dδ4,Nu(1), D = N + 2 > 3. (4.113)

Also intriguing is the fact that the two equations (4.83) and (4.111) are compati-

ble with one another only because of the existence of the so-called ‘accidental’ Lie
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algebra isomorphisms

so(2) ∼= u(1), so(3) ∼= su(2) ∼= sp(1), so(4) ∼= sp(1)⊕ sp(1),

so(5) ∼= sp(2), so(6) ∼= su(4). (4.114)

Moreover, these constitute all the low-dimensional (compact) Lie algebra isomor-

phisms, every one of which is relied upon for the consistency of equations (4.83) and

(4.111).

Cl0(N)\An O H C R

Q = 16 Q = 8 Q = 4 Q = 2

R[8]⊕R[8] so(8)ST - - -
∼= tri(O)

R[8] so(7)ST - - -

C[4] so(6)ST ⊕ so(2) - - -
∼= su(4)ST ⊕ u(1)

H[2] so(5)ST ⊕ so(3) - - -
∼= sp(2)ST ⊕ sp(1)

H⊕H so(4)ST ⊕ so(4) so(4)ST ⊕ sp(1) - -
∼= 2sp(1)ST⊕2sp(1) ∼= 2sp(1)ST⊕sp(1)

∼= tri(H)

H so(3)ST ⊕ so(5) so(3)ST ⊕ sp(1) - -
∼= sp(1)ST ⊕ sp(2) sp(1)ST ⊕ sp(1)

C so(2)ST ⊕ so(6) so(2)ST⊕so(2)⊕sp(1) so(2)ST ⊕ u(1) -
∼= u(1)ST ⊕ su(4) ∼= u(1)ST ⊕ u(2) ∼= u(1)ST ⊕ u(1)

∼= tri(C)

R so(7) so(3)⊕ sp(1) u(1) Ø
∼= so(4) ∼= so(2) ∼= tri(R)

Table 4.4.: The symmetry algebras of pure super Yang-Mills on-shell: so(N)ST ⊕ intN (An). Each
slot corresponds to the SYM theory in D = N + 2 dimensions with Q = 2n real
supercharge components. Note that every pure SYM theory is included in this table.

Table 4.4 shows the overall (spacetime plus internal) symmetry of each pure super

Yang-Mills in each dimension D = N + 2. In each dimension D > 3 the internal

symmetry intN(An) is just the R-symmetry. Contrastingly, in D = 3 the algebra

intN(An) coincides with the R-symmetry only for the N = 1, 2, 4 theories; the max-

imal N = 8 theory is an exceptional case. The R-symmetry for D = 3 (that is, the

automorphisms of the supersymmetry algebra) for a theory withN supersymmetries
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in D = 3 is so(N ), which simply rotates the N supercharges into one another in

the vector representation. For the maximal D = 3, N = 8 theory the R-symmetry

is then so(8) rather than the so(7) given in Table 4.4. The full R-symmetry so(8) is

only realised when the vector is dualised to a scalar, which can only be carried out

in the free Yang-Mills theory with coupling constant g = 0 (see the Lagrangian in

the next subsection)7.

4.3.3. The Master Lagrangian

Dimensionally reducing the minimally supersymmetric Lagrangian (4.33) from D =

n + 2 to D = N + 2 using the techniques described in the previous subsections

results in a ‘master Lagrangian’, whose input is the dimension D and the division

algebra An, and whose output is the Yang-Mills theory in D = N + 2 with N
supersymmetries (recall that n = N sN = Q/2). The higher-dimensional vector

A′ ∈ h2(An) decomposes as

A′ =

(
−A0 + An+1 A¯

a+1e∗
¯
a

A¯
a+1e

¯
a −A0 − An+1

)
+

(
0 (φı̄eı̄)

∗

φı̄eı̄ 0

)
= A+ φε. (4.115)

The spinor Ψ ∈ (An)2 is left just as it is, on the understanding that there are

actually N spinors in D = N + 2 dimensions, each valued in (SN)2. The resulting

action is

SD(An) =

∫
dDx

(
− 1

4
FA
µνF

Aµν − 1
2
Dµφ

A∗DµφA − Re(iΨ†Aσ̄µDµΨA)

− 1
16
g2fBC

AfDE
A(φB∗φD + φD∗φB)(φC∗φE + φE∗φC)

− gfBCARe
(
iΨ†AεφBΨC

) )
(4.116)

where the set {σ̄µ} is a D-dimensional basis for matrices of the form that A takes

in (4.115), i.e. An-valued Hermitian matrices. The supersymmetry transformations

are

δAA = i(ΨAε† − εΨ†A)RN ,

δφA = − i
2

Tr
(
ε(ΨAε† − εΨ†A)RN−n

)
,

δΨA = 1
2
F̂Aε+ 1

2
σµε(Dµφ

Aε) + 1
4
fBC

AφC(φBε),

(4.117)

7Incidentally, this is the reason for the insistence on using the generic term ‘internal symmetry’
throughout this chapter, rather than just writing ‘R-symmetry’.
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where the subscripts RN and Rn−N refer to the respective projections onto these

subspaces of An.

To obtain the conventional actions, one can always multiply out the division

algebra basis elements as appropriate to the theory of interest. For example, the

D = 4, N = 4 theory has An = A8 = O and SN = S2 = C, so the fermions form

an octonion, written to look like a four complex numbers – see equation (A.14) in

Appendix A.1.2. Multiplying out the basis elements eâ returns the conventional

action for D = 4, N = 4, in terms of four complex fermions Ψâ and six real scalars

φı̄:

S (C,O) =

∫
d4x
(
− 1

4
FA
µνF

Aµν − 1
2
Dµφ

A
ı̄ D

µφAı̄ − Re(iΨ†Aâ σ̄
µDµΨA

â )

− 1
4
g2fBC

AfDE
AφBı̄ φ

D
ı̄ φ

C
̄ φ

E
̄

− i
2
gfBC

AφBı̄

(
ΨTA
â εΥı̄

âb̂
ΨC
b̂

+ Ψ†Aâ εΥ
ı̄
âb̂

ΨC∗
b̂

))
, (4.118)

where the complex matrices Υı̄
âb̂

are defined in Appendix A.1.2.

Since the master Lagrangian comes from dimensional reduction of the fundamental

N = 1 Lagrangians in D = 3, 4, 6, 10, it is guaranteed to be supersymmetric by

the proof given in the previous section. To close the supersymmetry algebra off-

shell it is clear that the appropriate auxiliary field is valued in Im(An); otherwise,

the form of the terms in the supersymmetry transformations (4.60) is unchanged.

Interestingly, the transformations in the D = 3 octonionic case (N = 1, N = 8) are

Lorentz-covariant with symmetry SO(1, 2) × G2. However, this must be broken to

SO(1, 1)×G2 to close the algebra [29], since one must still impose the constraint of

equation (4.62).

4.4. Summary

This chapter gave a demonstration of how any super Yang-Mills theory in D = N+2

may be written using a pair of algebras: Cl(N − 1) ∼= Cl0(N) and An. The internal

symmetry intN(An) is the subalgebra of tri(An) for which one element of the triality

triple (Â, B̂, Ĉ) – say Â – annihilates the subspace RN ⊂ An. Imaginary An-valued

auxiliary fields may be used to close the non-maximal supersymmetry algebra off-

shell, while the failure to close for maximally supersymmetric theories is attributed

directly to the non-associativity of the octonions.

Pure super Yang-Mills in D dimensions with N supersymmetries can always be

thought of as the descendant of a D = n + 2 theory with N = 1 – its ‘oxidation

endpoint’ – written over An with Q = 2n real supercharge components. However,
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if one would rather not think in terms of dimensional reduction (or oxidation), then

the number of real supercharge components Q = 2n is sufficient to associate a SYM

theory in D dimensions with the n-dimensional division algebra An.

Of course the master Lagrangian (4.116) would be cumbersome to work with; the

key point of the dimensional reductions is to highlight how the triality algebra breaks

up into pieces in each of the dimensions, as this will be important for understanding

supergravity symmetries in the coming chapters. In D = 3 however theN = 1, 2, 4, 8

theories have a particularly simple form written over R,C,H,O, and these theories

will be used in the next chapter to construct a magic square of supergravities.
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5. A Magic Square from

Yang-Mills Squared

The octonions provide an intuitive basis for defining the five exceptional groups

G2, F4, E6, E7 and E8. For example, the smallest of these G2 is the group of

automorphisms of O. Efforts to understand the remaining exceptional groups geo-

metrically in terms of octonions resulted in the Freudenthal-Rosenfeld-Tits magic

square [55, 56, 57, 58, 59, 60] presented in Table 5.1. Each slot gives the Lie algebra

of the isometries of the ‘projective plane’1 over a tensor product of division algebras

AL ⊗ AR, with exceptional groups appearing whenever one of the two algebras is

O. A detailed construction of the magic square will be given in Section 5.2.

AL\AR R C H O

R so(3) su(3) sp(3) f4
C su(3) su(3)× su(3) su(6) e6

H sp(3) su(6) so(12) e7

O f4 e6 e7 e8

Table 5.1.: The magic square L3(AL,AR) of compact real forms.

In apparently completely different developments, a popular thread in attempts

to understand the quantum theory of gravity is the idea of ‘gravity as the square

of Yang-Mills’. The idea in its most basic form is that a symmetric tensor gµν

can be built from the symmetric tensor product of two vector fields Aµ and Ãµ as

gµν ∼ A(µÃν) (or rather any symmetric tensor may be written as a sum of such tensor

products). It is easy to see that this can incorporate supersymmetry; tensoring a

minimal Yang-Mills multiplet {Aµ, λ} (in D = 4 say) with a vector field Ãµ results

in a minimal supergravity multiplet {gµν ,Ψµ} ∼ {A(µÃν), λÃµ}.
This idea of tensoring Yang-Mills multiplets appears in many different guises,

which often overlap: KLT relations in string theory [61], D = 10 Type IIA and

1Note that the manifolds associated with the (H⊗O) and (O⊗O) cases are not strictly speak-
ing projective spaces, but nevertheless constitute geometries which are often referred to as
projective planes.
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IIB supergravity multiplets from D = 10 super Yang-Mills multiplets [15], asym-

metric orbifold constructions [62], gravity anomalies from gauge anomalies [63], (su-

per)gravity scattering amplitudes from those of (super) Yang-Mills [64, 65, 66] in

various dimensions and even classical general relativity solutions from classical gauge

theory solutions [67, 68]. While it would seem there is now a growing web of relations

connecting gravity to ‘gauge × gauge’, it is as yet not clear to what extent gravity

may really be regarded as the square of Yang-Mills. In an attempt to address this

question, Section 5.1 will contain some further discussion of what it means to tensor

Yang-Mills multiplets at the classical linearised level.

Bringing all of this together, the culmination of this chapter in Section 5.3 is

the following result: tensoring pairs of D = 3 SYM multiplets with NL = 1, 2, 4, 8

and NR = 1, 2, 4, 8 yields a magic square of D = 3 supergravity theories with

N = NL + NR = 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, as presented in Table 5.6. For N > 8

the resulting multiplets are those of pure supergravity; for N ≤ 8 pure supergravity

is coupled to vector multiplets. In both cases the field content is such that the

U-dualities exactly match the groups of the magic square, Table 5.3. This will

be interpreted using the division algebra description of D = 3 Yang-Mills with

N = 1, 2, 4, 8 over R,C,H,O, as introduced in the previous chapter.

5.1. Gravity as the Square of Yang-Mills

In recent years gauge and gravitational scattering amplitudes have been subject

to something of a renaissance [69], resulting not only in dramatic computational

advances but also important conceptual insights. One such development, strad-

dling both the technical and conceptual, is the colour-kinematic duality of gauge

amplitudes introduced by Bern, Carrasco and Johansson [64]. Exploiting this dual-

ity it has been shown that gravitational amplitudes may be reconstructed using a

double-copy of gauge amplitudes, suggesting a possible interpretation of perturba-

tive gravity as ‘the square of Yang-Mills’ [65, 70]. This perspective has proven itself

remarkably effective, rendering possible previously intractable gravitational scatter-

ing amplitude calculations [71]; it is both conceptually suggestive and technically

advantageous. Yet, the idea of gravity as the square of Yang-Mills is not specific to

amplitudes, having appeared previously in a number of different, but often related,

contexts [61, 15, 62, 63, 72, 67, 68].

These many-faceted relations have furthered our understanding of (super)gravity

itself. For example, the Bern-Carrasco-Johansson (BCJ) color-kinematic duality

[64, 65] has facilitated the computation of higher-loop D = 4,N = 8 supergravity

103



amplitudes previously regarded as beyond reach. See, for example, [71] and the

references therein. This promises to answer the long-standing questions [73] of when

and how perturbative N = 8 supergravity diverges – if indeed it diverges at all [74].

In spite of these remarkable developments, it is still not entirely clear what pre-

cisely it means to say that gravity is the square of Yang-Mills. This thesis will

address this question mainly at the group-theoretic level, where the idea is sim-

ply to take the symmetric tensor product of a pair of momentum-space Yang-Mills

vector fields Aµ(k) and Ãν(k) in order to construct a symmetric traceless matrix

hµν(k) = A(µÃν) − 1
D
AρÃρ ηµν , which could be interpreted as the momentum-space

graviton field, i.e. the Fourier transform hµν(k) of a small deviation hµν(x) of the

metric gµν(x) from Minkowski space, gµν(x) ' ηµν + hµν(x).

This can be generalised to supersymmetric theories. A pure N -extended super

Yang-Mills theory in D spacetime dimensions has field content {Aµ, λI , φı̄}, where

the (defining representation) R-symmetry index I labels the N fermions and ı̄ labels

the (Q/2 + 2−D) scalars, with Q the total number of real supercharge components

(so for exampleN = 4 SYM in D = 4 hasQ = 16 and hence contains 16/2+2−4 = 6

scalar fields). Temporarily ignoring gauge indices, tensoring a (momentum-space)

SYM multiplet {Aµ, λI , φı̄} with another {Ãµ, λ̃I
′
, φ̃ı̄

′} produces the field content of

a supergravity theory:

⊗ Ãν λ̃I
′

φ̃ı̄
′

Aµ hµν +Bµν + ϕ ΨI′
µ + χI

′
Aı̄
′
µ

λI ΨI
ν + χI ϕII

′
RR + · · · χIı̄

′

φı̄ Aı̄ν χI
′ ı̄ ϕı̄̄ı

′

(5.1)

where the symbol ⊗ denotes the tensor product of Lorentz representations, which

are carried out as follows. The vector-vector tensor product AµÃν gives

hµν = A(µÃν) − 1
D
AρÃρ ηµν , Bµν = A[µÃν], ϕ = AµÃµ, (5.2)

while the fermion-vector tensor products Aµλ̃
I′ and λIÃµ give

ΨI
µ = 1

2
γνγµλ

IÃν , ΨI′

µ = 1
2
γνγµAνλ̃

I′ ,

χI = 1
2
γµλIÃµ, χI

′
= 1

2
γµAµλ̃

I′ . (5.3)
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The tensor product of any field with the scalars is trivial, giving

Aı̄µ = φı̄Ãµ, Aı̄
′

µ = Aµφ̃
ı̄′ ,

χIı̄
′
= λI φ̃ı̄

′
, χI

′ ı̄ = φı̄λ̃I
′
, (5.4)

and

ϕı̄̄ı
′
= φı̄φ̃ı̄

′
. (5.5)

Finally, the fermion-fermion tensor product must be decomposed using Fierz expan-

sion, which gives a different result in each dimension, depending on the symmetry

of the gamma matrices. In string theory parlance this is known as the Ramond-

Ramond sector. Although the particular set of Ramond-Ramond p-forms φII
′

RR + · · ·
is dimension-dependent, there is always a set of NLNR scalar fields φII

′
RR , which are

related to the Yang-Mills fermions as

iλ̄Iγµλ̃
I′ = ∂µφ

II′

RR . (5.6)

In general it is the (p+ 1)-form field strengths F of Ramond-Ramond p-forms that

are produced from the fermion-fermion products:

iλ̄Iγµ1···µp+1λ̃
I′ = Fµ1···µp+1 . (5.7)

This can be seen from dimensional analysis, which will be discussed below.

Since the Yang-Mills R-symmetry (fundamental representation) indices take val-

ues I = 1, · · · ,NL and I ′ = 1, · · · ,NR, there are N = NL+NR gravitini ΨI
µ and ΨI′

µ

in the resulting Yang-Mills-squared multiplet. Indeed the field content produced for

each D and NL, NR constitutes that of a supergravity theory with NL +NR super-

symmetries:

[NL SYM]⊗ [NR SYM]→ [N = NL +NR Supergravity]. (5.8)

Attempting to interpret gravity as the ‘square of’ gauge theory, the tensor prod-

ucts above can be considered from one of two viewpoints. The first and more con-

servative of these is that this is a purely (super-)group-theoretic dictionary, which

applies only to supermultiplets as representations of the super-Poincaré group. The

second viewpoint is that equations (5.2)–(5.7) represent a genuine ansatz describing

gravity fields in terms of Yang-Mills fields at the linearised level. This is a fairly

new idea, explored in [75].

If equations (5.2)–(5.7) are to be taken seriously as a gravity-Yang-Mills dictio-
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nary, the first question is how the two (in general distinct) Yang-Mills gauge groups

GL and GR are to be accommodated. The Yang-Mills multiplets {AAµ , λIA, φı̄A} and

{ÃA′µ , λ̃I
′A′ , φ̃ı̄

′A′} carry adjoint indices A = 1, · · · , dim[GL] and A′ = 1, · · · , dim[GR],

which may be taken into account by introducing a ‘spectator’ scalar function ΦAA′(k)

valued in the bi-adjoint of GL ×GR. The candidate graviton field hµν may then be

written as

hµν = ΦAA′
(
AA(µÃ

A′

ν) − 1
D
AρAÃA

′

ρ ηµν
)
. (5.9)

The appearance of this scalar ΦAA′ seems to be roughly consistent with the obser-

vation [76, 77, 78] that at tree-level the product of two SYM amplitudes (or, to be

precise, their integrands) produces a gravitational amplitude multiplied by an addi-

tional factor that happens to be precisely the appropriate amplitude for a bi-adjoint

scalar field with a cubic Lagrangian. From this perspective the schematic relation

‘Yang-Mills × Yang-Mills = gravity’ is replaced by the even more peculiar statement

that ‘Yang-Mills × Yang-Mills = gravity × φ3,’ which turns out to lead to the BCJ

color-kinematic duality [77].

The relation ‘Yang-Mills × Yang-Mills = gravity × φ3’ refers of course to scat-

tering amplitudes calculated and multiplied in momentum space, and the gravity-

Yang-Mills dictionary presented above is also for fields in momentum space. The

Fourier transform of a product f(k)g(k) of two functions of momentum f(k) and

g(k) is a convolution in position space (f ? g)(x), defined by

(f ? g)(x) =

∫
dDy f(y)g(x− y), (5.10)

where f(x) and g(x) are the respective Fourier transforms of f(k) and g(k). The

position-space version of (5.9) is then

hµν = ΦAA′ ?
(
AA(µ ? Ã

A′

ν) − 1
D
AρA ? ÃA

′

ρ ηµν
)
. (5.11)

The equations (5.2)–(5.7) define a complete supergravity-Yang-Mills dictionary, pro-

vided that one adopts the convention that juxtaposition of position-space Yang-Mills

fields with and without tildes ∼ denotes a convoluted contraction with the gauge-

bi-adjoint spectator scalar ΦAA′(x),

f(x)g̃(x) := (ΦAA′ ? f
A ? g̃A

′
)(x), ∀ f(x), g̃(x), (5.12)

while for momentum-space Yang-Mills fields juxtaposition denotes an ordinary prod-

uct contraction with ΦAA′(k). The physical meaning of such a description at the field

theory level is somewhat mysterious, due to the non-local nature of convolutions.
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A remarkable feature of this proposed gravity-Yang-Mills dictionary is that if the

two gauge supermultiplets are taken to describe linearised Yang-Mills theories then

their respective gauge transformations result in gravitational gauge transformations.

A gauge field AAµ of linearised Yang-Mills transforms as

δAAµ (x) = ∂µσ
A(x) + fABCA

B
µ (x)θC , (5.13)

where the σA(x) are local gauge parameters and the θA are global parameters.

Transforming the two Yang-Mills fields in (5.11) by (5.13), while transforming the

spectator field in the bi-adjoint as

δΦAA′ = −fCABΦCA′θ
B +−f̃C′A′B′ΦAC′ θ̃

B′ (5.14)

results in a linearised general coordinate transformation, or spin-2 gauge transfor-

mation,

δhµν = ∂µξν + ∂νξµ, (5.15)

where, using the shorthand notation of (5.12),

ξµ := 1
2
(σÃµ + Aµσ̃). (5.16)

This relies upon the following vital property of convolutions under a derivative:

∂µ(f ? g) = (∂µf) ? g = f ? (∂µg). (5.17)

In fact, the local symmetries of linearised super Yang-Mills give rise via ‘squaring’

to all of the local symmetry transformations of the resulting linearised supergrav-

ities: spin-2 gauge transformations, local Lorentz transformations, gravitino gauge

transformations and p-form gauge transformations [75]. For example, the gravitini

ΨI
µ,Ψ

I′
µ constructed as in (5.3) transform under Yang-Mills gauge transformations

as

δΨI
µ = ∂µε

I , δΨI′

µ = ∂µε
I′ , (5.18)

where

εI := λI σ̃, εI
′
:= σλ̃I

′
, (5.19)

which is exactly as required for gravitino gauge transformations (see (2.43)).

The dimensions of the gravitational fields on the respective left-hand sides of the

ansätze (5.2)–(5.7) must match those of the corresponding Yang-Mills expressions

on the right-hand sides. For example, the fields hµν , A
A
µ and ÃA

′
µ each have mass
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dimension 1
2
(D − 2), so the equation (5.11) is only consistent if ΦAA′ has mass

dimension −1
2
(D − 2). This is the exact negative of the dimension expected for

a scalar field. That ΦAA′ has mass dimension −1
2
(D − 2) is also consistent with

the remaining equations in (5.2)–(5.7) (taking into account the notation defined in

(5.12)), since all the fermions have mass dimension 1
2
(D−1) and all the bosons have

1
2
(D − 2). One obvious possible explanation for the negative dimension of ΦAA′ is

that it could be related to a bi-adjoint scalar field φAA′ with canonical kinetic term

and cubic interaction term by

ΦAA′ =
φAA′

φ2
, (5.20)

where φ2 = φAA′φ
AA′ . Although it is admittedly speculative, (5.20) gives ΦAA′ the

correct dimension and is also superficially consistent with the relations between spin

s scattering amplitudes M(s) of the kind discussed in the double-copy literature

[76, 77, 78], which take the form

M(2) = M(1)M−1(0)M(1),

M(3
2
) = M(1

2
)M−1(0)M(1).

(5.21)

The main focus of this and the following chapter is on the Yang-Mills origin of

the global symmetries of supergravities. Supergravities are characterized by non-

compact global symmetries G (these are the so-called U-dualities – see Section

2.8) with local compact subgroups H, for example G = E7(7) and H = SU(8)

for N = 8 supergravity in D = 4; whereas the initial Yang-Mills theories have

global R-symmetries, for example R = SU(4) for N = 4 in D = 4 (see [79] for an

approach linking SU(4) to SU(8) based on scattering amplitudes). In the follow-

ing section, the D = 3 super Yang-Mills theories from Chapter 4 will be tensored

with one another to reveal a magic square of D = 3 supergravity theories. Hence,

looking through the prism of ‘gravity = gauge × gauge’ uncovers novel structural

features of the symmetries in D = 3 supergravity. Understanding supergravity and

its symmetries is essential in the context of string/M-theory, since it constitutes

their low-energy effective field theory limit. In particular, supergravity has been

central in exposing the non-perturbative aspects of string theory. Here, symmetries,

especially U-duality, have played a crucial role – for example in constructing black

hole solutions – and this highlights their significance.

Three-dimensional supergravity is rather special, since the metric and gravitino

carry no dynamical degrees of freedom, while a vector field may be dualised – see

Section 2.8 – to a scalar. Thus the dynamical bosonic degrees of freedom are unified

as scalar fields of a G/H coset. This throws light on higher-dimensional theories
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that produce D = 3 supergravities upon dimensional reduction, and this is very

much the case in the next chapter when the magic square will be generalised to

D = 3, 4, · · · , 9, 10 [80, 81]. Moreover, D = 3 is intrinsically interesting for a number

of reasons [82, 83, 84, 66], one important example being the surprising observation

that pure three-dimensional quantum gravity is actually solvable [85, 86].

5.2. Mathematical Interlude: The Magic Square

5.2.1. F4 and the Exceptional Jordan Algebra

After G2, the second smallest exceptional group is F4. It has triality intricately

built into its structure and is a useful a prototype for constructing the remaining

exceptional groups E6, E7 and E8 (and is a subgroup of each). Arguably the simplest

interpretation of F4 comes via its role as the automorphism group of the exceptional

Jordan algebra. A Jordan algebra J with product ◦ is a commutative but non-

associative algebra (over a field) satisfying the Jordan identity

(X ◦ Y ) ◦ (X ◦X) = X ◦
(
Y ◦ (X ◦X)

)
, X, Y ∈ J. (5.22)

Hermitian N × N matrices hN(A) with A = R,C,H and N ≥ 2 form a Jordan

algebra JN(A) under the product

H1 ◦H2 := 1
2
(H1H2 +H2H1), H1, H2 ∈ hN(A). (5.23)

It turns out that Hermitian 3× 3 matrices h3(O) also form a Jordan algebra under

this product: the exceptional Jordan algebra J3(O). Simple counting shows that this

has dimension (3×1) + (3×8) = 27, since a matrix of h3(O) has three real elements

on its diagonal and three independent octonionic components on its off-diagonal.

Consider the automorphisms Aut(JN(An)) of the Jordan algebra JN(An) – see

Subsection 3.2.2 for the definition of automorphisms. It is clear that for the asso-

ciative division algebras, An = R,C,H, the Jordan product (5.23) is preserved by

the ‘unitary’ transformation

H → UHU †, U †U = UU † = 1 (5.24)

for all H ∈ JN(An). Writing U = eT , at the Lie algebra level (5.24) becomes

δH = [T,H], T † = −T, (5.25)
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which is by definition a derivation of JN(An), since (5.24) is an automorphism.

In fact, any derivation of JN(An), An = R,C,H, may be written in the form

(5.25). The Lie algebra of such anti-Hermitian matrices T is a(N,An), as defined

in (3.143), which is just so(N), u(N) and sp(N) for An = R,C,H, respectively.

However, it is not true that der(JN(An)) is just a(N,An), since there is a slight

subtlety involving the trace of such anti-Hermitian matrices. Any N × N matrix

M with entries in An = R,C,H may be decomposed into a traceless part M ′ and a

trace part proportional to the identity:

M = M ′ + 1
N

Tr(M)1, (5.26)

where

M ′ := M − 1
N

Tr(M)1. (5.27)

Doing this for T ∈ a(N,An) gives

T = T ′ + α1, (5.28)

where α = 1
N

Tr(T ) is pure-imaginary, since T is anti-Hermitian. Equation (5.25)

then becomes

δH = [T ′, H] + [α,H]. (5.29)

For An = R,C the second term actually does not contribute – for R there is no

imaginary subspace, so α = 0, while C is commutative, so α ∈ Im(C) commutes

with any H. Contrastingly, in the quaternionic case, since H is non-commutative,

the second term generates a derivation of H itself, which acts component-wise on

H. It then makes sense to define

sa(N,An) := a′(N,An) + der(An), (5.30)

where a′(N,An) is the space of traceless anti-Hermitian matrices,

a′(N,An) :=
{
T ′ ∈ A[N ]

∣∣T ′† = −T ′, Tr(T ′) = 0
}
, (5.31)

in which case the algebra of derivations der(JN(An)) is just sa(N,An) for the three

smallest division algebras. The der(An) term in (5.30) corresponds to the α com-

mutator in (5.29), which is trivial for An = R,C, while der(H) = so(3). It is easy

to see that the algebra sa(N,An) is just so(N), su(N) and sp(N) for An = R,C,H,

respectively. It will be useful below to note that for these division algebras the
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definition (5.30) could alternatively be replaced by

sa(N,An) := a′(N,An) + so(n− 1), (5.32)

since for An = R,C,H the derivations der(An) are the same as so(n− 1) rotations

of the imaginary subspace (which are of course trivial for R,C).

In fact sa(N,An) can also be defined analogously for An = O, N = 2, 3, but there

is a subtlety: for An = O the two definitions (5.30) and (5.32) are inequivalent,

since der(O) = g2, while rotations of the imaginary subspace form the larger group

so(7) ⊃ g2. For N = 3 the first definition (5.30) works well for the octonions.

However, it turns out that for N = 2 only the second definition (5.32) gives a set

closed under the Lie bracket (taking repeated commutators of the set of matrices in

the first definition just generates the remaining seven generators of so(7)− g2). As

a result, sa(N,O) is defined (in this thesis) as

sa(N,O) :=

a′(2,O) + so(7), N = 2,

a′(3,O) + der(O), N = 3.
(5.33)

Then, by construction, for any Hermitian Jordan algebra JN(An) (where N is un-

derstood to be ≥ 2 for An = R,C,H and equal to 3 if An = O) the derivations are

given by

der(JN(An)) ∼= sa(N,An). (5.34)

Although 2×2 octonionic Hermitian matrices h2(O) do not strictly form a Jordan

algebra, sa(2,An) still naturally acts on h2(An) for any division algebra An. Recall

that h2(An) is just the space of matrices of the form in (4.10) used to represent

(n+ 2)-dimensional spacetime vectors in the previous chapter. In fact, sa(2,An) is

none other than so(n+1), the ‘spatial’ subalgebra of the Lorentz algebra sl(2,An) ∼=
so(1, n + 1) leaving the trace (or the ‘time’ component) of H ∈ h2(An) invariant –

see equations (4.5) and (4.6). An infinitesimal Lorentz transformation as in equation

(4.11) with parameters λµν = −λνµ may be split up into boosts λ0r, r = 1, · · · , (n+

1), and compact so(n + 1) rotations λrs. Then by (4.11) H ∈ h2(An) transforms

under sl(2,An) as

δH = 1
4
λµν
(
σµ(σ̄νH)−H(σ̄µσν)

)
= 1

4
λrs
(
σr(σsH) −H(σrσs)

)
+ 1

2
λ0r
(
σrH +Hσr

)
,

(5.35)

i.e. by combining an sa(2,An) ∼= so(n+1) rotation with parameters λrs and a boost

given by an anti-commutator with λ0rσr ∈ h′2(An). Incidentally, this highlights that
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sl(2,An) ∼= sa(2,An) + h′2(An), just as one might expect2. The compact part of the

transformation with λ0r = 0 may be rewritten as

δH = ÔH + [T,H], Ô ∈ so(n− 1), T ∈ a′(2,An), (5.36)

demonstrating that so(n + 1) is indeed sa(2,An), as defined in (5.32)3. Note that

the trace (time component) is invariant under this transformation – the trace part

commutes with any T , and, since it is real, is annihilated by any Ô ∈ so(n− 1).

For N > 2 (restricted to N = 3 in the octonionic case), sa(N,An) as given in

(5.30) acts on H ∈ hN(An) as

δH = d̂H + [T,H], d̂ ∈ der(An), T ∈ a′(N,An). (5.37)

Any H ∈ hN(An) may be written as a sum of a traceless part and a real trace part

H = H ′ + 1
N

Tr(H)1, (5.38)

and only the traceless part H ′ transforms non-trivially under sa(N,An) – the trace

part commutes with any T , and, since it is real, is annihilated by any d̂ ∈ der(An).

For N = 3, sa(3,An) is so(3), su(3) and sp(3) for R, C and H, respectively,

while sa(3,O) may be taken as the definition of f4, the Lie algebra of F4. The

space of traceless anti-Hermitian 3 × 3 octonionic matrices a′(3,O) has dimension

(2×7)+(3×8) = 38, while der(O) = g2 has dimension 14, so by (5.30), the dimension

of F4 must be 38 + 14 = 52. The 26-dimensional space of Hermitian traceless 3× 3

octonionic matrices h′3(O) transforms irreducibly under F4 and defines its smallest

non-trivial representation, the 26.

It is illuminating to consider the Lie algebra f4 ∼= sa(3,O) in terms of its 2 × 2

subalgebra so(9) ∼= sa(2,O), which will emerge as follows. Consider the particular

diagonal matrix P ′0 ∈ h′3(O) defined as

P ′0 :=
1

3

2 0 0

0 −1 0

0 0 −1

 (5.39)

(P ′0 is just the traceless part of the matrix P0 := diag(1, 0, 0), which will be used

2In general for the associative division algebras sl(N,An) ∼= sa(N,An) + h′N (An). For example
sl(N,R) is the algebra of all anti-symmetric and symmetric traceless N ×N real matrices.

3Specifically, ÔH = 1
4λ

i+1,j+1(ei(ejH) −H(eiej)) and T =

(
α −x∗
x −α

)
with α = 1

2λ
1,i+1ei and

x = 1
2 (λ1,n+1 − λi+1,n+1ei).
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later in the chapter in Section 5.4). From (5.37), the subalgebra of sa(3,O) such

that δP ′0 = 0 acts via derivations and commutation with block matrices of the form

T =

(
−Tr(t) 0

0 t

)
, (5.40)

where t is an anti-Hermitian (but not in general traceless) 2 × 2 matrix, i.e. an

element of a(2,O). To see how the transformation (5.37) with the block-diagonal

T of (5.40) acts upon a general H ∈ h′3(O), one may write it in terms of the lower

2× 2 block subspace,

H =

(
−Tr(A) Ψ†

Ψ A

)
, A ∈ h2(O), Ψ ∈ O2. (5.41)

It is easy to check using (5.37) that δH may be written as an so(9) transformation:

δH = 1
4
λrs

(
0 (Ψ†σs)σr

σr(σsΨ) σr(σsA)− A(σrσs)

)
. (5.42)

Thus in terms of the individual pieces

δΨ = 1
4
θrsσr(σsΨ) + ΨθI,

δA = 1
4
θrs
(
σr(σsA)− A(σrσs)

) (5.43)

(and δ(Tr(A)) = 0). For An = O, these are just the Spin(9) transformations of

a spinor Ψ and vector A as obtained from (4.20) and (4.11), demonstrating the

decomposition

26→ 1 + 9 + 16. (5.44)

The adjoint of F4 itself decomposes as

52→ 36 + 16, (5.45)

so F4 can be seen as the group resulting from combining the adjoint of Spin(9) with

its spinor representation. This is the interpretation of F4 that will generalise to

include E6, E7 and E8.

In fact, for any division algebra one may consider breaking sa(3,An) into the

stabiliser of P ′0. Since this is just derivations ofAn and 2×2 matrices t ∈ sa(2,An) as

in (5.40), this subalgebra is just der(An)+a(2,An) ⊂ sa(3,An). It is straightforward

to check that this gives so(2), su(2)⊕ u(1), sp(2)⊕ sp(1) and so(9) for R,C,H,O,
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respectively4. In other words, in general these algebras are just the direct sum of

two pieces: so(n + 1) ∼= sa(2,An) and an extra u(1) for An = C and sp(1) for

An = H – precisely the same extra pieces that appear in the triality algebras:

ex(An) = Ø, u(1), sp(1),Ø for R,C,H,O (see Table 3.2). In each case one may view

sa(3,An) as the algebra resulting from combining sa(2,An)⊕ ex(An) with its spinor

representation: (An)2.

5.2.2. The Reduced Magic Square

Just as the algebras sa(3,An) may be built up from so(n+1) subalgebras, the magic

square in Table 5.1 may be built up from Lie algebras of orthogonal groups acting

on tensor products of division algebras AL ⊗AR. The tensor product AL ⊗AR is

the algebra with basis elements eaẽa′ = ẽa′ea, where ea and ẽa′ are those of AL and

AR, respectively, with a = 0, 1, · · · , (nL−1) and a′ = 0, 1, · · · , (nR−1). An element

of AL ⊗AR is a linear combination xaa′eaẽa′ , with xaa′ ∈ R, and the multiplication

rule is simply inherited from those of AL and AR.

Consider the set of 2× 2 matrices {σA}, A = 1, · · · , (nL + nR) defined as

{σA} = {σa+1, σa′+1ε} :=

{(
0 e∗a

ea 0

)
,

(
ẽ∗a′ 0

0 −ẽa′

)}
. (5.46)

Note that for the special case AR = R there is only one AR basis element ẽa′ = 1 and

these matrices become the spatial Spin(nL + 1) Pauli matrices σr from the previous

subsection. Defining σ̄A := σ†A, it is easy to check that for any Ψ,X ∈ (AL ⊗AR)2,

σA(σ̄BΨ) + σB(σ̄AΨ) = 2δABΨ,

σ̄A(σBΨ) + σ̄B(σAΨ) = 2δABX .
(5.47)

Then, by the usual reasoning, this means that Ψ and X transform as left- and

right-handed Weyl spinors of so(nL + nR) as

δΨ = 1
4
θABσA(σ̄BΨ),

δX = 1
4
θABσ̄A(σBX ),

(5.48)

where θAB = −θBA are arbitrary parameters. Writing Ψ = (Ψ1,Ψ2) with Ψ1,Ψ2 ∈

4In the octonionic case note that so(7) ∼= der(O) + Im(O) so that a(2,O) + der(O) becomes
a′(2,O) + so(7), which is just so(9) ∼= sa(2,O).
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AL ⊗AR and summing over θAB, the Ψ transformation becomes

1
4
θABσA(σ̄BΨ) = 1

4
θab

(
e∗a(ebΨ1)

ea(e
∗
bΨ2)

)
+ 1

4
θa
′b′

(
ẽ∗a′(ẽb′Ψ1)

ẽa′(ẽ
∗
b′Ψ2)

)

+ 1
2
θaa

′

(
0 −e∗aẽ∗a′

eaẽa′ 0

)(
Ψ1

Ψ2

)
,

(5.49)

and similar for X . The first two terms are just the spinor transformations of so(nL)

and so(nR) from (3.103), which demonstrates the decomposition

so(nL + nR) ∼= so(nL)⊕ so(nR) +AL ⊗AR. (5.50)

However, in general Ψ and X are natural irreducible representations of a larger

algebra,

L2(AL,AR) := so(nL + nR)⊕ ex(AL)⊕ ex(AR), (5.51)

rather than just so(nL +nR), since when AL,AR = C,H the transformations (5.48)

commute with (right-)multiplication of the spinors Ψ and X by imaginary division

algebra elements θI ∈ Im(AL) and θ̃I ∈ Im(AR):

δΨ = 1
4
θABσA(σ̄BΨ) + ΨθI + Ψθ̃I,

δX = 1
4
θABσ̄A(σBX ) + X θI + X θ̃I.

(5.52)

This generates an extra u(1) when one of the two division algebras is C and and extra

sp(1) when one of the algebras is H – see Table 5.2. This is of course reminiscent of

the triality algebras in Chapters 3 and 4, and indeed (5.50) means that L2(AL,AR)

may be decomposed into

L2(AL,AR) ∼= so(nL)⊕ ex(AL)⊕ so(nR)⊕ ex(AR) +AL ⊗AR

∼= tri(AL)⊕ tri(AR) +AL ⊗AR.
(5.53)

The array of Lie algebras given by L2(AL,AR) is called the reduced magic square and

is presented in Table 5.2. For the magic square of supergravities these Lie algebras

will be shown to be those of the maximal compact subgroups H of the non-compact

U-duality groups G. Note that L2(AL,R) gives the algebras satisfying δP ′0 = 0 from

the previous subsection.
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R C H O

R so(2) so(3)⊕ u(1) so(5)⊕ sp(1) so(9)
C so(3)⊕ u(1) so(4)⊕ u(1)⊕ u(1) so(6)⊕ sp(1)⊕ u(1) so(10)⊕ u(1)
H so(5)⊕ sp(1) so(6)⊕ sp(1)⊕ u(1) so(8)⊕ sp(1)⊕ sp(1) so(12)⊕ sp(1)
O so(9) so(10)⊕ u(1) so(12)⊕ sp(1) so(16)

Table 5.2.: The reduced magic square L2(AL,AR). The Lie algebras are those of the maximal
compact subgroups of the groups from the Lorentzian magic square of Table 5.3.

5.2.3. The Magic Square Construction

Equation (5.45) demonstrated that F4 is the group resulting from combining the

adjoint 36 of Spin(9) with additional generators transforming as its spinor repre-

sentation 16. This unusual result can be seen as a consequence of Spin(8) triality.

Decomposing F4 into Spin(9) and then further into Spin(8) this becomes clear:

52→ 36 + 16

→ 28 + 8v + 8s + 8c.
(5.54)

Thus the action of F4 on its adjoint rotates the three representations 8v, 8s and 8c

into one another, which is a possibility granted by the discrete triality symmetry of

tri(O) = so(8). In more octonionic language (5.54) becomes

f4 ∼= tri(O) + 3O. (5.55)

The commutators of this Lie algebra can be calculated fairly straightforwardly by

acting successively on h3(O) using (5.37). First, write the Jordan algebra element

H ∈ h3(O) as

H =

h1 ψ∗ χ∗

ψ h2 a∗

χ a h3

 , a, ψ, χ ∈ O, h1, h2, h3 ∈ R. (5.56)

Similarly, an element T of a′(3,O) may be parameterised as

T =

−(α− β) −x∗s x∗c

xs −β −x∗v
−xc xv α

 , xv, xs, xc ∈ O, α, β ∈ Im(O). (5.57)

Temporarily setting xv, xs, xc = 0, one finds using (5.37) that α, β and the derivation

d̂ combine just such that the three octonionic matrix elements a, ψ, χ of H transform
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by none other than the standard so(8) triality transformations in (3.124):

δH = d̂H + [T,H] =

 0 B̂ψ∗ (Ĉχ)∗

B̂?ψ 0 (Âa)∗

Ĉχ Âa 0

 , (5.58)

with (Â, B̂, Ĉ) ∈ tri(O) defined in (3.124) (and B̂?ψ := (B̂ψ∗)∗). This is how

tri(O) ⊂ f4 acts on H ∈ h3(O). The [tri(O), tri(O)] commutators are then given

by the natural commutators of so(8). Now reinstating (xv, x
∗
s, xc) ∈ 3O and setting

(Â, B̂, Ĉ) = 0 gives δH equal to

[T,H] =

2(〈xc|χ〉 − 〈xs|ψ〉) δψ∗ δχ∗

δψ 2(〈xs|ψ〉 − 〈xv|a〉) δa∗

δχ δa 2(〈xv|a〉 − 〈xc|χ〉)

 (5.59)

with

δa = (h2 − h3)xv + χx∗s − xcψ∗,

δψ = (h1 − h2)xs + a∗xc − x∗vχ,

δχ = (h3 − h1)xc + xvψ + axs,

(5.60)

which manifestly makes use of the triality relations (3.109) – this shows that these

transformations are covariant under so(8). Now, to shorten the notation for the

[3O, 3O] commutators write

(xv, x
∗
s, xc) ∼

 0 −x∗s x∗c

xs 0 −x∗v
−xc xv 0

 ∈ 3O (5.61)

(the conjugation on the so(8) spinor xs here is just for convenience; it corresponds to

the fact that under so(8) it is the octonionic conjugate of the spinor that transforms

with the operator B̂ – see equations (3.124)). Then applying the transformations

(5.60) twice one finds that

[(0, 0, xc), (0, x
∗
s, 0)] = (xcx

∗
s, 0, 0),

[(xv, 0, 0), (0, 0, xc)] = (0, x∗vxc, 0),

[(0, x∗s, 0), (xv, 0, 0)] = (0, 0, xvxs),

(5.62)
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which again uses the triality relations (3.109). Next, applying (5.60) twice for two

matrices of the same type shows that

[(xv, 0, 0), (yv, 0, 0)] = Txv ,yv ,

[(0, x∗s, 0), (0, y∗s , 0)] = ϑ2Txs,ys ,

[(0, 0, xc), (0, 0, yc)] = ϑTxc,yc ,

(5.63)

where ϑ is the order-three Lie algebra automorphism

ϑ : (Â, B̂, Ĉ) 7→ (B̂?, Ĉ, Â?), (5.64)

introduced in Section 3.3, and Tx,y ∈ tri(O) is defined by

Tx,y := (Ŝx,y, R̂yR̂x∗ − R̂xR̂y∗ , L̂yL̂x∗ − L̂xL̂y∗), (5.65)

where

Ŝx,y z = 〈x|z〉y − 〈y|z〉x, L̂x y = xy, R̂x y = yx. (5.66)

This can also be written in terms of the so(8) generators Tab = −Tba used in (4.75)

and given in (4.76):

Tx,y := xayb Tab. (5.67)

Finally, acting on (5.59) with the transformations of (5.58) and invoking the defining

triality relations (3.114), the [tri(O), 3O] commutators are just given by the natural

action of tri(O) on 3O:[
(Â, B̂, Ĉ), (xv, x

∗
s, xc)

]
= (Âxv, B̂x

∗
s, Ĉxc). (5.68)

This completes the specification of the commutators of f4 ∼= tri(O) + 3O. In fact,

the entire discussion in this subsection also works for any other division algebra An

since

sa(3,An) ∼= tri(An) + 3An, (5.69)

with the commutators given as above. This can also be seen as adjoining the sub-

algebra L2(An,R) = so(n+ 1)⊕ ex(An) with its spinor representation.

By analogy with this, making use of the triality principle also allows the Lie

algebra L2(AL,AR) = tri(AL) ⊕ tri(AR) + AL ⊗ AR to be adjoined to its spinor

representation Ψ ∈ (AL ⊗ AR)2 in order to construct a much bigger algebra [87]:
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the magic square algebra,

L3(AL,AR) = L2(AL,AR) + (AL ⊗AR)2, (5.70)

which may be written as

L3(AL,AR) = tri(AL)⊕ tri(AR) + 3(AL ⊗AR). (5.71)

The commutators are defined as follows. First of all, tri(AL) and tri(AR) are Lie

subalgebras. For elements TL = (ÂL, B̂L, ĈL) ∈ tri(AL) and elements5

(Xv, X
∗
s , Xc) = (xv x̃v, x

∗
s x̃
∗
s, xc x̃c) ∈ 3(AL ⊗AR),

the commutators are given by the natural action of tri(AL),

[TL, (Xv, X
∗
s , Xc)] = (ÂLXv, B̂LX

∗
s , ĈLXc). (5.72)

Similarly for TR = (ÂR, B̂R, ĈR) ∈ tri(AR),

[TR, (Xv, X
∗
s , Xc)] = (ÂRXv, B̂RX

∗
s , ĈRXc). (5.73)

The commutators between the three copies of AL ⊗AR are as follows:

[(0, 0, xs x̃s), (0, x
∗
c x̃
∗
c , 0)] = ζ

(
(xcx

∗
s)(x̃cx̃

∗
s), 0, 0

)
,

[(xv x̃v, 0, 0), (0, 0, xs x̃s)] =
(
0, (xvxs)(x̃vx̃s), 0

)
,

[(0, x∗c x̃
∗
c , 0), (xv x̃v, 0, 0)] =

(
0, 0, (x∗vxc)(x̃

∗
vx̃c)

)
,

(5.74)

where ζ = ±1 is a constant to be chosen, whose two possible values result in different

real forms of L3(AL,AR); selecting ζ = 1 gives the original magic square of compact

real forms in Table 5.1, whereas selecting ζ = −1 gives the Lorentzian magic square

L1,2(AL,AR) [88] of non-compact real forms given in Table 5.3.

Finally, for two elements belonging to the same (AL ⊗ AR) summand in (5.71)

the commutator is defined using the natural map

Λ2(AL ⊗AR)i → Λ2(AL)⊕ Λ2(AR)→ tri(AL)⊕ tri(AR), (5.75)

where Λ2(A) for any algebra A denotes antisymmetric linear maps on A. The first

5Although a typical element X ∈ AL⊗AR does not factorise into a single tensor product xx̃ with
x ∈ AL and x̃ ∈ AR, it will simplify the notation in this section to write the commutators only
for such factorisable elements. Since a general X ∈ AL ⊗AR may always be written as a sum
of such elements, it is easy to find the general commutators from those given in this section.
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arrow uses the norm on AL and AR and the second is the inclusion of Λ2(AL,R)

inside tri(AL,R). More explicitly,

[(xv x̃v, 0, 0), (yv ỹv, 0, 0)] = 〈xv|yv〉TRx̃v ,ỹv + 〈x̃v|ỹv〉TLxv ,yv ,

[(0, x∗c x̃
∗
c , 0), (0, y∗c ỹ

∗
c , 0)] = ζ〈x∗c |y∗c 〉ϑTRx̃∗c ,ỹ∗c + ζ〈x̃∗c |ỹ∗c 〉ϑTLx∗c ,y∗c ,

[(0, 0, xs x̃s), (0, 0, ys ỹs)] = ζ〈xs|ys〉ϑ2TRx̃s,ỹs + ζ〈x̃s|ỹs〉ϑ2TLxs,ys .

(5.76)

With these commutators the magic square formula (5.71) describes the Lie alge-

bras of the groups presented in Table 5.1 and Table 5.3. This construction finally

reveals e6, e7 and e8 as the analogues of f4 for octonionic tensor product algebras

C ⊗ O, H ⊗ O and O ⊗ O. By counting dim[tri(AL)] + dim[tri(AR)] + 3nLnR one

finds that these algebras have dimensions 78, 133 and 248, respectively.

The ζ = −1 case, L1,2(AL,AR), gives the magic square algebra relevent to in-

terpreting D = 3 supergravity as the square of Yang-Mills. It is straightforward to

check the signatures (real forms) appearing in Table 5.3 as follows. A non-compact

real form gnc of a complex semi-simple Lie algebra gC admits a symmetric decom-

position gnc = h + p,

[h, h] ⊆ h, [h, p] ⊆ p, [p, p] ⊆ h, (5.77)

where h is the maximal compact subalgebra. If a compact real form gc shares with

some non-compact real form gnc a common subalgebra, gnc = h+ p and gc = h+ p′,

and the brackets in [h, p] are the same as those in [h, p′], but equivalent brackets in

[p, p] and [p′, p′] differ by a sign, then h is the maximal compact subalgebra of gnc.

This observation is sufficient to confirm that the ζ = −1 construction yields the

real forms in Table 5.3 and that L2(AL,AR) in each case is the maximal compact

subalgebra – see Table 5.2.

AL\AR R C H O

R so(2, 1) su(2, 1) sp(2, 1) f4(−20)

C su(2, 1) su(2, 1)× su(2, 1) su(4, 2) e6(−14)

H sp(2, 1) su(4, 2) so(8, 4) e7(−5)

O f4(−20) e6(−14) e7(−5) e8(8)

Table 5.3.: The Lorentzian magic square L1,2(AL,AR) of real forms required inD = 3 supergravity.
The subscripts in parentheses on the exceptional groups are the numbers of non-compact
generators minus the number of compact generators. For example, e8(8) has 128 non-
compact generators from (O⊗O)2 and 120 compact generators from L2(O,O) = so(16),
which is why the number in brackets on the subscript is 128− 120 = 8.
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5.3. The Magic Square of D = 3 Supergravities

From Chapter 4, the D = 3, N = 1, 2, 4, 8 SYM Lagrangian over AN = R,C,H,O

is6

L(AN ) =− 1
4
FA
µνF

Aµν − 1
2
Dµφ

∗ADµφA − iλ̄AγµDµλ
A

− 1
16
g2fBC

AfDE
A(φB∗φD + φD∗φB)(φC∗φE + φE∗φC)

+ i
2
gfBC

A
(
(λ̄AφB)λC − λ̄A(φ∗BλC)

)
,

(5.78)

where φ = φiei is an Im(AN )-valued scalar field, λ = λaea is an AN -valued two-

component Majorana spinor and λ̄ := λTa εe
∗
a. Note that λa is anti-commuting; these

are the division algebras defined over Grassmann numbers. In D = 3 there is no

need to add the Hermitian conjugate of the fermion kinetic term as its imaginary

part is a total derivative.

The supersymmetry transformations in this language are given by

δλA = 1
4
(FAµν + εµνρDρφ

A)γµνε− 1
4
gfBC

AφB(φCε),

δAAµ = i
2
(λ̄Aγµε− ε̄γµλA), (5.79)

δφA = i
2

Tr(ελ̄A − λAε̄),

where ε is an AN -valued two-component spinor, 1
2
γµν = 1

2
γ[µγν] are the generators

of the Lorentz algebra sl(2,R) ∼= so(1, 2) and the trace on the third line is over the

suppressed spinor indices.

The Lagrangian (5.78) and transformation rules (5.79) exhibit a symmetry known

in the division-algebraic literature as the ‘intermediate algebra’ [87, 89],

int1(AN ) :=
{

(Â, B̂, Ĉ) ∈ tri(AN )
∣∣Â1 = 0

} ∼= so(N − 1)⊕ ex(AN ), (5.80)

which is int1(AN ) = Ø, so(2), so(4), so(7) for AN = R,C,H,O, respectively. The

condition Â1 = 0 in (5.80) corresponds to the fact that in the bosonic sector the

symmetry leaves the gauge field invariant, while the so(N − 1) piece transforms the

Im(AN )-valued scalar field in the fundamental representation:

δAAµ = 0,

δφA = −1
4
θij
(
ei(ejφ

A)− φA(eiej)
)
.

(5.81)

where θij = −θji ∈ so(N − 1) and θI ∈ ex(AN ). The fermions and supersymmetry

6Comparing to the ‘master Lagrangian’ (4.116), the gamma matrices γµ here can be obtained as
γµ = −εσ̄µ, with the σ̄µ matrices defined in (4.5) and (4.6).

121



parameters transform under this symmetry as:

δλA = −1
4
θijei(ejλ

A) + λAθI,

δε = −1
4
θijei(ejε) + εθI.

(5.82)

Also, note that int1(AN ) can also be written as int1(AN ) ∼= der(AN ) + Im(AN ).

The form of the first term in the λA supersymmetry transformation highlights the

vector’s status as the ‘missing’ real part of the Im(AN )-valued scalar field. Indeed,

in the free g = 0 theory one may dualise the vector Aµ to a scalar φ0 to obtain a

full AN -valued scalar field φA → φA0 + φAi ei:

1
2
εµστη

σνητρFA
νρ = ∂µφ

A
0 . (5.83)

In this case the following Lagrangian gives equations of motion and Bianchi identities

equivalent to those of (5.78) with g = 0,

L(AN ) = −1
2
∂µφ

A∗∂µφA − iλ̄Aγµ∂µλA, (5.84)

where φ and λ each take values inAN . The supersymmetry transformations become:

δφA = iTr ελ̄A, δλA = −1
2
∂µφ

A∗γµε. (5.85)

Equations (5.84) and (5.85) enjoy a global internal symmetry whose Lie algebra

is tri(AN ) ∼= Ø, u(1) ⊕ u(1), su(2) ⊕ su(2) ⊕ su(2), so(8) for AN = R,C,H,O,

respectively:

δφA = 1
4
θab
(
ea(e

∗
bφ

A)− φA(e∗aeb)
)
,

δλA = 1
4
θabσa+1(σb+1λA) + λAθI,

δε = 1
4
θabσa+1(σb+1ε) + εθI.

(5.86)

This sum of the R-symmetry so(N ) and the extra algebras ex(AN ) is inherited from

the D = 4, 6, 10 minimally supersymmetric theories, which dimensionally reduce to

give N = 2, 4, 8 in D = 3. See Table 5.4 for a clarification of the various D = 3

symmetry algebras.

After applying the equations of motion and fixing the gauge of Aµ, the g = 0

Yang-Mills theory and its dualised counterpart are equivalent. For a single plane

wave solution to the momentum-space equations of motion with momentum pµ =

(E, 0, E), the gauge field can be written as Aµ = (0, A1, 0) (after choosing the

radiation gauge), in which case (5.83) has only one non-zero component, equivalent
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D = 3
R-symmetry:

so(N )
g 6= 0 Theory:

int1(AN )
g = 0 Theory:

tri(AN )

N = 1 − − −
N = 2 so(2) so(2) u(1)⊕ u(1)
N = 4 sp(1)⊕ sp(1) sp(1)⊕ sp(1) sp(1)⊕ sp(1)⊕ sp(1)
N = 8 so(8) so(7) so(8)

Table 5.4.: Symmetries in D = 3 SYM theories. The symmetries of the g = 0 theories are the
triality algebras of R,C,H,O, while the symmetries of the g 6= 0 theories are known in
the division algebras literature as ‘intermediate algebras’ (these are just the subgroups

of the triality algebras such that Â1 = 0 in equation (3.114)).

to the relation A1 = φ0. Hence the single dynamical degree of freedom carried by

Aµ is of course the exact same degree of freedom carried by the corresponding dual

scalar φ0.

The fermionic equation of motion with pµ = (E, 0, E) has the same form as (4.65),

which removes one of theAN -valued components of the two-component spinor. Thus

the overall on-shell degrees of freedom for the D = 3 free theory are

φA = φA0 + φAi ei ∈ AN , ψA ∈ AN (5.87)

(whether the vector is dualised or not). These transform under supersymmetry as

δφ = −iεψ∗, δψ = iE φ∗ε, ε ∈ AN , (5.88)

where ε has anti-commuting components εa (as does ψ). It is convenient to take

advantage of triality and redefine the parameters θab, θI such that under tri(AN ):

δφ = 1
4
θabea(e

∗
bφ) + φθI,

δψ∗ = 1
4
θabe∗a(ebψ

∗) + ψ∗θI,

δε = 1
4
θab
(
ea(e

∗
bε)− ε(e∗aeb)

)
;

(5.89)

with respect to the so(N ) generated by the new θab, it is the supersymmetry param-

eter ε that transforms as a vector, while ψ∗ is a spinor and φ is a conjugate-spinor

(this is the triality transformation % defined at the end of Section 3.3). Hence θab

corresponds to the so(N ) R-symmetry, which rotates the N supercharges or N
supersymmetry parameters into one another in the vector representation, while θI

generates the additional internal global symmetry ex(AN ).

Taking an ‘un-dualised’ left SYM multiplet {Aµ ∈ Re(AL), φ ∈ Im(AL), λ ∈ AL}
and tensoring with a right multiplet {Ãµ ∈ Re(AR), φ̃ ∈ Im(AR), λ̃ ∈ AR}, as
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described in Section 5.1, results in the field content of a supergravity theory valued

in AL⊗AR. See Table 5.5. Note that the left/right SYM global symmetries act on

each slot of the AL,AR tensor products.

AL\AR Ãµ ∈ Re(AR) φ̃ ∈ Im(AR) λ̃ ∈ AR

Aµ ∈ Re(AL) gµν , ϕ ∈ Re(AL)⊗ Re(AR) ϕ ∈ Re(AL)⊗ Im(AR) Ψµ, χ ∈ Re(AL)⊗AR
φ ∈ Im(AL) ϕ ∈ Im(AL)⊗ Re(AR) ϕ ∈ Im(AL)⊗ Im(AR) χ ∈ Im(AL)⊗AR
λ ∈ AL Ψµ, χ ∈ AL ⊗ Re(AR) χ ∈ AL ⊗ Im(AR) ϕ ∈ AL ⊗AR

Table 5.5.: Tensor product of left/right (AL/AR) SYM multiplets, using SO(1, 2) spacetime rep-
resentations and dualising all vectors to scalars (and the 2-form Bµν := A[µÃν] absent
from the top-left slot is dualised to nothing, since a 3-form field strength is dual to a
‘0-form field stength’, which cannot correspond to any physical field).

Gathering together spacetime fields of the same type, one finds the following

overall field content:

gµν ∈ R, Ψµ ∈ AL ⊕AR, ϕ ∈

(
AL ⊗AR

AL ⊗AR

)
, χ ∈

(
AL ⊗AR

AL ⊗AR

)
. (5.90)

Dynamically speaking, the R-valued graviton and (AL⊕AR)-valued gravitino carry

no degrees of freedom, while the 2(AL ⊗AR)-valued scalar ϕ and Majorana spinor

χ each have 2(dimAL×dimAR) = 2NLNR degrees of freedom. The fact that there

are dim[AL ⊕AR] = NL +NR real gravitinos shows that there are N = NL +NR
supersymmetries.

The dynamical degrees of freedom of the supergravity theories are contained in

the doublets ϕ, χ ∈ 2(AL ⊗ AR). Such doublets were demonstrated in Subsection

5.2.2 to be the irreducible representation spaces of the reduced magic square algebra

L2(AL,AR) ∼= so(NL +NR)⊕ ex(AL)⊕ ex(AR)

∼= tri(AL)⊕ tri(AR) +AL ⊗AR.
(5.91)

which by (5.52) transforms them as spinor and conjugate-spinor representations

δϕ = 1
4
θABσA(σ̄Bϕ) + ϕθI + ϕθ̃I,

δχ = 1
4
θABσ̄A(σBχ) + χθI + χθ̃I,

(5.92)

where A = 1, 2, · · · , (NL + NR), and θI ∈ ex(AL) ∼= Ø, Im(C), Im(H),Ø and θ̃I ∈
ex(AR). The scalar degrees of freedom in these supergravity theories belong to non-

linear sigma models whose target spaces are coset manifolds G/H, where G is the
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R C H O

N = 2,f= 4 N = 3,f= 8 N = 5,f= 16 N = 9,f= 32
R G = SL(2,R) G = SU(2, 1) G = USp(4, 2) G = F4(−20)

H = SO(2) H = SU(2)× SO(2) H = USp(4)×USp(2) H = SO(9)

N = 3,f= 8 N = 4,f= 16 N = 6,f= 32 N = 10,f= 64
C G = SU(2, 1) G = SU(2, 1)2 G = SU(4, 2) G = E6(−14)

H = SU(2)× SO(2) H = SU(2)2 × SO(2)2 H = SU(4)× SU(2)× SO(2) H = SO(10)× SO(2)

N = 5,f= 16 N = 6,f= 32 N = 8,f= 64 N = 12,f= 128
H G = USp(4, 2) G = SU(4, 2) G = SO(8, 4) G = E7(−5)

H = USp(4)×USp(2) H = SU(4)× SU(2)× SO(2) H = SO(8)× SO(4) H = SO(12)× SO(3)

N = 9,f= 32 N = 10,f= 64 N = 12,f= 128 N = 16,f= 256
O G = F4(−20) G = E6(−14) G = E7(−5) G = E8(8)

H = SO(9) H = SO(10)× SO(2) H = SO(12)× SO(3) H = SO(16)

Table 5.6.: Magic square of D = 3 supergravity theories. The first row of each entry indicates the
amount of supersymmetry N and the total number of degrees of freedom f. The second
(third) row indicates the U-duality group G (the maximal compact subgroup H ⊂ G)
and its dimension. The scalar fields in each case parametrise the coset G/H, where
dimR(G/H) = f/2.

.

non-compact U-duality group, which acts non-linearly on the scalars, and H is the

maximal compact subgroup of G. The largest linearly realised global symmetry of

these theories is H, so one should expect its Lie algebra h to be L2(AL,AR), and this

indeed turns out to be the case. All the fields in (5.90) carry linear representations

of H: the graviton hµν is a singlet; Ψµ ∈ AL ⊕AR transforms as the vector of the

supergravity R-symmetry so(NL +NR) ⊆ L2(AL,AR) and is inert under ex(AL)⊕
ex(AR); and ϕ and χ transform as the spinor and conjugate-spinor of so(NL +NR)

and by right-multiplication under ex(AL)⊕ex(AR), as shown in (5.92). For example,

in the maximal case of AL,AR = O, these representations are the 1, 16,128 and

128′ of so(16).

The full non-linear U-duality groups G are fixed by the field content and H sym-

metries, as described in the literature [83, 84]. The groups are, of course, those

with Lie algebras L1,2(AL,AR), as presented in the magic square in Table 5.3. The

D = 3 magic square theories are summarised in Table 5.6. The N > 8 supergrav-

ities in D = 3 are unique, all fields belonging to the gravity multiplet, while those

with N ≤ 8 may be coupled to k additional matter multiplets [83, 84]. The real

beauty is that tensoring left and right SYM multiplets yields the field content of

N = 2, 3, 4, 5, 6, 8 supergravity with k = 1, 1, 2, 1, 2, 4: just the right matter content

to produce the U-duality groups appearing in Table 5.3.

The compact symmetries h = L2(AL,AR) can be traced directly back to Yang-

Mills origins. The dynamical fields ϕ and χ can be defined as in the linearised
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(g = 0) dictionary of Section 5.1 as follows:

∂µϕ =

(
∂µϕ1

∂µϕ2

)
, χ = 1

2
γµ

(
λ∗Ãµ

Aµλ̃
∗

)
+

(
λ∗φ̃

φλ̃∗

)
, (5.93)

with

∂µϕ1 := iλ̄γµλ̃
∗,

∂µϕ2 = ∂µ(AνÃ
ν + φφ̃) + 1

2
εµστη

σνητρ(Fνρφ̃+ φF̃νρ)
(5.94)

The division-algebraic conjugations ∗ are a matter of convention, chosen for later

convenience. The on-shell doublets then become

ϕ =

(
1
E
ψ∗ψ̃∗

φφ̃

)
, χ =

(
ψ∗φ̃

φψ̃∗

)
. (5.95)

The tri(AL) and tri(AR) symmetries of (5.89) act on the ϕ doublet as

δϕ = 1
4
θab

(
1
E
e∗a(ebψ

∗ψ̃∗)

ea(e
∗
bφφ̃)

)
+ 1

4
θa
′b′

(
1
E
ẽ∗a′(ẽb′ψ

∗ψ̃∗)

ẽa′(ẽ
∗
b′φφ̃)

)
+ ϕθI + ϕθ̃I, (5.96)

while a new possibility in the ‘squared’ theory is to consider acting on ϕ with off-

diagonal rotations of the form (
0 −e∗aẽ∗a′

eaẽa′ 0

)
. (5.97)

Including the action of these off-diagonal matrices, the total algebra of linear trans-

formations is given by tri(AL)⊕ tri(AR) +AL ⊗AR, i.e. the reduced magic square

algebra L2(AL,AR), as required – compare the above with equations (5.49) and

(5.52). The analogous reasoning also works for χ.

It is interesting to note that the off-diagonal transformations of (5.97) take Yang-

Mills fermions into Yang-Mills bosons, and vice versa, but are bosonic generators in

the supergravity theory. It is tempting to guess that left-multiplication by (5.97) is

related to the action of the operator Q ⊗ Q̃, where Q, Q̃ are the respective super-

symmetry generators of the left and right Yang-Mills theories, and indeed this is the

case. Consider the variation of ϕ under the simultaneous supersymmetry variation

of the left and right theories,

δLδRϕ =

(
1
E
δψ∗δψ̃∗

δφ δφ̃

)
=

(
−E ε∗φ ε̃∗φ̃
−εψ∗ ε̃ψ̃∗

)
. (5.98)
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Taking into account the anti-commutativity of the components of ε̃ and ψ∗, this may

be written as

δLδRϕ = E εaε̃a′

(
0 −e∗aẽ∗a′

eaẽa′ 0

)(
1
E
ψ∗ψ̃∗

φφ̃

)
. (5.99)

Similarly, for the analogous variation of χ

δLδRχ = E εaε̃a′

(
0 −e∗aẽa′

eaẽ
∗
a′ 0

)(
ψ∗φ̃

φψ̃∗

)
. (5.100)

Hence all of the compact symmetries h = L2(AL,AR) come from those of the original

Yang-Mills theories.

To further understand the non-linear U-duality groups G in terms of Yang-Mills-

squared will require a brief introduction to division-algebraic projective spaces, since

it turns out that the symmetric spaces G/H, which the scalars parameterise, are in

fact projective planes defined over AL ⊗AR. This is given in the following section.

5.4. Division-Algebraic Projective Planes

Real projective space RPN−1 is the space of undirected lines through the origin in

RN . Each line passes through a unique pair of antipodal points v and −v on the

unit sphere SN−1 and hence RPN−1 is the quotient of SN−1 by the antipodal map,

i.e. the points v and −v ∈ SN−1 are identified:

RPN−1 ∼= SN−1/Z2. (5.101)

with Z2 = {+1,−1}.
This can easily be generalised to C and H, defining APN−1 for A = R,C,H as

APN−1 ∼=
{
v ∈ AN

∣∣ v†v = 1
}
/ ∼, (5.102)

with the equivalence relation ∼ defined by v1 ∼ v2 ⇔ v1 = v2u where u ∈ A has

unit modulus: u∗u = 1. In other words APN−1 is the quotient of the unit sphere in

AN by the unit sphere in A:

APN−1 ∼= SNn−1/Sn−1, (5.103)

where A = An. In the real n = 1 case the unit ‘sphere’ is S0 ∼= Z2
∼= {+1,−1}.
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The unit sphere in AN comes with an induced metric

ds2 = dv†dv (5.104)

whose isometry group G is inherited from the natural action of N × N unitary

matrices U ∈ A(N,A) on AN : v → Uv. This metric and its isometries are then

passed onto APN−1, so

G = Isom(APN−1) ∼= A(N,A). (5.105)

The isometry group G acts transitively on the unit sphere and hence also on APN−1.

Thus APN−1 is a homogeneous space and may be identified with the coset G/H,

where H is the subgroup of G that fixes any given point, called the isotropy group.

To elaborate on this, any unit vector v ∈ AN can be written gvv0 where v0 is some

reference vector, say

v0 =


1
0
...
0

 , (5.106)

and gv is a transformation in G. Hence one may parameterise points of APN−1 by

the particular gv required to reach them from v0. However, there is a redundancy in

this description in that v0 is invariant under a subgroup H, meaning these transfor-

mations should be excluded from the parameterisation. Thus as a manifold APN−1

is diffeomorphic to G/H.

The group H fixing a point may be seen by considering transformations that leave

the reference vector v0 above invariant. Clearly it is invariant under multiplication

by block-diagonal elements of G of the form(
1 0

0 h

)
, (5.107)

where h is (N − 1)× (N − 1) and hence an element of A(N − 1,A). In APN−1 the

vector v0 gets identified with v0u, so left-multiplication of v0 by(
u 0

0 ±1

)
, (5.108)

which in this case is equivalent to right-multiplication by u, also leaves the corre-

sponding point of APN−1 invariant. Thus (ignoring subtleties involving orientation-
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reversing isometries in the real case)

RPN−1 ∼=
SO(N)

SO(N − 1)×O(1)
,

CPN−1 ∼=
U(N)

U(N − 1)× U(1)
∼=

SU(N)

SU(N − 1)× U(1)
,

HPN−1 ∼=
Sp(N)

Sp(N − 1)× Sp(1)
.

(5.109)

Having seen that all of the classical compact groups appear as isometries of pro-

jective spaces over R,C,H, it is obvious to guess that the exceptional groups are

isometries of projective spaces over the octonions. Up to one or two subtleties this

idea turns out to be correct. The definition above does not generalise to O due to

non-associativity, but there is an equivalent definition that will work for OP1 and

OP2. Consider the matrix

P := vv†, v ∈ AN , v†v = 1, (5.110)

for A = R,C,H. This is clearly a projector (P 2 = P ) projecting onto the line

defined by v. It is manifestly Hermitian and has unit trace:

Tr(P ) = Re Tr(P ) = Re Tr(vv†) = v†v = 1, (5.111)

where the cyclicity property of the real trace was used in the penultimate equality.

Evidently P is invariant under right-multiplication of v by a unit element u ∈ A,

v → vu ⇒ P → P, (5.112)

so v and vu map to the same P . Moreover, any Hermitian rank-1 projector P may

be written as in (5.110) for some v, meaning there is an isomorphism

APN−1 ∼=
{
P ∈ hN(A)

∣∣P 2 = P, Tr(P ) = 1
}
. (5.113)

This may also be taken as the definition of APN−1, including in the octonionic case

for N = 2, 3. In fact for all four division algebras P may be written as vv† with

v ∈ AN satisfying v†v = 1, but in the N = 3 octonionic case there is an additional

constraint that the associator between the three components of v must vanish, i.e.

v =

xy
z

 , with [x, y, z] = 0. (5.114)
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This ensures that the components of P belong to an associative subalgebra of O,

and hence P squares to itself:

P 2 = (vv†)(vv†) = v(v†v)v† = P. (5.115)

The N = 3 case gives the projective plane AP2, which is of particular interest

since its isometry group has Lie algebra sa(3,A), i.e. the first row (or column) of the

compact magic square Table 5.1. The isotropy group is the subgroup that preserves

a reference projector, say

P0 := v0v
†
0 =

1 0 0
0 0 0
0 0 0

 . (5.116)

This matrix can be written as a sum of its traceless part P ′0 and trace part,

P0 = (P0 − 1
3
1) + 1

3
1 =: P ′0 + 1

3
1, (5.117)

with P ′0 given as in (5.39). Hence, by the discussion in Subsection 5.2.1 the isotropy

groups must have Lie algebras sa(2,A)⊕ ex(A), which agrees with (5.109) for A =

R,C,H; for A = O this implies that

OP2 ∼=
F4

Spin(9)
. (5.118)

This manifold is sometimes referred to as the Cayley plane.

Next it is natural to suppose that there exist projective planes

(AL ⊗AR)P2 ∼=
L3(AL,AR)

L2(AL,AR)
, (5.119)

where L3(AL,AR) is the group resulting from exponentiation of the Lie algebra

L3(AL,AR) and similar for L2(AL,AR) with Lie algebra L2(AL,AR). At first sight

this appears to work, since (AL ⊗AR)P2 should have tangent space (AL ⊗AR)2 =

2(AL ⊗AR), which is exactly the Lie-algebra subspace L3(AL,AR) − L2(AL,AR).

However, in general these manifolds (5.119) are not strictly speaking projective

spaces because the tensor product AL⊗AR is in general not a division algebra, and

hence has zero divisors. One must settle then for taking (AL⊗AR)P2 to be defined

by equation (5.119) [1, 57, 90]. For more detailed and elegant treatments of magic

square projective geometry see [91, 1, 90, 92] and the references therein.

For the magic square of supergravities the scalars parametrise the symmetric
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spaces G/H, where G = L1,2(AL,AR) is the U-duality group with Lie algebra

L1,2(AL,AR) and H = L2(AL,AR) is its maximal compact subgroup with Lie alge-

bra L2(AL,AR). Thus, the scalar fields may be regarded as points in non-compact

Lorentzian division-algebraic ‘projective planes’7

(AL ⊗AR)P̃2 ∼=
L1,2(AL,AR)

L2(AL,AR)
. (5.120)

Taking AR = R, i.e. NR = 1, the scalar manifolds can be understood using

Lorentzian Jordan algebras [1, 88]:

h1,2(A) := {H ∈ A[3]
∣∣ H = ηH†η}, (5.121)

where η = diag(−1, 1, 1). Then the non-compact Lorentzian plane is just the

Lorentzian analogue of (5.113):

AP̃2 ∼=
{
P ∈ h1,2(A)

∣∣P 2 = P, Tr(P ) = 1
}
. (5.122)

Rank-1 projectors P of this form may always be written as

P = −vv†η, (5.123)

where v ∈ A3 is a ‘time-like’ unit vector, v†ηv = −1, whose three components asso-

ciate, as in (5.114). The metric on this space is then inherited from the Lorentzian

metric η on A3:

ds2 = −dv†ηdv = 1
2

Tr(dPdP ). (5.124)

Thus the N = NL + 1 = 2, 3, 5, 9 supergravities resulting from Yang-Mills theories

with NR = 1 have a scalar sector Lagrangian given by

L = 1
4

√
−gTr(∂µP ∂

µP ), (5.125)

with

P ∈ ALP̃
2 ∼= G/H =



SO(1, 2)/(SO(2)×O(1)), AL = R

SU(1, 2)/(SU(2)× U(1)), AL = C

Sp(1, 2)/(Sp(2)× Sp(1)), AL = H

F4(−20)/ Spin(9), AL = O.

(5.126)

7For example RP2 ∼= SO(3)/ (SO(2)×O(1)) vs. RP̃2 ∼= SL(2,R)/ (SO(2)×O(1)).
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In order to see the form of the Lagrangian (5.125) in terms of individual scalar

fields (of which there are 2NL in total), one may take the coset representative V ∈
G/H in more conventional language and then write it as an AL-valued 3× 3 matrix

in the representation of SA(3,AL) described in Subsection 5.2.1. Then simply write

v = V†v0 (5.127)

with v0 defined in (5.106). Then defining P as in (5.123) gives an explicit Lagrangian.

For example, theAL = AR = R case has scalar coset SO(1, 2)/(SO(2)×O(1)), which

is equivalent to the SL(2,R)/O(2) sigma model presented in equations (2.78)–(2.82).

The coset representative V as defined in (2.78) becomes

V =

coshϕ1 + 1
2
eϕ1(ϕ2)2 eϕ1ϕ2 sinhϕ1 − 1

2
eϕ1(ϕ2)2

ϕ2 1 −ϕ2

sinhϕ1 + 1
2
eϕ1(ϕ2)2 eϕ1ϕ2 coshϕ1 + 1

2
eϕ1(ϕ2)2

 (5.128)

in the defining 3× 3 representation of SO(1, 2). Then

v = VTv0 =

coshϕ1 + 1
2
eϕ1(ϕ2)2

eϕ1ϕ2

sinhϕ1 − 1
2
eϕ1(ϕ2)2

 (5.129)

(with † → T since V has real entries), which leads to the Lagrangian

L = 1
4

√
−gTr(∂µP ∂

µP ) =
√
−g(−1

2
∂µϕ1∂

µϕ1 − 1
2
e2ϕ1∂µϕ2∂

µϕ2), (5.130)

in agreement with equation (2.80).

The Lagrangian (5.125) is an elegant formulation of the scalar sigma model for

NR = 1, but unfortunately it does not easily generalise to include NR > 1, by the

lack of a projective interpretation of the manifolds (AL⊗AR)P̃2 defined in (5.120).

Such a version of the supergravity Lagrangian is desirable, since writing the theory

over AL ⊗AR makes manifest its Yang-Mills-squared origins.

5.5. Summary

In this chapter the idea of gravity as the square of gauge theory was combined with

the division-algebraic formulation of Yang-Mills to uncover a magic square of D = 3

supergravities. Each theory is obtained by tensoring an AL-valued SYM multiplet

with an AR-valued SYM multiplet and has a U-duality group G whose Lie algebra
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is the magic square algebra L1,2(AL,AR). This U-duality acts non-linearly on the

scalar sector, which describes a sigma model whose target space is the Lorentzian

‘projective plane’ (AL ⊗AR)P̃2.

The next step is to lift this process into higher dimensions, generalising to all cases

in the range 3 ≤ D ≤ 10. Since there are fewer and fewer available super Yang-Mills

theories to ‘square’ as D increases, this results in a magic pyramid of supergravity

theories, whose base in D = 3 is the magic square. This is the subject of Chapter 6.
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6. A Magic Pyramid of

Supergravities

Having established in the previous chapter that taking tensor products of D = 3

super Yang-Mills multiplets leads to a magic square of supergravities, it makes sense

to generalise this construction to higher dimensions. The goal of this chapter is to

give a unified presentation of the field content and global symmetries of ‘SYM-

squared’ supergravities in the range 3 ≤ D ≤ 10.

In terms of Lorentz representations, the field content of a general SYM-squared

supergravity theory is presented in Section 5.1, or in further detail in Table A.1 and

Table A.2 in the Appendix. For each D, NL and NR this field content is sufficient

to determine the U-duality groups G of the resulting supergravities, as well as their

maximal compact subgroups H. There are two possibilities:

1. If one of the Yang-Mills theories has maximal supersymmetry then the tensor

product results in the unique gravity multiplet with N = NL +NR supersym-

metries, whose U-duality group in each case is familiar from the literature [42].

For example, in D = 4, tensoring NL = 4 SYM and NR = 2 SYM results in

the unique N = 6 supergravity theory with G = SO?(12) and H = U(6).

2. If neither SYM theory is maximal then the tensor product gives a supergravity

with N = NL +NR, consisting of the gravity multiplet coupled to additional

matter multiplets. Again, the U-dualities of such theories are well-known.

For example, in D = 4, tensoring NL = 2 SYM and NR = 2 SYM results in

N = 4 supergravity coupled to two vector multiplets1 [93] with G = SO(6, 2)×
SL(2,R) and H = SO(6)× SO(2)2 ∼ U(4)× U(1).

The resulting G and H groups are given in Figure 6.1 and Figure 6.2, as well as

Tables 6.3–6.6.

Just as the magic square was described by a single Lie-algebraic formula, one

may define a magic pyramid formula, which takes as its arguments three algebras:

1In general, N = 4 supergravity coupled to n vector multiplets has G = SO(6, n)× SL(2,R) and
H = SO(6)× SO(n)× SO(2). The factor SO(6)× SO(2) ∼ U(4) is the R-symmetry, while the
factor SO(n) rotates the n vector multiplets into one another [93].

134



Figure 6.1.: Pyramid of U-duality groups G. Each layer of the pyramid corresponds to a different space-
time dimension, with D = 3 at the base and D = 10 at the summit. The spacetime dimen-
sions are labelled by the (direct sum of) division algebra(s) D on the vertical axis as given
in Table 4.2. The horizontal axes label the number of supersymmetries of the left and right
Yang-Mills theories: O means maximal supersymmetry, H means half-maximal, and so on.
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Figure 6.2.: Pyramid of compact subgroups H ⊂ G. Each layer corresponds to a different spacetime
dimension, with D = 3 at the base and D = 10 at the summit. The spacetime dimensions
are labelled by the (direct sum of) division algebra(s) D on the vertical axis as given in
Table 4.2. The horizontal axes label the number of supersymmetries of the left and right
Yang-Mills theories: O means maximal supersymmetry, H means half-maximal, and so on.
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division algebras AL and AR, and the Clifford algebra Cl0(N), 1 ≤ N ≤ nL, nR,

where N = D − 2 and nL = dim[AL] and nR = dim[AR]. Each SYM-squared

supergravity’s U-duality group G then has Lie algebra g given by the magic pyramid

formula, and a maximal compact subalgebra h given by a corresponding reduced

magic pyramid algebra.

Section 6.1 contains a brief summary of one of the main the results of Chapter 4:

how a general pure SYM theory may be written over a division algebra An. Then,

Section 6.2 describes how this gives (AL⊗AR)-valued SYM-squared supergravities.

Finally, Section 6.3 presents the mathematical definition of the magic pyramid alge-

bra, and a demonstration of how it describes the Lie algebras of the groups presented

in Figure 6.1, 6.2 and Tables 6.3–6.6 in terms of the symmetries of the original super

Yang-Mills theories.

6.1. Division-Algebraic Super Yang-Mills

Every pure super Yang-Mills theory can be obtained by dimensional reduction of

the minimally supersymmetric D = 3, 4, 6, 10 theories presented in Chapter 4, whose

on-shell symmetries are given by the triality algebras tri(An). There it was demon-

strated that a super Yang-Mills theory in D = N + 2 dimensions with N supersym-

metries has field content {Aµ, φı̄, λI}, or on-shell {a, φı̄, ψI}, where:

• ψI ∈ SN , with I = 1, · · · ,N , are the N fermions, each valued in SN , i.e. the

space of spinors of Cl0(N). These can be packaged as an element f of the

division algebra An
∼= (SN)N , where n = N sN with sN := dim[SN ];

• a ∈ RN is the on-shell gauge field, which may be embedded in a subspace

RN ⊆ An;

• φı̄ are the (n−N) scalar fields, which may be embedded in a subspace Rn−N ⊆
An, complementary to that of the vector a.

Hence, the on-shell content may be organised into a bosonic sector b and a fermionic

sector f , each of which takes values in An:

b = a+ φ = a
¯
ae

¯
a + φı̄eı̄ ∈ An, f ∈ An

∼= (SN)N (6.1)
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where, for the bosons, the usual index a = 0, 1, · · · , (n − 1) labelling the division-

algebraic basis elements is decomposed as

¯
a = 0, 1, · · · , (N − 1),

ı̄ = N, (N + 1), · · · , (n− 1),
(6.2)

so that span{e
¯
a} = RN ⊆ An, while span{eı̄} = Rn−N ⊂ An. For solutions of the

free Fourier-space equations of motion with momentum pµ = (E, 0 · · · , 0, E), the

on-shell supersymmetry transformations are

δb = −iεf ∗, δf = iE b∗ε, b, f, ε ∈ An, (6.3)

where the components fa and εa are Grassmann numbers. The overall symmetry is

so(N)ST⊕ intN(An) ⊆ tri(An) – the spacetime little group algebra so(N)ST plus the

internal symmetry intN(An). The spacetime part so(N)ST acts on the three different

representations b, f, ε via equation (4.103):

δ(b, f ∗, ε) = TST(b, f ∗, ε) = 1
4
θ¯
a
¯
b T

¯
a
¯
b(b, f

∗, ε), (6.4)

where θab ∈ so(N)ST, while intN(An) ∼= so(n−N)⊕ ex(An) acts as

δ(b, f ∗, ε) = TINT(b, f ∗, ε) = 1
4
θı̄̄ Tı̄̄(b, f

∗, ε) + TEX(b, f ∗, ε), (6.5)

where

TEX = (0,−L̂θI , R̂θI) ∈ tri(An), θI ∈ ex(An). (6.6)

It is convenient to define a new algebra symN(An), made up of those elements of

tri(An) that commute with its so(N)ST subalgebra:

symN(An) :=
{
T ∈ tri(An)− so(N)ST

∣∣∣[T, so(N)ST] = 0
}
. (6.7)

For N > 1 this is clearly just the same as the algebra intN(An), but for N = 1

the algebra so(N)ST is empty, so (6.7) enforces no condition on tri(An) and thus

sym1(An) = tri(An). Hence

symN(An) ∼=

tri(An), N = 1,

intN(An), N > 1.
(6.8)

Thus the subtle difference between the algebras symN(An) and intN(An) is that

symN(An) gives the symmetries of the dualised (i.e. zero coupling constant, g = 0)
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Yang-Mills theory in D = N + 2 = 3 dimensions: tri(An). In contrast, intN(An)

gives the symmetries of the original ‘un-dualised’ theory with the usual field content

{a ∈ Re(An), φ ∈ Im(An), ψ ∈ An}.

H
HHH

HHN
An O

Q = 16
H

Q = 8
C

Q = 4
R

Q = 2

8 ex(O) - - -
∼= Ø

7 Ø - - -

6 so(2) - - -
∼= u(1)

5 so(3) - - -
∼= sp(1)

4 so(4) ex(H) - -
∼= 2 sp(1) ∼= sp(1)

3 so(5) sp(1) - -
∼= sp(2)

2 so(6) so(2)⊕sp(1) ex(C) -
∼= su(4) ∼= u(2) ∼= u(1)

1 so(8) so(4)⊕ sp(1) u(1) ex(R) ∼= Ø
∼= tri(O) ∼= tri(H) ∼= tri(C) ∼= tri(R)

Table 6.1.: The internal symmetry algebras of pure super Yang-Mills on-shell: symN (An). Each
slot corresponds to the SYM theory in D = N + 2 dimensions with Q = 2n real
supercharge components. The N = 1 row describes the symmetries of the D = 3
theory when the Yang-Mills gauge field has been dualised to a scalar – compare this to
Table 4.4.

To take account of this dualisation in D = 3, it is useful to give an alternative

definition of the space of scalars SNn ⊆ An as the space of solutions φ to

δ(φ, 0, 0) = TST(φ, 0, 0) = 0, φ ∈ An, (6.9)

i.e. SNn := ker[ÂST], where TST = (ÂST, B̂ST, ĈST). This is just the obvious statement

that scalars are invariant under spacetime rotations. Thus TST naturally decomposes
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An into two subspaces:

An = VN ⊕ SNn , (6.10)

where VN is the orthogonal complement of SNn in An. For D = 3 (N = 1) the

spacetime little group is so(1)ST
∼= Ø and hence TST = 0. This means that every

φ ∈ An trivially satisfies (6.9), and hence S1
n = An. For D > 3 (N > 1) the space

of scalars SNn just corresponds to the internal dimensions, Rn−N ∼= span{eı̄}. In

summary then,

VN ∼=

Ø, N = 1,

RN , N > 1,
SNn
∼=

An, N = 1,

Rn−N , N > 1,
(6.11)

and the bosonic content becomes

b = a+ φ ∈ An, a ∈ VN , φ ∈ SNn , (6.12)

where a is the vector and φ contains the scalar fields.

Just as the magic square was constructed from the triality algebras, which were the

internal symmetries of super Yang-Mills theories, the magic pyramid is constructed

from the algebras symN(An). This explicitly involves the spaces VN and SNn , as well

as the algebra D, over which Cl0(N) is defined.

6.2. The Supergravity Pyramid

Tensoring an on-shell super Yang-Mills multiplet {b ∈ AL, f ∈ AL} with another

{b̃ ∈ AR, f̃ ∈ AR} generates a supergravity multiplet, valued in AL ⊗ AR. Each

multiplet has global symmetry algebra

so(N)ST ⊕ symN(AL,R). (6.13)

With respect to so(N)ST the tensor products are so(N)ST-modules, while with re-

spect to symN(AL) and symN(AR) they are symN(AL)⊕symN(AR)-modules. Prac-

tically speaking, the tensoring of on-shell fields can be organised just as in D = 3

(see the previous chapter); the total supergravity content can be arranged into a

bosonic doublet and a fermionic doublet,

B :=

(
1
E
f ∗f̃ ∗

bb̃

)
∈

(
AL ⊗AR

AL ⊗AR

)
, F :=

(
f ∗b̃

bf̃ ∗

)
∈

(
AL ⊗AR

AL ⊗AR

)
. (6.14)
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AL\AR ã ∈ VN
R φ̃ ∈ SNR f̃ ∈ AR

a ∈ VN
L g +B + ϕ ∈ VN

L ⊗VN
R a ∈ VN

L ⊗SNR Ψ + χ ∈ VN
L ⊗AR

φ ∈ SNL a ∈ SNL⊗VN
R ϕ ∈ SNL⊗SNR χ ∈ SNL⊗AR

f ∈ AL Ψ + χ ∈ AL⊗VN
R χ ∈ AL⊗SNR ϕRR + · · · ∈ AL ⊗AR

Table 6.2.: Tensor product of left/right (AL/AR) SYM multiplets in D = N + 2 dimensions, using
so(N)ST spacetime little group representations.

The field content – in terms of irreducible so(N)ST representations – contained within

B and F may be found using the on-shell version of the dictionary in Section 5.1.

For example, the bb̃ (i.e. NS-NS) sector is

bb̃ = (a+ φ)(ã+ φ̃) = aã+ φφ̃+ aφ̃+ φã; (6.15)

the last three terms correspond to supergravity scalars φφ̃ ∈ SNL ⊗ SNR and vectors

a := aφ̃+ φã ∈ (VN
L⊗SNR )⊕ (SNL⊗VN

R ), while the first term aã gives the graviton g,

a 2-form B and a scalar as the symmetric-traceless, antisymmetric and trace parts,

respectively:

aã = a
¯
aã

¯
b e

¯
aẽ

¯
b ≡

[ (
a

¯
(aã

¯
b) − 1

v
(a

¯
cã

¯
c)δ

¯
a
¯
b

)︸ ︷︷ ︸
g

¯
a
¯
b

+ 1
v

(a
¯
cã

¯
c)︸ ︷︷ ︸

ϕ

δ
¯
a
¯
b + a[

¯
aã

¯
b]︸ ︷︷ ︸

B
¯
a
¯
b

]
e

¯
aẽ

¯
b, (6.16)

where v := dim[VN
L ] = dim[VN

R ]. The rest of the field content is listed in Table 6.2.

Note that the p-form fields of the Ramond-Ramond sector 1
E
f ∗f̃ ∗ in Bare dimension-

dependent. By virtue of working on-shell all p-forms in the following discussion will

effectively always be dualised to the lowest possible rank consistent with their little

group representations. Thus for example, in terms of Lorentz reps, Bµν → φ,Aµ in

D = 4, 5, respectively. This ensures U-duality is manifest.

The detailed form of these tensor products for D > 3 are summarised in Table A.1

and Table A.2 in the Appendix, where for a given little group representation the

symN(AL) ⊕ symN(AR) representations have been collected into the appropriate

representation of h, the maximal compact subalgebra of the U-duality g. For ex-

ample, consider the square of the D = 5, N = 2 super Yang-Mills multiplet, whose
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global symmetry algebra is so(3)ST ⊕ sym3(O) = so(3)ST ⊕ sp(2),

⊗ Ãµ : (3; 1) λ̃ : (2; 4) φ̃ : (1; 5)

Aµ : (3; 1) (5; 1,1) + (3; 1,1) + (1; 1,1) (4; 1,4) + (2; 1,4) (3; 1,5)

λ : (2; 4) (4; 4,1) + (2; 4,1) (3; 4,4) + (1; 4,4) (2; 4,5)

φ : (1; 5) (3; 5,1) (2; 5,4) (1; 5,5)

(6.17)

On gathering the spacetime little group representations in (6.17), the (generally

reducible) sym3(O) ⊕ sym3(O) = sp(2) ⊕ sp(2) representations they carry may be

combined into irreducible h = sp(4) representations, as illustrated by the following

decomposition under sp(4) ⊃ sp(2)⊕ sp(2):

gµν : (5; 1)→ (5; 1,1),

Ψµ : (4; 8)→ (4; 4,1) + (4; 1,4),

Aµ : (3; 27)→ (3; 1,1) + (3; 5,1) + (3; 1,5) + (3; 4,4),

λ : (2; 48)→ (2; 4,1) + (2; 1,4) + (2; 4,5) + (2; 5,4),

φ : (1; 42)→ (1; 1,1) + (1; 4,4) + (1; 5,5).

(6.18)

The algebras g(NL +NR, D) and h(NL +NR, D) may always be decomposed into

symN(AL)⊕symN(AR) and a direct sum of irreducible representations built up from

pieces relating to the left and right Yang-Mills theories. The precise form of these

representations can be obtained as follows. The spacetime little group so(N)ST acts

on the bosonic doublet according to (6.4):

δ

(
1
E
f ∗f̃ ∗

bb̃

)
= 1

4
θ¯
a
¯
b

(
(B̂L

¯
a
¯
b+B̂

R

¯
a
¯
b) 0

0 (ÂL
¯
a
¯
b+Â

R

¯
a
¯
b)

)(
1
E
f ∗f̃ ∗

bb̃

)
, (6.19)

while the fermions transform as

δ

(
f ∗b̃

bf̃ ∗

)
= 1

4
θ¯
a
¯
b

(
(B̂L

¯
a
¯
b+Â

R

¯
a
¯
b) 0

0 (ÂL
¯
a
¯
b+B̂

R

¯
a
¯
b)

)(
f ∗b̃

bf̃ ∗

)
. (6.20)

As seen in the previous chapter, these doublets are irreducible representations of

the reduced magic square algebra L2(AL,AR), but in general this algebra does not

commute with the so(N)ST transformations given above. Thus the largest internal

linearly-acting symmetry compatible with the spacetime symmetry is the subalgebra

of L2(AL,AR) that commutes with so(N)ST. Since any element TST ∈ so(N)ST may

be written as TST = 1
4
θ¯
a
¯
bT

¯
a
¯
b = −1

2
θ0

¯
iT

¯
i − 1

4
θ̄i¯
jT

¯
iT

¯
j, a transformation commutes with

so(N)ST if and only if it commutes with T
¯
i. This also extends to the non-compact
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symmetries. The largest symmetry algebra is that commuting with T
¯
i. This will be

described in detail in the following section.

6.3. The Magic Pyramid Algebra

This section is dedicated to giving a mathematical definition of the magic pyra-

mid algebra PN
1,2(AL,AR). Consider TL

¯
i ∈ tri(AL) and TR

¯
i ∈ tri(AR), with

¯
i =

1, · · · , (N − 1) as usual, satisfying

(TL
¯
i T

L

¯
j + TL

¯
j T

L

¯
i )(0, x, y) = −2δ

¯
i
¯
j(0, x, y), ∀ x, y ∈ AL (6.21)

and similar for TR
¯
i ∈ tri(AR), with 1 ≤ N ≤ nL, nR, where nL = dim[AL] and nR =

dim[AR]. This gives a representation of the Clifford algebra Cl(N − 1) ∼= Cl0(N) on

each of AL and AR, and up to signs and conjugations determines

TL
¯
i = (ÂL

¯
i , B̂

L

¯
i , Ĉ

L

¯
i ) = (L̂e

¯
i
+ R̂e

¯
i
, R̂e

¯
i
, L̂e

¯
i
),

TR
¯
i = (ÂR

¯
i , B̂

R

¯
i , Ĉ

R

¯
i ) = (L̂ẽ

¯
i
+ R̂ẽ

¯
i
, R̂ẽ

¯
i
, L̂ẽ

¯
i
).

(6.22)

Then, defining

T
¯
i := TL

¯
i + TR

¯
i ∈ tri(AL)⊕ tri(AR), (6.23)

and defining so(N)ST as the algebra generated by the T
¯
i and their commutators

[T
¯
i, T

¯
j], the pyramid algebra is given by

PN
1,2(AL,AR) :=

{
x ∈ L1,2(AL,AR)− so(N)ST

∣∣∣[x, so(N)ST] = 0
}
, (6.24)

where

L1,2(AL,AR) := tri(AL)⊕ tri(AR) + 3(AL ⊗AR) (6.25)

is the magic square algebra, with commutators given as in Chapter 5. Just as

L1,2(AL,AR) has the reduced magic square algebra L2(AL,AR) as its maximal com-

pact subalgebra, that of the pyramid algebra is called the reduced magic pyramid

algebra PN
2 (AL,AR):

PN
2 (AL,AR) :=

{
x ∈ L2(AL,AR)− so(N)ST

∣∣∣[x, so(N)ST] = 0
}
. (6.26)

Any generator in L1,2(AL,AR) – or its subalgebra L2(AL,AR) – commutes with

so(N)ST if and only if it commutes with every T
¯
i.

To examine the structure of the pyramid algebra in more detail, the terms in

the Lie-algebraic formula (6.25) can treated individually; in each case the subspace
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that commutes with T
¯
i may be specified. By definition, the part of tri(AL,R) that

commutes with TL,R
¯
i is the algebra symN(AL,R). Therefore

[symN(AL,R), T
¯
i] = 0, (6.27)

since [tri(AL), tri(AR)] = 0. As well as the sym subalgebras that commute with T
¯
i =

TL
¯
i + TR

¯
i , the subspace tri(AL)⊕ tri(AR) also contains the orthogonal combination

u
¯
i := TL

¯
i − TR

¯
i , (6.28)

but this only commutes with T
¯
i in the special case N = 2, where there is just one

T1 and one u1, each of which generates a u(1). This corresponds to the fact that

Cl0(2) ∼= C is the only non-trivial commutative Clifford algebra. Overall then, the

condition that each generator must commute with T
¯
i reduces tri(AL) ⊕ tri(AR) to

the subalgebra

symN(AL)⊕ symN(AR)⊕ δN,2u(1). (6.29)

Next, consider the terms

3(AL ⊗AR) = (AL ⊗AR)v + (AL ⊗AR)s + (AL ⊗AR)c, (6.30)

where the subscripts refer to elements of 3(AL ⊗AR) as follows:

(Xv, X
∗
s , Xc) ∈ 3(AL ⊗AR). (6.31)

Then, since the commutators of

TL = (ÂL, B̂L, ĈL) ∈ tri(AL),

TR = (ÂR, B̂R, ĈR) ∈ tri(AR)
(6.32)

and elements of 3(AL⊗AR) are given by the natural action of tri(AL)⊕ tri(AR) on

3(AL ⊗AR),

[TL, (Xv, X
∗
s , Xc)] = (ÂLXv, B̂LX

∗
s , ĈLXc),

[TR, (Xv, X
∗
s , Xc)] = (ÂRXv, B̂RX

∗
s , ĈRXc),

(6.33)

it follows that the condition

[T
¯
i, (Xv, X

∗
s , Xc)] = 0 (6.34)
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is equivalent to

(ÂL
¯
i + ÂR

¯
i )Xv = 0, (B̂L

¯
i + B̂R

¯
i )X∗s = 0, (ĈL

¯
i + ĈR

¯
i )Xc = 0. (6.35)

Written out in full, these conditions are very simple; respectively, they become

(e
¯
i + ẽ

¯
i)Xv +Xv(e

¯
i + ẽ

¯
i) = 0,

X∗s (e
¯
i + ẽ

¯
i) = 0,

(e
¯
i + ẽ

¯
i)Xc = 0.

(6.36)

The solution for the X∗s and Xc conditions is rather simple, due to the Clifford

algebra relations (6.21). For concreteness, consider the Xc equation first. The

Clifford algebra Cl(N − 1) ∼= Cl0(N) is associated with an algebra D via equation

(4.89), as well as an irreducible spinor representation SN with (real) dimension sN .

The representation of Cl0(N) on the division algebra AL,R generated by ĈL,R

¯
i is in

general reducible with

AL
∼= (SN)NL , AR

∼= (SN)NR , (6.37)

where NL,R := nL/sN . With this in mind, by equation (4.101) the subspace of the

tensor product AL⊗AR satisfying (ĈL

¯
i + ĈR

¯
i )Xc = 0 is isomorphic as a vector space

to DN [NL,NR] (the linear operators ĈL

¯
i and −ĈR

¯
i correspond to the generators Em

and Ẽm in (4.101)). The same is clearly true for (B̂L

¯
i + B̂R

¯
i )X∗s = 0, since B̂L

¯
i and

B̂R

¯
i also give representations of the Clifford algebra on AL and AR, respectively.

For the condition (ÂL
¯
i + ÂR

¯
i )Xv = 0, decompose

AL = VN
L ⊕ SNL , AR = VN

R ⊕ SNR , (6.38)

where SNL := ker[ÂL
¯
i ] = ker[ÂLST], SNR := ker[ÂR

¯
i ] = ker[ÂRST] and VN

L , VN
R are their

respective orthogonal complements in AL, AR. Note that VN
L
∼= VN

R . Then the

tensor product algebra decomposes into four pieces:

(AL ⊗AR)v = (VN
L ⊕ SNL )⊗ (VN

R ⊕ SNR )

∼= (VN
L ⊗VN

R )⊕ (SNL⊗SNR )⊕ (VN
L ⊗SNR )⊕ (SNL⊗VN

R ).
(6.39)

Examining these four subspaces, first it is clear that Xv ∈ VN
L ⊗ SNR can never

satisfy (6.36), since in this case by definition (ÂL
¯
i + ÂR

¯
i )Xv = ÂL

¯
i Xv 6= 0, and similar

for Xv ∈ SNL ⊗ VN
R . The entire subspace SNL ⊗ SNR trivially satisfies the condition

(6.36). This leaves only VN
L ⊗VN

R , whose elements are of the form X
¯
a
¯
b e

¯
aẽ

¯
b and may
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be decomposed into a traceless symmetric part, a trace part and an antisymmetric

part:

X
¯
a
¯
b e

¯
aẽ

¯
b ≡

[
(X(

¯
a
¯
b) − 1

v
Tr(X)δ

¯
a
¯
b) + 1

v
Tr(X)δ

¯
a
¯
b +X[

¯
a
¯
b]

]
e

¯
aẽ

¯
b, (6.40)

where v := dim[VN
L ] = dim[VN

R ]. It is easy to check that the trace part satisfies

(6.36), since

(ÂL
¯
i + ÂR

¯
i )e

¯
aẽ

¯
a = (e

¯
i + ẽ

¯
i)e

¯
aẽ

¯
a + e

¯
aẽ

¯
a(e

¯
i + ẽ

¯
i) = 0. (6.41)

The other terms do not in general satisfy (6.36), except for the antisymmetric part

in the special case of N = 2, since there

X[
¯
a
¯
b] ≡ X[01]ε

¯
a
¯
b, (6.42)

where ε
¯
a
¯
b is the 2× 2 antisymmetric symbol with ε

¯
0
¯
1 = 1, which gives an invariant

as follows:

(ÂL
¯
i + ÂR

¯
i )ε

¯
a
¯
be

¯
aẽ

¯
b = (e

¯
i + ẽ

¯
i)ε

¯
a
¯
be

¯
aẽ

¯
b + ε

¯
a
¯
be

¯
aẽ

¯
b(e

¯
i + ẽ

¯
i) = 0. (6.43)

Thus the general solution to (ÂL
¯
i + ÂR

¯
i )Xv = 0 is of the form

Xv = Φı̄̄ı′ eı̄ẽı̄′ + φ e
¯
aẽ

¯
a + δN,2 ϕ ε

¯
a
¯
be

¯
aẽ

¯
b, (6.44)

belonging to the following subspace of AL ⊗AR:

SNL ⊗ SNR ⊕ Tr(VN
L ⊗VN

R )⊕ δN,2Pf(VN
L ∧VN

R ) ∼= SNL ⊗ SNR ⊕R⊕ δN,2R, (6.45)

where Pf denotes the Pfaffian, which is linear only for N = 2 (note that V2
L,R
∼= R2).

Of course, this subspace corresponds precisely to the set of NS-NS scalars from

the tensor product bb̃ – see equations (6.15) and (6.40) – since these are just the

components of bb̃ invariant under spacetime rotations, i.e. (AL
¯
a
¯
b +AR

¯
a
¯
b)bb̃ = 0, which

is equivalent to (AL
¯
i +AR

¯
i )bb̃ = 0. Note that the δN,2R term corresponds to the extra

scalar coming from dualisation of the NS-NS 2-form B in D = 4 (N = 2).

Putting all of this together, first the reduced magic pyramid algebra is

PN
2 (AL,AR) = symN(AL)⊕ symN(AR) + δN,2u(1) +D[NL,NR], (6.46)

with D[NL,NR] ⊆ (AL ⊗AR)c, which is the maximal compact subalgebra of

PN
1,2(AL,AR) = PN

2 (AL,AR) +D[NL,NR] + SNL ⊗ SNR +R+ δN,2R, (6.47)
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with D[NL,NR] ⊆ (AL ⊗ AR)s and SNL ⊗ SNR + R + δN,2R ⊆ (AL ⊗ AR)v. The

commutators for these algebras are simply inherited from those of the magic square

algebras.

Of course, by construction, for each SYM-squared supergravity in D = N + 2

dimensions the U-duality group G and its maximal compact subalgebra H have Lie

algebras

g(NL +NR, D) = PN
1,2(AL,AR), h(NL +NR, D) = PN

2 (AL,AR). (6.48)

Of particular interest in the supergravity theories are the scalar fields, which pa-

rameterise the coset G/H. The tangent space at a point in G/H can be identified

with the vector space g− h. From (6.47) this is given by

g− h = PN
1,2 −PN

2 = D[NL,NR] + SNL⊗SNR +R+ δN,2R. (6.49)

This makes sense as the space of scalar fields, since this is the space of solutions ϕ

to δB= 0 where δ here represents the infinitesimal spacetime little group transfor-

mation given in (6.19). As described in the previous section, δB = 0 if and only

if (
B̂L

¯
i + B̂R

¯
i 0

0 ÂL
¯
i + ÂR

¯
i

)(
1
E
f ∗f̃ ∗

bb̃

)
= 0, (6.50)

which gives precisely the first two equations in (6.36). Then, by the arguments

above, the space of solutions to the f ∗f̃ ∗ equation is isomorphic to D[NL,NR] and

represents the R-R scalars, while that of the bb̃ equation is SNL⊗SNR +R+ δN,2R and

represents the NS-NS scalars – see Table 6.2.

6.4. Compact Pyramid Symmetries

The reduced pyramid algebra has more structure than is immediately obvious;

PN
2 (AL,AR) must always consist of two mutually commuting subalgebras: one is

isomorphic to sa(NL + NR,D) and the other is an extra piece pN(AL,AR), to be

defined below. This can be seen by rewriting equation (4.111) in terms of symN(AL)

and symN(AR):

symN(AL) = sa(NL,D)⊕ exN(AL),

symN(AR) = sa(NR,D)⊕ exN(AR),
(6.51)

147



where exN(AL) is a possible u(1) or sp(1) that commutes with sa(NL,D):

exN(AL) := symN(AL)	 sa(NL,D) =


ex(AL), N = 1

u(1), (N, nL) = (2, 2), (2, 4), (6, 8)

Ø, otherwise,

(6.52)

and similar for ex(AR). Then

PN
2 = symN(AL)⊕ symN(AR)⊕ δN,2u(1) +D[NL,NR]

= sa(NL,D)⊕ sa(NR,D)⊕ δN,2u(1) +D[NL,NR]⊕ exN(AL)⊕ exN(AR)

= sa(NL +NR,D)⊕ pN(AL,AR), (6.53)

where

pN(AL,AR) := PN
2 	 sa(NL +NR,D) =

exN(AL)⊕ exN(AR), N 6= 6

u(1), N = 6.
(6.54)

Th logic for the final equality in (6.53) is as follows. Any element X = −X† of

a(NL +NR,D) may be decomposed as

X =

(
XL M

−M † XR

)
, (6.55)

where XL ∈ a(NL,D), XR ∈ a(NR,D), and M ∈ D[NL,NR]. Hence

a(NL +NR,D) ∼= a(NL,D)⊕ a(NR,D) +D[NL,NR], (6.56)

which restricts to

sa(NL +NR,D) ∼= sa(NL,D)⊕ sa(NR,D)⊕ δD,Cu(1) +D[NL,NR], (6.57)

from which equation (6.53) follows2. It is then easy to see that the groups H of

the pyramid diagram in Figure 6.2 correspond to those predicted by the reduced

pyramid algebra construction.

Equation (6.53) is in agreement with the R-symmetry for (NL+NR)-extended su-

2Some care is needed when dealing with the D = 4 commuting ex2(AL,R) pieces. In general the
u(1) absorbed into sa(NL +NR,C) = su(NL +NR) is a linear combination of that contributed
by the δN,2u(1) term and an element of ex2(AL) ⊕ ex2(AR). Hence the final commuting u(1)
algebras that sit in p2(AL,AR) are also given by orthogonal linear combinations.
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persymmetry3 (here meaning specifically the automorphisms of the supersymmetry

algebra), which in general has Lie algebra

r(NL +NR, D) = a(NL +NR,D). (6.58)

Each term in the reduced pyramid formula (6.46), and hence the algebra h of

compact U-duality symmetries of SYM-squared supergravities may be traced back

to Yang-Mills:

• Of course symN(AL) and symN(AR) are the internal symmetries of super Yang-

Mills – triality algebras in D = 3 and R-symmetries in D > 3.

• Just as in D = 3, the term D[NL,NR] corresponds to the tensor product of the

left and right supersymmetry generators: Q⊗Q̃. Performing a supersymmetry

transformation (6.3) on both the left and right Yang-Mills fields gives

δLδR B= E εaε̃a′

(
0 −e∗aẽ∗a′

eaẽa′ 0

)(
1
E
f ∗f̃ ∗

bb̃

)
, (6.59)

and

δLδR F= E εaε̃a′

(
0 −e∗aẽa′

eaẽ
∗
a′ 0

)(
f ∗b̃

bf̃ ∗

)
, (6.60)

but only the components that commute with the so(N)ST transformations

(6.19) and (6.20) can contribute to h. This condition is equivalent to

(ĈL

¯
i + ĈR

¯
i )εε̃ = (e

¯
i + ẽ

¯
i)εε̃ = 0, (6.61)

which is equivalent to the condition in (4.101), giving D[NL,NR].

• Finally, the δN,2u(1) term can be understood as a consequence of the little

group so(N)ST being both commutative and non-trivial only for N = 2. In

this case, any element of so(2)ST acting on the triple of Yang-Mills quantities

(b, f ∗, ε) may be written as

TST = 1
4
θ¯
a
¯
b T

¯
a
¯
b = 1

2
θ01 T01 = 1

2
θ01 T1, (6.62)

with T1 = (L̂e1 + R̂e1 , R̂e1 , L̂e1). Hence, as described in the last section, the

little group generator TL1 + TR1 in the supergravity theory commutes with

the orthogonal combination TL1 − TR1 , corresponding to transforming the left

3Note that the commuting u(1) of u(8) ∼= su(8)⊕u(1) for D = 4, N = 8 supergravity acts trivially
and is thus not produced in PN

2 (AL,AR). Otherwise, a(NL +NR,D) ⊆ h(NL +NR, D).
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and right Yang-Mills theories under separate spacetime so(2)LST and so(2)RST

rotations with opposite respective transformation parameters, leading to a

new internal symmetry transformation.

As a concrete example consider D = 4, N = 8 supergravity with h = su(8),

obtained as the tensor product of NL = 4 SYM and NR = 4 SYM, each of which

has internal symmetry sym2(O) = su(4). Decomposing h = P2
2(O,O) = su(8) into

su(4)⊕ su(4)⊕ u(1)

63︸︷︷︸
su(8)

→ (15,1)0 + (1,15)0︸ ︷︷ ︸
sym2(O)⊕ sym2(O)

+ (1,1)0︸ ︷︷ ︸
δN,2u(1)

+ (4,4)1 + (4,4)−1︸ ︷︷ ︸
C[4, 4]

, (6.63)

the terms of (6.63) correspond exactly to the terms in the reduced pyramid formula

(6.46) (note that the u(1) here corresponds to the δN,2u(1) term, which contributes

since D = 4⇔ N = 2).

6.5. Non-Compact Pyramid Symmetries

The maximal supergravities populating the ‘spine’ of the magic pyramids in Fig-

ure 6.1 and Figure 6.2 are of course those familiar from dimensionally reducing

D = 11 supergravity, whose U-duality groups Ed(d) (where d = 11 − D) are listed

in Table 2.2. For example, consider once again the maximal D = 4, N = 8 theory

with g = P2
1,2(O,O) = e7(7). In terms of its maximal compact subalgebra h = su(8),

the adjoint of e7(7) decomposes as

133→ 63 + 70. (6.64)

The non-compact generators transforming as the 70 of su(8), which correspond

to the 70 scalar fields, can then be decomposed in terms of the SYM symmetries

sym2(O)⊕ sym2(O)⊕ u(1) = su(4)⊕ su(4)⊕ u(1) ⊂ su(8):

70→ (4,4)−1 + (4,4)1︸ ︷︷ ︸
C[4, 4]

+ (6,6)0︸ ︷︷ ︸
S2

8⊗S2
8

+ (1,1)2 + (1,1)−2︸ ︷︷ ︸
R+ δN,2R

. (6.65)

Once again, these correspond precisely to the terms given in the magic pyramid

formula (6.47), with C[4, 4] as the R-R sector and S2
8⊗S2

8 +R+ δN,2R as the NS-NS

sector. Each U-duality algebra of the maximal supergravities may be built up in

this way.

The non-maximal supergravities of D = 4, 5, 6 also have U-duality algebras fol-
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lowing a more regular pattern than Figure 6.1 might at first suggest. This will be

given here layer-by-layer, by setting one of the division algebras, say AR, not equal

to O.

AL\AR C H O

N = 2,f= 16 N = 3,f= 32 N = 5,f= 64
C G = U(1, 2) G = U(1, 3) G = SU(1, 5)

H = U(2)×U(1) ∼= SO?(6)×U(1) H = U(5)
H = U(3)×U(1)

N = 3,f= 32 N = 4,f= 64 N = 6,f= 128
H G = U(1, 3) G = SO(6, 2)× SL(2,R) G = SO?(12)

∼= SO?(6)×U(1) ∼= SO?(8)× SL(2,R) H = U(6)
H = U(3)×U(1) H = U(4)×U(1)

N = 5,f= 64 N = 6,f= 128 N = 8,f= 256
O G = SU(1, 5) G = SO?(12) G = E7(7)

H = U(5) H = U(6) H = SU(8)

Table 6.3.: First floor of pyramid (D = 4 supergravity). The first row of each entry indicates the
amount of supersymmetry N and the total number of degrees of freedom f. The second
(third) row indicates the U-duality group G (the maximal compact subgroup H ⊂ G)
and its dimension. The scalar fields in each case parametrise the coset G/H.

.

D = 4 layer: Here the non-maximal supergravity U-dualities can be obtained by

setting AR = C,H.

• For AR = C, i.e. NR = 1, the compact algebra h is

h = su(N )⊕ ex2(AL)⊕ u(1), (6.66)

with N = NL + 1. Since there are no scalars in the right Yang-Mills, S2
R = Ø,

the non-compact part g− h becomes

g− h = C[NL, 1] +R+R ∼= CN , (6.67)

which gives overall4

g = h + CN ∼= su(N , 1)⊕ ex2(AL). (6.68)

Of course, one must check that the commutators between h and CN match up

with those of su(N , 1), but this is fairly straightforward. This results in the

4Note that the algebras u(1) and ex2(AL) in (6.66) are again actually linear combinations of the
original ex2(AR) = u(1) and ex2(AL) with the u(1) from the δN,2 term.
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AL\AR H O

N = 2,f= 64 N = 3,f= 128
H G = O(5, 1)×O(1, 1) G = SU?(6)

∼= SL(2,H)×R ∼= SL(3,H)
H = Sp(2) H = Sp(3)

N = 3,f= 128 N = 4,f= 256
O G = SU?(6) G = E6(6)

∼= SL(3,H) ∼= SL(3,Os)
H = Sp(3) H = Sp(4)

Table 6.4.: Second floor of pyramid (D = 5 supergravity). The first row of each entry indicates
the amount of supersymmetry N and the total number of degrees of freedom f. The
second (third) row indicates the U-duality group G (the maximal compact subgroup
H ⊂ G) and its dimension. The scalar fields in each case parametrise the coset G/H.
Note that Os here denotes the split octonions, which are similar to the octonions, but
four of the imaginary elements square to +1 instead of −1.

.

groups given in the pyramid of Figure 6.1 or Table 6.3.

• Then for AR = H, i.e. NR = 2, the compact algebra h is once again given by

(6.66), but this time with N = NL + 2. In this case g always contains

so?(2N ) ∼= su(N )⊕ u(1) + Λ2(CN ). (6.69)

For example, for NL = 1, the non-compact part becomes g−h = C3 ∼= Λ2(C3),

while the compact part is h = su(3)⊕ u(1)⊕ u(1), and so the U-duality group

is

g = so?(6)⊕ u(1). (6.70)

Similar logic for NL = 2, 4 gives the remaining U-dualities of D = 4 displayed

in Table 6.3 and Figure 6.1 (note the isomorphisms so?(6) ∼= su(3, 1) and

so?(8) ∼= so(6, 2)).

These theories were previously obtained in [72] by consistently truncating to the

untwisted sector of the low-energy effective field theory of Type II superstrings on

factorised orbifolds, revealing their double-copy structure. The magic D = 4, N = 2

supergravities were also discussed in this context. In particular, the quaternionic

theory originates from a non-factorisable Z2-orbifold compactification [72].

D = 5 layer: For AR = H, the generators of g− h contain a subspace isomorphic

to h′N (H), the space ofN×N Hermitian traceless quaternionic matrices. Combining

this with the compact R-symmetry subalgebra h = sp(N ), which consists of N ×N
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AL\AR H O

N = (1, 1),f= 64 N = (1, 2),f= 128
H G = Spin(4)×O(1, 1) G = SU?(4)× Sp(1)

∼= SL(1,H)× SL(1,H)×R ∼= SL(1,H)× SL(2,H)
H = Sp(1)× Sp(1) H = Sp(2)× Sp(1)

N = (2, 1),f= 128 N = (2, 2),f= 256
O G = SU?(4)× Sp(1) G = SO(5, 5)

∼= SL(2,H)× SL(1,H) ∼= SL(2,Os)
H = SU(2)× SO(2) H = Sp(2)× Sp(2)

Table 6.5.: Third floor of pyramid (D = 6 supergravity). The first row of each entry indicates the
amount of supersymmetry N and the total number of degrees of freedom f. The second
(third) row indicates the U-duality group G (the maximal compact subgroup H ⊂ G)
and its dimension. The scalar fields in each case parametrise the coset G/H.

.

anti -Hermitian quaternionic matrices, gives

sl(N ,H) ∼= sp(N ) + h′N (H). (6.71)

Specifically, since S3
4 = R, the space of non-compact generators is

g− h = H[NL, 1] + S3
L ⊗R+R = HNL + S3

L ⊗R+R, (6.72)

so that for AL = H, i.e. NL = 1, this becomes

g− h = H+R+R ∼= h′2(H) +R, (6.73)

giving

g = sl(2,H)⊕R, (6.74)

while forAL = O, i.e. NL = 2, the left Yang-Mills scalars belong to S3
8 = R5 ∼= h′2(H)

and hence

g− h = H2 + h′2(H) +R ∼= h′3(H), (6.75)

giving the U-duality

g = sl(3,H). (6.76)

Once again this matches up with the groups shown in Table 6.4 and Figure 6.1 (note

the isomorphisms sl(N ,H) ∼= su?(2N ) and su?(4) ∼= so(5, 1)). The magic pyramid

is plotted again in Figure 6.3 using various isomorphisms to emphasise its overall

symmetries.
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D = 6 layer: This follows the same pattern as the D = 5 layer, only with N+ and

N− treated separately due to chirality, giving

g ⊇ sl(N+,H)⊕ sl(N−,H), (6.77)

with equality for N = (N+,N−) = (2, 1), (1, 2), while if neither Yang-Mills is the

maximal (1, 1) theory then

g ∼= sl(N+,H)⊕ sl(N−,H)⊕R. (6.78)

Note that in D = 6 when tensoring two minimally-supersymmetric Yang-Mills mul-

tiplets, one may take the two multiplets to have either the same chirality or opposite

chirality:

[(1, 0)LSYM]× [(1, 0)RSYM] = [(2, 0)SUGRA + (2, 0)TENSOR],

[(1, 0)LSYM]× [(0, 1)RSYM] = [(1, 1)SUGRA],
(6.79)

leading to respective U-dualities given by (6.78):

sl(2,H)⊕R ∼= so(5, 1)⊕R,

sl(1,H)⊕ sl(1,H)⊕R ∼= sp(1)⊕ sp(1)⊕R.
(6.80)

The details of the above tensorings are given in section A.2. See also [94]. The

chiral theory [(2, 0)SUGRA + (2, 0)TENSOR] is anomalous since the unique anomaly-free

supergravity [95] with N = (2, 0) consists of one (2, 0)SUGRA multiplet coupled to 21

(2, 0)TENSOR multiplets as obtained by compactifying D = 10 Type IIB supergravity

on a K3. The non-chiral [(1, 1)SUGRA] theory was chosen for Table 6.5 and Fig-

ure 6.1. Note that the chiral (1, 2)SUGRA is also anomalous and adding the required

compensating matter extends the theory to (2, 2)SUGRA [96].

Although they are not considered directly here, it should be noted that the magic

D = 6, N = (1, 0) supergravities (which come coupled to 2, 3, 5, 9 tensor multiplets

and 2, 4, 8, 16 vector multiplets, respectively, as well as hyper multiplets) are closely

related to the magic square and constitute the parent theories of the magic D =

5, 4, 3 supergavities. See [33] and the references therein.
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AL\AR O

N = (1, 1) (IIA), f= 256
O G = O(1, 1)

H = 1

AL\AR O

N = (2, 0) (IIB), f= 256
O G = SL(2,R)

H = SO(2)

Table 6.6.: The peak of the magic pyramid: D = 10. The left-hand (right-hand) table is obtained
by tensoring SYM of opposing (matching) chiralities, which is equivalent to applying a
triality to the magic pyramid formula. Of course, there is no room for matter couplings
in these theories.

D = 10 layer: In this case5, the compact generators form the R-symmetry

h = so(N+)⊕ so(N−), (6.81)

while the non-compact generators belong to

g− h = R[N+
L ,N

+
R ] +R[N−L ,N

−
R ] +R. (6.82)

Of course, once again there is a choice of chiralities:

[(1, 0)LSYM]× [(1, 0)RSYM] = [(2, 0)SUGRA] i.e. Type IIB,

[(1, 0)LSYM]× [(0, 1)RSYM] = [(1, 1)SUGRA] i.e. Type IIA.
(6.83)

For Type IIB the compact part becomes h = so(2), while g − h = R + R, which

overall yields

g = so(2) +R+R ∼= sl(2,R), (6.84)

as required; the NS-NS scalar and R-R scalar belong to an SL(2,R)/ SO(2) coset

model. For Type IIA the compact subalgebra h is empty, while the non-compact

part g− h = g = R, corresponding to the single NS-NS scalar. By convention Type

IIA appears in Figure 6.1 and Figure 6.2, but one could equally well place Type IIB

at the summit of the pyramid.

6.6. Summary

The goal of this chapter was to obtain the field content and global symmetries of

each supergravity obtained from tensoring extended SYM multiplets in D = N + 2

5The D = 7, 8, 9 layers have been skipped since they introduce no new considerations. The field
content in these cases may be found in Table A.1 of the Appendix.
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Figure 6.3.: Pyramid of U-duality groups G, with the groups rewritten using various isomorphisms in
order to emphasise its overall patterns.
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spacetime dimensions, with 1 ≤ N ≤ 8. The division-algebraic formalism introduced

throughout this thesis is particularly well-suited to finding and describing these

global symmetries in a unified manner.

As demonstrated in Chapter 4, any pure Yang-Mills theory may be formulated

with a single Lagrangian and single set of transformation rules, but with space-

time fields valued in the division algebra An, where n is half the number of real

supercharges Q. This perspective reveals the role of the triality algebras; each SYM

theory has internal symmetry (or R-symmetry) given by the algebra symN(An),

which is defined in (6.7) directly in terms of tri(An).

Tensoring left/right SYM multiplets valued in the division algebras AL and AR

then naturally leads to NL+NR supergravity multiplets with spacetime fields valued

in AL⊗AR. For D = 1 + 2 this yields a set of supergravities with U-duality groups

given by the magic square of Freudenthal-Rosenfeld-Tits. For D = N + 2 > 3,

identifying a common spacetime Clifford algebra Cl0(N) truncates the magic square

to 3 × 3, 2 × 2, and 1 × 1 arrays of subalgebras, corresponding precisely to the

U-dualities obtained by tensoring SYM multiplets in each dimension. Together the

ascending squares constitute a magic pyramid of algebras defined by the magic

pyramid formula (6.24), or equivalently (6.47). The exceptional octonionic row and

column of each level is constrained by supersymmetry to give the unique supergravity

multiplet. On the other hand, the interior 3 × 3, 2 × 2 and 1 × 1 squares can and

do admit matter couplings. These additional matter multiplets are just as required

to give the U-dualities predicted by the pyramid formula. Interestingly, in these

cases the degrees of freedom are split evenly between the graviton multiplet and the

matter multiplets, the number of which is determined by the rule6 k = min(NL,NR).

The magic pyramid supergravity theories are rather non-generic. Not only are

they, in a sense, defined by the magic pyramid formula, they are of course generated

by tensoring the division-algebraic SYM multiplets. It would therefore be interesting

to explore whether they collectively possess other special properties, particularly as

quantum theories, which can be traced back to their magic square origins. For

example, in the maximal [NL = 4 SYM] × [NR = 4 SYM] case it has been shown

that N = 8 supergravity is four-loop finite [71], a result which cannot be attributed

to supersymmetry alone. While N = 8 is expected to have the best possible UV

behaviour, as suggested by its connection to N = 4 SYM, it could still be that the

remaining magic square supergravities share some structural features due to their

common ‘gauge × gauge’ origin and closely related global symmetries.

6Thanks to Andrew Thomson for pointing out this rule. Note the subtlety in D = 6 that one
must treat N+ and N− separately. Hence, for example, [(1, 0)]× [(0, 1)] has k = 0.
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One might also seek extensions of the magic pyramid construction which could

account for more generic supergravities. The magic supergravities of Gunaydin,

Sierre and Townsend [25, 26], for example, might be described by an extension of

the present construction incorporating matter multiplets.

There are also some brief remarks to be made on the geometrical interpretation of

the magic pyramid. As observed in [84] (for the exceptional cases) and described in

Chapter 4, the D = 3 Freudenthal magic square can be regarded as the isometries

of the Lorentzian projective planes (AL ⊗ AR)P̃2. In essence the pyramid algebra

describes the isometries of special submanifolds of these spaces. In D = N + 2 > 3,

the action of the Clifford algebra Cl0(N) ⊃ Spin(N)ST associated with the spacetime

little group Spin(N)ST breaks the group Spin(nL + nR) that acts (in the spinor

representation) on the tangent space (AL ⊗ AR)2 at each point on the projective

plane down to SA(NL+NR,D), whereD is the algebra over which Cl0(N) is naturally

defined. This singles out a particular submanifold of (AL ⊗AR)P̃2 for each N , and

the isometries of this submanifold yield the magic pyramid.

Finally, note that to call (AL⊗AR)P̃2 a projective plane is being rather heuristic;

the H⊗O and O⊗O cases do not obey the axioms of projective geometry. Unlike

R ⊗ O, the tensor products H ⊗ O and O ⊗ O are not division algebras, prevent-

ing a direct projective construction. Furthermore, unlike C ⊗ O, Hermitian 3 × 3

matrices over H ⊗ O or O ⊗ O do not form a simple Jordan algebra, so the usual

identification of points (lines) with trace 1 (2) projection operators cannot be made

[1]. Nonetheless, they are in fact geometric spaces, generalising projective spaces,

known as ‘buildings’, on which the U-dualities act as isometries. Buildings were

originally introduced by Jacques Tits to provide a geometric approach to simple Lie

groups, in particular the exceptional cases, but have since had far reaching implica-

tions. See, for example, [97, 98] and the references therein. Of course, it has long

been known that increasing supersymmetry restricts the spaces on which the scalar

fields may live, as comprehensively demonstrated for D = 3 in [84]. Evidently these

restrictions lead to the concept of buildings in supergravity. It may be of interest to

examine whether this relationship between buildings and supersymmetry has some

useful implications.
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7. An Octonionic Formulation of

D = 11 Supergravity

Throughout the preceding chapters, a recurring theme has been the connection

between the octonions and maximal supersymmetry. However, it is fair to say

that the full significance of the octonions in string theory remains puzzling. In

this chapter, in an attempt to approach this problem from a new perspective, the

Lagrangian and transformation rules of D = 11 supergravity are presented written

over the octonions.

The method relies on the fact that a D = 11 spinor with 32 components may be

packaged as a 4-component octonionic column vector [32, 99, 100]. Dimensionally

reducing to D = 4 and D = 3, where the U-duality groups are E7(7) and E8(8),

respectively, the coupling of the 7 or 8 dilatons to the other scalar fields in the theory

is parameterised by the sets of E7(7) or E8(8) root vectors [101, 102]. The octonionic

nature of the fields in the Lagrangian suggests a new perspective in which these root

vectors, or ‘dilaton vectors’, are unit-norm octavian integers [40] – the octonionic

analogues of the integers. This involves a novel use of the dual Fano plane, which is

obtained by interchanging points and lines on the Fano plane.

7.1. Spinors and Division Algebras in D = 4, 5, 7, 11

The description of the Lorentz group and its representations in terms of division

algebras An in Chapter 3 can be ‘boosted up’ by a dimension, from D = n + 2

to D = n + 3, where n = 1, 2, 4, 8. First consider constructing gamma matrices in

D = n+ 2 modeled on the Weyl basis (2.23) using the generalised Pauli matrices:

γµ =

(
0 σµ

σ̄µ 0

)
, µ = 0, · · · , (n+ 1). (7.1)

These matrices clearly satisfy the Clifford algebra

γµ(γνλ) + γν(γµλ) = 2ηµνλ ∀ λ ∈ A4, (7.2)
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while each of them anti-commutes with the matrix

γ∗ =

(
1 0

0 −1

)
. (7.3)

Thus the set of n+ 3 matrices {γM} := {γµ, γ∗} with M = 0, 1, . . . , (n+ 2) satisfies

the Clifford algebra for D = n+ 3:

γM(γNλ) + γN(γMλ) = 2ηMNλ ∀ λ ∈ A4. (7.4)

The particular case of interest for this chapter is D = 8 + 3 = 11. A Majorana

spinor in D = 11 has 32 components, usually represented as a real column vector.

Alternatively, viewing R32 as a tensor product R4 ⊗R8 ∼= R4 ⊗O ∼= O4, the spinor

becomes a 4-component octonionic column vector

λ =


λ1

λ2

λ3

λ4

 , λα ∈ O, α = 1, 2, 3, 4. (7.5)

Written out in their 4× 4 form, the octonionic basis {γM} defined above is

γ0 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , γa+1 =


0 0 0 e∗a

0 0 ea 0

0 e∗a 0 0

ea 0 0 0

 ,

γ9 =


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

 , γ10 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 ,

(7.6)

with a = 0, 1, · · · , 7. To see how these are related to a more familiar real 32 × 32

set one can simply take their ‘matrix elements’:

〈ea|(γµ)α
βeb〉 = (γµ)α

β〈ea|eb〉 = (γµ)α
βδab, µ = 0, 1, 9, 10,

〈ea|(γi+1)α
βeb〉 = (γ∗)α

β〈ea|eieb〉 = (γ∗)α
βΓiab i = 1, · · · , 7,

(7.7)

where γ(5) is defined by

γ(5) = −γ0γ1γ9γ10. (7.8)
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Thus, writing the gamma matrices over the octonions corresponds to an 11 = 4 + 7

split,

SO(1, 10) ⊃ SO(1, 3)× SO(7), (7.9)

with the seven imaginary octonions playing the role of the SO(7) gamma matrices

and the four real γµ, µ = 0, 1, 9, 10, playing the role of the (‘really real’ Majorana)

SO(1,3) gamma matrices. An obvious appeal of the octonionic parameterisation is

that this natural split associates the seven extra dimensions of M-theory with the

seven imaginary octonionic basis elements.

By equation (7.7), left-multiplying λ ∈ O4 by the octonionic matrix γM corre-

sponds to multiplying λ’s 32 real components by an ordinary real 32 × 32 gamma

matrix. By successive composition it is clear then that the action of the rank r

Clifford algebra element on λ can be written

γ[M1

(
γM2

(
. . . (γMr−1(γMr]λ)) . . .

))
. (7.10)

The positioning of the brackets fixes any ambiguities due to non-associativity. For

example, an infinitesimal Lorentz transformation of a spinor λ is

δλ =
1

4
ωMNγ

M(γNλ), (7.11)

where ωMN = −ωNM .

Define the operator γ̂M , whose action is left-multiplication by γM , so that the

rank r Clifford algebra element becomes the operator

γ̂M1M2...Mr ≡ γ̂[M1 γ̂M2 . . . γ̂Mr], (7.12)

where the operators γ̂M must be composed as

γ̂M γ̂Nλ = γM(γNλ) 6= (γMγN)λ. (7.13)

This ensures that the action of γ̂[M1M2...Mr] on a spinor is given by (7.10), as required.

To construct the supergravity Lagrangian and transformation rules in this lan-

guage will require real spinor bilinears. These are built using the charge conjugation

matrix Cαβ (which is numerically equal to γ0 but with a different index structure):

Cαβ =

(
0 1

−1 0

)
. (7.14)
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By definition this matrix satisfies

C(γM)†C = γM ⇔ (γM)†C = −CγM , (7.15)

where the dagger denotes transposition and octonionic conjugation. Let us define

λ̄ := λ†C. (7.16)

If λ1 and λ2 are octonionic spinors whose real components are anti-commuting Grass-

mann numbers, then the quantity

Re(iλ̄1λ2) =
1

2

(
iλ̄1λ2 + (iλ̄1λ2)†

)
=
i

2

(
λ̄1λ2 + λ̄2λ1

)
(7.17)

is Lorentz-invariant. Note that the dagger operation is defined here such that it also

complex-conjugates the factor of i. This accounts for the anti-commuting spinor

components. A general spinor bilinear may then be formed as follows:

Re(iλ̄1γ̂
M1M2...Mrλ2), (7.18)

which as usual will transform as an r-index antisymmetric tensor under Lorentz

transformations.

7.2. An Octonionic Formulation of the M-Theory

Algebra

The fact that a D = 11 spinor with 32 components may be packaged as a 4-

component octonionic column vector [32, 99] prompts the question of how to write

the algebra of D = 11 supergravity (or ‘M-algebra’) using octonionic supercharges

Q. This was explored in [99] where the problem was highlighted that the apparently

natural choice of octonionic matrices could not provide enough degrees of freedom

to account for all of M-theory’s brane charges1.

Another fundamental question that arises when writing the {Q,Q} algebra in this

way is whether or not the usual anti-commutator is really the appropriate object

to study, given that the supercharges are both fermionic and written over a non-

commutative and non-associative algebra O.

1Brane charges are the generalisation of the central charges introduced in Chapter 2 – extra
terms appearing on the right-hand side of the supersymmetry algebra. These terms contain
information about the brane solutions arising in the theory.
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In this chapter the above problems are tackled by introducing a novel outer prod-

uct, which takes a pair of elements belonging to a division algebra A and returns a

real linear operator on A, expressed using multiplication in A. This product enables

one to easily rewrite any expression involving n×n matrices and n-dimensional vec-

tors in terms of multiplication in the n-dimensional division algebra A. The problem

of the octonionic M-algebra is solved using this product, which allows one to obtain

the correct {Q,Q} bracket.

7.2.1. A New Outer Product

It is interesting to see what other linear operations on Rn look like when written

in terms of the division-algebraic multiplication rule. This was explored in [103],

but a different approach will be taken here. Consider the following general problem.

Given some linear operator on Rn expressed as an n× n matrix Mab, one should be

able to find a division-algebraic multiplication operator M̂ on the division algebra

A such that M̂ has the effect of multiplying the components of x = xaea ∈ A by

Mab:

M̂x ≡ eaMabxb. (7.19)

An explicit form for this operator can be found using the inner product (3.26). First

one simply rewrites

Mab = Mcd〈ea|ec〉〈eb|ed〉

=
1

2
Mcd

〈
ea|ec(e∗deb) + ec(e

∗
bed)

〉
.

(7.20)

Now it is clear that the operator

M̂ ≡ 1
2
Mcd

(
ec
(
e∗d ·
)

+ ec
(
(·)∗ed

))
(7.21)

(where a dot represents a slot for an octonion) has matrix elements

〈ea|M̂eb〉 = Mab. (7.22)

Thus the outer product for division algebra elements may be expressed in terms of

their multiplication rule, defining:

× : A ⊗ A→ End(A) (7.23)

ea ⊗ eb 7→ ea × eb ≡ 1
2

(
ea
(
e∗b ·
)

+ ea
(
(·)∗eb

))
.
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With the new product comes the power to rewrite any expression involving n × n
matrices and n-dimensional vectors in terms of multiplication in the n-dimensional

division algebra A.

It is useful to note various equivalent ways of writing the outer product above:

ea × eb = 1
2

(
ea
(
e∗b ·
)

+ ea
(
(·)∗eb

))
= 1

2

((
· e∗b
)
ea +

(
eb(·)∗

)
ea

)
= 1

2

(
ea
(
eb(·)∗

)
+ ea

(
· e∗b
))

= 1
2

((
(·)∗eb

)
ea +

(
e∗b ·
)
ea

)
.

(7.24)

Due to the alternativity of the division algebras the brackets on each of the terms

may be simultaneously shifted,

ea
(
e∗b ·
)

+ ea
(
(·)∗eb

)
=
(
eae
∗
b

)
(·) +

(
ea(·)∗

)
eb, (7.25)

and similarly for the other four possibilities above.

7.2.2. The Octonionic M-Algebra

The anti-commutator of two supercharges in the D = 11 supergravity theory is

conventionally written as the ‘M-algebra’ [104]

{Qᾱ, Qβ̄} =(γMC)ᾱβ̄PM + (γMNC)ᾱβ̄ZMN

+ (γMNPQRC)ᾱβ̄ZMNPQR,
(7.26)

where ᾱ, β̄ = 1, . . . , 32, PM is the generator of translations and ZMN and ZMNPQR

are the brane charges. The charge conjugation matrix Cᾱβ̄ serves to lower an index

on each of the gamma matrices.

The left-hand side is a symmetric 32 × 32 matrix with 528 components, while

the terms on the right-hand side consist of the rank 1, 2 and 5 Clifford algebra

elements, which form a basis for such symmetric matrices. In terms of SO(1, 10)

representations:

(32× 32)Sym = 11 + 55 + 462. (7.27)

The goal is to write this algebra in terms of 4× 4 octonionic matrices. However, the

space of octonionic 4× 4 matrices is of dimension 16× 8 = 128, and hence naively

does not carry nearly enough degrees of freedom to write (7.26).

The solution to this problem is to use the octonionic Clifford algebra operators
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γ̂[M1M2...Mr] defined in the previous section. These operators (including all ranks r)

span a space of dimension 32× 32 = 1024. In other words, their octonionic matrix

elements are

〈ea|γ̂Mα
βeb〉 = γMαa

βb, α, β = 1, 2, 3, 4, (7.28)

and treating αa as a composite spinor index ᾱ = 1, . . . , 32, the set of {γMᾱ
β̄}

generates the usual real Clifford algebra as in (7.26).

The octonionic matrix elements of the charge conjugation matrix are trivially

Cαaβb = 〈ea|Cαβeb〉 = Cαβδab, (7.29)

which can be identified with the 32× 32 matrix:

Cᾱβ̄ = Cαaβb = Cαβδab. (7.30)

Armed with these tools, the right-hand side can then be written over O simply

by replacing ᾱ→ α and putting hats on the gammas:

(γ̂MC)αβPM + (γ̂MNC)αβZMN

+ (γ̂MNPQRC)αβZMNPQR.
(7.31)

With the identification ᾱ = αa the left-hand side of (7.26) can also be written in

terms of the composite indices:

{Qᾱ, Qβ̄} = {Qαa, Qβb}. (7.32)

Now, the expression (7.31) is an octonionic operator with matrix elements as on the

right-hand side of (7.26), so on the left there must be an octonionic operator

̂{Qα, Qβ} (7.33)

with matrix elements given by (7.32). The required operator is obtained simply by

contracting (7.32) with the outer product ea × eb defined in (7.23):

̂{Qα, Qβ} ≡ {Qαa, Qβb}ea × eb. (7.34)

The octonionic formulation of the M-algebra is then

̂{Qα, Qβ} =(γ̂MC)αβPM + (γ̂MNC)αβZMN

+ (γ̂MNPQRC)αβZMNPQR.
(7.35)
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Using the first two versions of the outer product given in (7.24), the left-hand side

can be written as

̂{Qα, Qβ} =
1

2

((
QαQ

∗
β

)
(·) + (·)

(
Q∗βQα

)
+
(
Qα(·)∗

)
Qβ +Qβ

(
(·)∗Qα

))
.

(7.36)

The first two terms look similar to the more intuitive anti-commutator {Qα, Q
∗
β},

explored in [99], but to reproduce the full M-algebra requires all four terms above.

7.3. The Octonionic D = 11 Supergravity

Lagrangian

With the tools described above it is not difficult to rewrite the Lagrangian and

transformation rules of D = 11 supergravity over the octonions. Starting from the

conventional Lagrangian, all one must do is exchange any 32-component real spinors

with their 4-component octonionic counterparts, and exchange any bilinears with

those described above. This gives the following Lagrangian:

L =
√
−g
[
R− Re

(
iΨ̄M γ̂

MNPDN

(
1
2
(ω + ω̃)

)
ΨP

)
− 1

24
FMNPQF

MNPQ (7.37)

−
√

2
192

Re
(
iΨ̄R

(
γ̂MNPQRS + 12γ̂MNgPRgQS

)
ΨS

) (
FMNPQ + F̃MNPQ

)
− 2

√
2

1442 ε
M0M1···M10FM0M1M2M3FM4M5M6M7AM8M9M10

]
,

where

ωM
AB = ωM

AB(e) +KM
AB,

KM
AB = −1

4
Re
(
i(Ψ̄M γ̂

BΨA − Ψ̄Aγ̂MΨB + Ψ̄Bγ̂AΨM)
)
,

(7.38)

while

ω̃M
AB = ωM

AB(e)− 1
4
Re
(
i(Ψ̄M γ̂

BΨA − Ψ̄Aγ̂MΨB + Ψ̄Bγ̂AΨM)
)
,

F̃MNPQ = 4∂[MANPQ] + 3
√

2
2

Re
(
iΨ̄[M γ̂NPΨQ]

)
,

(7.39)

and the covariant derivative DM(ω) is defined by

DM(ω)ε = ∂Mε+ 1
4
ωM

ABγ̂ABε. (7.40)
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The Lagrangian (7.37) is invariant under the following supersymmetry transforma-

tions:

δeAM = 1
2
Re
(
iε̄γ̂AΨM

)
,

δCMNP = −3
√

2
4

Re
(
iε̄γ̂[MNΨP ]

)
,

δΨM = DM(ω̃)ε+
√

2
288

(γ̂ABCDM − 8δAM γ̂
BCD)F̃ABCDε,

(7.41)

although this will not be proven here.

7.4. Interlude: The Kirmse and Octavian Integers

The results in the remainder of this chapter will require a brief discussion of octo-

nionic number theory. By analogy with the usual set of integers Z ⊂ R, an octo-

nionic integer system I should be an 8-dimensional lattice embedded in O, which is

(preferably) closed under multiplication using the rule inherited from O. The most

obvious example is of course to take octonions whose components are all integers:

I = {x = xaea ∈ O | xa ∈ Z}. (7.42)

However, as shown in [105], for a richer number theory one may ask that an analogue

of the unique prime factorisation theorem to hold in I. For the ordinary set of

integers Z this theorem says that each integer is a product of positive or negative

primes in a way that is unique up to order and sign change. For an analogue of

this theorem to hold in I, it must be ‘well-packed’ [105]; that is, the following two

conditions must hold:

1. no element of O has distance ≥ 1 from the nearest lattice point of I,

2. the distance between any lattice point and any other lattice point is ≥ 1,

where the distances are evaluated using the norm in O – see equation (3.24).

One set of octonions that satisfies these two conditions is the so-called Kirmse

integers K. These can be described as follows. An octonion x can always be written

as

x = (x0 + xiei + xjej + xkek) + (xi′ei′ + xj′ej′ + xk′ek′ + xl′el′) (7.43)

(no summation),

where ijk ∈ L is a line of the Fano plane and hence i′j′k′l′ ∈ Q is the comple-

mentary quadrangle. An octonion x, written in this way, is a Kirmse integer if
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{all of x0, xi, xj, xk are integers or all of x0, xi, xj, xk are half-integers} and {all of

xi′ , xj′ , xk′ , xl′ are integers or all of xi′ , xj′ , xk′ , xl′ are half-integers}. As well as being

well-packed, the Kirmse integers form the densest possible lattice in 8 dimensions.

If a ball with radius 1
2

is inserted around each lattice point in R8, then every ball

touches 240 others. In fact, this is none other than the root lattice of the largest

exceptional group E8.

Of particular importance to this paper are the 240 unit Kirmse integers – elements

of K with unit norm – given by:

± 1, ±ei,
1
2
(±1± ei ± ej ± ek) with ijk ∈ L,

1
2
(±ei ± ej ± ek ± el) with ijkl ∈ Q.

(7.44)

The set of Kirmse integers orthogonal to any particular basis element ea forms a

copy of the root lattice of E7. In particular, the set orthogonal to e0 = 1 is just the

pure-imaginary Kirmse integers, whose 126 unit elements are

± ei and 1
2
(±ei ± ej ± ek ± el) with ijkl ∈ Q. (7.45)

This discussion of the Kirmse integers has so far overlooked the vital question of

whether or not they are closed under multiplication. Kirmse himself once stated

that they were. However, it is easy to find a counter-example:

1
2
(1 + e1 + e2 + e4)1

2
(1 + e2 + e3 + e5) = 1

2
(e2 + e4 + e5 + e7) /∈ K. (7.46)

Hence K is not closed under octonionic multiplication, a result sometimes referred

to as Kirmse’s mistake [105]. The mistake can be rectified by the following unusual

trick. For every Kirmse integer x = xaea ∈ K exchange the coefficient x0 with any

one of the seven xi. The resulting lattice K′ is just a reflection of the Kirmse lattice,

and so is well-packed. However, in this case it is closed under multiplication. In

the literature, K′ has been referred to as the set of octavian integers or the integral

Cayley numbers. They will be used in maximal supergravity theories in the following

section.
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7.5. Integral Octonions in D = 3, 4 Maximal

Supergravity

7.5.1. D = 4, N = 8 Supergravity

Next, consider dimensional reduction to D = 4, yielding N = 8 supergravity. Drop-

ping the dependence of the fields on the seven coordinates associated with the seven

imaginary basis octonions (as in equation (7.6)) produces the following bosonic con-

tent:

gMN → gµν , ~φ, Aiµ, Aij (with i < j),

AMNP → Aµνρ, Aµνi, Aµij, Aijk,
(7.47)

where i, j, k run over the seven internal dimensions, while µ, ν, ρ run over the ex-

tended four, and ~φ denotes the seven dilatons written as a seven-component vector.

Note that the scalar fields descended from gMN have not been written here so as to

be covariant with respect to the SO(7) (or GL(7,R)) symmetry associated with the

internal dimensions; instead the dilatonic and axionic scalars have been separated

as ~φ and Aij (‘axionic’ in this context means those that are descended from the

off-diagonal components of the metric).

Denoting (p+1)-form field strengths of p-form potentials with superscripts (p+1),

the Lagrangian for the bosonic sector is then:

LB =
√
−g
[
R− 1

2
(∂~φ)2 − 1

2

∑
i

e2~bi·~φ(F (2)
i )2 − 1

2

∑
i<j

e2~bij ·~φ(F (1)
ij )2 − 1

2
e2~a·~φ(F (4))2

− 1
2

∑
i

e2~ai·~φ(F
(3)
i )2 − 1

2

∑
i<j

e2~aij ·~φ(F
(2)
ij )2 − 1

2

∑
i<j<k

e2~aijk·~φ(F
(1)
ijk )2 + LFFA

]
,

(7.48)

where the precise definitions of the field strengths and their ‘transgression terms’

are given in [106, 102] and LFFA denotes the terms descended from the topological

term in the eleven dimensional Lagrangian. Note that in the bosonic sector all the

fields are real, since the octonions have so far only been used in the description of

the fermions. The constant ‘dilaton vectors’ ~a, ~ai, ~aij, ~aijk, ~bi and ~bij parameterise

the non-canonical coupling of the seven dilatons ~φ to the other bosonic fields. For
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the various potentials, they are given by:

3-potential: ~a = −~g,

2-potentials: ~ai = ~fi − ~g,

1-potentials: ~aij = ~fi + ~fj − ~g, ~bi = −~fi,

0-potentials: ~aijk = ~fi + ~fj + ~fk − ~g, ~bij = −~fi + ~fj, (7.49)

where the vectors ~g and ~fi are given below. Here they are listed for D extended

dimensions (temporarily letting i, j = 1, 2 · · · , (11−D) for the next few equations)

so that the expressions may be used later on for D = 3:

~fi = 1
2
(0, . . . , 0︸ ︷︷ ︸

i−1

, (10− i)si, si+1, . . . s11−D)

~g = 3
2
(s1, s2, . . . , s11−D) = 1

3

∑
i

~fi (7.50)

si =
√

2/((10− i)(9− i)),

with scalar products

~g · ~g =
11−D

2(D − 2)
, ~g · ~fi =

3

2(D − 2)
, ~fi · ~fj =

δij
2

+
1

2(D − 2)
. (7.51)

Returning to D = 4, ~g and the seven ~fi are then used to build up all of the dilaton

vectors. In particular, ~aijk, ~bij and −~ai, the vectors parameterising the coupling of

the dilatons to the 63 axions, are the positive roots of the U-duality group E7(7)

(where we dualise the seven 2-forms Aµνi to scalars, whose dilaton vectors are −~ai).
The dilaton vectors ~aij and ~bi make up the positive weights of the 56 of E7(7), under

which the 2-form field strengths and their duals transform.

Since there is a dilaton for each internal dimension, and the seven internal dimen-

sions are associated with the seven imaginary octonions via (7.6), it makes sense to

consider the seven dilatons ~φ themselves to be components of an imaginary octonion

φiei. In this case, the dilaton vectors should also be viewed as a particular set of

imaginary octonions in order to make sense of the scalar products that appear in the

exponential couplings in (7.37). This perspective has some interesting consequences.

Consider the replacement ~fi → fi ∈ Im(O), where

f1 = 1
2
(e1 + e2 + e4), f2 = 1

2
(e2 + e3 + e5), · · · , f7 = 1

2
(e7 + e1 + e3), (7.52)

i.e. fi = 1
2
(ei + ej + ek), with ijk ∈ L. This amounts only to a change of basis in
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the space of dilaton vectors. The reason for this particular choice will become clear

shortly. Summing all the fi gives

g = 1
3

∑
i

fi = 1
2
(e1 + e2 + e3 + e4 + e5 + e6 + e7), (7.53)

and using the inner product defined in (3.26), one can check that

〈g|g〉 =
7

4
, 〈g|fi〉 =

3

4
, 〈fi|fj〉 =

δij
2

+
1

4
, (7.54)

as required when D = 4.

Now, using (7.49) the various dilaton vectors can be computed in this octonionic

parameterisation. However, before doing so, it will be useful to introduce the concept

of the dual Fano plane. In general, a projective plane P exhibits a duality between

its points and lines, whose roles may be interchanged to obtain a new space P̃ ∼= P.

For every statement relating points and lines on P there is a dual statement relating

lines and points on P̃. For example, just as two points on a projective plane lie on

a unique line, two lines on the plane meet at a unique point. Since the (unoriented)

Fano plane is the projective plane over the field Z2, one may interchange the roles

of its points and lines to obtain a dual plane – see Fig. 7.1.

Figure 7.1.: The dual Fano plane F̃ obtained by interchanging the roles of points and lines on the
original Fano plane. Relabelling the triples 124, 235, 346, 457, 561, 672, 713 → 1, 2,
3, 4, 5, 6, 7 gives the plane on the right. Unlike in Fig. 3.1 there are no orientations
given for the lines of the dual Fano plane since it is not used for multiplication.

In practice it makes sense to relabel the lines 124, 235, 346, 457, 561, 672, 713

simply as 1, 2, 3, 4, 5, 6, 7, respectively, which leads to the plane on the right in Fig.

7.1, whose lines are given by the set L̃ = {157, 261, 372, 413, 524, 635, 746}. This

relabelling is deliberately chosen so as to match up with (7.52).

Now it is a simple exercise to compute the E7(7) root dilaton vectors, starting with

those whose expressions are simplest. Since a line in L̃ corresponds to a point in the
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original Fano plane F, one should expect aijk with ijk ∈ L̃ to correspond in some

way to a point in F. This is indeed the case, since

a157 = e1, a261 = e2, a372 = e3, a413 = e4,

a524 = e5, a635 = e6, a746 = e7. (7.55)

Next consider the octonions −ai, whose labels correspond to points on the dual Fano

plane F̃ and hence to lines on F. Indeed, one finds that

−a1 = 1
2
(e3+e5+e6+e7), −a2 = 1

2
(e4+e6+e7+e1), −a3 = 1

2
(e5+e7+e1+e2),

−a4 = 1
2
(e6+e1+e2+e3), −a5 = 1

2
(e7+e2+e3+e4), −a6 = 1

2
(e1+e3+e4+e5),

−a7 = 1
2
(e2+e4+e5+e6), (7.56)

which matches up with the seven quadrangles complimentary to the seven corre-

sponding lines of F. Computing the rest of the vectors, aijk (ijk /∈ L̃) and bij (see

Appendix), the whole set populates the unit imaginary Kirmse integers:

± ei and 1
2
(±ei ± ej ± ek ± el) with ijkl ∈ Q. (7.57)

Note that the vectors aij and bi corresponding to the 1-form gauge potentials all

have the form
1
2
(±ei ± ej ± ek) with ijk ∈ L, (7.58)

which are the weights of the 56 representation, under which the corresponding 2-

form field strengths are rotated into their electromagnetic duals.

Putting all of this together means that (after dualisation) the bosonic N = 8

Lagrangian may be written as

L =
√
−g
(
R− 1

2
〈∂φ|∂φ〉 − 1

2

∑
points

e〈points|φ〉(F
(1)
points)

2

− 1
2

∑
quads

e〈quads|φ〉(F
(1)
quads)

2 − 1
4

∑
lines

e〈lines|φ〉(F
(2)
lines)

2
)
,

(7.59)

where the sums run over all the vectors listed in Table A.4 in the Appendix, which

correspond to the points, lines and quadrangles of the Fano plane with every possible

± sign combination. As alluded to above, this new parameterisation makes manifest

the relationship between the bosonic fields and the structure of the Fano plane.

Before moving on to D = 3, there is a useful Fano-plane-based trick for restricting

the roots of E7(7) to those of its maximal compact subgroup SU(8). The adjoint of
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E7(7) decomposes into SU(8) as:

133→ 63 + 70, (7.60)

so one expects the 126 roots of E7(7) to split into two sets: a set consisting of the

56 roots of SU(8) and the remaining 70 vectors corresponding to the weights of the

70 representation. The trick is first to choose a line of the Fano plane – say 124.

As shown in [107], one may then discard the unit Kirmse integers ±e1, ±e2 and

±e4, as well as those associated with the corresponding quadrangle – in this case
1
2
(±e3±e5±e6±e7). Take the remaining quadrangles and wherever e1, e2 and e4

appear fix their relative signs according to the following rule: choosing another point

– say e7 – the signs are the same if e7 appears in the quadrangle and different if it

does not. This is shown explicitly in Table 7.1.

E7 roots SU(8) roots

±e1,±e2,±e3,±e4,±e5,±e6,±e7 ±e3,±e5,±e6,±e7
1
2 (±e3 ± e5 ± e6 ± e7)
1
2 (±e4 ± e6 ± e7 ± e1) ± 1

2 (+e4 ± e6 ± e7 + e1)
1
2 (±e5 ± e7 ± e1 ± e2) ± 1

2 (±e5 ± e7 + e1 + e2)
1
2 (±e6 ± e1 ± e2 ± e3) ± 1

2 (±e6 + e1 − e2 ± e3)
1
2 (±e7 ± e2 ± e3 ± e4) ± 1

2 (±e7 + e2 ± e3 + e4)
1
2 (±e1 ± e3 ± e4 ± e5) ± 1

2 (+e1 ± e3 − e4 ± e5)
1
2 (±e2 ± e4 ± e5 ± e6) ± 1

2 (+e2 − e4 ± e5 ± e6)

Table 7.1.: E7 ⊃ SU(8) roots in terms of the octavian integers.

7.5.2. D = 3 , N = 16 Supergravity

Dimensionally reducing to D = 3 means there are eight internal dimensions, which

are labelled a = 0, 1, . . . , 7. As a result, there are eight dilatons ~φ, which are now

written as an octonion φaea. Accordingly, the eight vectors ~fa, each of which has

eight entries, become eight octonions: ~fa → fa ∈ O, with the following chosen

parameterisation

f0 = 1, fi = 1
2
(1 + ei + ej + ek), ijk ∈ L, (7.61)

where i = 1, · · · , 7 as usual. The total sum is then

g = 1
2
(3 + e1 + e2 + e3 + e4 + e5 + e6 + e7), (7.62)
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so that the inner products are

〈g|g〉 = 4, 〈g|fa〉 =
3

2
, 〈fa|fb〉 =

δab
2

+
1

2
, (7.63)

consistent with (7.51) for D = 3.

In D = 3 the 2-form potentials carry no degrees of freedom and the 1-form poten-

tials may be dualised to scalars. Since the metric contains no dynamical degrees of

freedom, all the bosonic degrees of freedom of the theory are carried by the resulting

128 scalars, whose dilaton vectors are −~aab, ~aabc, −~ba and ~bab. These make up the

positive roots of the U-duality group of the theory, E8(8).

Again, due to the labelling system chosen in (7.61), one should expect the aabc

with abc ∈ L̃ to correspond in some way to the points of the Fano plane F. This is

indeed the case:

a157 = e1, a261 = e2, a372 = e3, a413 = e4,

a524 = e5, a635 = e6, a746 = e7. (7.64)

Similarly, the ba correspond to points on F̃ and hence to lines on F: ba = −fa. The

a0i also reflect this simple correspondence:

−a01 = 1
2
(e3+e5+e6+e7), −a02 = 1

2
(e4+e6+e7+e1), −a03 = 1

2
(e5+e7+e1+e2),

−a04 = 1
2
(e6+e1+e2+e3), −a05 = 1

2
(e7+e2+e3+e4), −a06 = 1

2
(e1+e3+e4+e5),

−a07 = 1
2
(e2+e4+e5+e6), (7.65)

as well as the b0i:

b01 = 1
2
(−1+e1+e2+e4), b02 = 1

2
(−1+e2+e3+e5), b03 = 1

2
(−1+e3+e4+e6),

b04 = 1
2
(−1+e4+e5+e7), b05 = 1

2
(−1+e5+e6+e1), b06 = 1

2
(−1+e6+e7+e2),

b07 = 1
2
(−1+e7+e1+e3). (7.66)

Computing all positive and negative roots (see Appendix) recovers the whole set of

240 unit Kirmse integers, the roots of E8(8):

± 1, ± ei,
1
2
(±1± ei ± ej ± ek) with ijk ∈ L,

1
2
(±ei ± ej ± ek ± el) with ijkl ∈ Q.

(7.67)

Just as in D = 4 above, in D = 3 one can also write the dualised N = 16 bosonic
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Lagrangian as

L =
√
−g
(
R− 1

2
〈∂φ|∂φ〉 − 1

2

∑
points

e〈points|φ〉(F
(1)
points)

2

− 1
2

∑
quads

e〈quads|φ〉(F
(1)
quads)

2 − 1
2

∑
lines

e〈lines|φ〉(F
(1)
lines)

2
)
,

(7.68)

where in this case the sums run over the vectors listed in Table A.5.

The parameterisation of the vectors ~fa in equation (7.61) was chosen because this

leads to dilaton vectors that are easily recognisable as Kirmse integers (since the

Kirmse integers take their structure from the lines and quadrangles of the Fano

plane). However, it would be just as easy to parameterise so as to arrive at the

octavian integers, which are closed under multiplication. In other words, in the

manner above, the dilaton vectors of D = 3, N = 16 supergravity curiously may be

equipped with a multiplication rule, under which they form a closed algebra.

7.6. Summary

The contents of this chapter demonstrate that eleven-dimensional supergravity may

be formulated over the octonions. The octonions are simply used in an alternative

formulation of the usual Clifford algebra for the fermionic sector. However, the

octonionic parameterisation leads to a new perspective in the bosonic sector upon

dimensional reduction to the maximal supergravity theories in D = 4 and D = 3.

In the D = 4 case one may write the seven coordinates of the internal dimensions

as an imaginary octonion, leading to an interpretation of the seven dilatons as an

imaginary octonion. Upon reduction to D = 3, the 240 dilaton vectors may be

considered as the 240 unit octavian integers, and thus they form an algebra that is

closed under multiplication. This is an interesting result in its own right, although

what it can be used for – or indeed whether it is useful at all – is so far a mystery.

To speculate, the algebra might have some utility in working with D = 3 black hole

solutions, in which dilaton vectors sometimes appear explicitly. However, for now

this is something of an ‘answer without a question’.
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8. Concluding Remarks

This thesis has explored and clarified in several contexts the close connection between

division algebras and supersymmetry, as well as exploiting this relationship to clas-

sify and understand the symmetries of various supersymmetric theories. Chapter

4 began with the formulation of D = 3, 4, 6, 10 minimally supersymmetric Yang-

Mills theories over R,C,H,O, which was generalised via dimensional reduction to

a unified division-algebraic formalism describing all Yang-Mills theories with ex-

tended supersymmetry. Here the role of triality algebras in such theories was made

manifest.

In particular, in D = 3 this formalism gave N = 1, 2, 4, 8 super Yang-Mills over

R,C,H,O, and in Chapter 5 this was combined with the notion of ‘gravity as the

square of gauge theory’ to discover a magic square of supergravities. Specifically,

tensoring a Yang-Mills multiplet valued over the division algebra AL with another

valued over AR results in a supergravity whose U-duality is given by the magic

square algebra of Freudenthal-Rosenfeld-Tits: L1,2(AL,AR). This result presents a

novel insight into the symmetries of D = 3 supergravity, and hence also into higher-

dimensional theories related to those of D = 3 by means of dimensional reduction.

In Chapter 6 the work of Chapters 4 and 5 was combined; tensoring division-

algebraic Yang-Mills multiplets with extended supersymmetry in all spacetime di-

mensions in the range 3 ≤ D ≤ 10 gives a pyramid of supergravity theories with

the magic square at the base in D = 3 and Type II at the apex in D = 10.

The U-dualities of these supergravities are described by the magic pyramid algebra

PN
1,2(AL,AR), a natural subalgebra of L1,2(AL,AR) defined in terms of the Clifford

algebra Cl0(N) that acts on spinors of the spacetime little group Spin(N), where

N = D − 2. This provides a succinct summary of the U-dualities of all supergrav-

ities whose field content may be factorised into the tensor product of two super

Yang-Mills multiplets.

Finally, Chapter 7 laid the foundations for an octonionic formulation of eleven-

dimensional supergravity, intended to shed some light on the ‘hidden’ exceptional

symmetries E6(6), E7(7) and E8(8) that appear after dimensional reduction down to

D = 5, 4, 3. This leads to a surprising role for the octavian integers, as well as to
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lower-dimensional Lagrangians written explicitly in terms of the Fano plane, further

exposing the octonionic anatomy of maximal supergravity.

Throughout the above chapters the octonions resurface time after time in associa-

tion with maximal supersymmetry, and thus also in the context of string theory and

M-theory. Although the full significance of the octonions in these theories remains

something of an enigma, it seems that their near-overarching function in such con-

texts is to make Spin(8) triality manifest. Mathematically speaking, the existence

of this triality implies the existence of the octonions, and vice versa [1]; one cannot

be found without the other. Since Spin(8) triality is an essential ingredient in the

very construction of the superstring [39, 16], the octonions are unavoidably built-into

string theory from the outset1. Hence we find an exceptional division algebra under-

pinning an exceptional theory of physics, whose symmetries are frequently described

by exceptional groups. The essence common to these three exceptional structures is

their special feature of allowing the rotation of vector/tensor-like degrees of freedom

into spinor degrees of freedom – they all leave room for ‘Boson-Fermion confusion’

[108, 109].

How far this interconnection between octonions and strings can be pushed in order

to more deeply understand the latter is still not clear, but I hope that at the very

least that this thesis provides some useful tools to this end.

1Incidentally, this would make a good retort to anybody suggesting that the octonions are to be
regarded as something of an obscurity or as a red herring – or are ‘not to be let out of the
attic’. At worst, the octonions simply offer an alternative way of treating Spin(8) such that
triality is always manifest.
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A. Appendix

A.1. Division-Algebraic Spinor Decomposition

A.1.1. From D = 10 to D = 7, 6, 5: O ∼= H2 ∼= H⊕H

In dimensions D = N + 2 = 7, 6, 5, the Clifford algebra Cl(N − 1) ∼= Cl0(N) is

isomorphic to a matrix algebra over the quaternions H, so it will be useful to write

an octonion as a pair of quaternions. To see how this works, consider a general

octonion x = xaea ∈ O, a = 0, 1, . . . , 7, and choose a line of the Fano plane, say 124.

Then H ∼= span{e0, e1, e2, e4}, so write

x = x0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7

= (x0 + x1e1 + x2e2 + x4e4) + e3(x3 − x7e1 − x5e2 + x6e4),
(A.1)

where e3 has been selected to factorise the terms corresponding to the quadrangle

3567 complementary to the line 124. The octonion x now has the form of a pair of

quaternions, with e3 singled out as the imaginary unit separating the two of them:

O ∼= H ⊕ e3H (of course any of the quadrangle’s basis elements could have been

chosen in place of e3, and any line of the Fano plane to begin with).

To write (A.1) compactly, define the indices

â = 0, 1, 2, 4 and ı̂ = 1, 2, 4,

ǎ = 3, 5, 6, 7 and ı̌ = 5, 6, 7,
(A.2)

so that ‘Fano line indices’ with hats correspond to spacetime directions and ‘Fano

quadrangle indices’ with inverted hats correspond to internal directions. Then (A.1)

becomes

x = xâeâ + xǎeǎ = (xâ + e3Γ3
âǎxǎ)eâ, (A.3)

where Γ3
ǎâ refers to the 3ǎâ-components of the structure constants Γabc.

In terms of theH subalgebra spanned by eâ and its complementH{ ∼= e3H spanned

by eǎ, the multiplication rule can be summarised as follows.

• The H subalgebra is closed: eâeb̂ = Γâ
b̂ĉ
eĉ;

178



• Multiplying two elements of H{ returns an element of H: eǎeb̌ = Γǎ
b̌ĉ
eĉ;

• Multiplying an element of H and an element of H{ returns an element of H{:

eâeb̌ = Γâ
b̌č
eč and eǎeb̂ = Γǎ

b̂č
eč.

An element of H{ may be mapped to a unique element of H and vice versa by

factorising out e3:

e3eâ = Γ3
âb̌
eb̌ ⇔ eâ = −e3Γ3

âb̌
eb̌,

e3eǎ = Γ3
ǎb̂
eb̂ ⇔ eǎ = −e3Γ3

ǎb̂
eb̂,

(A.4)

where the second two relations come from multiplying the first two by e3 on the left

and invoking alternativity.

Using this, the octonionic D = 10 spinor can be rewritten as a pair of quaternions,

ψ′ = ψ + e3χ = ψâeâ + e3(χâeâ), (A.5)

where ψâ = ψ′â and χâ = Γ3
âǎψ

′
ǎ, while the vector becomes

a′ = a+ φ = a
¯
ae

¯
a + φı̄eı̄, (A.6)

where the indices
¯
a and ı̄ are defined in (6.2). The dimensional reduction is carried

out by dropping the dependence of the fields on the coordinates associated with the

ı̄ indices.

Looking at the action of the Clifford algebra on ψ′ in each dimension:

• In D = 7 the Clifford algebra Cl(4) ∼= Cl0(5) may be generated by left-

multiplication by the set of imaginary basis elements {e
¯
i} = {e1, e2, e3, e4} =

{eı̂, e3}. Multiplying by eı̂ gives

eı̂(ψ + e3χ) = (eı̂ψ) + e3(−eı̂χ) ⇔

(
eı̂ 0

0 −eı̂

)(
ψ

χ

)
, (A.7)

while multiplying by e3 gives

e3(ψ + e3χ) = −χ+ e3ψ ⇔

(
0 −1

1 0

)(
ψ

χ

)
, (A.8)

which exactly matches the generators of Cl(4) ∼= H[2] given in Table 4.1, with

(ψ+ e3χ) ∈ O reinterpreted as (ψ, χ) ∈ H2 ∼= S5. This means there is just one

resulting spinor in D = 7, so N = 1.
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• In D = 6 the set {e
¯
i} = {eı̂} generates Cl(3) ∼= H⊕H, which does not mix ψ

and χ, as (A.7) clearly demonstrates. Hence (ψ, χ) ∈ H⊕H ∼= S+
4 ⊕ S−4 and

this theory has (N+,N−) = (1, 1).

• Finally for D = 5 this set becomes {e
¯
i} = {e1, e2}, which acts as a quaternionic

structure generating Cl(2) = H. This time (ψ+e3χ) ∈ O is interpreted as two

spinors of the same type (ψ, χ) ∈ H2 ∼= (S3)2, so the theory has N = 2.

In each case the higher-dimensional so(8)ST symmetry is broken into the lower-

dimensional so(N)ST ⊕ so(8 − N). Decomposing the so(8)ST parameters θab into

θ¯
a
¯
b, θ¯

aı̄, θı̄̄ and then setting θ¯
aı̄ = 0 gives

δψ′ = 1
4
θabe∗a(ebψ

′)

= 1
4
θ¯
a
¯
be∗

¯
a(e

¯
bψ) + 1

4
θ¯
a
¯
be∗

¯
a(e

¯
b(e3χ)) + 1

4
θı̄̄e∗ı̄ (ēψ) + 1

4
θı̄̄e∗ı̄ (ē(e3χ)),

(A.9)

The θ¯
a
¯
b part is just the infinitesimal action of the spacetime little group Spin(N) ⊂

Cl0(N), just as in equation (4.104), while the θı̄̄ part is that of the R-symmetry

group Spin(8 − N) ∼= SA(N ,D), with Lie algebra sa(N ,D) = intN(O). For ex-

ample, in D = 6 the R-symmetry Spin(4) acts as 1
4
θı̄̄e∗ı̄ (ē(ψ + e3χ)) with {eı̄} =

{e3, e5, e6, e7} = {eǎ}; this leads to

1
4
θı̄̄e∗ı̄ (ē(ψ + e3χ)) = 1

4
θǎb̌e∗ǎ(eb̌(ψ + e3χ)) = (ψθ−I ) + e3(χθ+

I ), (A.10)

where θ−I , θ
+
I ∈ Im(H) are defined by

θ−I := 1
4
θǎb̌(e∗ǎeb̌) = 1

2
(−θ3ı̌C3ı̌k̂ −

1
2
θı̌̌Cı̌̌k̂)ek̂, (A.11)

θ+
I

:= 1
4
θǎb̌(e∗ǎeb̌) + θ3ı̌(e3eǐ) = 1

2
(+θ3ı̌C3ı̌k̂ −

1
2
θı̌̌Cı̌̌k̂)ek̂.

This corresponds to the decomposition 8s → (2,1; 2,1) + (1,2; 1,2) under the sub-

algebra so(4)ST ⊕ so(4) ⊂ so(8)ST. By a similar calculation for D = 7 the de-

composition is 8s → (4; 2) under so(5)ST ⊕ so(3) ⊂ so(8)ST, while in D = 5 the

decomposition is group-theoretically equivalent, but with the roles of spacetime and

internal symmetry reversed: 8s → (2; 4) under so(3)ST ⊕ so(5) ⊂ so(8)ST.

In dimensions D = 5, 6, the minimal (on-shell) spinor is a single quaternion. Thus

to truncate to the theories with fewer supersymmetries one must simply truncate

O→ H, which practically speaking means discarding all â components.
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A.1.2. From D = 10 to D = 8, 4: O ∼= C4

Next, consider dropping dependence on six of the ten dimensions, yielding the max-

imal N = 4 theory in D = 4 with the on-shell degrees of freedom formulated again

over the octonions. Now the spacetime little group is SO(2)ST
∼= U(1)ST and the

internal symmetry is Spin(6) ∼= SU(4) with Lie algebra int2(O). The on-shell field

representations decompose as

Spin(8)
ST
⊃ U(1)ST × SU(4)

8v → 60 + 11 + 1−1

8s → 41/2 + 4̄−1/2,

(A.12)

so the D = 10 vector becomes a D = 4 vector 11 + 1−1 and six scalars 60, while the

spinor becomes four fermions 41/2 + 4̄−1/2 transforming as the (anti-)fundamental

of SU(4).

In division-algebraic language the vector 11 + 1−1 corresponds to a complex sub-

space C ⊂ O, which is simply C ∼= span{e0, e1}, while the scalars 60 correspond

to the six-dimensional complement S2
8
∼= R6 = span{e2, e3, e4, e5, e6, e7} of C in O.

This time the barred and underlined indices of (6.2) are

¯
a = 0, 1,

ı̄ = 2, 3, 4, 5, 6, 7.
(A.13)

The octonionic fields a′ and ψ′ can then be rewritten as

a′ = a+ φ = a
¯
ae

¯
a + φı̄eı̄,

ψ′ = (ψ′â + e1ψ
′
ǎΓ

1
âǎ)eâ := ψâeâ,

(A.14)

so there are four complex spinors ψâ, written in O by contracting with eâ, where

here the line and quadrangle indices run over

â = 0, 2, 3, 5 and ı̂ = 2, 3, 5,

ǎ = 1, 4, 6, 7 and ı̌ = 4, 6, 7.
(A.15)

Multiplying the spinor ψ′ = ψâeâ by eı̄ has the following effect:

eı̄ (ψâeâ) = ψ∗â(eı̄eâ) = ψ∗â(Γ
ı̄
âb̂
eb̂ + Γı̄

âb̌
eb̌) = ψ∗â(Γ

ı̄
âb̂
− e1Γı̄

âb̌
Γ1
b̌b̂

)eb̂, (A.16)
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so its complex components ψâ get complex-conjugated and multiplied by the matrix

Υı̄
âb̂

= −Υı̄
b̂â

:= Γı̄
âb̂
− e1Γı̄

âb̌
Γ1
b̌b̂
. (A.17)

The matrices Υı̄ and Υı̄ ≡ Υı̄∗ satisfy the relations

Υı̄Ῡ + Υı̄Ῡ = −2δ ı̄̄1,

Υı̄Ῡ + Υı̄Ῡ = −2δ ı̄̄1,
(A.18)

and so can be used to form the Weyl spinor generators of Spin(6), which are also a

basis for anti-Hermitian, traceless 4×4 matrices, giving the 4 and 4̄ representations

of SU(4):

T
[̄ı̄]

âb̂
= 1

2
Υ

[̄ı
âĉΥ

̄]

ĉb̂
= Σ

[̄ı̄]

âb̂
+ e1Γ1

âčΣ
[̄ı̄]

čb̂
,

T
[̄ı̄]

âb̂
= 1

2
Υ

[̄ı
âĉΥ

̄]

ĉb̂
= Σ

[̄ı̄]

âb̂
− e1Γ1

âčΣ
[̄ı̄]

čb̂
.

(A.19)

The transformation of the spinor is then

δψ′ = 1
4
θabe∗a(ebψ

′)

= 1
2
θ01e1(ψâeâ) + 1

4
θı̄̄e∗ı̄

(
ē(ψâeâ)

)
= 1

2
θ01(e1ψâ)eâ − 1

2
θı̄̄
(
T

[̄ı̄]

âb̂
ψb̂
)
eâ,

(A.20)

using equation (A.16) twice. The four complex spinors ψâ do indeed transform as

the 41/2 + 4̄−1/2:

δψâ = 1
2
θ01e1ψâ − 1

2
θı̄̄T

[̄ı̄]

âb̂
ψb̂. (A.21)

Note that Γ1
ab, satisfying (Γ1)2 = −1, plays the role of a complex structure, which

defines an isomorphism O ∼= C4. For the spinor one may view SU(4) × U(1) as

the subgroup of Spin(8) generated by Lie algebra elements θabΣ
[ab]
cd that commute

with the complex structure Γ1, that is, those transformations that treat the 8 real

components of a Spin(8) spinor like 4 complex components. Any real 8× 8 matrix

that commutes with Γ1, such as Σ
[̄ı̄]
ab , can then be written as a complex 4×4 matrix,

like T
[̄ı̄]

âb̂
above. Equivalently, the matrix Γ1 gives a representation of the Clifford

algebra Cl(1) ∼= Cl0(2) ∼= C, where each ψâ lives in the spinor representation S2 = C,

and hence O ∼= (S2)4 = C4.

To obtain the N = 2 theory one simply truncates O → H. This translates into

discarding two fermions and four scalars. The internal symmetry of the resulting

N = 2 theory is then the subgroup of SU(4) that preserves the quaternionic sub-
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algebra and commutes with the complex structure, which is just the R-symmetry

U(2). The N = 1 theory with R-symmetry U(1) can then be recovered by further

truncating H → C, i.e. discarding one fermion and the remaining scalars (or of

course truncating directly O→ C).

A completely analogous decomposition with O ∼= C4 takes place in D = 8, i.e.

N = 6, but with the roles of spacetime and internal symmetry reversed; the on-shell

field representations decompose just as in (A.12), only with respect to the subgroup

SU(4)ST × U(1) ⊂ Spin(8)
ST

. Here the vector index splitting is

¯
a = 0, 1, 2, 3, 4, 5,

ı̄ = 6, 7,
(A.22)

corresponding to the decomposition 8v → 60 +11 +1−1. Here the complex structure

is the single U(1) R-symmetry generator, given by the simultaneous pair of left-

multiplications: e6(e7ψ).

A.1.3. From D = 10 to D = 9, 3: O ∼= R8

Dimensional reduction to D = 3 results in the N = 8 maximal theory written over

the octonions. This time the algebra decomposition is simply:

SO(8)
ST
⊃ SO(7)

8v → 1 + 7

8s → 8.

(A.23)

The spacetime little group here is SO(1), which is trivial, so the vector, fermions

and scalars each contain only a single on-shell degree of freedom. The parameters

decompose as

θab → θ0i, θij (A.24)

and SO(7) is the subgroup with θ0i = 0. The fields a′ and ψ′ then break into

a′ = a+ φ,

ψ′ = ψaea,
(A.25)

with a ∈ R and φ ∈ Im(O), and they transform as

δa′ = 1
4
θij
(
ei(e

∗
ja)− a(e∗i ej)

)
+ 1

4
θij
(
ei(e

∗
jφ)− φ(e∗i ej)

)
= eiθ

ijφj, (A.26)
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and

δψ′ = 1
4
θije∗i (ejψ

′) = −1
2
θijebΣ

[ij]
ba ψa. (A.27)

Thus the fermions and scalars indeed transform as the 8 and 7 of SO(7),

δψa = −1
2
θijΣ

[ij]
ab ψb,

δφi = 1
2
θijφj.

(A.28)

The fermions packaged in ψ may be considered as eight spinors of the trivial Clifford

algebra Cl(0) ∼= R, using the obvious isomorphism O ∼= (S1)8 = R8.

To obtain the N = 4 theory over H, once again, one simply truncates O → H,

leaving a quaternion of spinors ψâeâ and an imaginary quaternion of scalars φı̂eı̂.

This theory has internal symmetry Sp(1)×Sp(1). TheN = 2 theory with an internal

U(1) symmetry comes from truncating H → C, further discarding two scalars and

two spinors. Finally, truncating the remaining scalar and the spinor associated with

the last imaginary element results in the N = 1 theory formulated over R, with no

internal symmetry.

Again, the group theory of the dimensional reduction from D = 10 to D = 9 is the

same as that of D = 10 to D = 3, only with the spacetime and internal symmetries

interchanged: for D = 9 the spacetime little group is Spin(7)ST ⊂ Spin(8)
ST

and the

fields decompose as in equation (A.23). Here the Clifford algebra Cl(6) ∼= Cl0(7) ∼=
R[8] is generated by the set {eı̄} = {e1, e2, e3, e4, e5, e6}, defining the isomorphism

O ∼= S7 = R8.
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A.2. Tensor Products of Yang-Mills Multiplets

D = 10, so(8)ST N = (1, 0) ∅ Aµ 8v λ 8s

N = (0, 1) ∅
Aµ 8v

λ 8c

N = (1, 1) ∅
gµν 35v

ψµ 56s + 56c

Aµ, Bµν , Cµνρ 8v + 28v + 56v

λ 8s + 8c

φ 1

D = 9, so(7)ST N = 1 ∅ Aµ 7 λ 8 φ 1

N = 1 ∅
Aµ 7

λ 8

φ 1

N = 2 so(2)

gµν (27; 0)

ψµ (48; (1) + (−1))

Aµ (7; (2) + (0) + (−2))

Bµν , Cµνρ (21; (2) + (−2)) + (35; 0)

λ (8; (3) + (1) + (−1) + (−3))

φ (1; (4) + (0) + (−4))

D = 8, so(6)ST

N = 1 u(1)

Aµ (6; 0) λ (4;−1) + (4; 1) φ (1; 2) + (1;−2)

N = 1 u(1)

Aµ (6; 0)

λ (4;−1) + (4; 1)

φ (1; 2) + (1;−2)

N = 2 u(2)

gµν (20;1(0))

ψµ (20′;2(−1)) + (20
′
;2(1))

Aµ, Bµν (6;3(2) + 3(−2)) + (15;3(0))

Cµνρ (10;1(−2)) + (10;1(2))

λ (4;2(−3) + 4(1)) + (4;2(−3) + 4(1))

φ (1;1(4) + 1(−4) + 5(0))

D = 7, so(5)ST

N = 1 sp(1)

Aµ (5;1) λ (4;2) φ (1;3)

N = 1 sp(1)

Aµ (5;1)

λ (4;2)

φ (1;3)

N = 4 sp(2)

gµν (14;1)

ψµ (16;4)

Aµ, Bµν (5;10) + (10;5)

λ (4;16)

φ (1;14)

Table A.1.: Tensor products of left and right super Yang-Mills multiplets in D = 10, 9, 8, 7. Di-
mensions D = 6, 5 are given in Table A.2.
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D = 6, su(2)⊕ su(2)ST

N = (1, 1) sp(1)⊕ sp(1)

Aµ
(2,2;1,1)

λ
(2,1;1,2)

+(1,2;2,1)

φ
(1,1;2,2)

N = (1, 0) sp(1)⊕ ∅
Aµ

(2,2;1)
λ

(1,2;2)

N = (1, 1) sp(1)⊕ sp(1)

Aµ (2,2;1)

λ
(2,1;1,2)

+(1,2;2,1)

φ (1,1;2,2)

N = (2, 2) sp(2)⊕ sp(2)

gµν (3,3;1,1)

ψµ
(2,3;4,1)

+(3,2;1,4)

Aµ (2,2;4,4)

Bµν
(3,1;1,5)

+(1,3;5,1)

λ
(2,1;4,5)

+(1,2;5,4)

φ (1,1;5,5)

N = (2, 1) sp(2)⊕ sp(1)

gµν (3,3;1,1)

ψµ
(2,3;4,1)

+(3,2;1,2)

Aµ (2,2;4,2)

Bµν
(3,1;1,1)

+(1,3;5,1)

λ
(2,1;4,1)

+(1,2;5,2)

φ (1,1;5,1)

N = (0, 1) ∅⊕ sp(1)

Aµ (2,2;1)

λ (2,1;2)

N = (1, 2) sp(1)⊕ sp(2)

gµν (3,3;1,1)

ψµ
(2,3;2,1)

+(3,2;1,4)

Aµ (2,2;2,4)

Bµν
(3,1;1,5)

+(1,3;1,1)

λ
(2,1;2,5)

+(1,2;1,4)

φ (1,1;1,5)

N = (1, 1) sp(1)⊕ sp(1)

gµν (3,3;1,1)

ψµ
(2,3;2,1)

+(3,2;1,2)

Aµ (2,2;2,2)

Bµν
(3,1;1,1)

+(1,3;1,1)

λ
(2,1;2,1)

+(1,2;1,2)

φ (1,1;1,1)

D = 5, so(3)ST

N = 2 sp(2)

Aµ
(3;1)

λ
(2;4)

φ
(1;5)

N = 1 sp(1)

Aµ
(3;1)

λ
(2;2)

φ
(1;1)

N = 2 sp(2)

Aµ (3;1)

λ (2;4)

φ (1;5)

N = 4 sp(4)

gµν (5;1)

ψµ (4;8)

Aµ (3;27)

λ (2;48)

φ (1;42)

N = 3 sp(3)

gµν (5;1)

ψµ (4;6)

Aµ (3;1 + 14)

λ (2;6 + 14′)

φ (1;14)

N = 1 sp(1)

Aµ (3;1)

λ (2;2)

φ (1;1)

N = 3 sp(3)

gµν (5;1)

ψµ (4;6)

Aµ (3;1 + 14)

λ (2;6 + 14′)

φ (1;14)

N = 2 sp(2)

gµν (5;1)

ψµ (4;4)

Aµ (3;1 + 5)

λ (2;4)

φ (1;1)

[N = 2]V

Aµ (3;1)

λ (2;4)

φ (1;5)

Table A.2.: Tensor products of left and right super Yang-Mills multiplets in D = 6, 5.
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D
=

4
,
s
o
(2

) S
T

N
=

4
s
u
(4

)

A
µ

:
(1

;
1
)

+
c
.c
.

λ
:

(
1 2

;
4
)

+
c
.c
.

φ
:

(0
;
6
)

N
=

2
u
(2

)

A
µ

(1
;
1
(0

))
+
c
.c
.

λ

(
1 2

;
2
(1

))
+
c
.c
.

φ
(0

;
1
(2

))
+
c
.c
.

N
=

1
u
(1

)

A
µ

(1
;
0
)

+
c
.c
.

λ

(
1 2

;
1
)

+
c
.c
.

N
=

4
s
u
(4

)

A
µ

(1
;
1
)

+
c
.c
.

λ
(
1 2

;
4
)

+
c
.c
.

φ
(0

;
6
)

N
=

8
s
u
(8

)

g
µ
ν

(2
;
1
)

+
c
.c
.

ψ
µ

(
3 2

;
8
)

+
c
.c
.

A
µ

(1
;
2
8
)

+
c
.c
.

λ
(
1 2

;
5
6
)

+
c
.c
.

φ
(0

;
7
0
)

N
=

6
u
(6

)

g
µ
ν

(2
;
1
(0

))
+
c
.c
.

ψ
µ

(
3 2

;
6
(1

))
+
c
.c
.

A
µ

(1
;
1
(−

6
)

+
1
5
(2

))
+
c
.c
.

λ
(
1 2

;
6
(−

5
)

+
2
0
(3

))
+
c
.c
.

φ
(0

;
1
5
(−

4
))

+
c
.c
.

N
=

5
u
(5

)

g
µ
ν

(2
;
1
(0

))
+
c
.c
.

ψ
µ

(
3 2

;
5
(1

))
+
c
.c
.

A
µ

(1
;
1
0
(2

))
+
c
.c
.

λ
(
1 2

;
1
(−

5
)

+
1
0
(3

))
+
c
.c
.

φ
(0

;
5
(−

4
))

+
c
.c
.

N
=

2
u
(2

)

A
µ

(1
;
1
(0

))
+
c
.c
.

λ
(
1 2

;
2
(1

))
+
c
.c
.

φ
(0

;
1
(2

))
+
c
.c
.

N
=

6
u
(6

)

g
µ
ν

(2
;
1
(0

))
+
c
.c
.

ψ
µ

(
3 2

;
6
(1

))
+
c
.c
.

A
µ

(1
;
1
(−

6
)

+
1
5
(2

))
+
c
.c
.

λ
(
1 2

;
6
(−

5
)

+
2
0
(3

))
+
c
.c
.

φ
(0

;
1
5
(−

4
))

+
c
.c
.

N
=

4
u
(4

)
⊕

u
(1

)

g
µ
ν

(2
;
1
(0

)(
0
))

+
c
.c
.

ψ
µ

(
3 2

;
4
(1

)(
1
))

+
c
.c
.

A
µ

(1
;
6
(2

)(
2
))

+
c
.c
.

λ
(
1 2

;
4
(3

)(
3
))

+
c
.c
.

φ
(0

;
1
(4

)(
4
))

+
c
.c
.

2
[N

=
4
] V

2
×
A
µ

(1
;
1
(−

6
)(

0
))

+
c
.c
.

(1
;
1
(2

)(
−

4
))

+
c
.c
.

2
×
λ

(
1 2

;
4
(−

5
)(

1
))

+
c
.c
.

(
1 2

;
4
(3

)(
−

3
))

+
c
.c
.

2
×
φ

(0
;
6
(−

4
)(

2
))

(0
;
6
(4

)(
−

2
))

N
=

3
u
(3

)
⊕

u
(1

)

g
µ
ν

(2
;
1
(0

)(
0
))

+
c
.c
.

ψ
µ

(
3 2

;
3
(1

)(
2
))

+
c
.c
.

A
µ

(1
;
3
(2

)(
4
))

+
c
.c
.

λ
(
1 2

;
1
(3

)(
6
))

+
c
.c
.

[N
=

3
] V

A
µ

(1
;
1
(2

)(
−

6
))

+
c
.c
.

λ
(
1 2

;
3
(3

)(
−

4
))

+
c
.c
.

φ
(0

;
3
(4

)(
−

2
))

+
c
.c
.

N
=

1
u
(1

)

A
µ

(1
;
0
)

+
c
.c
.

λ
(
1 2

;
1
)

+
c
.c
.

N
=

5
u
(5

)

g
µ
ν

(2
;
1
(0

))
+
c
.c
.

ψ
µ

(
3 2

;
5
(1

))
+
c
.c
.

A
µ

(1
;
1
0
(2

))
+
c
.c
.

λ
(
1 2

;
1
(−

5
)

+
1
0
(3

))
+
c
.c
.

φ
(0

;
5
(−

4
))

+
c
.c
.

N
=

3
u
(3

)
⊕

u
(1

)

g
µ
ν

(2
;
1
(0

)(
0
))

+
c
.c
.

ψ
µ

(
3 2

;
3
(1

)(
2
))

+
c
.c
.

A
µ

(1
;
3
(2

)(
4
))

+
c
.c
.

λ
(
1 2

;
1
(3

)(
6
))

+
c
.c
.

[N
=

3
] V

A
µ

(1
;
1
(2

)(
−

6
))

+
c
.c
.

λ
(
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A.3. Complete List of Octonionic Dilaton Vectors

In order to list the dilaton vectors in a concise form we introduce some additional

terminology and notation. A flag on the Fano plane F (or its dual F̃) is a pair (ijk, i),

consisting of an unoriented line ijk and a point i lying on that line. Since the line

ijk is unoriented, we write σ(ijk) ∈ L (or L̃), where σ(ijk) is some permutation

that puts i, j and k into the appropriate order. There are 7 × 3 = 21 flags on the

Fano plane (or its dual) and we denote the set of these as Fl(F) (or Fl(F̃)). Note

that any pair of distinct points i, j on F (or F̃) uniquely defines a flag (ijk, k), since

choosing two points i, j selects a unique line ijk, and giving preference to i and j

over k singles out k.

Dilaton
Vector

Fano Plane
Interpretation

Octonionic Parameterisation Number

−a Full Plane 1
2 (e1 + e2 + e3 + e4 + e5 + e6 + e7) 1

−ai
Point i on F̃

↔ Line ijk on F

1
2 (ei′ + ej′ + ek′ + el′),

i′j′k′l′ ∈ Q
7

aij , i < j
(ijk, k) ∈ Fl(F̃)

↔ (lmn, l) ∈ Fl(F)
1
2 (el − em − en), σ(lmn) ∈ L 21

aijk, ijk ∈ L̃
Line ijk on F̃

↔ Point i on F
ei 7

aijk, ijk /∈ L̃,
i < j < k

A ∈ Fl(F̃)

↔ (lmn, l′) ∈ Fl(F)

1
2 (−el′ + em′ + en′ + ep′),

σ(l′m′n′p′) ∈ Q
28

bi
Point i on F̃

↔ Line ijk on F
− 1

2 (ei + ej + ek), ijk ∈ L 7

bij , i < j
(ijk, k) ∈ Fl(F̃)

↔ (lmn, l) ∈ Fl(F)

1
2 (el′ + em′ − en′ − ep′),

σ(l′m′n′p′) ∈ Q,
σ(ll′m′), σ(ln′p′) ∈ L,
i = n′ and/or j = l′

21

Table A.4.: Complete list of the octonionic D = 4 dilaton vectors. The vectors (or Kirmse integers)
aijk, bij and −ai are the positive roots of E7(7), while aij and bi make up the positive
weights of the 56 representation. The notation σ(lmn) ∈ L means that there exists
some permutation of lmn that gives a line in L (strictly speaking, the lines in L consist
of ordered triples of points).

An anti-flag is a pair (ijk, l), consisting of an unoriented line ijk and a point l

not lying on that line. There are 7×4 = 28 anti-flags and we denote the set of these

as Fl(F) (or Fl(F̃) for its dual). Note that any triple of points ijk that is not a line
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on the Fano plane defines a unique anti-flag, since the compliment of that triple in

the plane consists of four distinct points, three of which form a line.

Dilaton
Vector

Fano Plane
Interpretation

Octonionic Parameterisation Number

a0i
Point i on F̃

↔ Line ijk on F
1
2 (ei′ + ej′ + ek′ + el′), i

′j′k′l′ ∈ Q 7

aij , i < j
(ijk, k) ∈ Fl(F̃)
↔ (lmn, l) ∈ Fl(F)

1
2 (−1 + el − em − en), σ(lmn) ∈ L 21

aij0, i < j
(ijk, k) ∈ Fl(F̃)
↔ (lmn, l) ∈ Fl(F)

1
2 (+1 + el − em − en), σ(lmn) ∈ L 21

aijk, ijk ∈ L̃
Line ijk on F̃
↔ Point i on F

ei 7

aijk, ijk /∈ L̃,
i < j < k

A ∈ Fl(F̃)

↔ (lmn, l′) ∈ Fl(F)

1
2 (−el′ + em′ + en′ + ep′),

σ(l′m′n′p′) ∈ Q
28

−b0 – 1 1

−bi
Point i on F̃

↔ Line ijk on F
1
2 (1 + ei + ej + ek), ijk ∈ L 7

b0i
Point i on F̃

↔ Line ijk on F
1
2 (−1 + ei + ej + ek), ijk ∈ L 7

bij , i < j
(ijk, k) ∈ Fl(F̃)

↔ (lmn, l) ∈ Fl(F)

1
2 (el′ + em′ − en′ − ep′),

σ(l′m′n′p′) ∈ Q,
σ(ll′m′), σ(ln′p′) ∈ L,
i = n′ and/or j = l′

21

Table A.5.: Complete list of the D = 3 dilaton vectors (−aab, aabc, −ba and bab) written as Kirmse
integers. Together all the dilaton vectors make up the positive roots of E8(8).

Using (7.49) one can compute the full set of dilaton vectors. Because of the

parameterisations (7.52) and (7.61) the resulting vectors exhibit a correspondence

with the Fano plane:

• ai carries a label i corresponding to a point of F̃, which maps by duality to a

line ijk on F; the complement of this line is a quadrangle i′j′k′l′ on F; we find

that ai = 1
2
(ei′ + ej′ + ek′ + el′).
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• aij (i < j) singles out a flag in (ijk, k) ∈ Fl(F̃) which maps to a flag (lmn, l) ∈
Fl(F); the resulting vector is aij = 1

2
(el − em − en), with the different signs

reflecting the flag (lmn, l).

• aijk, ijk ∈ L̃ clearly singles out the line ijk on F̃, which maps to a point i on

F; we find that aijk = ei.

• aijk, ijk /∈ L̃ (with i < j < k) corresponds to an anti-flag A ∈ Fl(F̃), which

maps to an anti-flag (lmn, l′) ∈ Fl(F); the complement of the unoriented line

lmn is an unoriented quadrangle l′m′n′p′ where the point l′ is distinguished

by the flag (lmn, l′); the result is aijk = 1
2
(−el′ + em′ + en′ + ep′).

• bi corresponds to a point i on F̃, which gives a line ijk on F, giving bi =

−1
2
(ei + ej + ek).

• bij (i < j) again selects a flag in (ijk, k) ∈ Fl(F̃) which maps to a flag (lmn, l) ∈
Fl(F); the complement of the unoriented line lmn is an unoriented quadrangle

l′m′n′p′, which is naturally split into two halves l′m′ and n′p′ by the flag

(lmn, l), since l′ and m′ lie on an unoriented line ll′m′ with l, while n′ and p′

lie on another line ln′p′ with l; the resulting vector is bij = 1
2
(el′+em′−en′−ep′)

with the overall sign dictated as follows: looking at the labels i and j of bij we

see that in general i = n′ and/or j = l′.

This is summarised in Table A.4 and, since the D = 3 case is very similar,

its vectors are simply listed in Table A.5. For reference, the sets of lines L and

quadrangles Q of the Fano plane are defined again here:

L := {124, 235, 346, 457, 561, 672, 713},

Q := {3567, 4671, 5712, 6123, 7234, 1345, 2456},
(A.29)

as well as the lines L̃ of the dual Fano plane,

L̃ := {157, 261, 372, 413, 524, 635, 746}. (A.30)
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