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Abstract

Computing is increasingly heterogeneous. Beyond Central Processing Units (CPUs), di↵erent

architectures such as massively parallel Graphics Processing Units (GPUs) and reconfigurable

Field Programmable Gate Arrays (FPGAs) are seeing widespread adoption. However, the failure

of conventional programming approaches to support portable execution, predict the runtime

characteristics and partition workloads optimally is hindering the realisation of heterogeneous

computing.

By narrowing the scope of expression in a natural manner, using a domain specific approach,

these three challenges can be addressed. A domain specific heterogeneous computing methodo-

logy enables three features: Portability, Prediction and Partitioning. Portable, e�cient execu-

tion is enabled by a domain specific approach because only a subset of domain functions need

to be supported across the heterogeneous computing platforms. Predictive models of runtime

characteristics are enabled as the structure of the domain functions may be analysed a priori.

Finally optimal partitioning is possible because the metric models can be used to form an op-

timisation program that can be solved by either heuristic, machine learning or Mixed Integer

Linear Programming (MILP) approaches.

Using the example of the application domain of financial derivatives pricing, a domain specific

application framework, the Forward Financial Framework (F 3), can execute a single pricing task

upon a diverse range of CPU, GPU and FPGA platforms from many di↵erent vendors. Not only

do these portable implementations exhibit strong parallel scaling, but are competitive with state-

of-the-art, expert created implementations of the same option pricing problems. Furthermore,

F 3 can model the crucial runtime metrics of latency and accuracy for these heterogeneous

platforms using a small benchmarking procedure to within 10% of the run-time value of these

metrics. Finally, the framework can optimally partition work across heterogeneous platforms,

using a MILP framework, that is up to 270 times more e�cient than what is achieved by using

a heuristic approach.
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1. Introduction

1.1. Introduction

Computing is becoming increasingly heterogeneous. Over the last decade both the fundamental

composition and organisation of computing systems has become more diverse. This diversifica-

tion is in response to challenges to the hitherto dominant approach to general-purpose comput-

ing. These challenges include the memory and power “walls”, as well as the increasing viability

of alternatives such as massively parallel Graphics Processing Units (GPUs), and custom acceler-

ator architectures implemented using reconfigurable Field Programmable Gate Arrays (FPGAs).

Di↵erent architectures beyond the Von Neumann have risen to prominence, and have been

combined in various permutations with a large variety of interconnection technologies. Infrastructure-

as-a-Service or Utility computing is also coming to the fore, with the physical and conceptual

separation between computing hardware and programmer growing.

This explosion of diversity, or rather the factors driving it, are often described as threats

or crises1 in the literature of computer systems engineering. I argue in this dissertation that

these are in fact opportunities. In meeting these challenges, as an engineering discipline we

have the chance to formulate more general theories of computing; develop technologies that are

more flexible and suited to the specific requirements of users; however, most importantly in my

opinion, the opportunity exists to make the field fundamentally more accessible.

In this dissertation I provide a means to realise the opportunity of heterogeneous computing.

In this chapter, I define and elaborate on what I believe are three critical features required for

greater accessibility: Portability, Predication and Partitioning, as well as a methodology, based

upon domain specific computing, for implementing these features.

This chapter continues by placing this dissertation in the context of the heterogeneous comput-

ing by defining heterogeneous computing, and then outlining the chief challenge and opportunity

in this area. I then describe the three features of the research problem which are necessary to

address this challenge and realise this opportunity, and the three research questions that must be

answered in doing so. After this, I consider the impact of this project in terms of contributions

made, in terms of theoretical impact and practical experience. Finally, I present an overview of

the rest of the dissertation, describing the structure of its arguments.

1See Sutter [7], Hartenstein [8] or Moore [9] for examples of this interpretation
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1.2. The Opportunity and Challenge of Heterogeneous

Computing

Heterogeneous Computers are computing systems that are comprised of two or more architec-

turally distinct computing platforms, such as multicore CPUs, GPUs and FPGAs. Increasingly

commodity computing systems are comprised of several platforms, as the power and memory

walls continue to limit the capabilities of CPUs, while the smaller process technologies that

keep pace with Moore’s law result in alternatives, such as GPUs and FPGAs, that continue to

improve in functionality and e�ciency.

Heterogeneous computing broadly describes these new computing systems, composed of mul-

tiple subsystems. As a result, heterogeneous computing technologies are reliant upon parallel

execution for improved performance, evaluating components of the problem concurrently. This

new multi-architectural, parallel paradigm o↵ers opportunities, but also poses challenges.

1.2.1. The Challenge - Amdahl’s Law

The most prominent challenge in using heterogeneous computing systems is the same as that

faced by all cooperative endeavours - division of labour.

This challenge was captured by Amdahl [10] in the optimisation of computational latency

as given in (1.1), where p is the degree of parallel, homogeneous resources available, e is the

sequential component of the task and S(p) the speedup of the parallel implementation over

execution upon a single unit of the compute resource, as a function of the degree of parallelism.

S(p) =
1

e+ 1
p

(1� e)
(1.1)

Amdahl’s argument is that even with infinite parallel computing capability, the acceleration

of a computational task will always be bounded by those operations which cannot be computed

in parallel, as expressed in (1.2).

lim
p!1

S =
1

e
(1.2)

The resolution of the challenge posed by Amdahl is in reformulating computational tasks such

that e, the sequential component, is minimised, and p, the parallel, maximised. The benefit of

the reformulation has to be balanced with any cost of doing so, such as an increase in the degree

of synchronisation communication required.

A further consideration is that Amdahl’s formulation assumes idealised, uniform computing

resources. Heterogeneous systems add an additional level of implementation complexity, as a

potentially unique implementation has to be provided for each platform. Furthermore, because

of the inconsistent capabilities of platforms, not only does the best platform for the sequential

component have to be chosen, but also an optimal division of work for the parallel component

has to be found.

Often the increased complexity is so great that applications ostensibly execute more e�ciently

on a homogeneous architecture rather than a heterogeneous one, even when the heterogeneous

configuration has more computing power, as shown in the experiments that I describe in this
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dissertation, as well as other contexts such as high performance computing clusters [11]. This can

even be case when the heterogeneous configuration apparently have more computing resources

than the homogeneous case. This underperformance is almost always due to the increased

complexity of balancing the relative capabilities of the heterogeneous system, arising from the

interaction between user application, architecture and programming tool.

1.2.2. The Opportunity - Super-linear Performance Scaling

While the previous section described Amdahl’s challenge in using parallel computing systems,

there is an opportunity in the inconsistency of heterogeneous systems. This opportunity is

super-linear performance scaling. Super-linear scaling is where the performance of the combined

heterogeneous resources exceeds the sum of the individual platforms’ performances. Such scaling

can only be achieved if there are inconsistent capabilities between platforms, i.e. some tasks

execute more e�ciently relative to others upon certain architectures, as is often the case with

heterogeneous platforms.

For example, given two computational tasks, one that is a simple loop with a large amount

of arithmetic computation in its body, and the other task comprised mainly of unbalanced

conditional statements. The first task relative to the second will execute disproportionately

more e�ciently on a GPU, whilst the inverse would most likely be true for a Multicore CPU.

I have illustrated the concept of super-linear scaling in Figure 1.1 using a hypothetical example.

Firstly, the independent execution of a workload of two divisible tasks upon two platforms is

illustrated in Figure 1.1a. In the second subfigure, Figure 1.1b, the workload is balanced across

the two platforms equally, so that each is performing half of each task. In this balanced case,

linear scaling is achieved, as using both platforms results in a performance improvement in

proportion to the total capabilities of the platforms, as measured by the sum of these two tasks.

However, if an allocation that exploits inconsistent platform capabilities is used, as given in

Figure 1.1c, super-linear performance scaling is achieved. Each platform is matched with the

tasks which it performs best, and hence the total performance exceeds the sum of the independent

platform capabilities.

1.3. Research Problem

In the previous section I discussed the major challenge to heterogeneous computing, as identified

by Amdahl, and the opportunity of super-linear performance scaling. In this section, I now

describe the three features of the research problem posed by this challenge and opportunity:

Portability, Predictability and Partitionability.

1.3.1. Portability

Implicit in considering the use of heterogeneous computing platforms is the assumption that

programmers have a way to use these platforms. Ideally a single mechanism, such as a program-

ming standard or tool, exists that could be used to program architecturally di↵erent platforms.

I define such a mechanism as being functionally portable.
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However, a further concern is the depth of knowledge required to use a specific platform to

the full extent of its capabilities. If a programmer with limited understanding of the platform

is nevertheless able to make full use of it, then I define such an approach as being e�ciently

portable.

1.3.2. Predictability

Beyond being able to implement tasks e�ciently, programmers need to be able to predict how

their tasks will run on di↵erent architectures. Independent of other considerations, programmers

need these predictions to be able to balance their di↵erent objectives, such as performance

requirements and resource constraints. The ability to predict the nature of a task implementation

gives the programmer insight into the platform, and allows them to reason about how they might

use it.

However, beyond balancing objectives, being able to predict how a task will run on di↵er-

ent platforms enables the programmer to compare heterogeneous platforms prior to execution.

Doing so is the first step in identifying how a group of tasks should be mapped to a group of

heterogeneous platforms.

1.3.3. Partitionability

Given the ability to implement tasks across a range of platforms, and to predict the nature of

these implementations, a further feature is still required to achieve the performance predicted by

Amdahl. That feature is the means to partition work across the available resources in proportion

to the relative capabilities of those platforms. This then allows for the performance improvement

given in (1.1), where the value of p is the combined, relative parallel compute capability of the

available platforms.

However, to go beyond the performance limit identified by Amdahl, a partitioning approach

is required that is able to exploit inconsistencies across tasks and platforms. A partitioning

approach that is able to do so, that matches tasks to the best possible platform, allows for

super-linear performance to be achieved, as illustrated in Figure 1.1.

1.4. Research Questions

There are three questions that this dissertation must answer so as to address the features of the

research problem outlined in Section 1.3:

1. Is it feasible to support the execution of a single computational task description upon

diverse, heterogeneous computing systems? Beyond the capability to do so, can such an

execution be e�ciently portable, i.e. using a significant degree of the target platform’s

compute capability?

2. Can the characteristics of tasks be modelled across heterogeneous computing systems so

that performance is predictable? Is there an abstraction for doing so, such that these char-

acteristics are meaningful to the programmer without requiring architectural knowledge?
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3. Can tasks be made partitionable across heterogeneous computing systems with e�ciency

such that programmer objectives are balanced while taking full advantage of the di↵ering

capabilities of the platforms?

1.5. Contributions

My dissertation demonstrates how the heterogeneous computing research problem that I have

outlined can be addressed using a domain specific methodology. The workflow that I envision

programmers following is illustrated in Figure 1.2.

To realise this methodology, I had to answer the research questions outlined in Section 1.4. I

will show how the first two research questions, and hence features, portability and predictability,

can be be addressed through automatic means using a domain-specific methodology. The third

question and corresponding feature, partitionability, I argue can only be addressed in cooperation

with the programmer. Ultimately only the programmer can balance competing objectives in the

face of the complex interaction of application and computing resources. However, I show that a

domain specific flow can provide a representation of the design space that would be intuitively

understandable to the programmer, using knowledge embedded in the application domain.

In implementing the domain specific approach, I have made both practical and theoretical

contributions.

1.5.1. Practical

The tangible artefacts I have created in addressing these questions:

• Portability : A domain specific, heterogeneous computing framework for computational

finance, the Forward Financial Framework (F 3)2. The framework currently supports the

execution of a large subset of option pricing tasks upon x86 and ARM multicore CPUs

using POSIX Threads; Nvidia and AMD GPUs as well as Intel’s Xeon Phi using OpenCL;

Xilinx and Altera FPGA platforms using the Xilinx, Altera and Maxeler’s programming

tools. Further details of F 3 are given in Chapter 5.

• Prediction: Models for estimating the latency and accuracy run-time characteristics of

financial option pricing tasks using a short online benchmarking procedure. Using F 3,

prediction models for financial problem metrics such as latency, accuracy and financial cost

have been formulated and verified for the heterogeneous computing platforms supported.

Further details on latency and accuracy models may be found in Chapter 6.

• Partitioning : Generation of e�cient allocations of work. Using the performance mod-

els described above as well as global optimisation algorithms and Mixed Integer Linear

Programming (MILP) techniques, representations of the design space for financial prob-

lems can be created that convey the range of performance possible for the computational

resources available. More information can be found in Chapter 7.

2The source code for the framework may be found at https://github.com/Gordonei/ForwardFinancialFramework
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Figure 1.2.: Proposed solution to research problem, illustrated using the Forward Financial
Framework (F 3)

21



1.5.2. Theoretical

The dissertation makes the following conceptual contributions:

• Broad definition of heterogeneity - I promote a broad definition of heterogeneity in com-

puting, while still performing computational tasks found in active application domains.

Such an approach improves the general applicability of the field.

• Insight into the components of computing - a better understanding of the interplay between

application domain, means of expression, platform and user. I unify these factors in design

space abstractions that allow the programmer to make trade-o↵s that they understand.

• Balance between the application domain and implementation platforms - a more robust

model for computing is encouraged through this research, one that is not overly dominated

by the application domain or the the platform(s) of implementation, yet responsive and

inclusive of a broad range of both.

• Suggestions for a general model for domain specific heterogeneous computing - the culmin-

ation of this dissertation is recommendations for mapping a problem expressed in terms

of the language of its domain to a broadly heterogeneous computing system.

1.5.3. Scope

I now define the scope of this project, considering what areas it will, and will not cover.

Balancing Theory and Practice

I have defined the programming methodology that I describe unambiguously, using mathem-

atical formalisms. However, this formalisation is not where the majority of the contributions

of the dissertation lie. Rather it serves as a clarification of meaning as opposed to a complete

mathematical proof of the domain specific methodology. As a result, I have rather demonstrated

these principles in action as opposed to enumerating the full extent of the formalism.

Case Study as Evidence

Related to the previous point, I have made use of a single, practical case study to lend weight to

the claims that I make with regards to a domain specific methodology. A single instance doesn’t

constitute proof by scientific standards, i.e. that these features exist in every application domain

and will be useful. Its existence in one domain though is significant, as given the domain agnostic

nature of the methodology, the fact that it works for the given domain is an encouraging sign

that it can be applied to others.

1.6. Overview of Dissertation

In Figure 1.3, I have provided the logical layout of the dissertation.
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6 - Derivatives Pricing Prediction

7 - Derivatives Pricing Partitioning

8 - Discussion:
1) Case Study
2) Methodology

9 - Conclusion

Figure 1.3.: Overview of Dissertation

1.6.1. Part I - the Background

In the first part of this dissertation I discuss the my understanding of the current state of the

art, as well as outline the domain specific methodology that I propose.

The chapter that follows is a review of a subsection of the research literature in Heterogeneous,

Domain Specific and Distributed Computing and the intersections between the three. The Lit-

erature Review chapter concludes by evaluating the key themes identified, and the implications

for addressing the research questions.

Chapter 3 details the domain specific methodology that I propose, drawing upon the insights

derived from the literature. I define formally each of the three features that this methodology

enables, namely portable execution, predictive modelling and the partitioning of workloads. In

addition to describing the supporting analysis for each feature, I provide the falsifiable criteria

upon which the existence of these features can be assessed.
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1.6.2. Part II - the Case Study

The second part of the dissertation is concerned with the computational finance case study that

I use to evaluate the domain specific methodology that I propose. In addition to describing

the background to the derivatives pricing computational domain, I describe how each of the

three domain specific features can be achieved. I also evaluate each, testing the fulfilment of the

criteria described in Chapter 3.

The demonstration application domain of Computational Finance is defined in Chapter 4.

Firstly, computational finance problems are described in detail, in terms of the financial products

that are being priced as well as the Monte Carlo Pricing algorithm used in this project. The

computational finance problems are then described as a computational domain, as defined in

the domain specific literature discussed in Chapter 2.

In Chapters 5, 6 and 7, I evaluate the portability, prediction and partitioning features are

implemented within the domain specific approach respectively. In addition to describing how

each feature is realised for the derivatives pricing case study, I demonstrate with an experimental

evaluation how the respective criteria have been satisfied. In all three cases I have used F 3 to

demonstrate and evaluate the features under consideration.

The outcome of the case study is a practical demonstration of how the domain specific meth-

odology can not only make heterogeneous computing accessible, but also enables super linear

performance scaling.

1.6.3. Part III - the Analysis

In the final part, I analyse the methodology and the case study that I have undertaken to verify

it. I first consider the limitations of both, and then conclude by considering the future directions

this work could take.

In Chapter 8, I discuss the research that I have undertaken. I do so by considering the rela-

tionship between the case study and the domain specific methodology, and then the methodology

more generally. In reflecting upon the case study and its relationship to the methodology, I first

consider the degree to which the criteria identified in Chapter 3 have been fulfilled, and the

limitations of the case study. In doing so, I argue that the case study is a valid instance of the

domain specific methodology. I then consider criticisms of the methodology more broadly: the

development e↵ort required, the inherent assumptions, and finally, how the partitioning feature

must be broadened to encompass scheduling.

Finally, I conclude this dissertation. I consider the degree to which the research questions

outlined above have been addressed, as well as the scope for future work within this project. I

then consider the broader experience of undertaking this project, and more general observations

about computer engineering as a discipline.
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Part I.

The Background
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2. Literature Review

In this first part of the dissertation, I provide the background to my argument that a domain

specific approach enables the e↵ective use of heterogeneous computers. In this Literature Review,

I consider the current state of the art of three relevant strands of computing research, and

the implications for the implementation of the critical features of portability, prediction and

partitioning. In Chapter 3, I describe the Domain Specific methodology that I propose for

heterogeneous computing. In addition to providing a formal description of the elements of the

method, I use two example domains to illustrate this methodology.

This chapter describes the background literature in terms of three distinct areas of computing

that my project touches upon:

• Heterogeneous computing: di↵erent approaches to programming heterogeneous com-

puting systems.

• Domain specific computing: a conception of computing limited to particular applica-

tion area or domain.

• Distributed computing: the distribution of work to many computing platforms.

I conclude this review by analysing these areas with respect to the three key features required

for broader access to heterogeneous computing, Portability, Prediction and Partitioning, high-

lighting the relevant considerations for my work.

2.1. Heterogeneous Computing

As defined in Section 1.2, heterogeneous computing is computing performed using two or more

architecturally distinct computing devices. Also described in Chapter 1, was the potential of

heterogeneous computing for super linear performance scaling, whereby the relative strengths of

the available computing resources are exploited to achieve performance beyond the sum of the

performance of these platforms.

In this subsection, I survey the prior art of heterogeneous computing. I begin by considering

an approach to heterogeneous computing where each distinct computational device within the

system is programmed independently. I then describe how the short-comings of this approach

has prompted the emergence of heterogeneous computing standards, such as OpenCL, which

enable the programming of multiple architectures using the same code. I conclude by considering

general heterogeneous computing frameworks, which provide compilation and run-time support

for more than one heterogeneous architecture, often by supporting a heterogeneous computing

standard. I also evaluate the degree to which these frameworks address the challenges posed in

programming heterogeneous systems.
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2.1.1. Platform-specific Approaches

A common approach to programming heterogeneous computers is to use multiple, architecture-

specific programming frameworks for the constituent platforms, the computing architectural

instances, within the heterogeneous system, such as CPU compilers for multicore CPUs, and

GPU and FPGA vendor supplied programming tools. While well-established and mature, the

chief problem with such approaches is poor interoperability between di↵erent computational

platforms.

Indeed, the more sophisticated and optimised the framework these tools provide, often the

more platform-specific the required task code becomes. An extreme example of this is the

Hardware Description Language (HDL) code used to program FPGAs, which often require

vendor specific “primitives” to use the full feature set of the device.

An attempt to provide some measure of interoperability is the use of intermediate representa-

tions, as used by popular compiler frameworks such as LLVM. Beyond multicore CPUs, in many

cases, the C programming language, or a subset thereof, is treated as a “portable” assembly

language that can be compiled by platform-specific compilers without too much modification.

Examples of this trend include NVIDIA’s CUDA framework for GPUs or Xilinx’s Vivado HLS

tools for FPGAs.

Even so, there are three problems with the platform-specific approach that prevent it from

being interoperable, even if a relatively portable language such as C is used:

1. Inconsistent Feature Support

The subset of operations supported is determined by the vendor, so beyond the simplest of

arithmetic and memory operations, there is no guarantee a required function or library would

be supported.

An example of this is support for dynamic memory allocation. In multicore CPU program-

ming, code is often optimised by allocating and deallocating working memory resources as

needed. However, in many platforms, such as GPU and FPGA programming frameworks, all

memory declarations have to be made at compile time, making the memory use determined by

the worst possible case.

2. Varied Compilation Interfaces

The flow from source code to implementation upon the target platform di↵ers significantly

between vendors, requiring inconsistent degrees of user intervention.

For example, both NVIDIA’s CUDA and Vivado HLS accept a similar subset of ANSI C for

execution on the devices both vendors provide [12, 13].

CUDA requires code to be expressed within a task parallel framework, with the C functions

being executed on the GPU identified explicitly by the programmer as kernels. Inside these

kernels, special variables are made available to the programmer to distinguish between di↵erent

kernel instances or threads, and hence code has to be refactored to make use of these special

variables.
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A Xilinx implementation of the same code would look considerably di↵erent, as the program-

mer would identify the function(s) that should be implemented in the reconfigurable fabric, and

also specify the nature of interfaces used to communicate with these function. Once a design

had been synthesised from the source code, the designer would still need to implement it within

a system architecture that cannot currently be expressed in C.

3. Inconsistent Optimisation Approaches

Optimisation is another area where there is less standardisation. Most vendors require the use

of specific source code annotations or libraries which do not translate between architectures.

To use the examples of CUDA and Vivado HLS again, task parallelism is expressed quite

di↵erently. For CUDA, the programmer is required to specify the number of threads when

calling the kernel in their code. In Vivado HLS, this is done implicitly within the code being

synthesised; by calling the same function multiple times at the same scope level.

2.1.2. The Rise of Heterogeneous Computing Standards

The need for interoperability between di↵erent computing architectures has prompted the pro-

mulgation of heterogeneous computing standards in recent years, such as the Open Compute

Language (OpenCL) [14], Open Spatial Language (OpenSPL) [15] and Open Accelerators (Open-

Acc) [16] standards. Similar to earlier heterogeneous standards, such as POSIX (IEEE 1003) for

CPUs, and Verilog (IEEE 1364), VHDL (IEEE 1076) and SystemC (IEEE 1666) for FPGAs and

ASICs, these standards represent an agreement between vendors to support a carefully defined

Application Program Interface (API)1.

The newer heterogeneous computing standards are at a higher level of abstraction, and cover a

broader set of platforms, including multicore CPUs, GPUs and FPGAs. These modern standards

also address the three issues outlined in the Platform-specific Approaches subsection: a core set

of features is universally supported, standard compilation and run-time APIs are defined and a

set of generic optimisations are also specified.

To examine this trend I describe and comment upon two recent, distinct examples: OpenCL, a

standard which has been widely adopted and established over the past few years, and OpenSPL,

a more recent e↵ort from a single vendor.

Both OpenCL and OpenSPL assume a host-accelerator system organisation model, with pro-

grams or kernels run upon the accelerator device that interfaces with code on the host, which is

a conventional CPU-based platform. However, while OpenCL kernels are imperative in nature,

OpenSPL is organised around dataflow principles, and so represents a dramatic departure from

conventional, CPU-based programming languages.

In both cases I use the kernel example given as C code function in Listing 2.1, of a scaled

vector sum of floating point values, such as may be found in level 1 of the popular Basic Linear

Algebra Subroutine (BLAS) library.

1And apparently to use the word “Open” in their name
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Listing 2.1: Scaled vector sum example code

void vector sum (
const i n t N,
const f l o a t alpha ,
f l o a t ⇤x ,
const f l o a t beta ,
f l o a t ⇤y ,
f l o a t ⇤z )

{
f o r ( i n t i =0; i<N; ++i )

z [ i ] = alpha ⇤ x [ i ] + beta ⇤ y [ i ] ;
}

Software Hardware Memory

Context Device Global
Work-group Compute Unit Local
Work-item Processing Element Private

Table 2.1.: OpenCL Abstractions. The rows indicate the minimum scope of access for that level
of abstraction

OpenCL

OpenCL is a task parallel standard that is organised around a host, a conventional CPU, that in-

terfaces with one or more heterogeneous accelerator devices, executing kernels [14]. The devices

are composed of one or more Compute Units, that are in turn composed of one or more processing

elements. The devices execute many, out-of-order kernel instances or work-items upon its pro-

cessing elements. Work-items are organised into work-groups, which will always be processed

within the same compute unit. The memory hierarchy is explicit, requiring the programmer to

qualify whether variables will be stored in global, local or private memory, which are typically

implemented in memories of decreasing size and access latency. Table 2.1 provides an overview

of these abstractions.

The code used to write OpenCL kernels, of which the scaled vector sum example is given

in Listing 2.2, is a subset of ANSI C (IEEE 1003.1-1988), most notably without support for

dynamic memory allocation. The host interface is a C API that interfaces with an OpenCL

run-time driver on the host system, which is provided by the vendor of the targeted hardware.

Bindings for the host API exist in many higher level programming languages such as C++ and

Python. Through its host API, the standard also o↵ers the means to query the computing

resources and memory available both prior to, and during execution.

In terms of optimisation, in addition to task parallelism being made explicit, OpenCL allows

for vendor-provided or “native” implementations of certain mathematical functions, such as

sin or cos. The native functions will be more e�cient, however will deviate from the IEEE

754 floating point standard. The OpenCL standard also also allows for more complex custom

functionality through vendor extensions to the core standard.
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Listing 2.2: OpenCL scaled vector sum kernel

k e rne l void vector sum (
const f l o a t alpha ,
g l oba l f l o a t ⇤x ,
const f l o a t beta ,
g l oba l f l o a t ⇤y ,
g l oba l f l o a t ⇤z )

{
// g e t t i n g unique ID
in t i = get g lobal id ( 0 ) ;

//Perfoming the vec tor computation
z [ i ] = alpha ⇤ x [ i ] + beta ⇤ y [ i ] ;

}

Driven by the pressing need for software development infrastructure for heterogeneous com-

puting, many influential vendors such as Intel, AMD, ARM, NVIDIA, Xilinx and Altera have

joined the Khronos consortium that manages the standard. More importantly, many of these

vendors provide the Software Development Kits (SDKs) and run-time support required to ex-

ecute OpenCL code on their hardware. The standard draws inspiration from the success of

NVIDIA’s CUDA framework for GPU computing through its use of easy-to-use abstractions

and broad API. As a result of its wide support, choosing to use OpenCL will not necessarily

dictate the vendor or even the architecture that the code will eventually run on.

A significant challenge in the use of OpenCL is the need for programmers to manage memory

locality. For programmers unfamiliar with memory hierarchies, and techniques for using them

e↵ectively, this is quite a daunting prospect. On the other end of the spectrum, the standard

is a victim of its own success, as it guarantees equivalence of computational result but makes

no guarantees as to the portability of performance. A programmer might be tempted to simply

reuse the same kernel code between radically di↵erent architectures, and not do the necessary

code refactoring that might be required to extract that platform’s best performance.

OpenSPL

The OpenSPL standard conceptualises computing systems as being organised spatially as op-

posed to temporally, as is the case in imperative programming [15]. To enable this spatial

paradigm, OpenSPL uses a dataflow approach to computing. The OpenSPL consortium cur-

rently has only one hardware vendor, Maxeler, and a small number of members.

OpenSPL allows the programmer to define the interaction of multiple, simultaneously running

kernels via flows of data, implemented on a spatial computing substrate. Three types of memory

are defined: single-value scalars, as well as Fast and Slow Memories, with the expectation being

that size will be correlated with memory access latency. The standard is aimed at enabling

domain experts to generate optimal computational structures for particular applications. An

example of an OpenSPL kernel is given in Listing 2.3.
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Listing 2.3: OpenSPL scaled vector sum kernel, as it would be defined within Maxeler tools

import com . maxeler . maxcompiler . v2 . k e rne l c omp i l e r . Kernel ;
import com . maxeler . maxcompiler . v2 . k e rne l c omp i l e r . KernelParameters ;
import com . maxeler . maxcompiler . v2 . k e rne l c omp i l e r . types . base .DFEVar ;

c l a s s MaxelerVectorSumKernel extends Kernel
{

protec ted MaxelerVectorSumKernel ( KernelParameters parameters )
{

super ( parameters ) ;

DFEVar alpha = io . s c a l a r Inpu t ( ” alpha ” , d f eF loa t ( 8 , 2 4 ) ) ;
DFEVar beta = io . s c a l a r Inpu t ( ”beta ” , d f eF loa t ( 8 , 2 4 ) ) ;

DFEVar a = io . input ( ”a” , d f eF loa t ( 8 , 2 4 ) ) ;
DFEVar b = io . input ( ”b” , d f eF loa t ( 8 , 2 4 ) ) ;

i o . output ( ”output” , a ⇤ alpha + b ⇤ beta , d f eF loa t ( 8 , 2 4 ) ) ;
}

}

Unlike OpenCL, OpenSPL does not proscribe a host-accelerator system organisation nor a

host API, however in practice this is the configuration used by the Maxeler, the only vendor

that currently supports the standard. The tools provided by Maxeler are however capable of

targeting FPGA-based platforms from two of the major vendors, Xilinx and Altera.

OpenSPL will only see adoption in those instances where the benefits from using it o↵sets the

cost of refactoring code and algorithms to fit within the paradigm. This is also in contrast to

OpenCL, which allows for the relatively easy porting of legacy C code. Furthermore, given the

small size of the supporting consortium relative to OpenCL, it will likely struggle to gain the

same widespread acceptance.

2.1.3. Heterogeneous Computing Frameworks

Beyond standards for heterogeneous computing and implementations of these standards, gen-

eral purpose heterogeneous programming frameworks are seeing considerable attention from

academia, with projects such as Qilin [17], Harmonic [18], LegUP [19] and industry, in the

form of Liquid Metal [1] and Exochi [20]. These frameworks seek to abstract away many of

the platform specific details of the components that make up the programmer’s heterogeneous

computing systems, often presenting a uniform interface, while accessing and using multiple

backend run-time environments automatically.

However, in addressing the interoperability challenge, these approaches potentially obscure the

characteristics of the underlying architectures. Generally these approaches move the conceptual

burden of working with a multiple heterogeneous systems with distinct, observable character-

istics onto an abstract level defined by the framework, and hence not easily observable by the

programmer.
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array or bit literal. Lime provides bit literals as syntactic sugar to
compactly define bit arrays because of their prevalence in FPGA
designs. For example the bit literal 100b is a 3-bit array where
bit[0]=0 and bit[2]=1. The result of mapFlip(100b) is
a bit array equal to the bit literal 001b.

When the map operator is a local static method applied to
value arguments, the compiler can infer data-parallelism and op-
timize the implementation accordingly. In Liquid Metal, the map
and reduce (not shown) operators are exploited heavily for opti-
mizing code for co-execution on a GPU. We achieved end-to-end
speedups of 12��431� for a number of benchmarks co-executing
between CPU and GPU using an NVidia GTX580 (Fermi) [3].

Pipeline-parallelism in Lime is expressed using explicit opera-
tors to create tasks (i.e., pipeline stages) and connect them so data
flows between them. A 3-stage pipeline is shown on lines 17-19
in Figure 1 as an example. The first stage is a “source” task that
produces a stream of bits, one bit a time. The second stage applies
the flip method which flips one bit a time. The third and final
“sink” stage accumulates the bits into a new bit array, one bit at a
time. The source and sink tasks use utility methods provided by
Lime array types. The flip task (line 18) explicitly uses the Lime
task operator. When applied to a static method as in this case, the
result is a dataflow actor that repeatedly applies the named method.
The actor consumes data from its input port and produces data to its
output stream, applying the named method when the port contains
sufficient data to satisfy the argument requirements of the method.
The connect operator “=>” connects tasks so values flow between
them. Hence, every bit produced by the source (line 17) flows to
the flip task (line 18) and the result of the flip task flows to the sink
task (line 19). Connected tasks are called task graphs in Lime.

Only values may flow between tasks. This restriction, which is
enforced by the Lime type system, guarantees that data that cross
physical boundaries in a heterogeneous system cannot mutate in
flight. Hence, the data may be marshaled on one end and unmar-
shaled on the other without concern for data-races. Furthermore,
values are cycle-free and may be marshaled using custom strate-
gies that are tailored to the physical wire-format of the system.

Lime tasks which are either source or sink nodes in the task graph
(i.e., have no input connections or output connections, respectively)
are allowed to perform I/O and may have side-effects. In contrast,
inner tasks, called filters, must be strongly isolated in that the task
operator can only be applied to a local method with value ar-
guments. It is the inner tasks that are usually migrated from the
CPU and co-executed on accelerators.

Task graph construction is separated from task graph execution.
The task graph construction does not cause any of the actors in the
graph to execute. Instead, Lime requires an explicit operation to
cause the actors to execute. This is accomplished using a start()
or finish() method on tasks (line 20). The latter causes the ex-
ecution to start and blocks the caller until computation has termi-
nated. In the example, the graph execution terminates when the last
bit produced by the source is consumed by the sink.

2.3 Task Relocation and Co-Execution
Lime requires the use of relocation brackets ([ ]) around task

expressions (Figure 1, line 18) in order to inform the compiler and
runtime of the programmer’s desire to co-execute tasks. When
omitted, the compiler and runtime provide no guarantees that the
task graph contains any co-executable regions.

The relocation brackets provide a lightweight and convenient
mechanism for a programmer to experiment with many different
partitions between device code and host code without perturbing
the rest of their code. In addition, since the methods that a task
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}

Figure 2: Liquid Metal compiler & runtime.

operator acts on may be used seamlessly in a number of contexts
(e.g., map/reduce, task graph, or imperative code), the programmer
can develop and debug their code in a single semantic domain and
reuse much of their existing code. We believe that programmers
will favor using the Lime value and local modifiers because
they are non-intrusive, provide general soundness guarantees that a
programmer may wish to assert, and most notably, when combined
with task and map/reduce operators, provide a path for exploiting
heterogeneous architectures.

3. COMPILING FOR HETEROGENEITY
Figure 2 presents an overview of our compilation and runtime

toolchain. Liquid Metal accepts a set of source files and produces
artifacts for execution. An artifact is an executable entity that may
correspond to either the entire program (as is the case with the byte-
code generation) or its subsets (as is the case with the OpenCL/GPU
and Verilog/FPGA backends). An artifact is packaged in such a
way that it can be replaced at runtime with another artifact that is
its semantic equivalent.

The compiler frontend performs shallow optimizations and gen-
erates Java bytecode for executing the entire program in a Java
virtual machine (JVM). The compiler backend generates code for
GPUs and FPGAs. The backend operates on a subset of the input
program, focusing solely on compiling Lime task graphs.

The backend consists of architecture-specific device compilers;
currently, a GPU compiler and an FPGA compiler. The former gen-
erates OpenCL for the GPU, while the latter generates Verilog for
the FPGA. These are subsequently compiled using device-specific
toolflows to complete the artifact generation for each accelerator.

The compiler relies on the presence of relocation brackets around
task graphs to learn of the tasks it must compile. In general, task
graphs can be constructed using rich control flow (e.g., iterative,
recursive). The compiler discovers the shape and other properties
of these task graphs statically. As expected, compile-time analysis
may not discover all possible task graphs that the program might
build. If the relocation brackets are present and the compiler fails
to determine the shape of the task graph, the programmer is in-
formed at compile time with an appropriate error message. The
benchmarks we have developed so far use task construction idioms
that our compiler can recognize. We believe these benchmarks are
written in a style that is natural to programmers.

Each of the device compilers operates autonomously and inde-
pendent of the other compilers. It examines the tasks that make up

273

Figure 2.1.: Overview of Liquid Metal System [1]

The potential danger of a high level of abstraction have been demonstrated experimentally,

using a popular parallel programming framework, MapReduce [21], as a case study. In a study

by Ahmad et al. [11] it has been shown that while MapReduce intuitively seems to support

heterogeneous parallel execution, however if used naively, it under performs when using two

CPU architectures of di↵ering capabilities. The scale of the under performance is to such a

degree that only using a homogeneous subset of the available resources would achieve the same

results more quickly.

This argument and cautionary case makes it clear that the characteristics of both the ap-

plication and the heterogeneous platforms concerned need to be taken into account in order to

realise the potential of heterogeneous computing devices. The remainder of this section is a brief

survey of several general heterogeneous computing frameworks:

Liquid Metal

Liquid Metal is a compiler and run-time system for LIME, an Object Orientated Programming

(OOP) language for programming heterogeneous systems, developed at IBM [1, 22]. The goal

of the framework is to make the benefits of heterogeneous computing more accessible to a

wider audience, particularly those benefits realised through reconfigurable hardware. In order

to achieve this goal, the framework is able to compile a single OOP language, LIME, for multicore

CPUs, GPUs and FPGAs, and support parallel execution upon systems composed of multiple

heterogeneous platforms. A diagrammatic overview of the Liquid Metal system is given in Figure

2.1.

32



The LIME language is based upon Java, and can be integrated with existing Java code.

The language introduces various features so as to allow the programmer to make task, data and

pipeline parallelism explicit. Notably task and pipeline parallelism is enabled by the introduction

of dataflow or stream computing concepts, in a similar manner to how event semantics are

introduced in SystemC. Units of code are defined as Tasks and connected together by the

programmer, allowing for the creation of task-graphs in a dataflow manner, similar to what is

envisioned in the OpenSPL standard.

The focus of the Liquid Metal work is in providing a complete modern programming lan-

guage definition and heterogeneous run-time support system. The range of platforms supported

is broad relative to other frameworks, including multicore CPUs, GPUs (using an OpenCL

backend) and FPGAs (using a Verilog backend). Performance figures [22] over native Java byte

code show a 4.8x and 32.5x improvement for multicore CPU implementations, and 12x to 430x

improvement for GPUs for a set of parallel computing benchmarks. When compared to OpenCL

code written by a programmer running upon the same platforms, the Liquid Metal implement-

ations’ performance was between 75% and 140% of the programmer code. These results suggest

that the framework is able to produce implementations from a high level of abstraction that are

able to take advantage of the parallel compute resources almost as well as programmer written

code.

A potential weakness of the framework is the abstraction model used. The level of abstraction,

while higher than low level OpenCL code, is still di↵erent from conventional Java in the same

way that SystemC is di↵erent from C++. Furthermore, by integrating the dataflow semantics

into the Java language, it is possible that programmers will become confused, and default back

to familiar Java constructs.

Another weakness is that while supporting execution on multiple heterogeneous platforms in

parallel, the Liquid Metal run-time does not automatically partition and schedule work across

the available platforms so as to balance communication and computation, or according to other

user goals, such as energy optimisation. This requires the programmer to identify and map

sections of the application to appropriate platforms themselves, a task requiring considerable

insight into the nature of the platforms available, as well as the nature of the Liquid Metal

implementations being produced. It should be noted though that the developers of Liquid

Metal view this functionality as orthogonal to their work, as an area which can be explored

using the framework as a compiler and run-time system.

Exochi

Exochi, an early e↵ort from Intel, is both a system architecture that represents tightly-coupled

heterogeneous computing platforms, such as on-chip GPUs, as ISA-based architectural resources

(EXO), as well as a C++ programming environment that allows for accelerator-specific code

(CHI) [20]. The modified C++ compiler extends OpenMP pragmas to expose these heterogen-

eous resources to the programmer.

An Exochi prototype system comprised of a multicore CPU and GPU achieved performance

speedups of up to 12x relative to the multicore CPU for a set of image and video processing tasks,

suggesting that the heterogeneous resources of the system were being harnessed productively.
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However these speedups were only achieved through an ideal workload partitioning between the

CPU and GPU, found by running the tasks on both platforms independently and partitioning

accordingly. Performance figures relative to programmer GPU code were not reported, however,

due to its bypassing of operating system mechanisms for accessing heterogeneous resources, there

is potential for improvement over programmer code.

The framework maintains the look and feel of current approaches towards high performance

computing through the use of C++ and OpenMP pragmas, however the wideness of its use is

limited by the low level, Intel-specific architectural features used.

Also, similar to Liquid Metal, this work did not go beyond providing support for heterogeneous

execution - it is up to the programmer to select how work should be partitioned between the

available processing platforms.

Qilin

Qilin is an academic experimental application framework for CPU and GPU computing systems

[17]. In addition to providing a uniform API for the parallel execution of linear algebra domain

functions upon both multicore CPUs and GPUs, the framework is able to automatically partition

work between the available computing platforms, a feature generally lacking in general purpose

heterogeneous computing frameworks.

The adaptive mapping introduced by the framework uses previous runs of particular task and

parameter combinations to predict the relative run-times upon the available CPUs and GPUs

using linear models. The linear models for the available platforms are then used to create a

system of equations, which are then solved to find a partitioning of work that minimises the

run-time.

Using an ideal partitioning of work between GPU and CPU, the mean latency of the framework

is 9.9x faster than serial code for a wide set of benchmarks. The adaptive mapping achieves a

9.3x improvement over the serial without programmer intervention, close to the ideal case. The

adaptive mapping also outperforms the single platform implementations in all cases, thus only

making use of the heterogeneous resources to a useful degree, avoiding the trap identified by

Ahmad et al [11].

The work is however limited in considering only a single CPU and GPU processor combination.

Furthermore, the framework only supports tasks which are capable of being partitioned, limiting

itself to linear algebra functions, arguably making it a domain specific application framework,

similar to those described in Section 2.2.3.

2.2. Domain Specific Computing

Domain specific computing is the study of computing organised around groupings of applications,

called domains. Although Domain Specific Languages (DSLs), programming languages that

cater to certain domains, have been in use for over 40 years, academic consideration of the topic
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in its own right has only really occurred in the past 20 years [2, 3, 23, 24, 25]. While there are

many motivations for domain specific computing, by far the most powerful is the ease of access

it a↵ords to programmers with little to no formal training. Domain specific approaches allow

domain end users to clearly express their intent, i.e. to program, at a high level of abstraction,

with concepts and even jargon that they are familiar with. This ease of expression results in

significant productivity benefits [2, 26].

The chief limitation of a domain specific approach is the focus upon a single application do-

main. If what the domain programmer requires is outside the confines of the domain, as defined

by the system programmer that implemented the domain specific tool, there is no guarantee

that the functionality is supported.

A further limitation is the upfront development e↵ort and cost of defining the application

domain, and providing support for its execution. This can account for many person-years of

development time before even the first useful program is run. Indeed, Fowler and Parson [2]

and Mernik et al [3] suggest that the first and one of the most important activities in domain

specific system development is justifying its necessity in the first case.

In this subsection, I survey the literature of Domain Specific Programming, and its relevance

to supporting the use of heterogeneous computing. I begin by considering the di↵erent classes

of users within domain specific programming. By considering the usage modes of stakeholders,

and their spectrum of computing knowledge, I show the necessity of the formulation of domain

specific abstractions. I then describe the process of developing of domain specific computing

systems: from identifying the domain-knowledge informed semantic model, to designing the

means of expression and finally the implementation of the domain program. Finally, I consider

a relatively new development, that of domain specific heterogeneous computing frameworks, and

how domain specificity is advantageous in the heterogeneous computing context.

2.2.1. Domain Specific Programming Stakeholders

The literature concerned with the study of programming by end users, or end user programming,

is based upon an empirical or ethnographic approach to the use of computing as opposed to more

formal methods [27, 28, 29]. This ethnographic approach entails studying how these users make

use of software in practice through reviewing code produced by, and interviewing, with these end

users. End user programming is considered to be systems or environments which ‘allow users

to create useful applications with only a few hours of instruction’ [28]. This is almost always

achieved through the use of domain specific abstractions, allowing the end user to describe their

intent using concepts that they are already familiar with. Hence, I refer to these types of users

as domain programmers.

Studies from this field have found that in large, single sector organisations in public or cor-

porate settings, where domain specific systems are commonly used, a spectrum of computing

users exist [28]:

• The system programmer that is highly knowledgeable and skilled in computing, and

has varying degrees of knowledge of the application domain. They are also confident and

supported in their computing work by the organisation’s management.
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• The local developer2 that is skilled and confident in their use of computing, as well as

having a high degree of knowledge about the application domain. While not necessarily

o�cially recognised by the organisation management, these role-players are locally iden-

tified as experts by their colleagues, e↵ectively bridging the gap between the application

domain and the computing resources.

• The domain programmer3 that is highly knowledgeable of the application domain,

but largely unskilled or ignorant of computing. Both Nardi [28] and Blackwell et al [27]

suggest that there are ten times as many domain or end user programmers as formally

trained programmers.

This stratification of users has implications for the development of domain specific computing

systems. The asymmetries of computing and domain knowledge suggest that beyond a more

natural way to express computational tasks, domain programmers require a means to reason

about their computations in terms of concepts they are familiar with. However the system

programmers need an unambiguous specification to implement. The application domain rep-

resents a compromise between the two groups, restricting the domain programmer to what the

system programmer can practically implement, however doing so in such a way that provides

useful abstractions. The local developer is often critical in realising this vision, as they can aide

in mediating the shortcomings of system programmers, whilst helping clarifying the domain

programmer’s needs.

A second significant finding is that within a particular application area, such as Computer

Aided Design, there are typically ten to fifteen high level functions that are disproportionately

used by end users [28]. Such a power law distribution is useful to consider when supporting

an application domain, as it suggests implementing these heavily used functions e�ciently will

address the needs of a significant number of end users.

2.2.2. Domain Specific System Development Process

The domain specific system development process in Figure 2.2 is a synthesis of those suggested

by Fowler and Parsons [2] and Mernik et al [3]. The process is comprised of three distinct phases,

Analysis, Design and Implementation, that are described below. However, similar to software

development, developing a domain specific computing system is often iterative, with the process

being iterated over several times.

Analysis

The purpose of the analysis phase is to analyse the application domain, and create a semantic

model4 that captures all of the concepts and behaviours within the targeted application domain

[2]. The semantic model provides the vocabulary for the eventual domain specific means of

expression, whether a language or framework. The semantic model represents a conceptual

2Various alternative, more colourful titles for this role have been recorded: “Tinkerer”, “Translator”, “Garden-
ers”

3Often called an end-user programmer
4Fowler and Parsons [2] distinguish between a semantic and domain model, describing the latter as behaviourally

richer description.
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Figure 2.2.: Domain Specific System Development Process [2, 3]

interface, the means by which the domain user can think and reason about their computations,

that can still be captured unambiguously for execution. Fowler and Parsons [2] use the example

of a state machine domain, suggesting that the semantic model would be an object model with

classes for states and events.

The semantic model is formed based upon analysis of domain concepts and jargon, as well as

consultation with domain experts. For a given domain there should only be one semantic model,

while there might be many domain specific means of expression that work with this model.

Design

In the design phase, a means of expression for describing computation in accordance with the

semantic model is created [2, 3]. This domain specific means of expression should give the domain

programmer the ability to manipulate the domain abstractions provided. Hence the domain

programmer, through the domain specific means of expression, is describing or configuring an

aspect of a system, rather than describing a complete system5.

The key design decision that has to be be made by the system programmer, the stakeholder

described in Section 2.2.1, is whether the means of expression for the user should be a Domain

Specific Language (DSL) versus an application framework. DSLs are often, but not necessarily,

Turing complete programming languages built around the application domain’s semantic model.

An application framework is a set of classes or library [23, 30], which is implemented in a 3rd

generation programming language, such as Java or C++, that makes available an API for

implementing instances from the domain’s semantic model.

5For this reason, Fowler and Parsons [2] argue that many of the configuration files within UNIX-based operating
systems are domain specific in nature.
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Listing 2.4: Random scaled vector sum in MATLAB, a linear algebra, external domain specific
language

alpha = rand ( ) ;
beta = rand ( ) ;
x = rand (1000 , 1 ) ;
y = rand (1000 , 1 ) ;

z = x ⇤ alpha + y ⇤ beta ;

Listing 2.5: Random scaled vector sum using the Numpy library in Python as a linear algebra
application framework

import numpy , numpy . random
alpha = numpy . random . random ( )
beta = numpy . random . random ( )
x = numpy . random . random(1000)
y = numpy . random . random(1000)

z = numpy . sum(numpy . mul t ip ly (x , alpha ) , numpy . multply (y , beta ) )

Both DSLs and application frameworks limit the computations that may be expressed to a

particular domain, however the key di↵erence between the two is the degree of fluency that a

standalone language versus a library enables. Whilst this fluency might make the DSL more

easily understood by the domain users, there is additional implementation e↵ort required to

support it. Somewhere between the two are internal DSLs, which are implemented within a host,

general purpose language, but make use of techniques such as syntactical operator overloading

and method chaining to achieve some of the fluency of a standalone language. Hence, completely

standalone DSLs are referred to as external [2] or formal DSLs [3] to distinguish from these

internal DSLs.

An illustration of the distinction between application frameworks, internal and external DSLs

is provided in Listings 2.4, 2.5 and 2.6. The Numpy Python application framework by comparison

to the MATLAB external DSL is considerably less easy to read, but when Numpy is used as an

internal DSL, through pre-emptive library loading and the overloading of arithmetic operators,

a similar fluency to that seen in the external Matlab DSL is achieved.

Listing 2.6: Random scaled vector sum using Numpy as an internal domain specific language

alpha = random ( )
beta = random ( )
x = random(1000)
y = random(1000)

z = x ⇤ alpha + y ⇤ beta
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The outcome of the design phase is a specification for the DSL or API for the application

framework required to support the semantic model of the desired application domain.

Implementation

The implementation phase takes the domain specific DSL or API specification, and develops the

necessary infrastructure for supporting the execution of programs described in accordance with

the specification.

If an external DSL has been designed, then the supporting infrastructure must be capable

of parsing programs written with it, and then implementing the computations described. This

is essentially identical to implementing a compiler for the DSL, although the DSL compiler

will conceivably be easier to implement due to the limited number of domain data types and

functions that need to be supported.

In the case of application frameworks and internal DSLs, usually the host language compilation

and execution infrastructure may be used, hence dramatically reducing the implementation

e↵ort. An example of a linear algebra application framework is LAPACK [31], which is actually

in turn built upon BLAS [32], a lower level, linear algebra domain library. However if an internal

DSL has been created, usually some degree of transformation or processing often has to occur

upon the specified program prior to direct execution.

A popular implementation technique [2] is to generate code for another, general purpose pro-

gramming language, such as C, from the domain specific task description, and then to compile

the resulting code using compilers of the generated code’s language. An example of this approach

is SPIRAL [33], a framework for generating e�cient Digital Signal Processing (DSP) code. The

language of the generated code is often at a lower level of abstraction than the domain specific

description. While requiring additional implementation e↵ort than the direct execution of in-

ternal DSLs and application frameworks, code generation allows for the execution environment

to be separated from the environment which the domain specific task is described and compiled

in. So, even if a high level, sophisticated compiler framework is used for the domain specific task,

a relatively simple target can be used to execute the resulting implementation from generated

code.

The output from the implementation phase should be the means to execute programs which

conform to the DSL or application framework’s specification. What form this means takes

depends upon the nature of the application domain. It might be a software system, such as

an operating system service, that is capable of parsing a domain specific configuration so as to

control its behaviour, or it might be a compilation and run-time framework for transforming

domain specific task descriptions into standalone executables.

2.2.3. Domain Specific Heterogeneous Computing

While in the previous two subsections, I have looked at the concept of domain specific computing

with the assumed context of conventional, x86 computing. In this subsection I consider it when

applied to heterogeneous computing. There has been work by Brown et al [4] illustrating how

domain-specific methods may be used to make heterogeneous computing systems more accessible.
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Implementation Productivity
Improvement

(LoCGen
LoCDS

)

Performance
Improvement
(LatencyGen

LatencyDS
)

Contessa [34] 4.65x 1.94x
Green-Marl [36] 5.14x 5.43x

Delite [4] 1.28x 6.24x

Table 2.2.: Productivity and performance benefits of domain specific heterogeneous approaches
over general approaches. Productivity metric is Lines of Code (LoC), performance
metric is wall-time latency.

By providing a single means of expression and a unified run-time environment, the complexities

of interacting with di↵erent heterogeneous platforms can be obscured from the end user.

However, another important finding in recent years is that domain specific abstractions enable

improved performance over general approaches in the heterogeneous computing context [4, 34,

35, 36], as evidenced by three implementations detailed in Table 2.2. All three bodies of work

suggest improved performance is achieved through the limitations imposed by the domain. By

only having to focus on a limited subset of operations and dependency relationships, it is easier

for system to automatically extracting program features such as task and data parallelism, and

hence can provide an automatic, yet e�cient execution on a range of platforms.

The remainder of this section describes these three domain specific, heterogeneous computing

implementations:

Contessa

Contessa [34] is an external DSL for describing path-based Monte Carlo simulations that gener-

ates C++ for multicore CPUs and uses the Catapult high level synthesis tools from Calypto to

target FPGAs. The aim of Contessa is to allow for the high level, platform independent descrip-

tion of Monte Carlo simulation-based applications, but still achieve good performance upon the

platforms targeted. Contessa not only makes the inherent task and pipeline parallelism in Monte

Carlo simulations explicit, but also enforces a stricter functional programming approach without

overly inhibiting programmers. As a result, e�cient FPGA and multicore CPU implementations

can be generated from a Contessa description without programmer intervention.

Contessa is however limited in supporting only multicore CPUs and FPGAs, and is really only

focused on FPGAs. There is also no support for partitioning work between CPU and FPGA

resources, manually or automatically.

Green-Marl

Green-Marl [36] is an external DSL for graph analysis algorithms. The language attempts to

expose as much data-level parallelism as possible in the algorithms, through language constructs

for parallel graph operations as well as speculatively processing operations in parallel until

conflicts are detected. Additional architecture independent and dependent optimisations are

used to generate an e�cient implementation of the algorithm under consideration in C++.
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Figure 1. An environment for domain-specific programming of heterogeneous parallel architectures using language virtual-
ization.

(2) performance — leveraging domain knowledge to pro-
duce optimal code, and
(3) safety — domain programs are guaranteed to have cer-
tain properties implied by the DSL,
(4) while at the same time requiring only modestly more
effort than implementing a simple embedding. A subset of
these features has been achieved before — most notably by
Lisp, as much as 50 years ago. However, we believe we are
the first to provide all of them. Section 6 provides a de-
tailed comparison with related work. We discuss the means
to achieve all of these features at once in more detail in Sec-
tion 2.

There is a close analogy between language virtualiza-
tion and hardware virtualization using virtual machines. In
data-centers, it is often desirable to have a range of differ-
ently configured machines at one’s disposal (for provision-
ing, fault-tolerance, and isolation), but usually it is not feasi-
ble or even desirable to operate a corresponding number of
physical machines. Hardware virtualization solves this prob-
lem by embedding a number of specific virtual machines
on a general-purpose host machine. A key aspect of virtual
hardware resources is that they are practically indistinguish-
able from their real counterparts. We believe the same should
be true for an embedded DSL, in the sense that it should ex-
hibit the same expressiveness, performance and safety as if a
specialized language tool chain had been tailor-made for the
particular DSL.

This paper describes key elements of an ongoing ef-
fort to virtualize the language Scala [1] and how language
virtualization can be used in a domain-specific program-
ming environment for heterogeneous parallel computers.
The components of this environment are shown in Fig. 1.
The environment is composed of four main components:
Applications composed of multiple DSLs, DSLs (e.g. Liszt

and OptiML) embedded in Scala using language virtualiza-
tion, a Scala-based compiler infrastructure that can perform
domain-specific optimizations and a framework and runtime
for DSL parallelization and mapping to heterogeneous ar-
chitectures.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the notion of language virtualization in more
detail and discusses key elements of virtualizing Scala. The
next two sections describe how language virtualization can
be used to develop two very different DSLs. Section 3 intro-
duces Liszt, a DSL for scientific simulation that statically
generates parallel code in C++. Section 4 introduces Op-
tiML, a DSL for machine learning and data analysis. Sec-
tion 5 describes Delite, a framework that simplifies DSL par-
allelization. Section 6 presents the related work for parallel
programming, DSLs and language virtualization. Section 7
concludes.

2. Language Virtualization
We propose the following definition of language virtualiza-
tion to capture necessary conditions for a general purpose
language to serve as a successful embedding environment
for DSLs:

Definition. A programming language is virtualizable with
respect to a class of embedded languages if and only if it can
provide an environment to these embedded languages that
makes the embedded implementations essentially identical
to corresponding stand-alone language implementations in
terms of expressiveness, performance and safety—with only
modestly more effort than implementing the simplest possi-
ble complete embeddings.

Figure 2.3.: Overview of Delite System Architecture [4]

This work is of particular interest as graph theory is itself a common programming abstraction,

upon which a diverse range of applications such as data analytics, social network analysis and

bioinformatics may be mapped. The chief limitations of the work is that only multicore CPUs

are supported. It is also assumed that only one multicore CPU is being utilised, and hence there

is no support for partitioning of work.

Delite

Delite is di↵erent from the other two bodies of work, in that it is a framework that advocates the

use of language “virtualisation” in order to meet the productivity and performance requirements

of programmers, whilst making optimal use of heterogeneous computing resources [4, 37]. Delite

is both a framework for creating implicitly parallel internal DSLs as well as a dynamic run-time

for running applications created using such languages, as illustrated in Figure 2.3.

The strength of Delite framework is in the breadth of the experimental work undertaken

in three domains, Machine Learning, Data Querying and Graph Analysis. In all three cases

the framework has been able to deliver consistently better results than competing approaches.

However, the implementations have thus far has been confined to one multicore system with the

use of only one accelerator, a NVIDIA GPU. The run-time system does attempt to partition

and schedule work so as to maximise throughput, however it is only able to do so for sections

of the code that are amenable to static analysis.

2.3. Distributed Computing

The problem of distributing computational tasks to heterogeneous computing resources has been

widely studied for almost 40 years [38, 39, 40, 41, 42, 43, 44, 45, 46]. Starting with computing

grids located in specialist facilities to ad-hoc clusters created for the duration of hours using

IaaS computing infrastructure, the question of how to relate applications and resources with a

view towards e�cient execution has proved remarkably resilient to definitive solution.
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Figure 2.4.: Model for automating support of heterogeneous, distributed systems [38]

Braun [38] formulated a four stage process for automating support for distributed, heterogen-

eous computing, as provided in Figure 2.4. In this subsection, I consider di↵erent approaches

for Stages 2 and 3 within this process. Firstly, I consider how tasks and platforms should be

characterised so as to enable mapping. I then consider the challenge posed by mapping and

di↵erent approaches to addressing it.

2.3.1. Task and Platform Characterisation

Characterising the execution of tasks upon heterogeneous computing platform is comprised of

three interrelated activities:

1. Task Profiling: identifies the atomic (i.e. indivisible) tasks that comprises the current

application. These tasks can then be further qualified by performing analysis or profiling

of the task code. A key insight from Khokhar et al [39] is that profiling should determine

the parallel execution modes possible for the given task. An increasingly popular approach

is to get the programmer to make the parallel execution modes for tasks explicit, either

through a specially designed API [17] or by embedding this within the language itself [4].
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2. Analytic Platform Benchmarking: identifies the capabilities of the heterogeneous

computational platforms available. Another insight from Khockar et al [39] is that this

process mirrors what is occurring in the task profiling activity, i.e. detailing how well the

platform supports di↵erent parallel execution modes. A heterogeneous benchmark such

as Rodinia [47] could be used for this purpose, or a representative subset of the current

tasks, as used in Qilin [17].

3. Task-Platform Characterisation: synthesises the data from the two previous activ-

ities, which results in models of how the specified tasks will execute upon the available

resources. Grewe’s work [44] illustrates a sophisticated machine learning-based approach

for doing so. A platform modelling approach [48, 49] could be used to model the target

computing resources, and evaluate how the profiled tasks would execute upon it. Altern-

atively, Ardagna et al [50] show how measurements of the performance of the application

itself can be used to characterise the platform directly.

The characterisation activity is often not distinguished from partitioning of tasks upon the

platforms [17, 44], although there have been notable exceptions such as Kraft et al [51]. I

believe that maintaining this separation is useful, as demonstrated by the Roofline model [52],

as it allows for the quality of the characterisation activities to be evaluated independently from

the mapping approach that is being used. The experimentation undertaken with MODAClouds

[50] further illustrates how a modelling approach can be distinct from the mapping process.

2.3.2. The Mapping Problem

When considering the allocation of tasks to heterogeneous computing resources, the general

scenario considered in the literature, i.e. [40, 42, 44, 45, 46, 41, 53], is a set of ⌧ independent

or atomic tasks being partitioned across ⇢ heterogeneous platforms. It is assumed that a task

will occupy any of the computing resource completely if allocated to that resource for a period

of time known prior to execution. It is also commonly assumed that the partitioning is being

performed statically, in advance of the execution of any of the tasks. The objective is to minimise

the makespan, which is a single scaler value in this scenario.

The makespan is the latency (L) from when the first task is initiated until the last result

returned for the task set. As the tasks are being evaluated on multiple platforms, the makespan

is equivalent to the longest time it takes for any of the platforms to return the results of the

tasks allocated to it. In this context, the makespan is given by taking the maximum of platform

latencies, which is given by the sum of the tasks on each platform. The latency of each task upon

each platform is found by taking the element-wise or Hadamard product of the task allocation

(A) and task latency matrix (X). Hence the makespan can be expressed as a function of A and

X, i.e. F
L

(A,X), as defined below.

Minimising the makespan for tasks upon platforms with a priori knowledge or predictions

of the execution time of atomic tasks (X) is a well studied problem. As I show in (2.1), this
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problem can be expressed formally as a 0-1 or binary integer linear programming (ILP) problem.

Karp [54] famously demonstrated that binary ILP problems have NP-complete complexity.

minimise
A2{0,1}µ⇥⌧

F
L

(A,X) X 2 Rµ⇥⌧

+

subject to
µX

i=1

A
i,j

= 1 j = 1, 2, . . . , ⌧
(2.1)

where:

F
L

(A,X) = max((A �X) · 1)

However, in the above formulation, similar to the literature [40], only latency performance is

considered. Whilst latency is important, throughput, cost and computational quality measures

are orthogonal to it, and hence any mapping approach should provide programmers with the

means to balance these objectives.

Equation 2.2 includes these additional considerations as further constraints (T , C and Q for

throughput, cost and quality respectively) that have to be satisfied.

optimise
A2{0,1}µ⇥⌧

F
L

(A)

subject to
µX

i=1

A
i,j

= 1 j = 1, 2, . . . , ⌧

F
T

(A) = T T 2 R+

F
C

(A) = C C 2 R+

F
Q

(A) = Q Q 2 R+

(2.2)

2.3.3. Mapping Approaches

Surveying the literature, there are three suggested approaches to the mapping problem:

• Naive Heuristics [40, 42, 46, 55, 56]: a simple algorithmic rule is applied to allocate tasks to

the available resources. Under specified circumstances such a rule might achieve a provably

optimal allocation of tasks, and there is usually a worst case bound on the quality of the

solution relative to the optimal solution. Some heuristics require estimates of task runtime

in advance, whilst some do not [40].

• Machine Learning [44, 45, 57, 58]: a feasible task-platform allocation is improved using

global optimisation techniques such as the unconstrained simplex algorithm, simulated

annealing or genetic algorithms. As the optimisation problem is convex, at the worst

these techniques can confirm the quality of the starting solution. Such approaches require

estimates of task run-time to compute the objective function.

• Integer Linear Programming [41, 53, 59]: the optimisation problem formulated above can

be solved using ILP techniques, which in addition to applying the global optimisation

approaches as well as using a dual formulation of the problem to prove the optimality of
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the solution. Similar to the machine learning mapping approach, knowledge of the task

run-time is required.

2.4. Analysis

In conclusion, I consider my reading of the literature in terms of the key features that I argue

a domain specific approach enables for heterogeneous computing: portability, prediction and

partitioning

2.4.1. Portability

Abstraction and Modularity

The work on general purpose heterogeneous computing suggests that there has been significant

progress in supporting execution upon heterogeneous computing systems. Such work takes the

form of both proprietary tools, such as NVIDIA’s CUDA, and open tools such as Harmonic, as

well as tools that are platform specific, such as Vivado HLS, and those that support a wider

range of systems such as IBM’s Liquid Metal. Furthermore standards such OpenCL [14] and

frameworks such as Liquid Metal [1] suggest that its possible to execute the same task description

on multicore CPUs, GPUs and FPGAs.

Furthermore, there has been considerable research on the automatic mapping of tasks to

heterogeneous platforms, including the work of Luk et al [17], Braun et al [40], Grewe and

O’Boyle [44], Tarplee et al [53], Sajjapongse et al [55], Augonnet et al [57], Wang et al [58] and

Beaumont and Marchal [56] to name but a few. These works describe many di↵erent strategies

for mapping, including heuristic, machine learning and MILP-based approaches.

I build upon these tools, languages and standards to investigate how domain knowledge can be

applied task to platform mapping so as to achieve the super-linear performance scaling described

in Chapter 1. This means that any implementation e↵ort upon my part is in interfacing with

these tools, and this is a relevant design consideration. However, when building upon pre-existing

tools and standards, similar levels of performance should be achieved as to those reported in the

literature, comparable to those achieved by a programmer directly.

Hence, internal characteristics such as strong parallel scaling should exist as well as external

comparisons to hand tuned implementations upon the same or similar platforms.

The Practical Value of Semantics

The end user programming work by Nardi [28] highlights that careful delimitation of the ap-

plication domain can greatly reduce the functionality that has to be supported without overly

inhibiting programmers.

Nardi’s work also suggests that within a domain, the size of the subset of domain operations

supported is prone to the law of diminishing returns - as a heuristic, there are 10-15 high level

functions that are overwhelmingly used, and hence should be focused upon. The implications for

my dissertation are clear, that with careful definition of the application domain being considered,
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I can potentially address a useful subset of a domain while meeting the needs of a number of

domain programmers.

Another design consideration is the separation between the semantic model being considered

and the implementation produced. As there are few formal and complete definitions of applic-

ation domains, provided that I am clear on what is supported, I do not overly concern myself

with capturing all of the semantics of the domain.

Only Portable Performance

The existing work in domain specific, heterogeneous computing [4, 34, 36] makes for encouraging

reading, demonstrating good or better performance on a range of heterogeneous computing plat-

forms compared to the platform code produced by programmers. Hence, these three independent

bodies of work suggest that it is indeed possible to implement systems that translate domain

specific inputs into executions for heterogeneous computing systems.

However, these bodies of work generally focus on supporting e�cient execution, which suggests

that there is space to consider how domain specificity can be applied to the other challenges that

make heterogeneous computing inaccessible, such as workload partitioning. If domain program-

mers are able to execute domain specific tasks upon heterogeneous computing systems, they will

require support in making e�cient use of these resources. Beyond e�cient implementations, this

support requires a means to navigate the large design space that is enabled through multiple,

diverse computing systems.

2.4.2. Prediction

Task-Platform Characterisation Process

It is clear that characterising a task upon a platform is a complex problem, in that it is defined

by the interactions between the characteristics of both. As illustrated by the work on modelling

approaches [49, 51], a further consideration is the fidelity requirements of the prediction. In

many cases the prediction need not be perfectly accurate, but does need to be su�ciently close

to reality to allow decisions to be made upon its basis, such as deciding between two platforms.

Hence, for my work, I need a means for characterising tasks with respect to platforms that is

both repeatable and su�ciently accurate to achieve a useful end, such as super-linear perform-

ance scaling or helping programmers explore the heterogeneous computing design space.

Characterisation as a standalone activity

I found comprehensive literature describing the process of the characterisation of tasks upon

heterogeneous platforms, with examples including the ASPEN [49], Sniper [48], Rodinia [47]

and OP2 predictive modelling [60] work. This literature indicates that it is practically possible

to characterise the performance of heterogeneous platforms.

The MODACloud [50] and the VEX/JINE [61] work goes further, explicitly performing the

characterisation, but then using it in task mapping. Common is the specific characterisation of

a task or group of tasks upon a platform for some particular purposes, such as supporting the

claim that an implementation or platform is superior to others.
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By keeping the characterisation process distinct from the mapping process, I can assess the

characterisation process itself, and hence, qualify its potential impact upon the mapping process.

2.4.3. Partitioning

Preponderance of Heuristic Approaches

Generally heuristic approaches have been the most studied approach to partitioning work across

platforms. Braun’s comprehensive study [40] found that simpler heuristics achieve better results

than more complex ones for the general case. This suggests that the truly optimal approach

is case-specific, dependent upon the aforementioned complex dynamics between the task and

platforms concerned, and so the more specialised a partitioning approach, the more likely it is

to map better to certain configurations than others.

The well-founded heuristic approaches in the literature [40] suggest good starting points in

partitioning work between heterogeneous computing resources. However, as these approaches

are all founded upon human intuitions, they will invariably reflect human biases. An example

is the min-min heuristic, the best found by Braun, where the quality of result depends on the

ordering of tasks being considered. It is easy to assume that computational capabilities will

be consistent across the platforms being available as is required by this heuristic, however the

existence of super-linear performance scaling suggests otherwise.

Under-use of Integer Linear Programming

Integer Linear Programming appears to be an understudied approach although it is starting to

see some attention [53], previously applied being applied in environments of pressing resource

constraint [41, 59]. This lack of attention is likely due to the NP-hard complexity of integer

linear programs in general, and NP-complete in the binary case. Bixby’s retrospective work

[62, 63] on the considerable progress made in linear and integer programming over the past two

decades provides further insight as to why these approaches are underused. Until recently it

wouldn’t have been practical to use these approaches for partitioning problems of the scale of

practical workloads. A insight from Bixby is that if an external measurement of solution quality

exists, then a high quality solution that is not necessarily provably optimal can be derived in a

tractable time.

MILP optimisation provides a rich toolbox with which to tackle the mapping problem, which,

as the literature has shown, has proven itself resilient to resolution. If I seek to adopt such

an approach, then the non-deterministic property of these methods does need to be addressed.

This can be done by considering a suitably representative set of scenarios as well as its quality

against other approaches.
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3. Methodology

In this chapter I describe and motivate the methodology that fulfils my thesis that heterogeneous

computing can be made more accessible through a domain specific approach. I also outline the

criteria upon which I assess my methodology.

I explain this methodology in terms of the three features that I argue domain specificity

provides:

1. Portable Execution: by focusing on a handful of influential functions within a domain,

support for executing these functions across a wide range of platforms can be provided.

Beyond providing an intuitive abstraction for using heterogeneous platforms, my approach

can enable the optimal execution by drawing upon domain knowledge.

2. Predictive Modelling: automatic means for predicting quantitative characteristics or

metrics. These metric models thus allow for the design space of a particular task upon a

particular platform to be represented to the programmer in a domain form.

3. Partitioning of Workloads: functions for combining multiple task metrics upon one

platform, and multiple platform metrics to a single value. This enables the expression of

the partitioning of work as an optimisation problem with a single goal that is a unified

representation of all tasks and all platforms.

This methodology is iterative in the sense that each feature is dependent upon the proceeding

one. The first feature, portable execution, is based upon the concept of domain specific abstrac-

tion itself. As a result, the existence of each feature is itself evidence of the usefulness of the

feature upon which it builds.

In this chapter I describe this methodology in general terms, as well as two small example

domains, from the areas of image processing and linear algebra. In Part II, the Case Study, I

use the example domain of derivative pricing to illustrate and evaluate this methodology more

fully.

3.1. Portable Execution

In this section I describe how a domain specific approach can enable e�cient execution on a range

of heterogeneous architectures, without requiring additional e↵ort on the part of programmer,

beyond specifying the platform upon which the task should be executed. The key enabler of this

feature is provided by the domain specific abstraction: by limiting the operations allowed to a

small set, it is easier to implement uniform support upon a range of heterogeneous platforms.

I start by assuming that the domain semantic model exists, such as the derivative pricing

one that I detail in Section 4.2. I show how from the semantic model the domain data types
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Domains Image Filtering Linear Algebra Arithmetic

Data types Images, Kernels Matrices, Vectors, Scalar
Functions Apply Addition, Subtraction, Multiplication, Division

Table 3.1.: Domain data types and functions examples

and domain functions can be extracted. These types and functions are the concepts and cor-

responding syntactical constructs that the programmer can use to express their computation as

domain programs . I then describe the necessary supporting infrastructure for executing domain

programs on heterogeneous platforms. Finally, I expand upon how domain programs can be

formulated such that e�cient execution is ensured on heterogeneous platforms. These benefits

are derived from the dependencies between the domain data types that can be made explicit

in the data type definition, as a result of the parallelism that can be extracted from common

domain functions a priori.

3.1.1. Domain Data types and Functions

Domain data types and functions are the categories that I use to describe the implementations

of the abstractions defined in the domain’s semantic model. In object orientated terms, the

semantic model provides the prototypes for the data type and function classes. The distinction

between the two is a matter of semantic preference - I prefer to make the distinction between

data types, the attributes of the classes in the semantic model, and functions, the methods of the

classes, when describing the classes that comprise the domain. I find that this distinction mirrors

the noun-verb formulations of problems found in application domain terminology. However,

equally, an object-orientated class could be used to capture both data types along with the

functions (or methods, strictly speaking) associated with that data type.

For example, in the domain of filtering within the larger area of image processing, as given in

Table 3.1, two domain data types might be the image, the data structure to which filters may be

applied, as well as kernels, the data structure representing the weighting of the filter convolution

operation. A domain function would be apply, that takes both a kernel and an image as an

argument and returns a modified image, having performed the convolution of kernel and image.

Alternatively, a filter class might be defined that encapsulates both the kernel as attributes,

and apply as a method, The apply method takes an image class instance as an argument, and

returns a modified image instance.

A mathematical formulation of domain data types and functions is provided in (3.1). Where

a domain function (F ) defines a mapping from a set of domain data type inputs (P ) to a domain

data type result (R) . Both P and R belong to a larger set of domain data types (D).

F : P 7! R P,R 2 D. (3.1)

Domain Data types

Domain data types are the fundamental concepts within the application domain’s semantic

model, i.e. the conceptual information objects that are atomic in the sense that considering a
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finer level of granularity in isolation would be nonsensical in the domain context1. Compared to

general purpose primitive types, domain types are usually at a much higher level of abstraction.

For example, in the linear algebra arithmetic domain, matrices, vectors and scalar values would

all be examples of domain data types, as given in Table 3.1.

A useful feature of domain data types is that the relationships between di↵erent instances

can be made explicit in the type definition, captured in common patterns such as collection,

containment or producer-consumer. As I show later, such dependencies can then be used to

balance communication and computation statically. Continuing the linear algebra arithmetic

example, a system data type could be introduced that contains all the matrix, vector or scalar

instances that are going to be used in a given set of arithmetic of operations.

Domain Functions

Domain functions are transformations or operations that may be applied to domain data types,

that return a result that is meaningful in the context of the domain, i.e. another domain

data type instance2. In the arithmetic linear algebra, examples of domain functions would be

arithmetic operations such as addition, subtraction, multiplication and division as defined for

matrices, vectors and scalar types.

As the structure of the domain functions have to be predefined, multiple implementations of

the same function can be analysed in advance, and optimal configurations for di↵erent archi-

tectures may be found. This flexibility in the function definition also has benefits at run-time,

providing scope for the system to automatically modify a particular implementation safely,

without a↵ecting the correctness of the result. To borrow terminology from operations research,

the domain function definition clearly delineates the parameters of the function, the domain

data type input instances, which cannot be altered, and the variables, implementation variables

that can.

3.1.2. Supporting Infrastructure

While the previous section has described the application domain as it would be viewed by the

domain programmer, this subsection discusses the bridge between those domain abstractions and

actual implementation upon heterogeneous computing platforms. In doing so, I first consider

the means of expression, compilation framework, and the run-time flow required for a domain

specific approach. In this subsection, I am describing the second and third stages of the process

depicted in Figure 2.2, as adapted for heterogeneous computing.

The domain specific approach I propose is a black box application framework [30]. Beyond

using the data types and functions made available to them, the domain programmer has no

control over the implementation of the program that they have specified. In many contexts such

a limitation would either not noticed, or would be acceptable. By abstracting away much of the

control from the domain programmer, the system programmer, as described in Section 2.2.1,

is given greater freedom to imbue the system with the ability to implement e�cient execution

1For example, an integer value, representing the colour intensity of a pixel, would make sense in the image
processing domain, but arguably a standalone scalar value does not

2This does not exclude the existence of domain functions that take no inputs, for example operations that
generate data
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Listing 3.1: Example of image filtering external DSL, similar to Halide [64], applying a blur filter
without locality of execution defined

load source image inst from ’ f ab i o . jpg ’
k e rne l i n s t i s [ [ 1 / 9 , 1 / 9 , 1 / 9 ] , [ 1 / 9 , 1 / 9 , 1 / 9 ] , [ 1 / 9 , 1 / 9 , 1 / 9 ] ]
apply ke rne l i n s t to source image inst as dest image inst
save dest image inst as ’ f ab io b lur red . jpg ’

automatically. As I show in the next subsection, 3.1.3, this e�ciency comes from making use of

prior knowledge of both data type dependencies and the structure of the domain function.

As described in Section 2.2.2, the system programmer needs to make three design decisions

when implementing a domain specific, heterogeneous system: the syntactical form of the domain

specific program, the depth of the compilation process from program to executable, and finally

the nature of the executable.

An approach I don’t consider is the interpretation of domain programs’ source code as opposed

to compilation. Beyond multicore CPUs, any approach that would interpret domain programs

for execution upon heterogeneous platforms would require a precompiled library of significant

sophistication, beyond that which can be provided practically in most domains. A case in point

of this analysis is graphics domain programming for GPUs, which requires not only vendor-

provided operating systems drivers, but also widely adopted standards such as OpenGL.

Means of Expression

The first design choice that the system programmer must make is between using an external

or internal DSL, or an application framework as the means by which the domain programmer

implements their computation. In the context of heterogeneous computing, the system program-

mer must carefully delineate between what functionally will be supported upon heterogeneous

platforms versus what can be trivially implemented using a conventional programming environ-

ment. A further consideration is the degree to which this the locality of execution is transparent

to the domain programmer.

To use the example of image filtering, as given in Listing 3.1, the system programmer might

define an external DSL, similar to Halide [64], that in addition to the image and kernel data types

and the apply function, provides various support functions for loading, converting and saving

images from and to popular image file formats. It would be within reason (and prudent) for

the system developer to note in the documentation that the loading and conversion functions

are only supported on conventional CPUs3, but not define where the apply function will be

implemented, leaving it up to the domain specific system.

As a contrasting example, given in Listing 3.2, a linear algebra arithmetic application frame-

work, similar to BLAS [32], has been defined that provides platform specific domain data types

and functions.

3Not in the least because to do otherwise would enatil support for file systems on heterogeneous platform such
as GPUs and FPGAs, considerable research topics in their own right!
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Listing 3.2: Example of linear algebra arithmetic application framework in C, similar to BLAS
[32], performing vector-scalar multiplication upon a GPU.

vector t vec to r in s t = {5 , 1 , 2 , 3 , 4 , 5} ;
s ca l a r t s c a l a r i n s t = 2 . 0 ;
vector t r e s u l t = laa api gpu vsm(&vector inst ,& s c a l a r i n s t ) ;

Compilation (and Code generation):

The next choice for the system programmer is the depth and complexity of the compilation

process, as outlined in Section 2.2.2. The compilation must take the domain program and create

an executable that can run on the available computing resources. Considering the arithmetic

linear algebra code in Listing 3.2, even straight-forward vector-scalar multiplication could be

compiled into multiple, functionally equivalent codes based upon analysis of the input data.

For example, the domain specific system could detect whether the vector specified was of a

su�cient degree of sparsity to change from a dense algorithm to one which uses a compressed

data representation.

In the heterogeneous computing context, code generation is an attractive approach, as it allows

for a clear separation between the domain programming environment and the heterogeneous

implementation, allowing for arbitrary complexity in the former and the simplicity often required

by exotic platforms in the latter. In the code generation approach, code can generated from the

domain program in a form, such as OpenCL, that can then be used an input in a heterogeneous

platform compilation flow.

In Listing 3.3, generated OpenCL code for the blur filter function as per the DSL in Listing

3.1 is given. The code, that could be run upon multicore CPUs, GPUs or FPGAs, is simple. In

addition to using declared constant, all of the image loading, converting and saving is performed

in the host code, all image data has been reordered into contiguous elements in the input and

destination arrays.

Execution

Finally the compiled domain executable must be made available to the domain programmer.

This can either be as a standalone executable program binary that can be executed within a

conventional operating system environment, or from within the domain specific environment,

where the execution of the executable is managed by the domain specific heterogeneous system.

The latter is useful in obscuring low-level communication or configuration of heterogeneous

computing resources that must occur in advance or prior to execution.

For example, the linear algebra arithmetic framework in Listing 3.2 might require that an

appropriate header file is included in the required C code, and that an initialisation function is

called prior to use, and shutdown function after use, as given in Listing 3.4:

3.1.3. Using domain knowledge

This section describes how knowledge from the application domain can be used to make execution

upon heterogeneous platforms more e�cient without programmer intervention. First, I show
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Listing 3.3: Generated OpenCL code for image filtering blur example

ke rne l void image kernel apply (
const g l oba l f l o a t ⇤ source ,
const g l oba l i n t source width ;
const g l oba l f l o a t ⇤ kerne l ,
g l oba l f l o a t ⇤ dest
){
//Assuming ke rne l dimension N has been de f in ed at compi la t ion
i n t i ;

// f i nd i n g the upper corner o f the f i l t e r window
in t x = get g lobal id (0 ) + N/2 ;
i n t y = get g lobal id (1 ) + N/2 ;

i n t start x = x � N/2 ;
i n t start y = y � N/2 ;

// computing the r e s u l t
f l o a t r e s u l t = 0 ;
KERNEL:

f o r ( i =0; i < N; ++i )
f o r ( j =0; j < N; ++j )

r e s u l t +=
ke rne l [ i ⇤ N + j ] ⇤
source [ ( start x+i ) ⇤ N + start y + j ] ;

// outputt ing the r e s u l t
des t [ x ⇤ source width + y ] = r e s u l t ;

}

Listing 3.4: Example of full linear algebra arithmetic application framework program in C

#inc lude ” laa api gpu . h” // Linear Algerbra Arithmet ic GPU Library

i n t main ( void ){
laa api gpu init ( ) ; // dev i c e i n i t i a l i s a t i o n

vector t vec to r in s t = {5 , 1 , 2 , 3 , 4 , 5} ;
s ca l a r t s c a l a r i n s t = 2 . 0 ;

//GPU vector�s c a l a r mul t ip ly
vector t r e s u l t = laa api gpu vsm(&vector inst ,& s c a l a r i n s t ) ;

f r e e ( vec to r in s t ) ;
laa api gpu shutdown ( ) ; // dev i c e shutdown
return 0 ;

}
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how the domain data types can be defined to make dependencies explicit, and hence make it

easier to balance computation and communication. I then show how task, data and pipeline

parallelism, can be extracted from function structure ahead of execution.

Relationships between data types

One of the challenges in large scale, parallel heterogeneous computing is balancing the time spent

performing computational operations versus time spent communicating data to and from the

computational platforms within the system [65]. Ideally, communication must be localised, so as

little time as possible is spent performing the communication, and regularised, so computations

can be scheduled to make the most e�cient use of the computational platforms.

As mentioned in Section 3.1.1, the definition of domain data types can aid in this balancing by

making the relationships between data type instances a defined property. This means that in the

worst case, the memory bandwidth of the computation will be the fastest memory resource that

can accommodate the related data type instances. At a finer granularity, such information could

be used to improve the e�ciency of the memory hierarchies of the heterogeneous platforms.

For example, in the image filtering case, an image instance might have a filter instance as-

sociated with it, which the domain specific system could use to infer that the two should be

collocated in the memory of a platform. At the finer level, as can be seen in Listing 3.3, the

system can preload the kernel instance many times into local e�cient, constant memories on

massively parallel platforms, whilst “chunking” the image instance according to the size of the

kernel, and storing it in a more convenient form in global memory.

Function Structure

As the structure of domain functions is known in advance, the parallelism in these functions can

be identified and used in the heterogeneous implementations. As many heterogeneous platforms,

such as GPUs and FPGAs, have considerable parallel compute capability, functions in a form

suitable for parallel execution can take advantage of this.

The domain functions can be in a parallel form because if the result returned matches that

which is specified in the semantic model, the system is free to implement these operations in

whichever form is most e�cient. The three forms of parallelism I consider are task and data

parallelism, and pipeline parallelism.

Task Parallelism or Multiple Instruction, Multiple Data (MIMD) [66] is achieved by per-

forming multiple tasks in parallel, i.e. at the same absolute time. As the structure of domain

functions are known in advance, opportunities for task parallelism can be identified, and the

compilation and run-time environments can be configured to exploit this. Exploiting task par-

allelism is widespread, thanks to the popularity of software libraries such as OpenMP [67],

Pthreads [68] and Threaded Building Blocks [69].

For example, the arithmetic linear algebra domain is rich with opportunities for parallel

execution. Due to the linear nature of arithmetic operations, all independent arithmetic terms

could be computed in parallel. Listing 3.5 gives an OpenCL kernel for the GPU vector scalar

multiply API function used in Listing 3.4. This kernel could be executed in a task parallel fashion
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Listing 3.5: OpenCL kernel code for vector scalar multiply example

ke rne l void laa api gpu vsm kernel (
const f l o a t ⇤ vector ,
const f l o a t s ca l a r ,
g l oba l f l o a t ⇤ r e s u l t
){
i n t i = get g lobal id ( 0 ) ;

// Sca l i ng t h i s p a r t i c u l a r vec to r va lue
r e s u l t [ i ] = vec to r [ i ] ⇤ s c a l a r ;

}

by specifying multiple work-groups within the global work-set. The result of specifying multiple

work-groups on a multicore CPU system would result in each core of the CPU performing batches

of scalar-vector element multiplies. Within each core, the multiplies allocated to it would be

performed sequentially.

Data Parallelism or Single Instruction, Multiple Data (SIMD) [66] is achieved by performing

the same operation upon multiple instances of data. Similar to task parallelism, as the structure

of domain functions is known a priori, opportunities for data parallelism can be made explicit

to the compilation and run-time systems.

For example, keeping with the arithmetic linear algebra domain, each vector arithmetic opera-

tion is itself composed of many, identical scalar arithmetic operations. In OpenCL, the example

in Listing 3.5 could be executed in a data parallel fashion by specifying the work-groups, such

that there are multiple work-items within each work-group. In a GPU, unlike the multicore

CPU in the previous example, multiple work-items in a work-group could be evaluated at the

same time, by applying the same operation to multiple elements in a lock-step fashion.

Pipeline Parallelism is achieved by multiple elements in a dataflow working in parallel,

upon di↵erent stages of the computation. Domain specific approaches are well suited to expos-

ing pipeline parallelism, as by knowing the structure of functions in advance, as well as knowing

about the dependency relationships between data instances, the schedule of pipeline elements

can often be predicted in advance4. Execution environments can take advantage of this by max-

imising the use of the available resources. A key consideration in exploiting pipeline parallelism

is ensuring that there is adequate memory resources bu↵ering between pipeline stages so that

pipeline stages performed at di↵erent rates do not become stalled by a bottleneck in the pipeline.

For example, in the image filtering case, a computational pipeline could be built by unrolling

the KERNEL loop defined in Listing 3.3, with a stage for each weight in the kernel. The data

in the image could then be “streamed” through the computational pipeline, with each cycle

resulting in a new result for the filter operation.

4The use of the dataflow paradigm in OpenSPL [15] is for the same reason.
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3.1.4. Portability Criteria

To prove the property of portable, e�cient execution, I first need to provide implementations

across a wide range of diverse architectures, for example multicore CPUs, GPUs and FPGAs,

to suggest that the domain abstraction can easily enable heterogeneous execution. Secondly, I

need to demonstrate that these implementations are e�cient, using evidence from the platform

run-time, as well as comparisons with external, expert programmer implementations.

A consideration in evaluating this feature is that its contribution is not novel, as described

in Section 2.4.1. In addition to the work described in this dissertation, this portable execution

feature has been demonstrated in practice by the work described in Section 2.2.3.

3.2. Prediction of Run-time Characteristics

While the previous section addressed how a domain specific abstraction can enable portable,

e�cient execution upon heterogeneous platforms, in this section I consider the nature of that

execution. In the same way that domain specific abstractions exist for computations, I assert that

application domains also provide abstractions for measures of quality or domain metrics. These

metrics qualify the domain data type result from the computation, in measures of performance

and quality using domain terminology.

While (3.1) presented the domain function completely abstracted from execution context, in

(3.2) I introduce the context: a domain function (F ) defines a mapping from domain data type

parameters (P ) and implementation variables (V ) inputs to domain data type results (R) and

domain metric outputs (M).

V is in the implementation variable set (V). V includes all non-domain values which determine

how F is implemented on a particular platform, for example algorithmic parameters which have

no meaning in the domain context.

M is in the domain metric set (M). M is the values which qualify R in quantified measure-

ments of performance and quality that have meaning in the domain.

F : (P, V ) 7! (R,M) V 2 V, M 2 M, P,R 2 D. (3.2)

While P is the input as specified by the domain programmer, and R the output that they

seek, M is of interest to the domain programmer, as it relates R with respect to F . The values

of M are the result of the interaction of the parameters specified by the domain programmer, P ,

and V which can be specified by domain programmer, or as I propose, by the domain specific

system.

The capability to predict domain metrics is the second feature of the domain specific approach,

as it allows for the useful characterisation of heterogeneous platforms. By useful characterisa-

tion, I that the domain specific approach enables predictive modelling of the metrics of domain

functions. Such a characterisation is useful as it allows for the comparison of di↵erent platform

implementations before execution. This characterisation is a natural extension of the previ-
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ous, portability feature, which provided domain specific abstractions for task execution, this

prediction feature provides a domain specific abstraction for task execution on platforms.

The domain specific characterisation relates tasks, as represented by the domain data types

and functions, and platforms in terms of the domain abstraction. Furthermore, by modelling the

task-platform relationship that results from varying implementation-specific variables in domain

metrics, a computational design space can be made accessible to the domain programmer. I argue

that the relationship between implementation variables, as represented by domain metrics, is

best represented as a Pareto surface. This Pareto surface captures the design space trade-o↵s

that exist for a particular task upon a platform. Providing such a representation allows domain

programmers to balance their objectives for themselves, instead of the status quo, where the

balance is determined on the whim of the system programmer.

I outline this prediction feature by first describing the nature of the domain specific task-

platform design space, as defined by the implementation variables. I then show how general

models that relate the inputs to domain functions to domain metric values can be found. Finally

I describe how the general models for domain functions can be specialised to specific domain

program-platform instances.

3.2.1. Domain Parameters, Implementation Variables and the Design Space

As given in (3.2), (P 2 D) and (V 2 V) contain all possible inputs to the domain function. As

described in the previous subsection, from the perspective of the domain specific system, the

values of P are immutable parameters.

For example, in Listing 3.3, if the system was to change the values of the kernel weights in

any way, the result would be invalidated. However, in the OpenCL kernel code in Listing 3.6, a

compiler definition option, PRIVATE MEMORY, has been added that instructs the OpenCL

compiler to use private memory resources to be used in a pixel calculation. From the perspective

of the domain programmer, the result, R, will be the same if this option is used or not. Hence, the

private memory option is an implementation variable, as it could be modified without a↵ecting

the domain result. This illustrates the key property of implementation variables - these variables

do not have to be visible or mutable by the domain programmer.

This definition implies that the domain parameters, P , and by extension, the domain abstrac-

tion, provide a definition of correctness for the domain function. Hence, P provides a means

to partition all possible inputs into the domain functions, F , into valid and invalid inputs. All

valid inputs to F must contain P , i.e. P with any V defines the domain design space. This

definition is immediately useful, as it opens the door to automated exploration of the domain

design space.

At its simplest, a system could explore all of the members of V, and then select the implement-

ation that achieves the goals of the system programmer, or the presumed goals of the domain

programmer. However, even with a modest number of implementation variables with reasonable

bounds, such a ’brute force’ enumeration of the design space quickly falls prey to the curse of

dimensionality.
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Listing 3.6: Generated OpenCL code for image filtering blur example

ke rne l void image kernel apply (
const g l oba l f l o a t ⇤ source ,
const g l oba l i n t source width ;
const g l oba l f l o a t ⇤ kerne l ,
g l oba l f l o a t ⇤ dest
){
//Assuming ke rne l dimension N has been de f in ed at compi la t ion
i n t i ;
i n t x = get g lobal id (0 ) + N/2 ;
i n t y = get g lobal id (1 ) + N/2 ;

// Finding the upper corner o f the f i l t e r window
in t start x = x � N/2 ;
i n t start y = y � N/2 ;

f l o a t r e s u l t = 0 ;

#i f d e f PRIVATE MEMORY
//Copying source to p r i va t e memory
f l o a t p source [N⇤N] ;
KERNEL:

f o r ( i =0; i < N/2 ; ++i )
f o r ( j =0; j < N/2 ; ++j )

p source [ i ⇤ N + j ] = source [ ( start x+i ) ⇤ N + start y + j ]

// computing the r e s u l t us ing p r i va t e memory
f o r ( i =0; i < N⇤N; ++i )

r e s u l t += ke rne l [ i ] ⇤ p source [ i ]

#e l s e
// computing the r e s u l t
KERNEL:

f o r ( i =0; i < N; ++i )
f o r ( j =0; j < N; ++j )

r e s u l t +=
ke rne l [ i ⇤ N + j ] ⇤ source [ ( start x+i ) ⇤ N + start y + j ]

#end i f

// outputt ing the r e s u l t
des t [ x ⇤ source width + y ] = r e s u l t ;

}
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Domains Image Filtering Linear Algebra Arithmetic

Latency Seconds Seconds

Throughput Images
Second

Matrices
Second

Quality Decibels Unit of Least Precision

Resource Use Images
$

Vectors
$

Table 3.2.: Domain metric unit examples for image filtering and linear algebra arithmetic do-
mains, using the data types given in Table 3.1.

3.2.2. Domain Metrics and Pareto Optimality

Domain Metrics

The previous subsection defined the design space of the domain function, but for this space to

have meaning to the domain programmer, a means to describe the space in terms of the domain

is required. Domain metrics provide such a means, using a measure of the achievement of a goal

commonly held within the domain. These domain metrics fall into one of four categories:

• Latency - the absolute time between task initiation and completion.

• Throughput - the average rate at which tasks are completed.

• Quality - the measurable degree to which a task achieves the goal of the domain program.

• Resource Use - the degree to which the task is using the available resources.

In Table 3.2, an example of a unit for each category of metric is given for the example domains

of image filtering and linear algebra arithmetic. To find the computational design space for a

task within an application domain, without using a brute force exploration, a model is required

for the mapping of the task implementation variables to domain metrics on the target platform.

To show how models for domain metrics can be found, in (3.4), I have repeated (3.2)’s formu-

lation, but with domain metric outputs (M) in addition to the domain data type output (R).

Furthermore, the input and outputs sets have been defined in (3.3) as real-valued vectors, as

would mostly likely be the case in practice.

P = Rp, V = Rv, M = Rm, R = Rr, (3.3)

In (3.4), I show the mapping of p domain parameter and v variable inputs to r domain result

and m domain metric outputs, where ~F is the vector form of the domain function, (~P , ~V ) the

inputs and (~R, ~M) the output value vectors. ~F is composed of at least m projection functions,

f
k

, each of which map (~P , ~V ) inputs to a single metric value. To model the metric outputs of
~F , models for f

k

need to be found.

~F = (f1, f2, · · · , fm) : (~P , ~V ) 7! (~R, ~M) ~P 2 P, ~V 2 V, ~M 2 M, ~R 2 R,

f
k

(~P , ~V ) = M
k

k = 1, 2, . . . ,m.
(3.4)

(3.2) captures the functional description of the domain task, i.e. how it maps the domain

data types inputs in outputs. (3.4) goes beyond this, providing a contextualised description of
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Figure 3.1.: Diagrammatic representation of Pareto Optimality in the context of the domain
specific methodology. This case assumes it is desirable to minimise both metrics.

the domain task. By contextualised, I mean that the additional domain metrics outputs qualify

the results of the computation, providing the domain programmer with additional information.

This provides the relationship between the domain task and the computing platform being used

to perform it.

As the application domain identifies in advance those domain functions which are dispropor-

tionately used, as described in Section 2.4.1, hence a model function for mapping ~P , ~V to ~M of

those key domain functions can be found prior to execution. Thus the model (~F ) for the most

important functions in a domain can be found in advance.

Using Metrics to define Pareto Optimality

As domain metrics provide the means to characterise implementation in domain terms, in (3.5)

I define that the set of implementation variables can be partitioned into two disjoint subsets,

Pareto optimal (V
p

) and non-Pareto optimal (V
n

) input values.

V = V
n

[ V
p

V
n

\ V
p

= ;. (3.5)

I have defined V
p

in (3.6) and illustrated it in Figure 3.1. I define Pareto optimal implement-

ation variables as those that optimise at least a single value of M , as defined in the domain. V
np

defines all of those inputs which do not. While V constitutes the domain design space, V
p

is the

Pareto optimal design surface.

8~x 2 V
p

8~y 2 V � ~x 9k 2 1, 2, . . . ,m f
k

(~x) � f
k

(~y) (3.6)

To illustrate how domain metrics allow for the Pareto optimal implementation variables to be

found, I return to the vector scalar multiply example. In Listing 3.7 a functionally equivalent

kernel to Listing 3.5 is given. However an additional implementation variable, CHUNK, has been

specified, defining the number of elements that should be evaluated within each OpenCL work-
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Listing 3.7: Generated OpenCL code for vector scalar multiply example

ke rne l void laa api gpu vsm kernel (
const f l o a t ⇤ vector ,
const f l o a t s ca l a r ,
g l oba l f l o a t ⇤ r e s u l t
){
i n t i = get g lobal id (0)⇤CHUNK, j ;
f l o a t p vector [CHUNK] , p resu l t [CHUNK] ;

//Copying data to the dev i c e ’ s p r i va t e memory
f l o a t p sca lar = s c a l a r ;
f o r ( j =0; j<CHUNK;++j )

p vector [ j ] = vec to r [ i+j ] ;

//Performing the computation
f o r ( j =0; j<CHUNK;++j )

p resu l t [ j ] = p vector [ j ]⇤ p scalar ;

//Writing the r e s u l t
f o r ( j =0; j<CHUNK;++j )

r e s u l t [ i+j ] = p resu l t [ j ] ;
}

item. In addition to allowing the overhead per work-item being amortised over multiple vector

elements, there might be a performance benefit in grouping global memory accesses together5.

However, if a large enough chunk size is specified, lower cache hit rates might occur, and hence

increase the latency of memory accesses.

Hence, a potential latency model as a function of CHUNK size is given in (3.7). The model

function (f̃
l

) is parabolic in nature, reflecting the second order e↵ect of caching on latency, with

the value of CHUNK (N
C

) that gives the minimum a member of the Pareto optimal domain

variable set (V
p

). ↵, � and � are constants that reflect the vector size and various platform

characteristics. The model also assumes the size of the vector in question will be much greater

than N
C

.

f̃
L

(N
C

) = ↵(� �N
C

)2 + � (3.7)

The domain knowledge of what metrics matter, and hence should be modelled, is of crucial

importance in exploiting heterogeneous computing resources. The e↵ort of doing so is returned

with interest, as domain metrics provide an intuitive way of understanding heterogeneous plat-

forms for the domain user. By creating models of the relationships between domain metrics as

achieved through di↵erent configurations, the achievable design space is provided in a form that

the domain user both understands and can reason about in light of their own objectives.

5Many compilers will transform the first and third loops into a single memory access
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3.2.3. Implementing Domain Metric Models

Identifying

The formalism described in Section 3.2.2 helps identify the criteria for potential model functions,

however for each domain function there are an infinite number of possible metric model functions.

Similar to providing platform-specific implementations of disproportionately used functions, in

this methodology I require the system programmer to find appropriate domain metric models.

When identifying metric models, I found Occam’s Razor to be a useful heuristic, and hence

I always opted for the simplest possible polynomial model that was able to predict the metric

value for the domain function as a function of the implementation variables.

Populating

As the structure of ~F is deterministic, an online benchmarking approach can be used to gather

data for input into a weighted least squares regression. Weighted least squares can then be

used to solve for the task and platform-specific metric model coe�cients. I propose a three step

process for populating domain metric models that will represent the design space:

1. Benchmarking - a subset, B 2 V, of the implementation variables are executed and the

domain metrics that are to be modelled, are measured. The result of this benchmarking for

the vector case is a tuple of implementation variables and metric values, i.e. (Rb⇥v,Rb⇥m),

where b is the number of values in B. The length of benchmarking activity would be

determined by a heuristic value of what is “reasonable” to the domain programmer, such

as a few minutes.

2. Solving - once the initial subset of the task has been completed, the results can be used

to solve for domain metric model coe�cients using weighted least squares regression. A

regression technique is useful in this context, as it is able to not only accommodates natural

degrees of uncertainty that arises in any complex system, but also can compensate to some

degree for the error within the structure of the model itself.

3. Prediction - after the model coe�cients have been found, the algebraic models can predict

the domain metrics as determined by the implementation variables. These algebraic models

could be used to create representations of the metrics that the domain programmer may

interact with. I believe that a Pareto curve or surface is a natural representation of this

information, as it would allow the domain programmer to trade between various metrics

using graphical interfaces.

It should be remembered that this process is in aid of guiding the domain programmer - if a

prediction turns out to diverge strongly from reality, the system could always halt execution and

inform the programmer of this. Furthermore, as the problem execution is underway, the metric

model could be updated, providing more accurate feedback to the domain programmer.

3.2.4. Predictability Criteria

To provide useful predictions as described in Section 2.4.2, I suggest that a domain metric model

needs to have two properties:

62



Incorporation : when provided with additional data points, i.e. a larger b, the predictions

made by the models of domain metrics should converge on the true value of the domain metric

that the model is predicting.

I have defined the relative error of a prediction in (3.8), where r
k

is the relative error for domain

metric k, f
k

is the value of the metric as measured by the domain specific implementation and

f̃
k

is the metric model.

r
k

=
|f

k

(~P , ~V )� ˜f
k,b

(~V )|
f
k

(~P , ~V )
(3.8)

I have given the convergence criteria in (3.9), where the benchmarking set converges on the

set of all possible implementation variables, the relative error converges on a small, constant

relative prediction error (✏
k

), which reflects the small di↵erence between the model and the

actual implementation.

lim
B!V

r
k

! ✏
k

(3.9)

Extrapolation : for a finite amount of benchmarking, the models should be able to make

predictions close to ✏
k

for implementation variable values a considerable distance from those

used in the benchmarking set. Heuristically, I have found prediction models need to be able to

extrapolate for order of magnitude or greater di↵erence, with an increase of error less than an

order of magnitude in scale, given a starting r
k

< 0.1.

3.3. Partitioning of workloads

While the characterisation described in the previous subsection is useful when considering how to

use particular heterogeneous platforms in isolation or when selecting a platform exclusively from

an array of platforms, it is less helpful when faced with a cluster of heterogeneous computing

resources that can be used cooperatively.

In this subsection, I address the third feature of the domain specific approach - e�cient

workload partitioning. I show how multiple domain metric model functions can be combined so

as to create a unified design space. I then introduce the key conceptual tool: the expression of

the distribution of work as an optimisation problem using the metric models.

I first generalise the makespan minimisation problem from Section 2.3.2, integrating it with

formalism developed earlier in this chapter. I then show how information from the domain

can be used to increase the degree of distributed, parallel execution of domain tasks. Finally I

describe how multiple metrics can be optimised, so that the domain specific Pareto surface may

be found.

3.3.1. Generalising the Allocation Problem

I begin by deriving the general allocation problem from the makespan minimisation problem as

described in Section 2.3.2. I can generalise this problem, making use of the notion of domain

metric models given in (3.4) and the domain Pareto optimal implementation variables, as given
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in (3.5). I assume that the Pareto optimal variables ~V
p

for each of the µ platforms are already

known or can be easily approximated for each of the ⌧ tasks6.

In (3.10) I seek an allocation (A) so that I optimise the metric k for all tasks, as projected by

the task and platform reduction functions (~F
k

) and G
k

(A,Pp)) into a scalar value. The binary

elements of A indicate whether a task has been assigned to a particular platform, i.e. if A
i,j

= 1,

then task j has been assigned to platform i. Domain metric models can then be used to find

the metric values for the assigned task-platform pairs.

However, to optimise a single metric using the allocation, a means for projecting the metric

values to a single scalar value is required. Hence, I have introduced two reduction functions,

G
k

and ~F
k

that play a vital role in enabling this formulation. Firstly, the task reduction (~F
k

)

reduces the metric values for multiple tasks upon multiple platforms to a single metric value

per platform. Then, the platform reduction function (G
k

) reduces the metric values for multiple

platforms to a single scalar value. The nature of the projection being performed by these

functions would be defined within the domain, for each metric. For example, in the case of the

makespan, the task reduction function would sum the platform’s tasks’ latencies together, while

the platform reduction function would find the platform with the greatest latency.

optimise
A2{0,1}µ⇥⌧

G
k

(~F
k

(A,Vp)) Vp 2 Rµ⇥⌧⇥v,

subject to
µX

i=1

A
i,j

= 1 j = 1, 2, . . . , ⌧.
(3.10)

where:

G
k

: ~M
k

7! M
k

,

~F
k

: (A,Vp) 7! ~M
k

.

For example for a workload of vector scalar multiplication tasks with the chunking implement-

ation variable(N
c

), as described in the Section 3.2.2, the platform and task reduction functions

for the latency function are given in (3.11), using the hypothetical metric model proposed in

(3.7).

G
L

(~F
L

(A,N
C

)) = max(~F
L

(A,NC)), N
C

2 Zµ⇥⌧

~F
L

(A,N
C

) = (A � (↵(� �N
C

)2 + �)) · 1.
(3.11)

3.3.2. Splitting the Atomicity of Tasks

Similar to heterogeneous execution and characterisation features, knowledge from the application

domain can help find an e�cient solution to the allocation problem. As the structure of domain

functions is known a priori, the degree of parallelism within a task is known. As a result,

partitioning approaches can incorporate this information so that a task can be divided into

subtasks while still providing a correct result.

6I recognise that this is a rather dramatic assumption, however the area of autotuning, of finding optimal
implementation variables automatically, is showing much promise. The work of Wang [70], Tournavatis [71]
and others suggests automated means for finding implementation variables.
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Making parallelism explicit enables a greater degree of work sharing between distributed

computing resources, as discussed in Section 2.3. If the degree of parallelism is su�ciently large,

i.e. the tasks are “embarrassingly parallel” in nature [65], the elements of the allocation matrix,

A, can be “relaxed” to be real-valued and the problem becomes linear, and hence more tractable,

as expressed in (3.12).

optimise
A2Rµ⇥⌧

+

G
k

(A,Vp) Vp 2 Rµ⇥⌧⇥v,

subject to
µX

i=1

A
i,j

= 1 j = 1, 2, . . . , ⌧.

(3.12)

Such a relaxation would be appropriate in vector scalar multiply example - the degree of

allocation would translate to the number of elements that were being processed on a particular

platform. For example, if A0,1 = 0.5, the half of the elements in task 1 would be processed on

platform 0.

In (3.13) I have given a vector of values for the latency model in the task reduction (3.11). In

this example, a single task is being partitioned between two platforms.

~F
L

(A,N
C

) = (A � [ 1 3 ]) · 1 (3.13)

In (3.14), the optimal allocation is given if A is only allowed to be binary valued.

A = [ 1 0 ]

) ~F
L

(A,N
C

) = ([ 1 0 ] � [ 1 3 ]) · 1
~F
L

(A,N
C

) = [ 1 0 ] · 1

) G
L

(~F
L

(A,N
C

)) = 1

(3.14)

In (3.15), the optimal allocation is given if A is allowed to be relaxed to be real valued.

A = [ 0.75 0.25 ]

) ~F
L

(A,N
C

) = ([ 0.75 0.25 ] � [ 1 3 ]) · 1
~F
L

(A,N
C

) = [ 0.75 0.75 ] · 1

) G
L

(~F
L

(A,N
C

)) = 0.75

(3.15)

As can be seen with lower latency value achieved in the relaxed case, by allowing the task to

be split over multiple platforms, a better metric value can be achieved by using computational

resources cooperatively as opposed to exclusively.

However, it is possible that a multiple platform allocation might result in worse performance

for another metric, as discussed in Section 2.3.2, for example the energy consumed for the

computation, as now two platforms are required instead of only one. I address this concern in

the next subsection.
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3.3.3. Multimetric Pareto Spaces

As the metrics under consideration are also known a priori, additional constraints may be added

to the optimisation program for every other metric being considered besides k, in this case n, as

given in (3.16). This program requires that the allocation also satisfies all of the metric values

specified in addition to optimising M
k

.

optimise
A2Rµ⇥⌧

+

G
k

(~F
k

(A,Vp)) Vp 2 Rµ⇥⌧⇥v,

subject to
µX

i=1

A
i,j

= 1 j = 1, 2, . . . , ⌧,

G
n

(~F
n

(A,Vp)) = M
n

n = [1, 2, . . . ,m]� k.

(3.16)

Multiple instances of the multimetric optimisation program given in (3.16) can be used to

generate the domain Pareto surface, representing the combination of the heterogeneous com-

puting resources in terms of the domain metrics. For this surface to be populated, a range of

metric values are required for all metrics that satisfy the program. This ranges of metrics can

be found using the ✏-constraint method, as described by Kirlik and Sayın [72].

3.3.4. Partitionability Criteria

For the feature that the domain specific approach enables optimal partitioning of tasks to proved,

a viable means for solving these optimisation problems must be found amongst the approaches

described in Section 2.3.3 .

To be viable, a partitioner would firstly need to produce an allocation that obeys all of the

constraints, and secondly do so for a cost, whether in latency or in terms of resources, that is

less than that of a substantial task workload. Similar to the extrapolation criteria for domain

metric models, this criteria is heuristic.

To be optimal, a partitioner should produce an allocation that is Pareto optimal, i.e. any

change to the allocation will result in a worse value for at least one of the metrics

3.4. Methodology Conclusion

In this chapter, I have described a domain specific methodology for heterogeneous comput-

ing for implementations with three features: portability, predictability and partitionability. I

have described and illustrated these features using examples from the domain of linear algebra

arithmetic and image filtering, whilst drawing upon the literature, as summarised in Section 2.4.

In my description of the features I have motivated why the domain specificity of the task

description enables the features, as well laid out criteria by which the existence of the these

features may be assessed.

In the next Part of this dissertation, I evaluate the proposed methodology using a case study

from the domain of computational finance, using the criteria laid out in Sections 3.1.4, 3.2.4 and

3.3.4.
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Part II.

The Case Study:

Derivatives Pricing
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4. The Derivatives Pricing Domain

In first part of this dissertation I have provided the background to my thesis that domain

specificity can provide the three features of portability, prediction and partitioning for hetero-

geneous computing systems. In the Literature Review, I described the current state of the art

in heterogeneous, domain specific and distributed computing, and how these fields inform this

thesis. Building upon the observations in the Literature Review, I proposed a methodology in

Chapter 3, formulating a domain specific approach to heterogeneous computing, so as to achieve

the three features. In this Part, I apply my proposed methodology to a detailed case study so

as to demonstrate it in practice, as well as evaluating its validity.

However, before considering the three features of my methodology in practice, in this chapter

I define the domain of derivatives pricing, in the larger area of computational finance that I will

use as an example application domain in my case study. I motivate and describe the background

to the derivatives pricing domain. I then provide the domain’s semantic model, as described in

Section 2.2.2, describing its types and functions, that will be used as inputs into the methodology

described in Chapter 3.

4.1. Computational Finance Background

Complex financial products such as derivatives are widely used in modern commerce, accounting

for more than $63 trillion of active financial products today [73, 74]. Derivatives allow for sources

of uncertainty to be quantified and accounted for as risk, helping to ease the movement of capital

throughout the globalised economy. These instruments do however pose technical challenges,

including the computationally intensive task of finding a value for these risk management vehicles

[74]. Option contracts in particular o↵er a considerable challenge, making a degree of intuitive

sense while evading elegant mathematical description.

Over the last eight years the disconnect between how these products’ risk is quantitatively

evaluated, and the uncertainty the products are meant to reflect has been widely held to be

a driver of the Global Financial Crisis of 2008 [75]. In response to the growing consensus on

this disconnection, increasingly regulators1 require that these products are valued in a more

coherent and systematic manner. Financial engineers, the domain programmers who undertake

this pricing, are typically highly knowledgeable of the intricacies of their domain, but usually

not in the computational implementation thereof.

Hence, derivatives pricing is an application domain that has need of heterogeneous HPC but

whose domain programmers don’t necessarily have the knowledge to make use of it. Hence, I

have chosen to use it as a representative case study while answering the dissertation’s research

questions. This section provides the theoretical background to derivatives pricing tasks and

1and common sense

68



Time
Pr

ic
e

Payoff

Strike Price

Spot Price

Expiration 
Time

Figure 4.1.: Diagrammatic overview of option valuation, showing the relationship between the
underlying asset’s spot price, that varies over time, with the option’s defined strike
price. The di↵erence between the strike price and the spot price, the payo↵, gives
the option its value.

the popular Monte Carlo pricing algorithm. In describing the background, I will demonstrate

the computational intensity of these problems, and hence motivate the requirement of powerful

computing resources.

4.1.1. Forward Looking Options

Option contracts are agreements where a holder pays a premium to the contract writer in order

to obtain a set of rights with regards to an underlying asset , such as 100 shares of a certain stock,

foreign currency or commodity. These rights allow the holder to either buy or sell the underlying

asset at a defined strike price under defined conditions. The key word in this description is right

- the holder has bought the right to exercise the option contract if they so choose, and is in no

way obligated. It is assumed that they will only do so when it is to their benefit, i.e. the size of

the di↵erence between the strike and spot prices or payo↵ is positive [74]. An overview of the

relationship between these key components is given in Figure 4.1.

Options are hence a type of derivative, as the value of the option is derived from the price

of the underlying asset at a certain exercise time in the future. Products with a single exercise

time are popularly known as European Options, due to the geographic origin of the type of the

financial product. The holder has paid a premium in order to adopt a position in future on the

value of an asset. The writer has received the premium in order to assume the risk that the

future position adopted by the holder will turn out to be advantageous [74].

Forward-looking Options are those options which only have value at a single point in the

future (the exercise point), which must be considered when calculating its value.

4.1.2. Common Forward Looking Options

Table 4.1 provides a summary of the behaviours of the option types considered in this disserta-

tion, as described below [74]. The forms considered are the call versions of the options, where

the option holder is paying for the right to short or sell the underlying asset at the exercise time.
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Table 4.1.: Overview of call versions of common option pricing problems. The barrier options
are knock-out barrier option. Defined problem parameters are the spot price (S

t

) at
time t, the strike price (K), the Barrier Value (H). Defined problem variables are
barrier crossed (B

t

) at time t, culmulative sum (C
t

) at time t.

Option
Type Lifetime Payo↵

European - V
E

= max(K � S
T

, 0)

Barrier B
t

=

(
1 : S

t

> H,B
t�1 = 1

0 : S
t

< H
V
B

=

(
V
E

: B
T

= 0

0 : B
T

= 1

Double
Barrier

B
t

=

(
1 : H

L

> S
t

, S
t

> H
U

, B
t�1 = 1

0 : H
L

< S
t

< H
V
DB

=

(
V
E

: B
T

= 0

0 : B
T

= 1

Double
Digital
Barrier

B
t

=

(
1 : H

L

> S
t

, S
t

> H
U

, B
t�1 = 1

0 : H
L

< S
t

< H
V
DDB

=

(
1 : V

DB

> 0

0 : V
DB

 0

Asian C
t

= C
t�1 + S

t

V
A

= max(K � CT
T

, 0)

In addition to the European or Vanilla options described, a variety of “exotic” options are

defined: Barrier, Binary and Asian options. These derivative contract forms have arisen in

practice, for a variety of reasons, usually to mitigate and control various types of risks, such as

price shocks in the case of barrier options or market manipulation in the Asian option case.

European options

European options are the original form of option contracts. A single, constant strike price (K)

is defined in relation to the asset price(S) for the option at its initiation and a single date is set

as the exercise point (T ). In a risk neutral world, i.e. which ascribes no value to risk, the value

for a put and call option at time t are respectively defined in (4.1) and (4.2).

V
c,t

= max(e�r(T�t)(K � S
T

), 0) (4.1)

V
p,t

= max(e�r(T�t)(S
T

�K), 0) (4.2)

The non-zero or In The Money value of the option is made up of two factors:

1. e�r(T�t) - the discount factor, e↵ectively back-dating its value to the current time (t) using

the risk free interest rate (r).

2. (K�S
T

) in the case of a put option or (S
T

�K) in the case of a call option - the intrinsic

value of the option at the exercise point.
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Barrier Options

Barrier options are a form of “exotic” option. Similar to a European Option, it may only be

exercised at a certain point in time, however the value of the option is also based upon all of

the values that the underlying asset has taken before the exercise point(s). A out or knock-out

barrier option is where the option becomes worthless or invalid if the spot price crosses a certain

price barrier (H) during the option’s lifetime, as given in Table 4.1. The reverse is true of an in

or knock-in barrier option. Considerable care is taken in defining exactly what constitutes the

crossing of the barrier.

Digital options

Digital or binary options are another form of exotic options. In addition to having European

exercise properties, rather than having a value that it is based upon the asset’s price, a defined

payo↵ is paid out either in the form of cash (P ) or the underlying asset if a defined condition

is met. This condition may take the form of a strike price being greater than the underlying’s

spot price, or a certain event occurring such as a market index being above a certain level. A

digital option be viewed as a bet, i.e. a prediction with a payo↵ attached to it.

Similarly to Barrier Options great care is taken in defining the condition upon which the

binary option is considered valid or not. In the case of cash-or-nothing digital options, the value

of the options are contingent on the payout amount and whether the final value is above or

below of the strike price, as in Table 4.1.

Asian or Average options

Asian options are also exotic. As with a European Option, it is exercised at a certain point in

time. However, instead of the underlying value of the asset at maturity being used to calculate

the value, an average of the asset value over a defined period of time is used (CT
T

), where C
T

is

the cumulative sum of the underlying’s price at exercise.

4.1.3. Monte Carlo Pricing Algorithm

While the previous subsection described a variety of types of derivatives, in this subsection, I

describe a method for attaching a value to these contracts.

The popular Monte Carlo technique for the valuation of options uses random number gen-

erators to create simulations or paths of the underlying assets, and uses these simulations to

generate the distribution of option values over many scenarios. This distribution is then used to

find the average option value. As the number of paths is increased, the price converges on the

true option value, according to the asset price model used [74, 34]. An overview of the algorithm

is given in Figure 4.2.

The technique is derived from the expression of the option value as the integration of all

possible option values (V ) with respect to the risk-neutral, probability space (P) defined by the

asset model (w), i.e.
R
w

V (w)dP(w). This value must then be back-dated to the present time

(t) using the risk-free interest rate (r) and the product’s expiration time (T ), i.e. e�r(T�t). The

Monte Carlo technique can be seen as a technique for discretising the domain of the integration
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Figure 4.2.: Diagramatic overview of Monte Carlo Option Pricing algorithm. Many simulations
or “paths” of the underlying spot price are performed according to a stochastic
model of price evolution, with the payo↵ values at expiration collected. The mean
value of the payo↵ is thus the most probable value of the option, converging upon
the true payo↵ as the number of simulations is increased.

and the probability distribution, and hence finding a numeric approximation, as given in (4.3).

However, the algorithm does require a model for simulating the underlying asset’s evolution over

time so that the multiple values at the expiration time can be found (x
i

).

V
t

= e�r(T�t)

Z

w

V (w)dP(w) ⇡ e�r(T�t) 1

N

N�1X

i=0

V (x
i

) (4.3)

Asset Price Evolution Models

To create the underlying paths a model for the asset price evolution is required. One of the

most famous models is the Black-Scholes model [74], given in (4.4), which assumes the underlying

asset price grows over time (t) at a constant rate (µ), while also fluctuating according a Gaussian

Random Process (W
t

) scaled by a volatility factor (�).

dS = µSdt+ �SdW
t

(4.4)

However, empirical evaluations have shown that the Black-Scholes model doesn’t capture

commonly observed behaviour of prices in a market. This is particularly with respect to the

scale of volatility, which has been shown to vary considerably over time. Hence, alternative

models which allow for varying volatility, such as the Heston model [76], are considered.

In the Heston model, both the path’s asset price and volatility vary stochastically. In a Heston

model-based asset, as given in (4.6), the Variance(V ) fluctuates in accordance with the mean

rate of revision(), long run mean(✓) and volatility of variance(�) as well as another Gaussian

Random Variable (W 2
t

), which is related to the first Gaussian Value (W 1
t

) in (4.5) by a correlation

factor (⇢), as given in (4.7).

dS = µSdt+
p
V SdW 1

t

(4.5)
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dV = (✓ � V )dt+ �
p
V SdW 2

t

(4.6)

dW 1
t

dW 2
t

= ⇢dt (4.7)

Discretising the paths

To use a model of asset price evolution, the lifetime of the option must be discretised into a

fixed number of steps (D), as given in (4.8).

dt = D�t (4.8)

This discrete price evolution may be re-expressed as a single lognormal variable with a mean

of 0 and a variance proportional to the width of the “slice” of the time step, as given in (4.9).

S(k�t) = S
t

e�k (4.9)

In the case of the Black-Scholes model, the value of �
k

is given in (4.10), where "
i

is a sample

drawn from the Gaussian random distribution.

�
k

=
kX

i=1

[(µ� �2

2
)�t+ �"

i

p
�t] (4.10)

Hence, the value of the option may be derived for a particular sample path, such as in the

case of a European call option (as outlined in Table 4.1) using the formula given in (4.11).

V (x
i

) = S(k�t)�K (4.11)

Advantages and Disadvantages

The chief advantage of the Monte Carlo pricing algorithm is that it scales well with respect

to increasingly complex underlying models: the computational complexity grows linearly with

respect to the complexity of the underlying model. This linear growth is in contrast to other

approaches, such as the finite di↵erence method, which grow exponentially with each stochastic

variable added to the underlying [74]. These quickly become unwieldy if too many dimensions,

as required by some underlying models, must be considered.

Another advantage is that it lends itself to parallel execution, being an “Embarrassingly

Parallel” algorithm [21, 65] as each path can be simulated in parallel.

The Monte Carlo algorithm is however computationally intensive relative to other derivative

pricing methods, due to the generation of the random numbers required at each time step

in the path. As many random numbers are required in a computation, hence high quality,

computational expensive random number generation procedures have to be used.
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Derivative Underlying

Figure 4.3.: Simplified relationship between derivative and underlying domain concepts

4.2. Derivative Pricing Semantic Model

While the previous section introduced some common types of options and an algorithmic means

for pricing options, in this section I will now codify these problems into a semantic model as

described in Section 2.2.2.

I will use an empirical definition of application domain, so the data types and functions within

the domain should mirror the nouns and verbs used by domain programmers to describe the

operations within the domain. This follows the method proposed by the early advocates of

Object Orientation in creating application libraries [30].

I first consider the fundamental types of objects in the derivatives pricing domain, underlying

assets and derivative products, and then suggest two valid transformations that can be applied

to these types, based upon relationships between these data types. I then describe the domain

function, pricing, and illustrate how the Monte Carlo algorithm is applied in performing it. I also

identify the execution characteristics of the algorithm, identifying the opportunities for parallel

execution.

To illustrate these explanations, I have used the option pricing benchmark from Technis-

che Universität Kaiserslautern2. The benchmark is a portfolio of twelve, mostly barrier option

pricing problems with six Heston model-based underlyings. The product types within the Kais-

erslautern portfolio are a single European option, three barrier options, eight double barrier

options and a single digital, double barrier option. The parameters of the pricing problems were

chosen carefully to cover a wide variety of scenarios, including “normal” market conditions, as

well as periods of high volatility.

As analytic methods for valuing Heston model-based options do not exist [74], part of the

benchmark is a 2068 line, GNU Octave reference implementation. This implementation com-

putes the reference values of the options using a Monte Carlo algorithm. The output of the

computation is the average option value found, as well as the degree of precision to which that

answer has been found.

4.2.1. Domain Data Types: Underlyings and Derivatives

Within this domain there are two fundamental data types, derivative products which are being

evaluated, and the underlying assets from which these derivative derive value. This relationship

is illustrated in Figure 4.3, and the options and underlyings that make up the Kaiserslautern

benchmark are illustrated in Figure 4.4.

2
http://www.uni-kl.de/en/benchmarking/option-pricing/
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Figure 4.4.: Diagrammatic overview of relationships in the option pricing tasks within Kaiser-
slautern Option Pricing Benchmark

The underlying asset encapsulates the probabilistic model, such as the Black-Scholes or

Heston, and its parameters being used to predict the behaviour of the asset under consideration,

for example a stock or commodity price. The derivative product embodies the details of the

option contract both during the lifetime of the option as well at its expiration, as described in the

previous section. Hence, in a given pricing problem the derivative provides its underlying asset

the relative or delta time that is next required in its valuation. In turn, the underlying asset

returns the current price of the asset, as well as the current point in time that the underlying

currently represents.

4.2.2. Domain Function: Pricing

Interaction of Underlying Assets and Derivative Products

The pricing function finds the value of the specified derivative product by calling the behaviours

of the derivative product as well as the underlying asset that it depends on. The underlying

asset has two behaviours - the path initialisation, where its initial parameter values are set, as

well as the calculations that determines its evolution over the course of its path (as given in

(4.10)). The derivative product has three behaviours: as well as the path initialisation and the

path behaviour, it also has the payo↵ calculation, for its value at the exercise time. Examples

of the path and payo↵ behaviours for options can be found in Table 4.1.

The interaction between the di↵erent behaviours of both concepts in a sequence, as is would

be the case in the Monte Carlo algorithm, is captured in Figure 4.5.
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Figure 4.5.: Interaction of Underlying and Option concepts
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Listing 4.1: Monte Carlo Option pricing expressed as MapReduce Programming Pattern

MAP:
f o r ( i =0; i<PATHS; ++i ){

s t a t e = path in i t ( seed++);
PATH:

f o r ( j =0; j<PATH POINTS; ++j )
s t a t e = path ( s t a t e ) ;

va lue [ i ] = payo f f ( s t a t e ) ;
}

REDUCE:
f o r ( i =0; i<PATHS; ++i )

r e s u l t += value [ i ] /PATHS;

Implementation of Monte Carlo Pricing Algorithm

As described in Section 4.1.3, the pricing function can be performed using the Monte Carlo

algorithm. The algorithm finds the price for a derivative by simulating its underlying asset and

corresponding exercise value multiple times, and then taking the average value.

Although, as noted above, while the Monte Carlo algorithm is computationally intensive, it

lends itself to parallel execution. In fact, it is the canonical “Embarrassingly Parallel” algorithm

that fits neatly in the MapReduce programming pattern [21] as demonstrated in Listing 4.1.

The program is comprised of three loops, with the majority of the computational e↵ort within

the double loop nest labeled Map. The algorithm requires at least two variables to be defined

upon implementation: PATHS, the number of simulations required, and PATH PATHS, the

number of steps within each simulation.

The inner path loop, which is bound by PATH POINTS, is data dependent, reliant upon the

results of the previous operation. Depending upon the number of points in the simulation path,

this loop presents an opportunity for pipeline parallelism, where each iteration of the loop could

be considered as a potential stage in a pipeline.

The outer, Map loop is bound by PATHS, and its iterations are completely independent, and

hence can be computed in parallel. By chunking the number of paths evaluated, the calculation

can be performed in a task parallel fashion. Furthermore, provided the random number gen-

eration procedure used is deterministic, for example a combined Tausworthe uniform random

number generator [77] coupled with a Box-Muller transformation [78], the calculation can be

computed in a data parallel fashion.

4.3. Derivatives Pricing as a Computational Domain

In this chapter, I have described the background to derivatives pricing in computational finance,

and how it can formulated as an application domain. This formulation is with a view towards

applying the domain specific methodology described in Chapter 3.

77



I have defined the domain data types: underlyings and derivatives. Underlyings capture the

parameters and evolution of financial assets such as stocks and commodities, while derivatives

capture the same for the derivative products such as forward looking options. I also defined the

sole domain function, derivative pricing, which is finding the value of the derivative product,

based upon the underlying.

In the next three chapters I apply the domain specific methodology to the derivative pricing

domain, and use it to evaluate the methodology.
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5. Porting Derivatives Pricing

As noted in Section 1.1, increasingly programmers are faced with an ever growing array of

computational architectures. These include conventional CPUs with an increasing degree of

parallelism, as well as more exotic platforms such as GPUs and FPGAs, which theoretically o↵er

performance too good to ignore. A further development is the combination of these platforms,

for example Intel’s Xeon Phi architecture, which o↵ers x86 architectural units with the data

parallelism of a GPU, or Xilinx’s Zynq System-on-Chips, o↵ering both conventional CPU and

reconfigurable logic tightly coupled.

The reality is that taking advantage of these heterogeneous computing technologies is a chal-

lenge. Even if the considerable orientation and interfacing problems of the platforms have been

overcome, there is still the broader, conceptual question that must be answered to make e�cient

use of the platform’s architectural features. The solution I propose, as others have [4], is that

the majority of programmers, who often work in a particular application domain, don’t address

this challenge. Rather system programmers, as described in Section 2.2.1, take advantage of

the regular structures and relationships within these domains, as made explicit in application

frameworks and DSLs, to enable e�cient execution on a wide range of heterogeneous computing

platforms.

In describing the e�cient, portable implementation, I introduce the Forward Financial Frame-

work (F 3), a heterogeneous computing framework for derivatives pricing that I have been devel-

oping since early 20121. The vision of the framework is to enable financial engineers to specify

their derivative pricing tasks at a high level, using object orientated constructs that mirror deriv-

atives pricing domain concepts. The framework can then implement the specified pricing tasks

e�ciently on any of a wide range of heterogeneous computing platforms. Throughout the rest

of this case study, I use the framework as a demonstration of the domain specific methodology

I have proposed.

In this chapter, I demonstrate how the domain specific methodology I proposed in Chapter

3 enables portable, e�cient execution of derivatives pricing on heterogeneous computing plat-

forms. This demonstration has two part: first, I describe the implementation of the derivatives

pricing application domain upon a wide range of heterogeneous computing platforms, including

multicore CPUs, GPUs and FPGAs. In the second part, I provide an experimental evaluation

of the degree to which the criteria for this feature, as described in Section 3.1.4, have been

achieved.

1The framework is Open Source under GNU Public License, with the full source code available at https:

//github.com/Gordonei/ForwardFinancialFramework
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5.1. Implementing Portable Derivatives Pricing

In this section I describe how the semantic model described in Section 4.2 is implemented within

F 3, using the domain specific development process described in Section 2.2.2.

The context-free grammar for F 3 can be found in Listing 5.1, described using extended Backus-

Naur form. F 3 is an object-orientated application framework [30], implemented at the top-level

using the Python programming language. The API documentation for F 3 can be found in

Appendix B.

Listing 5.1: The Forward Financial Framework’s context-free grammar.

hS i ::= hcommandi

hcommandi ::= ‘generate’ hsolveri | ‘compile’ hsolveri | ‘execute’ hsolveri

hsolveri ::= hportfolioi hplatformi

hplatformi ::= hhostnamei htypei

hhostnamei ::= hstringi

hstringi ::= [a-zA-Z0-9]+

htypei ::= ‘POSIX-CPU’ | ‘OpenCL-GPU’ | ‘OpenCL-FPGA’ | ‘OpenSPL-FPGA’ | ‘VivadoHLS-FPGA’

hportfolioi ::= hderivativei+

hderivativei ::= hunderlyingi hstrike-pricei hderivative-lifetimei hcalli

hstrike-pricei ::= hpositive-reali

hderivative-lifetimei ::= hpositive-reali

hcalli ::= hbinaryi

hbinaryi ::= ‘FALSE’ | ‘TRUE’

hunderlyingi ::= hrfiri hspot-pricei

hrfiri ::= hreali

hspot-pricei ::= hpositive-reali

hreali ::= ‘-’ hpositive-reali | hpositive-reali

hpositive-reali ::= hdigiti+ (‘.’ hdigiti+)?

hdigiti ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

In this section, I first describe how the domain data types, underlyings and derivatives, and

the domain function, pricing, are implemented using Python classes in F 3. I then describe the

supporting infrastructure that enables tasks specified using the domain specific abstractions to
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Listing 5.2: Example from Kaiserslautern Option Pricing Benchmark of how underlying domain
data types are depicted in the Forward Financial Framework.

#Ka i s e r s l au t e rn Underlying I I
KSU II = Heston Underlying (

r f i r = 0 .05 ,
cur rent pr i c e = 100 ,
mean rate = 0 .09 ,
vol vol = 1 ,
co r r = �0.3 ,
rev rate = 2 ,
curr vol = 0 . 09 )

#Ka i s e r s l au t e rn Underlying I I I
KSU III = Heston Underlying (

r f i r = 0 ,
cur rent pr i c e = 100 ,
mean rate = 0 .09 ,
vol vol = 1 ,
co r r = �0.3 ,
rev rate = 1 ,
curr vol = 0 . 09 )

be executed on a variety of heterogeneous platforms with portable performance, in accordance

with the grammar given in Listing 5.1. Finally, I show how domain knowledge is applied within

the framework, making the implementations portably e�cient, as outlined in Section 3.1.3.

5.1.1. Derivative Pricing Data Types and Function

F 3 has its core three base classes that mirror key concepts in the financial engineering domain:

Derivatives, Underlyings and Solvers. All three can be extended utilising object inheritance as

required2, allowing for broad expression within the confines of the application domain.

Underlying and Option Data Types

Within the derivatives pricing domain I consider, as described in Chapter 4, derivatives and

underlyings are the two domain data types. These datatypes are represented as classes that

inherit from the base classes of Option and Underlying respectively. Listings 5.2 and 5.3 give

an example of how options and underlyings from the Kaiserslautern option pricing benchmark

would be captured, while Figure 5.1 gives a graphical representation of the code.

Underlyings represent those assets from which derivatives derive value. In F 3, all underlyings

are represented by classes that correspond to the models that the behaviour of the underlying

is based upon, such as the Heston or Black-Scholes. The attributes of the data type class are

needed to calculate the asset’s value at a given point in time. The underlying class also has

modifier methods for changing these attributes. The first, the path init, sets the values of the

attribute at the model’s inception. The second method, path, modifies the attributes in response

2Possibly by a local developer, as described in Section 2.2.1
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Listing 5.3: Example from Kaiserslautern Option Pricing Benchmark of how option domain data
types are depicted in the Forward Financial Framework.

#Ka i s e r s l au t e rn Option #1
KSO 1 = European Option (

under ly ing = [ Heston II ] ,
c a l l = True ,
s t r i k e p r i c e = 100 ,
t ime period = 5)

#Ka i s e r s l au t e rn Option #2
KSO 2 = Barrier Option (

under ly ing = [ Heston II ] ,
c a l l = True ,
s t r i k e p r i c e = 100 ,
t ime period = 5 ,
po in t s = 4096 ,
out = True ,
b a r r i e r = 120)

#Ka i s e r s l au t e rn Option #4
KSO 4 = Double Barrier Option (

under ly ing = [ Heston III ] ,
c a l l = True ,
s t r i k e p r i c e = 100 ,
t ime period = 5 ,
po in t s = 4096 ,
out = True ,
b a r r i e r = 120)

KSO 1
KSU 

II
KSO 2

KSO 4 KSU 
III

K=100, TK=5,
S0=100, r=0.05, 
μ=0.09, κ=2, ξ=1, 
ρ=-0.3, V0=0.09

K=100, TK=5, 
H=120, 

K=100, TK=5, 
HL=90,HU=110, 

S0=100, r=0, 
μ=0.04, κ=0.5, ξ=1, 
ρ=-0, V0=0.04

Figure 5.1.: Example of a subset of options from the Kaiserslautern Benchmark rendered by the
domain programmer within the Forward Financial Framework. The diagram depicts
the relationship between the underlying domain datatypes defined in Listing 5.2 and
the options defined in Listing 5.3.
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to changes in time, in accordance with the defined model of price evolution [76, 74]. In order to

provide the path behaviour, the underlying object has to rely on a data source to determine the

evolution of its variables, such as a random number generator or historical data.

The e�cient valuation of Derivatives is the main goal of the domain. Similar to the under-

lying, the derivative data type class aggregates behaviours and attributes required to calculate

a value for the derivative under specified conditions. However, unlike underlyings, there is a

further payo↵ modifier method defined, which is used to set the resulting value attribute of the

derivative, given the final underlying price(s) at the derivative’s defined exercise point as well

as the derivative’s attributes.

A limitation of F 3 is that currently only derivatives with European exercise properties, i.e.

that have only a single exercise point in the future, are supported.

Derivative Pricing Function

While Derivatives and underlyings are the fundamental types of F 3, the Solver class provides

the conceptual container for their interaction. Solvers contain both underlying and derivative

objects, but also describe the nature of the calculation being performed, capturing the interaction

between the derivative and underlying objects.

A solver within F 3 has three behavioural descriptions: generate, compile and execute: As the

name suggests, generate uses the specified platform to generate the required code in order for

it to be compiled and executed upon its target platform. It is at this point that the framework

makes use of advanced object-oriented features such as introspection in order to identify explicit

relationships between underlying and derivative objects. Compile and execute, interact with the

specified platform to compile and execute the specified pricing task, returning the result to the

end user in the high level means of expression.

A further limitation of F 3 is that only the Monte Carlo algorithm for implementing option

pricing is currently supported.

5.1.2. Supporting Portable Execution

Listing 5.4 and Figure 5.2 provide an overview of the flow from problem definition to imple-

mentation upon two di↵erent platforms. In this example, the portfolio of derivative products

and underlying assets defined in Figure 5.1 are partitioned into two groups and applied to two

di↵erent solvers, which are then executed on di↵erent platforms.

Below I explain the flow in terms of the commands allowed in the grammar given in Listing

5.1, i.e. from generate to execute, as illustrated in Figures 5.1 and 5.2. This flow fulfils the

supporting infrastructure requirements for the domain specific methodology, as described in

Section 3.1.2.

Generate

Domain Specific Task Description: The financial domain programmer must specify the

derivative products they wish to value, and the underlying asset models upon which the derivat-

ives depend, as instances of appropriate classes within a Python script, as illustrated in Listing

5.2 and 5.3.
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Listing 5.4: Forward Financial Framework code for the implementation of the options described
in 5.3

#Creat ing the p lat fo rms and s o l v e r ob j e c t s
posix cpu = POSIX CPU(

hostname = ” l o c a l h o s t ” )
opencl fpga = OpenCL FPGA(

hostname = ” l o c a l h o s t ” )

mc solver cpu = MonteCarlo (
opt i ons = [KSO 1,KSO 2] ,
paths = 1e7 ,
p lat form = posix cpu )

mc solver fpga = MonteCarlo (
opt i ons = [KSO 4] ,
paths = 1e7 ,
p lat form = opencl fpga )

#Ca l l i ng the CPU so l v e r to generate , compi le and execute
mc solver cpu . generate ( )
mc solver cpu . compi le ( )
mc solver cpu . execute ( )

#Ca l l i ng the FPGA so l v e r to generate , compi le and execute
mc solver fpga . generate ( )
mc solver fpga . compi le ( )
mc solver fpga . execute ( )

Domain-Specific Description

Portfolio of 
Underlyings 

and 
Derivatives

Monte 
Carlo
Solver

Monte 
Carlo
Solver

Multicore 
Solver

Multicore 
Libraries

FPGA 
Solver FPGA 

Libraries

KSO 1

KSO 2

KSO 4

KSU II

KSU III

Figure 5.2.: Overview of Forward Financial Framework flow from problem specification by the
domain programmer to implementation on the target heterogeneous system.
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The programmer then groups together these derivatives into portfolios, and allocates the

portfolios to instances of the solver class. A platform class instance is also specified for each

solver, which represents the computational platform that the portfolio will be evaluated upon, as

is illustrated for a multicore CPU and FPGA, as illustrated in Listing 5.4. This solver instance,

containing both the portfolio and platform, may then be used to generate the required code.

Platform solver code generation: The code required to value the portfolio of derivatives

can then be generated for the target platform by F 3 by calling the generate behaviour of the

solver instance.

The code generated implements the algorithm associated with the solver’s class. Currently

only a Monte Carlo-based solver has been implemented.

The solver class is able to generate the required code correctly for a wide array of financial

products and asset models for two reasons: firstly, the general structure of the pricing algorithm

is known in advance, and secondly, the Python programming language supports Introspection,

the ability to examine the structure of code at run-time. Knowing the structure of the algorithm

in advance means that the solver class can contain a template for the algorithm upon the target

platform, similar to Listing 4.1, which can then be populated with the behaviours for the specified

portfolio of products and underlying models using introspection.

An example of the OpenCL kernel code generated by F 3 for the 4th Kaiserslautern option, a

Double Barrier option with a Heston-based underlying, is given in Listing 5.5.

Supporting code: An important clarification is that only the solver algorithmic code for a

particular platform is generated by the framework - supporting libraries written in the targeted

platform’s code are also required.

Two types of supporting libraries are required: The first type is a description or translation of

the underlying and derivative classes into a form which can then be implemented on the target

platform. For example, in the case of the multicore CPU implementation, C code versions

of the underlying and derivative objects are required that implement the product or asset’s

specified behaviours. The second type is the general utility libraries required to implement the

solver algorithm upon the desired platform, for example code for generating Gaussian random

numbers.

An example of the supporting C code for European options, which is used by both the mul-

ticore CPU and OpenCL solver generated-code, is given in Listing 5.6.

My experience has been that that creating this supporting code has been by far the least in-

tensive aspect of extending the framework to a new computing platform. Rather, I found writing

the solver platform code takes significant development time, hence my decision to automate its

implementation.

Furthermore, I believe writing this derivative and underlying platform code would be well

within the grasp of the determined financial domain programmer, such as the local developers

described in Section 2.2.1, given the examples already provided within the framework.
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Listing 5.5: Example of solver code generated by the Forward Financial Framework: OpenCL
Pricing kernel for Kaiserslautern Option 4

ke rne l void mc solver opencl gpu he 1 do 1 kernel (
const u int path points ,
const u int seed ,
const u int chunk size ,
const u int chunk number ,
const he s ton at t r ibute s u a 0 ,
const doub l e bar r i e r a t t r ibute s o a 0 ,
g l oba l FP t ⇤value 0 ){
// g e t t i n g unique ID
in t i = get g lobal id ( 0 ) ;

// read ing parameters from host
u int temp path points = path points ;
u int temp chunk size = chunk size ;
u int temp chunk = chunk number ;
u int temp seed = seed ;

// copying parameters from host
he s ton at t r ibute s temp u a 0 = u a 0 ;
doub l e bar r i e r a t t r ibute s temp o a 0 = o a 0 ;

// c r e a t i n g ke rne l v a r i a b l e s
hes ton var iab l e s temp u v 0 ;
u int s e ed o f f s e t = i ⇤KERNEL LOOPS+temp chunk size⇤temp chunk ;
FP t spot price 0 , time 0 ;
doub l e bar r i e r var i ab l e s temp o v 0 ;
FP t temp value 0 = 0 . 0 ;
FP t temp value sqrd 0 = 0 . 0 ;

seed ( l o ca l s e ed + 1 ⇤ s e ed o f f s e t ,&(temp u v 0 . s t a t e ) ) ;
f o r ( i n t k=0; k<KERNEL LOOPS; ++k){
// i n i t i a t i n g the path and c r e a t i n g path v a r i a b l e s
heston path init (&temp u v 0,&temp u a 0 ) ;
spot price 0 = temp u a 0 . cur r ent pr i c e ⇤exp (temp u v 0 .gamma) ;
time 0 = temp u v 0 . time ;
double barr ier path in i t (&temp o v 0,&temp o a 0 ) ;

// running the path
f o r ( i n t j =0; j<l oca l path points ;++j ){
double barr ier path ( spot price 0 , time 0 ,&temp o v 0,&temp o a 0 ) ;
heston path (temp o v 0 . delta time ,&temp u v 0,&temp u a 0 ) ;
spot price 0 = temp u a 0 . cur r ent pr i c e ⇤exp (temp u v 0 .gamma) ;
time 0 = temp u v 0 . time ;

}

// c a l c u l a t i n g payo f f ( s )
double barr i e r payof f ( spot price 0 ,&temp o v 0,&temp o a 0 ) ;
temp value 0 += temp o v 0 . va lue ;

}

// copying r e s u l t to g l oba l memory
value 0 [ i ] = temp value 0 ;
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Listing 5.6: Example of supporting code for the Forward Financial Framework: C code for
European Options, used by both multicore CPU and OpenCL implementations

//Option i n i t i a l i s a t i o n func t i on
void european in i t (

FP t t ,
char c ,
FP t k ,
european opt ion attr ibutes ⇤ o a){
opt i on in i t ( t , c , k ,&(o a�>opt ion ) ) ;
o a�>t ime period = (o a�>opt ion ) . t ime period ;
o a�>s t r i k e p r i c e = (o a�>opt ion ) . s t r i k e p r i c e ;
o a�>c a l l = (o a�>opt ion ) . c a l l ;

}

//Option s imu la t i on path i n i t i a l i s a t i o n func t i on
void european path init (

european var iab les ⇤ o v ,
european att r ibutes ⇤ o a){
opt ion path init (&(o v�>opt ion ) ,&(o a�>opt ion ) ) ;
o v�>value=(o v�>opt ion ) . va lue ;
o v�>delta t ime=(o v�>opt ion ) . delta t ime ;

}

//Option s imu la t i on path evo lu t i on func t i on
void european path (

FP t pr i ce ,
FP t time ,
european opt ion var iables ⇤ o v ,
european opt ion attr ibutes ⇤ o a){
option path ( pr i ce , time ,&(o v�>opt ion ) ,&(o a�>opt ion ) ) ;

}

//Option s imu la t i on path payo f f f unc t i on
void european opt ion der ivat ive payof f (

FP t end price ,
european opt ion var iables ⇤ o v ,
european opt ion attr ibutes ⇤ o a){
i f ( ( ( o a�>c a l l ) && ( end price < o a�>s t r i k e p r i c e ) )
| | ( ( o a�>c a l l ) && ( end price > o a�>s t r i k e p r i c e ) ) )
opt ion payof f (o a�>s t r i k e p r i c e ,&(o v�>opt ion ) ,&(o a�>opt ion ) ) ;

e l s e
opt ion payof f ( end price ,&(o v�>opt ion ) ,&(o a�>opt ion ) ) ;

o v�>value = (o v�>opt ion ) . va lue ;
}
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Compile

Once the required platform-specific solver code has been generated, the platform’s pre-existing

compilation tools can then used to compile the code. The solver instance is capable of managing

this process automatically, initiating it when its compile method is called, as in Listing 5.4.

A variety of compilers are used, depending upon the platform: GCC is used for the multicore

CPU platforms; Maxeler’s MaxCompiler, the Altera OpenCL SDK and Xilinx Vivado HLS is

used for FPGA platforms; vendor provided OpenCL SDKs are used for the GPU and remaining

coprocessor platforms, such as Intel’s Xeon Phi. The solver either calls these tools directly, using

Python’s built-in Subprocess module, or by interfacing with build systems, such as GNU Make.

Execute

The programmer can then start the execution, i.e. the actual pricing of the specified portfolio

on the target platform, by calling the solver instance’s execute method, as in Listing 5.4. Sim-

ilar to compilation, the solver manages this process, using Python’s subprocess module to call

the compiled platform-specific solver with the appropriate arguments. Execution over Internet

Protocol-capable network connections is also supported using the Secure Shell (SSH) protocol,

although this requires a compiled solver to be available on the remote host that the solver is

being executed upon. Once completed, the execute method returns the value of the derivat-

ives in the portfolio as well as various performance metrics within the Python programming

environment.

5.1.3. Enabling e�cient execution with domain knowledge

In this subsection I describe how F 3 produces implementations that are e�cient by exploiting

the potential for parallel execution in the domain specific task structure. As outlined in Section

3.1.3, the domain specific methodology makes the structure of computational tasks explicit

at compilation. F 3 shows this in practice, using the structure of the Monte Carlo pricing as

described in Section 4.2.2, to enable parallel execution across all of the platforms targeted by

the framework.

Below, I describe how this is done in terms of task, data and pipeline parallelism, firstly in

general, and then with reference to the di↵erent heterogeneous platforms supported.

Task Parallelism

As noted in Section 4.2.2, there is ample opportunity for parallel execution in the Monte Carlo

pricing algorithm that all F 3 solvers currently use. To expose this parallelism, I have re-expressed

the algorithm, as described in Listing 4.1, in Listing 5.7 by introducing a third, outer loop

bounded by P , labeled CHUNK. The iterations of CHUNK can can be computed in parallel,

independent from each other.

The domain knowledge that is being exploited is both the lack of dependencies between the

iterations in the MAP loop, as well as knowledge of the composition of the algorithm. As

the MAP loop accounts for almost all of the computation, this is an “embarrassingly parallel”

problem, and hence justifies the use of parallel execution in all but the smallest of problem sizes.
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Listing 5.7: Making the Potential Task and Data Parallelism explicit

CHUNK:
f o r (p=0; p < P; ++p){
MAP:

f o r ( i =0; i < PATHS/P; ++i ){
s t a t e = path in i t ( seed++);
PATH:

f o r ( j =0; j < PATH POINTS; ++j )
s t a t e = path ( s t a t e ) ;

o f f s e t = p ⇤ PATHS/P;
value [ o f f s e t + i ] = payo f f ( s t a t e ) ;

}
}

F 3 automatically generates task parallel implementations for all of the platforms targeted.

The Pthreads library is used to execute in a task parallel fashion on multicore CPUs. A

thread is spawned for each processor core, as reported by the platform’s operating system, and

the total number of Monte Carlo paths are divided evenly across the threads.

Similarly, for OpenCL, multiple work-groups are used, with the paths shared evenly amongst

the groups. The number of work-groups is set by F 3 at run-time according to the number

of compute units available on the target device, as reported by the OpenCL API. A further

optimisation based upon task parallelism is that the time spent communicating with the platform

is “hidden” by further grouping the number of paths into batches. After a batch of paths has

been computed, the next batch is started while the completed batch’s results are communicated

back to the host system. This communication latency hiding is an example of task parallelism,

In the FPGA implementations, multiple instances of the MAP code are used to compute paths

in a task parallel fashion. In OpenSPL an architectural loop is used to create multiple instances

of the MAP, while the Altera OpenCL SDK allows F 3 to set the number of compute units

explicitly. Finally, in VivadoHLS multiple instances are created by calling non-communicating

MAP function multiple times at the same scope.

Data Parallelism

Similar to the task parallelism optimisation, a data parallel approach exploits the lack of de-

pendencies between iterations of the MAP loop in Listing 4.1 to compute iterations in parallel.

However, data parallel execution additionally requires that the iterations of the loop operate in

close to lockstep, with limited or no divergence between the control flow in iterations being com-

puted concurrently. Any divergence results in pipeline stalls, with all the paths being computed

in parallel running taking as long as the longest running path.

F 3 enables data parallel execution for OpenCL platforms, as platforms using the programming

standard, particularly GPUs, often have considerable data parallel computational capability.

Firstly, using the OpenCL API at run-time, the framework sets the number of work-items in

each work-group according to the number of processing elements available for the platform. Fur-

thermore, the code used is completely deterministic, with only balanced conditional expressions
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Listing 5.8: C-Slow Transformation

f o r ( j =0; j < PATHS/C; ++j ){
f o r ( k=0; k < C; ++k)

s t a t e [ k ] = path in i t ( seed++);

PATH:
f o r ( i =0; i < PATH POINTS; ++i ){
MAP:

f o r ( k=0; k < C; ++k)
s t a t e [ k ] = path ( s t a t e [ k ] ) ;

}

f o r ( k=0; k < C; ++k){
o f f s e t = j ⇤ C;
value [ o f f s e t + k ] = payo f f ( s t a t e [ k ] ) ;

}
}

used. This deterministic code ensures that the work-items in a work-group can be executed in

a data parallel fashion without additional instructions to manage divergence.

Pipeline Parallelism

To illustrate the potential for pipeline parallelism in Monte Carlo pricing, I use the concept of

C-Slowing. While C-slowing is originally a technique in digital circuit design, hiding the latency

of operations using memory resource is transferable to many architectures, particularly FPGAs.

In Monte Carlo pricing C-slowing is achieved by inverting the loops labeled PATH and MAP

while providing an appropriate memory array of size C to maintain the state between iterations

of PATH. Unlike task and data parallelism, this allows for parallel evaluation of iterations of the

PATH as opposed to MAP loop. I have illustrated pipeline parallelism in Listing 5.8.

The domain knowledge that is being applied here is orthogonal to the task and data parallelism

of the previous subsections. The task and data parallel execution is based upon the lack of

dependencies between the MAP loop iterations, whereas here I’m exploiting the compile time

knowledge of the length of the PATH loop to keep all of the computational resources busy.

F 3 enables pipeline parallel execution in the FPGA implementations. FPGAs are well suited

to exploiting pipeline parallelism, as additional logic and memory resources on the device can be

used to extend the length of the execution pipeline. The extended pipelines with memory bu↵ers

allow for fine-grained parallel execution of many stages of the pipeline, resulting in improved

throughput.

The Altera OpenCL SDK already uses pipeline parallelism by default, inserting pipeline buf-

fers so that work-items can be streamed through a pipeline based upon the OpenCL kernel.

However, F 3 extends this pipeline parallelism by inserting code pragmas that unroll the PATH

loop. Doing so creates a longer pipeline, and hence improves the throughput of the design.
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MaxCompiler also pipelines designs automatically, however F 3 adds a C-Slowing transform-

ation, as depicted in Listing 5.8, so as to hide the latency of pipeline stages using memory

resources.

Finally VivadoHLS does not pipeline designs by default, and hence F 3 applies pragmas to

pipeline designs and unroll the PATH loop so to improve the throughput of the design.

5.2. Evaluation

This section describes my evaluation of the e�ciency of F 3’s portable implementations upon

multiple heterogeneous platform. This evaluation is focused on e�ciency, as implicit in evalu-

ating the e�ciency of F 3’s implementations across a diverse set of heterogeneous platforms, is

evidence that the approach is portable to those platforms

I first describe the experimental platforms and latency metric used in these experiments. I then

provide a description and the results of the first experiment, which measures F 3’s heterogeneous

implementations in terms of parallel scaling, a purely intra-platform, relativistic measurement.

I then compare the implementations for the di↵erent platform, as well as external, programmer

implementations of the same problems.

The aim of the first experiment is to assess whether the implementations created automatically

by F 3 can make use of the parallelism exposed by prior analysis of the pricing domain function.

The second experiment’s aim is to then assess whether the benefit provided from doing so makes

full use of the platform, and hence are comparable to those created by platform programming

experts.

5.2.1. Experimental Platforms and Latency Metric

Platforms

Table 5.1 provides the designations for the heterogeneous platforms used in these experiments.

For more information, Tables A.1, A.3 and A.5 provide an overview of the experimental plat-

forms, while Tables A.2, A.4 and A.6 provide more detailed computational characteristics of the

di↵erent platforms, such as the clock rate and parallel resources.

The multicore CPU platforms span a spectrum from those found in desktop systems to high-

end servers. Desktop CPUs, such as the Intel Core i7-2600 are similar to the one that domain

programmers might have on their desks. These provide a modest degree of task parallelism

at a high clock rate. The server grade CPU, the Intel Xeon E5-2680v2, is easily accessible,

thanks to IaaS providers such as Amazon Web Services (AWS). Although at a lower clock rate

to the desktop system, it has twice the parallel compute resource as well as considerably larger

caches. The final CPU platform, the “manycore” server system, is of the type likely to be shared

between many users in a large organisation. The manycore system is comprised of four server

grade CPUs, AMD Opteron 6272, with 16 processing cores upon each CPU. In all of the cases,

two cores share a floating-point computational unit.

The GPU platforms represent two classes of this platform type. The first class is the work-

station grade GPUs, the AMD Firepro W5000 and the NVIDIA Quadro K4000. Boasting

91



Table 5.1.: Experimental platforms used in proving portability property

Type Designation Platform Name Standard (Tool)

CPUs
Desktop Intel Core i7-2600 POSIX(GCC)
Server Intel Xeon E5-2680v2 POSIX (GCC)
Manycore 4 x AMD Opteron 6272 POSIX (GCC)

GPUs

NVIDIA Workstation NVIDIA Quadro K4000 OpenCL (NVIDIA OpenCL SDK)
NVIDIA Cloud NVIDIA GK104 OpenCL (NVIDIA OpenCL SDK)
AMD Workstation AMD Firepro W5000 OpenCL (AMDAPP)
Phi Intel Xeon Phi 3120P OpenCL (Intel SDK for OpenCL)

FPGAs

ZC706 Xilinx ZC706 1.1 POSIX (Vivado HLS)
PCIe-A7 Nallatech P385-A7 OpenCL (Altera OpenCL SDK)
PCIe-D5 Nallatech P385-D5 OpenCL (Altera OpenCL SDK)
Max3 Maxeler Max 3424A OpenSPL (MaxCompiler)
Max4 Maxeler Max 4 OpenSPL (MaxCompiler)

considerable parallel compute resources, these platforms are targeted at graphics, and hence

data parallel workloads such as Computer Aided Design (CAD) and digital film rendering.

The second class are massively parallel compute platforms, often called General Purpose GPU

(GPGPUs), the NVIDIA GK104 and the Intel Xeon Phi 3120P. The Xeon Phi is most accurately

described as a hybrid architecture, being somewhere between a GPU and CPU. Although with

fewer parallel compute resources than a high end GPUs, the coprocessor has considerably more

sophisticated control logic, implementing many x86 cores upon a single chip.

Finally, the FPGA platforms are largely in a host-CPU, PCIe card-based stand-alone pro-

cessing unit configuration, similar to GPUs, with the exception of the Xilinx ZC706 platform,

which is a System-on-Chip platform, with a processor sharing a silicon die with the reconfig-

urable fabric [79]. The computational device on the ZC706 is a Xilinx Zynq 7045, an ARM

processor that shares the same silicon with reconfigurable logic elements. While generally tar-

geted towards embedded applications, such a platform presents an opportunity to exploit the

tight coupling between host CPU and accelerators implemented in the reconfigurable fabric.

Latency Metric

The metric used in both experiments is the option pricing task latency3. I interpret latency

as wall-clock time, i.e. how long does the platform under consideration take to perform the

calculation and return the result to the domain programmer using F 3, as a measurement4 of

absolute time using an external timing reference. This is to ensure that all system overheads

such IO and control structures are incorporated in the evaluation. Further details are given in

Section A.3.1.

3As currently I’m only considering single task workloads, this is equivilant to the makespan
4The host CPU’s system clock
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Table 5.2.: Overview of option pricing tasks used in characterisation

Source Designation Option Task Designation

KS[81]

KSO1 H-E
KSO2, KSO3, KSO11 H-B

KSO4 - KSO10 H-DB
KSO12 H-DDB

IC[80] IC BS-A

5.2.2. Intra-Platform Performance Characterisation

The first experiment I undertook in proving the e�cient portability property was to assess

the degree to which the framework takes advantage of parallel computing resources. In the

description below I explain how this was achieved in all of the platform implementations. I then

make a projection with regards to the ideal parallel scaling of the di↵erent platforms. I finish

the experiment by providing and discussing the results.

Description

Tasks: I evaluated the latency scaling characteristic using all 12 of the Kaiserslautern bench-

mark options as well as the Black-Scholes-based Asian option used in Imperial College London’s

work [80], as given in Table 5.2. The full breakdown of the number of floating point computa-

tional operations per option pricing task type may be found in Table A.8.

I used 10 million simulation paths per option pricing task, with 4096 discretisation points

within each simulation path.

Latency Acceleration Measurement: Latency acceleration is the latency of a baseline im-

plementation latency divided by the measured latencies for that platform’s implementation. I

compare the scaling trend against an ideal, linear parallel scaling relationship in which acceler-

ation is equal to the degree of parallelism.

Experimental Procedure: In order to evaluate the strong parallel scaling property, I varied

the degree of parallelism, or parallelism factor, in the implementations across the experimental

heterogeneous platforms in Table 5.1. The method by which I was able to vary the degree of

parallelism across the platforms was determined by the programming standard used.

For the multicore CPUs implementations, I varied the parallelism factor by setting the

number of POSIX threads (Pthreads) between which the Monte Carlo simulations are evenly

divided. The default behaviour of F 3 is to set the number of Pthreads equal to the number of

cores available.

On the GPUs, the number of work groups dispatched to the OpenCL subsystem was varied

in accordance with the specified parallelism factor. Ordinarily, F 3 sets the number of work

groups automatically, querying the characteristics of the OpenCL device at compile time, and

then sets the number of work groups to a small multiple of the number of compute units.

This oversubscription provides the platform scheduler with su�cient scope to overlap memory

accesses within each compute unit.
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In the FPGA implementations, all three standards allow for the number of accelerator in-

stances implemented in the reconfigurable fabric to be varied, and hence executed in parallel.

For the Altera OpenCL platforms, this is achieved by unrolling the data dependent PATH loop,

whilst in the Max3, Max4 and ZC706 cases this was done by replicating the accelerator in the

control logic multiple times. Currently the framework uses a heuristic of the number of parallel

instances that can be supported upon the specific chip, in terms of the number of underly-

ing products implemented. I have found that the underlyings, the random number generators

therein in particular, account for the majority of the resources used.

Projection

As the Monte Carlo algorithm used by F 3 is compute bound, with memory requirements that

easily fit within all of the platforms’ fastest memory resources, I expect that the platforms should

exhibit at best parallel scaling close to the ideal parallel scaling factors given in Table 5.3. In

the case of the multicore CPUs, this is the number of cores available, for the GPUs, the number

of OpenCL compute units, and the FPGAs the parallel instances specified.

Table 5.3.: Ideal parallel scaling of experimental platforms. For CPUs this is the number of cores
available, for GPUs the number of OpenCL compute units, and finally for FPGAs
the number of parallel instances specified.

Type Designation Ideal Parallel Scaling Factor

CPUs
Desktop 8
Server 16

Manycore 64

GPUs

NVIDIA Workstation 4
NVIDIA Cloud 8

AMD Workstation 12
Phi 224

FPGAs

ZC706 3
P385-A7 12
P385-D5 12
Max3 9
Max4 13

Results and Discussion

Figures 5.3, 5.4 and 5.5 present the results of the experiment to characterise the parallel scal-

ing of the heterogeneous implementations generated from F 3. The quantitative values for the

experiments may be found in Section A.4.1.

Multicore CPUs: All of the CPUs show strong parallel scaling, as shown in Figure 5.3, with

the peak acceleration being greater than the number of floating point computational resources

available within each platform (4 in the case of the Desktop platform, 8 in the case of the Server

and 32 for the Manycore). This suggests that the implementations are taking advantage of not
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only the parallel arithmetic resources, but also the additional instruction pipelines so as to make

the best use of the constrained floating point compute resources available.

GPUs: TheWorkstation and Cloud GPU platforms in Figure 5.4 also show good linear parallel

scaling, although only up to the number of parallel compute resources available, i.e. the number

of compute units.

The Phi platform ceases to scale linearly at 64 cores, well short of the 224 compute units

reported by the OpenCL runtime. This is explained by the device not actually having 224

physically parallel compute resources as the runtime reports, but in fact 57 [82]. However, by

ensuring that the programmer oversubscribes these 57 cores by presenting virtual resources to

the system, improved performance is seen, peaking at a 65 times improvement over the single

workgroup case on average. This illustrates the hybrid nature of the Xeon Phi well, as this scaling

characteristic is similar to that seen in the multicore CPU platforms, where multiple instruction

pipelines are used to make full use of arithmetic computational resources. As a result of earlier

experiments similar to this, I increased the default factor by which F 3 over-specifies workgroups

for Xeon Phis.

FPGAs: All of the FPGA implementations except the ZC706 in Figure 5.5 actually scale

better than the linear latency-resource scaling. This is explained by the fact that these imple-

mentations have significant resource overhead in the communication and control infrastructure

supporting a single accelerator on the FPGA fabric. This resource overhead is then amortised

across the parallel compute instances in the larger designs with more parallel compute capability.

However, the fully parallel FPGA implementations took up to 48 hours per option to pass

through the FPGA synthesis toolflow, so such super linear scaling comes at significant upfront

cost. Hence, in these experiments I only considered two data points per platform - a single
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instance of the option pricing computation and an implementation that used as much of the

device’s resources as possible.

The ZC706 platform scales poorly, taking more than twice the number of resources for a less

than 20% performance improvement. This is explained by the misalignment of this application,

and the intended purpose of the Vivado HLS tools. Vivado HLS is intended for use by embed-

ded computing experts, improving their productivity in designing hardware implementations of

software algorithms, and not for accelerating large, compute bound applications. An illustra-

tion of this was the di�culty I encountered in implementing the communication between the

Vivado HLS FPGA implementation and host CPU, with the tools scheduling communication

in such a way that failed to take advantage of parallel optimisations introduced. The resource

use scaling though is close to the parallelism factor specified, suggesting that the Vivado HLS

implementations have relatively low overhead.

The gradient of the di↵erent platforms’ improvement provides insight into the e�ciency of

the di↵erent approaches to optimisation. The steeper slope of the P385-A7 and P385-D5 imple-

mentations compared to the Max3 and Max4 suggest that the pipeline parallelism-enabling loop

unrolling optimisation used by the former makes more e�cient use of the FPGA resources than

the task parallel instance replication use by the latter. Although, it should be noted that the

P385-A7 and P385-D5 are both implemented using the vendor, Altera’s, supplied tool, while the

Max3 and Max4 are implemented using third party tools from Maxeler, targeting both Xilinx

and Altera FPGAs respectively.

From these results, it is clear that the framework is making good use of the parallel computing

resources available, scaling strongly when more parallel resources are made available. In the

following experiment, I compare these implementations to state-of-the-art implementations from

platform programmers.

5.2.3. Inter-Platform Performance Experiment

The second experiment I conducted compared the performance of F 3’s option pricing imple-

mentations between multiple experimental platform, as well as to two implementations of the

same tasks from other researchers.

First, I describe the experiment undertaken. I then make a prediction of the performance of

the experimental platforms with respect to a sequential CPU implementation. I conclude the

experiment by providing and discussing the results.

Description

Pricing Tasks: Similar to the intra-platform experiment in the previous section, I used the

Kaiserslautern option pricing benchmark as well the Black-Scholes Asian option parameters used

in the Imperial College work, as given in Table 5.2, as the workload in the experiment. Again,

the F 3 implementations performed 10 million simulations per task, with 4096 time steps per

simulation path.

External Comparisons: The first set of external implementations that I compared F 3 to was

the work of the authors of the Kaiserslautern Option Pricing Benchmark [81]. I also compared
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F 3’s implementations to that from my colleagues from Imperial College London, who have

reported on an implementation of an Arithmetic Asian Option with a Black-Scholes Model-

based underlying [80]. In this study, the authors used 1 million simulation paths and only 365

path points, hence, to normalise between the implementations, I scaled the Imperial College

results by a factor of 112.22 (10⇥ 4096
365 ).

Latency Acceleration Measurement: Similar to the intra-platform performance measure-

ment, in the results provided below latency acceleration figures are quoted. However, unlike the

previous experiment, the acceleration results for the CPU implementations are the acceleration

of the F 3 implementations over F 3’s POSIX implementation on the Desktop CPU platform,

restricted to a single processor core. The GPU and FPGA platform acceleration results are the

performance of those platforms’ F 3 implementations over an OpenCL implementation on the

Desktop CPU platform, restricted to a single processor core. The Intel OpenCL SDK was used

for this OpenCL implementation.

Using a sequential POSIX implementation for the CPU platforms’ comparisons, and an

OpenCL implementation for the GPUs and FPGAs removes the e↵ect of the di↵ering pro-

gramming standards upon the results. Hence the acceleration measured, relative to the ideal

projections below should reflect the e�ciency of the framework and the external implementa-

tions.

Throughout this experiment, the single core reference implementations are referred to as

Sequential POSIX or Sequential OpenCL depending upon the programming standard used.

Projection:

I expected the performance of the multicore CPU and GPUs to be in proportion to the theor-

etical peak performance figures, as demonstrated in Lee et al’s work [83], as compared to the

theoretical peak performance of a single core of the Desktop CPU platform. I have reported

these expected relative acceleration figures in Table 5.4. I did not expect this to be the case

for the FPGA implementation, as this calculation does not capture the fine-grained pipeline

parallelism inherent in FPGA implementations.

Results and Discussion

Figures 5.6, 5.7 and 5.8 provide the results for the experiments comparing the implementations’

performance, including the programmer-created, reference implementations from the research-

ers at Kaiserslautern [81] and Imperial College London [80]. Latency performance is compared

with respect to acceleration over Sequential, F 3’s POSIX CPU or OpenCL CPU implementa-

tions, restricted to only one thread upon the Desktop CPU platform. The full raw throughput

performance figures for the experiments may be found in Section A.4.2.

Multicore CPUs: Figure 5.6 illustrates the CPU implementations’ performances, including

the external, programmer created implementations. The results are consistent with the relative

platform characteristics, as given in Table 5.4.
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Table 5.4.: Ideal acceleration of experimental platforms relative to a single core of the desktop
CPU, as given in Lee et al’s work[83].

Type Designation Ideal Acceleration over
Sequential

CPUs
Desktop 4.00
Server 8.00

Manycore 24.00

KS CPU [81] 4.37
IC CPU [80] 3.57

GPUs

NVIDIA Workstation 111.09
NVIDIA Cloud 218.61

AMD Workstation 113.14
Phi 178.82

KS GPU [81] 92.00
IC GPU [80] 55.54
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Figure 5.6.: Acceleration of multicore CPU implementations over a single core, implementation
on the Desktop CPU platform for Kaiserslautern option pricing benchmark and
Imperial College Asian option work. The multiplicative factors indicate the factor
di↵erence between the performance measured and the ideal performance as predicted
by the methodology employed by Lee et al[83].
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An exception is the performance of the Server platform, which did better than the hardware

characteristic-based prediction. The Server platform is hosted by Amazon Web Services, and so

is a virtualised CPU implemented on potentially many other servers. As a result, it is possible

that rather than sharing floating point units, as every 2 cores on the other platforms do, on the

Server platform, many threads have sole use of floating point units, and hence outperform the

prediction.

The results show that F 3’s Desktop CPU implementation are within the same order of relative

performance as the external implementations from both Kaiserslautern and Imperial College,

although the external, programmer created implementations perform around better, accelerat-

ing 10% more than predicted by the hardware characteristics. This result suggests that F 3’s

generated code is almost as e�cient as that written by a programmer, however the code custom

written for a specific platform has some advantage.

However, the purpose of the generated code is not to outperform that written by parallel pro-

gramming experts, but rather to provide access to those resources where there would otherwise

not be.

GPUs: Figure 5.7 illustrates the GPU platform results. Generally, the GPU implementations’

underperform the predictions based upon hardware characteristics by a factor of 2. This is

explained by the di�culty in saturating the high throughput GPU architecture, even though

the Monte Carlo algorithm and the OpenCL programming paradigm are well suited to the

architecture. This is also despite the copious task and data parallelism that allows for the

latency of memory operations to be hidden, as described in Section 5.1.3.

An exception to the under performance trend is the Xeon Phi implementation, which is

approaching its projected acceleration figures. This suggests that the code generated by F 3

is well-suited to the hybrid architecture of the Phi, although the e�cacy of the Intel OpenCL

compiler and native mathematical functions are also potentially a factor.

To explain the di↵erence in performance between the GPU and CPU implementations, I con-

sider the multiplicative di↵erence between the achieved and theoretical peak performance, as

described in Lee et al’s work[83]. The CPU platforms are achieving about 10% of the theoretical

peak performance of the platforms, while the GPUs are achieving almost 25% of the devices’

theoretical capacities. However, the Sequential OpenCL implementation is achieving approxim-

ately 40% of the CPU’s single threaded capacity, hence the GPU platforms appear less e�cient

by comparison.

Furthermore, this analysis based upon the theoretical performance suggests that the external

implementations are dramatically underusing the GPU. A possible explanation is that the work

from the other researchers makes use some of the first compute-focused, NVIDIA Tesla GPUs,

and hence there have been considerable compiler and architectural innovations in the two gen-

erations separating it from the platforms used by F 3. A further consideration is that these

researchers were FPGA-focused, and hence maybe did not devote as much time to optimising

their GPU implementation.

Of further note is the variability in the Phi’s results, with a factor of 3 di↵erence between the
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best and worst performing tasks5. This emphasises the finding of the previous experiment, that

the platform’s hybrid architecture allows it to execute in an embarrassingly parallel fashion,

similar to a GPU, but still use its extra control logic to opportunistically extract compute

performance, similar to a CPU.

FPGAs: Figure 5.8 illustrates the FPGA platform results. Unlike the other platforms, the

performance of the FPGAs cannot be explained by the task and data parallelism and clock

rate. The clocks used in the FPGA implementations are an order of magnitude slower than the

sequential CPU reference, and the apparent degree of task or data parallelism used is no more

than 13. The explanation for the order of magnitude improvement relative to clock rate and

apparent parallelism is the fine-grained parallelism enabled by the architecture, algorithm and

F 3.

A further influential factor is the e�ciency of the parallelism approach used, as described in

Section 5.2.2. On this note, relative to device size, the devices using the Altera OpenCL tools

do considerably better than those using the Maxeler tools, but the sheer number of resources

available to the Max4 platform make it perform comparably to the P385-D5. The poor per-

formance of the ZC706 platform is underlined, with it dramatically underperforming relative to

the resources available it, compared to how other implementations use similar resources.

In comparing to the external bodies of work, the di↵erences in the size of the FPGAs used

are considerable. The FPGAs I used in my study are of at least one generation more recent,

as is the case with the Max3’s Virtex 6, or two generations later, in the case of the Stratix Vs

used by all of the other experimental platforms [81, 80]. Despite this, the external, programmer

implementations are again within the same order of magnitude, suggesting the programmer

implementations are achieving considerably more e�cient designs. This is not unexpected,

given the relative immaturity of the High Level Synthesis tools that F 3 relies upon.

5.3. Heterogeneous Computing Portability

Across the F 3 platforms, I have found that F 3 provides implementations that not only make

good use of the parallel computing resources of a platform, but that are also comparable to

programmer created implementations.

According to the criteria I laid out in Section 3.1.4, F 3, as an instance of the domain specific

approach, is portable, supporting implementation from a single task description to multiple plat-

forms, including multicore CPUs, GPUs and FPGAs. These implementations are also e�cient,

making good use of the heterogenous, parallel compute resources available, as well as providing

comparable performance to implementations created by platform experts.

While not necessarily outperforming platform programmer implementations, F 3 does enable

domain programmers, who potentially know very little about the architectures being targeted,

to use the parallel compute capabilities of these platforms automatically.

However, I do note that proving this e�cient portability criteria is not a novel contribution,

rather I have confirmed the results of the bodies of work in Section 2.2.3.

5See Table A.11 for a per-task performance breakdown
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In conclusion, heterogeneous computing standards, as described in Section 2.1.2, have played

an important role in enabling F 3, particularly OpenCL. I understand the success of F 3’s im-

plementations as not only evidence of e�ciently portable domain specificity, but also as an

endorsement of these open standards.

A further observation, which leads into the subject of the next chapter, is the variability of the

performance seen, both for a particular platform with di↵erent tasks, and between platforms for

the same task. There is an interaction between the programming tools used, the computational

task specified and the computing platform being used, that is not always predictable ahead of

execution. However, this inconsistency in the platform-task performance does open the door to

super-linear performance scaling.
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6. Predicting Derivatives Pricing

Many financial engineers1 struggle to make sense of how their tasks will run on the computational

platforms available to them. This is because domain programmers are often overwhelmed by the

myriad design choices that a↵ect implementation, and often don’t know which implementation

variable options are relevant, never mind finding the values for those variables that best meet

their requirements.

In searching for a way to present these design choices to the domain programmer, I considered

the approach of one the most widely used, compute intensive applications: video streaming and

computer games. These applications often provide simple sliders or checkboxes which allow

users to trade between a variety of domain measures of performance, such as image resolution

or responsiveness. Such interfaces are deeply intuitive because the quantified characteristics

that are being traded between are easily learnt or understood by the user. The insight behind

these interfaces is that the quantified characteristics of the output can serve as abstractions for

the implementation design choices. As described in Section 3.2, I have defined these quantified

characteristics as domain metrics.

To provide interfaces that allow the domain programmer to balance output metrics according

to their requirements, two features are required:

1. Predictive models that map domain function inputs to output domain metrics. These

domain metric models need to identify what inputs, which I have defined as implementation

variables in Section 3.2.1, can be safely varied as these variables don’t a↵ect the correctness

of the function’s output. In contrast to the domain data type parameters that do.

2. Di↵erent metric models need to be reconciled to enable trade-o↵s between metrics, so that

a change in input is reflected in the outputs of the other models. Ideally, any change in

value of one metric should be reflected to the domain user in terms of the change to other

domain metrics.

In this chapter, I outline how my domain specific methodology can provide a means to model

derivatives pricing domain metrics, so as to provide domain programmers with metric trade-

o↵s as a configuration abstraction. To illustrate this claim, I describe my identification and

implementation of derivatives pricing domain metrics of latency and accuracy. I then evaluate

the validity of these models using F 3, demonstrating that the models can both incorporate

further data so as to become more accurate, and also extrapolate, producing useful metric

predictions.

1 and many other types of domain programmers
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6.1. Predicting Derivatives Pricing Metrics

In this section I illustrate the predictive domain metric model concept by modelling the import-

ant metrics of latency and accuracy for the pricing domain function in derivatives pricing. I first

describe the implementation variable and domain metrics in this domain, I then describe how

I created models for these metrics. Finally, I describe how I have implemented the latency and

accuracy metric metric models using the process outlined in Section 3.2.3, using F 3.

6.1.1. Derivative Pricing Implementation Variables and Metrics

As outlined in Section 3.2.1, I now identify an implementation variable and two domain metrics

of the derivatives pricing domain. These metrics provide a means to relate the abstract notions

of derivatives pricing, as defined by the domain data types and function given in Section 5.1.1,

to the actual implementation of the task upon a real platform.

Implementation Variable

Paths In the Monte Carlo algorithm that I used to implement the derivatives pricing domain

function, as previously described in Sections 4.1.3 and 4.2.2, and given in (6.1), N , the number

of simulation paths used is an implementation variable. It is an implementation variable by

virtue of not being a member of a domain data type, as the other inputs to the algorithm are:

r, t are attributes of the underlying data type, whereas T is an attribute of the derivative.

V
t

= e�r(T�t) 1

N

N�1X

i=0

V (x
i

) (6.1)

Outside of the context of the Monte Carlo algorithm, the number of simulation paths has

little meaning to the domain programmer, besides maybe appealing to some notion of coverage

of the derivative’s probability space, as defined by derivative and underlying data types.

Hence a domain specific system, such as F 3, could “safely” specify the value of this variable,

provided the programmer was provided with some means of specifying their requirements that

the variable impacts upon.

However, within the algorithm it directly impacts the statistical properties of the computa-

tion’s result, such as the size of the result’s confidence intervals [74]. From an implementation

point of view, the number of paths determines the scale of the computation, and also gives an

upper bound on the practical task and data parallelism of that particular option pricing task.

Domain Metrics

Latency The latency between when a pricing operation is initiated and when it returns a price

is fundamentally important within the financial domain [74]. There is a practical limitation

that if a calculation takes too long, the assumptions that the financial engineer used to set

the underlying and derivative values might be superseded by actual events, such as a change

in value of an exchange rate. Furthermore, the time at which prices are received a↵ects how

traders use those prices. Minimising the latency of the pricing operation is desirable, as this

confers first-mover advantage.
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Accuracy In the financial domain, the accuracy of a computed price is often expressed in

probabilistic terms. When using the Monte Carlo algorithm, often the 95% confidence interval

is used, which gives the size of the finite interval around the computed price for which there is

a 95% confidence that the true convergence value of the algorithm2 lies within that interval. As

small a confidence interval as possible is desired, as this means less risk has to be accounted for,

and hence the derivative may be hedged on a smaller margin.

6.1.2. Latency and Accuracy Metric Models

As described in Chapter 4, derivatives pricing is the only domain function in the derivatives

pricing domain. In this subsection, I develop the metric models, as per Section 3.2.2, for the

domain metrics of latency, (6.2), and price accuracy, (6.3), for the pricing function in terms of

the number of simulations paths implementation variable as implemented using the Monte Carlo

algorithm.

Latency Model

I have used a simple, linear latency metric model in (6.2), a function of a single implementation

variable, the number of paths (n), i.e as per (3.2), V = n, V = Z+, and (6.1).

The linear nature of the model reflects the O(N) complexity of the Monte Carlo Algorithm.

The model’s coe�cient (�) translates to the time spent per Monte Carlo path. Similarly, �, the

constant component of the latency metric model, captures the fixed time spent initialising the

computation, as well as any time spent communicating the task to and returning the result from

the target platform.

f
L

(n) = �n+ �. (6.2)

Accuracy Model

The accuracy metric model that I have used is based upon the convergence of the Monte Carlo

algorithm, which is given by the inverse square root of the number of paths, scaled by a coe�cient

(↵). The model is given in (6.3).

f
C

(n) =
↵p
n
. (6.3)

Unified Model

To relate the two domain metrics of latency and accuracy, I solve for n and use it to express

(6.2) and (6.3) as a trade-o↵ between the latency and accuracy, as given in (6.4). This means

that n, V in this implementation can be found for a given accuracy (c 2 R+).

f
L

(c) =
�

c2
+ �. (6.4)

where:

2In accordance with the model parameters specified. Whether the true value of the model reflects reality is the
concern of the financial engineer and anyone a↵ected by their behaviour.
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Listing 6.1: Implementation of metric model generation within F 3, assuming the option defini-
tion given in Listing 5.3

#Creat ing the p lat fo rms and s o l v e r ob j e c t s
multicore cpu = Multicore CPU ( )
mc solver cpu = MonteCarlo ( [KSO 1,KSO 2] , multicore cpu )

#Ca l l i ng the CPU so l v e r to generateand compi le
mc solver cpu . generate ( )
mc solver cpu . compi le ( )

#Populat ing the model
mc solver cpu . populate models ( )

#p r ed i c t i n g the l a t ency and accuracy f o r 10 Mi l l i on Paths
pred latency = mc solver cpu . latency model (1 e7 )
pred accuracy = mc solver cpu . accuracy model (1 e7 )

� = �↵2.

6.1.3. Implementation in F 3

In order to bring the ability to model domain metrics into F 3, I exploited the automated

compilation and execution capabilities of the framework, as described in Section 5.1.2. I used

these capabilities to build the online benchmarking process, as described in Section 3.2.3, into the

base Monte Carlo solver class that the platform specific solvers inherent from, thus implementing

the models only once, but reusing them for each type of computational platforms. If I were to

find a platform specific model that was more accurate, I could merely override the base Monte

Carlo model provided with this more accurate model for that platform’s implementation3.

If a platform specific algorithmic object has been created, the corresponding method may be

called to perform the benchmarking process for the option pricing problems currently allocated

to it, upon the platform to which it is targeted. Upon completion of the benchmarking process,

a linear algebra library, SciPy [84], is used to perform the least squares regression and the

corresponding latency and accuracy model is associated with that particular solver instance.

An example of a solver using the prediction capability built into the framework can be found

in Listing 6.1.

6.2. Evaluation

Having demonstrated the e�cient portability of the framework in Section 5.2, similarly in this

section I evaluate the framework’s ability to model latency and accuracy domain metrics upon

for a broad set of problems upon a large set of experimental platforms.

3Thus far however, I have not.
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To evaluate the claim that the domain metric models are able to characterise tasks on hetero-

geneous platform, I need to prove the following two properties, as outlined generically in Section

3.2.4, for a diverse set of platforms and tasks for both of the models I developed in Section 6.1.2:

• Incorporation: As the set of benchmarking data points grows, the domain metric value

predicted by the model converges on the value of the domain metric measured at run-time

for the same inputs.

• Extrapolation: For a given amount of benchmarking, the domain metric values predicted

by the models remains “reasonably” close to those measured at run-time for a large set of

simulation path values. What is reasonable in this context I have heuristically defined as

a less than 10% change for an order of magnitude paths than benchmarking.

To evaluate both criteria, I have measured the relative error as given in (3.8), adapted to this

context in (6.5), where the absolute di↵erence between the measured run-time value (f
k

(n)) and

the predicted metric value (f̂
k,b

(n)) after b benchmarking data points for n simulation paths

, is divided by the run-time value. The run-time metric value is measured when the task is

run with the specified option pricing task inputs and implementation variable, the number of

simulation paths (n). I have measured this for both the latency and accuracy models described

above across diverse sets of heterogeneous computing platforms and tasks.

r
k

=

���f
k

(n)� f̂
k,b

(n)
���

f
k

(n)
(6.5)

6.2.1. Experimental Setup

In this subsection I describe the broad sets of heterogeneous platforms and tasks that I used to

test the incorporation and extrapolation properties of the latency and accuracy metric models

for my derivatives pricing domain case study. For both sets, I describe the nature of the hetero-

geneity. The intention is that in a similar manner to the portability feature, that by evaluating

a broad set of platforms and tasks, I make a strong case for the e�cacy of the domain metric

models.

Heterogeneous Platforms

An overview of the heterogeneous platforms that I used is given in Table 6.1.

The first class of platform heterogeneity is device type - I have made use of a wide array of

Multicore CPUs, GPU and FPGA-based computational platforms. The second dimension is the

manufacturer within each device category, which I have varied as much was practically possible.

The final class is the diversity of interconnections used between the computational platforms,

achieved with varied geographic locations.

I describe the detailed compute capabilities of the experimental platforms in Tables ?? and

A.5. As the Monte Carlo algorithm being used is amenable to parallel execution, I expected that

the GPUs and FPGAs would provide the best application performance. This is also reflected

by the results reported in Section 5.2.
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Table 6.1.: Overview of heterogeneous computing platforms used in domain modeling evaluation
experiments. Order within device categories is by network latency.

Device
Category

Platform Designation Platform Name Network Location Name

CPUs

Desktop Intel Core i7-2600 Localhost
Local Server AMD Opteron 6272 ICL Datacentre
Local Pi ARM 11 76JZF-S ICL Insecure subnet

AWS Server EC1 Intel Xeon E5-2680 AWS East
AWS Server EC2 Intel Xeon E5-2670 AWS East

GCE Server Intel Xeon GCE Central
AWS Server WC1 Intel Xeon E5-2680 AWS West
AWS Server WC2 Intel Xeon E5-2670 AWS West
Remote Server Intel Xeon E5-2680 UCT Datacentre

GPUs

Local GPU 1 AMD FirePro W5000 ICL EEE Workshop
Local GPU 2 NVIDIA Quardo K4000 ICL EEE Workshop
AWS EC GPU NVIDIA Grid GK104 AWS East
AWS WC GPU NVIDIA Grid GK104 AWS West
Remote Phi Intel Xeon Phi 3120P UCT Datacentre

FPGAs
Local FPGA 1 Maxeler Max 3424A ICL EEE Workshop
Local FPGA 2 Nallatech P385-D5 ICL EEE Workshop

An important caveat however is that the platform performance reflect implementations pro-

duced by F 3, in addition to reflecting the inherent capabilities of the devices. I have also

provided the network latency for each platform in Table A.7. The computational characteristics

of the tasks are also described in Table 6.2.

I expect the compute capabilities to determine the coe�cient of the latency model in (6.2),

�, while the network latency will largely determine the constant coe�cient, �. Particularly

prominent data-points are the Remote Server and Phi, which have orders of magnitude longer

communication times than the other platforms. Another notable outlier is the Local Pi platform,

which is orders of magnitude less capable than the next most computationally powerful platform.

Option Tasks

Table 6.2 provides a breakdown of the broad set of derivative pricing tasks that were used to

evaluate the domain metric models. In addition to the types of underlying and derivatives used,

the total amount of computational work for each task is specified in Table A.8.

The domain parameters for the pricing task operations, as defined in Section 3.2.1, such as

the proprieties of underlying model, were generated using uniform random numbers within the

values from the Kaiserslautern option pricing benchmark. A rejection procedure was utilised to

keep the relative magnitude of the pricing tasks within the same order of magnitude.

This workload reflects a diverse array of tasks with the pricing task category, with those

using the Heston underlying being more than twice as computationally intensive as the Black

Scholes-based pricing tasks. Similarly, the European and Asian option tasks have less complex
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Table 6.2.: Overview of domain model evaluation workload of option pricing tasks.

Task
Name

BS-A BS-B BS-DB BS-DDB H-A H-B H-DB H-DDB H-E Total

Number 10 10 10 5 25 29 29 5 5 128

control flows than the barrier options. I weighted the workload of 128 tasks towards the more

computationally intensive tasks, as these produce more varied domain metric characteristics.

6.2.2. Latency Metric Model Error

The latency model incorporation results are given in Figures 6.1, 6.2, 6.3 and 6.4. Figures 6.5,

6.6, 6.7 and 6.8 give the results of the latency extrapolation experiments. I evaluated the latency

models on a platform basis, i.e. the geometric mean of the error of all task on that platform, as

per the entries in Table 6.1, as well as the geometric mean of the three platform categories, as

given by the first column in the table. I expect the latency models to be specific to a particular

task-platform pair, and hence I have considered each task upon each platform.

The error is expressed as a function of the ratio of the number of paths used for benchmarking

(b), and the number of paths used at runtime (n). In all cases only the mean error is given, as

the deviation from the mean is to small to indicate.

In the interpolation experiments, as the ratio approaches 1, the number of benchmark paths

becomes equal to the run-time paths, and the error in the prediction is expected to be min-

imised, as the prediction model has complete information. This reflects that the amount of

benchmarking is being varied, while the number of paths at run-time are fixed.

In the extrapolation experiments, as the number grows above 1, this reflects that the number of

run-time paths is many multiples of the number of benchmarking paths used. This reflects that

in this experiment, the number of run-time paths is varied, with a fixed number of benchmarking

paths.

Latency Model Interpolation

Multicore CPUs In Figure 6.1, the CPU latency model error is presented. As more inform-

ation, i.e. the benchmark to run-time ratio becomes closer to one, is made available to the

CPU platform models, the relative error becomes smaller. Of note is the error of the Local

Pi platform, which is an order magnitude less than the next platform. The Local Pi doesn’t

have any ability to compute in parallel, having only a single computational platform, hence this

suggests that the error in the latency model is being introduced in the allocation and schedul-

ing of threads to di↵erent parallel compute elements within the systems. This is confirmed by

considering the platform with the highest error, the Local Server, which not only has 16 cores

per CPU, but also multiple CPUs.

GPUs Figure 6.2 provides the GPU latency model error. The error of both the Local and

AWS GPUs illustrate a reliable incorporation trend, similar to the CPU platforms, with the
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Figure 6.1.: Relative error of multicore CPU latency models for a fixed run-time number of paths
that take 4.69 seconds to execute and varying numbers of benchmark paths.

error declining in a linear fashion given further benchmarking information. The Remote Phi

platform is less convergent, with the error being a multiple of the next highest error in many

cases. This is due to the high latency of the platform’s network connection, making up most of

the run-time. As a result, any small change in the network latency, which is inherently volatile,

had a corresponding impact upon the quality of the latency model created.

FPGAs Figure 6.3 provides the FPGA latency model error. Both platforms also exhibit a

linear scaling, with the error of the 1st Local FPGA being considerably higher than those seen

for the CPU and GPU platforms.

I initially found this result surprising, as I expected that the FPGA platforms would provide

a dedicated architecture with reliable timing characteristics. However, the platforms are sus-

ceptible to variations in scheduling of communication by the operating system, and the Maxeler

platform is particularly prone to this variation. Another source of latency variability is the

configuration of the FPGA device itself. Similar to network communication in the Remote Phi,

this makes up a considerable length of time on both platforms. This is of variable length, as if

the required bitstream has already been configured on the device, than reconfiguration is not

necessary, whereas if it is not, then the time consuming reconfiguration procedure is necessary.

Platform Categories The interpolation results are summarised in Figure 6.4. The platform

category results illustrate that as the benchmarking data set grows, the models become more

accurate. This suggests that the incorporation property holds for the latency model.
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Figure 6.2.: Relative error of GPU latency models for a fixed run-time number of paths that
take 4.69 seconds to execute and varying benchmark time
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Figure 6.3.: Relative error of FPGA latency models for a fixed number of run-time paths that
take 4.69 seconds to execute and varying benchmark time
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Figure 6.4.: Relative error of platform category latency models for a fixed number of run-time
paths that take 4.69 seconds to execute and varying benchmark time

Extrapolation

Multicore CPUs Figure 6.5 illustrates that as the problem size is scaled up, the latency

model continues to predict the run-time latency well. After a small initial increase, the error

for most platforms stays close to 1%. An exception is the Remote Server, where the error grows

linearly. This is due to the high network latency of the server results resulting in a latency model

with relative few benchmarking data points initially, and hence an inaccurate model.

GPUs Figure 6.6 echoes the trend seen with the CPU platforms. After a small initial increase,

the error of most of the GPU platforms remains stable, close to 1%, even decreasing slightly.

This is due to the primary source of error, OS and subsystem scheduling overhead, contributing

less to the overall run-time. Although, again, the Remote Phi platform exhibits a high error

characteristic due to a low number of benchmarking data points.

FPGAs Figure 6.7 also reflects the trend seen in CPU and GPU platforms. After a small

initial increase, the error remains stable, although the FPGA cases this is closer to 10% than

1%. This is due to the higher variability seen by these platforms, hence the models are more

inaccurate to begin with.

Platform Categories The extrapolation results are summarised in Figure 6.8. The platform

category shows how the models scale as the run-time prediction target is increased for a fixed

benchmarking time of 4.69 seconds per task or 10 minutes in total, and an increasing run-time

target. These results demonstrate that for a run-time target of more than an order of magnitude

greater than the benchmarking procedure, the latency models are capable of extrapolating,

making predictions with less than 10% error in most cases, the heuristic criteria I defined. The
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Figure 6.5.: Relative error of CPU latency models for a fixed number of paths that take 4.69
seconds to execute and varying run-time paths.

remote Phi and server models’ poor performance is explained by the benchmarking time being

too short to accurately solve for the true coe�cient and constant values.

6.2.3. Accuracy Metric Model Error

The accuracy model results are given in Figure 6.9 for the incorporation, and Figure 6.10 for

the extrapolation. The accuracy model results are presented as minimum, geometric mean and

maximum of the model results within the pricing task categories in Table 6.2 as the axes of the

plots. This is because the accuracy of the task is not a↵ected by the platform of implementation,

but rather the number of simulation paths used and the problem parameters.

Similar to the previous experiment, the error is expressed as a function of the benchmark

paths to run-time paths ratio, as described in Section 6.2.2.

Interpolation

Figure 6.9 illustrates that as information is added to the benchmarking procedure, the relative

error in the accuracy prediction model decreases across the di↵erent tasks categories. This is

explained by the convergence of the Monte Carlo algorithm being a proven property, hence a

low number of data points are required to solve for the convergence coe�cient, ↵, as given in

(6.3). Some of the Heston option tasks present a relatively high maximum error, however, as

can be seen by the task category geometric mean these errors average out close to 10%.
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Figure 6.6.: Relative error of GPU latency models for a fixed number of paths that take 4.69
seconds to execute and varying run-time paths.

   1 102 3 4 5 20

100

0.01

0.1

1

10

Runtime to Benchmark Ratio (Benchmark Paths/Runtime Paths)

M
ea

n 
R

el
at

iv
e 

Er
ro

r (
%

)

Local FPGA 1
Local FPGA 2

Figure 6.7.: Relative error of FPGAlatency models for a fixed number of paths that take 4.69
seconds to execute and varying run-time paths.
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Figure 6.8.: Relative error of platform category latency models for a fixed number of paths that
take 4.69 seconds to execute and varying run-time paths.

Extrapolation

Figure 6.10 shows how the models scale as the run-time target is increased. Similar to the

Latency model results, the models scale well for more than an order of magnitude, with relatively

little change in the error minimum, geometric mean and maximum.

In all cases, the mean error for all task categories remains within the 10% heuristic criteria I

defined as being acceptable for extrapolation.

6.3. Modelling Domain Metrics on Heterogeneous Platforms

For the domain of derivatives pricing, I have shown that predictive domain metric models for

latency and accuracy can be found and implemented.

As Figures 6.4, and 6.9 indicate, the latency and accuracy metric models incorporates new

data, hence becoming more predictive and converging on the run-time metric value. As Fig-

ures 6.8 and 6.10 reflect, the models also extrapolate well, with a relatively minor increase in

latency and accuracy error for run-times of more than an order of magnitude longer than the

benchmarking time.

This work builds upon the previous chapter, making use of the e�cient, portable execution

enabled by the domain specific approach to automatically perform the process of populating

these prediction models for the domain function. Hence the existence of this feature is testament

to the value of the previous one.
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(a) 0.125:1.0 (b) 0.25:1.0

(c) 0.5:1.0 (d) 1.0:1.0

Figure 6.9.: Relative error of accuracy models for a fixed number of run-time paths that take 4.69
seconds to execute and varying numbers of benchmark paths. Ratio is expressed as
Benchmark Paths :run-time Paths. The innermost region represents the minimum
error, the middle region the geometric mean relative error and the outermost the
maximum.

117



(a) 1:2 (b) 1:4

(c) 1:8 (d) 1:16

Figure 6.10.: Relative error of accuracy models for a fixed number of benchmark paths that
take 4.69 seconds to execute and varying numbers of run-time paths. Ratio is
expressed as Benchmark Paths:run-time Paths. The innermost region represents
the minimum error, the middle region the geometric mean relative error and the
outermost the maximum.
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The existence of the models for two metrics, with both the incorporation and extrapolation

properties gives weight to the claims made in Section 3.2. As I have described in Section 2.3.1,

I have found the characterisation of tasks with respect to computational platforms to be an

understudied area that is usually conflated with other areas such as broader application studies

or workload partitioning. Hence my proposed approach to the implementation and evaluation of

a domain specific means for relating tasks and platforms is a modest contribution in addressing

this gap in computing engineering scholarship.

In the next chapter, I refine these models so that multiple tasks and platforms may be con-

sidered. I then show how these multiple-platform and task models then allow for my domain

specific methodology to automatically partitioning work across the available resources in an

optimal fashion.
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7. Partitioning Derivatives Pricing

The previous chapter described how derivatives pricing tasks and platforms may be characterised

using relatively simple domain metric models for accuracy and latency. Such models would be

useful for a financial engineer balancing a decimal place of accuracy against the additional hour

of execution it would require, or as an evaluation tool for a bank’s CTO faced with a growing

array of heterogeneous procurement options. However, a far more common use case is when

there are portfolios of multiple derivatives that need to be valued, and multiple heterogeneous

computing platforms upon which these derivative pricing tasks could be executed.

In a more general scenario of many tasks and platform, the central challenge is how the work-

load can be partitioned across the available platforms while improving, or at least maintaining,

the metric trade-o↵ characteristic achieved in the previous chapter. Stated in terms of the do-

main models, how can the domain specific approach be extended to cope with multiple tasks

and platforms? In this chapter, I address this question by describing how the performance pre-

dictions made by the derivatives pricing domain metric models can be combined using task and

platform reduction functions, as described in Section 3.3.1. By being able to combine the metric

values, this allows for the partitioning of work across the available resources to be formulated

as an optimisation problem that can be solved automatically, i.e. without domain programmer

intervention, in an optimal fashion.

I first describe how the unified latency and accuracy models described in Section 6.1.2 can

be incorporated into a formulation of the partitioning problem described in Section 3.3. I then

detail several di↵erent approaches, and the implementation thereof to find solutions to this

optimal allocation optimisation. In the second section of the chapter, I provide an evaluation

of the partitioning approach, using both synthetic task and platform data, as well as the option

pricing problems and heterogeneous platforms used in the previous chapter.

7.1. Derivatives Pricing Task Partitioning

I now formulate the derivatives pricing workload partitioning problem using the latency and

accuracy metric models, as well as outline and describe the implementation of three approaches

for solving the resulting problem. Finally I describe how I have implemented these three parti-

tioning approaches within F 3.

7.1.1. Reformulating the Partitioning Problem

In (7.1) the unified latency-accuracy domain metric model I described in (6.4) has been applied

to the general, constrained allocation problem specified in (3.16). As described in Section 3.3.2,

the relaxed form of the problem may be used, as the degree of parallelism is su�ciently large
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that the allocation variable, A can be expressed as a proportion of the problem being solved on

a particular platform.

The vector ~c gives the task accuracies, with each element corresponding to the required 95%

confidence interval for each task, while � is the task-platform constant matrix. Similarly, � : ~c2 is

the element-wise division of the delta coe�cients by the required accuracies of the tasks. In this

case, an additional constraint to ensure the specified accuracies is not required, as the unified

metric model has already captured this constraint implicitly.

minimise
A2Rµ⇥⌧

+

G
L

(~F
L

(A,~c)) ~c 2 R⌧

+

subject to
µX

i=1

A
i,j

= 1 j = 1, 2, . . . , ⌧.
(7.1)

Where:

G
L

(~F
L

(A,~c)) = max( ~F
L

(A,~c)),

~F
L

(A,~c) = (� : ~c2 �A+ � � dAe) · 1 � 2 Rµ⇥⌧

+ ,� 2 Rµ⇥⌧

+ .

An important feature of the formulation given in (7.1) is its non-linearity as a result of the

ceiling function in ~F
L

. This reflects (6.4), in that there is a constant set up time for each task

upon a platform, regardless of the amount of the task allocated.

7.1.2. Partitioning Approaches

I have investigated three approaches to solving this program from the categories identified in

Section 2.3.3. In each case, I have also commented upon how likely it is that I would expect a

domain programmer to arrive at such an approach in the absence of a domain specific method-

ology.

Heuristic Allocations

Below I define two heuristic solutions to solving the program specified in (7.1), the best plat-

form and proportional allocation heuristic. Both are intuitive and have a low computational

complexity. My opinion is that competent domain programmer to formulate something similar

to these heuristics within a day or a week.

The heuristics are by no means the most sophisticated, considering the exhaustive evaluation

given in Braun et al’s work [40]. However, heuristic represent the two most direct ways to use

heterogeneous computing resources - use the single best platform, or allocate work linearly, i.e.

in proportion to the platforms’ capabilities. My intention is to use these heuristics as a baseline

for my investigation in workload partitioning.

Best Platform Heuristic The first best platform heuristic I propose in (7.2) is intuitive: all

of the tasks are allocated to the single platform that completes all the tasks with the shortest

121



makespan.

~L
i

< ~L
x

i, x = 1, 2, . . . , µ, i 6= x,

A
i,j

= 1 j = 1, 2, . . . , ⌧,

A
x,j

= 0,

(7.2)

Where:

~L = ~F
L

(1,~c).

Proportional Allocation Heuristic The second heuristic, the proportional allocation heur-

istic, is given in (7.3). It is a minor refinement of the best platform heuristic, allocating tasks

inversely proportionally to the makespans of all of the platforms, when all of the tasks have been

allocated to each platform. As this heuristic is allocating tasks in proportion to the capabilities

of the platforms, in theory it should represent the linear performance improvement discussed in

Section 1.2.2.

~A
i,j

=

 
~L
i

µX

o=1

1
~L
o

!�1

i = 1, 2, . . . , µ, j = 1, 2, . . . , ⌧. (7.3)

The best platform heuristic performs well when there is a single platform significantly faster

than the others. The proportional allocation heuristic is more general, working well provided

the elements of � are significantly smaller than the elements of � : ~c2 for all platforms. If

not, the cumulative constants of all the tasks dominate each platform’s makespan, regardless of

allocation, and result in a suboptimal allocation of tasks.

Machine Learning-based Allocation

The second approach I propose builds upon the first, using the better of the solutions o↵ered

by the two heuristics as a starting point. The platform reduction function G
L

( ~F
L

(A,~c)) is then

specified as the objective function for a time-constrained, global optimisation machine learning

algorithm, such as the simulated annealing algorithm provided in SciPy [84], combined with a

“polishing”, convex optimisation algorithm, such as Danzig’s Simplex algorithm, also available

in SciPy.

As this machine learning approach incorporates domain specific platform and task information

as well as the heuristics, it should at worst confirm the solutions o↵ered by heuristics and at

best find the most optimal allocation, achieving super-linear performance scaling, as discussed

in Section 1.2.2. As I show in the evaluation in this chapter, a key determinate of the partition

optimality is the degree of linearity in the objective function. Furthermore, another factor is

problem size, as this problem su↵ers from the curse of dimensionality with respect to both µ

and ⌧ .

I expect that the partitioner such as this would be within the reach of a local developers, as

described in Section 2.2.1, however implementing it would require a significant amount of e↵ort

and expertise without a certain reward.
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Mixed Integer Linear Programming Allocation

Finally, the MILP partitioning approach that I propose uses the formulation of the domain

partitioning problem as the input to a constrained integer programming framework, such as

SCIP [85], which applies global optimisation techniques as well as a variety of transformations

and heuristics to solve the constrained problem.

Frameworks such as SCIP accepts problems in a form very similar to (7.1), however generally

do not accept non-linear objective and constraint functions. This requires the problem to be

reformulated as given in (7.4), adding additional variables (G
L

andB) and constraints to capture

the non-linearities in the problem.

minimise
GL,A,B

G
L

G
L

2 R+,A 2 Rµ⇥⌧

+ ,B 2 {0, 1}µ⇥⌧ ,

subject to
µX

i=1

A
i,j

= 1 j = 1, 2, . . . , ⌧,

F
L,i

(A,~c)  G
L

~c 2 R⌧

+, i = 1, 2, . . . , µ,

A
i,j

 B
i,j

i = 1, 2, . . . , µ, j = 1, 2, . . . , ⌧.

(7.4)

Where:

~F
L

(A,~c) = (� : ~c2 �A+ � �B) · 1.

As discussed in Section 2.3.3, the MILP approach applies a variety of heuristics to the problem,

not dissimilar to the machine learning approach1. However, there are two key di↵erences from

the machine learning approach: firstly, the approach is able to incorporate the constraints of

the problem, and so prune down the solution search space considerably; secondly, the dual

formulation of the problem allows for not only a solution to be judged to be provably optimal,

but also for meta-heuristics to be applied to assess whether a particular series of allocations is

“moving in the right direction”. As a result, the MILP approach is far more likely to arrive at

super-linear performance improvements, as per Section 1.2.2, as it is better equipped to allocate

the best platforms for particular tasks while balancing against the global objective.

However, I expect the use of a MILP partitioner to be out of the reach of almost all do-

main programmers, barring expertise and experience in management science. Even having such

knowledge, the domain programmer would require significant insight in formulating the platform

metric models. I would not expect such an approach to accessible, unless provided as part of

language/library.

7.1.3. Implementation of Partitioning in F 3

In this section I describe how I have implemented the partitioning approaches I have outlined in

the previous subsection within F 3, using the metric models as per the metric models described

in Section 6.1.2.

1For example, the Simplex algorithm is often used.

123



Heuristic

Implementing the heuristic solutions, the delta and gamma matrices are generated from the

domain metric models implemented within F 3, as described in Section 6.1.3.

The heuristics’ formulae, (7.2) and (7.3), are captured in Python functions, as given in Listings

A.1 and A.2, that are then used to calculate the heuristic allocation matrices.

Machine Learning

The domain machine learning approach is implemented as follows:

1. The heuristic functions, as described in Listings A.1 and A.2, are evaluated, and the one

which has the minimum latency is selected.

2. The shortest latency heuristic is then used as an input to SciPy’s simulated annealing

algorithm, which has a starting temperature set so as to timeout after 540 seconds, or 90%

of ten minutes.

3. SciPy’s Simplex algorithm is then used, with the timeout set to 10% of the time spent on

the simulated annealing algorithm. This is to “polish” the allocation, in case the allocation

has resulted in close to, but not quite an optimum.

Although the performance of Python is generally poor, being a high level, interpreted language,

the libraries in SciPy are implemented directly as C or Fortran code [84], and as a result are

e�cient enough to evaluate a considerable number of solutions in the heuristic value of 10

minutes.

MILP partitioner

The MILP partitioner is implemented in SCIP using the ZIMPL language [85], using the problem

form given in (7.4). The Zimpl code for the problem is given in Listing A.3.

As SCIP is a standalone application, it is called from within F 3 using Python’s subprocess

module, with the parameters for the problem and the resulting allocation communicated via file

IO. Similar to the previous section, a timeout of 600 seconds was set.

7.2. Evaluation

In this section I describe my evaluation of the partitioning approaches that make use of domain

knowledge, machine learning and MILP. I first characterise the performance of the domain

partitioners, the machine learning and MILP partitioners, with respect to problem size and

problem non-linearity using synthetic data. I then verify this characterisation using the cluster

of real world platforms and tasks described in Section 6.2.1.
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7.2.1. Partitioner Characterisation

Synthetic Data Generation Procedure

Drawing upon Braun et al’s [40] work, I used the following procedure (s(⌧, µ, ✓
⌧

, ✓
µ

,!
⌧

,!
µ

, ))

which results in � and �, the synthetic matrices for characterising the di↵erent approaches to

partitioning:

1. Construct the baseline vector (~x) and initial matrix (Y ). ~x is ⌧ uniformly distributed

integer elements, bounded by the task heterogeneity factor (✓
⌧

). Y , is a matrix of µ ⇥ ⌧

uniformly distributed, non-zero integer elements, bounded by the platform heterogeneity

factor (✓
µ

):

x
j

2 [1, ✓
⌧

] j = {1, 2, . . . , ⌧},

Y
i,j

2 [1, ✓
µ

] i = {1, 2, . . . , µ}, j = {1, 2, . . . , ⌧}.

2. Construct �, also a matrix of µ⇥ ⌧ integer values, by multiplying the elements of each row

of Y and of ~x. i.e.

�
i,j

= x
j

Y
i,j

i = {1, 2, . . . , µ}, j = {1, 2, . . . , ⌧}.

3. Sort the first ⌧!
⌧

columns of the � matrix, and the first µ!
µ

rows, where !
⌧

and !
µ

are

the degree of task and platform consistency.

4. Construct the � matrix by repeating steps 1-3, however then multiply the resulting matrix

by the task constant to coe�cient ratio ( ), i.e. the constant time versus the proportional

or splittable time of a task.

Synthetic Case Generation Parameters

The four parameters that I have varied to create the di↵erent cases are platform and task hetero-

geneity, and consistency. The values for what constitutes homogeneous2 versus heterogeneous3

parameters are taken from Braun et al’s work [40], the authors of which derived it from ex-

perimental workloads in a scientific computing HPC centre, hence reflecting real workloads, as

would be seen within an empirically defined application domain.

The degree of heterogeneity determines the range over which the values which make up the

baseline vector and initial matrices used to generate � and �. If a partitioning approach is

not sensitive to the relative magnitudes of tasks upon platforms, then the heterogeneity factor

should not a↵ect the quality of output, whereas an approach that makes assumptions about the

relative magnitudes would be.

The degree of consistency determines the strictness of the ordering of the entries in the

matrices.

2✓µ = 10 and ✓⌧ = 100
3✓µ = 100 and ✓⌧ = 3000
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In the case of task consistency, this determines the ordering of tasks within a platform (the

rows of the matrices), i.e. how strictly increasing values will be for a given platform. If a

partitioning approach requires tasks to be in a specific order, or indeed the ordering of the task

magnitudes is part of the partitioning algorithm, then the task consistency would impact upon

the time taken to partition the tasks.

In the case of platform consistency, this is a measure of how correlated task lengths are between

platform. A higher degree of platform inconsistency increases the size of the potential for super

linear performance improvement, because there is more scope for a partitioning approach to

match tasks to platforms according to the comparative capabilities of those platforms4.

The combination of task and platform consistency reflects the degree of inconsistency between

tasks, and hence, the potential for super-linear performance scaling, as described in Section 1.2.

Synthetic Cases

The parameters used in conjunction with the procedure above are provided in Table 7.1. The

four cases consider a range of di↵erent scenarios, from completely homogeneous, consistent

platforms and tasks to heterogeneous platforms running a set of very inconsistent tasks.

Table 7.1.: Synthetic task-platform data generation parameters. Columns are platform hetero-
geneity (✓

µ

) and consistency (!
µ

), and task heterogeneity (✓
⌧

) and consistency (!
⌧

).

Case Designation ✓
µ

!
µ

✓
⌧

!
⌧

Hom-Con 10 1.0 100 1.0
Het-Con 100 1.0 3000 1.0
Het-Mix 100 0.5 3000 0.5
Het-Inc 100 0.0 3000 0.0

Hom-Con The first case considered is homogeneous and consistent platforms and tasks. Such

matrices might occur in a scenario where a cluster of very similar platforms is being used to

evaluate multiple copies of the same, or very similar tasks.

An example might be a dedicated cluster of identical GPUs performing airflow modelling upon

a large, but uniform surface.

Het-Con The second case is platforms and tasks that are heterogeneous, but that are still

consistent. Such a scenario could occur with a cluster of platforms that are of the same type,

for example multicore CPUs, but are of widely varied compute capacity.

An example would be a cluster of mixed capabilities, including legacy servers being mixed

with newer architectures, or web-based, mobile applications with low capability user CPUs co-

operating with the IaaS-provided high capability server CPUs. The latter example also provides

a rationale for highly heterogeneous workloads, where relatively low requirement compute file

4I’m deliberately using the economic terminology, referring to the concept developed by David Ricardo in the
18th century
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serving tasks might be mixed with more demanding image manipulation or machine learning

tasks.

Het-Mix The third case is again heterogeneous, but with only half of the platform and task

entries being consistent. This scenario is possible when di↵erent types of platforms of varied

ability are mixed together, performing a wide array of tasks.

In this example, in many cases the compute characteristics of the platforms, the clock rate

or the degree of task parallelism, determine the run times of tasks, and hence the consistency

between platform, but there would also be a significant number of instance where this does not,

and platforms have a enhanced capability with regards to a particular task-parameter grouping.

Het-Inc The final case is also heterogeneous, but with no guarantee of consistency. This situ-

ation could arise in a scenario when a cluster of extremely heterogeneous, specialised platforms,

such as DSPs or ASICs, are being used with a wide array of tasks. As a result, it is di�cult to

make any assumptions based upon the relative performance of one particular task. Generally,

I believe such a situation to be unlikely, but I have included it so as to fully characterise the

partitioning approaches.

Synthetic Data Characterisation Results

Utilising the synthetic data generation procedure and parameters in Table 7.1, I have evaluated

the two domain partitioning approaches in terms of size, i.e. the number of variables in the

optimisation problem5, as well as the ratio between the coe�cient and constant latency matrices,

 . I have reported the time required by the domain partitioning approaches algorithms in Figure

7.1 as well as the quality of the solution returned with respect to the solution returned by the

proportional allocation heuristic in Figure 7.2.

Partitioning Time For the partitioning latency experiments, as given in Figure 7.1, a timeout

of 10 minutes was set, the same time given to the benchmarking described in the previous

chapter. This timeout reflects the amount of time that I believe domain programmers would be

willing to spend to obtain some insight into their problem’s design space.

Broadly, as the problem size was varied, as reflected in Figure 7.1a, the machine learning-based

partitioner was limited by the timeout, while the MILP partitioner’s time grows exponentially

as a function of the number of variables. Given the random nature of the simulated annealing

algorithm used in the machine learning approach and the non-linear characteristic of the design

space, I was not surprised that it takes as much time as given, regardless of problem size.

Further insight is provided when considering when the ratio between the coe�cient and con-

stant component is varied, as in Figure 7.1b. The MILP approach’s latency peaks around 1,

reflecting the considerable linear and non-linear allocation problems that both have to be solved

in parallel. This suggests that the scale of the exponential latency seen in Figure 7.1a reflects

the worst case for the MILP approach. The machine learning approach performs relatively well

52µ⌧ in this case
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(a) Allocation Problem Size. The constant to coe�cient ratio was set to 1.
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Figure 7.1.: Latency characterisation of domain partitioning approaches in terms of the time
spent partitioning. The dotted line is the domain machine learning partitioner,
while the solid is the MILP partitioner. A timeout of 600 seconds was set for both
partitioning approaches.
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Figure 7.2.: Partitioning approach quality characterisation, giving the solution’s latency im-
provement over that returned by the proportional heuristic. The dotted lines are the
domain machine learning partitioner, while the solid line is the MILP partitioner.
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at this inflection point, suggesting that the heuristic starting point of the algorithm is likely

close to the optimal point.

Partition Quality For the quality of the solution relative to the proportional heuristic, Figure

7.2, described in (7.3), the MILP and machine learning partitioners’ qualities are expressed as

a function of problem variables and constant to coe�cient ratio.

As the variable size is varied, as given in Figure 7.2a, I explain that the linear improve-

ment trend is a result of increasing the number of variables, and hence increasing the potential

improvement possible over the proportional allocation heuristic, i.e. linear performance improve-

ment.

For the case of the constant to coe�cient ratio, as given in Figure 7.2b, the minor improvement

seen when there is a dominant proportional component is explained by the proportional heuristic

solution being close to the global optimum, hence there not being a large degree of improvement

possible. Notably, as the problems become more binary (i.e. more non-linear), the MILP

approach show an order of magnitude improvement in all cases, as does the numerical optimiser

in the Het-Inc case, reflecting that the problems are non-linear, a situation that the heuristics

struggle with are being considered.

Discussion The outcome from the quality and partitioning time characterisation is that in

what I have defined to be a reasonable amount of time, 10 minutes, both the machine learning

and MILP partitioning approaches can find a partition of work better than that found by a

heuristic partitioner. This result is certainly testament to the advancement in optimisation

algorithms and architectures over the decade since Braun et al’s work [40].

The performance of the domain partitioners is explained by two factors: firstly, both ap-

proaches take advantage of platform inconsistencies, i.e. the ability of platforms to be better

suited to some tasks than others, relative to other platforms. The second factor is how the

allocation interacts with the task and platform. For example, by containing feedback loops that

reflect the impact of non-linearities in the latency model for example, the domain partitioners

are able to account for these non-linearities and hence only allocate tasks to a platform if it

is advantageous. By contrast, the heuristic partitioner apply a rule regardless of whether it is

advantageousness.

In almost all cases the MILP approach returns the better result, suggesting it should be the

preferred method for partitioning workloads. This better performance could be explained by dif-

fering quality of implementations in the partitioners, however the scale of the di↵erence suggests

that the constrained optimisation process is a better fit for this scenario. Indeed, it is intuitive

that an approach that incorporates constraints into its algorithms would be advantageous to

one, such as the machine learning approach, which do not.

In the next subsection I address whether this characterisation using synthetic data is borne

out when using real platform and task data.
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7.2.2. Practical Verification

In addition to the synthetic task-platform data described in the previous section, data from

actual pricing tasks and platforms is required to evaluate the di↵erent partitioning approaches.

This is to confirm that the characterisation performed using the synthetic data is confirmed by

what is measured when running an actual workload.

Experimental Workload

For the experimental workload, I used the large set of 128 option pricing tasks from Chapter 6,

as given in Table 6.2, as a single workload. 35 of the options in the set are Black-Scholes-based,

while the remaining 93 are Heston model-based. A wide range of option types are present in

the set, with a bias towards more computationally intensive problems, with most being either

Barrier, Double Barrier or Asian option problems. These options were evaluated for a range of

accuracy values, from $1 to $0.001.

Evaluating such a workload would mirror a real world situation where an analyst in an invest-

ment bank might be pricing a large set of options for a portfolio valuation or a Value-at-Risk

(VaR) calculation.

As the pricing task parameters are being randomly generated, there is a high degree of vari-

ation in the convergence rate of the di↵erent option tasks, hence a wide range of values for ↵

in (6.3). Also, due to the random nature of the task generation, there will be inconsistency in

the tasks generated for a platform, although as the tasks were generated in batch by type, there

will be some ordering, as reflected by the computational intensity of the tasks in Table A.8.

Experimental Platforms

For the platforms, similar to the tasks, I used the platforms from Chapter 6, as described in 6.1.

The variation in platform type, vendor and physical location ensuring a high degree of vari-

ability in the execution of tasks in platform execution, and hence a large range of values for � in

(6.2). Furthermore, mainly due to the di↵erence in platform type, and hence execution mode,

there will be inconsistencies between the platforms.

As the coe�cient, i.e. � in (6.4) is defined as � = �↵2, both the platform and task heterogen-

eity of the real world data is high. Furthermore, the tasks and platforms, while not completely

consistent, as the results in Tables A.10, A.11 and A.12 reflect, are also not completely inconsist-

ent, as illustrated by the mean performance results. Hence, the real world data most resembles

the Het-Mix case in synthetic data in Section 7.2.1.

Practical Verification Results

While the characterisation using synthetic data of the domain partitioning approaches provide

insight into the domain partitioning approaches, I have verified these results with real platform

and derivatives pricing domain task data. I put the portfolio of pricing tasks in Table 6.2 through

the partitioning approaches for the platforms in Table 6.1 for a range of accuracies. I then ran

the generated partitions, and measured the domain metrics of latency and accuracy.
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Figure 7.3.: Improvement of Numerical Optimiser and MILP Partitioners over proportional heur-
istic for domain models results and verification. The model is the dashed line, while
the verification data is the solid line.

Synthetic vs Real data Figure 7.3 is the solution improvement over the proportional heur-

istic using platform task data from the domain metric models and the verification of the gener-

ated partitions.

The shapes of the improvement curves, similar to that seen in Figure 7.2b, shows that the

characteristics of the actual and synthetic data in the previous subsection are similar, although

there is an order of magnitude di↵erence between the two. This is explained by the fact that

while the synthetic data generation procedure approximates the real world scenario, it is still

drawn from a uniform random distribution, while the real world data is almost certainly from

a di↵erent distribution, defined by the nature of the platforms and tasks. The domain metric

models and the metrics measured at run-time are generally close in value, within the 10%

extrapolation error demonstrated in Section 6.2.2.

Another significant feature of the results is the dramatic improvement over the proportional

heuristic seen at lower accuracies (larger 95% confidence interval values), i.e. when the problem

is more binary. This is due to the proportional heuristic performing very poorly when the

latencies of platforms are mostly composed of the constant, setup time. There is considerable

scope for improvement here, and hence both domain partitioning approaches perform extremely

well. When the problem is more continuous, i.e. at the higher accuracies, the improvement is

much less, where the improvement is solely due to the task-platform matching e↵ect.

Pareto Curves Figure 7.4 illustrates that the projected values for partitioning approaches are

close to what is measured in reality when the allocations are run. The di↵erences between the

predictions and what was measured when executed are well within the 10% error of the domain

metric models. Furthermore, both the domain knowledge-based machine learning and MILP-
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based partitioner are orders of magnitude more e�cient than that suggested by the proportional

heuristic for problems with strong non-linear characteristics, in this case, when accuracies greater

than $0.005 were required.

The Pareto curves in Figure7.4 illustrate the considerable di↵erence in metric values that

result simply from changing the allocation of tasks to platforms. The crucial di↵erence between

the approaches is how each copes with the nature of the tasks. At the lower accuracy (i.e. larger

95% confidence interval values), the domain MILP and machine learning approaches use fewer

platforms that have a low network latency, and hence low constant component cost. At higher

accuracies, more platforms are used, regardless of the networking time, as it constitutes a very

small component of the tasks’ latencies in general. By contrast, the proportional heuristic does

not cope with non-linear problem latencies well, and hence uses all platforms for all tasks, even

when the cost of doing so far outweighs the gain.

While the allocations of work produced by the domain partitioners for the real workloads in

the specified timeout were not provably optimal, I did find that truly optimal partitions could be

found, if the partitioners were run for long enough6. While the performance of these approaches

relative to competing approaches is of interest for practical interest, the close to theoretical

optimality of the results strengthens the argument for this approach.

The results from applying the partitioning approaches to real domain task and platforms verify

the results of the evaluation in the previous subsection that used synthetic data. This evaluation

also represents the culmination of the domain specific methodology outlined in Chapter 3, pro-

ducing a domain metric representation of the heterogeneous computing design space in Figure

6Often multiple hours, hence the need to set a timeout that would be realistic for a domain programmer
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7.4 automatically. A domain programmer would intuitively understand this representation, and

hence it would help them use heterogeneous computers more e↵ectively.

7.3. Partitioning Heterogeneous Platforms

In this chapter I have demonstrated how the domain specific methodology can be used to par-

tition tasks across heterogeneous computing platforms, as asserted in Section 3.3. I described

three di↵erent approaches to partitioning that can take advantage of the information provided

by the domain metric models:

1. Two heuristic partitioners based upon naive rules, the best platform and proportional

allocation heuristics.

2. A machine learning partitioner based upon simulated annealing and the Simplex algorithm

3. A MILP partitioner using Branch and Bound, the Simplex algorithm and other optimisa-

tion techniques.

While none of the approaches described require domain metric models, as relative platform

performance, as reported in vendor datasheets7, or application benchmarks, could be used to

calculate allocations. However both the machine learning and MILP partitioners demonstrate

significant performance improvement over the heuristics if the information from domain metric

models is used, hence I identified both as domain partitioners.

However, I acknowledge that the domain partitioning described and evaluated in this chapter is

a limited achievement of the vision of automated support for heterogeneous computing described

by Braun [38] and illustrated in Figure 2.4. This is because only the partitioning of independent

tasks is considered, with the makespan of all tasks being the only latency consideration. A fuller

approach would be capable of scheduling, both in terms of absolute latency requirements of

each task, as well as the dependencies between tasks. Hence this approach is only half of a full

mapping process. However, as has been motivated by me in Section 7.2.2, and in the literature

[40, 45], scenarios such as this do occur, and hence this is a contribution.

This chapter concludes the case study of the derivatives pricing domain, and my practical

demonstration and evaluation of the domain specific methodology described in Chapter 3. In

my case study of the domain of derivatives pricing, I have been able to demonstrate the three

features of portability, prediction and partitioning. In addition to proving each of these features

in isolation, I have shown how each successive feature builds upon the previous one, serving as

a demonstration of both the previous feature’s validity and viability.

In the next Part, I resume my discussion of the general domain specific methodology, in light

of the results from the case study, as well as consider the limitations of the methodology. I then

conclude this dissertation, reflecting upon how I have addressed the research problems outlined

in the Introduction.

7With the usual caveat about claims made by vendors about their products
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8. Discussion

In this final part of my dissertation, I analyse my proposed domain specific methodology in

light of the derivatives pricing case study, as described in the previous four chapters, and more

generally. In this chapter, I discuss the degree to which the the case study supports the domain

specific methodology for heterogeneous computing I have proposed, and the limitations of both

the case study and methodology. In the next chapter, which concludes the dissertation, I consider

the degree to which the research questions raised in the Introduction have been answered as well

as future directions for this work.

I now reflect critically upon the claims that I have made in Chapter 3, and throughout Part

II. I have argued that a using domain specific approach with heterogeneous computing platforms

enables three features:

1. Portable, e�cient implementation of a single, high level task description upon a diverse

set of heterogeneous computing architectures.

2. Prediction of the run-time characteristics of a task upon a heterogeneous platform.

3. Partitioning of multiple tasks across many heterogeneous platforms so as to balance run-

time characteristics.

As this is an engineering dissertation, I am not only interested in proving that these three

features of a domain specific approach exist, but are also practically realisable. To this end,

to both prove the existence and practicality of the features, I considered a case study of the

application domain of derivatives pricing. This case study also serves as an extended explanation,

by way of demonstration, of the domain specific methodology for heterogeneous computing that

I described in Chapter 3. In order for my claim to hold that a domain specific methodology

enables the three features outlined above practically, I need to successfully argue that the case

study demonstrates these three features in practice, and show that the case study is a valid

instance of the methodology.

Furthermore, I delineate the limits of this methodology by expanding upon the assumptions

that it makes, and beginning to address its shortcomings.

In the first section of this chapter, I consider the case study with respect to the domain

specific methodology. I first consider the achievement of the three features according to the

criteria identified earlier. In the second, I address the methodology itself, and its limitations

with respect to underlying assumptions. In doing so, I propose remedies to these limitations,

that are not necessary to validate the methodology, however enhance what is being proposed.
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8.1. Does the Case Study validate the Methodology?

In this section I evaluate the relationship between the case study, the domain specific method-

ology and my broader thesis. I do so by first considering the degree to which the three domain

specific features are implemented, and I then reflect upon the limitations of the case study.

8.1.1. The Case Study as an instance of the Methodology

In Sections 3.1.4, 3.2.4 and 3.3.4, I laid out the criteria for the achievement of each feature of

my domain specific methodology for heterogeneous computing. In this subsection, I reflect upon

the degree to which each feature has been achieved.

Portable, E�cient Execution

In the first instance, the criteria for the portability feature is the existence of a domain specific

means to implement a single task description upon multiple, heterogeneous computing platforms.

The portability feature was demonstrated in the case study in Chapter 5 through F 3, which

accepts tasks described using a library of Python objects, and is capable of implementing these

tasks upon a range of multicore CPU, GPU and FPGA platforms, as evidenced by the diversity

of the experimental platforms supported, as described in Tables ?? and A.5.

Evidence of the e�ciency of these implementations is given in Sections 5.2.2 and 5.2.3. Fur-

ther evidence is given in Table 8.1, where I have detailed the performance of the experimental

platforms from Section 5.2.1 with respect to an optimised, but sequential, CPU POSIX imple-

mentation. Almost all of the platforms exhibit acceleration over the sequential implementation

on the Desktop platform, despite running at the same or lower clockrates1. Such acceleration

is only possible if the implementations achieved through the domain specific methodology are

e�ciently portable, i.e. the unique computational resources of the diverse platforms are being

exploited.

A further point to note is the degree of inconsistency between platforms and tasks. There is

significant variation in performance of di↵erent categories of tasks, i.e. within the rows of Table

8.1, suggesting that there are di↵erences between how these tasks are executing on the di↵erent

platforms. Furthermore, the performance of any one task on a platform is not necessarily a

predictor of performance for another task on that platform. It is this inconsistency phenomena

that makes the prediction of domain performance metrics as outlined in Section 3.2, and

demonstrated in Chapter 6 necessary, and super linear performance scaling described in Sec-

tion 1.2.2 achievable through the domain partitioning outlined in Section 3.2.4 and as demon-

strated in Chapter 7.

Predictive Domain Metric Modelling

Two criteria were defined for the domain metric modelling feature in Section 3.2.4. Both of

these criteria are premised upon the relative predictive error of the models, as given in (3.8)

- the di↵erence between the metric values predicted by the model for a particular instances

1Despite many of the platforms being newer than the sequential CU used, reflecting that clock-rates are now
relatively static

137



Table 8.1.: Relative latency of F 3 Implementations with respect to sequential CPU implement-
ation for Kaiserslautern Heston model benchmark options [81] and Imperial College
London’s Black-Scholes model Asian option [80].

H-E H-B H-DB H-DDB BS-A Mean Variance
Designation
Sequential CPU 1.0 1.0 0.0
Desktop 4.13 3.92 3.79 4.34 4.06 4.04 0.04
Server 11.03 10.97 11.79 11.47 9.98 11.03 0.47
Manycore 25.61 24.29 25.28 25.57 21.68 24.44 2.75

NVIDIA Workstation 482.51 285.67 269.19 281.83 233.15 300.20 9,679.34
NVIDIA Cloud 941.47 558.77 526.87 551.05 454.14 586.44 36,777.48
AMD Workstation 718.51 304.72 263.90 276.47 378.97 360.08 36,023.48
Phi 2093.14 589.21 447.63 444.87 1119.23 772.38 493,120.85

ZC706 6.85 3.38 3.14 3.26 3.37 3.81 2.55
PCIe-A7 158.95 109.11 92.29 102.59 67.21 101.99 1,129.44
PCIe-D5 420.09 225.99 133.51 148.11 279.25 220.75 13,486.46
Max3 178.67 111.48 103.63 107.42 149.58 127.10 1,075.07
Max4 263.59 165.56 154.84 159.30 216.09 187.64 2,213.74

of the implementation variables, and the metrics measured when the task is run with those

implementation variable values.

The first criteria, incorporation, is that the models become increasingly accurate when provided

with additional information. This criteria is necessary, but not su�cient for the existence of a

useful model. The second, extrapolation, is that the error in predictions remains su�ciently

bounded for a large set of implementation variables, which I heuristically define to be 10% for

over an order of magnitude change in the implementation variables.

The evaluation undertaken in Sections 6.2.2 and 6.2.3 for the metric models described in

Chapter 6 reflects that these criteria hold for the latency and accuracy metric models for the

pricing function in the derivatives pricing domain. The evaluation was performed using a varied

set of tasks and heterogeneous platforms, suggesting that these criteria are holding across a

broad range of task and platform types.

Figure 8.1 synthesises the results of the derivatives pricing metric modelling into the unified

latency-accuracy model described in (6.4), illustrating how the domain specific approach enables

the abstraction of heterogeneous platforms using the metrics of the application domain. The

trade-o↵ curves are a representation of the domain design space, as described in Section 3.2.1, for

Table 6.2’s pricing tasks on Table 6.1’s platforms, achieved by varying implementation variables.

The latency at each accuracy point is the sum of all of the projected latencies for the tasks, i.e.

the makespan of the set of tasks, at that accuracy level, as per the unified metric model for each

task.

As is to be expected, with the lower accuracy requirement, and hence smaller number of

paths required, the latency ordering of platforms is determined by the constant setup time. Of

the constant component, the platforms’ network latencies are generally the largest component,

hence local platforms have shorter makespans. However, as the accuracy requirement increases,
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Figure 8.1.: Pricing function latency-accuracy metric trade-o↵ curves of individual platforms for
the 128 option pricing problems given in A.8

the ordering is determined by the relative computational capabilities of the platforms, hence the

GPU and FPGA platforms are an order of magnitude better than the CPU platforms.

This illustration of the design space, with the platform crossover points, suggests the next

logical step: using multiple heterogeneous platforms to evaluate multiple tasks, based upon the

insights provided by the domain metric models, especially if this allocation approach is going to

exploit the inconsistencies exhibited in Table 8.1.

Partitioning of Workloads

Three criteria were identified in Section 3.3.4 for the automated, optimal partitioning that I

claimed the domain specific approach enables in Section 3.3.1 and demonstrated in Chapter 7.

The first two criteria are practical - that the partitioner provides an allocation that performs

all of the specified tasks2, and that the resources, be it time or otherwise, that the partitioner

requires does not dwarf the resources used by the resulting partition. The final criteria was

broader - that the partitioner finds the Pareto optimal, or close to Pareto optimal, allocation of

tasks to platforms for a range of metric values.

In Section 7.1.2, I described three di↵erent instances of the approaches outlined in Section

2.3.3 for partitioning that can make use of derivatives pricing domain knowledge. The heuristic

approaches use simple algorithmic rules, and are hence easy to compute. Due to the simplicity of

the rules however, these heuristics cannot exploit platform and task inconsistencies. The second

and third approaches, which I refer to as the domain partitioning approaches, are responsive to

the domain metric models, and hence platform and task inconsistencies. The second partitioning

2As the domain programmer would assume
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approach uses global optimisation, machine learning algorithms, such as simulated annealing and

the Simplex, whilst the third uses MILP techniques.

As the experiments undertaken in Section 7.2.1 describe, the domain partitioning approaches

are both practical, achieving good results in what I have heuristically defined is a reasonable

amount of time to the domain programmer. The domain approaches are also more optimal than

the simple heuristics, in some cases improving the metric being optimised by more than an order

of magnitude, as illustrated for both latency and accuracy in Figure 8.2.

If Figure 8.1 is the domain specific representation of the design space for each of the platforms,

Figure 8.2 is the combined design space for those platforms and tasks. It is a complete abstraction

of the heterogeneous computing resources that a domain programmer would be able to intuitively

understand, and hence use to balance their requirements in a way that an automated e↵ort could

not.

Furthermore, each of these features have been shown in practice to build upon the previous,

and hence helps serve as a demonstration of the utility of the proceeding feature. The financial

task partitioning in Chapter 7 would not be possible without the latency and accuracy metric

models in Chapter 6, which in turn would not be possible without the portable implementations

developed in Chapter 5.

8.1.2. The limits of the case study

In this subsection I consider the limitations of the derivatives pricing case study. Throughout

the case study, I provided explanations for the experimental methodology and results analysed,

however if the criticisms below hold, then it is possible that the results of the case study are

valid, but are insu�cient to support the claims of the domain specific methodology.

I consider two potential challenges to the case study in the context of this project: The first

challenge is that the case study is too narrow to be considered a full evaluation of the domain
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specific methodology I proposed in Chapter 3. I consider this challenge in terms of the three

principal features of the methodology. The second is that this case study is exceptional, and

hence not representative of most application domains considered.

Narrowness

A potential criticism of my case study is its narrowness. Not only is the domain considered

limited, but within this area, I only consider two performance metrics and a limited number of

instances of the partitioning approaches. Below, I address these critiques:

The derivatives pricing domain: The first narrowness critique is that the derivatives pricing

domain itself is narrow, by definition only having one domain function, the pricing of derivatives.

I will add to this critique, observing that I only consider one algorithm for performing the pricing

domain function, where multiple exist.

The benefit of domain specific abstractions in the context of heterogeneous computing has

been demonstrated by other researchers, as described in Section 2.2.3. Hence I am rather

confirming the claim as opposed to originating it. I focused my e↵orts on supporting a wide

array of platforms and programming standards, as I observe that for the other work such as

Chafi et al [4], supporting larger domains appears to have come at the cost of only supporting

one or two heterogeneous computing technologies, connected by at most one communication

technology.

I justify the sole use of the Monte Carlo algorithm in light of its computational robustness -

it grows linearly with the underlying model complexity as opposed to the exponential growth

that other algorithms such as finite di↵erence methods exhibit [74]. Where I believe that I have

demonstrated diversity is in the multiple underlying models, both the Black Scholes and Heston

model, and the many variations on option products that I considered in my evaluations.

Only two domain metrics: A further scope critique is that I have only considered two

domain metrics - latency and accuracy. I address this by suggesting that I went further than

the burden of proof that was actually required.

In Section 3.2, I motivated the domain metric models as domain specific abstractions of

a particular task implementations upon a heterogeneous platform. Hence, I only needed to

demonstrate for one domain metric that such a model exists. I chose to implement two metrics

however, because in relating the two models together, as I did in Section 6.1.2, I could show the

potential for design trade-o↵s to be presented in domain specific terms.

A further motive for the two metrics is that in my reading of the computational finance

literature, I found that these two metrics are of the greatest concern to financial engineers. I

could have added additional metrics, for example the financial cost3 of a particular task, or

additional statistical properties of the derivative product’s price distribution. However many of

these metrics are largely a function of the two already considered, in the case of cost, it would

largely be a function of latency, hence adding this model wouldn’t have enhanced the study

further.

3Often more a concern of the banks’ CTOs than the financial engineers themselves.
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However for completeness sake, I have provided a cost model in (8.1). The metric model for

the task cost on a particular platform (f
S

(f
L

(n))) is given by rounding up the latency of the

task divided by the cost quantum (⇢), and then multiplying by the platform rate (⇡). The

platform rate could be provided by the IaaS provider that is providing the platform, or using

a cost model, such as the Simple Model for data centre costing from the Uptime Institute [86],

that incorporates the device energy cost use as well as the capital cost of the device itself.

f
S

(f
L

(n)) =

⇠
f
L

(n)

⇢

⇡
⇡ (8.1)

Limited number of heuristics: The final potential critique pertaining to the task narrowness

is that I only consider two partitioning heuristics, as described in Section 7.1.2, given that a wide

variety of heuristic approaches are generally employed in the field of distributed computing, as

detailed in Braun et al’s work [40].

I chose two heuristics to reflect “common sense”. In the first heuristic, by allocating work to

the single, best platform available, for the second, all platforms are used, in proportion to the

relative capabilities of the various platforms. Both reflect what I believe a reasonable domain

programmer would implement, given a limited amount of time. Even more advanced heuristics

however, as described in Section 2.3.3, are still limited, particularly in the presence of platform

and task inconsistency.

The exceptionality of derivatives pricing

It could be argued that the derivatives pricing domain, and the Monte Carlo algorithm used

is particularly well suited to implementation upon heterogeneous computing platforms. To

elaborate further, by virtue of being compute bound, and “embarrassingly parallel”, as described

in Section 4.2.2, it is particularly suited to the parallel architectures such as the multicore CPU,

GPU and FPGA platforms considered in my experimental evaluations. There are two criticisms

here, firstly F 3’s implementations could be dramatically ine�cient, and that secondly the domain

itself is a “soft” target.

The true e�ciency of F 3: The first critique has been addressed in section 5.2.3, in the inter-

platform performance results reported, F 3 compares favourably to expert implementations from

the literature [80, 81]. I will concede however that an implementation created by a platform

expert, employing both algorithmic as well as hardware knowledge, would probably achieve

better performance than F 3on any of the platforms surveyed.

Firstly, F 3 is using the full compute capability of the target hardware, as evidenced by the

results in Section 5.2.2, suggesting that while it might not be completely optimal, it is using the

full capabilities of the platforms being targeted.

However, truly optimal implementations are not the point, which is rather that F 3 provides

the means to use the heterogeneous platforms where there would otherwise be no capability.

To phrase this in resource trade-o↵ terms, while F 3 might be more ine�cient compared to an

expert implementation, it is likely more e�cient in producing that implementation as opposed

to cost of employing said expert.
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Cherry Picked Domains: I will concede though that the derivatives pricing domain is par-

ticularly well suited to parallel execution.

This is a moot point however, as the domain has utility beyond being being a computational

exercise. If I had used a domain particularly ill-suited to parallel execution, say one based upon a

finite state machine abstraction4, that would not invalidate the methodology, but merely provide

a rationale for the relative performance of implementations across the platforms supported.

8.2. What’s wrong with the Methodology?

In this section I consider the limits of the domain specific methodology which I propose in

Chapter 3 more broadly. I do so in terms of the implementation e↵ort the methodology entails,

the assumptions made with respect to application domains, and finally the expansion of the par-

titioning feature to incorporate scheduling, and hence achieve mapping, as described in Section

2.3.2.

8.2.1. Upfront Implementation E↵ort

Fowler and Parsons, as well as Mernik et al [2, 3] make the first criticism of the domain specific

development approach. Their critique is that the approach entails significant development e↵ort

before a useful domain specific program is written5. Not only does the necessary supporting

infrastructure need to be implemented, but even more costly is the expertise and experience that

will need to be brought to bear in the analysis of the domain and platforms being targeted, and

hence the structuring of the domain specific means of expression and compilation framework.

The same authors suggest that this large cost can be diminished by pursuing an iterative

process, i.e. first implementing an application framework which is more easily modified and

changed, and only moving to a full domain specific language when the structure and utility of

the domain functions have been identified. A further advantage to this approach is that it also

o↵ers the opportunity to identify the most commonly used domain functions, and hence those

that need to be supported upon heterogeneous platforms.

This remedy however only amortises the development cost over a longer period of time. It

is a fundamental limitation of the domain specific methodology that I propose, as all forms of

abstraction of computing, that it requires insight and e↵ort up front. It is up to the stakeholders

identified in Section 2.2.1 to balance this cost against the features of the approach that I have

demonstrated, and decide whether it is worth it.

To attempt to quantify this development e↵ort versus e�ciency trade-o↵, I draw upon the

results from the literature from Table 2.2. These results suggest that the productivity benefits

of a domain specific approach is roughly a 4 times improvement, hence if more than 4 times

e↵ort will be spent in using the domain specific system as opposed to created it, then there will

be a net positive productivity benefit. This assumes such development e↵ort can be accurately

predicted.

4Sometimes referred to as “embarrassingly sequential”
5To say nothing of the risk associated with the development of any complex system
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8.2.2. Assumption of Domains

The second criticism of the methodology that I consider is that it assumes applications domains

have the two properties which the features I have outlined require. The first property is the

existence of the disproportionately useful domain functions, and the second is that the domain

metric models will be deterministic in nature.

Distribution of Function Use

I argue that portable, e�cient implementations are possible due to the presence of a power

law distribution of domain function use. I rely upon there being a small number of domain

functions that are used far more frequently than others, hence the system programmer can

focus on implementing these functions e�ciently upon heterogeneous platforms. The domain

programmers will then be e↵ectively able to make use of these heterogeneous platforms by virtue

of using these critical domain functions.

While I have found some empirical research to support this claim in the end user programming

literature [28, 29], I will concede that there is limited support. I do however argue that the

existence of application domains and specialised architectures at all suggests that a skewed

distribution of function use does exist. All of the functions within a particular domain are

those that are used infinitely more than those not included in the domain, and so it is not such a

stretch to suggest that the motivation for identifying an application domain is based upon a core

set of commonly shared functional requirements, and a larger set of supporting requirements.

It is possible that there is need for a taxonomy of application domains, with “functional

domains” being defined as application domains that are grouped around a single or a small

group of functions. I suggest that the derivatives pricing domain would be a good candidate for

being identified as a functional domain.

Determinism

The second assumption made with regards to application domains by my approach is that

deterministic models that map implementation variables to domain metrics can be found for

all functions. However, as I have demonstrated in the derivatives pricing case study, the only

requirements I have of the metric models that are probabilistic in nature. The metric models

hence only require correlation between the implementation variables and the domain metrics of

interest.

8.2.3. Scheduling

The final criticism of my domain specific methodology is of the third feature, partitioning. As

described in Section 8.1.1, I argue that this feature has been implemented, however I do note

that it does not completely fulfil the vision of automated support for heterogeneous computing

laid out in Braun et al’s work [38], and described in Section 2.3.2.

To provide the mapping of tasks to platforms, the approach needs to not only partition tasks

across platforms, but also schedule the tasks upon those platforms.
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The simplest way to cope with scheduling is by evaluating many partitioning problems, based

upon the evaluation of the levels of a directed acyclic forest of graph trees representing task

dependencies. The practical problem with such an approach is firstly the considerable compu-

tational complexity of the partitioning approaches, as characterised in Section 7.2.1. However,

the potentially bigger problem is that any task that has less dependencies than any other task

might become a bottleneck for all other tasks.

Alternatively, the approach given in (2.1) can be expanded to cope with scheduling by introdu-

cing an additional task scheduling vector variable to the allocation matrix ~B, and an additional

set of constraints that capture the dependencies between tasks, as given in (8.2) for a case when

a single domain metric, F
k

, is being considered, and where task w depends upon task v.

optimise
A2{0,1}µ⇥⌧

,

~

B2R⌧
+

F
k

(A),

subject to
µX

i=1

A
i,j

= 1 j = 1, 2, . . . , ⌧,

C
v

 B
w

~C 2 R⌧

+, v, w 2 1, 2, . . . , ⌧, v 6= w.

(8.2)

Where:

~C = ~G
L

(A,B).

The expanded latency task reduction function ( ~G
L

(A,B)) returns the vector of the upper

latency bound for each task ( ~C), for the given allocation and scheduling variables. As scheduling

inherently requires prediction of task lengths, a latency prediction model is required. This

formulation represents the mapping problem as an optimisation problem, however it does require

a prediction of the runtime of each task upon each platform, which might not be available for

a particular platform or task. However, it is suitably general that it may be applied in many

situations.

8.3. Concluding the Discussion

In this chapter I resumed the discussion of the domain specific methodology, reflecting upon

both the results of the case study in Part II, and in more general terms. I first considered

the relationship between the case study and the methodology: did the case study validate the

methodology, and the weaknesses of the case study itself. I then considered the limitations of

the broader methodology.

I showed how the each of the three features of the domain specific methodology are not only

present in the case study, but are also valid. I also addressed concerns around the limited subset

of data types and functions supported, domain metrics considered and partitioners used.

However, I did concede that the methodology requires significant upfront development e↵ort,

and does not outline a full mapping approach. I proposed two remedies to the second point,

showing how scheduling could be achieved in addition to partitioning.

In the next chapter I conclude this dissertation, showing how the research questions posed in

the Introduction have been addressed, as well as suggesting future directions for this work.
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9. Conclusion

This chapter concludes this dissertation on a domain specific methodology for heterogeneous

computing. In Chapter 1.1 and Part I, I argued that domain specificity enables three key

features in the context of heterogeneous computing, Portability, Predication and Partitioning,

and described a methodology for realising these features. To both illustrate my argument, and

evaluate it, I undertook a case study of the domain of derivatives pricing in Part II. In Chapter

8, I refined my argument from Part I, in light of the results of the case study, as well as potential

critiques of both the case study and the methodology in general.

I now reflect upon the degree to which I have addressed the research problem that I outlined

in Section 1.3. In order to do so, I need to consider whether I have su�ciently answered the

research questions raised. I also need to consider the future work of this project, both as a guide

to future researchers, but also as confirmation of the positive findings of my work, as evidence

of its value.

I first consider the degree to which the research questions outlined in Section 1.4 have been

addressed. I then suggest various extensions to this work, and explain why they would enhance

and extend the claims that I have made. Finally, I conclude by revisiting the motivation for this

project, and reflect upon the relationship between the programmer and the computing hardware.

9.1. Have the Research Questions been answered?

In Section 1.4, I posed the following three research questions:

1. Is it feasible to support the portable, e�cient execution of a single computational task

description upon a heterogeneous computing systems?

2. Can the run-time characteristics of tasks be predicted across heterogeneous computing

systems?

3. Is it possible for tasks to be partitioned across heterogeneous computing systems so as to

balance programmer objectives?

In Section 8.1, I argued that the derivatives pricing case study validated the domain specific

methodology. I now consider the degree to which the domain specific methodology answered

these questions, and the qualifications that these answers inevitably bring.

9.1.1. Portable, E�cient Execution

The first question has been answered, both in the worthy work of other researchers as described

in Section 2.2.3, but also in my methodology in Section 3.1 and the case study in Chapter 5.
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The experimental verification I undertook demonstrated that my derivatives pricing framework,

F 3, is making good use of heterogeneous, parallel computing resources. I have verified both

relative to each platform’s theoretical performance, as well as to external, programmer created

implementations, the domain specific implementations are performing well.

Inherent in the domain specific methodology however is the limitation of the programmer’s

scope. By restricting the programmer to a particular application, the system implementer has

a smaller subset of constructs to support, hence they can support a wider range of platforms.

The domain specific abstraction hides this restriction by using a existing natural limitation of

the domain programmer’s scope, the application domain.

Hence, it is feasible to support portable, e�cient implementations of a single task description.

9.1.2. Predictive Metric Models

To predict the run-time characteristics or metrics of the implementation of a task upon a plat-

form, I considered what determines these run-time characteristics in Section 3.2. I observed

that the task descriptions given by the programmer, which can be decomposed into domain

functions and data types are fixed, and have a structure that can be known a priori. In Section

3.2.1, I noted that there was another category of inputs, implementation variables, which don’t

necessarily have meaning within the application domain, a↵ect the metrics of the task, and can

thus be varied by the system safely.

I answered the question of predicting domain metrics by constructing models based upon the

nature of the domain task and the implementation variables in Section 3.2.2. In my case study in

Chapter 6, I demonstrated the e�cacy of these models for a range of platforms, for two domain

metrics. I was able to create models that both incorporate additional information to become

better predictors, but can also make predictions with a low bound on the error.

Hence, the run-time characteristics of tasks can be predicted for heterogeneous computing

systems.

9.1.3. Partitioning of Workloads

The key conceptual issue relating to partitioning was how di↵ering allocations of tasks and

platforms could be interpreted in terms of the domain programmers’ objectives, as reflected by

the generalised mapping problem in Section 2.3.2. The solution that I propose in Section 3.3 is

to make use of the domain metric abstraction, and to present di↵erent allocations of tasks to

platforms as a trade-o↵ between di↵erent metric values. Metric trade-o↵s are intuitive to the

domain programmer, and hence enable the programmer to balance their objectives in response

to the resources available.

To enable the representation of allocation as metric trade-o↵s, I formulated the allocation as

multiple, multi-objective ILP programs, in Section 3.3.1, with each program representing a point

in the Pareto design space. An important feature of these ILP programs, is that the metrics

of multiple tasks and platforms are reconciled as defined within the domain. In Chapter 7, I

demonstrated this approach in practice, generating a truthful metric representation of a large

workload of derivative pricing tasks upon a broad set of heterogeneous platform.
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Furthermore, these domain knowledge informed partitions achieve super-linear performance

scaling. The performance observed is more than that predicted by the sum of ostensible per-

formance of the di↵erent platforms. This is possible because the specialisation of the platforms

is being considered as part of the partitioning.

Hence, programmers can partition their workloads so to balance their objectives.

9.2. Further Work

There are two promising areas for future research based upon this dissertation. Firstly, there is

potential for the expansion of the case study, and secondly, there is the expansion of the broader

methodology.

9.2.1. Expanding the case study

The breadth of the derivatives pricing case study can be expanded as part of future work. This

expansion would mostly be of interest to domain programmers and financial engineers, extending

the breadth of the domain supported.

Extending F 3

The utility of F 3 for computational finance would be enhanced by adding further underlying

model and derivative product definitions. In particular, those underlying models which are

computationally impractical except when using the Monte Carlo algorithm, such as the Hull-

White-Merton model, would probably attract the most interest from the computational finance

community.

A less modest refinement would be to consider a di↵erent pricing algorithm such as the Finite

Di↵erence Method. Adding the capability to the framework to automatically switch between

using the Monte Carlo or Finite Di↵erence Method where appropriate would empower financial

engineers with the best of both algorithms.

Finally, a large expansion would be to consider backwards looking financial products. These

are financial products which consider not just the underlying’s price at expiry, but at all times

throughout the product’s lifetime. These are typically valued using the Least Squares Monte

Carlo approach proposed by Longsta↵ and Schwartz [87]. This would be of interest from a

computational point of view, as it would require multiple, memory-bound linear algebra opera-

tions, as opposed to the embarrassingly parallel compute-bound Monte Carlo considered in this

project.

Additional Performance Metrics

In this dissertation, I chose to define the latency and accuracy metrics to be the makespan and

95% confidence interval respectively. There are multiple other definitions that could be used,

or considered in parallel. In addition to considering the makespan, I could consider the latency

distribution of the tasks, or individual deadlines for each task. For accuracy, in addition to

alternative statistical properties of the price, there are the so-called “Greeks” measures that

could be calculated for each option.
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A further natural point of expansion of the metric models would be to experimentally verify

the cost model outlined in Section 8.1.2. With the rising popularity of IaaS providers for HPC,

pricing computations is an increasingly relevant consideration. An obstacle to taking advantage

of this trend in this work is the limited variety of heterogeneous architectures available from

such providers. In lieu of observable market prices, cost models can be used which incorporate

both the capital cost of the technology used, as well as the energy used, such as the Simple

model from the Uptime Institute [86].

Refined Partitioning Approaches

In this dissertation, I considered three broad approaches to partitioning: heuristics, global or

numerical optimisation algorithms and Mixed Integer Linear Programming. However, to keep

the evaluation to a reasonable length, I only considered two instances of the heuristic approach

and one instance of the other two approaches, that I refer to as the domain approaches.

In terms of the heuristic approach, I considered heuristics that a domain programmer would

most likely derive themselves. Hence, there is scope for considering more complex heuristics,

such as those described in Braun et al’s work [40]. I would start by considering the min-min

heuristic, which Braun et al found to be the most broadly applicable.

Both the domain partitioning approaches have significant scope to be optimised. Both parti-

tioners would benefit from a richer set of heuristics being used as a starting allocation in both

instances. Furthermore, both partitioners can be “tuned”, although this would need to be done

with some care as so as to avoid overfitting to a particular set of tasks and platforms. Finally,

both partitioners would no doubt benefit from being executed in parallel, as opposed to the

sequential implementations that I used.

9.2.2. Growing the Domain Specific Methodology

Beyond the derivatives pricing case study, more broadly, there is scope to enhance the domain

specific methodology beyond the derivatives pricing instance of it that I have described in this

dissertation.

More Case Studies

This work would be enhanced by further case studies, from other domains, particularly those or-

thogonal to the computational finance domain that I have considered. Doing so would serve two

purposes: it would firstly rebut the criticism that the derivatives pricing domain is a particular

outlier, and secondly, it could provide data to verify the claim that a small group of functions

are used disproportionately frequently within a domain.

A more systematic approach would be to consider the programming motifs identified by As-

anovic et al [65], and find a domain or multiple domains that contain functions that have al-

gorithmic implementations that cover all of the motifs. In particular, I believe that subdomains

with the broader area of Linear Algebra would yield a large degree of algorithmic variation.

Doing so would provide considerable insight into the conditions under which a domain specific

approach delivers portable e�ciency, predictability and partitionablity.
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Platform Specific Metric Models

A further enhancement of the methodology related to the domain metric models would be to

consider models that are specific to a particular platform. In my case study, I found that linear or

relatively simple polynomial models could be used e↵ectively for multiple platforms. However, I

would expect that in the case of memory or communication bound algorithms, platform specific

models would o↵er greater predictive power, given the radical di↵erences between architectures.

Partitioning + Scheduling = Mapping

As outlined in Section 8.2.3, the partitioning feature that has been proven in this dissertation can

be broadened into the more general mapping feature described by Braun et al [38] by supporting

scheduling.

The chief challenge in implementing mapping would be the latencies of tasks that would be

required to do so. This requires estimates of task latencies, which might not be feasible in all

cases. A further consideration would be the impact upon the computational intensity of the

now mapping problem, as the results in Section 7.2.1 demonstrate for the case of partitioning.

9.3. Reflection

Finally, I conclude this dissertation by considering the broader implications of the results repor-

ted. Throughout this research, I have regularly reflected on how abstraction must be one of the

most unintuitive concepts in computing.

On face value, abstraction is an arbitrary set of rules that are created that the programmer

must master so they can then express their intentions as programs. This is not for the benefit of

the computing system however, as these rules often require a significant amount of infrastructure

so that programs written using the rules can be executed upon the computing platform.

However, the benefit provided by an abstraction is very powerful. It provides a set of shared

assumptions that both the programmer and system designer can build upon. This strategy for

hiding complexity has been amazingly successful, enabling millions to access Von Neumann-

based computer systems with limited understanding of how these platforms function.

I believe that the results of this dissertation suggest that this strategy can be extended to

heterogeneous computing, however there will have to compromises made by both system de-

velopers and programmers. I believe that concepts such as domain specificity can ease these

compromises, and are worthy of further attention.
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A. Full Experimental Procedures and

Results

A.1. Experimental Platform Details

A.1.1. CPU Platforms

Tables A.1 and A.2 provide the details of all of the CPU Experimental platforms used throughout

Part II.

Table A.1.: Experimental CPU and GPU Platform Resources

Vendor Name Programming Standard (Tool)

Intel Core i7-2600 POSIX (GCC 4.8.2)

Intel Xeon E5-2680v1 POSIX (GCC 4.8.2)

Intel Xeon E5-2680v2 POSIX (GCC 4.8.2)

Intel Xeon E5-2670v2 POSIX (GCC 4.8.2)

AMD Opteron 6272 POSIX (GCC 4.8.2)

ARM 11 76JZF-S POSIX (GCC 4.6.3)

Table A.2.: Experimental CPU Platform Resources

Name
Release

Date

(mm/yy)

CMOS size

(nm)

Clock

Rate

(GHz)

Cores
SIMD

Width

L1

Cache

Size

(kB)

Theoretical

Peak

Performance

(GFLOPs)

Core i7-2600S 09/2011 45 2.8 4 4 32 44.80

Xeon E5-2680v1 01/2012 22 2.70 8 4 32 86.40

Xeon E5-2680v2 07/2013 22 2.80 8 4 32 89.60

Xeon E5-2670v2 07/2013 22 2.80 4 4 32 44.80

Opteron 6272 11/2011 32 2.10 8 4 32 268.80

11 76JZF-S 07/2004 45 0.70 1 1 32 0.70
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A.1.2. GPU Platforms

Tables A.3 and A.4 provide the details of all of the GPU Experimental platforms used throughout

Part II.

Table A.3.: Experimental GPU Platform Resources

Vendor Name Programming Standard (Tool)

NVIDIA Quadro K4000 OpenCL (NVIDIA OpenCL SDK 6.5)

NVIDIA GK104 OpenCL (NVIDIA OpenCL SDK 6.5)

AMD Firepro W5000 OpenCL (AMDAPP 2.9)

Intel Xeon Phi 3120P OpenCL (Intel SDK for OpenCL 4.4)

Table A.4.: Experimental GPU Platform Resources

Name
Release

Date

(mm/yy)

CMOS

size

(nm)

Clock

Rate

(GHz)

OpenCL

Compute

Units

OpenCL

Processing

Elements

Local

Memory

Size

(kB)

Theoretical

Peak

Performance

(GFLOPs)

Quadro K4000 03/2013 28 0.80 4 768 48 1244.16

GK104 03/2013 28 0.80 8 1538 48 2448.38

Firepro W5000 06/2012 28 0.83 12 768 32 1267.20

Xeon Phi 3120P 06/2013 22 1.10 224 224 32 2002.75

160



A.1.3. FPGA Platforms

Tables A.5 and A.6 provide the details of FPGA Experimental platforms used throughout Part

II.

Table A.5.: FPGA Experimental Platforms

Vendor Name FPGA
Communication

Technology
Programming Standard (Tool)

Xilinx ZC706 1.1 Xilinx Zynq 7Z045 AXI Xilinx C (Xilinx Vivado HLS 2013.4)

Nallatech P385-A7 Altera Stratix V GXA7 PCIe OpenCL (Altera OpenCL SDK 13.0)

Nallatech P385-D5 Altera Stratix V GSD5 PCIe OpenCL (Altera OpenCL SDK 14.0)

Maxeler Max 3424A Xilinx Virtex 6 475T PCIe OpenSPL (Maxeler MaxCompiler 14.1)

Maxeler Max 4 Altera Stratix V GSD8 PCIe OpenSPL (Maxeler MaxCompiler 14.1)

Table A.6.: Experimental FPGA Resources [5, 6]

FPGA

CMOS

Size

(nm)

Release

Date

Targeted

Clockrate

(MHz)

LookUp

Tables

(LUTs)

Flipflop

Registers

(FFs)

Block

RAMs

(BRAMs)

DSPs

Zynq 7Z045 28 03/2012 100 218.6k 437.2k 545 900

Stratix V GXA7 28 03/2012 250 622k 939k 2304 768

Stratix V GSD5 28 03/2012 250 457k 690k 2014 3180

Virtex 6 XC6VSX475T 40 02/2009 200 297.6k 595.2k 1064 2016

Stratix V GSD8 28 03/2012 180 695k 1050k 2567 3926
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A.1.4. Network Locations

Table A.7 provides an overview of the network locations used in the experimental platforms in

Chapters 6 and 7.

Table A.7.: Network Location Characteristics

Network

Name

Network

Location
Geographic Location

Network

RTT

(mS)

Localhost Localhost ICL, London, UK 0.024

ICL EEE Workshop LAN ICL, London, UK 0.268

ICL Datacentre LAN ICL, London, UK 0.380

ICL Insecure subnet LAN ICL, London, UK 2.463

AWS East WAN AWS, USA East Region 88.538

AWS West WAN AWS, USA West Region 158.339

GCE Central WAN GCE, USA Central Region 111.232

UCT Datacentre WAN UCT, Cape Town, ZA 3300.000
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A.2. Tasks

Table A.8 provides the details of the option pricing tasks used throughout Part II.

The computational operation values were calculated using instruction counting in a sequential,

OpenCL version of the F 3 code. The values assuming that 4096 time steps were considered per

simulation path.

Table A.8.: Overview of computational intensity of option pricing tasks

Option Task Name Underlying Option
Computational

Operations

(kFLOP
path )

BS-A

Black Scholes

Asian 139.267

BS-B Barrier 139.266

BS-DB Double Barrier 143.360

BS-DDB Digital Double Barrier 143.361

H-A

Heston

Asian 319.492

H-B Barrier 319.491

H-DB Double Barrier 323.585

H-DDB Digital Double Barrier 323.586

H-E European 315.395
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A.3. Measurement

A.3.1. Latency

In all instances where latency (L) is measured wall clock time is used. This is implemented as a

check of the system’s time T
start

at the start of the computation, and a check at the end of the

target T
end

, with the latency being the di↵erence the two measurements, as given in (A.1).

L = T
start

� T
end

(A.1)

When the latency of more than one task is being considered, the latency reported will be of

that of the longest running task, i.e. the makespan of the task workload.

A.3.2. Accuracy

When accuracy is quoted, it is referring to the 95% confidence interval of the option pricing

result, as given in (A.2).

A95% = 1.96
�p
n

(A.2)

Similar to latency, when the accuracy of more than one task is being considered, the largest

value thereof is reported, i.e. the least accurate task.
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A.4. Portable Execution

A.4.1. Parallel Scaling

The results plotted in Section 5.2.2 are reported in Table A.9.

Table A.9.: Parallel scaling experiment performance results

Type Designation
Baseline

Latency

(s)

Parallel

Latency

(s)

Parallel

Scaling

Factor

CPUs

Desktop 3366.30 710.55 4.74

Server 2763.16 263.26 10.50

Manycore 4941.23 124.35 39.74

GPUs

NVIDIA Workstation 44.91 12.63 3.56

NVIDIA Cloud 45.08 6.73 6.70

AMD Workstation 162.06 14.62 11.08

Phi 2685.96 40.17 66.87

FPGAs

SoC 1144.28 906.77 1.26

PCIe-A7 281.24 31.53 8.92

PCIe-D5 190.44 19.45 9.79

Max3 262.07 27.99 9.36

Max4 235.94 20.39 11.57

165



A.4.2. Absolute Performance

The results plotted in Section 5.2.3 are reported in Tables A.10, A.11 and A.12.

Table A.10.: Absolute performance results for multicore CPUs

Throughput

(GFLOPs)

Option

Designation

Sequential

POSIX
Desktop Server Manycore

External

[80, 81]

KSO1 0.63 2.59 6.91 16.04 4.90

KSO2 1.48 6.26 15.99 34.85 4.96

KSO3 1.13 4.74 12.32 27.93 4.96

KSO4 1.02 1.49 12.77 26.87 5.03

KSO5 0.74 3.35 8.91 19.39 5.03

KSO6 1.11 4.42 12.30 26.60 5.03

KSO7 2.03 8.98 22.45 48.57 5.03

KSO8 1.25 5.81 14.76 29.98 5.03

KSO9 0.73 3.33 8.93 19.56 5.03

KSO10 1.26 5.73 14.97 32.65 5.03

KSO11 0.62 2.10 6.92 15.23 4.96

KSO12 1.06 4.61 12.16 27.11 5.03

IC 0.74 3.02 7.42 16.12 2.96

Table A.11.: Absolute performance results for GPUs

Throughput

(GFLOPs)

Option

Designation

Sequential

OpenCL

NVIDIA

Workstation

NVIDIA

Cloud

AMD

Workstation
Phi

External

[80, 81]

KSO1 7.99 302.32 589.88 450.19 1311.47 27.32

KSO2 3.64 288.58 565.10 308.92 452.93 27.66

KSO3 3.95 288.82 564.51 307.50 451.83 27.66

KSO4 3.90 296.26 579.69 290.49 454.98 28.01

KSO5 4.43 296.18 580.14 290.99 615.82 28.01

KSO6 4.00 295.32 579.23 290.25 464.33 28.01

KSO7 3.52 296.57 579.36 290.91 402.72 28.01

KSO8 3.76 296.63 580.43 289.66 441.31 28.01

KSO9 4.46 297.14 580.75 290.04 692.34 28.01

KSO10 3.82 295.61 579.07 290.56 439.76 28.01

KSO11 5.13 289.20 565.46 307.97 1033.49 28.01

KSO12 3.97 298.79 584.23 293.11 471.65 28.01

IC 4.49 173.41 337.77 281.86 832.45 29.66
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Table A.12.: Absolute performance results for FPGAs

Throughput

(GFLOPs)

Option

Designation

Sequential

OpenCL
SoC P385-A7 P385-D5 Max3 Max4 External

[80, 81]

KSO1 7.99 4.29 99.59 263.21 111.95 165.16 11.28

KSO2 3.64 3.42 110.33 228.88 113.32 166.99 11.42

KSO3 3.95 3.42 110.33 228.27 112.25 168.58 11.42

KSO4 3.90 3.46 101.56 146.92 113.33 168.96 11.56

KSO5 4.43 3.46 101.56 146.54 114.01 170.76 11.56

KSO6 4.00 3.46 101.56 147.15 114.35 171.07 11.56

KSO7 3.52 3.46 101.56 146.82 113.90 170.86 11.56

KSO8 3.76 3.46 101.56 146.85 114.33 170.72 11.56

KSO9 4.46 3.46 101.56 147.16 114.47 170.01 11.56

KSO10 3.82 3.46 101.56 147.03 113.88 170.42 11.56

KSO11 5.13 3.42 110.33 228.40 112.61 166.66 11.42

KSO12 3.97 3.46 108.76 157.02 113.89 168.89 11.56

IC 4.49 2.51 49.99 207.70 111.25 160.72 71.42
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A.5. Predictive Model Evaluation

A.5.1. Incorporation

The results reported in Sections 6.2.2 and 6.2.3 are reported in full in Tables A.13 and A.14.

Table A.13.: Latency model incorportation results.
Benchmark Paths
Run-time Paths 0.03125 0.0625 0.125 0.25 0.5 1.0

Designation Mean Relative Error (%)

Desktop 20.74 14.63 10.73 9.78 5.90 1.11

Local Server 1938.18 162.29 72.40 12.49 6.09 1.56

Local Pi 3.04 1.13 0.53 0.30 0.21 0.04

AWS Server EC1 532.84 142.36 26.74 12.39 5.93 1.13

AWS Server EC2 77.74 11.35 4.14 1.91 0.92 0.17

GCE Server 548.80 25.13 8.43 3.59 1.25 0.24

AWS Server WC1 216.22 23.21 5.03 2.63 1.22 0.23

AWS Server WC2 83.89 8.76 3.62 1.65 0.69 0.13

Remote Server 221.32 69.76 25.96 9.08 2.67 0.50

CPUs 130.74 22.60 8.27 3.68 1.70 0.33

Local GPU 1 3973.24 360.13 118.33 28.19 10.03 1.27

Local GPU 2 3654.98 299.95 29.65 15.92 8.24 2.65

AWS GPU EC 603.08 119.08 16.30 8.53 3.46 0.71

AWS GPU WC 329.47 85.79 11.29 6.95 2.45 0.46

Remote Phi 314.81 131.45 48.80 39.43 35.55 5.55

GPUs 980.97 170.73 31.60 16.00 7.57 1.44

Local FPGA 1 5109.49 1452.11 451.64 377.04 106.75 28.95

Local FPGA 2 2431.83 559.50 151.68 64.26 39.51 4.87

FPGAs 3524.97 901.36 261.73 155.65 64.94 11.87

Table A.14.: Accuracy model incorportation results.
Benchmark Paths
Run-time Paths 0.125 0.25 0.5 1.0

Designation Min Relative Error(%) Mean Relative Error(%) Max Relative Error(%)

BS-A 28.36 146.24 203.72 8.62 74.57 114.06 23.88 37.08 51.25 0.54 4.16 53.45

BS-B 17.70 141.34 182.43 15.80 80.74 99.85 36.64 39.24 41.34 0.06 1.56 57.37

BS-DDB 105.07 207.89 791.25 47.43 112.32 530.21 4.70 36.15 345.62 0.74 11.86 215.10

BS-DB 150.99 172.24 201.62 78.70 92.89 113.15 26.51 36.16 50.66 0.71 3.46 10.51

H-A 121.61 168.84 199.54 58.15 90.33 111.76 12.11 33.99 49.68 0.12 3.26 20.66

H-B 18.76 115.74 213.84 10.07 61.63 121.35 1.72 20.64 62.67 0.74 9.96 73.39

H-DB 2.00 107.73 327.56 17.40 62.60 194.39 0.92 19.50 107.26 0.77 14.74 76.34

H-DDB 176.14 184.60 193.09 95.34 101.17 107.33 38.13 42.17 46.42 0.05 0.72 3.52

H-E 167.10 174.99 184.58 89.27 94.49 100.57 33.90 37.54 41.82 0.28 1.94 5.30
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A.5.2. Extrapolation

The results reported in Sections 6.2.2 and 6.2.3 are reported in full in Tables A.15 and A.16.

Table A.15.: Latency model extrapolation results. The ordering is the minimum, geometric
mean and maximum of the results.

Run-time Paths
Benchmark Paths 1.0 2.0 4.0 8.0 16.0

Designation Mean Relative Error (%)

Desktop 0.70 2.40 2.51 3.47 3.81

Local Server 0.39 1.13 1.35 1.27 1.30

Local Pi 0.02 1.45 1.81 1.91 1.94

AWS Server EC1 0.49 1.23 1.47 1.54 1.56

AWS Server EC2 0.15 0.46 0.50 0.52 0.70

GCE Server 0.26 0.77 0.87 0.84 0.90

AWS Server WC1 0.16 0.51 0.61 0.79 0.74

AWS Server WC2 0.14 0.47 0.67 0.68 0.75

Remote Server 0.47 7.01 14.19 23.86 39.38

CPUs 0.22 1.12 1.42 1.61 1.81

Local GPU 1 0.67 1.08 0.99 0.87 0.93

Local GPU 2 0.60 2.27 1.96 1.94 1.96

AWS GPU EC 0.18 0.46 0.73 0.84 0.92

AWS GPU WC 0.15 0.62 0.75 0.89 1.04

Remote Phi 0.87 21.87 39.76 53.42 66.16

GPUs 0.39 1.73 2.12 2.32 2.58

Local FPGA 1 2.62 6.54 8.33 8.60 8.74

Local FPGA 2 1.34 5.40 5.85 6.54 7.10

FPGAs 1.87 5.94 6.99 7.50 7.88

Table A.16.: Accuracy model extrapolation results.
Run-time Paths
Benchmark Paths 1.0 2.0 4.0 8.0 16.0

Designation Min Relative Error(%) Mean Relative Error(%) Max Relative Error(%)

BS-A 0.58 4.02 37.31 0.57 4.67 27.27 0.92 4.81 22.43 1.02 4.59 28.64 0.91 3.88 34.27

BS-B 0.05 1.58 43.88 0.12 1.11 3.20 0.73 2.07 17.47 0.53 2.28 39.60 0.31 2.21 34.05

BS-DB 0.24 2.27 15.80 0.26 1.66 18.80 0.42 2.70 17.91 0.90 2.91 18.29 0.91 2.58 15.61

BS-DDB 0.15 2.73 14.61 0.65 2.96 14.29 1.02 3.00 13.53 1.15 4.22 12.46 1.52 3.68 12.64

H-A 0.24 4.04 14.89 0.47 3.49 17.76 0.46 3.20 19.04 0.19 3.65 27.50 0.35 2.56 10.83

H-B 0.15 6.76 63.50 0.14 6.81 58.92 0.10 6.05 59.20 0.10 5.42 63.96 0.22 5.22 65.79

H-DB 0.78 11.79 80.61 0.96 9.34 86.30 0.93 7.96 73.09 0.05 6.04 71.35 0.16 7.00 71.07

H-DDB 0.16 2.25 17.65 0.03 0.64 12.40 0.22 1.08 13.90 0.32 1.46 17.12 0.10 1.11 14.82

H-E 0.79 3.10 8.48 1.02 2.35 3.83 0.79 2.03 3.45 1.07 1.86 3.88 1.04 2.25 3.53
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A.6. Partitioner Characterisation

A.6.1. Partitioner Implementations

Heuristic Partitioners

Listing A.1 gives the implementation of the Best Platform heuristic, as implemented in F 3.

Listing A.1: Implementation of best platform allocation heuristic

de f be s t p la t fo rm a l l ocat i on ( de l ta , gamma) :

”””

de l ta , gamma are numpy matr i ce s o f shape mu times tau

return value a l l o c a t i o n i s matrix a l s o o f shape mu times tau

”””

bes t p la t f o rm latenc i e s = numpy . sum( de l t a + gamma, ax i s=1)

best plat form = numpy . argmin ( bes t p la t f o rm latenc i e s )

a l l o c a t i o n = numpy . z e r o s ( d e l t a . shape )

a l l o c a t i o n [ best platform , : ] = 1 .0

re turn a l l o c a t i o n

Listing A.2 gives the implementation of the proportional allocation heuristic, as implemented

in F 3.

Listing A.2: Implementation of proportional allocation heuristic

de f p r opo r t i ona l a l l o c a t i on ( de l ta , gamma) :

”””

de l ta , gamma are numpy matr i ce s o f shape mu times tau

return value a l l o c a t i o n i s matrix a l s o o f shape mu times tau

”””

p l a t f o rm la t enc i e s = numpy . sum( de l t a + gamma, ax i s=1)

p lat form proport ions = numpy . sum( p l a t f o rm la t enc i e s ⇤⇤0 . 5 )
/ p l a t f o rm la t enc i e s

a l l o c a t i o n = numpy . ones ( d e l t a . shape )⇤ plat form proport ions

re turn a l l o c a t i o n
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MILP Partitioner

Listing A.3 gives the ZIMPL code as used within F 3to describe partitioning problems to SCIP[85].

Listing A.3: ZIMPL implementation of allocation problem

s e t PLATFORMS := { read PLATFORM FILE as ”<1s>”};
s e t TASKS := { read TASK FILE as ”<1s>”};
s e t PT:= PLATFORMS ⇤ TASKS;

#Problem parameters

param DELTA[PT] := read LATENCY PP FILE as ”<1s , 2 s> 3n ” ;

param GAMMA[PT] := read LATENCY SETUP FILE as ”<1s , 2 s> 3n ” ;

#Problem Var iab l e s

var A[PT] r e a l >= 0 ; # Al l o ca t i on p ropo r t i ona l matrix

var GL r e a l ; # Maximum plat form la t ency

var B[PT] binary ; # Al l o ca t i on binary matrix

#Object ive Function

minimize l a t ency : GL;

#Task complet ion c on s t r a i n t

subto task complete :

f o r a l l <t> in TASKS:

sum <p> in PLATFORMS: A[ p , t ] >= 1 . 0 ;

#Constra int th r e sho ld i ng the a l l o c a t i o n binary matrix

subto platform use :

f o r a l l <p , t> in PT:

B[ p , t ] >= A[ p , t ] ;

#Constra int f o r implementing the max func t i on

subto con task max :

f o r a l l <p> in PLATFORMS:

(sum <t> in TASKS:

(A[ p , t ] ⇤ DELTA[ p , t ] + B[ p , t ] ⇤ GAMMA[ p , t ] ) ) <= GL;
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A.6.2. Synthetic Characterisation Results

The results plotted in Section 7.2.1 are given in full in Tables A.17, A.18,A.19 and A.20.

Latency

Table A.17.: Synthetic domain partitioner time characterisation with respect to problem size.
ML is the machine learning-based partitioner, while MILP is the Mixed Integer
Linear Programming Partitioner.

Case 1 2 3 4

Partitioner ML MILP ML MILP ML MILP ML MILP

Variables

4 360.71 0.07 360.68 0.03 240.49 0.04 180.40 0.05

8 449.94 0.03 503.73 0.04 477.18 0.04 480.89 0.04

16 434.79 0.06 460.68 0.06 533.74 0.05 507.06 0.06

32 381.73 0.13 402.29 0.10 433.71 0.09 113.42 0.10

64 118.44 0.42 99.56 0.23 231.53 0.26 220.66 0.26

128 31.57 1.11 95.71 0.70 202.49 0.73 258.26 0.58

256 45.37 4.78 58.88 2.34 140.38 1.97 468.33 1.55

512 31.87 62.56 91.83 48.47 128.86 10.18 587.10 4.05

1024 52.73 422.76 81.95 522.42 105.47 235.87 604.56 46.32

2048 152.86 611.58 150.00 610.74 201.62 611.09 608.55 576.32

4096 449.81 607.85 618.75 608.37 622.81 608.62 628.06 609.75

Table A.18.: Synthetic domain partitioner time characterisation with respect to problem linear-
ity. NO is the numerical optimiser-based partitioner, while MILP is the Mixed
Integer Linear Programming Partitioner.

Case 1 2 3 4

Partitioner ML MILP ML MILP ML MILP ML MILP

 

10�5 601.09 0.24 601.10 0.26 601.07 0.22 - -

10�4 601.06 0.22 601.12 0.28 601.07 0.22 601.10 0.21

10�3 601.11 0.46 601.12 0.32 601.10 0.30 601.11 0.32

10�2 601.12 1.24 601.14 0.95 601.10 0.62 601.12 0.46

10�1 601.09 27.74 535.16 5.22 601.11 1.96 601.14 1.54

1 1.80 28.27 62.81 18.36 2.50 4.73 541.27 3.01

101 62.32 2.68 305.00 1.24 63.16 0.75 2.60 0.37

102 61.90 1.82 365.15 0.75 183.62 0.39 2.59 0.23

103 121.93 2.10 365.28 0.78 183.58 0.32 2.27 0.23

104 122.40 1.54 365.24 1.19 183.08 0.57 2.25 0.23

105 122.87 1.43 365.48 1.77 183.67 2.86 2.47 1.08
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Quality

Table A.19.: Synthetic domain partitioner quality characterisation with respect to problem size.
NO is the numerical optimiser-based partitioner, while MILP is the Mixed Integer
Linear Programming Partitioner.

Case 1 2 3 4

Partitioner ML MILP ML MILP ML MILP ML MILP

Variables

4 1.00 1.74 1.00 1.94 1.00 1.22 1.00 1.54

8 1.07 2.20 1.09 2.20 1.11 2.21 1.20 2.12

16 1.21 2.54 1.22 4.39 1.38 4.16 1.52 3.75

32 1.48 3.89 1.35 6.14 1.69 4.60 2.02 4.47

64 1.91 4.63 1.56 5.90 2.43 4.41 3.30 4.67

128 2.28 5.65 1.88 6.81 2.74 5.47 4.67 5.78

256 2.63 6.38 2.15 7.25 3.27 6.06 5.92 6.57

512 2.91 6.68 2.42 7.84 3.65 6.71 6.79 7.21

1024 3.66 10.56 2.90 13.04 5.22 11.54 11.91 12.46

2048 4.65 15.91 3.35 20.72 6.12 19.37 19.50 20.16

4096 5.75 23.32 3.93 33.81 7.38 30.34 32.75 33.54

Table A.20.: Synthetic domain partitioner quality characterisation with respect to problem lin-
earity. NO is the numerical optimiser-based partitioner, while MILP is the Mixed
Integer Linear Programming Partitioner.

Case 1 2 3 4

Partitioner ML MILP ML MILP ML MILP ML MILP

 

10�5 1.22 1.22 1.23 1.23 1.69 2.21 - -

10�4 1.20 1.20 1.27 1.27 1.74 2.15 1.45 3.84

10�3 1.20 1.21 1.28 1.30 1.64 1.97 1.52 4.48

10�2 1.27 1.38 1.31 1.49 1.76 2.33 1.82 4.05

10�1 1.76 2.64 2.39 3.54 2.60 4.01 3.41 5.39

1 3.45 8.85 2.53 11.77 4.37 10.54 10.88 11.83

101 3.34 15.76 2.50 20.19 4.44 16.67 15.03 23.68

102 3.38 17.81 2.74 22.39 4.66 19.65 13.20 22.46

103 3.33 17.67 2.63 23.22 4.44 20.59 15.64 27.16

104 3.32 17.69 2.63 23.23 4.40 20.45 15.64 27.18

105 3.32 17.69 2.07 17.43 4.07 19.12 14.56 25.32
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A.6.3. Empirical Evaluation

The results plotted in Section 7.2.2 are reported in Table A.21 in full.

Table A.21.: Verification of partitioning approaches with real workload.

Target Accuracy Metric Heuristic ML MILP

$1
Accuracy ($) 0.1993 0.4819 0.4950

Latency(s) 1204.027 6.821 4.408

$0.5
Accuracy ($) 0.1776 0.3353 0.3677

Latency(s) 1204.027 6.821 4.408

$0.1
Accuracy($) 0.0782 0.0856 0.0993

Latency(s) 1211.211 38.380 6.385

$0.05
Accuracy($) 0.0466 0.0480 0.0553

Latency(s) 1204.822 50.277 7.928

$0.01
Accuracy($) 0.0109 0.0101 0.0120

Latency(s) 1471.281 244.848 27.315

$0.005
Accuracy($) 0.0052 0.0052 0.0064

Latency(s) 1700.833 477.604 66.628

$0.001
Accuracy($) 0.0010 0.0010 0.0014

Latency(s) 2896.388 2746.915 1332.630
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Chapter 1

Main Page

ForwardFinancialFramework

F^3 is a Python-based application framework for valuing forward looking financial products on Heterogeneous
Parallel Computing Platforms.

Introduction

The vision of F^3 is to allow financial engineers to express valuation computations naturally while taking advantage
of the plethora of new computing platforms available.

The application framework also serves as a test case for research into domain-specific, heterogeneous computing.

Current Underlyings and Derivatives Supported:

• Black-Scholes Stochastic Underlyings

• Heston-based Stochastic Underlyings

• European Options

• European Single and Double Barrier Options

• European Double Digital Barrier Options

• European Asian Options

Platforms:

• Multicore CPUs (via GCC and Posix threads)

• Maxeler FPGA Platforms (via Maxcompiler)

• Xilinx FPGAs (via VivadoHLS)

• Altera FPGAs (via Altera's OpenCL SDK)

• GPUs and Co-Processors (via OpenCL)

In Progress:

• Derivatives with American exercise properties

• Automatic scheduling of tasks across a range of platforms

Coming Soon:

• Interest-rate derivatives

• Lattice-based Solvers



2 Main Page

Framework Layout

“‘ ForwardFinancialFramework /bin - the experimental scripts for various portfolios /Derivatives - the financial deriva-
tives classes /Platforms - the platform classes /Solvers - the solver alogrithms /Underlyings - the underlyings classes
“‘

Installation

F^3 requires:

• A ⇤nix-based Operating System

• GCC

• Python >= 2.7

• Numpy

• Maxcompiler version 12.2 >= (For Maxeler code)

• PyOpenCL (for any OpenCL Execution)

• X OpenCL SDK (where X is the vendor of the OpenCL platform in question)

• Xilinx Vivado HLS 2013.4 (For VivadoHLS code)

The following environmental variables also need to be set:

• F3_ROOT needs to be equal to the location of this repository, including the directory name (e. -

g. /home/[Username]/workspace/ForwardFinancialFramework)

• PYTHONPATH=$PYTHONPATH:$F3_ROOT/..

Getting Started

1. Change to the test_script directory (i.e. ForwardFinancialFramework/bin/test_scripts)

2. Run the following command in the script directory: python \<script file name\> script
options e.g. python mc_solver_test.py CPU Execute would run a very basic, CPU-based
bond valuation.

Extending the Framework

• To add a new derivative or underlying, look at the existing derivatives and underlyings as an example. The
basic procedure:

1. Create a new class in the correct directory, inheriting from Option.py or Underlying.py respectively.

2. Overload or add the required methods and variables for the solver(s) being targetted to the new class
being created.

3. Create the required supporting libraries for generating the platform-solver code.

• To add a new solver or platform, its a bit more involved. Again, look at the existing ones for ideas.

Contact Info

Please, feel free to get in touch with me (gordon.inggs (at) gmail.com). I'm particularly happy to provide comparison
data for your option evaluations.
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Chapter 2

Namespace Index

2.1 Packages

Here are the packages with brief descriptions (if available):

ForwardFinancialFramework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
ForwardFinancialFramework.Derivatives.Asian_Option . . . . . . . . . . . . . . . . . . . . . . . . . . 9
ForwardFinancialFramework.Derivatives.Barrier_Option . . . . . . . . . . . . . . . . . . . . . . . . . . 9
ForwardFinancialFramework.Derivatives.Digital_Double_Barrier_Option . . . . . . . . . . . . . . . . . 9
ForwardFinancialFramework.Derivatives.Double_Barrier_Option . . . . . . . . . . . . . . . . . . . . . 10
ForwardFinancialFramework.Derivatives.European_Option . . . . . . . . . . . . . . . . . . . . . . . . 10
ForwardFinancialFramework.Derivatives.Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA . . . . . . . . . . . . . . . . . . . 10
ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo . . . . . . . . . . . . 11
ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU . . . . . . . . . . . . . . . . . . . 11
ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo . . . . . . . . . . . . 11
ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA . . . . . . . . . . . . 11
ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_MonteCarlo . . . . . 12
ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU . . . . . . . . . . . . . . . . . . . . 12
ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU_MonteCarlo . . . . . . . . . . . . . 12
ForwardFinancialFramework.Platforms.Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ForwardFinancialFramework.Solvers.MonteCarlo.MonteCarlo . . . . . . . . . . . . . . . . . . . . . . . 13
ForwardFinancialFramework.Underlyings.Black_Scholes . . . . . . . . . . . . . . . . . . . . . . . . . 13
ForwardFinancialFramework.Underlyings.Heston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
ForwardFinancialFramework.Underlyings.Underlying . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ForwardFinancialFramework.Solvers.MonteCarlo.MonteCarlo.MonteCarlo . . . . . . . . . . . . . . . . . 28
MonteCarlo

ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_ -

MonteCarlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
MulticoreCPU_MonteCarlo

ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_ -

MonteCarlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU_MonteCarlo.OpenCLGPU_ -

MonteCarlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
OpenCLGPU_MonteCarlo

ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_MonteCarlo. -

OpenCLAlteraFPGA_MonteCarlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
ForwardFinancialFramework.Derivatives.Option.Option . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ForwardFinancialFramework.Derivatives.European_Option.European_Option . . . . . . . . . . . . . . 21
ForwardFinancialFramework.Derivatives.Asian_Option.Asian_Option . . . . . . . . . . . . . . . . 15
ForwardFinancialFramework.Derivatives.Barrier_Option.Barrier_Option . . . . . . . . . . . . . . . 16

ForwardFinancialFramework.Derivatives.Double_Barrier_Option.Double_Barrier_Option . . . . 20
ForwardFinancialFramework.Derivatives.Digital_Double_Barrier_Option.Digital_Double_ -

Barrier_Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
ForwardFinancialFramework.Platforms.Platform.Platform . . . . . . . . . . . . . . . . . . . . . . . . . 42

ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA.MaxelerFPGA . . . . . . . . . . . 24
ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU.MulticoreCPU . . . . . . . . . . . 30
ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA.OpenCLAlteraFP -

GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU.OpenCLGPU . . . . . . . . . . . . 37

ForwardFinancialFramework.Underlyings.Underlying.Underlying . . . . . . . . . . . . . . . . . . . . . . 43
ForwardFinancialFramework.Underlyings.Black_Scholes.Black_Scholes . . . . . . . . . . . . . . . . 18
ForwardFinancialFramework.Underlyings.Heston.Heston . . . . . . . . . . . . . . . . . . . . . . . . . 22
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Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ForwardFinancialFramework.Derivatives.Asian_Option.Asian_Option . . . . . . . . . . . . . . . . . . . 15
ForwardFinancialFramework.Derivatives.Barrier_Option.Barrier_Option . . . . . . . . . . . . . . . . . . 16
ForwardFinancialFramework.Underlyings.Black_Scholes.Black_Scholes . . . . . . . . . . . . . . . . . 18
ForwardFinancialFramework.Derivatives.Digital_Double_Barrier_Option.Digital_Double_Barrier_Option . 19
ForwardFinancialFramework.Derivatives.Double_Barrier_Option.Double_Barrier_Option . . . . . . . . . 20
ForwardFinancialFramework.Derivatives.European_Option.European_Option . . . . . . . . . . . . . . 21
ForwardFinancialFramework.Underlyings.Heston.Heston . . . . . . . . . . . . . . . . . . . . . . . . . 22
ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA.MaxelerFPGA . . . . . . . . . . . 24
ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_ -

MonteCarlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
ForwardFinancialFramework.Solvers.MonteCarlo.MonteCarlo.MonteCarlo . . . . . . . . . . . . . . . . 28
ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU.MulticoreCPU . . . . . . . . . . . . 30
ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_Monte -

Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA.OpenCLAlteraFPGA . 34
ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_MonteCarlo.OpenCL -

AlteraFPGA_MonteCarlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU.OpenCLGPU . . . . . . . . . . . . . 37
ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU_MonteCarlo.OpenCLGPU_Monte -

Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
ForwardFinancialFramework.Derivatives.Option.Option . . . . . . . . . . . . . . . . . . . . . . . . . . 40
ForwardFinancialFramework.Platforms.Platform.Platform . . . . . . . . . . . . . . . . . . . . . . . . . 42
ForwardFinancialFramework.Underlyings.Underlying.Underlying . . . . . . . . . . . . . . . . . . . . . 43
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Chapter 5

Namespace Documentation

5.1 ForwardFinancialFramework Namespace Reference

5.1.1 Detailed Description

@package ForwardFinancialFramework
Root module for ForwardFinancialFramework

Deliberately empty

5.2 ForwardFinancialFramework.Derivatives.Asian_Option Namespace Reference

Classes

• class Asian_Option

5.2.1 Detailed Description

Created on 17 June 2012

5.3 ForwardFinancialFramework.Derivatives.Barrier_Option Namespace Reference

Classes

• class Barrier_Option

5.3.1 Detailed Description

Created on 16 June 2012

5.4 ForwardFinancialFramework.Derivatives.Digital_Double_Barrier_Option Namespace
Reference

Classes

• class Digital_Double_Barrier_Option



10 Namespace Documentation

5.4.1 Detailed Description

Created on 17 June 2012

5.5 ForwardFinancialFramework.Derivatives.Double_Barrier_Option Namespace Refer-
ence

Classes

• class Double_Barrier_Option

5.5.1 Detailed Description

Created on 17 June 2012

5.6 ForwardFinancialFramework.Derivatives.European_Option Namespace Reference

Classes

• class European_Option

5.6.1 Detailed Description

Created on 30 May 2012

5.7 ForwardFinancialFramework.Derivatives.Option Namespace Reference

Classes

• class Option

5.7.1 Detailed Description

@package ForwardFinancialFramework.Derivatives.Option

This package contains the base derivative class, option.
Created on 30 May 2012

5.8 ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA Namespace Ref-
erence

Classes

• class MaxelerFPGA

5.8.1 Detailed Description

Created on 26 October 2012
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5.9 ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo Namespace Reference11

5.9 ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo
Namespace Reference

Classes

• class MaxelerFPGA_MonteCarlo

5.9.1 Detailed Description

Created on 30 October 2012

5.10 ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU Namespace
Reference

Classes

• class MulticoreCPU

5.10.1 Detailed Description

Created on 11 July 2012

5.11 ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo
Namespace Reference

Classes

• class MulticoreCPU_MonteCarlo

5.11.1 Detailed Description

Created on 30 October 2012

5.12 ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPG -

A Namespace Reference

Classes

• class OpenCLAlteraFPGA

5.12.1 Detailed Description

Created on 1 April 2014
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5.13 ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_ -

MonteCarlo Namespace Reference

Classes

• class OpenCLAlteraFPGA_MonteCarlo

5.13.1 Detailed Description

Created on 1 April 2014

5.14 ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU Namespace Ref-
erence

Classes

• class OpenCLGPU

5.14.1 Detailed Description

Created on 23 February 2013

5.15 ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU_MonteCarlo
Namespace Reference

Classes

• class OpenCLGPU_MonteCarlo

5.15.1 Detailed Description

Created on 23 February 2013

5.16 ForwardFinancialFramework.Platforms.Platform Namespace Reference

Classes

• class Platform

5.16.1 Detailed Description

@package ForwardFinancialFramework.Platforms.Platform

This package contains the base platform class
Created on 23 November 2014
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5.17 ForwardFinancialFramework.Solvers.MonteCarlo.MonteCarlo Namespace Refer-
ence

Classes

• class MonteCarlo

5.17.1 Detailed Description

@package ForwardFinancialFramework.Solvers.MonteCarlo

This is the base class for all Monte Carlo solvers.
Created on 11 July 2012

5.18 ForwardFinancialFramework.Underlyings.Black_Scholes Namespace Reference

Classes

• class Black_Scholes

5.18.1 Detailed Description

@package ForwardFinancialFramework.Underlyings

Created on 30 May 2012

5.19 ForwardFinancialFramework.Underlyings.Heston Namespace Reference

Classes

• class Heston

5.19.1 Detailed Description

@package ForwardFinancialFramework.Underlyings

Created on 12 June 2012

5.20 ForwardFinancialFramework.Underlyings.Underlying Namespace Reference

Classes

• class Underlying

5.20.1 Detailed Description

@package ForwardFinancialFramework.Underlyings

This package contains the underlying classes.
Created on 30 May 2012
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Chapter 6

Class Documentation

6.1 ForwardFinancialFramework.Derivatives.Asian_Option.Asian_Option Class Refer-
ence

Inheritance diagram for ForwardFinancialFramework.Derivatives.Asian_Option.Asian_Option:

ForwardFinancialFramework.Derivatives.Asian_Option.Asian_Option

ForwardFinancialFramework.Derivatives.European_Option.European_Option

ForwardFinancialFramework.Derivatives.Option.Option

Public Member Functions

• def __init__ (self, underlying, time_period, call, strike_price, points)

• def path_init (self)

• def path (self, price, time)

• def payoff (self, end_price)

Public Attributes

• points

• average_value

• delta_time

Static Public Attributes

• string name = "asian_option"

• int points = 0

Number of points over which to find the average price.

• float average_value = 0.0

Accumulator variable for calculating the average underlying value.
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6.1.1 Detailed Description

Asian Option Class

This class represents an arithmetic Asian Option derivative product.

6.1.2 Constructor & Destructor Documentation

6.1.2.1 def ForwardFinancialFramework.Derivatives.Asian_Option.Asian_Option.__init__ ( self, underlying, time_period,

call, strike_price, points )

Constructor

Parameters
underlying, time_period, call, strike_price, points - same as for European_Option
points - number of points, evenly spaced over lifetime overwhich to take spot price average value

6.1.3 Member Function Documentation

6.1.3.1 def ForwardFinancialFramework.Derivatives.Asian_Option.Asian_Option.path ( self, price, time )

Path evolution method

Parameters
price - (float) the current value of the underlying
time - (float) the current time of the underlying

6.1.3.2 def ForwardFinancialFramework.Derivatives.Asian_Option.Asian_Option.path_init ( self )

Path initialisation method

Parameters
None

6.1.3.3 def ForwardFinancialFramework.Derivatives.Asian_Option.Asian_Option.payoff ( self, end_price )

Payoff evaluation method

Parameters
end_price - (float) the end price of the underlying

The documentation for this class was generated from the following file:

• Asian_Option.py

6.2 ForwardFinancialFramework.Derivatives.Barrier_Option.Barrier_Option Class Refer-
ence

Inheritance diagram for ForwardFinancialFramework.Derivatives.Barrier_Option.Barrier_Option:
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6.2 ForwardFinancialFramework.Derivatives.Barrier_Option.Barrier_Option Class Reference 17

ForwardFinancialFramework.Derivatives.Barrier_Option.Barrier_Option

ForwardFinancialFramework.Derivatives.European_Option.European_Option

ForwardFinancialFramework.Derivatives.Option.Option

ForwardFinancialFramework.Derivatives.Double_Barrier_Option.Double_Barrier_Option

ForwardFinancialFramework.Derivatives.Digital_Double_Barrier_Option.Digital_Double_Barrier_Option

Public Member Functions

• def __init__ (self, underlying, time_period, call, strike_price, points, barrier, out, down)
• def path (self, price, time)
• def payoff (self, end_price)

Public Attributes

• points
• barrier
• delta_time
• value

Static Public Attributes

• string name = "barrier_option"
• float barrier = 0.0

Price Barrier.
• out = None

Out barrier indication.
• down = None

Down barrier indication.
• int points = 0

Number of barrier points to check.
• barrier_event = None

6.2.1 Detailed Description

Barrier Option Class

This class representes barrier option products

6.2.2 Constructor & Destructor Documentation

6.2.2.1 def ForwardFinancialFramework.Derivatives.Barrier_Option.Barrier_Option.__init__ ( self, underlying, time_period,

call, strike_price, points, barrier, out, down )

Constructor

Parameters
underlying, time_period, call, strike_price - same as European Option
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points - (int) number of points at which to check barrier, spaced evenly over option lifetime
barrier - (float) price value of the barrier
out - (bool) is this an out barrier?
down - (bool) is this a down barrier (i.e. has to cross from barrier from above)

6.2.3 Member Function Documentation

6.2.3.1 def ForwardFinancialFramework.Derivatives.Barrier_Option.Barrier_Option.path ( self, price, time )

Path evolution method

Parameters
price - (float) current spot price of underlying
time - (float) current time of underlying

6.2.3.2 def ForwardFinancialFramework.Derivatives.Barrier_Option.Barrier_Option.payoff ( self, end_price )

Payoff method

Parameters
end_price - (float) final price of underlying asset

The documentation for this class was generated from the following file:

• Barrier_Option.py

6.3 ForwardFinancialFramework.Underlyings.Black_Scholes.Black_Scholes Class Refer-
ence

Inheritance diagram for ForwardFinancialFramework.Underlyings.Black_Scholes.Black_Scholes:

ForwardFinancialFramework.Underlyings.Black_Scholes.Black_Scholes

ForwardFinancialFramework.Underlyings.Underlying.Underlying

Public Member Functions

• def __init__ (self, rfir, current_price, volatility)
• def __repr__ (self)

Public Attributes

• volatility

Static Public Attributes

• string name = "black_scholes_underlying"
• float volatility = 0.0

The constant volatility of the product.
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6.3.1 Detailed Description

Black Scholes Underlying class

This class represents a Black Scholes model based underlying. It inheirts from the Underlying base class.

6.3.2 Constructor & Destructor Documentation

6.3.2.1 def ForwardFinancialFramework.Underlyings.Black_Scholes.Black_Scholes.__init__ ( self, rfir, current_price,

volatility )

Constructor

Parameters
rfir and current price same as Underlying

volatility - (float) size of constant volatility

The documentation for this class was generated from the following file:

• Black_Scholes.py

6.4 ForwardFinancialFramework.Derivatives.Digital_Double_Barrier_Option.Digital_ -

Double_Barrier_Option Class Reference

Inheritance diagram for ForwardFinancialFramework.Derivatives.Digital_Double_Barrier_Option.Digital_Double_ -

Barrier_Option:

ForwardFinancialFramework.Derivatives.Digital_Double_Barrier_Option.Digital_Double_Barrier_Option

ForwardFinancialFramework.Derivatives.Double_Barrier_Option.Double_Barrier_Option

ForwardFinancialFramework.Derivatives.Barrier_Option.Barrier_Option

ForwardFinancialFramework.Derivatives.European_Option.European_Option

ForwardFinancialFramework.Derivatives.Option.Option

Public Member Functions

• def __init__ (self, underlying, time_period, call, strike_price, points, barrier, out, down, second_barrier)

Public Attributes

• value

Static Public Attributes

• string name = "digital_double_barrier_option"
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6.4.1 Detailed Description

Digital Double Barrier Class

This class represents a digital double barrier derivative product.

6.4.2 Constructor & Destructor Documentation

6.4.2.1 def ForwardFinancialFramework.Derivatives.Digital_Double_Barrier_Option.Digital_Double_Barrier_Option.__init__ (
self, underlying, time_period, call, strike_price, points, barrier, out, down, second_barrier )

Constructor

Parameters
underlying, time_period, call, strike_price, points, barrier, out, down, second_barrier - same as double barrier

The documentation for this class was generated from the following file:

• Digital_Double_Barrier_Option.py

6.5 ForwardFinancialFramework.Derivatives.Double_Barrier_Option.Double_Barrier_ -

Option Class Reference

Inheritance diagram for ForwardFinancialFramework.Derivatives.Double_Barrier_Option.Double_Barrier_Option:

ForwardFinancialFramework.Derivatives.Double_Barrier_Option.Double_Barrier_Option

ForwardFinancialFramework.Derivatives.Barrier_Option.Barrier_Option

ForwardFinancialFramework.Derivatives.European_Option.European_Option

ForwardFinancialFramework.Derivatives.Option.Option

ForwardFinancialFramework.Derivatives.Digital_Double_Barrier_Option.Digital_Double_Barrier_Option

Public Member Functions

• def __init__ (self, underlying, time_period, call, strike_price, points, barrier, out, down, second_barrier)
• def __repr__ (self)

Public Attributes

• second_barrier
• barrier_event

Static Public Attributes

• string name = "double_barrier_option"
• float second_barrier = 0.0

Second price barrier.
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• float down = 1.0

By default the this option is a down barrier is now true, as the double barrier is between two points.

6.5.1 Detailed Description

Double Barrier Option class

This class represents a double barrier option deriviative production.

6.5.2 Constructor & Destructor Documentation

6.5.2.1 def ForwardFinancialFramework.Derivatives.Double_Barrier_Option.Double_Barrier_Option.__init__ ( self, underlying,

time_period, call, strike_price, points, barrier, out, down, second_barrier )

Constructor
Parameters

underlying,time_period,call,strike_price,points,barrier,out,down - same as Barrier Option
second_barrier - (float) the second price barrier

6.5.3 Member Data Documentation

6.5.3.1 float ForwardFinancialFramework.Derivatives.Double_Barrier_Option.Double_Barrier_Option.down = 1.0 [static]

By default the this option is a down barrier is now true, as the double barrier is between two points.

By enforced convention, the first is the lower barrier

6.5.3.2 float ForwardFinancialFramework.Derivatives.Double_Barrier_Option.Double_Barrier_Option.second_barrier = 0.0
[static]

Second price barrier.

By definition, this is the higher price barrier

The documentation for this class was generated from the following file:

• Double_Barrier_Option.py

6.6 ForwardFinancialFramework.Derivatives.European_Option.European_Option Class
Reference

Inheritance diagram for ForwardFinancialFramework.Derivatives.European_Option.European_Option:

ForwardFinancialFramework.Derivatives.European_Option.European_Option

ForwardFinancialFramework.Derivatives.Option.Option

ForwardFinancialFramework.Derivatives.Asian_Option.Asian_Option ForwardFinancialFramework.Derivatives.Barrier_Option.Barrier_Option

ForwardFinancialFramework.Derivatives.Double_Barrier_Option.Double_Barrier_Option

ForwardFinancialFramework.Derivatives.Digital_Double_Barrier_Option.Digital_Double_Barrier_Option

Public Member Functions

• def __init__ (self, underlying, time_period, call, strike_price)
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Public Attributes

• value

Static Public Attributes

• string name = "european_option"

6.6.1 Detailed Description

European Option class

This class represents a European or Vanilla option pricing product

6.6.2 Constructor & Destructor Documentation

6.6.2.1 def ForwardFinancialFramework.Derivatives.European_Option.European_Option.__init__ ( self, underlying,

time_period, call, strike_price )

Constructor

Parameters
underlying, time_period, call, strike_price - same as for Option.Option

The documentation for this class was generated from the following file:

• European_Option.py

6.7 ForwardFinancialFramework.Underlyings.Heston.Heston Class Reference

Inheritance diagram for ForwardFinancialFramework.Underlyings.Heston.Heston:

ForwardFinancialFramework.Underlyings.Heston.Heston

ForwardFinancialFramework.Underlyings.Underlying.Underlying

Public Member Functions

• def __init__
• def path (self, delta_time)
• def __repr__ (self)

Public Attributes

• initial_volatility
• volatility_volatility
• rho
• kappa
• theta
• volatility
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• correlation_matrix_1_1
• correlation_matrix_0_0
• correlation_matrix_0_1
• correlation_matrix_1_0

Static Public Attributes

• string name = "heston_underlying"
• float initial_volatility = 0.0

Starting value for the volatility.

• float volatility_volatility = 0.0

The constant volatility of the volatility.

• float rho = 0.0

correlation factor between evolution of price and volatility

• float kappa = 0.0

volatility evolution reversion rate

• float theta = 0.0

long run mean of volatility evolution, analogous to the rfir for the underlying price

• float correlation_matrix_0_0 = 0.0

Attributes storing the Cholesky matrix of the correlation between the two random numbers generated.

• float correlation_matrix_0_1 = 0.0
• float correlation_matrix_1_0 = 0.0
• float correlation_matrix_1_1 = 0.0
• float volatility = 0.0

Volatility is a variable in this instance.

6.7.1 Detailed Description

Heston Model Underlying class

6.7.2 Constructor & Destructor Documentation

6.7.2.1 def ForwardFinancialFramework.Underlyings.Heston.Heston.__init__ ( self, rfir, current_price, initial_volatility,

volatility_volatility, rho, kappa, theta, correlation_matrix_0_0 = None, correlation_matrix_0_1 = None,

correlation_matrix_1_0 = None, correlation_matrix_1_1 = None )

Constructor

Parameters
rfir,current_price - same as for Underlying.Underlying
initial_volatility - (float) initial volatility value
volatility_volatility - (float) the constnat volatility of the volatility
rho - (float) the correlation factor between the price and volatility evolution
kappa - (float) the volatility evolution reversion rate
theta - (float) the long run mean of the volatility evolution

6.7.3 Member Function Documentation

6.7.3.1 def ForwardFinancialFramework.Underlyings.Heston.Heston.path ( self, delta_time )

Path evolution method

Parameters
delta_time - (float) the time step by which the price should be evoloved.
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The documentation for this class was generated from the following file:

• Heston.py

6.8 ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA.MaxelerFPG -

A Class Reference

Inheritance diagram for ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA.MaxelerFPGA:

ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA.MaxelerFPGA

ForwardFinancialFramework.Platforms.Platform.Platform

Public Member Functions

• def __init__
• def __del__ (self)

Public Attributes

• board

The name of Maxeler board to use.
• device_resources

The integer resource units available.
• clock_rate

The integer clock rate in Megahertz to use during the build process.
• boardid

Static Public Attributes

• string name = "maxeler_fpga"
• int threads = 1

6.8.1 Detailed Description

Maxeler FPGA Platform Class

This class is for representing Maxeler FPGAs. If a Max4 FPGA is being used, it is assumed that the Max orchistrator system is being used to manage access to the boards.

6.8.2 Constructor & Destructor Documentation

6.8.2.1 def ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA.MaxelerFPGA.__init__ ( self,

platform_directory_string = "Platforms/MaxelerFPGA/maxeler_code/build",

root_directory_string = None, ssh_alias = "", remote = False, hostname = "", shell_vars = {}, board =

"max3", boardid = ":0" )

Constructor

Parameters
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platform_directory_string,root_directory_string,ssh_alias,remote,hostname,shell_vars - same as for the Platform class
board - (string) Maxeler board to use
boardid - (string) ID of Maxeler board to use

6.8.2.2 def ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA.MaxelerFPGA.__del__ ( self )

Deconstructor
unreserves the board from the Maxorchestrator

6.8.3 Member Data Documentation

6.8.3.1 ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA.MaxelerFPGA.board

The name of Maxeler board to use.

Can either be Max3 or Max4

6.8.3.2 ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA.MaxelerFPGA.clock_rate

The integer clock rate in Megahertz to use during the build process.

6.8.3.3 ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA.MaxelerFPGA.device_resources

The integer resource units available.

This is used by the Maxeler solver class.

The documentation for this class was generated from the following file:

• MaxelerFPGA.py

6.9 ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo. -

MaxelerFPGA_MonteCarlo Class Reference

Inheritance diagram for ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo. -

MaxelerFPGA_MonteCarlo:

ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_MonteCarlo

MulticoreCPU_MonteCarlo

Public Member Functions

• def __init__
• def set_default_parameters (self)
• def generate_name (self)
• def generate_identifier (self)
• def generate
• def generate_activity_thread (self)
• def generate_libraries (self)
• def generate_kernel
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• def generate_manager (self)
• def compile
• def dummy_run (self)
• def get_delay (self)

Public Attributes

• pipelining

Integer degree of loop unrolling to be performed.
• instances

Number of parallel task instances to be performed.
• delay
• activity_thread_name

Static Public Attributes

• c_slow = False

Option for whether c-slowing optimisation should be used.
• int delay = 10

Integer delay value to be used if the c-slowing optimisation is not used.
• int pipelining = 1
• int instances = 1

6.9.1 Detailed Description

Maxeler Monte Carlo solver class

This class provides the generation and compilation behaviour for the Maxeler FPGA platform.

6.9.2 Constructor & Destructor Documentation

6.9.2.1 def ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_MonteCarlo.__init_ -

_ ( self, derivative, paths, platform, points = 4096, reduce_underlyings = True, instance_paths = None,

c_slow = None, pipelining = None, instances = None )

Constructor

Parameters
derivative, paths, platform, reduce_underlyings - same as for MulticoreCPU_MonteCarlo class
instance_paths - (int) number of paths to perform per call to the Maxeler DFE
c_slow - (bool) option to use c-slowing optimisation
pipelining - (int) amount of loop unrolling to perform
instances - (int) number of parallel instances to use

6.9.3 Member Function Documentation

6.9.3.1 def ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_MonteCarlo.compile (
self, override = True, cleanup = True, debug = True )

Compiler method override for Maxeler solvers.

Makes use of GNU make infrastructure underneath.

Parameters
override, cleanup, debug - same as in other solver classes
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6.9.3.2 def ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_MonteCarlo. -

dummy_run ( self )

Helper method for wiping the configuration of the current Maxeler board.

6.9.3.3 def ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_MonteCarlo.generate
( self, override = True, verbose = False, debug = False )

Overriding generate method. In addition to host code, the code for Maxeler DFE and its manager class are generated.

Parameters
override, verbose, debug - same as for MulticoreCPU_MonteCarlo class

6.9.3.4 def ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_MonteCarlo. -

generate_activity_thread ( self )

Overriding the generate activity thread method so that it sets up and communicates with the Maxeler DFE

6.9.3.5 def ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_MonteCarlo. -

generate_kernel ( self, overide = True )

Helper method for generating the kernel.

Parameters
overide - (bool) Force the code to be generated.

6.9.3.6 def ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_MonteCarlo. -

generate_libraries ( self )

Overriding the libraries generation

6.9.3.7 def ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_MonteCarlo. -

generate_manager ( self )

Helper method for generating Maxeler hardware manager, which specifies communication and various build properities.

6.9.3.8 def ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_MonteCarlo. -

generate_name ( self )

Overriding helper method to include board parameters

6.9.3.9 def ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_MonteCarlo.get_ -

delay ( self )

Helper method for finding delay required
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6.9.3.10 def ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA_MonteCarlo.MaxelerFPGA_MonteCarlo.set_ -

default_parameters ( self )

Helper method for setting the default FPGA parameters to use

The documentation for this class was generated from the following file:

• MaxelerFPGA_MonteCarlo.py

6.10 ForwardFinancialFramework.Solvers.MonteCarlo.MonteCarlo.MonteCarlo Class
Reference

Public Member Functions

• def __init__
• def generate
• def compile (self)
• def execute
• def cleanup (self)
• def setup_underlyings (self, reduce_underlyings)
• def generate_name (self)
• def attribute_stripper (self, attributes, variables)

Public Attributes

• solver_metadata
• derivative
• underlying
• underlying_dependencies
• underlying_attributes
• underlying_variables
• derivative_attributes
• derivative_variables
• output_file_name

Static Public Attributes

• string name = "monte_carlo_solver"
• paths = None

Monte Carlo simulation paths.
• threads = None

Number of threads of execution to use.
• reduce_underlyings = None

Fusion optimisation.
• platform = None

Platform of exectuion.
• list derivative = [ ]

Derivative products to value.
• list derivative_attributes = [ ]

Derivative product attributes.
• list derivative_variables = [ ]
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Derivative product variables.

• list underlying = [ ]

Underlyings of derivative products.

• list underlying_attributes = [ ]

Underlying attributes.

• list underlying_variables = [ ]

Underlying variables.

• list underlying_dependencies = [ ]

6.10.1 Detailed Description

Base Monte Carlo solver class

This class is the base class for all of the Monte Carlo solvers

6.10.2 Constructor & Destructor Documentation

6.10.2.1 def ForwardFinancialFramework.Solvers.MonteCarlo.MonteCarlo.MonteCarlo.__init__ ( self, derivative, paths,

platform, reduce_underlyings = True )

Constructor

Parameters
derivatives - (list of ForwardFinancialFramework.Derivatives) list of derivative products that need to be priced
paths - (int) number of Monte Carlo simulations to use
platform - (ForwardFinancialFramework.Platform) platform to perform solving upon
reduce_underlyings - (bool) use the fusion optimisation?

6.10.3 Member Function Documentation

6.10.3.1 def ForwardFinancialFramework.Solvers.MonteCarlo.MonteCarlo.MonteCarlo.attribute_stripper ( self, attributes,

variables )

Helper Method used to remove all items in the first list from the second list, if present

Parameters
attributes - (list) elements to remove
variables - (list) list to remove from

returns variables - attributes

6.10.3.2 def ForwardFinancialFramework.Solvers.MonteCarlo.MonteCarlo.MonteCarlo.cleanup ( self )

Method for cleaning up solver

6.10.3.3 def ForwardFinancialFramework.Solvers.MonteCarlo.MonteCarlo.MonteCarlo.compile ( self )

Method for compiling generated solver code

6.10.3.4 def ForwardFinancialFramework.Solvers.MonteCarlo.MonteCarlo.MonteCarlo.execute ( self, cleanup = False )

Method for running solver on specified platform
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6.10.3.5 def ForwardFinancialFramework.Solvers.MonteCarlo.MonteCarlo.MonteCarlo.generate ( self, override = True )

Method for generating solver code.

Parameters
override - (bool) overwrite pre-existing code

6.10.3.6 def ForwardFinancialFramework.Solvers.MonteCarlo.MonteCarlo.MonteCarlo.generate_name ( self )

Method for generating unique name for solver, based upon underlying and derivative produces

6.10.3.7 def ForwardFinancialFramework.Solvers.MonteCarlo.MonteCarlo.MonteCarlo.setup_underlyings ( self,

reduce_underlyings )

utility method for generating list of underlyings from the solver’s derivatives

Parameters
reduce_underlysin - (bool) apply fusion optimisations?

The documentation for this class was generated from the following file:

• MonteCarlo.py

6.11 ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU.MulticoreCPU
Class Reference

Inheritance diagram for ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU.MulticoreCPU:

ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU.MulticoreCPU

ForwardFinancialFramework.Platforms.Platform.Platform

Public Member Functions

• def __init__

Public Attributes

• threads

Static Public Attributes

• string name = "multicore_cpu"
• int threads = 1

Number of computational threads being used on this platform.

6.11.1 Detailed Description

Multicore CPU Platform Class
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6.11.2 Constructor & Destructor Documentation

6.11.2.1 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU.MulticoreCPU.__init__ ( self, threads

= None, platform_directory_string = "Platforms/MulticoreCPU/multicore_c_code",

root_directory_string = None, ssh_alias = "", remote = False, hostname = None )

Constructor

Parameters
platform_directory_string, root_directory_String, ssh_alias, remote, hostname - same as Platform class
threads - (int) number of computational threads to use. If not set, the number of cores on the machine will be used (as returned by "getconf _NPROCESSORS_ONLN")

The documentation for this class was generated from the following file:

• MulticoreCPU.py

6.12 ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo. -

MulticoreCPU_MonteCarlo Class Reference

Inheritance diagram for ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo. -

MulticoreCPU_MonteCarlo:

ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_MonteCarlo

MonteCarlo

Public Member Functions

• def __init__
• def generate
• def generate_identifier (self)
• def generate_libraries (self)
• def generate_variable_declaration (self)
• def generate_main_thread (self)
• def generate_activity_thread_unpacking (self)
• def generate_underlying_derivative_path_initialisations
• def generate_activity_thread (self)
• def compile
• def execute
• def generate_source
• def generate_base_class_names (self, tempclass, templist)

Public Attributes

• utility_libraries
• activity_thread_name
• header_string
• random_number_generator
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Static Public Attributes

• floating_point_format = None
Format used for floating point computations.

6.12.1 Detailed Description

MulticoreCPU Monte Carlo class

This class is for generating, compiling and executing Monte Carlo solvers upon Multicore CPU platforms. Many other classes depend upon it, so cave editor!

6.12.2 Constructor & Destructor Documentation

6.12.2.1 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_MonteCarlo. -

__init__ ( self, derivative, paths, platform, reduce_underlyings = True, random_number_generator =

"taus_ziggurat", floating_point_format = "float", default_points = 4096 )

Constructor

Parameters
derivative - (list of Derivative.Option) derivative products to be priced
paths - (int) number of simulation paths to use. Only used for execution behaviour
platform - (Platfrom.MulticoreCPU.MulticoreCPU) Multicore CPU platform to use
reduce_underlyings - (bool) optimisation option, collapse identical underlyings together.
random_number_generator - (string) Gaussian random number generator to use. Valid values include "taus_ziggurat","taus_boxmuller","drand_ziggurat","drand_boxmuller"
floating_point_format - (string) Floating point standard to use. Acceptable values include "float","double"
default_points - (int) Default number of discretisation points to use in a simulation, unless otherwise specified

6.12.3 Member Function Documentation

6.12.3.1 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_MonteCarlo.compile
( self, overide = True, compile_options = [], debug = False, profile = False )

Compile method

This compiles the generated source code.

Parameters
override - (bool) option to force the compilation
compile_options - (list of strings) pass in any compiler options
debug - (bool) option to compile with debugging symbols
profile - (bool) option to compile with profiling symbols *big performance hit*

6.12.3.2 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_MonteCarlo.execute
( self, debug = False, seed = None, timeout = None )

Execute method. This runs the generated and compiled solver (assuming it exists).

This method is reused by many of the Class’s children

Parameters
debug - (bool) option to increase verbosity, including the binary file and its parameters
seed - (int) value to seed the solver with.
timeout - (int) timeout in seconds to wait before killing the solver

6.12.3.3 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_Monte -

Carlo.generate ( self, name_extension = ".c", override = True, verbose = False, debug = False
)

Code generation method
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Parameters
name_extension - (string) file name extension to use for generated code
override - (bool) option to force code generation
verbose - (bool) option for setting verbosity level of code generation
debug - (bool) option passed to source code generation method

6.12.3.4 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_MonteCarlo. -

generate_activity_thread ( self )

Helper method for generating activity thread

This is the method overrided by the children of this class.

6.12.3.5 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_MonteCarlo. -

generate_activity_thread_unpacking ( self )

Helper method for generating active thread

6.12.3.6 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_MonteCarlo. -

generate_base_class_names ( self, tempclass, templist )

Helper method for pulling in various super classes during compilation

6.12.3.7 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_MonteCarlo. -

generate_identifier ( self )

Helper method for generating identifiers and predefines for source code

Parameters
None

6.12.3.8 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_MonteCarlo. -

generate_libraries ( self )

Helper method for generating library includes

6.12.3.9 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_MonteCarlo. -

generate_main_thread ( self )

Helper method for generating main function

This is also used by many of the inheiriting classes

6.12.3.10 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_MonteCarlo. -

generate_source ( self, code_string, name_extension = ".c", verbose = False, debug = False
)

Helper method for generating source code files

Parameters
code_string - (list of strings) the code to be written to the file. Each entry is a new line
name_extension - (string) file extension to use on the file
verbose - (bool) option to generate verbose code
debug - (bool) option to print names of files generated
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6.12.3.11 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_ -

MonteCarlo.generate_underlying_derivative_path_initialisations ( self, linking_variables = True
)

Helper method for generating underlying and derivative path initilisation behaviour

6.12.3.12 def ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU_MonteCarlo.MulticoreCPU_MonteCarlo. -

generate_variable_declaration ( self )

Helper method for generating Intermediate and Communication Variables

The documentation for this class was generated from the following file:

• MulticoreCPU_MonteCarlo.py

6.13 ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA. -

OpenCLAlteraFPGA Class Reference

Inheritance diagram for ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA.OpenC -

LAlteraFPGA:

ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA.OpenCLAlteraFPGA

ForwardFinancialFramework.Platforms.Platform.Platform

Public Member Functions

• def __init__

Public Attributes

• platform_name
• board

Static Public Attributes

• string name = "opencl_alterafpga"
• int threads = 0

This variable isn't used here, so set to 0 for safety.
• device_type = pyopencl.device_type.ALL

Currently unused, but if it was, would use ALL device type.
• string board = ""

OpenCL Altera SDK board support package to use.

6.13.1 Detailed Description

OpenCL Altera FPGA Platform Class

TODO: inheirt from OpenCLGPU class, similar to the OpenCL Altera Monte Carlo solver class
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6.13.2 Constructor & Destructor Documentation

6.13.2.1 def ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA.OpenCLAlteraFPGA.__init__ (
self, platform_directory_string = "Platforms/OpenCLAlteraFPGA/openclalterafpga_code",

root_directory_string = None, platform_name = "Altera Corporation", board = "pcie385n_d5",

ssh_alias = "", remote = False, hostname = "" )

Constructor

Parameters
platform_directory_string, root_directory_String, ssh_alias, remote, hostname - same as Platform class
board - (string) OpenCL Altera Certified board to use. The correct name can be found from "aoc --list-boards"

The documentation for this class was generated from the following file:

• OpenCLAlteraFPGA.py

6.14 ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_ -

MonteCarlo.OpenCLAlteraFPGA_MonteCarlo Class Reference

Inheritance diagram for ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_Monte -

Carlo.OpenCLAlteraFPGA_MonteCarlo:

ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_MonteCarlo.OpenCLAlteraFPGA_MonteCarlo

OpenCLGPU_MonteCarlo

Public Member Functions

• def __init__
• def set_default_parameters (self)
• def generate_name (self)
• def generate_activity_thread (self)
• def generate_kernel (self)
• def compile
• def set_instance_paths (self, instance_paths)
• def set_chunk_paths (self)

Public Attributes

• simulation

Boolean option for CPU simulation.
• optimisation

Boolean option to use Altera OpenCL compiler optimisation flags.
• pipelining

integer degree of loop unrolling to perform
• cslow

boolean option for c-slowing
• instances

integer number of instances
• simd_width

Generated on Wed Jul 22 2015 08:31:56 for Forward Financial Framework by Doxygen



36 Class Documentation

integer simd width to use
• output_file_name
• random_number_generator
• instance_paths
• chunk_paths

Static Public Attributes

• int instance_paths = 1
Number of simulations to use per instance - analogous to the kernel path max used in OpenCL GPU class.

6.14.1 Detailed Description

Monte Carlo solver class for Altera OpenCL SDK FPGA Platforms

6.14.2 Constructor & Destructor Documentation

6.14.2.1 def ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_MonteCarlo.OpenCLAlteraFPGA -

_MonteCarlo.__init__ ( self, derivative, paths, platform, reduce_underlyings = True, kernel_path_max = 1,

random_number_generator = "taus_boxmuller", floating_point_format = "float", instances = None,

pipelining = None, cslow = True, simulation = False, default_points = 4096, optimisation = False,

instance_paths = None, simd_width = None )

Constructor

Parameters
derivative, paths, platform, reduce_underlyings, kernel_path_max, random_number_generator, floating_point_format, default_points - same as in OpenCLGPU Solver class
pipelining - (int) number of iterations of inner, path kernel loop to unroll
cslow - (bool) option for turning on c-slowing optimisation
simulation - (bool) option to compile implementation for CPU simulation (compiles much faster)
optimisation - (bool) option to turn on various mathematical optimisations
instance_paths - (int) number of paths to use per instance
simd_width - (int) vector width to use

6.14.3 Member Function Documentation

6.14.3.1 def ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_Monte -

Carlo.OpenCLAlteraFPGA_MonteCarlo.compile ( self, override = True, debug = False
)

Overriding the compile method as the Altera command line compiler must be used for their SDK

Parameters
override, debug - same as in OpenCLGPU_MonteCarlo class

6.14.3.2 def ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_MonteCarlo.OpenCLAlteraFPGA -

_MonteCarlo.generate_activity_thread ( self )

Similiar to other solver classes - overriding the generate activity thread method

6.14.3.3 def ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_MonteCarlo.OpenCLAlteraFPGA -

_MonteCarlo.generate_kernel ( self )

Overriding kernel generation method.

In this case, the parent method from the OpenCL GPU class is called, but the output is then modified.
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6.14.3.4 def ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_MonteCarlo.OpenCLAlteraFPGA -

_MonteCarlo.generate_name ( self )

Overriding method for generating name

6.14.3.5 def ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_MonteCarlo.OpenCLAlteraFPGA -

_MonteCarlo.set_chunk_paths ( self )

Helper method for setting the number of chunk paths to use

6.14.3.6 def ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_MonteCarlo.OpenCLAlteraFPGA -

_MonteCarlo.set_default_parameters ( self )

Helper method for setting default FPGA parameter values

6.14.3.7 def ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA_MonteCarlo.OpenCLAlteraFPGA -

_MonteCarlo.set_instance_paths ( self, instance_paths )

Helper method for setting number of instance paths

Parameters
instance_paths - (int) number of instance paths to use

The documentation for this class was generated from the following file:

• OpenCLAlteraFPGA_MonteCarlo.py

6.15 ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU.OpenCLGP -

U Class Reference

Inheritance diagram for ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU.OpenCLGPU:

ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU.OpenCLGPU

ForwardFinancialFramework.Platforms.Platform.Platform

Public Member Functions

• def __init__

Public Attributes

• threads
• platform_name
• platform
• device
• context
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Static Public Attributes

• string name = "opencl_gpu"
• int threads = 0

The number of threads isn't used here, so the value is set to zero.

• device_type = pyopencl.device_type.ALL

The OpenCL device type is set to ALL by default to pickup everything.

6.15.1 Detailed Description

OpenCL GPU Platform Class

The main utility of this class in ensuring the OpenCL device being targeted is actually present.

6.15.2 Constructor & Destructor Documentation

6.15.2.1 def ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU.OpenCLGPU.__init__ ( self, threads = 0,

platform_directory_string = "Platforms/OpenCLGPU/opencl_code", root_directory_string = None,

platform_name = "", device_type = pyopencl.device_type.GPU, ssh_alias = "", remote = False,

hostname = None )

Constructor

Parameters
platform_directory_string, root_directory_String, ssh_alias, remote, hostname - same as Platform class
platform_name - (string) name of OpenCL SDK to use
device_type - (pyopencl.device_type) OpenCL device type to use

The documentation for this class was generated from the following file:

• OpenCLGPU.py

6.16 ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU_MonteCarlo. -

OpenCLGPU_MonteCarlo Class Reference

Inheritance diagram for ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU_MonteCarlo.OpenCL -

GPU_MonteCarlo:

ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU_MonteCarlo.OpenCLGPU_MonteCarlo

MulticoreCPU_MonteCarlo

Public Member Functions

• def __init__
• def generate
• def generate_activity_thread (self)
• def generate_kernel (self)
• def generate_variable_declaration (self)
• def compile
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Public Attributes

• random_number_generator
• activity_thread_name
• kernel_code_string
• cpu_seed_kernel_code_string
• floating_point_format
• kernel_loops
• header_string
• kernel_code_list
• program

6.16.1 Detailed Description

OpenCL GPU Monte Carlo Solver class

This class provides the generation, compilation and execution behaviours for OpenCL GPU platforms (including Xeon Phis if the OpenCL device type is set to ACCELERATOR).
The Multicore solver class is reused heavily, with only the activity thread being implemented differently.

6.16.2 Member Function Documentation

6.16.2.1 def ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU_MonteCarlo.OpenCLGPU_MonteCarlo.compile (
self, override = True, cleanup = True, debug = False )

Compiler method for OpenCL solver.

In addition to compiling the host code, it compiles the OpenCL binary.

Parameters
override, cleanup, debug - same as in Mutlicore CPU class

6.16.2.2 def ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU_MonteCarlo.OpenCLGPU_MonteCarlo.generate (
self, override = True, verbose = False, debug = False )

Generate solver method

In addition to calling the Multicore CPU solver class to generate the host code, the kernel code is also generated.

Parameters
override, verbose, debug - same as in MulticoreCPU_MonteCarlo class

6.16.2.3 def ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU_MonteCarlo.OpenCLGPU_MonteCarlo. -

generate_activity_thread ( self )

Helper method for generating activity thread

Overrides the method in MulticoreCPU_MonteCarlo

6.16.2.4 def ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU_MonteCarlo.OpenCLGPU_MonteCarlo. -

generate_kernel ( self )

Helper method for generating OpenCL kernel
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6.16.2.5 def ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU_MonteCarlo.OpenCLGPU_MonteCarlo. -

generate_variable_declaration ( self )

Overriding the helper method of the same name in the Multicore CPU solver class

Adding in struture for RNG

The documentation for this class was generated from the following file:

• OpenCLGPU_MonteCarlo.py

6.17 ForwardFinancialFramework.Derivatives.Option.Option Class Reference

Inheritance diagram for ForwardFinancialFramework.Derivatives.Option.Option:

ForwardFinancialFramework.Derivatives.Option.Option

ForwardFinancialFramework.Derivatives.European_Option.European_Option

ForwardFinancialFramework.Derivatives.Asian_Option.Asian_Option ForwardFinancialFramework.Derivatives.Barrier_Option.Barrier_Option

ForwardFinancialFramework.Derivatives.Double_Barrier_Option.Double_Barrier_Option

ForwardFinancialFramework.Derivatives.Digital_Double_Barrier_Option.Digital_Double_Barrier_Option

Public Member Functions

• def __init__ (self, underlying, time_period, call, strike_price)
• def path_init (self)
• def path (self, price, time)
• def payoff (self, end_price)

Public Attributes

• time_period
• strike_price
• value
• delta_time

Static Public Attributes

• string name = "option"
• underlying = None

The container for the Underlying upon which this product depends.

• float strike_price = 0.0

The defined strike price of produce.

• float time_period = 0.0

The time period of the product, i.e.

• call = None

Call or put?

• float delta_time = 0.0

The next time step required.

• float value = 0.0

The value of the produce.
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6.17.1 Detailed Description

Base derivative class

This class represents the base derivative class. In practice, its a simple European future.

6.17.2 Constructor & Destructor Documentation

6.17.2.1 def ForwardFinancialFramework.Derivatives.Option.Option.__init__ ( self, underlying, time_period, call,

strike_price )

Constructor

Parameters
underlying - (list of FowardFinancialFramework.Underlyings) list of underlyings that this product depends upon
time_period - (float) time until expiry of product
call - (bool) call product?
strike_price - (float) defined expiry price

6.17.3 Member Function Documentation

6.17.3.1 def ForwardFinancialFramework.Derivatives.Option.Option.path ( self, price, time )

Path evolution method

Parameters
price - (float) the current price of the underlying product
time - (time) the current time of the underlying product

Evolves the derivative’s simulation. Is a dummy method for the base class

6.17.3.2 def ForwardFinancialFramework.Derivatives.Option.Option.path_init ( self )

Path initialisation method

Parameters
None

Initiate the derivative’s path/simulation (resets value back to 0.0)

6.17.3.3 def ForwardFinancialFramework.Derivatives.Option.Option.payoff ( self, end_price )

Payoff method

Parameters
end_price - (float) the final price of the underlying

Finds the value of the product, based upon the end price of the underlying, and if this is a call or not.

6.17.4 Member Data Documentation

6.17.4.1 float ForwardFinancialFramework.Derivatives.Option.Option.time_period = 0.0 [static]

The time period of the product, i.e.

the time from the present until expiry

The documentation for this class was generated from the following file:

• Option.py
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6.18 ForwardFinancialFramework.Platforms.Platform.Platform Class Reference

Inheritance diagram for ForwardFinancialFramework.Platforms.Platform.Platform:

ForwardFinancialFramework.Platforms.Platform.Platform

ForwardFinancialFramework.Platforms.MaxelerFPGA.MaxelerFPGA.MaxelerFPGA ForwardFinancialFramework.Platforms.MulticoreCPU.MulticoreCPU.MulticoreCPU ForwardFinancialFramework.Platforms.OpenCLAlteraFPGA.OpenCLAlteraFPGA.OpenCLAlteraFPGA ForwardFinancialFramework.Platforms.OpenCLGPU.OpenCLGPU.OpenCLGPU

Public Member Functions

• def __init__
• def platform_directory (self)
• def root_directory (self)
• def absolute_platform_directory (self)

Public Attributes

• platform_directory_string
• root_directory_string
• ssh_alias
• hostname
• shell_vars
• shell_setup_cmds
• shell_exit_cmds

Static Public Attributes

• string name = "platform"
• string platform_directory_string = ""

location of platform generated code
• string root_directory_string = ""

root directory of F^3 on this system
• string ssh_alias = ""

SSH alias for this system, i.e.
• remote = False

Whether this is a remote executable or not.

6.18.1 Detailed Description

Base platform class

This class represents the base platform class. It contains all of the SSH specific communication commands.

6.18.2 Constructor & Destructor Documentation

6.18.2.1 def ForwardFinancialFramework.Platforms.Platform.Platform.__init__ ( self, platform_directory_string = None,

root_directory_string = None, ssh_alias = "", remote = False, hostname = None, shell_vars = {},

shell_setup_cmds = [], shell_exit_cmds = [] )

Constructor

Parameters
platform_directory_string - (string) location of platform specific code
root_directory_string - (string) location of F^3 on this system
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ssh_alias - (string) SSH alias for this system, as stored in .ssh/sshconfig
remote - (bool) Is this system remote?
hostname - (string) - override the system hostname for generated code
shell_vars - (dict) - set any environmental variables
shell_setup_cmds (list of strings) - any commands that need to be run upon login
shell_exit_cmds (list of strings) - any commands that need to be run upon logout

Upon construction, if this is a remote system, all of the SSH set up is done. It might take several seconds to return.

6.18.3 Member Function Documentation

6.18.3.1 def ForwardFinancialFramework.Platforms.Platform.Platform.absolute_platform_directory ( self )

DEPRECATED return the path to generated code on this system

6.18.3.2 def ForwardFinancialFramework.Platforms.Platform.Platform.platform_directory ( self )

DEPRECATED return the directory of the generated code

6.18.3.3 def ForwardFinancialFramework.Platforms.Platform.Platform.root_directory ( self )

DEPRECATED return the directory of F^3 on this system

6.18.4 Member Data Documentation

6.18.4.1 string ForwardFinancialFramework.Platforms.Platform.Platform.ssh_alias = "" [static]

SSH alias for this system, i.e.

the entry in .ssh/sshconfig that F^3 will use to talk to this system

The documentation for this class was generated from the following file:

• Platform.py

6.19 ForwardFinancialFramework.Underlyings.Underlying.Underlying Class Reference

Inheritance diagram for ForwardFinancialFramework.Underlyings.Underlying.Underlying:

ForwardFinancialFramework.Underlyings.Underlying.Underlying

ForwardFinancialFramework.Underlyings.Black_Scholes.Black_Scholes ForwardFinancialFramework.Underlyings.Heston.Heston

Public Member Functions

• def __init__ (self, rfir, current_price)

• def __repr__ (self)

• def path (self, delta_time)
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Public Attributes

• rfir
• current_price
• gamma
• time

Static Public Attributes

• string name = "underlying"
• float rfir = 0.0

The Risk Free Interest Rate.
• float current_price = 0.0

The current price.
• float gamma = 0.0

Underlying log space state variable.
• float time = 0.0

The current time distance from present of the underlying.

6.19.1 Detailed Description

Base underlying class

This class represents the base underlying type. In practice it simulates the behaviour of a simple, compound interest rate based underlying.

6.19.2 Constructor & Destructor Documentation

6.19.2.1 def ForwardFinancialFramework.Underlyings.Underlying.Underlying.__init__ ( self, rfir, current_price )

Constructor

Parameters
rfir - (float) the Risk Free Interest Rate
current_price - (float) the starting price of the underlying

6.19.3 Member Function Documentation

6.19.3.1 def ForwardFinancialFramework.Underlyings.Underlying.Underlying.path ( self, delta_time )

Path evolution method

Parameters
delta_time - (float) the time step by which the price should be evoloved.

The documentation for this class was generated from the following file:

• Underlying.py
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