
Imperial College London
Department of Computing

Stateful Data-Parallel Processing

Raul Castro Fernandez

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London
and the Diploma of Imperial College London, September 2015





Abstract

Democratisation of data means that more people than ever are involved in the data

analysis process. This is beneficial—it brings domain-specific knowledge from broad

fields—but data scientists do not have adequate tools to write algorithms and execute

them at scale. Processing models of current data-parallel processing systems, designed

for scalability and fault tolerance, are stateless. Stateless processing facilitates capturing

parallelisation opportunities and hides fault tolerance. However, data scientists want to

write stateful programs—with explicit state that they can update, such as matrices in ma-

chine learning algorithms—and are used to imperative-style languages. These programs

struggle to execute with high-performance in stateless data-parallel systems.

Representing state explicitly makes data-parallel processing at scale challenging. To

achieve scalability, state must be distributed and coordinated across machines. In the

event of failures, state must be recovered to provide correct results. We introduce state-

ful data-parallel processing that addresses the previous challenges by: (i) representing

state as a first-class citizen so that a system can manipulate it; (ii) introducing two dis-

tributed mutable state abstractions for scalability; and (iii) an integrated approach to

scale out and fault tolerance that recovers large state—spanning the memory of multi-

ple machines. To support imperative-style programs a static analysis tool analyses Java

programs that manipulate state and translates them to a representation that can execute

on SEEP, an implementation of a stateful data-parallel processing model. SEEP is eval-

uated with stateful Big Data applications and shows comparable or better performance

than state-of-the-art stateless systems.
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Chapter 1

Introduction

Today, most digital services and products depend on the analysis of large volumes of

data. We find online content through search engines that use gigantic indexes of all

the addressable web pages in the Internet to produce results [Eco]. Online recommen-

dations which suggest to us content that we may find interesting, are built from the

aggregated data of many users. Other examples are natural language interfaces that

permit us to send voice commands to mobile devices such as Microsoft Cortana [Mic],

Apple Siri [App] or Google Now [Goo]. The list of services that use data to increase user-

perceived value goes on and on. Yet, these are just a few examples of cases where data

analysis is useful. Internet companies have based their business models on the commer-

cialisation of user data, for example, with the use of sophisticated ad-targeting platforms.

In a broader sense, science benefits from new sources of data to access new insights that

permit to make progress faster. Examples can be found in bioinformatics [Sav14], social

sciences [CHKS14] and, more generally in data-driven science [HTT09] that emphasises

data analysis as an integral part of the scientific process.

As data analysis becomes part of the day-to-day activities of data scientists, the demand

for more sophisticated analysis platforms increases. The need to analyse large volumes

of data triggered several breeds of systems that scale their distributed infrastructures to

clusters or public clouds. These systems, however, do not support imperative program-

ming languages. The main reason is that they all build on top of stateless data-processing

models that make representing state explicitly difficult. In this thesis, we present stateful

1



2 Chapter 1. Introduction

data-parallel processing, a new processing model that permits an explicit representation

of state and therefore enables analysis programs in imperative languages.

1.1 The Big Data Era

Many organisations have relied on data analysis to provide services and products for

decades. These analyses have traditionally been performed in data warehouses that store

data and facilitate its analysis [CD97]. However, the unprecedented volume of data gen-

erated and collected in the last decade has outpaced the capabilities of traditional data

management technology. Big Data encompasses new problems in data management:

(i) it introduces scalability challenges in the data management solutions of traditional

organisations; and (ii) it creates new opportunities that spark new, innovative ways of

uncovering hidden value. This new angle to an old problem has produced a renewed

interest in data management technology. One particular example is the appearance of

data-parallel processing systems that leverage distributed shared-nothing architectures to

permit the analysis of ever-growing amounts of data. The design of these systems in

particular, and of data analysis technology in general, is motivated by the changes in the

data management landscape that occurred over the last decade.

We identify three trends that have converged to shape modern data analysis systems: (i)

the combined storage cost decrease and the global adoption of the Internet allowed to

store large volumes of data cheaply; (ii) the development of new hardware and software

systems to facilitate Big Data analysis; and (iii) the availability of cost-efficient pools

of computing resources enabled by the commercialisation of cloud computing. These

three trends have fostered innovation and enabled new products and services based on

data. This, in turn, has attracted more people—with new, more complex applications in

mind—to the data analysis life-cycle, thus creating more and more data. This creates

new challenges that hinder the full extraction of value from data analysis, as summarised

below.

Data becomes cheap

The Internet evolved from a read-only platform used to navigate content through hyper-
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links to a write-intensive platform where millions of people upload all types of content,

such as posts in social networks or multimedia content such as music or video. Unlike

in the read-only era where the content hosted in the Internet grew slowly, the write-

intensive era generates petabytes of information daily [hkb]. This data is valuable for

companies that are motivated to acquire more and more data. By carefully analysing

this data, it is possible to detect user-behaviour patterns, which can increase the quality

of services and products. This reinvestment of value further increases user engagement,

which in turn, boosts data growth.

These large volumes of data can be stored due to the decrease in storage prices. There

are two factors that contribute to this cost reduction: (i) reduced hardware costs makes

terabyte devices a commodity; and (ii) the development of distributed file systems, which

work on cheap off-the-self high-storage servers, enable the aggregation of the storage

capacity of multiple machines.

Data becomes cheap due to the storage cost reduction, and companies are willing to store

more data for increased future value. In this situation, the bottleneck in data analysis shifts

from data generation and storage to data processing. This need motivates the development

of sophisticated data-parallel processing systems designed to process an always increasing

amount of data.

Quick evolution of data-parallel processing systems

In order to cope with this new processing bottleneck, organisations must find scalable

data processing technologies that allow them to process large volumes of data. Addition-

ally, such solutions must account for future data growth, and for this reason, it is crucial

that they are cost-efficient. In particular, scaling up—adding more powerful hardware—

is not a viable solution, as data grows faster than Moore’s law [JGL+14] with costs rising

quickly. One cost-efficient alternative to scaling up is relying on shared-nothing archi-

tectures composed of off-the-self servers [Sto86]. These aggregate the computational

resources of many machines, thus providing a powerful and cost-efficient platform.

New hardware infrastructure demands new software that can take advantage of the new

characteristics. This software has two crucial requirements. One is scalability: it must

scale to aggregate the throughput of distributed machines. Second, the software must
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be fault-tolerant. With an increasing number of machines running in parallel, there is

a higher probability of hardware failure [GGL03, GJN11, PWB07], so software must

avoid data loss in the event of failure. Data-parallel processing systems appear as a

scalable and fault tolerant solution to process large volumes of data in shared-nothing

architectures, with MapReduce [DG04] as one of the early examples. However, with new

organisations that want to analyse large volumes of data, new complex applications and

workloads appear that accelerate the development of more sophisticated data-parallel

processing systems.

Continuous data growth fosters the development of cost-efficient data-parallel processing

systems that run on shared-nothing architectures. The main requirements for these systems

are scalability and fault-tolerance. The broad range of workloads and application use

cases give rise to many specialised systems.

Large-scale computing platforms at our fingertips: Cloud computing

Analysing Big Data with data-parallel processing systems requires large clusters of ma-

chines to provide results in a timely manner. These clusters are difficult to operate and

expensive to maintain, which used to limit Big Data analysis to organisations with the re-

sources to build and operate large clusters. The appearance of cloud computing [AFG+10]

opened the possibility for small organizations and individuals to analyse Big Data. Cloud

computing allows users to provision computing resources on demand and only pay for

consumed resources, avoiding the costs of operating and maintaining large clusters. In-

stead of building data centres, organisations can buy resources from public cloud ven-

dors, such as Amazon AWS [Amaa] or Rackspace [Rac], and deploy their data analysis

solutions to perform analysis at scale. An additional advantage of the cloud model is its

elasticity property: users have an initial pool of resources that they can grow or shrink,

adjusting the used resources to current demand. The vision for computing as an utility is

as old as computing [CK09], but it is not until the past decade that vendors have created

a product out of that vision, and brought it to the general public.

The abundance of data and the appearance of cloud computing creates new opportuni-

ties to extract value from data. This causes the appearance of applications with more

complex requirements, and encourages more people—with varied backgrounds—to be-

come part of the data analysis process. With all these new stakeholders involved in data
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analysis, there is a race to find data-parallel processing systems that better capture the

requirements of new applications, e.g. that efficiently support iteration as used in many

machine learning applications. With the involvement of domain experts in the data

analysis process, the programming models of data-parallel processing systems evolve to

make programming these systems more accessible.

Easy and cost-efficient access to large pools of computing resources and data makes Big

Data analysis accessible to more people. As a result, domain experts demand more complex

applications. Under this scenario, data-parallel processing systems must evolve to provide

support for more complex applications, and the programming languages of these systems

become more important.

However, current data-parallel processing models hinder analysis opportunities because

they are stateless. In a stateless model, dataflow graphs are composed of nodes that rep-

resent computation and edges that represent the data communication between nodes.

This simple model facilitates achieving fault tolerance and scalability—properties fun-

damental to these systems. However, the lack of state precludes the straightforward

representation of algorithms that are stateful, thus limiting the number of applications

that can be expressed efficiently. Most importantly, a lack of state means that these mod-

els do not support high-performance execution of applications that require fine-grained

updates.

Consider the case of an application that trains a machine learning model to classify

emails. Additionally, the application requires to classify on-demand, i.e. with low-latency

to not affect user experience, new incoming emails. Such an application must access

state—the trained model in this case—with low latency, and be able to update it with

fine-granularity (for the required user) as soon as possible to maintain a fresh view of

data.

The stateless models of current data-parallel processing platforms are a hurdle towards

the democratisation of data [AAA+], the trend of more people getting involved in the

generation, collection and analysis of data. When the analysis requires domain expertise,

experts find it difficult to represent stateful algorithms in the stateless models supported

by current systems.
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In this thesis, we propose a new data-parallel processing model called stateful data-

parallel processing that allows explicit state, therefore permitting a wide range of ap-

plications with fine-grained access to state to execute with scalability and fault tolerance

in distributed clusters of machines. In addition, stateful data-parallel processing makes

it possible to incorporate imperative-style languages.

Next, we give a summary of the technical challenges that give rise to the aforementioned

hurdles: how to provide scalability and fault tolerance in stateful data-parallel processing.

After that, we state the research contributions and conclude with an outline of this thesis.

1.2 Current Challenges of Big Data Processing

This section provides an overview of data-parallel processing systems structured along

two different aspects. First, it summarises how the stateless dataflow representation

used by these systems has evolved to incorporate new features such as branching and

loops, as demanded by more complex applications. Second, it walks through the evolu-

tion of dataflow models towards higher-level constructs. Overall this section emphasises

modern system requirements and exposes the shortcomings of their stateless processing

models.

Data-parallel processing: Systems

Data-parallel processing systems designed to run on shared-nothing architectures have

evolved over the last decade to incorporate new features for new use cases and work-

loads. All these systems receive as input applications that are represented as a dataflow

graph—a directed acyclic graph (DAG), where nodes perform computation and edges

represent the flow of data across the nodes. Dataflow graphs are a good representa-

tion to identify elements that can run in parallel and to recover from faults as explained

below.

The MapReduce model [DG04] proposed by Google in 2004 offers a computation model

formed by map and reduce tasks. Map tasks apply a function to the input data and

sort the output results, and reduce tasks aggregate the map task outputs. The main

benefit of this model is that map and reduce tasks can run in parallel by partitioning the
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into scalable distributed file systems, where MapReduce runs periodically to execute

batch-oriented applications. Batch-oriented processing systems focus on high through-

put instead of low latency, i.e. an application may take hours to complete. Over the last

years, many applications appeared that require low latency processing, or increase their

value with lower latency. For example, applications such as fraud detection, online rec-

ommendation and monitoring alert generation, require low latency processing of large

volumes of data to be useful.

Another challenge of data-parallel processing systems is to offer more general dataflow mod-

els and abstractions that allow them to adapt to varied workloads. One size does not fit

all means that different systems and architectures are proposed to cope with applications

that demand, for example, low-latency processing.

This shift in the workload requirements triggered the development of new systems based

on stream-processing [AAB+05, CCD+03a] that process data in a fine-grained fashion,

permitting to achieve low-latency results. Similar to batch-oriented processing systems,

scalability and fault tolerance are the two key properties that drive their designs. For this

reason, they also represent applications with dataflow graphs, such as Twitter Storm [TTS+14a],

Apache Samza [Apac] or Google Millwheel [ABB+13]. However, the techniques required

to achieve scalability and fault-tolerance in stream-processing differ from batch-oriented

systems due to the different processing model. For example, materialising all intermedi-

ate results as in MapReduce would introduce too much overhead, precluding low latency

processing.

Data-parallel processing systems have evolved to respond to two new trends. First, they

adapt to new applications by offering more expressive models that allow arbitrary DAGs and

loops. Second, they adapt to support application workloads that require latencies ranging

from hours to seconds.

Data-parallel processing: Languages

The other major aspect of data-parallel processing systems that has experienced strong

evolution is the programming language for writing applications. The main reason is

again related to the desire for including better support for more complex applications.

For example, the MapReduce model offers a Java template that requires implementing
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a map and reduce task per job, where inputs and outputs are fixed.

There have been many approaches to abstract this low-level Java interface. For example,

Apache Pig [ORS+08] introduces a limited set of operators that facilitate the composi-

tion of different map reduce jobs. Apache Hive [HCG+14] offers a SQL interface on

top of the MapReduce model: declarative SQL queries are rewritten as multiple MapRe-

duce jobs. Similar efforts exist for Dryad [YIF+08] and Spark [XRZ+13, AXL+15]. All

these approaches offer different interfaces, but they are fundamentally limited by the

native stateless processing model of the underlying platforms, i.e. they cannot execute

stateful algorithms efficiently—all state is represented as data that must flow through

the dataflow graph. In addition, expressing a stateful algorithm through a stateless pro-

gramming interface is not natural for most developers.

In parallel with the evolution of the stateless processing models, domain experts and

data scientists have relied on frameworks such as Matlab or R, and imperative program-

ming languages such as Java, Python or C++ to write data analysis algorithms. All these

frameworks and languages have one important characteristic in common: they all rep-

resent and manipulate state with fine granularity, which permits domain experts to write

algorithms concisely. However, the shortcoming of these frameworks is that they are not

designed for large scale data analysis.

Despite an evolution of the interfaces exposed to developers on top of stateless dataflow mod-

els, the lack of state in data-parallel processing systems constrains the range of applications

that can be executed with high-performance. This slows down the development of more

complex applications that would benefit from explicit state.

1.3 Problem Statement

In summary, the shortcomings of current data-parallel processing systems are:

• No support for state. Stateless processing models prevent implementation of

stateful applications that can be executed with high performance. Most stateless

dataflow models were proposed for the first breed of batch-oriented data-parallel
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processing systems. As new workloads demand low-latency results, there is a need

to support fine-grained updates to state, which is not supported by current models.

• No support for imperative languages. The lack of support for mutable state

prevents the implementation of imperative-style programming languages on top

of data-parallel processing systems. Such a programming model would allow a

broader range of domain scientists to analyse large amounts of data.

In spite of the benefits of a stateful model, there are two reasons why current data-

parallel processing systems do not support state. State makes it difficult to achieve scal-

ability and fault tolerance because it has to be managed to not become a bottleneck and

it has to be recovered after failures for correct results. For this reason, a stateful data-

parallel processing system must address these two issues, which are the subject of this

thesis:

• Scalability. Data-parallel processing systems must scale out to aggregate the through-

put of multiple machines. The presence of state makes scaling out more challeng-

ing because the system must know how to handle the state (for example, partition

it) in a way that preserves the application semantics, yet aggregates throughput.

• Fault-Tolerance. To achieve fault-tolerant data-parallel processing, a system needs

to keep track of how much data has been processed, and recover intermediate re-

sults that may be lost in the event of failure. Adding state means that a system

needs to control not only how much data has been processed, but it also needs

to account for state. When updates to state occur in a fine-grained way, the in-

formation that the system must preserve increases, which further complicates the

problem.

1.4 Research Contributions

We introduce stateful dataflow graphs (SDG), a new dataflow abstraction that, in addi-

tion to data and computation, represents state explicitly in the dataflow. SDGs therefore
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can: (i) represent stateful algorithms concisely, for example, those that perform fine-

grained updates; and (ii) capture the state used in imperative-style languages, therefore

allowing the implementation of algorithms in imperative languages. We refer to this as

imperative big data processing.

To achieve scalability and fault tolerance in the presence of state, we introduce two

different distributed mutable state abstractions that allow the distributed execution of

stateful tools. To deal with failures and scalability, we introduce an integrated approach

for scale out and fault tolerance that relies on a set of state management primitives.

1.4.1 Stateful Dataflow Graphs

Stateful dataflow graphs separate data, state and computation and represent them ex-

plicitly in a dataflow graph. A data-parallel processing platform that implements SDGs

must provide high-throughput and low-latency data processing. To achieve these prop-

erties, state is exposed as a first class citizen to the system, which allows to define state

management primitives that can manage the state directly. For example, there are prim-

itives to checkpoint the state—making it external to the system—or to partition it ac-

cording to a partitioning function.

We introduce an integrated approach to scale out and fault tolerance that relies on the

observation that a node failing and a node scaling out are equivalent from a state man-

agement perspective. The integrated approach then uses the state management primi-

tives to achieve fault tolerance, recovering the state after a node fails. Additionally, the

system uses the state management primitives to provide elasticity, which we define as

dynamic scalability—the system scales out dynamically to adapt to varying workloads

or algorithms requirements.

Stateful Dataflow Graphs expose state as a first class-citizen to the system. This makes it

possible to introduce state management primitives that can be used to achieve scalability and

fault tolerance, as required by data-parallel processing systems designed to run on shared-

nothing architectures.
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1.4.2 Imperative Big Data Processing

Making state explicit in SDGs provides an opportunity to represent the state found in im-

perative programming languages. We introduce an approach that transforms imperative

Java programs into SDGs via static code analysis. The idea is that developers can write

Java code, where they define state as attributes and different methods that receive input

and use the state and logic to implement algorithms. A task then takes this Java class

as input and produces an SDG, which works as an intermediate representation between

user programs and the execution platform.

The SDG is then executed by the stateful data-parallel processing system. The com-

pute nodes always access state locally, i.e. they do not perform remote state access to

keep latency low. To allow compute nodes to scale out, two distributed mutable state

abstractions are provided that permit the state to scale. To leverage opportunities for

parallelism, users can annotate the state in a Java program with partitioned or partial

annotations, indicating the distributed mutable state abstraction to use in each case.

These annotations depend on the semantics of the algorithm: partitioned means that

the state can be partitioned, while partial means that the state must be replicated.

Imperative big data processing allows the concise representation of algorithms by allowing

the use of state and permits algorithms to be written in widely adopted languages, such as

Java, C/C++, Python or Matlab.

1.5 Publications

During the course of the thesis, the following related publications have been authored:

• Liquid: Unifying Nearline and Offline Big Data Integration. Raul Castro Fer-

nandez, Peter Pietzuch, Joel Koshy, Jay Kreps, Dong Lin, Neha Narkhede, Jun Rao,

Chris Riccomini, Guozhang Wang. In 7th Biennial Conference on Innovative Data

Systems Research, (CIDR), Monterey, CA, USA, (2015) [FPK+15]
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• Making State Explicit for Imperative Big Data Processing. Raul Castro Fernan-

dez, Matteo Migliavacca, Evangelia Kalyvianaki and Peter Pietzuch. USENIX An-

nual Technical Conference (USENIX ATC), Philadelphia, PA, USA, (2014) [FMKP14]

• Grand Challenge: Scalable Stateful Stream Processing for Smart Grids. Raul

Castro Fernandez, Matthias Weidlich, Peter Pietzuch and Avigdor Gal. 8th ACM

International Conference on Distributed Event Based Systems (DEBS), Mumbai,

India, (2014) [FWPG14a]

• Integrating Scale Out and Fault Tolerance in Stream Processing using Oper-

ator State Management. Raul Castro Fernandez, Matteo Migliavacca, Evangelia

Kalyvianaki and Peter Pietzuch. ACM International Conference on Management

of Data (SIGMOD), New York, NY, (2013) [CFMKP13]

• Towards Low-Latency and In-Memory Large-Scale Data Processing. Raul Cas-

tro Fernandez and Peter Pietzuch. Doctoral Workshop of the 7th ACM Interna-

tional Conference on Distributed Event Based Systems (DEBS), 06/2013, Arling-

ton, Texas, USA, (2013) [FP]

1.6 Thesis Structure

The remainder of the thesis is organised as follows:

Chapter 2 presents background and related work. This chapter introduces a number

of dimensions by which different systems and methods proposed in the literature are

classified. We justify both the choice of these dimensions as well as the classification of

the systems. This section acts both as a technical background of content and concepts

used in the thesis as well as a related work section that puts the advances of past decades

into perspective.

Chapter 3 describes Stateful Dataflow Graph (SDG), the new abstraction proposed to

bridge program expressiveness and system performance. This chapter explains the char-

acteristics of the model in depth, as well as the assumptions on which it is based.
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Chapter 4 introduces the state management primitives and the integrated approach for

scale out and fault tolerance. This chapter then focuses on system aspects and presents

different techniques to achieve fault-tolerance under varying assumptions, and explains

how to implement these techniques efficiently to maintain high-throughput and low-

latency processing.

Chapter 5 focuses on the programming model of stateful data-parallel processing. We

introduce an imperative programming model based on Java, and describes Java2SDG

which is a compiler that takes annotated Java programs as input and produces SDG

that execute in a stateful data-parallel processing platform. We explain the translation

process performed by Java2SDG based on static code analysis as well as the code syn-

thesis stages required to generate executable code. We also evaluate the efficiency of

the programs translated by the compiler.

Chapter 6 is the evaluation chapter. It describes SEEP, a prototype implementation of

a stateful data-parallel processing system, and evaluates its performance with several

applications and benchmarks. This chapter answers practical questions related to the

scalability, fault-tolerance and feasibility of stateful data-parallel processing and shows

real usages of the model for smart grid analytics and in the context of a data-driven

Internet company.

Chapter 7 summarises the contributions of the thesis and presents some future research

lines.



Chapter 2

Background

We classify approaches aimed at overcoming the deluge of data into two families of Big

Data processing systems: data-parallel processing systems, which are the focus of this

thesis, and distributed programming models (DPM), such as distributed shared mem-

ory [TSF90] or message passing models [GLDS96], that have characteristics closely re-

lated to our contributions.

Data-parallel processing systems are a response to large and ever-increasing volumes of

data [DG04]. They are designed to work on shared-nothing clusters formed of off-the-

self servers, which are cheaper to maintain and operate [HB09]. Distributed program-

ming models have seen a major adoption in HPC deployments [HDF11] that are built

from specialised hardware with tailor-made software to achieve high performance. Typ-

ical applications of HPC deployments are scientific applications [Nat, Sch10, KEGM10].

The rise of the Internet and data volumes have accelerated the adoption and innovation

of data-parallel processing systems to a point where the differences with the goals of DPM

become blurry. The fast-paced evolution of these systems in both industry and academia

uncovers new opportunities and challenges. This thesis studies one such opportunity—

with our contribution of stateful data-parallel processing—and we use this chapter to

present background on the area.

The focus of this thesis is on data-parallel processing systems. The adoption of these sys-

tems has exploded across new domains other than the original Web companies [WESM+10,

16
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LYYZ10], due to the reasons that we introduced in §1: (i) new domains generate data

that needs analysis to capture its value; (ii) data-parallel processing systems can run

on commodity servers without specialised hardware; and (iii) cloud computing means

that more people can cheaply access large computational resources for intensive data

processing.

To help domain experts that need the processing capabilities of data-parallel processing

systems, these systems must: (i) be scalable to harness distributed computational re-

sources; (ii) be fault-tolerant to continue operation when failures occur; and (iii) offer

a stateful processing model that permits writing stateful algorithms and execute them

with high-performance.

In this chapter, we highlight an important mismatch between data-parallel processing

and DPM models. On the one hand, stateless data-parallel processing systems are scal-

able and fault tolerant, but they cannot execute stateful algorithms with high perfor-

mance; on the other hand, distributed shared memory support stateful algorithms, but

they rely on developers to capture the parallelisation opportunities, and their support

for fault tolerance is limited.

We structure this chapter as follows. First, we start with an overview of basic concepts

and definitions that are used throughput the thesis §2.1. Then, we survey how mod-

ern Big Data technology achieves scalability (§2.2), and fault tolerance (§2.3), and to

describe their programming models (§2.4). We finish the chapter with a summary §2.5.

2.1 Big Data Landscape

Stateless data-parallel processing systems and DPM models are similar in that they both

need to be scalable and fault tolerant [BBC+02]. They, however, differ in the techniques

employed to achieve these properties and, most importantly, in the programming models

they expose to developers.

It is possible to differentiate Big Data processing models based on how they achieve

scalability—i.e. how they expose parallelism to developers—and based on whether they

expose computation state or not. Processing models have traditionally been divided
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Ideally a processing model for Big Data processing should offer the freedom of DPM models,

i.e. with explicit access to state and imperative style code instead of constrained functions.

It also should handle data parallelism, task definition and fault tolerance for users.

2.2 Scalable Big Data Processing

With increasing amounts of data and application complexity processing becomes a bot-

tleneck that leads to longer job completion times. One way of addressing this is through

more powerful hardware. This scale up strategy is however bounded by Moore’s law [Sch97]

and economies of scale: a small increase in hardware power may mean much higher

costs.

There are two trends to combat limitations of Moore’s law: multi-core architectures

and distributed systems. The first approach seeks to develop software that can leverage

the parallel resources of multiple available cores. Today it is easy to find off-the-self

machines with tens of cores, and the number is only expected to rise [EBSA+11]. The

massive parallelism gains of these architectures can help achieving higher performance

for certain workloads.

The other approach is to use distributed systems. Instead of scaling up hardware for in-

creased throughput, it is possible to add more machines of similar hardware character-

istics and write software that can aggregate their resources—this is a scale out approach.

The focus of this thesis is on distributed systems. It is important to note, however, that

all advances towards better software for multi-core and distributed systems contribute

towards performance gains—these two approaches are orthogonal and complementary.

In the context of data-parallel processing systems, one can distinguish two different

modes for achieving data parallelism. One applies in the case of scheduled systems,

where a scheduler is responsible for assigning a task and a pointer to data to machines

in the cluster [DG04, IBY+07, ZCD+12]. The other mode applies to materialised systems,

where tasks are scheduled only once and stay on the same machine, continuously pro-

cessing incoming data [PLS+06]. We found this classification useful because each mode

requires different techniques to achieve scalability.
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We next discuss the techniques to achieve scalability in scheduled and materialised sys-

tems as well as those employed by distributed programming models.

2.2.1 Scheduled Systems

In a scheduled data-parallel processing system, a logically centralised scheduler assigns

tasks from the dataflow to nodes in a cluster. Any node in the cluster can receive any

task and a pointer to the input data for execution. To avoid costly network, however, the

scheduler assigns tasks following the principle of data locality [ZBSS+10], i.e. it sends

tasks to where the data resides.

Schedulers of data-parallel processing systems are data-driven [ZCD+12, IBY+07, MSS+11].

The scheduling plan is given by the data dependencies expressed in the dataflow. Each

node in the graph becomes a logical unit of scheduling, and executes in parallel in the

cluster through tasks that implement such logic.

One assumption of scheduled systems is that input data is sharded across multiple ma-

chines [DG04, IBY+07, ZCD+12]. This is the usual setting in data-intensive scenarios,

where data is stored in a distributed file system (DFS) [GGL03], such as HDFS [HDF].

Batch-oriented workloads benefit in such scenarios because tasks can run in parallel on

each of the shards of data. For this reason, scheduled systems are typically employed in

batch-oriented systems.

Batch-oriented data-parallel processing systems such as Spark or Flink, are designed

for high-throughput processing. These systems do not satisfy particular latency require-

ments, but rather focus on minimising completion time [KTGN10]. To maximise through-

put, they process data in a coarse-grained fashion [DG04, ZCD+12], therefore optimising

the computation-to-communication ratio. Costs due to network transfers as well as se-

rialisation and deserialisation of data are amortised when data is delivered in batches—

collections of individual data elements.

Dataflow systems for batch-oriented data parallel processing evolved from the simple,

constrained model of MapReduce—composed of only map and reduce tasks—to the arbi-

trary DAGs of Dryad [IBY+07], Spark [ZCD+12] or Stratosphere [ABE+14], which permit
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to be efficient [OWZS13]. As long as this happens, the scheduler can manage more

machines to further partition the job. With very short-lived tasks, the overhead of the

scheduler can dominate, becoming a bottleneck and limiting the scalability of the system.

Stragglers are common in large-scale deployments. They can be caused by skewed work-

loads, interference by other tasks in the same machine or software deficiencies [ZKJ+08,

MMI+13]. To mitigate the negative effects of stragglers, schedulers use techniques such

as work-stealing [DLS+09] that dynamically re-balance the load across the cluster, reas-

signing work from a straggler node to other nodes.

One fundamental assumption made by scheduled systems is that the dataflow graph is state-

less, so that the scheduler can assign tasks without keeping state across scheduling decisions.

This is also a basic requirement of work-stealing techniques, which must reassign tasks as

needed to balance the work in the cluster.

2.2.2 Materialised Systems

We refer to materialised systems as those that perform a single scheduling stage, or

placement during deployment where a task is assigned to a machine [PLS+06]. In nor-

mal circumstances, tasks await to receive data of a fine granularity that is processed

with results sent immediately downstream [NRNK10, TTS+14b]. Each task is a ver-

tex in the dataflow graph, and tasks communicate according to the data dependencies

in the dataflow. The sources—i.e. tasks in the dataflow without input edges—receive

data from some external system and the sinks—i.e. tasks in the dataflow without output

edges—produce the final results to some external system. Although there is no sched-

uler, a logically centralised service performs the allocation and the monitoring of the

deployment.

To achieve data-parallelism, a node in the dataflow graph is materialised on multiple

machines that execute in parallel. Since all tasks are materialised, it is necessary to

provide tasks in the cluster with routing information so that they can communicate with

other tasks.

In contrast to scheduled systems, materialised systems excel at achieving low latency
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A second generation of systems put an emphasis on distributed execution. Systems such

as S4 [NRNK10] or Storm [TTS+14b] use a dataflow abstraction to achieve scalabil-

ity, as explained previously. These systems were built by web companies (Yahoo and

Twitter, respectively) that needed the scalability and fault tolerance due to their large

deployments.

Last, systems such as Millwheel [ABB+13], Samza [Apac] and Chronostream [WT15]

are examples of stateful systems that permit the use of state in their applications.

Scalability.

Materialised systems that use stateless dataflow graphs achieve data-parallelism by run-

ning multiple tasks in different nodes and propagating the necessary data between down-

stream and upstream tasks [NRNK10, TTS+14b, AAB+05]. Partitioning the stream typ-

ically has lower overhead, as this only involves performing round-robin assignment or

look-ups in a data structure with routing information.

However, materialised systems suffer some of the same problems of scheduled systems,

such as stragglers, which are more of a concern in materialised settings, where tech-

niques relying on work-stealing are less applicable. Materialised systems are well suited

for applications that can exploit pipeline parallelism, e.g. jobs where the computational

cost of each task is high. When this is not the case, a scheduled system may be more

efficient because it always uses all resources available in the cluster.

2.2.3 Dynamic Scalability: Elasticity

In the previous discussion, we assumed that both scheduled and materialised systems

decide on a number of nodes that perform data-parallel computation statically. In some

scenarios, dynamic scalability, referred to as elasticity, is needed instead.

Elasticity is the ability of a system to scale computational resources dynamically, i.e. with-

out affecting system availability. This property is important for applications that execute

on public clouds, where computation is sold as utility. An elastic system can adapt to

changes in the workload, avoiding costly over-provisioning of resources. Elasticity is not
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a new concept in systems design [KC03], but it is a less explored property of data-parallel

processing systems which only recently started to gain more atttention [MBF14].

Elasticity can also be beneficial for data-parallel processing systems in data centres. In

such deployments, systems usually share clusters through some form of resource man-

agement, as offered by YARN [VMD+13], Mesos [HKZ+11], or Omega [SKAEMW13].

Applications running on shared resources come and go. For the cluster to be fully

utilised—i.e. used in a cost-effective manner—it is necessary to assign idle resources

to applications. Elasticity can help accommodate idle resources of applications with

varying needs. Achieving elasticity is challenging from an operational point of view. It

has implications on both fault tolerance and application semantics.

The mechanisms for achieving elasticity differ according to the data-parallel processing

model. In scheduled systems, it is necessary to repartition the underlying data to the new

available machines and then schedule more instances of the processing tasks on the new

nodes. It is more challenging to achieve the same in materialised systems: they need

additional information on how to route data to new nodes, while keeping the system

operational and available.

2.2.4 Distributed Programming Models

We structure this section according to two relevant distributed programming models:

message passing and distributed shared memory.

Message passing. In message passing systems, different processes—potentially distributed—

communicate exclusively via messages. On receipt of a message, a process chooses to

perform an action. Developers must define the task granularity and define and enforce

the dependencies between tasks. This model supports explicit state in the computation,

but it requires to specify all the tasks and their dependencies beforehand.

The two major examples of message passing models are Parallel Virtual Machine (PVM) [Gei94]

and Message Passing Interface (MPI) [GLDS96]. More modern implementations of the

message passing model are based on communicating sequential processes (CSP) [Hoa78]

and actors, which are embedded in many modern languages such as Scala, Erlang or Go.
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Orleans [BGK+11], a recent system, uses the actor abstraction and provides an infras-

tructure that encapsulates state to provide fault tolerance.

Other variants of message passing restrict the model to offer additional guarantees. Py-

dron [MAAC14], extends the Python language with an additional API with communica-

tion primitives to permit one-sided communication where a master process coordinates

a set of workers. The Julia programming language [BEKS14] embeds in its standard

library a one-sided communication library and distributed collections to facilitate dis-

tributed computing.

Distributed shared memory. In distributed shared memory (DSM) systems, the system

offers developers the abstraction of a single memory address space [Gei94]. This allows

programs to access remote memory as if it was local. Updates to the logical memory

view may need to be sent to underlying physical memories that comprise the shared

abstraction. In this case, the system handles all necessary remote communication.

Unlike message passing systems, DSM systems hide communication issues for develop-

ers. However, they must still control and protect concurrent access to shared memory.

Some systems that implement the DSM model are Treadmarks and Kerrighed [KCDZ94,

MLV+04].

Tuple spaces [Gel85] are an abstraction on top of DSM systems. Linda [Gel89] is a rep-

resentative example of structured DSM systems. It offers developers the abstraction of

a tuple space, with the aim of helping coordinate access to shared memory, thus reduc-

ing the necessary concurrency control and facilitating programmability. There are also

commercial systems that provide a tuple space abstraction, such as Javaspaces [ss] and

Tibco Activespaces [Tib].

Unfortunately all these systems suffer scalability problems due to the overheads of per-

forming remote memory accesses over a network [NL91]. Some recent systems, such as

Piccolo [PL10] or Oolong [MPL12], implement the DSM abstraction as a highly scalable

key/value store, and they show that it is possible to implement scalable systems based

on this paradigm.

There are more recent proposals to overcome the scalability limitations of DSM sys-

tems. For example, Partitioned Global Address Space [CEGNY03] optimises DSM so that
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ing some data after failures. This introduces an overhead in the data processing path,

but it does not require redundant computation, which makes it feasible for large scale

systems.

Fault tolerance methods for data-parallel processing systems must also be designed for

low runtime overhead. They usually follow two methods called log data and log op-

eration [RG02]. Log data methods store intermediate results so that these can be re-

covered in the event of a failure. In contrast, log operation methods keep provenance

information—i.e. the operations applied on the data—so that these can be replayed on

the input data after a failure. Both methods have different trade-offs and are used in

data-parallel processing systems.

We structure the discussion in this section along these two methods for fault tolerance.

For log data, we describe systems that materialise intermediate results (§2.3.1), and

systems that perform checkpoints (§2.3.2). For log operation, we describe lineage-based

fault tolerance (§2.3.3).

2.3.1 Log Data: Materialising Intermediate Results

Systems such as MapReduce [DG04], Dryad [IBY+07] or Samza [Apac] materialise re-

sults after computation. MapReduce is designed to operate on a distributed file system

(such as HDFS) from where it reads the input data. Once map tasks finish process-

ing results, they materialise the output results to their local disks before the scheduler

schedules the reduce tasks. This means that throughput suffers as reducers cannot start

processing output data until it has been correctly materialised to disk.

In general, materialising results has a large cost in terms of performance, as results must

be stored in reliable storage, typically hard disks, which have restricted write bandwidth.

For this reason, data-parallel processing systems often deploy RAID disks configurations

to reduce the performance impact of the strategy.

How do these systems react to a failure?

After a crash failure, a central component—for example, a scheduler in the case of sched-

uled systems—re-schedules the failed task on a new node, where it starts reading its in-
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put data again. Instead of recomputing everything, the newly re-scheduled task can read

the materialised results of the previous scheduled task. The central scheduler controls

where all data is stored, and therefore coordinates this process.

In large deployments with frequent machine failures, it is advantageous to materialise

results—in spite of the impact on performance—as this avoids recomputing all data from

scratch. Note that the output of a long-running batch job can be connected to the input

of a downstream job, further complicating the structure of long-running applications,

which makes recomputation even more expensive.

2.3.2 Log Data: Independent Checkpoints

Similar to the materialisation of intermediate results, checkpointing backs up computed

results to some form of storage from where they can be recovered after a failure [ZSK04].

The main difference between both approaches is that, while materialisation is a sequen-

tial process that occurs on the critical data processing path, checkpointing occurs asyn-

chronously with data processing. One benefit of checkpointing is that, due to its asyn-

chronous nature, the overhead on the runtime is typically smaller than in the case of

materialisation. However, its implementation and operation are more complex, so there

is normally a design tension between both approaches.

During normal operation, a data processing system consumes data that may update some

state as part of the processing. Independently, a checkpoint process takes snapshots of

the state and performs a backup to storage, from where it can be recovered in case the

node fails.

According to how often checkpointing happens, it can be classified as follows:

Active replication. The data processing on the critical path is replicated to a parallel

system that performs exactly the same computation [GS97]. This means that at least two

times the resources (in some cases, it could be replicated x times) are used to compute

the results. After detecting a failure, the system hands over the processing to the other

active system. In this case, there is always a backup of the data that is continuously

maintained by replicating the processing. As mentioned earlier, active replication is
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typically not used in data-parallel processing systems due to its high resource cost.

Passive replication. In passive replication, a checkpoint process takes snapshots of the

state, and they are backed up periodically to persistent storage or maintained in memory

on a different machine [Bir85]. The checkpointing process occurs concurrently with

data processing. For this reason, it is necessary to enforce that snapshots are taken

atomically—without concurrent modifications of the state.

In addition to maintaining a backup of stored snapshot, it is necessary to track "in-flight"

data when implementing a passive replication approach. In-flight data are updates to

state and produced results that are not part of any checkpoint yet, i.e. the updates that

arrive between checkpoints. In the event of a failure, this in-flight data must be either

discarded completely—so that all computation restarts from the last checkpoint—or ac-

curately tracked so that it can be incorporated in the latest checkpoint, while keeping

correct results without data lost.

Due to the need to track in-flight data, a checkpointing mechanism may follow a stop-

the-world approach [MMI+13] where all output buffers of a processing node are flushed

before a snapshot of the node state is taken. This approach increases processing latency,

but it enforces that no in-flight data exist that can complicate recovering a failed process.

Perhaps the most well-known and widely implemented protocol to take coordinated and

correct checkpoints is Chandy-Lamport [CL85] (also called the snapshot algorithm) that

is implemented by systems such as Piccolo [PL10] or Flink [Apaa].

How do these systems recover after a failure?

When a failure occurs, the failed process is instantiated elsewhere by the recovery mech-

anism. After initialisation, it reads the latest available checkpoint and handles the po-

tential in-flight data as necessary. For example, it can first reconstruct the state from the

checkpoint, and then request replay of in-flight data, i.e. any data that was produced af-

ter the last checkpoint was taken. It is also part of the recovery mechanism to coordinate

the communication with the failed node—which must stop during the recovery process.
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2.3.3 Log Operation: Lineage-Based Failure Recovery

The main approach of lineage-based recovery in the context of data-parallel processing

systems is implemented by Spark [ZCD+12], through its Resilient Distributed Dataset

(RDD) abstraction. RDDs keep lineage information, i.e. the operations that were neces-

sary to compute the RDD. Maintaining the lineage has no impact on performance in the

case of coarse-grained operations because it only requires adding the operations to the

lineage graph—however, this model becomes expensive for fine-grained updates.

After a failure, the system discovers the failed RDDs and checks their lineage graphs to

start the re-computation. At this point, the recovery process tracks which previous RDDs

are available, if any, so that it can apply the smallest number of operations to recover

the failed RDDs.

The aspect that makes this process feasible for Spark, in terms of both runtime perfor-

mance and fast recovery, is the fact that re-computation can happen in parallel—it is not

necessary to recover RDDs to the same node that failed. Instead, once the system knows

the operations that must be reapplied, it can do so on partitioned chunks of the input

data.

2.3.4 Discussion

The choice of a fault tolerance model depends on two main factors: (i) runtime overhead,

which refers to how much of an impact a fault tolerance mechanism has on the normally

running system; and (ii) recovery speed, which refers to how fast the system can get back

to normal operation after a failure. Typically choosing between these two factors requires

making a trade-off. Logging data has a higher runtime overhead than logging operations

but provides better recovery times when small input data leads to much output data.

Logging operations has a small runtime overhead, but the complexity is higher, and it is

more difficult to achieve short recovery times. One particular situation that is beneficial

for logging operation approaches is when operations are coarse-grained because keeping

lineage is inexpensive.

A recent paper presents a detailed study of the trade-offs of both approaches [ZTKL14]



34 Chapter 2. Background

in the context of Silo, a multi-core in-memory database system. Such analysis seems

necessary in order to understand the best technique for the problem at hand.

Among systems that perform data logging, there is also the decision of whether to materi-

alise results or checkpoint state. Data-parallel processing systems today are, as discussed

before, stateless, and are designed in general for batch-oriented computation, which typ-

ically takes longer to complete. For these reasons, systems typically employ a strategy of

materialising intermediate results, as the additional overhead of the operation is amor-

tised by the long running tasks.

Overall, there is a large design space from which to select a fault tolerance approach,

which is typically determined by the driving design decisions made on the target system.

2.4 Data-Parallel Processing Languages

The ideal programming language would permit developers to write algorithms in the

most natural form and not worry about runtime considerations, such as parallelisation

or fault tolerance. Unfortunately, automatic parallelisation [VRDB10] is a hard problem

and there is no approach to date that fully achieves this goal.

Instead, programming languages for data processing systems make a trade-off: they

choose between expressiveness and ease of use. It is possible to place existing program-

ming languages on a spectrum in which, at one extreme, are languages that constrain

the use of state but capture opportunities for data parallelism—these are the stateless

programming languages of data-parallel processing systems; on the other end of the

spectrum, are languages of distributed shared memory systems, in which algorithms

make explicit use of state, but require more input from developers to achieve scalability

and fault tolerance.

We do not provide a detailed description of all programming languages for data process-

ing. Instead, we focus on both sides of the spectrum, with emphasis on the differences

between stateless programming models of data-parallel processing systems and stateful

models of distributed programming models.
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2.4.1 Stateless Programming Models

Stateless dataflow graphs expose functional and declarative interfaces. Developers can

use higher-order functions that the system can partition [BEH+10]. This permits to

write concise code and yet it can leverage data-parallelism without explicit intervention

by developers.

SQL-Based Programming Models

Relational databases—which are by far the most widely used data processing systems—

have relied for decades on the expressiveness and ease of use of SQL, a declarative

language that permits developers to describe the desired results, without expressing the

transformations on data.

The last decade has witnessed several efforts to offer SQL-like interfaces on top of state-

less dataflow models. For example, Hive [HCG+14] is one of the first approaches for

writing SQL code that is translated into MapReduce programs, therefore exploiting the

scalability and fault tolerance properties of the paradigm. Shark [XRZ+13] and Spark

SQL [AXL+15] do the same on top of Spark, and Impala [KBB+15] provides its own

stateless data-parallel processing system.

Hadapt [BPASP11] brings the expertise of relational query optimisation to the data-

parallel processing domain. HAWQ [CWM+14], Redshift [GAT+15] are further examples

of similar approaches. HAWQ is similar to Hadapt, and the differences of both engines

are mostly in language features. Redshift departs from the previous in that its target

deployment infrastructure is cloud-hosted services, where users can connect and write

their queries.

Imperative-Style Interfaces

In parallel to the previous SQL-based programming languages, another breed of models

appeared that provide structures that resemble those found in imperative-style program-

ming languages. Pig Latin [ORS+08] is a domain specific language that introduces spe-

cial operators that can be written as part of statements. A Pig program consists of a series
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of statements that are executed in order and permit developers to write ad-hoc queries,

which are then translated to the MapReduce platform. A major application of Pig is to

write complex extract-transform-load (ETL) oriented programs. Another language with

a similar goal to Pig is Sawzall [Gri08].

An approach that takes a different direction is FlumeJava [CRP+10]. It offers special

collections—included as a library of the Java programming language—that gives de-

velopers the illusion of manipulating state when in fact this is translated into stateless

MapReduce jobs.

A different approach is the proposed by CIEL [MSS+11] with its Skywriting language. In

Skywriting, users indicate the engine to execute tasks synchronously or asynchronously,

within the dataflow graph of operators. This flexibility of controlling task creation, yet

relying on data-driven scheduling provides is in the middle of the aforementioned spec-

trum.

2.4.2 Distributed Programming Models (DPM)

Unlike data-parallel processing systems that choose to provide an easy-to-use language

at the expense of constraint expressiveness, DPM takes the opposite approach. They

allow access to state, which is typically represented through a distributed shared memory

abstraction, and permit fine-grained imperative operations.

The drawback of these models is that they also require users to indicate which parts of

the code are meant to execute in parallel. In some cases, users must also be explicit

about communication patterns, e.g. indicate when a shuffle is necessary. Advances in

DPM are towards removing some responsibilities from the users, and we discuss relevant

examples.

Piccolo [PL10] offers an imperative programming model in which users can write state-

ful programs. Piccolo’s main abstraction is a key/value store that realises a distributed

shared memory model. Unlike data-parallel processing systems, Piccolo requires devel-

opers to specify the tasks that form the computation, and it is not clear how a developer

can write a pipeline.
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Recently there are languages that embed distributed programming abstractions to facil-

itate scalable processing. Chapel [CCZ07] provides the expressiveness of DSM systems

without requiring users to provide explicit hints about which parts of the code can be par-

allelised safely. X10 [CGS+05] is another language that implements the PGAS abstrac-

tion: developers split their computation into spaces where different data and functions

live, to improve access locality.

2.5 Summary

We surveyed techniques to achieve scalability and fault tolerance as well as the pro-

gramming models exposed by two families of Big Data processing systems: stateless

data-parallel processing systems and distributed programming models.

Data and task parallelism are the two main methods to build scalable systems. The first

is the preferred choice of data processing systems, while the second is typically offered

in distributed programming models. We discussed techniques for scalable processing

in both scheduled systems—optimised for batch-oriented workloads—and materialised

systems, that are the preferred choice for streaming workloads.

Logging data and logging operations are the two main strategies for achieving fault

tolerance in Big Data processing. Data-parallel processing systems usually materialise

results; distributed programming models—that permit the modification of state—offer

checkpoint-based solutions instead.

Programming languages for data processing form a spectrum between: (i) ease of use

but constrained programming model; and (ii) general programming models but with the

need to be explicit about parallelisation opportunities.

Distributed programming models and stateless programming models provide different

tradeoffs to developers. Writing stateful algorithms is easier with distributed program-

ming models than with stateless data-parallel models because they permit access to mu-

table state. Despite this, they are not the preferred choice for Big Data analysis because

they require developers to choose the right task parallelism level and manually handle

fault tolerance. In contrast, data-parallel processing systems capture parallelism and
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provide fault tolerance automatically, but they do not permit the high-performing exe-

cution of stateful programs.
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In this chapter, we present the SDG model and we explain in detail the distributed mu-

table abstraction. The next chapter (§4) focuses on the particular techniques used to

achieve scalability and fault tolerance, and we then present the translation of impera-

tive programs in §5.

We first provide intuition for Stateful Dataflow Graphs and introduce a running example

that is used throughout the chapter (§3.1). We then define SDGs more formally and

focus on their components, that is, task elements that perform computation (§3.2) and

state elements that embody the mutable state (§3.3). Although the primary focus of this

chapter is the SDG model, we conclude with a discussion of some runtime considerations

that affect the deployment of SDGs and are important for the subsequent chapters (§3.4).

3.1 The Stateful Dataflow Graph Model

A stateful dataflow graph is formed of three different entities. First, it has task elements

(TE), that express the computation. These are represented as ovals in Fig. 3.1. TEs re-

ceive data through input dataflows that carry streams—the edges in the dataflows in

the figure—which are, informally, collections of data. TEs process the data and produce

output data, which is, in turn, sent downstream through output dataflows. SDGs also

have state elements (SEs), which represent the state of the computation. An SE is rep-

resented in the bottom dataflow of Fig. 3.1 as a square. State access is represented in

SDGs through access edges (see Fig. 3.1). When a TE has access to an SE, it can access

it after receiving input data. For example, it can produce some data used to update the

state, or use both input data and state to produce output data, etc.

When reading data from input dataflows, a TE can choose with which granularity to read

data. For example, it can read one tuple at a time or a batch of tuples at a time. It must

be possible to order data so that, at a given point in time, there is a notion of how much

data has been consumed and how much data has been produced. This is necessary for

fault tolerance, as explained in the next chapter.

Next we formally define an SDG and introduce an example that we use along this chapter

to explain the remaining concepts.
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1 Matrix userItem = new Matrix();
2 Matrix coOcc = new Matrix();
3

4 void addRating(int user, int item, int rating) {

5 userItem.setElement(user, item, rating);
6 Vector userRow = userItem.getRow(user);
7 for (int i = 0; i < userRow.size(); i++)
8 if (userRow.get(i) > 0) {
9 int count = coOcc.getElement(item, i);

10 coOcc.setElement(item, i, count + 1);
11 coOcc.setElement(i, item, count + 1);
12 }
13 }
14

15 Vector getRecommendation(int user) {
16 Vector userRow = userItem.getRow(user);
17 Vector rec = coOcc.multiply(userRow);
18 return rec;
19 }

Algorithm 1: Collaborative filtering in Java.

Formal definition of SDG

An SDG is a graph that has two types of vertexes: task elements, o ∈ O, transform input

to output dataflows; and state elements, s ∈ S, represent the state in the SDG.

Access edges, a=(o,s) ∈ A, connect task elements to the state elements that they read or

update. To facilitate the allocation of task and state elements to nodes, each task element

can only access a single state element, i.e. A is a partial function: (oi,s j) ∈ A, (oi,sk) ∈

As j = sk. Dataflows are edges between task elements, d = (oi,o j) ∈ D, and contain data

items.

Example. To illustrate an SDG, we describe the example shown in Algorithm 1, which

is a Java implementation of the collaborative filtering (CF) algorithm [SKKR01] (we

omit the implementation of certain functions that are not relevant for the example). It

outputs up-to-date recommendations of items to users (function getRec line 18) based

on previous item ratings (function addRating line 7).

An item-by-item collaborative filtering algorithm relies on information about the ratings

that a population of users have given to a set of items. This information is typically rep-

resented as a matrix, which we call userItem. The intuition behind the recommendation

algorithm is that similar users are more likely to be interested in similar items. For ex-

ample, if user A has rated action movies highly, and B has done the same, a new item

that is rated highly by user A is also to be of interest to B, and thus the algorithm offers

it as a recommendation.
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existing items with non-zero ratings (lines 10-15).

The function getRecommendation takes the rating vector of a user, userRow (line 19), and

multiplies it by the cooccurrence matrix to obtain a recommendation vector userRec

(line 20).

Note that both functions require userItem and coOcc to be mutable, with efficient fine-

grained access. If this algorithm were to be redesigned using a stateless dataflow model,

all state would be represented and forwarded as data in the dataflow graph. For fresh

results—results that include the latest information available—this should happen every

time the state changes, i.e. every time a new update occurs, therefore leading to in-

efficient processing, specially when state grows large and fault tolerance mechanisms

require materialising intermediate results.

3.2 Task Elements (TE)

In this section, we define task elements. First, through a generic data model, we explain

how TEs process data, and then we explain the relationship between SEs and data.

Data model. A stream is a possibly infinite series of tuples. A tuple has a key, a payload,

and a timestamp that is assigned by a monotonically increasing logical clock. When the

clock is in a logical TE, the timestamp expresses system time. When it is assigned by

external sources it expresses application time. Tuples in a stream are ordered according

to their timestamps. This is an important requirement, as TEs depend on it to track how

much data they have processed at a given point in time. Keys are not unique, and they

are used to partition the stream. They can be computed, for example, as a hash based

on the payload. In the case of the collaborative filtering algorithm, for example, the key

can be the uid as illustrated in Fig. 3.3.

TE model. Tuples are processed by TEs. A TE o takes n input streams, processes tuples in

the input streams and produces one or more output streams. For ease-of-presentation,

we assume that a TE emits only a single output stream (unless the downstream TE is

partitioned).
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state only by key—such as in the case of the userItem matrix in the collaborative filtering

algorithm—and leads to an efficient distribution. When this is not possible, for example,

because an algorithm accesses the SE randomly, a partial SE replicates its data structure,

creating multiple copies that are updated independently.

The collaborative filtering example from Fig. 3.2 illustrates these two cases. First, the

userItem SE may grow larger than the main memory of a single node, for example, when

the user population or the available items grow. Second, the data-parallel execution of

the CPU-intensive updateCoOcc TE leads to multiple instances, each requiring local access

to the coOcc SE for scalable processing.

3.3.1 Partitioned State

For algorithms for which state can be partitioned, SEs can be split and their instances

placed on separate nodes. In this case, access to the SE instances occurs in parallel.

Developers can use regular data structures for SEs (e.g. vector, hash tables, matrices)

or define their own. Different data structures support different partitioning strategies:

e.g. a map can be hash- or range-partitioned; a matrix can be partitioned by row or

column. To obtain a unique partitioning, which is necessary to partition the SEs in a

consistent way, TEs cannot access partitioned SEs using conflicting strategies. We define

a conflicting strategy as one that changes the key during subsequent accesses to state.

An example would be an algorithm that accesses a matrix by both row and column.

In addition, the dataflow partitioning strategy must be compatible with the data access

patterns by the TEs. For example, multiple TE instances with an access edge to a par-

titioned SE must use the same partitioning key on the dataflow. This is necessary so

that the TEs can access SE instances locally. For example, in the collaborative filtering

algorithm, the userItem SE and the newRating and rec request dataflows must all be par-

titioned by row, i.e. the users for which ratings are maintained. If an algorithm requires

access from different TEs with different partitioning strategies, it is possible to simply

instantiate two logically different SEs.

Partitioned SEs permit to achieve high throughput as all SEs can be accessed concur-
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rently. The collaborative filtering example illustrates a clear use case: when the userItem

matrix grows, it can be partitioned across nodes based on user identifier (uid) as an ac-

cess key. In this way, multiple concurrent requests can access state in parallel.

The assumption under which our partitioning strategy for SEs operates is that TEs will

access one element of the SE at a time, and that there are no issues arising due to con-

current accesses from several TEs. For example, when two different TEs access the same

SE, different orderings of such accesses happen. The consequence of different orderings

for the type of analytical algorithms—the target of data-parallel processing systems—is

that we may get a result that is slightly stale. This situation, however is recovered as

soon as the next update occurs. In other words, we target algorithms for which different

orderings do not modify results, or in case there is modification, results are still correct.

Applications that present such concurrency issues are not the target of data-parallel pro-

cessing systems. Databases with transactional support are a better fit for these type of

problems.

3.3.2 Partial State

In some cases, the data structure of an SE cannot be partitioned because the access

patterns of TEs are arbitrary. For example, in the collaborative filtering algorithm, the

coOcc matrix has an access pattern in which the updateCoOcc TE may update any row or

column. In this case, an SE is distributed by creating multiple partial SE instances, each

containing the entire data structure. Partial SE instances can be updated independently

by different TE instances, which means that there are situations in which different SE

instances store different data.

When a TE accesses a partial SE, there are two possible types of accesses based on the

semantics of the algorithm: a TE instance may access (i) the local SE instance on the

same node; or (ii) the global state by accessing all of the partial SE instances, which

introduces a synchronisation point (see Fig. 3.5).

When accessing all partial SE instances, it is possible to execute computation that merges

their values, thus reconciling the differences between them. This is necessary when, for
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commutative and associative. In other cases, even when operations do not comply with

those properties, it is still possible to merge results in meaningful ways, such as in the

case of merging machine learning models that were trained with an stochastic method.

3.4 Execution of Stateful Dataflow Graphs

The SDG model is general and can be realised as part of a real system in different ways.

We explain some of the choices that we have made when implementing SDGs as part

of SEEP, our stateful data-parallel processing prototype. We relate these decisions to the

dimensions presented in §2. Subsequent chapters explain some of these decisions in

more detail.

Scheduled vs materialised tasks. Data-parallel processing systems have two main

modes of execution, they can schedule or materialise tasks, as introduced in §2. In the

context of SDG, these tasks are the TEs of our dataflow model. We make the decision of

materialising the entire SDG, instead of scheduling individual TEs. One consequence of

this decision is that it is unnecessary to generate the complete output data of a TE before

it is processed by the next TE. Data tuples are processed with low latency, even across

a sequence of TEs, without any scheduling overhead, and fewer tuples are processed

during failure recovery.

Degree of parallelism. For data-parallel processing, a TE can be instantiated multi-

ple times to handle parts of a dataflow, resulting in multiple TE instances. We use the

distributed mutable state abstraction to maintain the local access to SEs in the case of

stateful TEs. The number of instances for a given TE can be chosen a priori, or adapted

dynamically as the workload changes or stragglers occur. We provide more details about

dynamic parallelism, or elasticity in the next chapter.

Iteration. In iterative algorithms, SEs are accessed multiple times by TEs. There are two

cases to be distinguished: (i) if the repeated access is from a single TE, the iteration is

entirely local and can be supported efficiently by a single node; and (ii) if the iteration

involves multiple pipelined TEs, a cycle in the dataflow of the SDG can propagate updates

between TEs.
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With cycles in the dataflow, SDGs do not provide coordination during iteration by de-

fault, i.e. TEs in the cycle process data as soon as it is available. This is sufficient for

iterative machine learning and data mining algorithms that can converge from different

intermediate states even without explicit coordination, such as those based on stochastic

training. A strong consistency model for SDGs could be realised with per-loop times-

tamps, as used by Naiad [MMI+13] with its implementation of a timely dataflow.

3.5 Summary

This chapter presented SDGs, which are a new dataflow model that enables stateful data-

parallel processing. By explicitly including state in a dataflow graph of task elements, it

is possible to represent a broad number of stateful algorithms.

Stateful Dataflow Graphs and the distributed mutable state abstractions—partitioned

and partial—permit efficient distribution of state. This allows to achieve scalability, even

when updates to state occur in a fine-grained fashion. These properties are key to trans-

late imperative programs written in Java to SDGs, a process that we describe in Chapter

§5.



Chapter 4

Scalability and Fault Tolerance of

Stateful Dataflow Graphs

In the previous chapter, we introduced Stateful Dataflow Graphs that represent state

explicitly in the dataflow model, allowing it to realise stateful data-parallel processing.

Different distributed mutable state abstractions enable data-parallelism by defining how

state can be distributed across a cluster of machines.

This chapter focuses on the system aspects when making the SDG abstraction scalable

and fault tolerant. Achieving scalability and fault tolerance—the defining properties of

stateless processing systems—is more challenging in a stateful data-parallel processing

system. This chapter focuses on the system aspects of making SDGs scalable and fault

tolerant.

• Data-parallel processing. A data-parallel implementation of SDGs must scale

when more resources are provided, even in the present of state. To do so, it is

necessary to introduce new techniques and protocols that manage the state main-

tained by the system.

• Elasticity. A modern data-parallel processing systems must be elastic. The system

must support dynamic provisioning of new resources to increase its processing

throughput, for example, when addressing sudden spikes in the workload. One

important consequence of an elastic system is its cost-effectiveness when deployed

51
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on a public cloud. By acquiring resources on demand, a data-parallel processing

system can reduce costs in public cloud environments, such as Amazon EC2 [Amaa]

and Rackspace [Rac].

• Resource-efficient failure recovery. The system must be fault-tolerant, so that

it can recover in the presence of failures. Fault tolerance cannot impact perfor-

mance. For this reason, a fault tolerant solution must incur low runtime overhead.

Additionally, due to the presence of streaming workloads where data arrives con-

tinuously, failure recovery should be quick to prevent losing data arriving during

the time the system is down.

In this chapter, we introduce the mechanisms to realise stateful data-parallel processing

through SDGs. The main principle of a system that implements stateful data-parallel

processing is to represent state explicitly as a first-class citizen in the system §4.1. We

then introduce an integrated approach to achieve scalability and fault tolerance in §4.2,

explaining the details of both scalable data-parallel processing §4.2.2 and fault toler-

ance §4.2.3. Finally, we present SEEP [CFMKP13], a stateful data-parallel processing

prototype that supports the SDG model and implements the techniques described in this

chapter. We conclude the chapter with some practical considerations that influence the

previous mechanisms when deploying a system in a real public cloud scenario §4.3.

4.1 State as a First-Class Citizen

When designing a data-parallel system that supports techniques that deal with state,

such as scaling out or recovering state, we make the decision of treating state as an

abstract entity that the system is aware of and hence can manage. In particular, we: (i)

make SEs externally visible to the system; and (ii) define primitives for the system to

manage state in a generic fashion. Based on these primitives, we define more complex

operations such as scale out and failure recovery.

Treating state as a first-class citizen is unusual in the context of data processing systems

because they typically avoid exposing state. For example, stream processing systems use

state internally for some TE implementations, e.g. an aggregate function that maintains
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TEs depends on the input tuples and potentially the history of past tuples. TEs typically

maintain an internal summary of this history of input tuples, which is the SE with the

processing state. The current processing state θo is computed from all past processed

tuples.

We define the processing state of a TE o as a set of key/value pairs, θo=(k1, v1), ...,(kn, vn),

where keys are unique. The value v stores the portion of processing state that the TE

requires when processing tuples with a given key. In addition, the processing state is

associated with a vector of timestamps that maintains the last tuple from each input

stream that is reflected in θo.

In Fig. 4.1, we give an example of processing state for the word frequency TEs. To

simplify presentation, keys are assumed to be the first letter of a word. The upstream

word split TE sends the word “first” to the word count TE c1 at timestamp τ=1, resulting

in the processing state θc1= (
′ f ′,′ f irst : 1′) and timestamp τc1= (1). The words “set”,

“second” and “set” are processed by c2, instead, which at τc2=(4) holds processing state

θc2= (
′s′,′ second : 1,set : 2′).

A TE can maintain state using efficient data structures internally and only translate it to

key/value pairs when requested by system. To expose its processing state, the developer

of a TE o implements a function get-processing-state(o) → (θo,τo). This function is

invoked by the system and takes a snapshot of the state and records the timestamp τo

of the most recent tuples that affected the state. Recording this timestamp is useful to

understand how much input data is represented already as part of this state, which is

used by fault tolerance, as explained later in the chapter.

Buffer state. A system typically interposes output buffers between TEs that are placed in

different physical nodes, which are used to buffer tuples before sending them to down-

stream TEs (see Fig. 4.1). Buffers compensate for transient fluctuations of stream rates

and network capacity. They are also used to batch data for more efficient network trans-

fers.

Tuples in output buffers contribute to the state that the system must manage: (i) output

buffers store tuples that have not yet been processed by downstream TEs and therefore

must be re-processed after failure; (ii) after dynamic TE scale out, tuples in output buffers
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multiple partitioned TEs o1, ...,oπ in the execution graph, which is the physical realisation

of a SDG. Fig. 4.2 shows the difference between a logical SDG and a concrete execution

graph. An upstream TE u has to decide to which TE oi to route a tuple. In the case

of partitioned SEs, the problem is more challenging as one desired property is to allow

dynamic scale out—i.e. elasticity—of TEs. This means that the routing state that a TE is

using to route tuples must be restored after a failure.

Formally, for a TE o, we define the routing state as ρo = (d1,[k1,k2]), ...,(dπ,[kπ1,kπ]),

which maps the keys k ∈ [ki,k j) to a partitioned downstream TE di. For example, the

word split TE in Fig. 4.1 has ρo=(c1,[′a′,′ l ′]),(c2,(′l ′,′ z′]). It sends words starting with

letters up to ’l’ to TE c1 and with letters from ’l’ to c2.

4.2 Integrating Scale Out and Fault Tolerance

We define primitives to operate on the state. These primitives work as building blocks

that can be composed together to create more complex protocols.

The main idea of our approach to provide scalability and fault tolerance to stateful data-

parallel processing lies on the following observation: a TE failing and a TE scaling

out—redistributed to more physical nodes—are equivalent from a state management

perspective. This observation is key for an efficient implementation of mechanisms that

permit state management.

The integrated approach for fault tolerance and scalability is a protocol that defines the

interactions between worker nodes, which host TEs and SEs of the SDG, and a master

node, which coordinates the deployment and execution of applications. We define the

protocol in a generic way based on the collection of state management primitives.

In this section we first introduce and discuss the different primitives for state manage-

ment §4.2.1. We then explain how the integrated approach achieves scalability §4.2.2

and fault tolerance §4.2.3. We finish with some practical considerations §4.3 for elastic-

ity and fault tolerance in stateful data-parallel processing systems.
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4.2.1 Primitives for State Management

We introduce a set of state management primitives. We define a small set of primitives

to cover our goals—i.e. elasticity and fault tolerance, which are: checkpoint, backup,

restore, partition and merge, as explained below.

Checkpoint state. The system can obtain a representation of the processing state θo

and the buffer state βo of a TE o in the form of a checkpoint. Note that routing state

is not included in the state checkpoint because it only changes in case of scale out or

recovery and not during regular tuple processing. Instead, routing state is maintained

by the logically centralised master node.

A checkpoint is taken by the function checkpoint-state(o)→ (θo,τo,βo). It obtains the

processing state θo by calling the user-implemented function get-processing-state(),

which also returns the timestamp τo of the most recent tuples in the streams from the

upstream TEs that affected the state checkpoint. This permits the system to discard tu-

ples with older timestamps, which are duplicates, during replay—a necessary condition

to achieve exactly-once semantics.

The function checkpoint-state is executed asynchronously and triggered every check-

pointing interval c, or after a user-defined event, e.g. when the state has changed signif-

icantly. A short checkpointing interval results in a smaller number of tuples that would

be required to replay and reprocess to bring the processing state up-to-date, but it incurs

a higher overhead.

In the case of TEs that perform some computation over streams of data, it is common to

define windows that split the seemingly infinite stream into chunks of data that are given

to the application. The checkpointing interval should be shorter than the window size of

a TE when a window is defined. If checkpoints are taken more rarely, they contain pro-

cessing state that is superseded by tuples that must be re-processed. To reduce the size of

checkpoints, it is also possible to use incremental checkpointing techniques [HXCZ07],

which checkpoint only changes to the state since the last checkpoint.

Backup state. The SE and buffer state, as returned by checkpoint-state, can be backed

up to a node hosting a different TE in anticipation of a restore or partition operation.
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TE identifier function: id :O →N ,
upstream TE of o: up(o) = {o1, . . . ,oi , . . . ,om}

previous backup TE: backup(o) = o j or ⊥ if undef.
function backup-state(o)

1 (θo, ~τo,βo)← checkpoint-state(o)
2 i = hash(id(o))mod |up(o)|

3 store-backup(oi ,o,θo, ~τo,βo)

4 for u in up(o) do trim(u, ~τo j) : s j = (u,o)
5 if backup(o) 6=⊥∧backup(o) 6= oi then

6 delete-backup(backup(o),o)
end

7 backup(o)← oi

end

function restore-state(o,θ , ~τ,β ,ρ)
8 set-processing-state(o,θ , ~τ)
9 βo← β ,ρo←ρ

end

function replay-buffer-state(u,o)
10 for t in βu(o) do send o: t

end

Algorithm 2: SE backup and restore.

After the state was backed up, already processed tuples from output buffers in upstream

TEs can be discarded because they are no longer required for failure recovery—as they

are already incorporated in the state that is tolerant to failures.

Algorithm 2 defines function backup-state(o) for backing up the state of TE o. To backup

the SE, the system first needs to create a checkpoint of the state, i.e. to externalise the

SE. The checkpoint is created in line 1. Once the checkpoint is available, the system

must choose a target node to store it. Since many stateful TEs can be part of the SDG

and they all need to checkpoint and backup their state, it is important to choose the node

that will host the checkpoint in a way that spreads the load evenly across the nodes. This

is performed by using a hash function in line 2.

When a machine hosting a TE has many TEs that use it to keep their state backups,

the backup operation incurs significant overhead. In that case, TEs should balance the

backup load across all of the available nodes. This can be achieved by reusing the scale

out approach that we introduce later.

The state is backed up in line 3. When a TE receives the checkpointed state from a

downstream TE, it can trim the output buffer that points to the downstream, as this may

contain data already reflected in the state. In particular, it is safe to trim all tuples in the
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output buffer that are older than the timestamp associated to the backup, which occurs

in line 4.

When new nodes join the system to host TEs—such as in the case of a scale out operation—

or when they leave the system after hosting a TE, such as after a failure or merge, the

choice of backup(o) may change. This is, if TEs were to reapply the hash function of

line 2, the TE chosen to host the SE backup will likely change. When such change hap-

pens line 5, the old backup TE is released (line 6).

Restore state. A backed up SE is restored to another node to recover a failed TE or to

redistribute state across partitioned TEs. For example, when a stateful TE fails and loses

its SEs, the TE that was hosting the failed SE must restore it to continue operation. The

function restore-state(o,θ,τ,β,ρ), defined in Algorithm 2, restores the state of TE o.

It then initialises the processing state using the function set-processing-state (line 8)

and also assigns the buffer and routing states (line 9).

After the state was restored from a checkpoint, the function replay-buffer-state(u,o)

is used to replay unprocessed tuples in the output buffer from an upstream TE u to

bring the SE up-to-date. Before TE o emits new tuples, it resets its logical clock to the

timestamp τ. This permits downstream TEs to detect duplicates—those tuples that are

already part of the state according to the state—and discarding them.

Partition state. When a stateful TE scales out, its processing state must be distributed

across the new nodes. It can be partitioned when the SE is of partitioned type or repli-

cated when it is of the partial type. This is done by repartitioning the key space of the

tuples processed by the TE or by copying them in the case of partial state. In addition, the

routing state of its upstream TEs must be updated to account for the newly allocated TEs.

Finally, the buffer state of the upstream TEs is partitioned to ensure that unprocessed

tuples are dispatched to the correct downstream partitioned TE.

In Algorithm 3, we define the function partition-processing-state(o, π), which parti-

tions the state of TE o for π new partitioned TEs o1, ...,oπ. The partitioning is performed

from the state saved by backup(o) to allow partitioned TEs to recover in the case of fail-

ure. First, the key range processed by o, as specified by the routing state of the upstream

TE u, is split into π intervals (lines 1-2). The key space can be distributed evenly using
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1 key interval : (kl ,kh) : (o,[kl ,kh]) ∈ ρu∧u∈ up(o)

2 key split : (k1, . . . , kπ) : kl = k1< . . .< kπ+1= kh

function partition-processing-state(o,π)
3 (θ , ~τ,β)← retrieve-backup(backup(o),o)
4 for i← 1 to π do

5 θi←{(k, v)∈ θi : ki ≤ k< ki+1}

6 ~τi← ~τ

7 if i 6= 1 then βi←; else β1← β

8 store-backup(backup(oi),oi ,θi , ~τi ,βi)

end

end

function partition-routing-state(u,o,π)
9 ρu←ρu \{(o,[kl , lh])}

10 for i← 1 to π do

11 ρu←ρu∪{(o
i ,[ki ,ki+1])}

end

12 store-routing-state(u,ρu)

end

function partition-buffer-state(u)

13 for (o, T ) in βu do

14 for t = (τ,k, p) in T do

15 for (o′,[k1,k2]) in ρu do

16 if k1≤ k< k2 then β(o′)← β(o′)∪{t}

end

end

end

17 βu← β

end

Algorithm 3: SE partitioning.

hash partitioning, or the key distribution can be used to guide the split, for example to

perform range partitioning. The state is retrieved from backup(o) (line 3) and is split by

partitioning the processing state (line 2). The timestamps associated with the processing

state are copied for each partition, and the buffer state is assigned to the first partition

(lines 6-7). Finally, the state for each partition is stored in backup(oi) in order to provide

an initial backup for each partition; afterwards backup(o) is removed safely from the

system (line 8).

The function partition-routing-state(u, o, π) is used to update the routing state of

each upstream TE u. The entry for the old key interval is removed and key intervals for

the newly allocated TEs are added (lines 9-11). The routing state is then stored at the

master node to be recovered in case of failure (line 12).

An upstream TE u can repartition its buffer state βu according to the updated routing
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function scale-out-TE(o,π)
1 partition-processing-state(o,π)
2 ρ← retrieve-routing-state(o)

3 for i← 1 to π do

4 oi← get-new-VM-with-TE()

5 (θi , ~τi ,βi)← retrieve-backup(backup(o),oi)

6 restore-state(oi ,θi , ~τi ,βi ,ρ)
7 for d in down(o) do replay-buffer-state(oi ,d)

end

8 stop-TE-and-release-VM(o)

9 for u in up(o) do

10 stop-TE(u)

11 partition-routing-state(u,o,π)
12 partition-buffer-state(u)

13 for i← 1 to π do replay-buffer-state(u,oi)

14 start-TE(u)

end

end

Algorithm 4: Integrated fault tolerant scale out.

state ρu using the function partition-buffer-state(u). It iterates over the tuples in βu

(lines 13-14), assigning each tuple to a partition according to the ρu key intervals (lines

15-16).

Merge state. In addition to partitioning the state, it is possible to define a scale in

operation that merges different partitions of state. The scale in process is similar to the

scale out. A function merge is defined that takes different state partitions and returns a

single merged one. Upstream TEs must modify their buffer and routing state accordingly

to ensure that all pending traffic in the buffer is sent to the newly allocated machine and

that new traffic is routed correctly.

4.2.2 Elasticity: Scaling Out Dynamically

To scale out queries at runtime, the system partitions TEs on-demand in response to bot-

tlenecks. Bottleneck nodes prevent the system from increasing processing throughput,

and we discuss heuristics for identifying them in §4.3. After scaling out a TE that was

the bottleneck, the TE processing load is shared among a set of newly provisioned TEs—

that live in different physical nodes—thus increasing available resources. Our scale out

mechanism partitions SEs and streams dynamically while guaranteeing correct results.
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dicates the number of instances of TE in the execution graph. First, the system exe-

cutes the function partition-processing-state to partition o’s processing state located

on backup(o), backing it up to survive failure (line 1). It also retrieves o’s routing state

from the master node (line 2). It then creates π newly partitioned TEs oi to replace o

(line 4). After o’s processing and buffer state were retrieved from backup(o) (line 5),

they are restored to the new partitioned TEs oi (line 6). Tuples yet unprocessed by the

downstream TEs are replayed from oi ’s buffer state (line 7). After that, o is stopped, and

the node that was hosting it is released (line 8).

The next step is to update the execution graph. The system first signals o’s upstream

to stop processing data TEs (line 10). It updates its routing state to reflect the new

incoming TE in the system (line 11). Finally, it repartitions the buffer states (line 12),

so that data that was buffered is sent to the new correct downstream TE. After that,

the system replays tuples that are not reflected in the state checkpoint from the output

buffers (line 13). The final step is to restart the upstream TE (line 14).

Scaling out the most recent checkpoint instead of the current state has several benefits:

(i) it means that the scale out mechanism can be used to recover TE o after failure;

(ii) it avoids adding further load to TE o, which is already overloaded, by requesting it

to checkpoint or partition its own state; and (iii) it makes the scale out process itself

fault-tolerant: if it fails or is aborted, TE o can continue processing unaffected.

4.2.3 Fault Tolerance

To be fault tolerant the system must recover the state of a failed node so that computa-

tion can continue. We use the integrated approach algorithm to achieve this, by using

the state management primitives and keeping unprocessed data—that is being currently

processed or awaiting in output buffers.

Achieving fault tolerance is just a special case of the scale out mechanism explained in

the previous section. To recover from the failure of a stateful TE o, the system simply

executes scale-out-TE(o, 1), which restarts processing from o’s last checkpoint.

It is also possible to use the scale out capability to reduce recovery time. The system can
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partition the failed TE state by executing scale-out-TE(o,2). In this case, each restored

TE only has to process half of the replayed tuples in replay-buffer-state, thus reducing

recovery time. We call this approach parallel recovery, which is evaluated in Chapter 6.

Some applications require state that grows larger than the memory of a single node. In

these applications, the TEs must scale out to aggregate the memory of multiple nodes.

The fault tolerance presented cannot handle these scenarios efficiently.

To address these applications, we introduce a new mechanism that is geared towards

reducing runtime overhead even when checkpointing large state. Next we introduce a

generalisation of the fault tolerance algorithm presented in this section that is suitable

for all state sizes.

Large State

Designing a fault tolerance mechanism to address the case of applications with large

state presents the following challenges: (i) it must scale to save and recover the state

of a large number of nodes with low overhead, even with frequent failures; (ii) it must

have a low impact on the processing latency; and (iii) it must achieve fast recovery time

even when recovering large SEs.

We achieve these goals with a mechanism that has the following properties. First, it

combines local checkpoints with tuple replay, thus avoiding both global checkpoint co-

ordination and global rollbacks. Every TE backs up their SEs independently, with the

backups containing a timestamp indicating which tuples are already incorporated in the

state. Since timestamps are uniquely assigned by the system, it is possible to track at

every point what data has been processed by a TE, and therefore there is no need to

coordinate the checkpoint in a global manner.

Second, the mechanism divides state of SEs into consistent state, which is checkpointed,

and dirty state, which permits continued processing while checkpointing. While the SE

is being checkpointed—note that this process can take a long time when state is large—

the SE is frozen, no updates are allowed to such state. Instead, a dirty state maintains all

new updates to the state, therefore it permits to continue processing, avoiding an impact

on the critical data processing path.
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Third, while taking the checkpoint, it will partition the SE and backup each partition to a

different node, enabling parallel recovery. Next, we describe the solution in more detail:

Approach. Our failure recovery mechanism combines local checkpointing with tuple

logging. Nodes periodically take checkpoints of their local SEs and output buffers.

Dataflows include increasing TE-generated scalar timestamps, and a vector timestamp

of the last tuple from each input dataflow that modified the SEs is included in the check-

point. Once the checkpoint is saved to stable storage, upstream nodes can trim their

output buffers of data items that are older than all downstream checkpoints.

After failure, a node recovers its SEs from the last checkpoint, replays its output buffers

and reprocesses data items received from the upstream output buffers. Downstream

nodes detect duplicate tuples based on the timestamps and discard them. This approach

allows nodes to recover SEs locally beyond the last checkpoint, without requiring nodes

to coordinate global rollback, and it avoids the output commit problem.

State checkpointing. We use an asynchronous parallel checkpointing mechanism that

minimises the processing interruption when checkpointing large SEs with GBs of mem-

ory. The idea is to record updates in a data structure—that we call dirty state—that is

compatible with the original one, while taking a checkpoint. For each type of data struc-

ture held by an SE, there must be an implementation that supports the separation of

dirty state and its subsequent consolidation.

For example, when the SE is implemented as a dictionary, updates to keys in a dictionary

are written to the dirty state, and reads are first served by the dirty state and, only on a

miss, by the dictionary. Removals are also kept separately.

Checkpointing of a node works as follows: (1) to initiate a checkpoint, each SE is flagged

as dirty and the output buffers are added to the checkpoint; (2) updates from TEs to an

SE are now handled using a dirty state data structure: (3) asynchronously to the pro-

cessing, the now consistent state is added to the checkpoint; (4) the checkpoint is backed

up to multiple nodes (see below); and (5) the SE is locked and its state is consolidated

with the dirty state, e.g. updates to the dirty state are propagated to the original one,

and removals are made effective.
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4.3.1 Bottleneck Detection

We adopt a simple yet effective scaling policy that triggers alarms based on a bottleneck

detection mechanism that is based on measured CPU utilisation of nodes hosting TEs.

Every r seconds, VMs hosting TEs submit CPU utilisation reports to the bottleneck de-

tector, which records the user and system CPU time of each TE executed. This accounts

for stolen CPU time when other VMs on the same physical node are scheduled. When

k consecutive reports from a TE are above a user-defined threshold δ, the bottleneck

detector notifies the scale out coordinator to partition the TE.

To determine the parameters r and k depends on the application, resources available and

workload. For example, r is increased when the application performance is expected

to stay stable. For workloads that present many spikes, it is necessary to both report

more often, by reducing r, and adjust k to avoid false alarms by making the policy less

aggressive.

4.3.2 VM Provisioning

The time taken to deploy a new TE is a critical issue. When scaling out, VMs must be al-

located quickly in order to alleviate a bottleneck that will reduce application throughput

otherwise. When recovering a failed VM, fast recovery minimises the disruption caused

by the failure. Current Infrastructure-as-a-Service cloud platforms, however, require on

the order of minutes to provision new VM instances. This makes it impractical to request

new VM instances on-demand when they are required by the system.

Our solution is to decouple the request for a new VM from the provisioning of the VM.

We preallocate a small pool of VM instances of size p ahead of time. New VM instances

for TEs are requested from this VM pool, which can happen in seconds. Asynchronously

the pool is refilled to size p by requesting VM instances from the cloud provider.

A challenge is to decide on the optimal VM pool size. A VM pool that is too small may

get exhausted when multiple VMs are requested in short succession. A large VM pool

incurs an unnecessarily high financial cost because pre-allocated VMs are billed by the

cloud provider.
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We make two observations regarding the VM pool size p: (i) with real-world failures,

preallocating 1-2 VMs is sufficient, which means that p is primarily determined by the

scale out requirement; (ii) p can be adjusted to the scale out behaviour over time. For

example, p may be kept larger while the system scales out aggressively to adapt to an

open loop workload—one where excess incoming data is dropped. After the rate of new

VM requests decreases, the VM pool can shrink to support steady-state operation.

4.4 Summary

In this chapter we addressed the two major challenges when realising stateful dataflow

processing: scalability and fault tolerance. First, we explained how making state a first-

class citizen permits the definition of primitives to handle state. We make the observation

that in a system, a node that fails and a node that scales out are equivalent from a state

management perspective. This is a key idea to propose an integrated approach to fault

tolerance and scale out, which facilitates the efficient implementation of both properties.

We finished the chapter by considering practical aspects, such as bottleneck detection,

that permits the system to trigger scale out decisions and practical aspects to consider

when deploying the system on a cloud environment.



Chapter 5

Imperative Big Data Processing

The state in SDGs enables the representation of stateful programs, as we have shown

in the two previous chapters. One remaining question is how this can be exposed in a

familiar manner to developers. We focus on a particular segment of users who are used

to write stateful programs in imperative-style programming languages, such as Java,

Python, C++ or Matlab.

This chapter describes a method to translate stateful Java programs to SDGs for parallel

execution. We do not attempt to be completely transparent for developers or to address

the general problem of automatic code parallelisation. Instead, we exploit data and

pipeline parallelism by relying on source code annotations that developers can include

in their programs.

The chapter starts with an overview of the translation process (§5.1). We explain that

the information that we cannot extract from the input program as it depends on the al-

gorithm semantics, and introduce a number of annotations that developers use to choose

the right distributed mutable state (§5.2). We then describe the actual translation pro-

cess through static code analysis and bytecode engineering (§5.3), limitations of the

approach (§5.4) and conclude with a summary (§5.5).

70
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attributes and accesses to such SEs (stage 3). Stage 4 consists of a TE extraction strategy.

The strategy extracts TEs in such a way that reduces the number of accesses to SEs from

the TEs. Its intuition is that different SEs will be collocated with exclusive access from

different TEs, which provides more parallelism opportunities.

Finally, once all TEs have been extracted, live variable analysis extracts the variables that

are alive across TE boundaries (stage 5). This is useful to understand the amount and

type of data that must be transmitted through the dataflow.

Code generation. During the first stage (stage 6) of code generation, the bytecode of

the Java program is logically divided into TEs according to the information provided

by the analysis. Once all code for the TEs is available, the process adds the necessary

API calls to translate state access to the appropriate system functions. For example, it

introduces communication API calls at TE boundaries to propagate the necessary data

through dataflows. This stage depends on both partitioning information and the type

of the mutable state abstraction, as these impose different restrictions on the API calls

used.

Finally, in stage 8, the assembled TE code with the translated SE accesses is combined

to form an SDG. To perform this, it is necessary to use information that is implicit in the

SDG extracted during the analysis part.

5.2 Annotations to Disambiguate State Semantics

The translation process explained so far is a pipeline of stages where a Java program

is received as input and an executable program is produced as output. This occurs au-

tomatically except for certain information. In particular, the two distributed mutable

abstractions provided by SDG for scalability and fault tolerance are chosen depending

on algorithm semantics.

For this reason, when the analysis stages discover an SE access, it is not possible to

automatically determine whether the state must be accessed in a partitioned or partial

fashion, or whether it is a local or global access. This information is crucial for the

translation process to produce a correct SDG that honours the algorithms semantics.
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To resolve this ambiguity, we introduce annotations that are used by developers to indi-

cate what type of distributed mutable state abstraction to use. Therefore this provides

all necessary detail to carry on the translation process.

We revisit the example of Algorithm 1, this time introducing all necessary annotations

required by the translation process to generate an application that can run on a state-

ful data-parallel processing system. Algorithm 5 shows the complete example with the

annotations required by the translation process.

When defining a field in a Java class, a developer can indicate if its content can be par-

titioned or is partial by annotating the field declaration with @Partitioned or @Partial,

respectively.

@Partitioned. This annotation specifies that a field can be split into disjoint partitions.

A reference to a @Partitioned field always refers to a single partition. This requires that

accesses to the field use an access key to infer the partition.

In Algorithm 5, rows of the userItem matrix are updated with information about a single

user only, and thus userItem can be declared as a partitioned field.

@Partial. Fields are annotated with @Partial if distributed instances of the field should

be accessed independently. Partial fields enable developers to define distributed state

when it cannot be partitioned.

In collaborative filtering, matrix coOcc is annotated with @Partial, which means that

multiple instances of the matrix may be created, and each of them is updated indepen-

dently for users in a partition (lines 13–14).

@Global. By default, a reference to a @Partial field refers to only one of its instances.

While most of the time computation should apply to one instance to make independent

progress, it may also be necessary to support operations on all instances. A field reference

annotated with @Global forces a Java expression to apply to all instances, denoting global

access to a partial field, which introduces a synchronisation barrier in the SDG.

Java expressions deriving from @Global access become logically multi-valued—the vari-

able exists in every partial instance SE and therefore contains multiple values—because

they include results from all instances of a partial field. As a result, any local variable
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that is assigned the result of a global field access becomes partial and must be annotated

as such. This avoids errors in the program, as developers must deal with these partial

variables explicitly.

In collaborative filtering, the access to the coOcc field carries the @Global annotation to

compute all partial recommendations: each instance of coOcc is multiplied with the user

rating vector userRow, and the results are stored in the partial local variable userRec

(line 20).

@Collection. Global access to a partial field applies to all instances, but it hides the indi-

vidual instances from the developer. For global reads, it is necessary to access all partial

values so that they can be reconciled in a single value, meaningful for the application.

The @Collection annotation exposes all instances of a partial field or variable as a Java

array after @Global access. This enables the program to iterate over all values and merge

them as necessary into a single value.

In collaborative filtering, the partial recommendations are combined by accessing them

using the @Global annotation and then invoking the merge method (line 21). The param-

eter of merge is annotated with @Collection, which specifies that the method can access

all instances of the partial userRec variable to compute the final recommendation result.

5.3 Translation from Java to SDG

We detail now the analysis and code generation parts of the translation process. For both

processes to work we expect Java programs to conform a specification:

1. The input Java program must have a driver method that coordinates and manages

the execution of the program. Users specify the input (i.e. sources) and output (i.e.

sink) of data as part of this driver program. For example, they can indicate the data

source as well as its format, i.e. schema, and serialisation format. Java2SDG simply

exposes a minimal API that permits users to write such configuration.

2. Each method that is part of the SDG must be public and declared in the main Java

class. Methods that return a value must be connected to a sink that handles results.
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3. The class can contain as many private methods as required by the program logic

and the state must be declared as attributes of the class, and be accessible from all

the public methods.

SE generation. The class is compiled to Jimple code, a typed intermediate represen-

tation for static analysis used by the Soot framework [soo] (stage 1). The Jimple code

is analysed to identify SEs with partitioned or partial fields and partial local variables

(stage 2). Based on the annotations in the code, access to SEs is classified as local,

partitioned or global (stage 3).

TE and dataflow generation. Next TEs are created so that each TE only accesses a

single SE, i.e. a new TE is created from a block of code when access to a different SE or

a different instance of the current SE is detected (stage 4). The dispatching semantics of

the dataflows between created TEs (i.e. partitioned, all-to-one, one-to-all or one-to-any)

is chosen based on the type of state access.

More specifically, a new TE is created with the following strategy that tries to optimise

the placement of SE with TEs to foster parallelisation opportunities in the SDG:

1. Java2SDG iterates over the methods of the class. All static analyses are intraprocedu-

ral. For each method, Java2SDG proceeds with the following steps;

2. when a TE uses partitioned access to a new SE (or to a previously-accessed SE with a

new access key), the access key is extracted using reaching expression analysis, and the

dataflow edge between the two TEs is annotated with the access key;

3. when a TE uses global access to a new partial SE, the dataflow edge between the two

TEs is annotated with one-to-all dispatching semantics;

4. when a TE uses local access to a new partial SE, the dataflow edge is annotated with

one-to-any dispatching semantics. In case of local (or partitioned) access after global

access, all TE instances are synchronised using a distributed barrier before control is

transferred to the new TE, and the dataflow edge has all-to-one dispatching semantics;

and

5. for @Collection expressions. A synchronisation barrier collects values from multiple

TE instances, and its dataflow edge has all-to-one semantics. After generating the TEs,
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Java2SDG identifies the variables that must propagate across TEs boundaries (stage 5).

For each dataflow, live variable analysis identifies the set of variables that are associated

with that dataflow edge.

Bytecode generation. Next Java2SDG synthesises the bytecode for each TE that is exe-

cuted by the system. It compiles the code assigned with each TE in stage 4 to bytecode

and injects it into a TE template (stage 6) using Javassist [JBo], a tool that performs

bytecode engineering. State accesses to fields and partial variables are translated to

invocations of the runtime system, which manages the SE instances (stage 7).

Finally communication code across TEs for data dispatching is added (stage 8). Java2SDG

produces code, (i) at the exit point of TEs, to serialise live variables and send them to

the correct successor TE instance; and (ii) at the entry point of a TE, to add barriers for

all-to-one dispatching and to gather partial results for merge TEs.

5.4 Limitations

Java programs also need to obey certain restrictions to be translated to SDGs.

State element implementation. We provide a standard collection of data structures

that users must use as the SE implementations. This permits the system to partition

objects of these classes into multiple instances (for partitioned state) or distribute them

(for partial state), and recover them after failure. In particular, these classes include

support for dirty state—required to achieve low-overhead checkpoints. When users re-

quire different custom SE, they can implement the following interfaces: (i) Versionable,

which permits to create a dirty state structure; (ii) Streamable, which permits to stream

the state through the network avoiding unnecesary data copying and; (iii) Mergeable

that implements the necessary logic to merge together different data structures. When

the state can be partitioned, users can also implement Partitionable to provide such

functionality.

Location independence. Each object accessed in the program must support transparent

serialisation/deserialisation: as SDGs are distributed, objects are propagated between
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nodes. This means that objects used by developers must be serialisable by the runtime.

Developers can provide a serialiser/deserialiser to achieve this.

The program also cannot make assumptions about its execution environment, e.g. by

relying on local network sockets or files. Instead, an API permits developers to specify

input and output resources—data sources and sinks.

Side-effect-free parallelism. In Java, arguments that are passed to functions through

references, such as objects, can be internally updated by the method. In order to sup-

port the parallel evaluation of multi-valued expressions under @Global state access, such

expressions must not affect single-valued expressions: they must only read input param-

eters. As a concrete example, the statement @Global coOcc.multiply(userRow), in line

20 in Algorithm 5 cannot update userRow.

Deterministic execution. The program must be deterministic, i.e. it should not de-

pend on system time or random input. This enables the runtime system to re-execute

computation when recovering after failure. When computation is not deterministic it is

impossible to track which data has already been processed by downstream nodes, as this

can change after a failure occurs. For this reason crucial system features that depend on

non deterministic code, such as encryption, should be implemented at the system level

and not at the user level.

5.5 Summary

In this chapter, we presented a technique to translate imperative code to a stateful

dataflow graph, amenable to be executed by a stateful data-parallel processing system.

The techniques presented require stateful dataflow graphs—the presence of explicit state

in the SDG is a key feature required to capture the state of imperative programs.

We introduced Java2SDG, a tool that translates Java programs to applications that can

run on top of a stateful data-parallel processing system. We discussed the annotations

that are used by developers to disambiguate algorithm semantics and this provides the

necessary information for Java2SDG to perform the translation.
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As part of the translation process, we discussed some of the limitations of the approach.

For example, users must provide their code in a Java template (function configure() in

Algorithm 5). No side-effects are permitted other than modifications to the state, and

code cannot depend on resources at a fixed location.
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1

2 public class CollaborativeFiltering implements SeepProgram {
3

4 @Partitioned Matrix userItem = new Matrix();
5 @Partial Matrix coOcc = new Matrix();
6

7 void addRating(int user, int item, int rating) {

8 userItem.setElement(user, item, rating);
9 Vector userRow = userItem.getRow(user);

10 for (int i = 0; i < userRow.size(); i++)
11 if (userRow.get(i) > 0) {
12 int count = coOcc.getElement(item, i);
13 coOcc.setElement(item, i, count + 1);
14 coOcc.setElement(i, item, count + 1);
15 }
16 }
17

18 Vector getRecommendation(int user) {
19 Vector userRow = userItem.getRow(user);
20 @Partial Vector userRec = @Global coOcc.multiply(userRow);
21 Vector rec = merge(@Global userRec);
22 return rec;
23 }
24

25 Vector merge(@Collection Vector[] allUserRec) {
26 Vector rec = new Vector(allUserRec[0].size());
27 for (Vector cur : allUserRec)
28 for (int i = 0; i < allUserRec[0].size(); i++)
29 rec.set(i, cur.get(i) + rec.get(i));
30 return rec;
31 }
32

33 @Override
34 public SeepProgramConfiguration configure(){
35 SeepProgramConfiguration spc = new SeepProgramConfiguration();
36 Schema sch = SchemaBuilder.getInstance()
37 .newField(Type.INT, "user")
38 .newField(Type.INT, "item")
39 .newField(Type.INT, "rating")
40 .build();
41 DataStore addRatingSrc = new DataStore(DataStoreType.NETWORK);
42 spc.newWorkflow("addRating", addRatingSrc, sch);
43 Schema sch2 = SchemaBuilder.getInstance().newField(Type.INT, "user").build();
44 DataStore getRecSrc = new DataStore(DataStoreType.NETWORK);
45 DataStore sink = new DataStore(DataStoreType.CONSOLE);
46 spc.newWorkflow("getRecommendation", getRecSrc, sch2, sink, sch2);
47 return spc;
48 }
49 }

Algorithm 5: Annotated collaborative filtering in Java.
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Evaluation

In this chapter we evaluate SEEP, a prototype implementation, to validate stateful data-

parallel processing as a new model to perform large scale data analysis with high per-

formance, low latency and in a fault-tolerant manner. First, we provide an overview of

the questions that we want to answer followed by a summary of the evaluation results.

Overview of evaluation. To evaluate the feasibility and performance of stateful data-

parallel processing, we explore the new model as part of a prototype implementation in

SEEP, a data-parallel processing system.

• Can stateful data-parallel processing achieve high-performance competitive

with other state-of-the-art systems? We evaluate throughput and latency with

well-known workloads in both closed-loop and open-loop scenarios. We compare

the performance results against other systems such as Spark and Naiad.

• Is it possible to achieve fault tolerance with SDGs? We show the fault tolerance

properties of SEEP in terms of both fast recovery and low runtime overhead, which

is crucial for applications that require low latency results.

As part of the evaluation we also explore other factors closely related to the scalability

and fault tolerance of SEEP. We want to understand the overheads associated with dif-

ferent checkpointing intervals, and how the state size impacts runtime overhead, as well

as how efficiently the scale out strategy overcomes stragglers.

80
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We evaluate stateful data-parallel processing in the context of a smart-grid analytics

application, where the goal is to predict future energy consumption.

The rest of the chapter is structured along three main sections. The first addresses the

performance related questions presented above (§6.1) with a thorough evaluation of per-

formance in stateful data-parallel processing with micro-benchmarks and applications.

We also present results related to fault tolerance (§6.2) and a comparison with other

systems (§6.3). After answering those questions, we use SDGs in practice in the context

of the smart grid analytics use case (§6.4).

6.1 Performance

We perform four different experiments to study the throughput and latency characteris-

tics of SEEP:

1. Closed loop workload. We first explore the behaviour of SEEP when executing

a workload in a closed loop fashion—all data must be processed to yield correct

results. We implement the Linear Road Benchmark [ACG+04], which presents an

always increasing incoming stream rate, which requires SEEP to scale resources

elastically.

2. Open loop workload. We relax the requirements of processing all data to de-

termine the behaviour of the system with a top-k query that uses Wikipedia data

to report the most frequently visited pages over a time window. The aim of this

experiment is to report throughput with non-trivial state.

3. Online collaborative filtering. We use the collaborative filtering example to eval-

uate a demanding workload in which state spans multiple machines. Here both

high throughput and low latency are important.

4. Distributed mutable state. We stress the system with the extreme case in dis-

tributed mutable state in a key-value store. Here we want to understand the

throughput and latency properties of an application that requires fine-grained up-

dates to state.
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Figure 6.2: Dynamic scale out for the LRB workload with L=350 (closed loop workload).

automatically when the CPU utilisation of a machine rises above a threshold of 70% (such

a strategy is effective because the workload is CPU-bound).

Fig. 6.2 shows the number of allocated VMs along with the input rate and the achieved

result throughput over time. For L=350, the input rate is initially approx. 12,000 tuples/s

and increases to 600,000 tuples/s. We observe that the system maintains the required

result throughput for the input rate, requesting additional VMs as needed. At times

t=475 and t=1016, multiple TEs are scaled out in close succession because bottlenecks

appear in two TEs simultaneously.

Our deployment achieves a maximum L-rating of L=350 with 50 VMs. After that, the

source and the sink become the bottleneck, handling a maximum of 600,000 tuples/s

due to serialisation overheads. The main computational bottleneck in the query, the toll

calculator, is scaled out many times by the system, followed by the forwarder.

This result is about 70% of L=512, which is currently the highest reported L-rating in

the literature by Zeitler and Risch [ZR11]. Their result was obtained on a private cluster

with 560 dedicated CPU cores with 2.27 Ghz—substantially more resources than we use.

Since our approach only scales out bottleneck TEs at a fine granularity, it can be more

resource efficient than the replication of the whole query graph used by Zeitler and Risch.

In Fig. 6.3, we show the processing latencies of output tuples, as a representative metric

for the performance experienced by the query. The 99th and 95th percentiles of the

latency are 1459 ms and 700 ms respectively and the median is 153 ms, which are all
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Figure 6.3: Processing latency for LRB workload.

below the LRB target of 5 s. This confirms that our maximum L-rating is indeed due to the

limited source and sink capacities. Dynamic scale out, however, affects tuple latency—

there are latency peaks of up to 4 s after scale out events due to stream buffering and

replay. Towards the end of the experiment, the median latency begin increasing when

the system becomes overloaded.

SEEP implements the SDG model efficiently, and it is capable of scaling out stateful TEs

on demand as the workload increases. Elasticity gives it an advantage with respect to non-

elastic systems, which typically require over-provisioned deployments to cope with workload

peaks.

Open loop workload. We explore an open loop workload, in which we initially under-

provision the system leading to tuple loss, and then let the system scale out to handle

the workload.

MapReduce style top-k query. We implement a top-k query that outputs every 30 seconds

the ranking of the most visited Wikipedia language versions based on Wikipedia data

traces. Initially, we set the input stream rate to be above the performance capacity of

the system, thus incurring tuple loss. The goal is to let the system scale out the query in

order to sustain the incoming rate.

We use Amazon EC2 VMs for this experiment. We use 18 data sources to inject tuples to

a stateless map TE, which removes unnecessary fields, and a stateful reduce TE, which

maintains a top-k dictionary of the frequencies of visited Wikipedia language versions.
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Figure 6.4: Dynamic scale out for a MapReduce style workload (open loop workload).

When the reducer scales out, we use the sink to aggregate the partial results and output

the final answer.

We present the dynamic scale out behaviour in Fig. 6.4. As expected, SEEP scales out

until it can sustain the incoming rate of 550,000 tuples/s. The scale out process leads

to peaks in the tuple throughput. After scaling out a TE, the input buffers of the new

partitioned TEs consume tuples faster than they can be processed. Only after the input

queues have filled, performance stabilises again.

Another observation is that the rate of scale out is higher in the first part of the experi-

ment (until t=100). The reason is that initially more map TEs are scaled out than reduce

TEs: the stateless map TEs scale out faster than the stateful reduce TEs.

Unlike the experiment with the closed-loop workload, the open loop workload overloads the

system initially. We show that even in this situation, and with the non-trivial state required

by a top-k query over a 30-second window, the system can scale out resources to handle the

demand.

Online collaborative filtering experiment. The online collaborative filtering applica-

tion (see §1) stresses SEEP in two ways. It requires high-throughput in order to incorpo-

rate the latest ratings produced by users, and it needs to provide low-latency responses

to recommendation requests to maintain a good user experience.

We deploy it on 36 Amazon EC2 VM instances (“c1.xlarge”; 8 vCPUs with 7 GB) using
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Figure 6.5: Throughput and latency with different read/write ratios (online collabora-
tive filtering).

the Netflix dataset [Net], which contains 100 million movie ratings for the evaluation of

recommender systems. We add new ratings continuously using the function addRating,

while requesting fresh recommendations using the function getRec. The state size main-

tained by the system grows to 12 GB.

Fig. 6.5 shows the throughput of getRec and addRating requests and the latencies of

getRec requests when the ratio between the two is changed. The achieved throughput is

sufficient to serve 10,000–14,000 requests/s, with the 95th percentile of responses being

at most 1.5 s stale.

As the workload ratio includes more state reads (getRec), the throughput decreases

slightly. This is due to the cost of the synchronisation barrier that is necessary to ag-

gregate the partial results of the multiple instances hosting a partial SE in the SDG.

With this experiment, we demonstrate that SDGs can combine the functionality of batch and

online processing systems, while serving fresh results with low latency and high throughput

over large mutable state.

Impact of state size. Next we evaluate the performance of SDGs as the state size in-

creases. As a synthetic benchmark, we implement a distributed partitioned key/value

store using SDGs because it exemplifies an application with pure mutable state. We

compare to an equivalent implementation in Naiad [MMI+13] with global checkpoint-

ing, which is the only fault-tolerance mechanism available in the open-source version.

The objective of this comparison is purely to serve as a reference. We use two differ-
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Figure 6.6: Throughput and latency with increasing state size on single node (key/value
store).

ent configurations for Naiad: Naiad-Disk is a configuration that stores checkpoints on

disk; Naiad-NoDisk, instead, relies on RAM disk storage of checkpoints. We deploy this

application in one VM (“m1.xlarge”) and measure the performance of serving update

requests for keys.

Fig. 6.6 shows that, for a small state size of 100 MB, both SDGs and Naiad exhibit similar

throughput of 65,000 requests/s with low latency. As the state size increases to 2.5 GB,

the SDG throughput is largely unaffected but Naiad’s throughput decreases due to the

overhead of its disk-based checkpoints (Naiad-Disk), which is the mechanism used by

Naiad to implement fault tolerance. Even with checkpoints stored on a RAM disk (Naiad-

NoDisk), its throughput with 2.5 GB of state is 63% lower than that of SDGs, due to the

stop-the-world-approach used by Naiad. Similarly, the 95th percentile latency in Naiad

increases when it stops processing during checkpointing—SDGs do not suffer from this

problem.

To investigate how SDGs can support large distributed state across multiple nodes, we

scale the key value store store by increasing the number of VMs from 10 to 40, keeping

the number of dictionary keys per node constant at 5 GB.

Fig. 6.7 shows the throughput and the latency for read requests with a given total state

size. The aggregate throughput scales near linearly from 470,000 requests/s for 50 GB

to 1.5 million requests/s for 200 GB. The median latency increases from 8 ms to 29 ms,

while the 95th percentile latency varies between 800 ms and 1000 ms.



88 Chapter 6. Evaluation

✥

✥�✁

✂

✂�✁

✄

✁✥ ✂✥✥ ✂✁✥ ✄✥✥

✂

✂✥

✂✥✥

✂✥✥✥

❚
☎
✆✝
✞
✟
☎
✠
✞
✡
☛☞
✌✍
✍✌
✝
✎
✆✏
✑
✞
✏
✒
✡✒
✓✒
✔

▲
✕
✡✏
✎
✖
✗
☛☞
✒
✔

❆✘✘✙✚✘✛✜✚✢ ✣✚✣✤✙✦ ✧★✩✪

✫✬✙✤✭✘✬✮✭✜

✯✛✜✚✰✱✦

Figure 6.7: Throughput and latency with increasing state size on multiple nodes (key/-
value store).

This result shows that SDGs can support stateful applications with large state, which is con-

tinuously updated in a fine-grained fashion, without compromising throughput or latency,

and while maintaining fault tolerance.

Scaling Policy Evaluation

We want to understand the effect of varying the scale-out threshold §6.1, and the ef-

ficiency of a deployment in which SEEP decides to scale out TEs automatically. One

important problem in the context of data-parallel processing is the appearance of strag-

glers. We therefore study also the mechanism based on scale-out employed by SEEP to

address stragglers (§6.1).

What is the impact of varying the scale-out threshold?

We evaluate the impact of the scale out policy. We study how different scale out thresh-

olds δ affect the number of allocated VMs and the tuple processing latency (see Fig. 6.8).

The goal is to find the best trade-off between resource allocation efficiency and process-

ing performance. To explore the efficiency of VM allocation, we compare our dynamic

scale out approach to manual scale out by a human expert. We investigate different

thresholds δ using LRB with L=64. We initially deploy the query with one VM per TE

and observe the number of VMs at the end of the experiment and the processing latency.

Fig. 6.8 shows that, as δ increases from 10% to 90%, fewer VMs are allocated. The

median latency curve is concave, increasing not only for high thresholds, when VMs
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Figure 6.8: Impact of the scale out threshold δ on processing latency.

are close to overload, but also for low ones. This behaviour can be understood better

by considering the 95th percentile of tuple latencies. When δ is small, the system per-

forms many scale out operations, which impacts processing latency, especially at higher

percentiles.

Based on these results, a threshold δ of 50%–70% provides the best trade-off. It follows

the best practice in data centre management to maintain a headroom of unused resources

in anticipation of workload bursts and transient peaks [GHMP08].

How efficient is the automatic scale-out policy?

We evaluate the efficiency of the dynamic scale out policy against a human expert who

manually partitions TEs. In this experiment, we use the LRB query with L=115. The

human expert is given a fixed number of VMs and uses them as effectively as possible to

support this workload. The human expert, based on their understanding of the relative

costs of TEs, tracks the bottleneck across multiple scaled out versions of the LRB query.

The dynamic scale out policy allocates 25 VMs at the end of the experiment.

Fig. 6.9 shows the processing latency as a function of the number of VMs for the manual

scale out decisions. In addition, the median (101 ms) and 95th percentile (714 ms) of

latencies for the dynamic scale out policy are indicated in the figure. The results show

that the most efficient manual allocation for this workload is 20 VMs—with fewer VMs,

the 95th latency percentile starts to increase due to the high VM utilisation. In compar-

ison, automatic scale out achieves low latency with only 25% more resources than the
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Figure 6.9: Comparison between dynamic and manual scale out.

baseline experiment.

Is it possible to mitigate stragglers?

We explore how SDGs handle straggling nodes by creating new TE and SE instances at

runtime. For this, we deploy the collaborative filtering application on our cluster and

include a less powerful machine (2.4 GHz with 4 GB).

Fig. 6.10 shows how the throughput and the number of nodes changes over time as

bottleneck TEs are identified by the system. At the start, a single instance of the getRecVec

TE is deployed. It is identified as a bottleneck, and a second instance is added at t=10 s,

which also causes a new instance of the partial state in the coOcc matrix to be created.

This increases the throughput from 3600–6200 requests/s. The throughput spikes occur

when the input queues of new TE instances fill up.

Since the new node is allocated on the less powerful machine, it becomes a straggler,

limiting overall throughput. At t=30 s, adding a new TE instance without relieving the

straggler does not increase the throughput. At t=50 s, the straggling node is detected by

the system, and a new instance is created to share its work. This increases the throughput

from 6200–11,000 requests/s.

This shows how straggling nodes are mitigated by allocating new TE instances on-demand,

distributing new partial or partitioned SE instances as required. In more extreme cases,

a straggling node could even be removed and the job resumed from a checkpoint with

new nodes.
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Figure 6.10: Runtime parallelism for handling stragglers (collaborative filtering).

6.2 Fault Tolerance

In this section we evaluate the efficiency of the two mechanisms for fault tolerance de-

scribed in the thesis, i.e. recovery using state management, (R+SM) and the large state

mechanisms. We separate the evaluation of both approaches into two sections. We start

with the R+SM approach, followed by the large-state approach §6.2.

Recovery Using State Management (R+SM)

To evaluate the R+SM approach we first compare it with other recovery methods for

stream processing systems such as upstream backup (UB) [BHS09] and source replay

(SR) [TTS+14b]. The comparison is relevant because the core of SEEP is a stream pro-

cessing engine that is general enough to support batch-oriented workloads. We put

special emphasis on the recovery of stateful TEs, and explore the benefits of performing

recovery in parallel—i.e. by scaling out the state first.

For the evaluation, the queries are materialised—each node hosts a portion of the query

and communicates with other nodes that contain upstream and downstream portions of

the query. UB buffers tuples in each processing node and reprocesses them to recover

SE. SR is a variant of UB, in which tuples are only buffered and replayed by the source.

SR and UB are only suitable for stateful TEs whose state can be restored after repro-

cessing few tuples. As a result, we must use a query for which the state that needs to

be maintained is simple. We choose a windowed word count query, which counts word
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Figure 6.11: Recovery time for different fault tolerance mechanisms.

frequencies over a 30 s window. It executes over a stream of sentence fragments from

a Wikipedia corpus, each 140 bytes in size. It has two TEs: a word splitter tokenises

the input stream into words; and a word counter maintains frequency counters for each

word. The state of the word counter is a dictionary of words and their counters.

We observe the recovery times for the three approaches. For R+SM we set the check-

pointing interval c to 5 s. During the experiment, we fail the VM hosting the word counter

TE and measure the time to recover (i.e. until the complete TE state was restored).

Fig. 6.11 shows results averaged over 10 runs for different input rates. SR achieves

slightly faster recovery than UB because of the short length of the SDG pipeline and the

fact that it stops the generation of new tuples during the recovery phase. R+SM achieves

lower recovery times than both UB and SR. Due to the state checkpoints, it re-processes

fewer tuples to recover the stateful TE. In the worst case, it must replay 5 s worth of

tuples instead of the entire window of 30 s. Especially at higher input stream rates, the

overhead of reprocessing tuples dominates recovery time.

In Fig. 6.12, we show the change in recovery time as a function of the checkpointing

interval for different input rates. Tuple buffering is the main factor determining recov-

ery time, which is why recovery time increases considerably with higher rates. While

frequent checkpointing incurs overhead, it reduces recovery time, even for high rates.

To prevent the system from falling behind during recovery, parallel recovery combines

scale out with recovery. In this experiment, we compare serial to parallel R+SM with
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Figure 6.12: Recovery time for different R+SM checkpointing intervals.

Figure 6.13: Recovery time for serial and parallel recovery using state management.
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two partitioned TEs.

Fig. 6.13 shows recovery times for different checkpointing intervals with an input rate

of 500 tuples/s. For short intervals, parallel recovery does not bring a benefit due to

its higher overhead with two partitioned TEs. As the interval increases however, more

tuples have to be replayed when restoring the SE, and parallel recovery can process at a

higher rate with two partitioned TEs.

First, the major bottleneck of failure recovery is data replay. This introduces a tension be-

tween faster recovery time and thus more frequent checkpoints, with the runtime overhead.

Second, parallel recovery can help overcome the previous trade-off, therefore justifying its

additional implementation complexity.

Large State Fault Tolerance

Next, we describe the evaluation of the approach for large state fault tolerance. In par-

ticular, we: (i) explore the recovery time under different recovery strategies; (ii) assess

the advantages of our asynchronous checkpointing mechanism; and (iii) investigate the

overhead with different checkpointing frequencies and state sizes.

For these experiments, we deploy the key value store on one node of our cluster (8 CPU

cores, 2.66 Ghz and 8 GB RAM).

Recovery time. We fail the node under different recovery strategies: an m-to-n recovery

strategy uses m backup nodes to restore to n recovered nodes. For each, we measure the

time to restore the lost SE, reprocess unprocessed data and resume processing.

Fig. 6.14 shows the recovery times for different SE sizes under different strategies: (i) the

simplest strategy, 1-to-1, has the longest recovery time, especially with large state sizes,

because the state is restored from a single node; (ii) the 2-to-1 strategy streams check-

point chunks from two nodes in parallel, which improves disk I/O throughput but also

increases the load on the recovering node when it reconstitutes the state; (iii) in the

1-to-2 strategy, checkpoint chunks are streamed to two recovering nodes, thus halving

the load of state reconstruction; and (iv) the 2-to-2 strategy recovers fastest because
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Figure 6.14: Recovery times with different m-to-n recovery strategies.

it combines the above two strategies—it parallelises both the disk reads and the state

reconstruction.

As the state becomes large, state reconstruction dominates over disk I/O overhead: with

4 GB, streaming from two disks does not improve recovery time. Adopting a strategy that

recovers a failed node with multiple nodes, however, has significant benefit, compared

to cases with smaller state sizes.

Synchronous vs. asynchronous checkpointing. We investigate the benefit of our asyn-

chronous large state mechanism in comparison with synchronous checkpointing that fol-

lows a stop-the-world strategy, as used by Naiad and SEEP with R+SM fault tolerance.

Fig. 6.15 compares the throughput and 99th percentile latency with increasing state sizes.

As the checkpoint size grows from 1 GB to 4 GB, the average throughput under syn-

chronous checkpointing reduces by 33%, and the latency increases from 2 s to 8 s be-

cause the system stops processing while checkpointing. With asynchronous checkpoint-

ing, there is only a small (5%) impact on throughput. Latency is an order of magnitude

lower and only moderately affected (from 200 ms to 500 ms). This result shows that a

synchronous checkpointing approach cannot achieve low-latency processing with large

state sizes.

Checkpointing overhead. Next we evaluate the overhead of our checkpointing mecha-

nism as a function of checkpointing frequency and state size.

Fig. 6.16 and Fig. 6.17 show the processing latency when varying the checkpointing fre-
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Figure 6.15: Comparison of sync. and async. checkpointing.

quency and size respectively. (No FT) represents the case where the checkpointing mech-

anism is disabled.

Checkpointing has a limited impact on latency: without fault tolerance, the 95th per-

centile latency is 68 ms, and it increases to 500 ms when checkpointing 1 GB every 10 s.

This is due to the overhead of merging dirty state and saving checkpoints to disk. In-

creasing the checkpointing frequency or size (see Fig. 6.17) gradually also increases la-

tency: the 95th percentile latency with 4 GB is 850 ms, while checkpointing 2 GB every

4 s results in 1 s.

Beyond that, the checkpointing overhead starts to impact higher percentiles more sig-

nificantly. Checkpointing frequency and size behave almost proportionally: as the state

size increases, the frequency can be reduced to maintain a low processing latency.

Overall this experiment demonstrates the strength of our checkpointing mechanism,

which only locks state while merging dirty state. The locking overhead thus reduces

proportionally to the state update rate.

We show that the large state mechanism is capable of achieving fast recovery times with a

low runtime overhead. By using the N-to-M recovery mechanism, it is possible to alleviate

network and IO bottlenecks, hence speeding up checkpointing and recovery times.



6.2. Fault Tolerance 97

1

10

100

1000

2 4 6 8 10 No FT

L
a

te
n

c
y
 (

m
s
)

Checkpoint frequency (s)

Figure 6.16: Impact of checkpointing frequency on latency.

1

10

100

1000

10000

No FT 1 2 3 4 5

L
a

te
n

c
y
 (

m
s
)

State size (GB)

Figure 6.17: Impact of checkpoint size on latency.



98 Chapter 6. Evaluation

✵

✺✵

✶✵✵

✶✺✵

✷✵✵

✷✺✵

✶✵ ✶✵✵ ✶✵✵✵ ✶✵✵✵✵
❚
�
✁✂
✄
☎
�
✆
✄
✝
✞✟
✠
✠
✠
✁✡
☛
✄
✡
☞
✝☞
✌☞
✍

❲✎✏✑✒✓ ✔✎✕✖ ✗✘✔✙

◆✚✛✚✜✢✣✛✤✥✦✥✧★✩✤✥✪✩✫
❙✬✭

❙✫✧✮✚✯✛✰✤ ❙✪✚✧✱
◆✚✛✚✜✢✲★✳✲✚✫✮✰✴✸

Figure 6.18: Latency with different window sizes (streaming wordcount).

6.3 Comparison with State-of-the-Art

We perform a comparison with other systems of the state-of-the-art along two dimen-

sions. First, we want to understand the support of other systems for fine-grained updates

comparing with Naiad and Streaming Spark. Second, we want to understand the differ-

ences when executing an iterative batch-oriented workload and compare its performance

with Spark.

Update granularity. We show the performance of SDGs with frequent, fine-grained

updates to state. For this, we deploy a streaming word count application on 4 nodes in our

private cluster. Word count reports the word frequencies over a wall clock time window

while processing the Wikipedia dataset. We compare to word count implementations in

Streaming Spark [ZDL+13] and Naiad.

We vary the size of the window, which controls the granularity at which input data

updates the state: the smaller the window size, the less batching can be done when

updating the state. Since Naiad permits the configuration of the batch size independently

of the window size, we use a small batch size (1000 messages) for low-latency (Naiad-

LowLatency) and a large one (20,000 messages) for high-throughput processing (Naiad-

HighThroughput).

Fig. 6.18 shows that only SDG andNaiad-LowLatency can sustain processing for all win-

dow sizes, but SDG has a higher throughput due to Naiad’s scheduling overhead. The

other deployments suffer from the overhead of micro-batching: Streaming Spark has
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Figure 6.19: Scalability in terms of throughput (batch logistic regression).

a throughput similar to SDG, but its smallest sustainable window size is 250 ms, after

which its throughput collapses; Naiad-HighThroughput achieves the highest through-

put of all, but it also cannot support windows smaller than 100 ms. This shows that

SDGs can perform fine-grained state updates without trading off throughput for latency.

Scalability with iterative batch workload. We explore if SDGs can scale to higher

throughput with more nodes in a batch processing scenario. We deploy an implementa-

tion of logistic regression [MSSV09] on Amazon EC2 (“m1.xlarge”; 4 vCPUs with 15 GB).

We compare to logistic regression from Spark [ZCD+12], which is designed for iterative

processing, using the 100 GB dataset provided in its release.

Fig. 6.19 shows the throughput of our SDG implementation and Spark for 25–100 nodes.

Both systems exhibit linear scalability. The throughput of SDGs is higher than Spark,

which is likely due to the pipelining in SDGs, which avoids the re-instantiation of tasks

after each iteration. With higher throughput, iterations are shorter, which leads to a

faster convergence time. We conclude that the management of partial state in the logistic

regression application does not limit scalability compared to existing stateless dataflow

systems.

6.4 Use Case: Smart Grid Analytics

This section describes a use case of a smart grid analytics application that was intro-

duced as part of the 2014 ACM DEBS Grand Challenge [FWPG14b]. The goal is to con-
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duct a comparative evaluation of systems by offering real-world data and requirements

for queries. The 2014 edition of the challenge focuses on measurements of energy con-

sumption at the level of individual electricity plugs in smart home installations. There

are two queries: (i) short-term load forecasting and (ii) load statistics for real-time de-

mand management.

We start with a description of the smart grid analytics problem (§6.4.1). After that, we

explain the solution implemented as part of SEEP, describing each of the TEs in the SDGs

for the queries (§6.4.2). Finally, the section concludes with an experimental evaluation

(§6.4.3), which won the Audience Award at the conference.

6.4.1 Problem Description

The dataset available was obtained from smart plugs installed in private households.

Each plug acts as a proxy between an appliance that is connected to the power grid and

the wall power outlet. The plugs report every second measurements related to power

consumption, i.e. work and load.

Houses are identified by a unique id in the dataset. Each house contains one or more

households, which are identified with a household-id, on a per-house basis. Finally, each

household contains smart plugs, which are identified with a plug-id. Smart plugs mea-

sure load in Watts and the total accumulated work since the start of the sensor in kWh

units.

The dataset has the following characteristics:

High data volume. The data includes load and work events of individual plugs at a reso-

lution of approximately one measurement per second. For the considered 40 houses with

roughly 2000 plugs, this yields a volume of more than 4 billion events for one month.

Given future predicted growth, applications of smart grid analytics can be expected to

process data of hundreds to thousands of houses, increasing the volume by one or two

orders of magnitude.

Unbounded and global state. The queries require sophisticated handling of process-

ing state. Short-term load forecasting requires aggregates to be maintained for an un-
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Figure 6.20: Load measurements (five minute window) indicating change of more than
5 watts.

bounded time window. This is challenging due to the ever-growing state to be stored.

Performance of computation on this state is likely to degrade over time. Also, load statis-

tics for real-time demand management require global aggregation over all houses and

plugs, which limits the options to distribute processing.

Large measurement variability. For the load and work values in the dataset, we ob-

serve a large variability in the frequency with which the values change over time. Some

plugs report close to constant load for long periods of time, and significant changes in

load are correlated between plugs, following global energy consumption patterns. This

effect is shown in Fig. 6.20, which depicts the number of load measurements per five-

minute window when ignoring changes of less than five watts. Considering only the

events that indicate larger changes in load, the amount of events that need to be pro-

cessed varies by up to a factor of seven over time.

Queries

The analysis uses two different queries. Query 1 aims to predict load based on current

load measurements and a model that is continuously trained, i.e. it represents historical

data. In particular, Query 1 must produce predictions on a per-house basis, as well as

for each individual plug.

Query 2 aims to detect outliers that may affect the load prediction. The query must

report the percentage of plugs per house with a median during the last hour that is
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greater than the median of all plugs during last hour. The query has two output streams,

one is a sliding window of one hour and the other for 24 hours. Windows are defined by

application time, i.e. they use timestamps contained and generated in each individual

smart plug. The value of the aggregation must be recomputed every time an event enters

or leaves a sliding window.

6.4.2 Solution Based on Stateful Data-Parallel Processing

This section describes how to implement the queries in a stateful data-parallel processing

model. We first give an overview of the main ideas behind the queries and then we give

details on the TE implementations.

1. Optimised stateful TEs. Given the complex state of the queries, our solution exploits

the stateful data-parallel processing capabilities of SEEP as well as stream TEs with

efficient state handling specific to a given query, e.g. through indexed in-memory

data structures.

2. Filtering and elasticity. We exploit the long periods of relatively constant load mea-

surements in the dataset by performing semantic load-shedding, thus reducing the

total events to process downstream. To support resource-efficient deployments

when the input event rate varies over time, our solution can dynamically provi-

sion processing resources on-demand.

3. Fault tolerance. Our solution supports fault-tolerant processing, which is crucial for

any continuously running data analytics application on a cluster of nodes. Instead

of reprocessing all events after failure, the SE is recovered from periodic state

checkpoints with low overhead.

The structure of the logical dataflow graph for the queries is shown in Fig. 6.21, and

the code is shown in Algorithm 6. A filter TE performs semantic load-shedding across all

load and work measurements (denoted by<input>). This permits, for example, filtering

of events that indicate only a minor change in load for a certain plug. The stateless

filter TE can be scaled out trivially so that different instances realise data parallelism by

partitioning the event stream <input> per house, household or even plug.
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Figure 6.21: The stateful dataflow graph of our solution.

The actual queries are implemented by three TEs, namely Q1, Q2 Plug, and Q2 Global.

Load forecasting and outlier detection are independent queries—their execution is done

in parallel.

Query 1 for load forecasting is realised by TE Q1, and it is done at two levels of ag-

gregation, i.e. plugs and houses. Hence, the TE can be scaled out by partitioning the

respective event stream for the most coarse-grained aggregation, i.e. per house. Data-

parallel processing is of particular importance for this TE because the query requires

the maintenance of an unbounded time window, i.e. it must accumulate historical data

in its state. At the same time, the query also requires frequent updates of the result

stream, i.e. every 30 seconds as specified by the timestamps of the events. When events

are streamed faster than real-time (which is of interest for testing the system) and dis-

tributed over a large number of TE instances, however, it becomes impossible to identify

the intervals for updating the result stream at a particular instance. To solve this issue,

we implement a heartbeat mechanism in the filter TE, which emits a signal to TE Q1

whenever an update is due.

Heartbeat generation is implemented in TE filter because the preprocessing of data is

less costly than the actual load prediction. Hence, the number of instances of TE filter

can be expected to be much smaller than the number of instances of TE Q1. To cope

with data quality issues such as missing values, e.g. as seen around days 20 and 28 in

Fig. 6.20, TE Q1 also features a correction mechanism that is based on the measurements

of cumulative work per plug, which is detailed below.

Query 2 for outlier detection is split up into two TEs. Here, the idea is to separate the

part of the query that can be parallelised from the part that requires global state. Q2

Plug thus takes the input stream and maintains the median of the load per plug for each
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of the time windows. The TE can be scaled out at the level of plugs.

Q2 Global, in turn, maintains the global median over all plugs by receiving all changes to

medians propagated by upstream nodes. It also realises the outlier detection and emits

the results. Due to its global state, the TE cannot be scaled out. To reduce the amount

of computation done at the singleton instance of Q2 Global, it relies on the information

about which measurements entered or left one of the investigated time windows (de-

noted by <plug update> in Fig. 6.21). As a consequence, a large part of the effort to

maintain the time windows per plug is performed by Q2 Plug, which can be scaled out.

In particular, we do not approximate the global median but rather implement an efficient

propagation mechanism to keep it accurate.

Next we describe the TEs for the queries in more detail.

Filter

The filter TE: (i) eliminates duplicates; (ii) performs semantic load-shedding to reduce

the incoming data load; and (iii) generates heartbeats to notify downstream TEs of time

windows closing and opening.

Duplicate elimination. To filter duplicate measurements, the TE maintains the times-

tamps of the last load and work measurements for each plug. Only measurements with

a timestamp larger than the last observed (per plug) are forwarded.

Variability-based filtering. To leverage the large variability in the frequency with which

load values change over time, the filter TE can perform semantic load-shedding, ignoring

measurements that denote a minor change in load with respect to the last non-filtered

measurement. Note that measurements of work are only forwarded if the load mea-

surement with the same timestamp has not been removed by the filter procedure. We

evaluate later the trade-off between this type of filtering and the correctness of the query

results.

Heartbeat generation. The aforementioned heartbeats are generated based on the

timestamps of the processed events. Whenever an event with a timestamp larger than
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the time of the last heartbeat plus the heartbeat interval is received, a new heartbeat is

emitted.

Query 1: Load Prediction

Q1 for load prediction is implemented as follows:

Prediction model. As a baseline, we rely on a prediction model defined as part of the

challenge description, which combines current load measurements with a model over

historical data. More specifically, the load prediction for the time window following the

next one is based on the average load of the current window and the median of the

average loads of windows covering the same time of all past days. The generation of

prediction values is triggered by the heartbeats.

Work-based correction. To address the issues stemming from missing load measure-

ments, we focus on the cumulative work per plug. Correction is triggered when the TE

receives a work measurement, and the number of recorded load measurements for the

preceding window is less than a threshold (chosen based on the expected rate for load

measurements).

Since work is measured at a coarse resolution (1 kWh), the work values enable us to

derive only an approximation of the actual average load. Therefore, the threshold on

the number of load measurements allows for tuning how many load values are required

to avoid computation of the window average based on work values.

If applied, the correction mechanism determines the maximum interval of adjacent win-

dows with insufficient load measurements. The difference between the first and last

work measurement for this period is used to conclude the average load for all the win-

dows.

State handling. Load forecasting relies on the average load per window per plug over

the complete history. To cope with the unbounded state of the query, our implementation

strives for reducing the size of the state as much as possible.

First, we observe that although results have to be provided for five different window

sizes, all of them can be expressed as multiples of the smallest window of one minute.
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Therefore, our implementation only stores the state for the smallest windows.

Second, since prediction is based on the load average, the TE keeps only a sliding aver-

age for the current smallest window and the average load for all historic windows. Load

averages are kept in a two-dimensional array (per plug, per window), and an index struc-

ture allows for quick access of a global identifier for a plug. The index is implemented

as a three-dimensional array over the house, household, and plug identifiers.

For the work-based correction mechanism, additional state needs to be maintained. For

each plug and window, the number of load measurements and the first recorded work

value is maintained in further two-dimensional arrays.

Query 2: Outlier Detection

Outlier detection is realised by TEs Q2 Plug and Q2 Global. The former focuses on the

calculation of windows and the median load per plug; Q2 Global maintains the global

median and performs the actual outlier detection.

Plug windows and median. To maintain the time windows and calculate the median

load per plug, the TE Q2 Plug proceeds as follows. On the arrival of a load measure-

ment, the value and timestamp is added to either window (1 hour and 24 hours) for the

respective plug. The timestamp of the received event is used to remove old events from

both windows. Then, the median of the load values for the plug is calculated. If neither

the median not the multi-set of values of both windows changed, no event is forwarded

to Q2 Global. If there was a change, the new median for the plug as well as the load

values added or removed to either window are sent to Q2 Global (<plug update>).

Outlier detection. To detect outliers, Q2 Global compares the median values per plug as

computed by Q2 Plug with the global median. To compute the latter, the TE maintains

two time windows over all plugs. However, these windows are updated only based on

the values provided by the events of the <plug update> stream generated by Q2 Plug.

Receiving an event of the plug update stream leads to recalculation of the global median

for the respective window. If that has not changed, only the house related to the plug for

which the update has been received is considered in the outlier detection. If the global
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median changed, the plugs of all houses are checked. If the percentage of plugs with a

median load higher than the global median changes, the result stream is updated.

State handling. To implement the time windows, Q2 Plug maintains two double-ended

queues for each plug, one containing the timestamps and one containing the load values.

Implemented as linked lists, these queues allow the insertion of new measurements in

constant time. Accessing and removing events from the queue is done in constant time.

The queue containing the timestamps is used to determine whether elements of the

queue containing the load values should be removed.

To compute the median over the load values per plug, Q2 Plug maintains an indexable

skip-list. Such a skip-list holds an ordered sequence of elements and also maintains a

linked hierarchy of sub-sequences that skip certain elements of the original list. We use

the probabilistic and indexable version of this data structure. The skip paths are ran-

domly chosen and, for each skip path, we also store the length in terms of the number

of skipped elements. This is an example of the benefits of using arbitrary SE implemen-

tations in SDGs.

The indexable skip-list allows for inserting, deleting and searching load values as well as

accessing the load value at a particular list index in logarithmic time. Median calculation

is traced back to a list look-up. Since the query requires the look-up only for the median

element, and not for an arbitrary index, we also keep a pointer to the current median

element of the list, which is updated with every insertion or deletion. Hence, the median

is obtained in constant time.

Although bounded, handling the SE of Q2 Global is challenging due to the sheer number

of measurements that need to be kept (up to 100 million events) and the update fre-

quency. For both windows, our implementation relies on an indexable skip-list and uses

a pointer to the median elements of these lists.

6.4.3 Experimental Evaluation

We evaluate the performance of our system by investigating: (i) if it scales, i.e. whether it

supports more houses; (ii) if it can cope with the current load with headroom, i.e. whether
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the system can process faster than real time; and (iii) how fast it can incorporate predic-

tions, i.e. whether the system can achieve low latency, even when it is distributed.

We deploy the SEEP prototype implementation in a private cluster composed of 10 Intel

Xeon E3-1220 V2 4-core nodes (3.1 Ghz) with 8 GB of RAM, running a Linux kernel

3.2.0 with Java 7. We execute SEEP with the fault tolerant mechanism enabled.

Scalability. To measure scalability, we report relative throughput, where we normalise

the throughput of the system for the baseline case, and show how it increases as we add

more cluster nodes. We explain the bottlenecks observed when conducting the experi-

ments.

Throughput. After analysing the available datasets, we find that we need a system

capable of processing 377 events/s, 696 events/s and 1565 events/s, on average, for

the 10-, 20- and 40-house datasets, respectively, to process the incoming input rate over

a month. SEEP processes three orders of magnitude faster than this. For this reason, we

report speedup over RT (real time) as the number of times that the system process faster

than required to run the queries. As an example, a speedup over RT of 200×, which

would allow for processing one month worth of data in 15 days.

Latency. We measure the end-to-end latency of those events that close windows in both

queries. To measure latency accurately, we place the source and sink of our system on

the same node so that both TEs use the same clock.

For the given queries, the processing cost per event is close to constant regardless of the

dataset size. Dataset sizes, however, have an impact on the total memory required to run

the queries. We exploit the stateful capabilities of SEEP to provide an implementation

that expresses the state efficiently. Note that under this scenario, larger datasets do not

impact the throughput of our system, but only the speedup, as there are more events to

process.

Query 1 Results

The implementation of query 1 consists of two TEs, a filter and Q1 (see Fig. 6.21). For

the baseline system, each of the TEs is deployed on a single node of the cluster. For our
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Figure 6.22: Throughput and speedup as a function of the number of houses. With a
constant throughput, growing the size of the dataset implies a lower speedup.

distributed deployment, we scale out from 2 to 6 nodes.

Baseline deployment. Fig. 6.22 shows the 10th , 50th , and 90th percentile of through-

put. As expected, this is almost constant across the different workload sizes but the

speedup over RT decreases as there are more events to process. With a speedup over

RT of around 900×, the system can process one month worth of data from 10 houses in

about one hour, while it will take around four hours to do the same for 40 houses.

Distributed deployment. Ideally, we want the system to scale to support the data from

more houses. This is equivalent to keeping the speedup over RT constant. We exploit

data parallelism to aggregate throughput, thus keeping constant or even increasing the

speedup over RT.

Fig. 6.23 shows on the x-axis the number of cluster nodes. The relative throughput in-

creases linearly from 2 to 3 nodes, sub-linearly until 5, and then we find a spike when

using 6 nodes. The reason for the sub-linear behaviour is due to the sink TE: it aggregates

the results from the distributed nodes, becoming an I/O bottleneck. To confirm this, we

scale out the sink and run the system with 6 nodes, which shows how the throughput

increases again. The speedup over RT in this experiment always increases, which con-

firms that SEEP can scale to bigger datasets while sustaining the throughput. We stop

at 6 nodes when the source becomes a bottleneck. In a real scenario with distributed

sources, this would not be an issue.

Table 6.24 shows the latencies for both the baseline and the distributed deployment.
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Figure 6.23: Throughput and speedup over RT as a function of the number of machines.
We increase the speedup by scaling out the system to aggregate throughput.

Q1 Distributed Q1 Q2 Distributed Q2

10th 4 ms 3 ms 118 ms 40 ms
50th 17 ms 12 ms 136 ms 150 ms
90th 31 ms 21 ms 160 ms 186 ms

Figure 6.24: Latencies for both queries with baseline and distributed deployment.

The major sources of latency spikes in SEEP are the buffering mechanism used for fault

tolerance, and the interaction of this with the garbage collector under high memory

utilisation scenarios. Neither of these happen for Query 1. Our latencies are slightly

lower than in the non-scaled case. The reason for this is that the source cannot insert

data at higher rates. Events thus traverse the same number of queues and processing

elements as in the non-scaled case but with more headroom.

Query 2 Results

Our implementation of Query 2 consists of three TEs, filter, Q2 Plug and Q2 Global (see

Fig. 6.21). Hence, the baseline deployment comprises 3 nodes in the cluster. For the

distributed deployment, we scale out from 3 to 7 nodes.

Baseline deployment. Fig. 6.25 shows the expected behaviour: speedup decreases as

the dataset grows in event size. This query is computationally more expensive than

Query 1. In our solution, this translates to a total time of 3.2 hours to process one month

of data for 10 houses to 13 hours to do the same for 40 houses.
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Figure 6.26: Distributed deployment of query 2. Scaling out the query aggregates
throughput and increases the speedup.

Distributed deployment. We follow the same strategy of scaling out the system to in-

crease the speedup over the minimum throughput required by the system, reported in

Fig. 6.26. When adding more cluster nodes, the throughput increases, except between 5

and 6 nodes. The reason for this behaviour is that there were two simultaneous bottle-

necks: a CPU bottleneck, which disappears after scaling from 5 to 6 nodes, gives rise to

an I/O bottleneck. After scaling out the I/O bottleneck, the speedup can keep increasing.

We stop our query when the source becomes a bottleneck.

The latencies for Query 2 are reported in Table 6.24. They are higher than for Query 1

because, while the bottleneck in query 1 is I/O (serialisation and deserialisation), this

query is CPU-bound.

Impact of semantic load-shedding. To investigate the inherent trade-off of result ac-
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Figure 6.27: Time series over 4 days showing a low prediction error for plugs over 5-
minute windows. Note that the 10th and 50th percentile lines overlap with the x-axis.
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Figure 6.28: Time series over 4 days showing a low prediction error for houses over
5-minute windows.

curacy and computation efficiency implied by semantic load-shedding, we compare the

load predictions derived by Query 1 for a sample of 4 days. We focus on the predictions

derived for the smallest time window (one minute). This window represents the most

challenging case because, for larger windows, the relative importance of filtered events

is smaller and thus accuracy is less affected.

In Fig. 6.27 and 6.28, we show the absolute prediction error for plugs and houses, re-

spectively, aggregated for windows of 5 minutes. For individual plugs, although the 90th

percentile shows spikes up to 15 watt, the median error is zero in virtually all cases. For

load prediction of houses, in turn, the median error is largely between 1 and 3 watts and

there is little variability in the results. Based on these results, we conclude that the error

is small enough to justify the use of the mechanism.
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Figure 6.29: When applying semantic load-shedding, the speedup grows by two orders
of magnitude (note the logarithmic scale). One month worth of data for 40 houses is
processed in 17 minutes.

Regarding the benefits of load-shedding for processing performance, Fig. 6.29 shows

the difference in throughput and speedup over RT when enabling the mechanism. As

discussed before, the throughput per node is mostly unaffected because processing cost

per event is close to constant. However, we observe an improvement of speedup of two

orders of magnitude, meaning that one month worth of data for 40 houses is processed

in 17 minutes. This drastic speedup together with the low accuracy loss justifies the

usage of semantic load-shedding in this scenario—it results in more headroom to scale

out the system to accommodate the load from more houses.

6.4.4 Summary

We presented a solution to Smart Grid analytics problem based on stateful data-parallel

processing. This solution demonstrates benefits of Stateful Dataflow Graphs: by exploit-

ing the explicit state representation, we could implement efficient data structures that

lead to a high throughput, low latency and a fault tolerant solution.

6.5 Summary

In this chapter, we evaluated the idea of stateful data-parallel processing. We imple-

mented challenging applications that demand both high-throughput and low-latency re-
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sults. We used iterative machine learning applications to show how SDG can also process

batch-oriented applications with good performance.

To contextualise the results, we compared with several state of the art systems such

as Naiad and Spark. We showed how SDG can maintain high-throughput even with

low latencies. This is particularly the case when applications access state with fine-

granularity, a situation in which the performance of other systems suffer.

We also described some of the applications of stateful data-parallel processing. First in

the context of a smart grid analytics application, and second as part of a deployment at

a data-intensive Internet company, which relies on a stack formed by Apache Kafka and

Apache Samza for stateful processing.
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1 public class SmartGridAnalytics implements SeepProgram {

2 @Partitioned // Counts number of load measur. rx for the current slice .
3 Vector<ArrayList<Integer>> valueCountForCurrentSlicePerPlug = new Vector<>();

4 @Partitioned // Holds avg load per plug per slice . Partitioned by house_id
5 Vector<ArrayList<Integer>> loadAveragePerPlugPerSlice = new Vector<>();

6 @Partitioned // First work value for each plug and slice . Partitioned by house_id
7 Vector<ArrayList<Float>> workPerPlugPerSlice = new Vector<>();
8 Map<Integer,Deque<Float>> valuesOneHourPerPlug = new HashMap<>();
9 Map<Integer,Deque<Integer>> timestampsOneHourPerPlug = new HashMap<>();

10 Map<Integer,List<Float>> valuesSortedByValueOneHourPerPlug = new HashMap<>();
11 Map<Integer, Float> currentMedianOneHourPerPlug = new HashMap<>();

12 SkipList valuesSortedByValueOneHour = new SkipList(); //Custom impl
13 Map<Integer, List<Integer>> housePlugs = new HashMap<>();
14 Map<Integer, Integer> plugHouses = new HashMap<>();
15 Map<Integer, Float> shareOfOutlierPlugsOneHourPerHouse = new HashMap<>();
16

17 public boolean filter(long id, int timestamp, float value, int property,
18 int plug_id, int household_id, int house_id) {
19 boolean filtered = filterNotNewMeasurements(property, id, timestamp);
20 filtered = filterMeasurementsThatDoNotChangeAvg(id, timestamp, value,
21 plug_id, household_id, house_id, filtered);
22 return checkAndSendHeartbeat(timestamp);
23 }
24 public Result q1(long id, int timestamp, float value, int property,
25 int plug_id, int household_id, int house_id) {
26 boolean heartbeat = filter(house_id, id, timestamp,
27 property, household_id, plug_id, value);
28 if (heartbeat) {
29 if (checkSendUpdates(timestamp)) {
30 return new Result(id, timestamp, value, property,
31 plug_id, household_id, house_id);
32 }
33 }
34 useWorkForCorrections(timestamp, household_id, plug_id, value, workPerPlugPerSlice);
35 updateLoadAvg(household_id, plug_id, value, loadAveragePerPlugPerSlice,
36 valueCountForCurrentSlicePerPlug);
37 }
38 public Result q2(long id, int timestamp, float value, int property,
39 int plug_id, int household_id, int house_id) {
40 filter(house_id, id, timestamp, property, household_id, plug_id, value);
41 handleOneHourWindow(valuesOneHourPerPlug, timestampsOneHourPerPlug,
42 valuesSortedByValueOneHour, timestamp, value);
43 insertValueIntoCurrentWindow(value, valuesSortedByValueOneHour);
44 float median = getMedian(valuesSortedByValueOneHour);
45 float outliers = checkOutliers(house_id, median, plug_id,
46 shareOfOutliersPlugsOneHourPerHouse);
47 return new Result(id, timestamp, outliers, property,
48 plug_id, household_id, house_id);
49 }
50 @Override
51 public SeepProgramConfiguration configure(){
52 SeepProgramConfiguration spc = new SeepProgramConfiguration();
53 Schema sch = SchemaBuilder.getInstance()
54 .newField(Type.LONG, "id")
55 .newField(Type.INT, "timestamp")
56 .newField(Type.FLOAT, "value")
57 .newField(Type.INT, "property")
58 .newField(Type.INT, "plug_id")
59 .newField(Type.INT, "household_id")
60 .newField(Type.INT, "house_id")
61 .build();
62 DataStore src = new DataStore(DataStoreType.NETWORK);
63 DataStore sink = new DataStore(DataStoreType.CONSOLE);
64 spc.newWorkflow("q1", srcData, sch, sink, sch);
65 spc.newWorkflow("q2", srcData, sch, sink, sch);
66 return spc;
67 }
68 }

Algorithm 6: Smart Grid queries example
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Conclusion

Data-parallel processing systems were developed by big Internet companies facing a big

data analysis problem as a means to address their processing needs. Today, big data

technologies are present across many more sectors of society, from healthcare to enter-

tainment, and this trend is only expected to grow in the future: from the Internet of

Things [DB], which could multiply the current volume of data, to The Fourth Paradigm

[THT], which pursues to improve how science is done today, we will witness how better

big data technology affects our daily lives and the economy at large.

Research on big data encompasses many different disciplines, from systems and database

research to machine learning and statistics. The availability of data-parallel processing

systems and cheap access to public clouds has enabled domain scientists to benefit from

these new technologies. This increased participation of people with different expertise

has a twofold advantage: first, systems and database researchers have extended the lim-

its of these systems; second, other domains have benefited from the new scale at which

they can perform their experiments cheaply. For example, machine learning research can

now be evaluated on large volumes of data, unlike in the past, where computationally

expensive algorithms could only be run on small datasets.

There are still many opportunities to improve further the performance and features of

data-parallel processing systems. In this thesis, we argued that by facilitating the access

to these technologies, advances will speed up. This is the argument of the so-called

democratisation of data. With more users getting access to large volumes of data, and

116
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the promise of the positive impact that this may bring to our society, data processing

must not become the limiting factor.

The stateless processing model on which data-parallel processing systems were based

restricts an important class of applications that are increasingly demanded by new do-

mains: stateful applications. To facilitate researchers to benefit from data-parallel pro-

cessing, it is necessary to: (i) permit them to write stateful algorithms concisely; and (ii)

offer the same performance and features as other systems for this class of algorithms.

Current stateless processing systems do not permit high-performance execution of state-

ful algorithms that update state at a fine-granularity.

This thesis proposed a new processing model, stateful dataflow graphs (SDGs), which

permits the execution of stateful algorithms with high performance. In addition, it pro-

posed a method to translate imperative programs to SDGs for execution. This permits

developers to use state explicitly, therefore facilitating the representation of stateful al-

gorithms.

We implemented SEEP, a stateful data-parallel processing system to evaluate the ideas

in this thesis. With SDGs it becomes easier to support both batch-processing—optimised

for high-performance—and stream-processing—optimised for low latency. Stateful data-

parallel processing is then one way of unifying both processing models, while maintain-

ing for both the scalability and fault tolerance properties.

7.1 Thesis Summary

This thesis began outlining the events of the last decade that gave rise to a wide range

of data-parallel processing systems. The success of Internet companies that store user-

generated data to provide better services to users, plus the rise of utility computing with

cloud systems, triggered a wave of innovation that produced a rich ecosystem of data-

parallel processing systems for different workloads.

All these systems are designed to be scalable—adding more computational resources

should provide a linear throughput improvement. They target shared-nothing architec-

tures, and for that reason they need to be fault-tolerant: failures are common in large



118 Chapter 7. Conclusion

scale shared-nothing clusters. In order to facilitate achieving these properties, all these

systems provide a stateless processing model. This permits to capture parallelisation op-

portunities directly from higher-order functions in the code and to abstract away fault

tolerance, so that developers do not need to handle it explicitly.

In the background section, we showed the evolution of the processing models of data-

parallel processing systems. In the early days of the MapReduce model, the focus was on

increasing the expressiveness of dataflow graphs, mainly by means of adding new higher-

order functions. Dryad, Spark and Flink are examples of such enhancements. Systems

have also improved their efficiency, mostly by focusing on in-memory computation when-

ever possible. Despite this evolution, all these systems do not permit high-performance

execution of stateful algorithms that require fine-grained updates to state. Another con-

sequence of their stateless processing models is that it is hard to write stateful algorithms

that require explicit access to state.

To overcome these shortcomings, we introduced stateful data-parallel processing. In

particular, we described Stateful Dataflow Graphs (SDG), which are a new dataflow

abstraction that explicitly represents the state in the dataflow graph of computation. In

order to provide scalable processing, it avoids remote state accesses by introducing two

abstractions for distributed mutable state, partitioned and partial.

The new abstraction of stateful dataflow graphs must be scalable and fault tolerant. Ad-

ditionally, it has to provide low-latency results and be elastic, i.e. so that it can dynam-

ically adapt to workload spikes. Explicit state in the processing model makes achieving

such properties challenging. To address it, we make state a first-class citizen. This means

that the system knows about the state handled by applications and can manipulate it. For

example, it can partition the state when necessary, as well as move it across machines to

enable checkpointing for fault tolerance. We present a set of primitives to handle state,

and compose the primitives in an integrated approach for scale out and fault tolerance.

The integrated approach relies on the notion of a node failing being equivalent to a node

scaling out.

Fault tolerance is a challenging problem when state is large, i.e. when it requires more

memory than is available in a single machine. We introduce a technique that takes

independent checkpoints of the state without blocking the critical data processing path.
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This is achieved by capturing all intermediate state updates—those occurring while the

checkpoint is being taken—in a data structure and reconciling this with the state once

the checkpoint is taken. For low-overhead backup and state recovery, we introduce an

n-to-m model that permits to backup state of any machine to n machines and to recover

to m machines after a failure, thus avoiding network and disk bottlenecks.

After showing how we can implement a stateful data-parallel processing system that

implements SDGs, we focus on the programming model, where the goal is to offer an

imperative interface to developers. We presented Java2SDG, which is a tool that trans-

lates Java programs to SDGs, for high-performance and low-latency computation. The

tool performs static analysis on the Java program provided by users to separate com-

putation from data and state. It then synthesises a SDG that represents the algorithm.

When synthesising state, however, the tool requires developer support: whether state

is partitioned or partial depends on application semantics. In order to capture this in-

formation, we introduce annotations that developers must use in their Java programs

to indicate the type of distributed mutable state. In the case of partial state, it is also

necessary to indicate what type of access is intended.

We evaluated these ideas as part of SEEP, a stateful data-parallel processing prototype.

We implemented different applications on top of the system and compare them with

other systems. We show how stateful data-parallel processing achieves competitive

throughput and how it can maintain lower latency. Additionally, we evaluate our fault

tolerance mechanisms and measure overhead. Finally we present an application of the

ideas presented in this thesis in the context of a smart grid analytics applications. Before

discussing some future work, we explain next a successful case of stateful data processing

in the context of LinkedIn, a data-intensive web company.

7.2 SDG in Practice: Big Data Integration

In this section we describe a real-world application of stateful data-parallel processing to

the problem of Big Data Integration. The solution is used in production at LinkedIn [FPK+15],

a data-intensive web company, and applies to many other companies with similar data in-

tegration problems. Stateful data-parallel processing is implemented in Apache Samza [Apac],
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a system focused on streaming workloads that runs on top of Apache Kafka [Apab]—a

messaging systems that provides reliability and high-performance message communica-

tion.

With more sophisticated data-parallel processing systems, the new bottleneck in data-

intensive companies shifts from the back-end data systems to the data integration stack,

which is responsible for the preprocessing of data for back-end applications. The use

of back-end data systems with different access latencies and data integration require-

ments poses new challenges that current data integration stacks based on distributed

file systems—proposed a decade ago for batch-oriented processing—cannot address.

The solution described is a novel alternative to satisfy the data integration needs of

modern web companies. It consists of a data integration stack that provides low latency

data access to support near real-time in addition to batch applications. It supports in-

cremental processing, and is cost-efficient and highly available. We refer to the stateful

data-parallel processing architecture used to solve this problem as Liquid. Liquid has

two layers: a processing layer based on a stateful stream processing model, im-

plemented in Samza, and a messaging layer with a highly-available publish/subscribe

system, implemented by Kafka. SDGs are implemented as part of Samza and Kafka.

Samza is responsible for implementing both the TEs and SEs; Kafka provides commu-

nication capabilities, (i.e. the dataflows that connect TEs) and works as a repository to

store checkpoints produced by Samza. We report the experience of a Liquid deployment

with backend data systems at LinkedIn, a company with over 300 million users.

The section is structured as follows. We first start with an overview of the problem of big

data integration (§7.2.1). We then describe the SDG implementation on top of Liquid

(§7.2.2), and conclude with examples of applications that use SDGs and exemplify the

benefits of a stateful processing stack for big data integration (§7.2.3).

7.2.1 The Problem of Data Integration

Web companies such as Google, Facebook and LinkedIn generate value for their users by

analysing ever-increasing amounts of data. Higher user-perceived value means better

user engagement, which, in turn, generates even more data. While this high volume of
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append-only data is invaluable for organisations, it becomes expensive to integrate us-

ing proprietary, often hard-to-scale data warehouses. Instead, organisations create their

own data integration stacks for storing data and serving it to back-end data processing

systems. Today’s data integration stacks are frequently based on a MapReduce (MR)

model [DG04]—they run custom ETL-like MR jobs on commodity shared-nothing clus-

ters with scalable distributed file systems (DFS) such as GFS [GGL03] or HDFS [HDF]

in order to produce data for back-end systems [LR13].

With the inflow of data-parallel processing systems facilitating the analysis of large vol-

umes of data, a new bottleneck appears in the data integration stack. Many organisations

today use a MR/DFS stack for data integration: the storage layer uses a DFS to store data

in a cost-effective way, sharding it over nodes in a cluster; the processing layer executes

batch-oriented MR jobs, which clean, normalise and pre-process the data. Such a design

has several limitations.

First, intermediate results of MR jobs are written to the DFS, resulting in higher latencies

as job pipelines grow. Second, to avoid reprocessing all data after updates, back-end

systems must support incremental processing, which requires fine-grained access to the

data, not supported by the MR/DFS stacks. To address the above challenges, a common

approach is for backend systems to execute on their own duplicate copies of the “source-

of-truth” data [TSA+10, OHB+11]. This approach breaks the single “source-of-truth”

abstraction and requires handling divergent replicas.

Finally, when applications require low-latency results, current data integration stacks are

not a viable option. Stream processing systems are then deployed to feed directly from

data sources, overall leading to a more complex and brittle infrastructure.

Current Approaches for Data Integration

As organisations have discovered the limitations of existing data integration approaches,

this has led to new architectural patterns:

Lambda architecture [wJW15]. In this pattern, input data is sent to both an offline

and an online processing system. Both systems execute the same processing logic and
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data to the messaging layer.

Back-end systems read data from the input feeds, after Liquid has preprocessed them to

meet application-specific requirements. These jobs are executed by the processing layer,

which reads data from input feeds and outputs processed data to new output feeds.

The implementation of SDGs in two layers is an important design decision. By keeping

both layers separated, producers and consumers can be decoupled completely, i.e. a job

at the processing layer can consume from a feed more slowly than the rate at which

another job published the data without affecting each other’s performance. In addition,

the separation improves the operational characteristics of the data integration stack in

a large organisation, particularly when it is developed and operated by independent

teams: separation of concerns allows for management flexibility, and each layer can

evolve without affecting the other.

Messaging layer. The messaging layer is based on a topic-based publish/subscribe com-

munication model. This model is appropriate because it abstracts data delivery, which

makes it easier to offer it as a service—with advantages from an operational point of

view. With this model, connecting TEs in the SDG only requires to agree on the topics

to which each pair of TEs subscribes and publishes. Data is published to and consumed

from brokers in the messaging layer that handle data delivery. For high throughput reads

and writes, each dataflow in the SDG model is organised as multiple partitions of a topic

in the messaging layer.

Clients of the messaging layer, i.e. TEs, use offsets included in the tuples to keep track of

the latest consumed data per partition. TEs pull data from brokers by providing a set of

offsets. After a pull request, brokers return the latest data after the specified offsets. This

approach makes it efficient to maintain the latest consumed data, i.e. it only requires to

store a single integer per partition.

Metadata-based access. The messaging layer uses a highly-available, logically-centralised

offset manager to maintain annotations on the data, which can be queried by clients.

For example, TEs can checkpoint their last consumed offsets to save their progress; after

failure, they can ask for the last data that they processed. To reprocess data, TEs can

include metadata, such as timestamps, with the offsets and retrieve data according to
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these previously-stored timestamps.

Processing layer. As shown in Fig. 7.2, a TE embodies computation over streams, pro-

vided by the messaging layer. Input data coming from feeds in the messaging layer is

processed by the TEs, that can optionally update some SEs and output results back to

the messaging layer.

For parallel processing, a TE can be partitioned and each instance consumes data from a

different partition of a topic. Stateless TEs get all their input data from the input stream,

while a stateful TE has explicit access to a SE that evolves as part of the computation.

For fault tolerance, checkpoints are stored in the form of a replayable changelog that is

maintained with high availability by the messaging layer.

Incremental processing. The stateful processing layer can process data incrementally by

exploiting explicit state and the functionality of the offset manager. A TE can periodically

checkpoint the offsets that it has consumed and maintain a summary of the input data as

part of its SE. When new input data becomes available, the TE can thus ignore already

processed data. For scenarios where data changes frequently, this incremental processing

capability is highly valuable.

7.2.3 Evaluation

The SDG-based solution for data integration presented in this chapter is pervasive across

the back-end systems at LinkedIn. The messaging layer, based on Apache Kafka, runs in 5

co-location centres, spanning different geographical areas. It ingests over 50 TB of input

data and produces over 250 TB of output data daily (including replication). For this,

it uses around 30 different clusters, comprised of 300 machines in total that host over

25,000 topics and 200,000 partitions. The stateful processing layer, based on Apache

Samza, spans across 8 clusters with over 60 machines. Overall, Liquid is deployed on

more than 400 machines that perform data integration and adaptation for back-end and

front-end systems.

Data cleaning and normalisation. A crucial task in many organisations is to clean

and normalise user-generated content. This is typically done by specialised algorithms
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that, e.g. disambiguate entities or detect synonyms in text data. To achieve best results,

algorithms must operate on the latest content, which is challenging because (i) users

continuously generate new content; and (ii) engineers continuously optimise their pro-

cessing algorithms.

These two challenges require different system properties: when users generate new con-

tent, the cleaning pipeline must have low-latency, so that new information is incorpo-

rated quickly, e.g. appearing when users search the website; when the source code of

the cleaning pipeline changes, it is necessary to reprocess data with the new algorithm

so that all data was cleaned with the same algorithm.

Before the deployment of Liquid, there were two different sub-systems for data cleaning,

one for the nearline case (i.e. new content from users) and another for the batch case

(i.e. changes in the pipeline code). This meant that each time that new cleaning code

was written, it had to be tested against both cases, which was time-consuming and error-

prone. Even worse, these sub-systems were shared by different teams, making resource

isolation impossible: bugs in one sub-system affected the other.

The use of a stack based on stateful processing brought several benefits: it achieved

(i) more efficient re-processing, i.e. it is now easier to integrate the latest user-generated

data with current results by using SEs, or to clean past data with new algorithms; and

(ii) lower data access latency, which allows back-end systems to serve freshly cleaned

data.

Site speed monitoring. To improve the user experience, web companies monitor the

page loading times by tracking client-generated events, often referred to as real user

monitoring (RUM). Events are stored first and analysed later to detect anomalies and

performance problems in the loading times. A fundamental issue with this approach is

that problems are not detected promptly, which prevents corrective actions to be issued

in real-time. For example, if the root cause of a page loading problem is quickly isolated

to a particular CDN, traffic can be re-routed to different servers.

With the new stack, when a client visits a webpage, an event is created that contains

a timestamp, the page or resource loaded, the time that it took to load, the IP address

location of the requesting client and the content delivery network (CDN) used to serve
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the resource. These events are consumed by an SDG, which groups them by location,

CDN, or other dimensions.

Based on this data, Liquid can feed back-end applications that detect anomalies: e.g.

CDNs that are performing particularly slowly, or increased loading times from specific

client locations. Back-end applications can consume already preprocessed data that di-

vides user events per session. As a result, back-end applications can detect anomalies

within minutes as opposed to hours, permitting a rapid response to incidents. All of this

is possible because TEs in the SDG of the application can keep arbitrary state in their

SEs.

Call graph assembly. At LinkedIn, dynamic web pages are built from thousands of REST

calls, which are executed by distributed machines. Each call can subsequently trigger

other calls, and the responses of all these calls constitute the generated web page. This

makes it important to detect slow calls, which indicate problems with a particular service.

Before the deployment of the new data integration stack, the usual procedure was to

analyse all logs after they were stored in the DFS, i.e. a batch job constructed a call

graph hours after an incident was logged. SDGs—with their implementation on top

of Liquid—enabled to move such processing earlier in the pipeline reducing latency and

identifying potential problems within seconds rather than hours. Other organisations use

purpose-built systems for this task, such as Dapper [SBB+10] at Google, or Zipkin [Zip]

at Twitter.

The call graph assembly is an SDG running on top of Liquid. Liquid records each event

produced by the REST calls and stores them in the messaging layer with a unique iden-

tifier per user call, as assigned by the front-end system, i.e. all REST calls for a given

request share the same identifier. The processing layer processes these events to assem-

ble the call graph. The call graph is used in production to monitor the site in real-time,

and to inform capacity planning decisions.

Operational analysis. Analysing operational data, such as metrics, alerts and logs, is

crucial to react to potential problems quickly. Not only malfunctioning software or phys-

ical machines but also fraud attempts require prompt action. The volume of data grows

with the number of monitoring metrics and logs, and increases due to new features and
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hardware resources. Previously all this data was stored in the DFS, which meant that it

was retrieved and analysed only after a problem was detected.

At LinkedIn, an internal service running several different SDGs presents a range of busi-

ness, operational and user metrics as visualisations that help different teams understand

the current infrastructure status. With the new stack, integrating new data, such as crash

reports from mobile phones, is straightforward: all data is transported by the messaging

layer, which only needs to produce a new metric. The stateful processing layer helps

prepare data for visualisations and provides aggregate values, to facilitate analysis.

7.3 Future Work

During the writing of this thesis, we identified a number of topics for future work.

Convergence of data serving and analytics. A use case that stateful data-parallel pro-

cessing enables is to merge computation that requires low-latency and computation that

requires high-performance. One such example is the online collaborative filtering use

case presented in this thesis. Typically, data-parallel processing systems would be used

to perform the analytics side of the process, and some other logic would make those

results available for serving. Stateful data-parallel processing can provide an alternative

to unify both.

Materialise vs schedule tasks. We take a particular stance in this thesis regarding our

task placement model, and always materialise tasks. The reason for this decision is to

support streaming workloads, for which materialised tasks are better suited. However,

we aim to revisit our decision of only supporting materialising tasks: a scheduled system

may be more efficient in pure batch-oriented scenarios and provide some additional

flexibility when deploying the system with resource managers such as Mesos [HKZ+11]

or YARN [VMD+13].

Elasticity within resource managers. We proposed the first elastic and fault tolerant

stateful data-parallel processing system in a cluster environment. We focused on public

clouds, where elasticity brings important cost benefits. With the adoption of resource
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managers to support multi-tenancy in clusters, we aim to revisit our ideas in this new

context. Resource managers control the amount of resources granted to applications

and can dynamically change such decisions. However, only applications know precisely

when they require more resources, i.e. because they detect a load spike, for example.

The interactions between both systems are intertwined, and we plan to investigate how

we can coordinate them for correct and efficient operation.

Imperative programming model. The Java-based programming model that we pre-

sented in this thesis is a first step towards an interface that would facilitate writing

stateful programs. A limitation of our approach is that we require users to explicitly

provide a merge function when they perform global reads on partial state. This func-

tion is orthogonal to the algorithm’s logic. We plan to investigate other data structures,

such as CRDTs that can merge results implicitly, as well as incorporate static analysis to

understand to what extent this problem can be alleviated.
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