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Abstract

The survival probability of a neutron injected into a supercritical fissile medium is
studied with respect to the energy dependence of the incoming neutron. We assume a
point model but allow the energy dependence to be included through a general energy
exchange model. We have studied the effect of slowing down on the survival probability
by means of the Pál-Bell equation and the Goertzel-Greuling kernel, the separable
kernel, the Hansen-Roach dataset and a WIMS generated dataset for a homogenised
reactor to approximate the slowing down process. The Goertzel-Greuling model is
known to be exact for A = 1 and reverts to age theory for large mass ratios. It is also
accurate for all intermediate mass numbers, except possibly when strong resonances
are present. The separable kernel is a simple model of energy exchange, corresponding
to the thermalisation of neutrons in a single collision, which ignores the slowing down
process but provides a simple result allowing both ends of the reactor spectrum to
be included. The Hansen-Roach data set is obtained from a realistic slowing down
model in a fast system and the thermal system is modelled by homogenised reactor
data, generated using WIMS, and is typical of the material found in a PWR. Using a
scattering cross section which is an arbitrary function of energy, and capture and fission
cross sections which are proportional to 1/v, we find that the survival probability is
energy independent insofar as it depends only on the values of the ratio of the fission
and capture cross sections. For non-1/v cross sections there is an energy dependence
which we discuss below. The formalism developed is robust enough for studies to be
made of the influence of resonance cross sections and inelastic scattering on survival
probability.

1. Introduction

The survival probability of a neutron injected into a super-critical fissile medium
has long been a subject of study in connection with low source start up (Hurwitz et
al, 1963; Bell, 1963) and fast burst reactors such as Godiva (Wimmett et al, 1960;
Hansen, 1960). A complete theory of this subject has been developed over the years,
in particular by Bell (1965) and Pál (1958, 1962) and is summarised comprehensively
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in Pázsit and Pál (2008). The general theory encompasses a detailed energy, space and
time dependence of the probability function but, in many practical cases, it is adequate
to simplify this to the point model which is independent of space and energy. The point
model assumes a global average over space, angle and energy and it is of some interest
to examine the influence of the energy dependence of the cross sections and the slowing
down process on the results obtained from it. These might be expected to be large as
neutrons are born in fission in the MeV energy region and end up, after slowing down,
in the thermal region v 0.025eV; thus a very large energy span is involved. We will
study this matter by considering the survival probability of a neutron injected into
an infinite medium at a given speed and examine the influence of the slowing down
process on the outcome. For simplicity, we assume in one case that the material is
pure 235U and in the other case that it is a homogeneous mixture of material typical
of a PWR.

We will show that if the absorption and fission cross sections follow the 1/v law, then
the survival probability is independent of the slowing down model. For more realistic
variations of cross section energy dependence, the survival probability is found to be
a function of the slowing down model. Some explicit examples of this behaviour are
given by developing a numerical method using three different models for the scattering
process: Goertzel-Greuling, separable kernel (Williams, 1966) and finally the use of
explicit scattering cross sections from both the Hansen and Roach dataset (1961) for
a fast system and a WIMS generated dataset for a thermal system.

2. General Theory

2.1. Energy dependent Pál-Bell equation and its influence on the point model results

The complete Pál-Bell equation, as derived by Pázsit and Pál (2008), for the gen-
erating function

G(z, t, R|~r0, ~v0, s) =
∞∑
n=0

znP (n, t, R|~r0, ~v0, s) (1)

is given by

∂G(z, t, R|~r0, ~v0, s)
∂s

+ T̂G(z, t, R|~r0, ~v0, s) + λf (~r0, ~v0, s)f
[
Gp(z, t, R|~r0, s), ~v0

]
+ λc(~r0, ~v0, s) = 0

(2)

where λa = λc + λf

T̂G(z, t, R|~r0, ~v0, s) =−
(
λa(~r0, ~v0, s) + λs(~r0, ~v0, s)

)
G(z, t, R|~r0, ~v0, s)

+ ~v0.∇~r0G(z, t, R|~r0, ~v0, s)

+ λs(~r0, ~v0, s)

∫
d~v′g(~v0 → ~v′)G(z, t, R|~r0,~v′, s)

(3)

Where g(~v0 → ~v′) is the slowing down kernel and
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Gp(z, t, R|~r0, s) =

∫
d~v0
′F0(~v0)G(z, t, R|~r0, ~v0′, s) (4)

f(x, ~v0) defines the random emission of neutrons in a fission event and is defined
by

f(x, ~v0) =
K∑
k=0

(−1)k

k!
χk(~v0)

(
1− x

)k
(5)

with the multiplicity χk, given in terms of the probability of ν neutrons emitted in
a fission event pν , by

χk =
K∑
ν=k

ν!

(ν − k)!
pν (6)

Note that we use slightly different notation to Pázsit and Pál in that they use Q to
denote the transition rate and we use λ. Also, Pázsit and Pál use Qa for their capture
rate while we use λc, with λa = λc + λf . F0(~v) is the fission spectrum of the prompt
neutrons. The final conditions associated with equation 2 are

G(z, t, R|~r0, ~v0, t) = 1− (1− z)∆(~r0, Vr)∆(~v0, Uv) (7)

where

∆( ~u0, U) = 1 if ~u0 ∈ U and ∆( ~u0, U) = 0 if ~u0 /∈ U (8)

G(z, t, R|~r0, ~v0, s), as defined above is the ‘single particle generating function’ and
is always time dependent as it relates to the chain initiated by a single neutron. Vr is a
sub-region within the reactor and Uv is an energy range; generally the complete range.
The usefulness of G is that it does not change when different sources are used and, in
a loose sense, is analogous to a Greens function. To relate G to the case where there
is an independent source, we proceed as follows. Such a source can itself emit varying
numbers of neutrons at each disintegration and this will also be dealt with in the same
way as for the forward equation. Now if the source emits neutrons with a compound
Poisson distribution with varying multiplicity, we may write for the source generating
function (Bartlett, 1955)

GS(z, t, R|s) = exp

[∫ t

s

ds′
∫
V~r

d~r

∫
U~v

d~vSd(~r,~v, s
′)
[
fq

(
G(z, t, R|~r,~v, s′)

)
− 1
]]

=
∞∑
N=0

zNps(N, t|s)
(9)

with fq(z) the generating function for the source emission and Sd the disintegration
rate of the process that leads to the source neutrons. Note that while G is always time
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dependent GS with be asymptotically time-independent for a sub-critical system. The
equation for GS can also be written

−∂GS(z, t, R|s)
∂s

=

∫
V~r

d~r

∫
U~v

d~vSd(~r,~v, s)

[
fq

(
G(z, t, R|~r,~v, s)

)
−1

]
GS(z, t, R|s) (10)

We will not be concerned with an independent source but cite the above generali-
sation for completeness.

Although the Pál-Bell equation is given in terms of G(z, t, R|~r0, ~v0, s), it is usually
more convenient in practice to use the modified generating function G̃(z, t, R|~r0, ~v0, s) =
1−G(z, t, R|~r0, ~v0, s). The reason for this is evident from equation 5, which is a rapidly
converging series for many practical situations. Indeed, taking only terms up to k = 2,
leads to the well-known and accurate quadratic approximation.

For the problem under consideration, we are only interested in the infinite medium
time dependent case. In this instance we may neglect the spatial operator and consider
an isotropic distribution of neutrons. We also assume that the cross sections themselves
are time independent which leads to

G̃(z, t|v, s)→ G̃(z, v, t) (11)

[
1

v

∂

∂t
+Σ(v)

]
G̃(z, v, t) = (12)

Σs(v)

∫ ∞
0

dv′g(v → v′)G̃(z, v′, t)− Σf (v)
K∑
k=1

(−1)k

k!
χk

[∫ ∞
0

dv′F (v′)G̃(z, v′, t)

]k
where Σ = Σa + Σs, Σa = Σc + Σf and F (v) is the fission spectrum. The initial

condition is G̃(z, v, 0) = 1− z. It is convenient to convert this equation to the energy
variable, where we have

(
1

v

∂

∂t
+ Σ(E)

)
G̃(z, E, t) = Σs(E)

∫ ∞
0

dE ′g(E → E ′)G̃(z, E ′, t) + Σf (E)f(ζ(z, t))

(13)
with

f(ζ) = −
K∑
k=1

(−1)k

k!
χkζ

k ζ(z, t) =

∫ ∞
0

dE ′F (E ′)G̃(z, E ′, t) (14)

Note that the linear part of equations 12 and 13 is the adjoint of the normal slowing
down equation.
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Let us multiply by v and re-write equation 13 as

(
∂

∂t
+ vΣ(E)

)
G̃(z, E, t) = vΣs(E)

∫ ∞
0

dE ′g(E → E ′)G̃(z, E ′, t) + vΣf (E)f(ζ(z, t))

(15)
Suppose the absorption and fission cross sections are proportional to 1/v so that

we have vΣa(E) = λa, vΣf (E) = λf and vΣs(E) = λs(E) where λs(E) is an arbitrary
function of E. Then 15 becomes

(
∂

∂t
+λa+λs(E)

)
G̃(z, E, t) = λs(E)

∫ ∞
0

dE ′g(E → E ′)G̃(z, E ′, t)+λff(ζ(z, t)) (16)

Suppose we now assume that G̃(z, E, t) = θ(z, t) and insert this into equation 16.
We then find

(
∂

∂t
+ λa + λs(E)

)
θ(z, t) = λs(E)θ(z, t)

∫ ∞
0

dE ′g(E → E ′) + λff(ζ(z, t)) (17)

But we know that
∫∞
0
dE ′g(E → E ′) = 1, so the scattering terms cancel and we

get (
∂

∂t
+ λa

)
θ(z, t) = λff(ζ(z, t)) (18)

But

ζ(z, t) =

∫ ∞
0

dE ′F (E ′)G̃(z, E ′, t) = θ(z, t)

∫ ∞
0

dE ′F (E ′) = θ(z, t) (19)

hence equation 18 becomes(
∂

∂t
+ λa

)
ζ(z, t) = λff(ζ(z, t)) (20)

Although the above is not a rigorous proof in the mathematical sense, it strongly sug-
gests that for 1/v absorption cross sections the survival probability ζ(0, t) is indepen-
dent of the slowing down model. Numerical work will confirm the above assumption.
An analogous result arises if delayed neutrons are included. For the asymptotic value,
as t→∞, we find the following equation for survival probability.

λaζ = λff(ζ) (21)

We now consider the asymptotic value of the survival probability, viz ζ(0,∞), in
which case ∂G̃/∂t = 0 and we arrive at the equation for the energy dependence of
G̃(0, E,∞) = θ(E)
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Σ(E)θ(E) = Σs(E)

∫ ∞
0

dE ′g(E → E ′)θ(E ′) + Σf (E)f(ζ) (22)

Remember for the 1/v cases θ(E) was independent of energy, but for non 1/v
models θ(E) should depend on energy. This is in line with expectation as for 1/v
capture and fission cross sections the transition probability per unit time is constant.
As the process is Markovian, and there is no leakage, this is irrespective of scattering
events thus the slowing down history can have no effect. We now go on to consider
some analytical solutions to confirm our proof regarding 1/v cross sections.

2.2. Analytical Solution in the Slowing Down Range

It is convenient to use the lethargy variable for this case where u = ln(E0/E). To
proceed, we assume that slowing down is by elastic collisions and for the slowing down
kernel, g(u → u′), we will take the Goertzel-Greuling approximation. This has the
attribute that it is exact for A = 1 and A >> 1 and is also a very good approximation
for all A values (Williams, 1966). The form of g(u→ u′) is given by

g(u→ u′) =
ξ

γ2
e(u−u

′)/γH(u′ − u) +

(
1− ξ

γ

)
δ(u− u′) (23)

where H(x) is the Heaviside function and the slowing down parameters ξ and γ are
given by

ξ = 1 +
α

1− α
ln(α) γ =

ā

ξ
ā = 1− α

1− α
q
(

1 +
q

2

)
(24)

α =

(
A− 1

A+ 1

)2

q = −ln(α)

Inserting 23 into 15 leads to

(γ
v

∂

∂t
+ γΣa(u) + ξΣs(u)

)
G̃(z, u, t) =

ξ

γ
Σs(u)

∫ ∞
u

du′G̃(z, u′, t)e(u−u
′)/γ + γf(ζ)Σf (u)

(25)
setting z = 0 and allowing t → ∞ we find, after considerable algebra with vΣf =

v0Σf0 and vΣa = v0Σc0 + v0Σf0, that

ζ = Λ

(
ν̄ζ −

K∑
k=2

(−1)k

l!
χkζ

k

)
(26)

Where Λ = λf/(λf + λc). To find θ(E) we use the steady state of equation 25 and
obtain the energy variable

θ(E) = Λ

(
ν̄ζ −

K∑
k=2

(−1)k

k!
χkζ

k−1

)
= ζ (27)
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which depends only on the cross sections evaluated at the energy of injection.

As far as the thermal region is concerned, there is a simple model of energy exchange
called the separable kernel (Williams, 1966) which can be written

g(E → E ′) =
1

Σ̄s

M(E ′)Σs(E
′) (28)

where

M(E ′) =
E ′

T 2
e−E

′/T Σ̄s =

∫ ∞
0

dE ′M(E ′)Σs(E
′) (29)

T is the physical temperature in the medium in eV. Physically this model corre-
sponds to thermalisation in one collision and ignores the actual slowing down process,
nevertheless it does lead to a simple result which enables both ends of the reactor
spectrum to be included. Use of this kernel in 16 leads to the result in 27 and confirms
the proof in section 2.1.

3. Numerical Solutions

3.1. The Goertzel-Greuling Kernel

We now wish to consider the numerical solution of equation 22 with the Goertzel-
Greuling kernel via a six group energy discretisation for θ. We firstly discretise equation
22 to give

Σtgθg − Σsg

G∑
g′

gg′→gθg′ = −Σfg

K∑
k=1

(−1)k

k!
χk

[ G∑
g′

Fg′θg′
]k

(30)

with

g(E → E ′) =
ξ

γ2

(
E ′

E

) 1
γ

+

(
1− ξ

γ

)
δ(E − E ′) (31)

which, when discretised, gives

gg→g′ =
ξ

γ2

(
Eg′

Eg

) 1
γ

+

(
1− ξ

γ

)
δg,g′ (32)

Where Eg is the group energy. Thus giving us the full discretised equation to be
solved as

Σtgθg − Σsg

G∑
g′

(
ξ

γ2

(
Eg′

Eg

) 1
γ

+

(
1− ξ

γ

)
δg,g′

)
θg′ = −Σfg

K∑
k=1

(−1)k

k!
χk

[ G∑
g′

Fg′θg′
]k

(33)
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To simplify the solution of this equation, we divide through by f(ζ) as given in
equation 14 to give

Σtgθ̂g − Σsg

G∑
g′

(
ξ

γ2

(
Eg′

Eg

) 1
γ

+

(
1− ξ

γ

)
δg,g′

)
θ̂g′ = −Σfg (34)

which is simply a set of linear equations in θ̂g which can be solved using a routine
from the linear algebra package LAPACK (Anderson et al, 1999). From here it is
simple to calculate Λ via

G∑
g′=1

Fg′ θ̂g′ = Λ (35)

The survival probability, ζ0 is then found as the root in the range (0,1) of

ζ = Λf(ζ) (36)

Finally, θ can be recovered via

θg = θ̂gf(ζ) (37)

We investigate this expression for A = 1, where the Goertzel-Greuling model is
known to be exact, using capture and fission cross sections given by

Σc(E) = Σc0

(
E0

E

)1/2

and Σf (E) = Σf0

(
E0

E

)1/2

(38)

Both Σs independent of energy and Σs in the same form as the cross sections in
equation 38 were considered for six energy groups, with energies provided for pure 235U
by Hansen and Roach (1961) and using a reference energy of E0 = 4.41MeV to fix the
values of vΣf (E) and vΣc(E). The value of E in θ(E) is the energy of the initiating
neutron.

Σs θ1 θ2 θ3 θ4 θ5 θ6 Λ
constant 0.899335 0.899335 0.899335 0.899335 0.899335 0.899335 0.960317
∝ 1

v
0.899335 0.899335 0.899335 0.899335 0.899335 0.899335 0.960317

Table 1: Survival probabilities for 1/v cross sections and Goertzel-Greuling kernel for
A = 1.
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As can be seen, the results are constant across the energy groups, being consis-
tent to 14 significant figures. We can also consider the above for A = 2, where the
Goertzel-Greuling model is considered to be least accurate. Under these conditions,
we find exactly the same results as in table 1 and confirms quantitatively our assertion
that the survival probability is independent of the slowing down model.

It is informative to consider how this result may vary if instead of using six energy
groups we used just one, with energy averaged cross sections. In this case, a result of
θ = 0.899335 was found, which was consistent to the results found above to seven sig-
nificant figures, 5.1×10−7%. We can also compare this to the analytical solution given
in equation 27. Evaluating this with the same data as in the code gives θ = 0.899335,
which agrees with the results given previously. It should be noted that because the
ratio of fission to absorption is high, 0.960317, the system is very highly multiplying
with an infinite medium multiplication factor of about 2.3. For this reason all the
multiplicities, χk in the expansion f(ζ) are needed and the quadratic approximation,
where terms of up to χ2 are kept, is not valid.

From the theory developed in Section 2, we expect the survival probability to de-
pend on the value of the transition rates λf = vΣf and λc = vΣc corresponding to the
fission and capture cross section respectively. For convenience we have used the values
for Σc0, Σf0 and E0 in equation 38 from the Hansen and Roach dataset to illustrate the
variation in the capture and fission cross sections at different energies. The results of
this are shown in figure 1 and are as expected in view of equation 38 where we expect
the survival probability to increase according to the ratio Λ(E0) = λf/(λf + λc). The
figure indicates that the survival probability is tending to a limiting value. This may be
explained by examining the values of Λ for each group. We find that the ratio Λ takes
the values 0.796, 0.861, 0.889, 0.917, 0.938 and 0.960 as the energy increases. Thus
the survival probability increases with energy, as confirmed by our results in figure 1.

It is a fair question to ask what the average survival probability is if the medium is
irradiated with neutrons with a spectrum of energies S(E); for example if the source
were from polonium-beryllium reactions. In this case, the statistics of the source
neutrons must be included and the use of equation 9 for GS. However we do not
consider that here as we are only concerned with the first persistent chain initiated by
a single neutron.

3.2. The Separable Kernel

The discretised version of the kernel in equation 28 can be written

gg→g′ =
1

Σ̄s

Mg′Σsg′ (39)

with 29 becoming

Mg′ =
Eg′

T 2
e−Eg′/T Σ̄s =

G∑
g′

Mg′Σsg′ (40)
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Figure 1: Variation in survival probability for different values of E0 which set λf and
λc according to the Hansen and Roach group structure.

Inserting equation 39 into equation 30 the full discretised equation to be solved is

Σtgθg − Σsg

G∑
g′

1

Σ̄s

Mg′Σsg′θg′ = −Σfg

K∑
k=1

(−1)k

k!
χk

[ G∑
g′

Fg′θg′
]k

(41)

The numerical results from the above equations are identical to those in Table 1
and again confirm our assertion regarding 1/v cross sections and the slowing down
model.

3.3. Hansen and Roach Cross Section Data

We now consider the scattering cross sections given in Hansen and Roach (1961).
Keeping the capture and fission cross sections in the form of equation 38 (i.e. 1/v),
but using explicit values for Σsg→g′ allows us to write equation 30 as

Σtgθg −
G∑
g′

Σsg→g′θg′ = −Σfg

K∑
k=1

(−1)k

k!
χk

[ G∑
g′

Fg′θg′
]k

(42)

This can be solved in the same manner as section 3.1. Implementing such a solution
gives the results shown in Table 2, which are consistent between groups, and are also
consistent with results in the previous sections to 14 significant figures.

It is also interesting to consider how these results might vary if instead of using
the 1/v fission and capture cross sections, we used the Hansen and Roach data set
for all cross sections. In this case, we find the results shown in table 3. The survival
probabilities now depend on energy, but not strongly. As before, it is possible to use

10



Σs θ1 θ2 θ3 θ4 θ5 θ6 Λ
constant 0.899335 0.899335 0.899335 0.899335 0.899335 0.899335 0.960317

Table 2: Survival probabilities for 1/v cross sections and Hansen and Roach energy
transfer.

the one group model, with average cross sections. In this case we find θ = 0.815907
which is a not unreasonable representative value, and is extremely close to the survival
probability averaged over the fission spectrum of θ = 0.815908.

Σs θ1 θ2 θ3 θ4 θ5 θ6 Λ
constant 0.726737 0.783818 0.802343 0.816870 0.824603 0.832695 0.893577

Table 3: Survival probabilities for Hansen and Roach cross sections and energy transfer.

3.4. Almenas Homogenised Reactor Test Case

Finally, we wish to consider the variation of survival probability with energy in a
homogenised reactor core operating at 250oC with a water density of 0.8g/cm3. The
composition of the core we wish to investigate is given in Almenas (1992) as

reactor material UO2 Zr Fe H2O
percentage composition 32 8 2 58

Table 4: Volume percentage composition of reactor core, reproduced from Almenas &
Lee (1992)

In order to calculate the survival probability for such a reactor, macroscopic cross
sections were generated for the 172 group case using the Winfrith Improved Multigroup
Scheme (WIMS) (Amec Foster Wheeler, 2014). To achieve this, a calculation was per-
formed for 1-D cylindrical geometry with white reflective boundary conditions, yielding
an infinite homogeneous configuration using the THESEUS 1-D collision probability
module of WIMS (Jonsson, 1963). The 172 energy group XMAS library in WIMS
was used as the base nuclear data library for the calculations and was generated from
the JEF2.2 nuclear data library (Nuclear Energy Agency, 2000) using the NJOY nu-
clear processing code (MacFarlane et al, 2012). Resonance self-shielding was performed
within the WIMS calculations using sub-group resonance self-shielding methods (Roth,
1974).

Once the cross sections were generated, the survival probability for each group
could be calculated using the same method as detailed in section 3.3. The result of
implementing such a solution is shown in figure 2.

As can be seen from figure 2, when detailed cross sections are used, the survival
probability varies significantly with neutron energy. The survival probability using a
one group average cross section is ζ = 0.190668, and is the same as the average over
the fission spectrum of the 172 energy group survival probabilities.
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Figure 2: Variation in survival probability on the right hand axis, and scattering,
absorption and fission cross sections on the left hand axis with neutron energy for a
homogenised reactor (Almenas & Lee, 1992).

When the quadratic approximation is used, i.e. keeping terms up to k = 2 in
equation 14, the one-group survival probability is modified to ζ = 0.171935 and the
average survival probability in the 172 group case is ζ = 0.172748. These figures show
that in the case of the thermal system, which is far less multiplying than the fast
Hansen-Roach system, the quadratic approximation is a reasonable approximation.

4. Conclusions

We note, from the above work, that the slowing down and thermalisation proper-
ties of the medium do not affect the value of the survival probability if the capture
and fission cross sections follow the 1/v law. This has been shown analytically and
confirmed numerically for the Goertzel-Greuling kernel, the separable kernel and the
Hansen-Roach energy transfer rates. This also implies, that for 1/v cross sections, the
survival probability is constant with initiating energy and depends only on the ratio
Λ. However, when the full cross section data set is considered via the Hansen-Roach
values and by WIMS with non 1/v cross sections, it is found that the survival proba-
bility is strongly dependent on the initiating energy, particularly in the neighbourhood
of resonances. We have also shown that the survival probability obtained from using a
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one group averaged cross section leads to a fission spectrum averaged value of the sur-
vival probability, which is in reasonable agreement with the average cross section value.

These results strengthen the validity of using the point model averaged over energy
for practical problems in the thermal region. Further work using data sets for more
realistic situations involving resonances in the slowing down region would be valuable.
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