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Abstract 16 
The Leeuwin Current is the dominant circulation feature in the eastern Indian 17 Ocean, transporting tropical and subtropical water southward. Whilst it is 18 known that the Leeuwin Current draws its water from a multitude of sources, 19 existing Indian Ocean circulation schematics have never quantified the fluxes of 20 tropical and subtropical source water flowing into the Leeuwin Current. This 21 paper uses virtual Lagrangian particles to quantify the transport of these 22 sources along the Leeuwin Current’s mean pathway. Here, the pathways and 23 exchange of Leeuwin Current source waters across six coastally bound sectors 24 on the south-west Australian coast are analysed. This constitutes the first 25 quantitative assessment of Leeuwin Current pathways within an offline, 50-year 26 integration time, eddy-resolving global ocean model simulation. Along the 27 Leeuwin Current’s pathway we find a mean poleward transport of 3.7 Sv in 28 which the tropical sources account for 60-78% of the transport. Whilst the net 29 transport is small, we see large transports flowing in and out of all the offshore 30 boundaries of the Leeuwin Current sectors. Along the Leeuwin Current’s 31 pathway, we find that water from the Indonesian Throughflow contributes 50-32 66% of the seasonal signal. By applying conditions on the routes particles take 33 entering the Leeuwin Current, we find particles are more likely to travel offshore 34 north of 30°S, while south of 30°S particles are more likely to continue 35 downstream. We find a 0.2 Sv pathway of water from the Leeuwin Current’s 36 source regions, flowing through the entire Leeuwin Current pathway into the 37 Great Australian Bight. 38 
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1 Introduction 39 
The surface Leeuwin Current is a globally unique eastern boundary current, 40 flowing poleward year round [Smith et al., 1991], it transports fresh, warm 41 water into the West and South Australian coastlines [Waite et al., 2007]. An 42 observationally based study [Ridgway and Condie, 2004] showed that the surface 43 Leeuwin Current is the western part of a 5500 km system of currents originating 44 at the North West Cape of Australia (114°E, 22°S) and extending to the southern 45 tip of Tasmania (approx. 146°E, 44°S). However, the circulation off the western 46 coast of Australia is more complicated than a continuous coastal flow confined to 47 the continental slope. Compared to other eastern boundary currents, the 48 Leeuwin Current is rich in eddy activity [Feng et al., 2005]; mesoscale eddies 49 generated from mixed barotropic and baroclinic instability play an important 50 role in transporting heat and salt offshore [Morrow et al., 2003]. Moreover, the 51 Leeuwin Current is not the only named current in the region. Slightly farther 52 offshore and deeper than the surface Leeuwin Current flows the Leeuwin 53 undercurrent, an equatorward flowing subsurface current [Woo and 54 
Pattiaratchi, 2008]. Inshore of the surface Leeuwin Current are the summer 55 only, wind driven equatorward Ningaloo Current and Capes Current, located 56 between 22-24°S [Woo et al., 2006] and 33-34°S [Pearce and Pattiaratchi, 1998; 57 
Gersbach et al., 1999], respectively.  58  59 The surface Leeuwin Current is an important pathway for water originating in 60 the Pacific Ocean to enter into Australia’s boundary current system. Since Kundu 61 
and McCreary [1986] it has been suggested that the Leeuwin Current, via the 62 Indonesian Throughflow, provides a pathway for water coming from the Pacific 63 
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Ocean into western Australia’s coastlines. A more recent Lagrangian modelling 64 study [Domingues et al., 2007] confirmed this general pathway, but the 65 quantitative contribution of this source remains unclear [Furue et al., 2013]. In 66 the context of the recent warming air temperature hiatus, the Indonesian 67 Throughflow has transported 70% of the Pacific Ocean’s anomalous heat in the 68 past decade into the upper 700m of the Indian Ocean [Lee et al., 2015]. The 69 multi-decadal trend in stronger Pacific trade winds corresponds to stronger 70 Leeuwin Current transport [Feng et al., 2011] and is a contributing factor to the 71 unprecedented 2011 marine heat wave off Western Australia [Feng et al., 2013; 72 
Benthuysen et al., 2014]. Thus, to understand the regional impact of the 73 anomalous ocean heat in the Indian Ocean and identify/characterise Australia’s 74 extreme ocean warming events in the future, a more thorough understanding of 75 the Leeuwin Current’s tropical sources is needed. 76  77 The surface Leeuwin Current is also an important component of the large scale 78 circulation in the Indian Ocean. Using a five year POP11B model simulation with 79 a Lagrangian framework where water parcels are tracked, Domingues et al. 80 [2007] found that water leaving the Indonesian Throughflow exits in the South 81 Java Current and then returns eastward in the Eastern Gyral Current. Domingues 82 
et al. [2007] found an additional tropical source region for the Leeuwin Current, 83 that is, water flowing from the equatorial Indian Ocean via the South Java 84 Current. From the subtropical Indian Ocean, Domingues et al. [2007] found water 85 entering the Leeuwin Current via the southern branch of the South Indian 86 Countercurrent (SICC) (terminology from [Menezes et al., 2014b]). More 87 recently, Menezes et al. [2014b] has better resolved the SICC, this work suggests 88 
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that the central branch of the SICC is also a source for the Leeuwin Current. 89 These pathways have been corroborated observationally, examples include the 90 use of in situ observations [Woo and Pattiaratchi, 2008; Xu et al., 2015], Argo-91 based atlases and satellite data [Menezes et al., 2013, 2014b]. Whilst the 92 aforementioned studies describe the circulation of the region, they do not 93 quantify the relative contributions of the different surface Leeuwin Current 94 sources to the mean flow [Furue et al., 2013].  95  96 Understanding of the fate of Leeuwin Current water is even more limited than 97 that of its sources. Whilst the Leeuwin Current extends to around 300m [Feng, 98 2003], surface observations might give some insight into the fate of Leeuwin 99 Current water. Ridgway and Condie [2004], however, when looking for surface 100 drifters that had advected from the Leeuwin Current proper into the Great 101 Australian Bight noted there was ‘no single period in which drifters were 102 deployed over the entire current path’. Due to this lack of observations, it is not 103 well known how much water flows from the Leeuwin Current into the Great 104 Australian Bight as compared to flowing offshore into the Indian Ocean. 105  106 Although there is a lack of quantitative estimates of the Leeuwin Current’s water 107 pathways, there are observationally based Eulerian estimates of transport 108 across Leeuwin Current sections. An observationally based study by Feng [2003] 109 found southward transports at 32°S of 3.4 Sv, 3.0 Sv and 4.2 Sv for the mean, El 110 Niño and La Niña years respectively. Recent work by Ridgway and Godfrey 111 [2015] suggests that the source of the Leeuwin Current’s seasonal cycle is an 112 annual sea level signal starting in the Gulf of Carpentaria in November and 113 
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travelling around Australia’s coast as far as Tasmania by July. The seasonal 114 variability of the Leeuwin Current is well established [Ridgway and Condie, 115 2004; Meuleners et al., 2007; Waite et al., 2007; Hendon and Wang, 2009]. The 116 current is strongest in Austral winter when equatorward winds are weakest 117 [Smith et al., 1991; Meuleners et al., 2007; Hendon and Wang, 2009]. In the most 118 extensive field study to date, Smith et al. [1991] calculated the Leeuwin Current’s 119 alongshore southward transport at 29.5°S as ranging from< 2 Sv in February to 120 >6 Sv in March and June.  121  122 The aims of this study are twofold. First, to quantify tropical and subtropical 123 source exchanges in the Leeuwin Current. Specifically, we quantify how much 124 water comes from the tropical Indonesian Throughflow, the tropical equatorial 125 Indian Ocean and the subtropical interior western Indian Ocean. Second, to 126 quantify the amount of water that goes into the Great Australian Bight compared 127 to the amount of water that recirculates offshore into the Indian Ocean. Both of 128 these questions will be addressed using a Lagrangian framework in the context 129 of a 1/10° global ocean model over a fifty year time series.  130  131 This study builds on the aforementioned previous Lagrangian study [Domingues 132 
et al., 2007] in a number of ways. Specifically, we use finer temporal resolution, 133 namely five days compared to twenty days, and we study a longer temporal 134 extent, namely fifty years compared to five years. As a result we are able to 135 consider long term Leeuwin Current pathways and the seasonal cycle. Similarly, 136 as our experiment is run offline we are able to track significantly more particles 137 allowing for quantitative inferences. In addition, by defining sectors along the 138 
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south west Australian coastline this work quantifies source exchange fluxes, 139 source pathways and the seasonal cycle across and alongshore the south west 140 Australian coastline. Finally, having a longer time series and a Lagrangian 141 framework allows us to examine the fate of Leeuwin Current water farther 142 downstream. Thus, this study extends the previous work by calculating 143 transports and pathways associated with different Leeuwin Current sources.  144  145 The paper is organised as follows. Section 2 describes the ocean model, 146 Lagrangian framework and definition of the Leeuwin Current sectors used in 147 this paper. Results are examined in section 3. Section 4 provides a summary and 148 comparison of results, closing with a discussion of the limitations of the work, its 149 broader importance and suggestions for future work. 150 

2 The Model and Methods 151 
2.1 Ocean General Circulation Model 152 In this study, the sources and destinations of Leeuwin Current water are studied 153 using the high-resolution TROPAC01 model. This model configuration, 154 developed by the European Drakkar cooperation [Barnier et al., 2007], is based 155 on NEMO [Madec, 2008] code. It is a 1/10° horizontal resolution model of the 156 tropical Indo-Pacific region (73°E–63°W to 49°S–31°N), nested within a half-157 degree global ocean/sea-ice model. In the vertical, TROPAC01 has 46 z-levels: 10 158 levels in the top 100m and a maximum layer thickness of 250m at depth, 159 whereby bottom cells are allowed to be partially filled [Barnier et al., 2007]. The 160 COREv2-IA atmospheric forcing is used in this study, it has been designed to aid 161 
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our understanding of the observed ocean record and has broad usage with 162 global ocean-ice models as established by the Coordinated Ocean-ice Reference 163 Experiments [Griffies et al., 2009]. The atmospheric forcing builds on the CORE 164 reanalysis products developed by Large and Yeager [2008] covering the period 165 1948–2009 and is applied via bulk air-sea flux formulae. The TROPAC01 166 simulation uses laterally spatially varying eddy coefficients, namely, a Laplacian 167 operator for iso-neutral diffusion of tracers and a bi-laplacian operator for 168 lateral diffusion of momentum. TROPAC01 is run with a prognostic turbulent 169 kinetic energy scheme [Gaspar et al., 1990] for vertical mixing. Further details in 170 
Madec [2008]. For the analysis, 50 years (1960–2009) of data from the 171 TROPAC01 hind-cast experiment will be used, with temporal means available 172 every 5 days. The combination of output every five days, over a long time series 173 with eddy-resolving resolution enables us to address a range of questions on 174 different temporal and spatial scales. 175  176 With reasonable accuracy, the model reproduces the major circulation features 177 in the region. This is evident when comparing the overlapping time period of 178 1993–2009 in terms of simulated sea-surface height with AVISO altimetry data 179 (Figure 1). In van Sebille et al. [2014], using the same model, the authors note an 180 extended tongue of elevated sea surface height in the model Indian Ocean at 181 around 15°S, which is confined to the far eastern basin in the altimetry data. We 182 can see that other biases in our region of interest are relatively small, except for 183 the slightly higher sea surface height values very close to the coast. The 184 variability of sea surface height in the model is also in good agreement when 185 compared to altimetry (Figure 1d-e), we see the south Indian Ocean is eddy rich 186 



 9

(e.g. [Feng et al., 2005]). As van Sebille et al. [2014] noted, TROPAC01 tends to 187 underestimate more energetic regions (Figure 1f) with the exception of coastal 188 areas. These coastal discrepancies (Figure 1c and Figure 1f), may be due to 189 satellite performance deteriorating  near coastal areas [Saraceno et al., 2008] 190 and therefore do not necessarily imply the model is doing a poor job. 191  192 
2.2 Eulerian TROPAC01 validation at 32°S 193 As we are particularly interested in water transport in the Leeuwin Current 194 region, we validate TROPAC01 against [Feng, 2003]. To minimise the effect of 195 interannual variability, throughout this subsection we use TROPAC01’s entire 196 timeseries 1960-2009. In Feng [2003], Leeuwin Current variability (offshore of 197 Fremantle) was reconstructed using a range of observations including 198 Fremantle sea level and temperature/salinity records near Rottnest Island. 199 TROPAC01’s (Eulerian) mean and bimonthly mean velocity fields in Figure 2 200 may be compared to the geostophic velocities in Figure 6d and Figure 7c of 201 [Feng, 2003] (respectively). From Figure 8 of [Feng, 2003] we know that the 202 southward Ekman transport across this section is low and so its contribution to 203 Figure 2 would be small. Figure 2 shows that along 32°S, like in [Feng, 2003], the 204 core of the Leeuwin Current is at 115°E and the velocity core tilts slightly toward 205 the coast with increasing depth.  206  207 The bimonthly means in Figure 2 show that TROPAC01 performs well, 208 qualitatively; in the summer months we see the characteristic weakening of the 209 Leeuwin Current, as we approach the winter months we can see the expected 210 



 10

deepening and widening of the core of the Leeuwin Current. Quantitatively, in 211 both figures the flow speeds are lower than the observed values but we notice 212 that this effect on transport is cancelled out by the flow being broader (Figure 2). 213 Depth integrating from 110°E to the continental edge at 32°S down to 270m 214 gives a transport estimate of 2.9 Sv, this compares well with [Feng, 2003] of 3.4 215 Sv.  216  217 Figure 3 shows how well TROPAC01 reproduces the seasonality of the Leeuwin 218 Current. We compare the monthly mean Eulerian transport between 1960-2009 219 in TROPAC01 at 32°S with Feng’s [2003] (Figure 8) mean for years 1950-2000 at 220 32°S. This and the depth integration done above are typical means of validation 221 for a model’s transport for the Leeuwin Current (e.g. [Smith et al., 1991; Feng et 222 
al., 2008; Hendon and Wang, 2009; Benthuysen et al., 2014]). Given the different 223 time periods, the agreement in Figure 3 is quite good, the seasonal cycle is 224 captured well and the timing of the winter intensification of the Leeuwin Current 225 agrees well with observations (e.g. [Feng, 2003]). Indeed, TROPAC01 has 226 improved its representation of the seasonal cycle since previous versions of the 227 model. In Feng et al. [2008] fields from the ORCA025-KAB001 (ORCA025) 0.25° 228 model were analysed in the Leeuwin Current region. ORCA025 is an earlier 229 version of TROPAC01 and used the same atmospheric forcing. Comparing Figure 230 3 here with Figure 5 from Feng et al. [2008], we see that the higher resolution 231 TROPAC01 has increased summer transport and an improved timing of winter 232 intensification; two issues Feng et al. [2008] raised when validating the earlier 233 ORCA025 version of TROPAC01. 234  235 
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2.3 The Lagrangian particle model and setup 236 The Leeuwin Current sources, pathways and associated transports can most 237 aptly be studied by tracking virtual Lagrangian particles in model velocity fields 238 (e.g. [van Sebille et al., 2013]). We use the Connectivity Modelling System (CMS) 239 v1.1 [Paris et al., 2013] to integrate the virtual particles in the three-dimensional 240 time-evolving flow.  241  242 As the focus is on the region around Australia, only data in a subdomain between 243 90°E–190°E and 49°S–15°N is used (pictured in Figure S1). Using the TROPAC01 244 dataset to track water masses into the Leeuwin Current, we release particles in 245 the following known Leeuwin Current source regions. Specifically: 246 1. The Indonesian Throughflow region consisting of two zonal release 247 sections and one meridional release section. A Karimata Strait release 248 section at 4°S between 106-114.5°E with 0.1° horizontal spacing and 10 249 m vertical spacing. Another zonal section in Makassar and Moluccas 250 Straits at 4°S between 115.6-134.6°E with 0.1° horizontal spacing and 50 251 m vertical spacing. A Torres Strait meridional release section along 252 142.5°E between 9.3-10.7°S with 0.1° horizontal spacing and 10 m 253 vertical spacing. The vertical spacing in Karimata and Torres Strait have 254 been reduced to accommodate for shallow bathymetry. 255 2. The northern offshore section: a zonal section at 4°S between 90.0-256 102.25°E with 0.25° horizontal spacing and 50 m vertical spacing. 257 
1. The western offshore section: A meridional section along 90°E between 4-258 49°S with 0.5°degree horizontal spacing and 50 m vertical spacing. 259 
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These release sections are pictured in Figure S1, supplementary material. Maps 260 of depth-integrated transport in Sverdrup into the Leeuwin Current region from 261 each of the Indonesian straits, Torres Strait and both offshore Indian releases 262 are shown in Figure S2. 263  264 As the objective of the present work is to identify source contributions to the 265 Leeuwin Current’s mean flow, particles will not be allowed north of 4°S or west 266 of 90°E. Meaning, once a particle crosses either of these lines, it is removed from 267 the experiment from that point on. Particles are released every five days down 268 to a depth of 1075 metres (where bathymetry allows). This is more than 269 sufficient depth as both the South Indian Countercurrent and Leeuwin Current 270 system do not extend below 1000 m [Siedler et al., 2006; Waite et al., 2007]. 271 Since this study’s focus is on Leeuwin Current trajectories, particles are only 272 released if they have an initial southward/eastward trajectory for 273 zonal/meridional sections, respectively. These three release sections equate to a 274 tracking of 4.8 million particles.  275  276 Particle trajectories need to account for the ramp-up effect [van Sebille et al., 277 2012, 2014], namely the time it takes for water to reach the south-eastern end of 278 the Leeuwin Current region from the release locations. Specifically, out of all 279 three releases, the water coming from the western offshore section takes the 280 longest to be advected through the Leeuwin Current region. The distribution of 281 transit times of western offshore particles suggests a ramp up time of ~6 years. 282 This comes from the amount of time it takes 90% of the particles from the 283 western offshore release section to arrive at the farthest area of interest in this 284 
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paper: the Great Australian Bight. For this reason, for the remainder of this 285 paper, across all sources, particles released between 1960-2003 that arrive in 286 the Leeuwin Current region after 1965 are analysed.  287  288 The particles are assigned a transport equal to the local velocity in the release 289 grid cell times the area of that grid cell. The length of the release grid cell in this 290 experiment varies on the release section, the release grid cell for each release 291 section can be found in the release definitions above. The particles are then 292 tracked forward in time until they reach one of the domain boundaries or until 293 the end of the time series. Along a particle’s trajectory, the particle maintains its 294 original transport; this method has been used successfully by others, for 295 example see [Döös, 1995; Speich et al., 2002; van Sebille et al., 2010, 2012]. This 296 method has recently been validated in the Indonesian archipelago, yielding 297 transports that agree strongly with their Eulerian analogue [van Sebille et al., 298 2014]. Furthermore, this last paper demonstrated TROPAC01’s capacity to 299 simulate a realistic Indonesian Throughflow, which is important for the present 300 work as the Leeuwin Current is partially forced by the Indonesian Throughflow 301 [Furue et al., 2013; Schloesser, 2014]. Previous versions of TROPAC01 have also 302 been validated in a variety of ways in terms of the Leeuwin Current and 303 Indonesian Throughflow [Feng et al., 2008, 2011; Schwarzkopf and Böning, 304 2011]. 305  306 
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2.4 Defining six coastally bound sectors along the south-west Australian coast 307 Since we are interested in the water mass source exchanges in the Leeuwin 308 Current region, we define six adjacent sectors along the south-western coastal 309 boundary of Australia (see black lines Figure 5). For the remainder of this paper, 310 the sectors will be numbered 1-6 starting upstream in the northwest and then 311 moving downstream south and east (as numbered in Figure 5). Studies such as 312 [Smith et al., 1991; Feng et al., 2008; Benthuysen et al., 2014] suggest that the 313 Leeuwin Current’s mean flow does not meander beyond 200-300 km offshore.  314 

3 Results 315 
3.1 Particle connectivity from the Pacific Ocean and equatorial Indian Ocean to south 316 
western Australia 317 Figure 4 maps the proportion of transport in each 0.5° grid cell that enter the 318 Leeuwin Current. Dark blue regions indicate that all particles (100%) that visit 319 those grid cells pass through the Leeuwin Current at some point along their 320 trajectories, while dark red regions indicate no particles (0%) visit the Leeuwin 321 Current. Here, particles are defined to visit the Leeuwin Current region when 322 they enter any of the six sectors defined in section 2.4 (black lines on Figure 4). 323 As this section focuses on the tropical sources of the Leeuwin Current, Figure 4 324 does not consider particle trajectories from the western offshore source. Cells 325 that are unshaded indicate grid cells where no trajectories entered. 326  327 Using Lagrangian trajectories, Figure 4 highlights the northern regions in the 328 southeast Indian Ocean that are connected by the Leeuwin Current. Grid cells 329 
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south of the 50% contour are dominated by particles bound for or coming from 330 the Leeuwin Current region. The tongue of blue contours extending along the 331 northwest shelf of Australia indicates that once water is near the northwest shelf 332 of Australia it is likely to enter the Leeuwin Current region. Indeed, at 333 approximately 19.5°S, 118.5°E the 100% contour indicates that any particle in 334 that location will enter the Leeuwin Current region (or has come from there). 335 Similarly, comparing water southeast and west of the Indonesian Aru Islands 336 (134°E), water on the south eastern side is more likely to end up in (or come 337 from) the Leeuwin Current region. From Figure 4 we can conclude that within 338 the domain presented, on the timescales available in the model, the only way for 339 water originating in the low latitudes to get to mid-latitude and South Australia 340 is to pass through the Leeuwin Current region. Thus, as expected the Leeuwin 341 Current is the only western Australian pathway for water travelling from the 342 tropical Pacific Ocean/equatorial Indian Ocean to mid-latitude and southern 343 Australia. 344  345 
3.2 Mean and seasonal source water exchanges in the Leeuwin Current region. 346 Figure 5 addresses a key objective of this paper, to quantify the tropical and 347 subtropical source exchange in the Leeuwin Current region. Specifically, we have 348 depth-integrated the Lagrangian transports (in Sv) from the surface to 300m 349 across the borders of the (pictured) sectors, taking the mean over 1966-2003 (a 350 date range shorter than the available model data, due to ‘ramp-up effect’, see 351 section 2.3). The colour of the arrows represent the three different particle 352 source releases (section 2.3): orange arrows are particles originating from the 353 
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Indonesian Throughflow region, purple arrows are for the northern offshore 354 release and green arrows for the western offshore release. See section 2.3 for the 355 formal definition of these releases. This colouring scheme persists for Figure 6 356 and Figure 7. Size and direction of arrows are indicative of transport size and 357 direction of flow (respectively). The sectors in Figure 5 have arrows in both 358 directions as particles are allowed to circulate freely in the domain. We define 359 
downstream flow to mean the southward crossing of sectors 1/2/3 and eastward 360 bound water for sectors 4/5/6 (as numbered in Figure 5). Figure 6 and Figure 7 361 examine only the downstream flow. Reference to the Leeuwin Current’s extension 362 is meant to be any Leeuwin Current water rounding Cape Leeuwin heading east 363 into sectors 5 and 6.  364  365 The combined downstream alongshore transports in Figure 5 gives transport 366 estimates of 3.6, 3.2, 3.9, 4.2, 3.9, 4.3, 2.8 Sv. These transports can be interpreted 367 as the Lagrangian analogue of transport for the Leeuwin Current from 368 observationally based studies (e.g. [Smith et al., 1991; Feng, 2003]). The net 369 southward transport of sectors 2 and 3 from Figure 5 compare favourably with 370 
Feng’s [2003] observationally based estimate of 3.4 Sv at 32°S.  371  372 Since we are using a Lagrangian framework, these transports can be broken up 373 in terms of their origin. The northern sources (orange/purple) account for 60-374 78% of the water found in the downstream flow of the Leeuwin Current. Along 375 the downstream flow, the Indonesian Throughflow source (orange) is the 376 largest, followed by the western offshore source (green) and then the northern 377 offshore source (purple). Also along the downstream flow, aside from the 378 
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poleward fluxes exiting sector 2, the western offshore fluxes (green) are 2-3 379 times bigger than the northern offshore fluxes (purple). The transports from the 380 western offshore source are significant in magnitude, but water from this source 381 is slightly deeper and less well mixed than the northern sources (Figure 7). 382  383 Whilst the mean flow of the Leeuwin Current is poleward, Figure 5 reveals 384 significant exchange across the outside boundaries of the sectors, particularly 385 from the western offshore water (purple). The net transports, however, are a 386 small fraction compared to the eastward and westward flows, individually. This 387 is indicative of the eddy rich region west of the mean Leeuwin Current pathway 388 (see Figure 1e and [Morrow et al., 2004; Feng et al., 2005]). These transport 389 results are interesting as observational data across these boundaries is quite 390 sparse. As Menezes et al. [2014a] highlight ‘the South Indian Ocean is historically 391 poorly observed on a basin scale’, this can be seen clearly in Figure 3.A.2 in 392 [Rhein et al., 2013]. Historically, most observations of transport have been taken 393 perpendicular to the coast (e.g. [Woo and Pattiaratchi, 2008]). 394  395 In section 2, it was shown that TROPAC01 captures the Leeuwin Current’s 396 seasonal cycle reasonably well. In 2004, Ridgway and Condie [2004] 397 demonstrated how the seasonality of the Leeuwin Current affects sea surface 398 temperatures. What has not been quantified is the contribution of the Leeuwin 399 Current’s different sources to the seasonal cycle, this is presented in Figure 6. 400 Looking at the crossings at 26°S, 30°S and 34°S (Figure 6a-c) the peak transport 401 occurs in different months. In the 26°S and 34°S crossings (Figure 6a, c) 402 maximum transport occurs in March and April, respectively. The maximum at 403 
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30°S (Figure 6b) in July compares favourably with the maximum observed by 404 
Smith et al. [1991] at Dongara (29.5°S) in June. Smith et al. [1991] measured a 405 geostrophic transport range of 2 Sv (February 1987) to more than 5 Sv (March, 406 June and August 1987) at Dongara (29.5°S), whilst the summer transports in 407 Figure 6b are higher, given the different sampling periods and location this 408 appears to be in reasonable agreement with Figure 6b. In the Leeuwin Current 409 extension we see that the peak transport occurs consistently in May. The 410 strongest downstream flow month is in May, across 120°E (Figure 6e), which is 411 due to the western offshore section contributing more (compare Figure 6d and 412 Figure 6e). The largest seasonal variability is also at 120°E with an approximate 413 4 Sv difference between January and May. A number of papers on the Leeuwin 414 Current have shown a seasonal southward propagating sea surface height signal 415 for example Figure 5 in [Ridgway and Godfrey, 2015] and Figure 3 in [Ridgway 416 
and Condie, 2004]. In contrast, a similar signal is not found from the Lagrangian 417 transport sections plotted in Figure 6. This somewhat surprising discrepancy 418 may be a deficiency of the TROPAC01 simulation and is possibly caused by the 419 sea surface height bias in the model Indian Ocean (around 15°S) discussed in 420 section 2.1. 421  422 The relative contributions of each source and their seasonal cycle vary at each 423 crossing. Across all crossings, the Indonesian Throughflow region source 424 (orange) has the most seasonal variability, followed by the western offshore 425 source (green). Since the northwest Indian Ocean’s contribution is small and has 426 little seasonality, it is the seasonality of the western offshore source and 427 Indonesian Throughflow (including Torres Strait) that contribute the seasonality 428 



 19

of the total. Indeed, the Indonesian Throughflow region contributes 66%, 56%, 429 53%, 51%, 50% and 53% of the total transport to the crossings in Figure 6a-f, 430 respectively. Figure 6 supports Ridgway and Godfrey [2015] recent work on the 431 source of the Leeuwin Current’s seasonality, specifically Figure 6 shows  that 432 advective processes from the Leeuwin Current’s tropical sources contribute to 433 the seasonal cycle of the Leeuwin Current. As discussed in the introduction, the 434 Lagrangian framework provides an opportunity to track the mixing of source 435 waters along the Leeuwin Current’s downstream pathway. Figure 7 is a series of 436 depth-horizontal coordinate space plots for the sector crossings along the 437 downstream flow for the mean over 1966-2003. Along the downstream flow (all 438 plots in Figure 7) the core regions of the northern sources (orange and purple) 439 are almost coincident. The western offshore source (green) has a core that is 440 slightly deeper than the other two sources, so it follows that transport from the 441 northern sources is closer to the shelf. The Indonesian Throughflow region 442 (orange) contributes slightly more transport near the shelf than any other 443 source. The location of the core at 30°S agrees well with the core location of the 444 mooring at 29.5°S in [Smith et al., 1991]. In sectors 4-6 (Figure 7d-f), along the 445 Leeuwin Current extension, all three sources steadily shallow and the core 446 regions continue to merge. 447  448 
3.3 Particle Connectivity in the Indian Ocean and Great Australian Bight 449 A number of papers suggest that the Leeuwin Current is part of a continuous 450 5500 km coastal current system (e.g. [Ridgway and Condie, 2004; Batteen and 451 
Miller, 2009; Ridgway and Godfrey, 2015]). Whilst these studies have successfully 452 
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tracked sea surface height/temperature anomalies around the Australian coast, 453 it has not been clear how much water makes it directly from the source regions 454 to the Great Australian Bight. Lagrangian tracking of water parcels provides an  455 opportunity to quantify how these regions are connected by advection. To 456 address this question, Figure 8 is different to Figure 5, Figure 6 and Figure 7; 457 particles must meet strict criteria for their flux to be shown. Particle trajectories 458 in Figure 8 will therefore be labelled as conditional pathways. Specifically, the 459 conditions applied are as follows: the particle’s trajectory must enter by the first 460 sector and recirculating particles are not counted. Thus, this figure is a 461 quantification of direct pathways through the Leeuwin Current region. The bold 462 end of each edge indicates the direction of flux and inshore green edges indicate 463 water that is travelling close to the coast having passed through all preceding 464 inshore sector(s). For example, a flux of 0.7 Sv on the third green edge indicates 465 transport from particles that have travelled directly through the first two sectors 466 and are now crossing into the third sector. The flux itself is thus interpreted as 467 the volume of water undertaking that pathway over the mean of the time series. 468 Offshore red edges quantify trajectories that travelled through all green inshore 469 upstream sector(s) and then exited the system via the red offshore edge. Finally, 470 purple curved edges indicate trajectories that have travelled directly through the 471 previous inshore sector(s) and then recirculated upstream. Units are in Sv and 472 the mean is taken over the years 1966-2003 and depth-integrated to 300m.  473  474 This figure addresses the second key objective of this paper, to quantify the 475 amount of water that goes into the Leeuwin Current’s extension compared to the 476 amount of water that moves offshore into the Indian Ocean. Looking at the first 477 
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sector, the flux going offshore (red edge) is larger than the flux going 478 downstream (green edge). From the second sector particles heading offshore 479 and downstream are approximately equal, and by the third sector more particles 480 continue downstream than flow offshore. This partitioning then continues for 481 the remainder of the downstream sectors. In other words, once a particle has 482 gone through the first three sectors directly, it is likely to continue around Cape 483 Leeuwin into the Great Australian Bight. Looking at the purple edges, it is clear 484 that recirculating particles make up a very small fraction of the particle 485 pathways. Sources have been combined in Figure 8 as there is little difference in 486 the pathway taken when comparing source. The exception to this is the western 487 offshore particles, Figure S3 shows that very few particles from the western 488 offshore section follow the mean Leeuwin Current pathway. When compared to 489 particles from the two northern sections, Figure 7 shows that western offshore 490 particles are further offshore and so are less influenced by bathymetry. There 491 are likely a number of processes that influence the pathway of the western 492 offshore particles; Menezes et al. [2014b] discuss the dynamics that influence the 493 flow patterns of the basin wide flows in detail.  494  495 Comparing these conditional pathways to the unrestricted particles in Figure 5, 496 it is clear that the fluxes in the downstream sectors are much smaller when re-497 circulating particles are not allowed. In other words, Figure 8 shows that 498 compared to the unrestricted pathways across the same sectors in Figure 5, very 499 little water actually travels the full length of the Leeuwin Current and then 500 around Cape Leeuwin into the Great Australian Bight directly. 501 
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4 Conclusions and Discussion 502 
By tracking virtual Lagrangian particles in the eddy-resolving TROPAC01 model, 503 we have quantified the fluxes of source waters and major pathways through the 504 Leeuwin Current region. The Lagrangian framework has provided an  insight 505 into the connectivity between the tropical and subtropical sources of the 506 Leeuwin Current and the Great Australian Bight. Indeed, if we take the particles 507 from all the northern releases that have and have not entered any of the sectors 508 and plot their proportion of transport (Figure 4), then we see that, within the 509 model domain, the only way to reach the Great Australian Bight is via the 510 Leeuwin Current. 511  512 Along the Leeuwin Current’s pathway, we find water originating from the 513 northern releases to be the most important, accounting for 60-78% of the 514 transport; corroborating the traditional view that the Leeuwin Current is 515 principally sourced from the Indonesian Throughflow, Torres Strait and the 516 tropical Indian Ocean. Nevertheless, we also find large exchanges from all 517 sources across the outside boundaries of the sectors; this includes water sourced 518 from the interior Indian Ocean (the western offshore source). As the Leeuwin 519 Current gains strength over winter (Figure 6), we see that water coming from 520 the Indonesian Throughflow dominates the seasonal cycle.  521  522 Whilst thinking about the kinds of eddies that are resolved in a 1/10° model 523 with output every five days we ask the following question. What portion of the 524 fluxes in Figure 5 are attributable to water recirculating in large eddies? We 525 address this by reproducing Figure 5 and only considering particles that transit 526 
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directly through the sectors, in order from northwest to southeast, removing 527 times a particle crosses a boundary more than once (Figure 8). Figure 8 indicates 528 that significant amounts of the fluxes in Figure 5 are from recirculating particles 529 or particles that did not start in sector 1 and flow directly through the sectors. In 530 the sectors downstream of Cape Leeuwin, Figure 8 when compared to Figure 5 531 indicates that relatively little water travels directly from the start of the Leeuwin 532 Current into the Great Australian Bight.  533  534 These differences between the non-conditional and conditional pathway 535 analyses exemplify the non-laminar pathways in the Leeuwin Current region. 536 This is important for two reasons. Firstly, it indicates the importance of eddies 537 causing particles to recirculate. Secondly, it shows the relatively small number of 538 particles that navigate the direct route along the Leeuwin Current and into the 539 Leeuwin Current extension as described by Ridgway and Condie [2004]. This 540 study is the first quantitative estimate of transport connecting the tropics and 541 subtropics to the Great Australian Bight via the Leeuwin Current.  542  543 A number of studies have shown that the increase in Leeuwin Current transport 544 in La Niña years can have a damaging effect on the temperature sensitive 545 coastlines of western Australia [Pearce and Feng, 2007; Wernberg et al., 2011; 546 
Thompson et al., 2015]. Whilst beyond the scope of the present work, higher 547 transports along the western Australian coast in La Niña years are expected, 548 with more particles rounding Cape Leeuwin into the Great Australian Bight. 549 Future work could extend this study by quantifying the change in pathways in 550 between El Niño and La Niña years. Building on recent work by Ayers et al. 551 
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[2014], future work could regionally examine the biological implications of few 552 tracked particles travelling the whole length of the Leeuwin Current into the 553 Great Australian Bight. Recent work by Wang et al. [2015] has challenged the 554 conventional view that Leeuwin Current strength is the single indicator of 555 annual catch size of western rock lobster. Wang et al. found that cyclonic cold 556 core eddies have a positive effect on the nutritional condition of the larvae, as a 557 result, it would be interesting to track particle exchanges between the Leeuwin 558 Current and Leeuwin Undercurrent. 559  560 The results in this paper are based on a single model and so are affected by 561 biases in the forcing, sensitivity to a z-level coordinate system, the resolution of 562 the model and the subsequent processes it can resolve. In section 2.1, biases in 563 TROPAC01’s sea surface height were discussed when compared to AVISO. As 564 TROPAC01 tends to underestimate the energetic regions (Figure 1f) it is possible 565 the results in this paper underestimate some of the eddy-driven fluxes. Thus, it is 566 possible other eddy-resolving ocean model simulations using different forcing 567 products would give slightly different results.  Although the results in this paper 568 are based purely on a model, they will assist future work in understanding the 569 Leeuwin Current’s role in regional climate and circulation in the region. 570 Examples include: marine heatwaves [Benthuysen et al., 2014], connectivity in 571 the region [Coleman et al., 2013], the effects of climate change on Australia’s 572 boundary currents [Sun et al., 2012] and understanding the dynamics of the 573 Indian Ocean’s anomalous eastward flows [Menezes et al., 2014b].  574  575 
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7 Figures 733 
See 2015JC011486-p01.pdf 734 Figure 1. Evaluation of the TROPAC01 model: comparing the model sea surface 735 height data for the period 1993–2009 to AVISO altimetry data over the same 736 period. (a)-(c) comparison of mean sea surface height. (d)-(f) comparison of sea 737 surface height variability, computed as the local root-mean-square variance of 738 the sea surface height time series.  739  740  741 

742 
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See 2015JC011486-f02.pdf 743 Figure 2. Mean (upper left) and bimonthly mean (1960-2009) meridional 744 velocity (m/s) at 32°S in the TROPAC01 model. Contours are 0.04 m/s and only 745 negative velocities are shown. 746  747 
748 
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See 2015JC011486-p03.pdf 749 Figure 3. Eulerian southward transport from TROPAC01 at 32°S for years 1960-750 2009. Bar colours are different groupings of levels from TROPAC01. 751 
752 
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See 2015JC011486-p04.pdf 753 Figure 4. Connectivity map between the northern offshore/Indonesian 754 Throughflow particles and the Leeuwin Current region as diagnosed from 755 Lagrangian trajectories. The proportion of transport in each 0.5° × 0.5° degree 756 grid cell from trajectories that entered the Leeuwin Current region (blue) and 757 trajectories that did not (red). Any blue value above 50% indicates that grid cell 758 was dominated by trajectories that entered the Leeuwin Current region. The 759 Leeuwin Current region is defined as any sectors pictured by the thick black 760 lines. This figure demonstrates the importance of the Leeuwin Current as a 761 pathway for water between the northern offshore region/Indonesian 762 Throughflow and Australia’s mid-latitude and South Australian coastlines. 763  764 
765 
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See 2015JC011486-p05.pdf 766 Figure 5. Source water exchange along the Leeuwin Current’s pathway. Numbers 767 are transport (Sv) across the pictured sector boundaries (black lines), taking the 768 average for years 1966-2003 and depth-integrating to 300m. Orange arrows are 769 particles originating from the Indonesian Throughflow region, purple arrows are 770 from the northern offshore section and green arrows from the western offshore 771 section. Size and direction of arrows are indicative of transport size and 772 direction of flow, respectively. 773  774  775 
776 
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See 2015JC011486-p06.pdf 777 Figure 6. Mean seasonal contribution of Leeuwin Current sources along the 778 Leeuwin Current’s downstream flow, as located by the coral arrows in the maps 779 on the right, for each row. Units are in Sv and the mean is taken over the years 780 1966-2003 and depth-integrating to 300m. Orange lines  are particles 781 originating from the Indonesian Throughflow region, purple lines  are from the 782 northern offshore section and green lines  from the western offshore section. 783 The black lines are the totals of the three coloured lines. 784 
785 
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See 2015JC011486-p07.pdf 786 Figure 7. Depth-horizontal space transport sections along the Leeuwin Current’s 787 downstream flow. Plots (a)-(b) are in depth-longitude space, contoured 788 transport is the water leaving sectors 1 and 2, respectively. Similarly, plots (c)-789 (e) show transport due to water leaving sectors 3, 4 and 5 (respectively) but 790 now in depth-latitude space. Contour intervals are 0.01 Sv where results have 791 been binned to 0.25 degrees and 50 metres for horizontal and depth space, 792 respectively. Orange lines are particles originating from the Indonesian 793 Throughflow region, purple lines  are from the northern offshore section and 794 green lines from the western offshore section. 795 
796 
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See 2015JC011486-p08.pdf 797 Figure 8. Quantification of direct pathways through the Leeuwin Current region. 798 The bold end of each edge indicates direction of flux. Inshore green edges 799 indicate water that is travelling close to the coast having passed through all 800 preceding inshore sector(s). Offshore red edges quantify trajectories that 801 travelled through all green inshore upstream sector(s) and then exited the 802 system via the red offshore edge. Purple curved edges indicate trajectories that 803 have travelled directly through the previous inshore sector(s) and then 804 recirculated upstream. Units are in Sv and the mean is taken over the years 805 1966-2003 and depth-integrating to 300m. 806  807 
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