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Markerless Perspective Taking for Humanoid
Robots in Unconstrained Environments

Tobias Fischer and Yiannis Demiris

Abstract— Perspective taking enables humans to imagine the
world from another viewpoint. This allows reasoning about
the state of other agents, which in turn is used to more
accurately predict their behavior. In this paper, we equip an
iCub humanoid robot with the ability to perform visuospatial
perspective taking (PT) using a single depth camera mounted
above the robot. Our approach has the distinct benefit that the
robot can be used in unconstrained environments, as opposed
to previous works which employ marker-based motion capture
systems. Prior to and during the PT, the iCub learns the
environment, recognizes objects within the environment, and
estimates the gaze of surrounding humans. We propose a new
head pose estimation algorithm which shows a performance
boost by normalizing the depth data to be aligned with the
human head. Inspired by psychological studies, we employ two
separate mechanisms for the two different types of PT. We
implement line of sight tracing to determine whether an object
is visible to the humans (level 1 PT). For more complex PT tasks
(level 2 PT), the acquired point cloud is mentally rotated, which
allows algorithms to reason as if the input data was acquired
from an egocentric perspective. We show that this can be used
to better judge where object are in relation to the humans. The
multifaceted improvements to the PT pipeline advance the state
of the art, and move PT in robots to markerless, unconstrained
environments.

I. INTRODUCTION

Enabling robots to operate in the presence of humans and
interact with them is a challenging problem [1]. The robots
need to perceive the world from an egocentric perspective in
order to adapt to a permanently changing environment, and in
addition, they need to consider the state of the world from the
others’ perspective. For instance, this is particularly relevant
in situations where the robot has to assist or cooperate
with humans [2]. It is therefore desirable that robots have
a mechanism to represent aspects of the world in a non-
egocentric way, also called perspective taking (PT) [3-5].

Psychological studies suggest that humans rely on two
different levels of PT depending on the task [3, 6]. For level 1
PT, i.e. to infer which object can be seen by another human,
it is suggested that the line of sight between the other human
and the object of interest is traced [6]. For level 2 PT, which
is used to approximate the other humans view as well as to
find the spatial location from the others perspective, mental
rotation seems to be employed [6].

Several papers have shown that PT allows robots to
interact with humans and other robots in a more natural
way [5, 7]. More importantly, it is thought that PT is an

The authors are with the Personal Robotics Lab, Department of Electrical
and Electronic Engineering, Imperial College London, UK. This work was
supported in part by the EU FP7 project WYSIWYD under Grant 612139.
Email: {t.fischer, y.demiris}@imperial.ac.uk

RGB-D image

( K

iCub eye images

= 8 ﬁ

Object recognition Head pose estimation Environment mapping

o o

£ £

~ =

© ©

= =

0] [

> >

] =

|9} (9]

(0] (]

o o

) [92]

— —

9] 9]

a a

— ~ ’

_ ; —— — Reconstructed view

g Object visibility 2| and spatial location of

. ; ;

9 from human's g objects in human's

point of view ) \_ frame of reference /

Fig. 1. Overall flow of the proposed method. The inputs to the perspective
taking pipeline are images acquired from a RGB-D camera, and the iCub
eyes. In the first step, the robot recognizes objects, estimates the head pose
of surrounding humans, and maps the environment. Two separate processes
are employed for level 1 and level 2 perspective taking; allowing the robot
to infer which objects are seen by the human, what the spatial location of
these objects are in the reference frame of the human, and how the world
appears from the human viewpoint.

essential element for successful cooperation and to ease
communication [4]. For example, knowing that an object
cannot be seen by another human has helped in resolving
ambiguities in human-robot interaction [2].

Previous works on PT in robotics [2, 7-9] either rely on
motion capture systems and/or fiducial markers to retrieve
the head pose of humans and position of objects, or need the
objects perceivable by the human as prior information. This
limits their usability to environments which are equipped
with these tools, which is costly and requires a time-
consuming setup. Furthermore, the environment needs to be
known in advance, which requires manual modeling each
time changes are made.

In this paper, we propose to overcome this limitation using
a low-cost RGB-D camera mounted above an iCub humanoid
robot [10] in conjunction with the iCub’s eye cameras. The
overall concept of the proposed framework is illustrated in
Fig. 1, and Fig. 2 shows the setup used for our work.

The robots perception is split into three algorithms. Firstly,
we use a state of the art visual simultaneous localization and
mapping (SLAM) algorithm [11] to map the environment, so
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Fig. 2. Typical setup with the iCub humanoid robot, a human interacting
with the robot, and various objects placed between them. Some of the objects
are occluded to the human. We also show the different coordinate frames
used throughout the paper.

no prior information of the environment needs to be known.
Secondly, we employ a deep-learning based algorithm for
real-time object recognition [12], such that no markers are
needed. Thirdly, we propose a new head pose recognition
algorithm to approximate the gaze of the human. For this, we
extend a state of the art method based on random regression
forests [13] using normalized depth images which results in
higher robustness of the algorithm.

Finally, we also propose separating PT in two processes,
grounded on the psychological studies introduced earlier [3,
6]. We implement a line of sight tracing algorithm for level
1 PT, and a mental rotation algorithm for level 2 PT.

II. RELATED WORK

Several approaches for perspective taking (PT) in robotics
have been proposed over the past ten years. The system
proposed by Trafton et al. [14] is able to handle ambiguous
situations where the robot can see two similar objects, but
one of them is occluded from the human. Kennedy et al. [9]
show that left/right judgments can be solved by integrating
this system within a cognitive framework.

Breazeal et al. [7] use such ambiguous situations in a
learning scenario for humanoid robots. Their robot retains
two sets of beliefs, one is for the self and one is for the others
perspective. Using this strategy, the robot learns patterns such
as turning all buttons which are mutually visible to ON from
fewer demonstrations, and allows the human to clarify false
beliefs of the robot. This is achieved using an attentional
system, which reduces the problem space to a small subset.

In [8], it is shown that retaining a separate set of beliefs
for the others perspective can also be used to model dynamic
environments. That is, objects can be moved during the
interaction. This has been used to take the perspective of
the other even if the beliefs of the self and the other diverge.

In a similar fashion, Johnson and Demiris [15] use an
internal simulation of possible motor commands to gain
insight to the mental state of another robot. Interestingly,
both the perspective taker as well as the target of the PT are
robots. Using a list of coupled inverse and forward models,
the authors show that PT can be used to determine the
applicability of models from the others perspective. That is,
the probabilities of models which cannot be applied by the

other robot are reduced. This has been shown to increase the
accuracy of action recognition [5].

Pandey et al. [4] focus on human-robot interactions and
teach a robot what it means to make an object visible or
accessible. This needs PT abilities as the reach-ability of
an object has to be determined from the others perspective.
Interestingly, their robot is able to detect the effort class of
a human to reach an object, from no effort needed, to whole
body effort. A recent summary of their groups work on PT
is reported in [2], highlighting the need of PT in human
aware robotic systems. The authors argue that one of the most
important reasons for the need of PT in robots is that humans
frequently change perspectives when describing locations.

The previously mentioned papers all demonstrate the im-
portance and impact of PT in robotics. However, they are
not suitable for our objective as the environment they can be
used in is constrained. [2] and [4] use motion capture systems
to detect humans and objects. While this provides accurate
location information, motion capture systems are expensive
and need precise calibration. In addition, as the environment
must be known in advance, the applicability of these systems
is limited. The object detection of [9] and [14] is relying
on color blob segmentation, and thus can only detect few
objects which have to be uniformly colored. Furthermore,
their system only takes the body direction, but not the gaze
of humans into account. In [5, 8, 15], optical markers are
needed to compute the poses of the target robot and objects.
In the next section, we present algorithms to overcome some
of the limitations identified in these works.

III. MARKERLESS PERCEPTION OF UNCONSTRAINED
ENVIRONMENTS

As seen in Section II, previous works are constrained to
environments equipped with markers. Our goal is to estimate
the perceived world of humans and the surroundings of the
robot, whilst not constraining the environment. To this end,
we use only cameras mounted on the robot, namely the iCub
eye cameras as well as a low-cost, calibration free RGB-D
camera.

A. Notations

The point cloud DX acquired by the RGB-D camera is
represented by the cloud points p& € D*. Superscripts are
used throughout the paper to denote reference frames; here
KC denotes the reference frame of the RGB-D camera.

Let O® = {(oF¥,n1),..., (0%, nn)} be a set of objects.
ol* € R? denotes the object location in the robot coordinate
frame R. N is the total number of objects perceived by
the robot, and n; contains the corresponding object class to
object 1.

We define the head set H* = {R*,... h%;} containing
the head poses hf € RS of the M humans interacting with
the robot. Each hf contains the position of the 7" head in
the RGB-D camera coordinate frame, and the corresponding
head orientation in yaw, pitch, and roll notation.

The elements p;; of matrix P with size N x M store the
perception of object ¢ by agent j. Each p;; € P is a 3-tuple
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(ozij , SiH 7 LZ{j ), Where oz-lj is the i" object in the frame of
reference H; of the 4™ human, SZ{ I e {visible, occluded}
describes whether the i object is in sight of the j® human,
and similarly LZ{j € {left, central, right} encodes the spatial
location, i.e. whether an object is left, central or right as seen
from the human perspective.

For all coordinate frames used throughout the paper, we
use the convention that positive values on 1) the x-axis point
forwards, 2) the y-axis point to the left, and 3) the z-axis
point upwards (see Fig. 2). Distances are described in meters,
and angles in degrees.

B. Environment Mapping

We have chosen real-time appearance based mapping
(RTAB-Map) [11] to map the environment as it has two
advantages over typical visual Simultaneous Localization and
Mapping (SLAM) methods. Firstly, RTAB-Map can meet
real-time constraints even for large maps, which is important
for robots to operate in complex environments. Secondly,
RTAB-Map not only makes use of the RGB-D images,
but optionally also of the odometry and laser information
provided by the mobile base of the iCub. This prevents the
loss of odometry in case of fast camera movements.

In Section V-A (visual PT level 2), we will show that the
mapped environment can be used to approximate the view
of the humans which interact with the robot. However, the
environment mapping is optional for level 1 PT (Section IV),
and spatial PT level 2 (Section V-B).

The algorithm is running online, and takes the most
recently captured point cloud D*(t = t,,,) as input. A
Bayesian filter is used to determine whether the current lo-
cation was visited before, which increases robustness on long
mapping sessions. Optionally, laser scans and the estimated
odometry of the wheels can be provided, which allows the
algorithm to recover in the case two consecutive point clouds
do not have enough visual words in common.

The output of the algorithm is the 3D space 2 in the
reference frame of the RGB-D camera. QX contains the
concatenated point clouds D*(t = t5),..., D*(t = t,ow),
after a) taking the robot movements into account, and b)
removing duplicate points. Fig. 3 shows the resulting point
cloud after moving the mobile base of the iCub around a
table in a typical lab environment.

C. Object Recognition

The object recognition pipeline is based on the recent
work by Pasquale er al. [12]. The authors port a deep
learning framework on the iCub robot. It allows learning
and classifying objects online, with one shot learning. The
camera image of the left iCub eye camera is taken as
input, and blobs representing objects are extracted based
on the luminosity of the image. For each object, a vector
representation of the image is computed using the output of
the highest layer of the deep convolutional network. This
representation is somewhat invariant to changes in scale,
lightness, and orientation. The classification to one of the
object classes is done using a support vector machine.

Fig. 3. Map of the environment after turning the iCub 360 degrees on the
spot in a lab environment (view from above). The robot uses this information
to reason about parts of the environment which cannot be perceived at the
moment, but have been seen previously.

Once the object class is known, the stereo vision sys-
tem [16] of the iCub is used to estimate the object location
in the reference frame £ of the left iCub eye. Then, using the
robot kinematics the transformation Te_, to the robot root
reference frame R is computed, and the set OR is filled.

As the object recognition pipeline runs in real-time, ob-
jects can be moved during human-robot interactions by both
the human as well as the robot while the object is still being
recognized.

D. Head Pose Estimation

Accurate and robust estimation of the head poses HX
of surrounding humans is crucial in order to take their
perspective. If a head pose is not accurately estimated, the
robot’s judgments regarding the perception of the humans
might be incorrect. Please note that we focus on the head
pose as an approximation of the gaze, i.e. we do not track
the eye movements.

Previous works [2, 4, 17] tackled the head pose estima-
tion using motion capture systems. These provide accurate
estimates, but have the disadvantage that humans need to
wear a helmet (or similar) equipped with markers, which
might partially occlude the field of view and requires a
precise calibration. In contrast, our approach is based on
camera images, which does not require humans to wear
additional equipment, but comes at the cost of information
with increased noise.

1) Camera Based Head Pose Estimation: Recent ad-
vancements in the area of computer vision allow the esti-
mation of head poses using a single depth image acquired
by a RGB-D camera in real-time [13]. On the dataset of
the authors, the position error is around 15 £ 22mm, and
the error of the angles around 8.5 £ 13.5°. The algorithm
is based on discriminative random regression forests. The
forest contains a number of trees, and the trees are learned
in a way that within each node of the tree the variance of the
head pose is reduced. The output of the forest is the mean of
the predictions of the individual trees. To work with noisy
depth data acquired by the RGB-D camera, the trees also
classify whether a patch given as input belongs to a head. If
that is the case, the output of the tree is considered for the
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mean calculation.

To train the forest, a user specific 3D morphable model is
needed. The ground truth data is generated using an iterative
closest point algorithm. In [13], a dataset of 20 people is
captured to train the random forest. The subjects were sitting
in a distance of 1 meter straight in front of the camera. Note
that no user specific model is required for the testing phase.

2) New Method Based on Normalization of Depth Data:
As mentioned earlier, the accuracy of the algorithm works
well on the testing set of the dataset. However, the input
to the algorithm in our scenario differs largely from that
of the dataset of [13]. The camera is not straight in front
of the human, but comes with a large translational offset
in z-direction and is tilted by an angle 6 around the z-
axis. Furthermore, the distance between the camera and
the human(s) is larger than one meter. As we show in
Section VI-A, these factors severely decrease the accuracy
of the algorithm.

In our new approach, rather than building a new training
set matching our environment, we normalize the depth image
provided to the algorithm to match that of the expected
input. Then, we achieve a performance similar to that of the
testing set even if the human is located far away from the
training position. Note that this normalization is independent
of our presented PT system, and we expect performance
improvements for any application where the setup largely
differs from that used in [13].

An initial improvement is achieved by transforming the
point cloud D¥ into a new reference frame P, resulting in
D” = Ti_pD*. The axes of P are chosen to be aligned
with that of R, except of a translational offset such that
the head of the human is one meter away from the origin
of P. Thus, the transformation matrix Ty _,p is derived as
follows!:

1 0 0 TR—P
0 1 0
Tksp =TksrTR—P =Tksr 00 1 Zzﬂz
—
0 0 O 1

(1)
Then, the output H” = {hT,... h%;} of the random forest
is in the P reference frame, and needs to be transformed
back in the initial frame of reference C:

Wy =Teop™'hD Vje{l,...,M}. )

A further increase of accuracy is achieved by employing
the head position h% o, € R® returned by the RGB-D
skeleton tracking® (note that the skeleton information only
includes the head position, but not orientation). This step
is optional, as it requires the users to go into a calibration
pose to start the skeleton tracking. The same principle as
above is used, but instead of using a fixed distance between
robot root and the origin of frame P as above, the origin
of frame P* is chosen to be one meter away from the
initial head position h% .., € R®, and the rotation of the

1Ty is derived in Eq. 5
2PrimeSense NiTE (http:/www.openni.ru/) is used for skeleton tracking

Fig. 4.  Effect of the depth image normalization. The non-normalized
input on the left differs largely from the training data, as the camera is
mounted on an angle and too far from the subject. The normalized image
after transformation on the right is more similar to the training data (subject
is facing straight and is closer), which improves the performance of the head
pose estimator as shown in Section VI-A.

coordinate axes of P* coincide with that of the robot frame
R. For this, & e, is first transformed to the robot frame
R: hg}(elmn = T;C_,Rblsckelem. Then, T’z ,p~ is computed as
in Eq. 1, but with the following substitutions:

* _ LR
IR—P = hSkeleton,w - 1.0

* _ R * _ LR
YrR—-P = bSkeleton,y ZR—P = hSkeleton,z' (3)

Again, the random forest algorithm is used to estimate the
head pose in the new reference frame P*, and T _)p* is
used to transform the resulting pose back in the reference
frame of the RGB-D camera K:

R —13P*
hj :TIC—>P* hj

Vie{l,...,M}. (G))

If B jet0n 1S available, we use Eq. 4 to compute h;c c HY,
otherwise we fall back to the default normalization using
Ti—p (Eq. 2). The performance improvement using the
described extensions to the original head pose estimation
algorithm are crucial for a markerless PT pipeline. The
normalization step is shown in Fig. 4, and experimental
results can be found in Section VI-A.

E. Transform RGB-D Camera Frame to Robot Frame

The transformation Ty _,z from the RGB-D camera coor-
dinate frame /C to the robot coordinate frame R is found as
follows. First, Tic_, % is initialized using the roughly known
geometrical information between the RGB-D camera and
the robot root. There is only one rotational component with
angle 6 around the z-axis, and three unknown translational

components Txsr, Yk—R, ZL—-R:

cos(f) —sin(d) 0 zx_mr
| sin(@) cos(f) 0 yrowr
Tem = 0 0 1 ozer |00 @
0 0 0 1

The final angle 6* of Tx_,x is found such that the z-
axis of R aligns with the floor points in D* (except of
a translational offset in z-direction). Then, using Te_r ™1,
we transform the objects O™ in the reference frame K to
visualize them along the point cloud D* in the RGB-D
camera reference frame K:

oOrF =Tz 'O®. (6)

The translational components are then changed stepwise such
that the transformed object markers O* visually match with
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the corresponding objects in the point cloud, at which point
the final values z}_ 5, yx_, and zx_, 5 are found.

Instead of this manual procedure, an iterative closest
point algorithm could be used to find this transformation
automatically, which would also make a dynamic camera
position feasible. However, as in our system Tx_,% remains
static, we found an automatic system not necessary.

IV. LEVEL 1 PERSPECTIVE TAKING: WHICH OBJECTS
CAN YOU SEE?

In the previous section, we introduced the markerless
perception of the environment, including the estimation of
the head pose of humans and the locations of objects. In
this section, we introduce level 1 perspective taking (PT),
which is the ability to know which objects are seen by
others. Imagine a situation where the robot is asked to grasp
“the toy”, but the robot recognizes two toys, leading to an
ambiguous situation. However, if the robot knows that only
one of the toys can be seen by the human, the robot can
infer which toy is meant.

In previous works, the robot mentally transformed its per-
spective to that of the other robot [5, 8, 15] or human [2, 4]
to judge the visibility of objects from their perspective®. This
approach is not desirable in our system, as it needs a very
accurate representation of the objects from a non-egocentric
viewpoint in order to recognize the objects. Previously, this
was achieved using optical markers, however in this work we
implement a markerless approach. We present a simpler and
faster way of judging the visibility. Our approach is inspired
by cognitive research, which suggest that a) there are two
different processes for PT [3], and b) the process for level 1
PT is based on line of sight tracing [6]. Level 2 PT is shown
in Section V.

A. Visual Perspective Taking Level 1

We base our level 1 PT algorithm on a line of sight
tracing approach presented by Amanatides and Woo [18],
which remains the foundation for most works on line of
sight tracing to date [19]. We first map the points p € D*
captured by the depth camera in a grid of voxels. The voxel
grid VX approximates the 3D space spanned by the points
pX to volume items vX of equal shape (here: cubes of
dimension £3), such that:

VE = Yok

K K _
. v Ny =10

Vi, g, i #j. (7
The coordinates of a point p € R? in 3D space are mapped
to its equivalent voxel v& € Z3 as follows:

ol = [pFel. (8)

Using Eq. 8, we compute the coordinates of the head poses
HVY'X and object locations OV* in the voxel grid.

The line of sight is traced between each human j; =
1,..., M and each object s = 1,..., N, leading to N x M
traces. The tracing is performed as follows. A trace Tj_,;

3 A notable exception is [17], where a line of sight tracing similar to ours
is used. However, [17] employs a motion capture system.

starts at the nose tip hy’K of the j® human, and its target
is the object at location oZV”C. At each step, depending
on the offset of the current voxel and the target voxel, a
decision is made whether the next voxel to be traversed is
one step towards the z, y, or z direction. If the traversed
voxel contains a point, the algorithm returns with the result
that the object is hidden. If the traversed voxel is closer to the
target voxel than a given threshold 4, the algorithm returns
with the result that the object is visible to the human. The
pseudocode is described in Algorithm 1.

Algorithm 1: Level 1 Perspective Taking

Input : Voxel grid VX with leaf size ¢
Origin point O* and target point TX
Output: Visibility of T* from O*
direction «+ (T* — OX)/| T — OX|
O’\C, + 3DtoVoxel (OF)
voxel,,q; < VoxelTo3D (O%)
for i € {z,y,z} do
if direction|i] < 0.0 then
| step[i] < —1; voxelmaz[i] < voxelqz[i] — &/2
else
| step[i] <= +1; voxelyqz[i] < Voxelmqz[i] + £/2
ts[t] <+ &/|direction]i]|
tmaz]i] < (VOXel,qaz[i] — OF) /direction]i]
while O € VX do
if ||O5 — TX| < § then
L return visible

if isOccluded (O%) then
L return occluded

if t00 [33] < tmaz [y] and trmax [l‘] < tmax [Z] then
tmaz [Jﬁ] < tmax [ZC] +is [1‘]
| Ovlz] < Ovlz] + step[z]
Ise if ¢,,0x [y] < tmaz [I] and tp,a. [y] < tmaax [Z]
then
tmaz Y] < tmaz (Y] + ts[y]
L OVlyl < OFy] + steply]

else

[

tmaz|2] ¢ tmaz|?] + t5]2]
| OV [z] «+ Oy[2] +step[2]

The result of the tracing, being either “visible” or “oc-
cluded”, is stored in the variables S I of matrix P (see
Section III-A). A visualization of the tracing is shown in
Fig. 6. Interestingly, the execution time of our approach
follows qualitatively the reaction times found in humans [6].

V. LEVEL 2 PERSPECTIVE TAKING: WHAT DOES THE
WORLD LOOK LIKE TO YOU?

In this section, we describe how level 2 perspective tasks
are solved in our system. We differentiate two tasks: 1)
estimating how the world is visually perceived by a human
(visual PT), and 2) judging whether objects are to the left,
right or in front of the human (spatial PT). We solve the
visual PT task by transforming the concatenated point cloud
QF (see Section I1I-B) from the camera reference frame K in
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the reference frame of the jth human #;, whose visualization
leads to a reconstructed view from the human’s perspective.
Once the point cloud is in the reference frame of the human,
a simple case differentiation is used to solve the spatial PT
task.

A. Visual Perspective Taking Level 2

The view of the j™ human is estimated by first converting
h;c € RS from Euler angles in the RGB-D coordinate
frame IC (see Section III-A) to a transformation matrix, and
afterwards using this transformation matrix to convert Q%
in the new reference frame H;. We decompose hf into its
components:

(A N L o TP 9)

gy gy 15,20 100
The angles hJ o hj 5, and h’C are yaw, pitch and roll
angles, i.e. the first rotation is descrlbed by h’CAY about the
z-axis (R, (7)), the second rotation by h', about the y-
axis (Ry(8)), and the third rotation by h;{ about the z-

axis (R, («)) [20, p. 99]. The 3x3 rotation matrix R;c_mj
is obtained as follows:

Ry, = Ro(@) Ry (B)Ru (). (10)
Finally, the homogeneous transformation Ty _ 4« Wwith

rotational component RK%Hj and translational component

= (K, WS, W) T is calculated as:

R th
TK%;.=< o ) (1)

0 1
The transformation matrix is then used to obtain a point
cloud whose origin coincides with that of the nose tip of the

th human:

e Qi = T,C%;CQ’C (12)
The resulting point cloud 2% can then be visualized, and
contains an approximated view of what the human is seeing.
An example of a reconstructed view is shown in Fig. 7, and
more discussion can be found in Section VI-C. In comparison
to earlier works [2, 4, 5, 8, 15], the transformed view is
solely based on the images acquired from the RGB-D camera
during the environment mapping (see Section III-B), rather
than an a priori known virtual environment. In the next
section, we will show that the transformed cloud can also
be used for spatial reasoning.

B. Spatial Perspective Taking Level 2

Spatial PT is the ability of judging the spatial location of
an object from another frame of reference. Here, we outline
how the transformed point cloud Q™i is used for these
judgments. Importantly, the judgments are universal, i.e. they
do not depend on the frame of reference. This means that
the iCub is able to transfer the knowledge acquired from
an egocentric viewpoint (“the toy is to my left”) to that of
another viewpoint (“the toy is to his right”) without changes
in the underlying algorithm. This is not limited to spatial PT,
but might also be used for other tasks such as learning by
imitation [21], which is beyond the scope of this paper.

We first show a simple spatial reasoning approach which
is used by the iCub to judge the object locations from the

iCub’s viewpoint, and then apply the same algorithm to the
transformed view, allowing the robot to reason about the
human’s visual perception. Remember that o € R? denotes
the object location in the robot reference frame R;and LT €
{left, central, right} describes the spatial relation between
object ¢ and the robot. The left/right judgments are made as
follows, with ¥ = arctan(of%, /o%,) and 6 = 7.5°:

left if af* > +0
right  if of < —0
central otherwise.

LF = (13)

As mentioned before, spatial PT is done in the same way,
with the only difference being the angle which is given as
the input. Using Equations 5 and 11, the object location o
is transformed in the reference frame of human j:

H .

0,7 = TK%*ITxﬂjof (14)

Then, we provide the angles o, 7 = arctan( J/o;7) to the

algorithm in Eq. 13, and use the return values to fill Lj-{j
of the perception matrix P. Albeit simple, this is a powerful
approach to allow the iCub to take the spatial perspective of
humans. The knowledge is then used by the iCub to refer to
objects as seen by the human, e.g. “I want to play with the
toy on your left”.

VI. EXPERIMENTAL EVALUATION

We utilize an iCub humanoid robot mounted on an iKart
mobile base, with a RGB-D camera attached zx_,g = 57.5
cm centrally above the robot root frame R, at an angle of § =
26° downward facing (see Fig. 2). As the RGB-D camera,
we use an ASUS Xtion Live, which provides RGB and depth
images with a resolution of 640 x 480 pixels. This allows
the iCub to observe objects placed in front of it on a table,
as well as to observe one or two humans sitting at the other
end of the table. You may want to watch the accompanying
video for a demonstration of our experimental results.

A. Head Pose Estimation with Applied Normalization

Our intention is to apply a pre-trained state of the art
head pose estimator in a scenario which differs largely from
the training input. As discussed previously, we extended the
algorithm by normalizing the input data, and we predicted
that it becomes more viewpoint invariant. To investigate, we
compared the original algorithm with the extended algorithm
on six subjects with each five different poses, capturing a
wide range of horizontal angles. Fig. 5 shows our method,
compared with the original method. All other parameters
were kept constant, and both methods were applied to
the same input image. Without normalizing the input, the
resulting head poses were center-biased for all subjects. For
the first and third subject, the original method was not able to
estimate a head pose for large angles, whereas our improved
method returned accurate estimates. Normalizing the input
data also leads to a better estimate of the vertical angle, i.e.
whether the subject looks up or down (not shown for brevity).
For the sixth subject, the way the subject’s hair had fallen
across his face resulted in incorrect estimates for both the
original, and our method.
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Subject 2 far left

Subject 2 left
Fig. 5.

Subject 2 central

Subject 1 right

Subject 2 right

Comparison of the normalized head pose algorithm (green arrows) and original method (white, dotted arrows). The normalized method leads to

much higher accuracy of the head pose estimation for all head rotations. For three rotations of subject 1, the normalized method resulted in correct pose

estimates whereas the original method failed to detect the head.
B. Level 1 Perspective Taking Performance

In order to judge which objects are seen by the humans, we
proposed a line of sight tracing in Section IV. We reasoned
that this is a suitable algorithm in a markerless scenario,
where object recognition in the transformed view of the
human is a yet to be solved problem. Here we show the
effectiveness of our proposal in three different scenarios. In
all scenarios, N = 3 different objects belonging to one of
C = 7 object classes are placed on a table which is situated
between the iCub and the subject (a clock, a joystick and
a pen). In Fig. 6, small spheres are used to visualize the
traced line of sight, and big spheres are used to denote the
object locations. In the first case, all objects can be seen by
the subject. In the second case, one object is hidden from
the subject, and the tracing stops at the barrier. Similarly,
the third case shows two occluded objects. For a better
comparison, the actual view of the subject in this case is
shown in Fig. 6(d). In all scenarios, the line of sight tracing
algorithm successfully determined which objects can be seen,
demonstrating the robustness of our approach.

C. Level 2 Perspective Taking Performance

We proposed to mentally rotate the point cloud acquired
by the environment mapping in the frame of reference of the
human to estimate what the world looks like to the human.
Furthermore, we showed that rotating the point cloud allows
using the same spatial reasoning algorithm as from the robots
perspective. Here we validate this proposal in a similar setup
as the level 1 PT experiments.

In the first experiment, we place three objects on a table
between the iCub and the subject: a joystick to the left of
the subject, a toy in the center, and a cup to the right of

the subject. First we mentally transform the point cloud
in the reference frame of the human, which is shown in
Fig. 7. Albeit being a low resolution approximation due to
the RGB-D camera, the gist of the scene is comprehensible.
Importantly, the iCub uses the mapped environment to reason
about areas of the scene which cannot currently be perceived
by the robot.

Fig. 7. Approximated view of the human using a mental transformation.
The robot, while facing the human, correctly estimates that the human
is looking at a table with three objects. Also, as the robot has a map of
the environment, it can reason about areas of the environment which are
currently perceived by the human, but not by the robot.

In a second experiment, we ask the subject to look at a
specific object, and apply the spatial reasoning algorithm.
For example, using the setup in Fig. 6(a), we asked the
subject to look at the clock. The output of the spatial

. H,
reasoning was as follows: Lpeﬁ = left, Ljoyjstick = center and

Lzll(f‘ck = right. Similarly, in the other scenarios, the spatial
reasoning determined the object location from the human’s
view correctly.

We conducted a third experiment to determine the accu-
racy of our spatial reasoning algorithm in situations where
the objects are further away from the subject, and at wider
angles. We asked six subjects to focus on five points with
varying distance and horizontal angle from the subject (far

(a) All objects visible

Fig. 6. Level 1 perspective taking in different scenarios. The visible objects are correctly inferred in all scenarios.

(b) One object occluded

(c) Two objects occluded (d) View from subject for c)
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Fig. 8. Horizontal error for spatial perspective taking, using the original
(red) and normalized (green) head pose estimation algorithms.

left / far right focal points: 1.19m from the subject at +33°
angle; left / right focal points: 1.07m at £20° angle; center
focal point: 1.0m distance). All focal points were level with
the heads of the subjects. In Fig. 8, we show that spatial PT
using the normalized algorithm is significantly more accurate
(p < 0.01), allowing the robot to determine which object is
focused at a reasonably high accuracy even at large angles
and distances.

VII. CONCLUSION AND FUTURE WORKS

In this paper we have introduced a novel framework which
allows a robot to take the perspective of surrounding humans.
The combined improvements in key parts of the visuospatial
perspective taking pipeline have led to a system that works
in markerless setups. The system was validated in several
experiments using an iCub humanoid robot. To estimate the
head pose, we propose a new method which normalizes
the input so it becomes more similar to the training data.
This improves the performance in scenarios where the pre-
normalized input data is dissimilar to the training data, which
extends the application scenarios of the head pose estimator.

We employ line of sight tracing for level 1 perspective tak-
ing, to determine whether an object is visible to the human,
and highlighted that previous methods are not suitable for
a markerless environment. For level 2 perspective taking, a
mental perspective transformation is used to reconstruct the
world from another viewpoint, whereby the robot does not
have any prior information about the world and is learning
the environment online. We demonstrated that the robot can
judge whether objects are to the left, right or in front of
a human using the same algorithm as from an egocentric
perspective.

Previous works need artificial markers and/or motion cap-
ture systems, which constrains their usability. In contrast, our
system can be applied to any environment, e.g. care homes
where a robot might aid elderly people by describing object
locations in their frame of reference (“the remote control is
to your left”).

Our framework would benefit from more accurate gaze
estimates by taking the eye movements of the human into
account. Also, the human field of view should be taken into
consideration for level 1 PT.

Our proposed method overcomes limitations in the per-
ceptional part of perspective taking, and we plan to integrate

it with a higher-level cognitive system [22]. This will allow
an insight to the developmental process of perspective tak-
ing [23], as well as to solve more complex perspective taking
tasks. Furthermore, we plan to investigate the relationship
between joint attention [24] and perspective taking.
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