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Abstract

The intrinsic stochasticity of biomolecular systems is a well studied phe-

nomenon. Less attention has been paied to other sources of variability, so

called extrinsic noise. While the precise definition of extrinsic noise de-

pends on the system in question, it affects all cells and its significance has

been demonstrated experimentally.

Information theory provides a rigorous mathematical framework for quan-

tifying both the amount of information available to a signalling system and

its ability to transmit this information. Intracellular signal transduction re-

mains a relatively unexplored frontier for the application of information

theory.

In this thesis, we rely on a metric called mutual information to quantify in-

formation flow in models of biochemical signalling systems. After briefly

discussing the theoretical background and some of the practical difficulties

of estimating mutual information in Chapter 2, we apply it in the context of

simplified models of intracellular signalling, referred to as motifs. Using

a comprehensive set of two-node motifs we explore the effects of extrin-

sic noise, model parameters and various combinations of interaction, on

the system’s ability to transmit information about an input signal, repre-

sented by a telegraph process. Our results illustrate the importance of the

system’s response time and demonstrate a trade-off in transmitting infor-

mation about the current state of the input or its average intensity over a

period of time.

In Chapter 4, we address the problem of determining the magnitude of ex-

trinsic noise in the presence of intrinsic stochasticity. Using the Approxi-

mate Bayesian Computation - sequential Monte Carlo algorithm, together

with published experimental data, we infer parameters describing extrinsic

noise in a model of E. coli gene expression.

Lastly, in Chapter 5, we construct and analyse models of bacterial two-

component signalling, bringing together insights gleaned from earlier work.

The results show how the abundances of different molecular species in the

system may transmit information about the input signal despite its stochas-
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tic nature and considerable variation in the numbers of protein molecules

present.
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Chapter 1

Introduction

Recently there has been increased interest in the application of ideas from information

theory to problems in molecular biology. The range of topics is broad, examples in-

clude sequence comparison [1], gene regulatory networks [2, 3], tumor necrosis factor

signalling [4], positional information during embryogenesis [5] and experimental de-

sign [6]. In this thesis, we explore the implications of considering a cellular signalling

pathway as a communication channel. To do this, we construct models of biomolecular

signal transduction and quantify information flow through these systems.

Complex networks of molecular interactions facilitate information gathering and pro-

cessing at the cellular level. A detailed understanding of inter- and intra-cellular sig-

nalling underpins advances in medicine, biotechnology and other fields. The disciplines

of molecular biology and biochemistry are built on a foundation of decades of experi-

mental work: observations of the behaviour of biochemical systems in various settings,

both in vitro and in vivo, characterisation, cataloging and classifying the structures, se-

quences and functions of various molecular components. Modern high-throughput tech-

niques, from sequencing methods to automated fluorescence microscopy, have provided

further insight while also creating new challenges for data analysts. The discipline of

systems biology, including mathematical and computational modelling of biomolecular

signalling, has developed in parallel with the experimental sciences.

Arguably, we can not hope to attain a satisfactory understanding of both quantitative

and qualitative aspects of cellular signalling without resorting to computational models.

Such models force us to make our assumptions explicit, test our explanations of exper-

imental observations, and have the potential to reveal previously unexpected behaviour.
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They may also be a source of new hypotheses and suggest directions for further exper-

iments. However, mathematical and in silico modelling of cellular signalling processes

is challenging due to the size and complexity of the networks as well as incomplete

knowledge of their biophysical properties.

Computational models of biomolecular processes range from Boolean representations

of large genetic interaction networks [7] to atomic-scale modelling of biophysical pro-

cesses [8]. The models presented in this thesis fall between these two scales and are fo-

cused on representing the function of individual molecular species with no consideration

given to the nature of the chemical reactions involved or to their molecular structures.

We also do not consider the effects of inhomogeneous spatial distributions of molecules

within a cell. Such spatial effects are thought not to play a significant role in the func-

tions of systems examined in this work. Although, in other signalling and information

processing systems, such as those involved in Drosophila embryo morphogenesis, spa-

tial concentration gradients are a critical part of the process [9]. Detailed mechanistic

models are usually restricted to small portions of the network, dictated by our interpre-

tation of the system’s function and its experimental tractability. However, even at this

level, we lack a complete understanding of the interplay between various biochemical

processes.

Mechanistic models of cellular signalling usually fall into one of two categories, de-

terministic or stochastic. Typically, deterministic models consist of systems of ordinary

differential equations (ODEs) which can be solved numerically. The trajectory of species

concentrations in time can be interpreted as representing the average abundance of the

species. Deterministic modelling approaches, such as the linear noise approximation

[10] or methods based on expansion of moments [11], can also be used to represent

variability arising from stochasticity in the real system. Stochastic differential equation

models assume that the system’s trajectory consists of two components, a drift term

describing the mean of the trajectory and a diffusion term, usually a Wiener process,

which accounts for the apparent noise in the system. The above methods use continu-

ous variables to represent species abundances under the assumption that the numbers of

molecules involved are sufficiently large for the influence of individual reactions to be

negligible.

A more explicit representation of the stochasticity in a molecular system can be achieved

by employing dynamic Monte Carlo (DMC) simulation methods, that use discrete vari-

ables to explicitly represent the numbers of molecules in the system. The models used

2



with such methods consist of sets of discrete events, which may represent individual

chemical reactions or more complex processes. The probability of a particular event

occurring, also known as the hazard, may depend on the numbers of species in the sys-

tem as well as the rate parameter association with the event. Computationally, DMC

simulation may be carried by various algorithms [12], the most well know of which is

the Gillespie algorithm [13].

Deterministic and stochastic models have been widely used in systems biology to gain

insight into cellular function and decision making. Relatively simple ODE models of bi-

molecular signalling processes are capable of displaying a range of non-linear dynamics

[14–16]. Meanwhile, experimental studies [17, 18] showing that there is considerable

cell-to-cell variability in the abundance of many protein and mRNA species continue to

motivate the use of stochastic models.

Regardless of the modelling framework used, a number of questions remain pertinent.

How reliable is the signalling given that the system may display non-linear dynamics

and be subject to sources of noise in the form of intrinsic stochasticity and cel-to-cell

variability? What features of the signalling system determine how well it transmits

information about the signal? To try to answer them, we turn to ideas from information

theory.

1.1 Application of information theory to cellular
signalling

In his 1948 paper [19] Shannon lays the foundations for the field of information theory.

He derived his results in the context of communication systems which can take on a

number of discrete or continuous states. These states can be transmitted from the input to

the output of the system with some probability of a change, or error, during the process.

Shannon’s work provided a mathematical framework for modern communication and

data compression technologies. His findings have since been applied in a wide range of

disciplines including computer science, physics, economics and statistics [20]. In the

biological sciences, information theory has been widely used by neurophysiologists to

quantify relationships between neural stimuli and responses [21, 22]. The application of

information theoretic ideas to signal processing by biomolecular systems has been less

common. Examples include references [2–5, 23–29].

3



Biomolecular signalling systems have evolved to facilitate the transmission of informa-

tion about their environment in order to regulate a cell’s responses. These processes

include:

• Control of gene expression by changes in transcriptional activator and/or repres-

sor concentrations.

• The response of downstream targets of signalling cascades to changes in receptor

activity.

• Changes in metabolite concentrations in response to changes in the concentrations

of allosteric regulators of metabolic enzymes.

Much of Shannon’s original work is concerned with the transmission of a signal over a

noisy communication channel. Noise in biomolecular systems can be broadly divided

into two categories, intrinsic and extrinsic. Intrinsic noise refers to the variability pro-

duced by stochastic processes such as individual chemical reactions or discrete events

such as the synthesis or degradation of a macromolecule. Models which are simulated

using DMC methods take this stochasticity into account. Conversely, extrinsic noise

represents variability due to processes that are not explicitly described in such models.

This variability may be in the form of molecule copy numbers or reaction rates. For ex-

ample, a single strain of E. coli cells grown in the same culture displays considerable cell

to cell variability, which can not be accounted for solely by intrinsic noise [17]. There is

no single, universally accepted, method for modelling extrinsic noise. One approach is

to assume that variation in extrinsic noise is much slower than the dynamics of the pro-

cess being modelled. In this case, extrinsic noise may be represented by perturbations

of parameters and initial conditions before each simulation of the model.

To determine the effectiveness of signal transduction through a noisy channel we need

to quantify the relationship between the input signal and the system’s response. An in-

formation theoretic metric called mutual information (MI) provides a statistical measure

of interdependence between random variables. One advantage of this metric is that it

captures non-linear relationships. While MI may be calculated for any pair of variables,

we are particularly interested the MI between variables which are considered to be the

inputs and outputs of signalling pathways.

When attempting to make conclusions about information flow through biomolecular

systems, there are a number of broader questions which should be addressed. There
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is no obvious evolutionary reason why information transmission and information pro-

cessing should be separated in a biomolecular system. Further, it is unclear whether the

amount of information transmitted by a signalling pathway is limited by its biophysi-

cal properties or whether there was simply no selective pressure to evolve a pathway

capable of transmitting more information. It is not always desirable to maximise the

overall MI between input and output variables. For example, adaptive sensing systems

such as those involved in bacterial chemotaxis [30] or in light sensitive cells of the eye

[31, 32] have evolved to transmit information about relative changes in an input signal.

Similarly, in bet hedging situations [33], imperfect transmission of information about an

input variable may be selected for.

To tackle some of these complications, we will consider information transmission about

particular features of an input signal. We begin by quantifying MI for simple abstract

models representing an input signal and its effect on one or downstream cellular compo-

nents. Next we use single cell data from E. coli to try to infer the magnitude of extrinsic

noise affecting gene expression. In the final chapter we construct a stochastic model of

a bacterial two-component signalling system being expressed from its operon, subject

to extrinsic noise. We then estimate the MI between an input signal and the system’s

response.

5



Chapter 2

Theoretical Background
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2.1 Information Theory

Entropy - quantifying uncertainty

Shannon introduced the concept of entropy, H(pi), of a discrete probability distribution

of events with outcome probabilities given by p1, ..., pn. He qualified his choice of

measure by stating that it should conform to three properties. Namely that H should:

(1) be continuous with respect to outcome probability (pi); (2) increase monotonically

with n when all outcomes are equally likely (i.e. pi = 1/n); (3) be a weighted sum of the

entropies of combined and nested outcomes. To illustrate the last condition, consider a

set of events with outcome probabilities p1, ..., pn and let p1 itself be a set of events with

outcome probabilities q1, ..., qm. The metric should satisfy

H(q1, ..., qm, p2, ..., pn) = H(p1, ..., pn) + p1H(q1, ..., qm).

Shannon noted the analogy between his chosen measure and the measure used in statisti-

cal mechanics to quantify disorder, diversity, or the number of possible arrangements of

a system [19, 20]. Shannon’s entropy plays a central role in quantifying uncertainty and

information. For a random variable X, which may take values x1 to xn with probabilities

p(xi), the entropy H is defined as,

H(X) = −

n∑
i=1

p(xi) log p(xi). (2.1)

The quantity H may be interpreted as a measure of uncertainty in the choice of x. The

base of the logarithm used, determines the units, and may be chosen arbitrarily. Com-

monly used units include bits (base 2) and nats (natural logarithm). Entropy is related to

expectation (E) as,

H(X) = E log
1

p(X)
.

This metric may also be viewed as the expected amount of information carried by the

outcome of X ∼ p(X) about p(X), or even as the average level of surprise that an ob-

server may experience in response to the outcome of X ∼ p(X). The entropy of a random

variable also corresponds to the average length (e.g. in bits) of the record required to

completely describe the outcome of the random variable using the most optimal encod-

ing protocol [20].

An intuitive example of the relationship between entropy, uncertainty and the probabili-

ties of outcomes can be illustrated by considering the entropy of a biased coin flip. Let
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Figure 2.1: Biased coin flip. The entropy (H) is maximised when the uncertainty
about the outcome is at its greatest (p = 0.5) and reaches zero when the outcome
is certain [20].

the probability of heads be p. H = 0 if there is only one possible outcome, p = 0 or

p = 1. H is maximised when p = 0.5. Intuitively, this corresponds to 1 bit of informa-

tion about the outcome. For other values of p, either the heads or the tails outcome is

more likely, resulting in lower uncertainty (H < 1 bit) [20]. These observations have di-

rect bearing on results involving the telegraph process, discussed in subsequent chapters.

In general, H is maximised when all outcomes are equally likely (p(xi) = 1/n).

An analagous quantity, known as differential entropy, may be defined if X is a continuous

variable,

H(X) = −

∫ ∞

−∞

p(x)logp(x)dx. (2.2)

However, differential entropy does not retain all the properties of entropy for discrete

variables. In particular, it may be negative or zero. It can not be interpreted as the

average amount of information required to encode the outcomes of a random variable or

as the information contained in a random variable.

Given two discrete random variables, X and Y , which can take on n and m possible

values respectively, the entropy of the joint distribution of X and Y is given by,

H(X,Y) = −

n∑
i=1

m∑
j=1

p(xi, y j) log p(xi, y j). (2.3)

8



If X and Y are independent H(X,Y) = H(X) + H(Y), otherwise H(X,Y) ≤ H(X) + H(Y).

The conditional entropy of a random variable X|Y is similarly given by,

H(X|Y) = −

n∑
i=1

m∑
j=1

p(xi, y j) log p(xi|y j). (2.4)

The joint and conditional entropies are related to each-other as, H(X,Y) = H(X) +

H(X|Y) = H(Y) + H(Y |X). This is known as the chain rule for entropy.

Mutual information

One may want to quantify the extent of interdependence between two variables. This

may be done using mutual information (MI), defined as,

I(X; Y) = H(X) + H(Y) − H(X,Y). (2.5)

I(X; Y) can be thought of as a measure of the decrease in uncertainty about X given

knowledge of the outcome of Y and vice versa. MI can be expressed in terms of the

joint and marginal distributions of two discrete variables,

I(X; Y) =

n∑
i=1

m∑
j=1

p(xi, y j) log
p(xi, y j)

p(xi)p(y j)
. (2.6)

The MI between two continuous random variables can also be defined as

I(X; Y) =

∫ ∞

−∞

∫ ∞

−∞

p(x, y) log
p(x, y)

p(x)p(y)
dxdy. (2.7)

Unlike entropy, MI for continuos random variables must be non-negative. It retains its

meaning as the decrease in uncertainty about one variable given knowledge of the other.

The MI between two independently distributed variables is zero, while the MI between

two perfectly correlated variables is equal to their entropy. Unlike correlation, MI takes

into account non-linear relationships between variables but provides no description of

any trends in the relationship (as opposed to positive or negative correlation). It also

does not indicate any causal relationship between variables. An analytical result links

correlation and MI for the specific case of two jointly Gaussian variables,

I(X; Y) = −
1
2

log(1 − ρ2) (2.8)

where ρ is the Pearson correlation coefficient. This result can be used to make direct

comparisons between numerical estimates of MI and the true value.
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MI is related to the Kullback-Leibler (KL) divergence [20]. Specifically, it is the KL

divergence between the joint distribution of the two variables and the product of their

marginal distributions,

I(X; Y) = DKL(p(x, y)||p(x)p(y)). (2.9)

While KL divergence is not symmetric in general, MI is symmetric.

As with conditional entropy, MI can be conditioned on a third variable Z so that,

I(X; Y |Z) = H(X,Z) + H(Y,Z) − H(X,Y,Z) − H(Z).

In terms of the joint and marginal probabilities,

I(X; Y |Z) =

n∑
i=1

m∑
j=1

l∑
k=1

p(xi, y j, zk) log
p(zk)p(xi, y j, zk)
p(xi, zk)p(y j, zk)

.

This quantity remains symmetric with respect to X and Y .

The maximum amount of information that can be transmitted through a noisy channel

depends not only on the nature of the channel but also on the input signal distribution.

However the highest amount of information that can be transmitted through a given

channel may remain limited by properties of the channel. This limit is known as the

channel capacity (C) and is defined as,

C = sup
p(x)

I(X; Y).

If the coin flip example above is instead considered to be a binary channel, transmitting

information about the state of the coin, its channel capacity (C = 1bit) is reached when

p = 0.5. In other words, the expected amount of information transmitted by this channel

is maximised when the entropy of the input signal is maximised.

It is intuitive that the information content of a signal transmitted through an imperfect

communication channel can not be increased by subsequent processing. More formally,

given a Markov chain of three variables X → Y → Z,

I(X; Z) ≤ I(X; Y).

This is known as the data processing inequality [20].
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2.2 Mutual Information

Previous applications to biochemical systems

In previous work involving the estimation of MI in models of biomolecular systems

[2, 4, 23–28, 34] investigators have often relied on the assumption that the variables of

interest follow multivariate normal distributions. One advantage of such an approach

is that the MI for a bivariate Gaussian distribution can be obtained using the analytical

expression.

In references [2, 27, 35], the authors consider models of small genetic networks. They

rely on the assumption of multivariate normal distributions at steady state, together with

a fixed prior limit on the maximum number of molecules in the system, to optimise

model parameters for a high MI between an input signal and the output of the system.

We take an alternative approach to obtaining a distribution of outputs at steady state.

Rather than representing system variability as Gaussian noise around a single steady

state, we consider a set of steady states produced by perturbation of the system parame-

ters. This corresponds to our model of extrinsic noise.

In this work, we aim to obtain reasonable estimates of MI between variables which

do not come from a multivariate Gaussian distributions. However, we begin by using

samples obtained from bivariate Gaussian distributions to assess and compare the per-

formance of various estimators of MI.

Rather than trying to find the maximum MI (channel capacity) given a set of constraints,

we explore parameter space with the aim of elucidating the relationship between model

parameter space and MI between the input signal and the model’s output.

Estimating MI between continuous variables

Our aim is to obtain an estimate of the MI between two continuous variables given a

limited number of samples from the joint probability distribution. Figure 2.2 illustrates

four common approaches to tackling this problem. We briefly outline each approach be-

fore considering some of the practical challenges and justifying our choice of estimator

for the subsequent work.

11



a b 

c d 

Figure 2.2: Four approaches for estimating MI given a limited number of samples
from the joint distribution of two continuous variables. (a) The plug-in estimator with
fixed bin sizes. (b) Adaptive partitioning. (c) Kernel density estimation. (d) k-nearest
neighbour statistics. Figure taken from [36].

The plug-in estimator

A natural approach is to partition the joint probability distribution space into equally

sized bins (Figure 2.2a). The probability density at the centre of each bin is then assumed

to be proportional to the number of data points found in that bin. Marginal probability

distributions are calculated by summing the rows or columns of the joint probability

matrix. This is known as the “plug-in”, “empirical” or “naı̈ve” estimator [37].

Adaptive partitioning

An alternative approach is to allow the dimensions of each bin, or partition, to vary

according to the available data (Figure 2.2b). Potential advantages of this approach

include decreased sensitivity to outliers and a finer resolution in regions where sample

density is high.
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Given a sample of N points from from a joint distribution f (X,Y), the support can be

partitioned into a grid of N2
E rectangular elements of variable lengths along the x- and

y-axes [38]. The lengths may be chosen so that the data points are uniformly distributed

among the rows and columns of the grid. Specifically, the probability of a data point

being in the i-th column or j-th row is given by,

P(i) = P( j) =
1

NE

For independent variables, the expected number of elements in each grid element, given

by E(i, j) = NP(i)P( j), can be used to decide on the appropriate choice of NE . Ideally

N should be divisible by NE . I(X,Y) may then be calculated by applying the formula for

MI between discrete variables (Equation 2.6).

The Fraser-Swinney algorithm [39] provides an alternative method of adaptive partition-

ing. Rather than considering the number of elements in each bin, the algorithm begins

with a fixed partitioning of the sample space and recursively segregates data into smaller

bins by dividing existing bins in half along the x- and y-axes. This process requires some

criterion for determining when a bin should not be sub-divided further. In the Fraser-

Swinney algorithm, the criterion is that the sample distribution in a bin appears uniform

as determined by a χ-squared test.

k-nearest neighbour estimators

Methods for estimating MI based on k-nearest neighbour (kNN) statistics have been

developed by Kraskov et al [40]. Their approach builds on previous kNN based methods

for estimating entropy. Given a metric for measuring the distance between samples Xi,

a kNN based approach involves obtaining an expression for the probability distribution

(P(ε)) of the distance (ε) between Xi and its k-th nearest neighbour. By considering the

true probability density function to be approximately constant over the region containing

the kNNs for each Xi, an expression relating entropy to ε was obtained. MI can then be

calculated as the difference between the marginal and joint entropies (Equation 2.5).

The authors concluded that smaller values of k decrease systematic bias of the estimate

while larger k values help reduce the variance of the estimate.

Kernel density estimators

A kernel density estimator (KDE) does not rely on binning data. Instead, each sampled

data point (Xi) contributes to a continuous approximation ( f̂ ) of the true probability
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distribution ( f ).

f̂ (x, Xi; t) =
1
N

N∑
i=1

K(x, Xi; t) (2.10)

where t determines the scale of the kernels and is known as the bandwidth. In the case

of the commonly used, Gaussian kernel

K(x, Xi; t) =
1
√

2πt
e(x−Xi)2/2t. (2.11)

One-dimensional Gaussian KDEs are applicable to the estimation of MI between a con-

tinuos and a discrete variable. This method also naturally extend to the two-dimensional

case for estimating MI between two continuous variables. In some rare cases it may be

possible to plug the density estimate into Equation 2.7 and solve the resulting equation

analytically. However, a more general computational approach is to calculate the esti-

mated probability density at each point of a grid and apply Equation 2.6 to obtain the

estimate of MI.

In subsequent work we rely on a kernel density estimator developed by Botev et al [41].

First, we briefly consider the practical challenges faced when using the plug-in estimator

and compare its performance to the kernel density estimator of Botev et al.

2.3 Practicalities of estimating MI

The accuracy of the plug-in method is determined by the quality of the estimate of

the joint probability distribution. In the limit of an infinite number of data points and

infinitely small bin sizes, this approach converges to the true value of the MI. However,

given realistic constraints, there are three main factors which determine the accuracy of

the plug-in method:

1. The support over which the joint probability density is estimated.

2. The number of available data points (N).

3. The number of bins (m).

Selecting an appropriate support for the joint probability density distribution minimises

systematic errors cause by truncation of the distribution. In the case of the plug-in
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estimator, this may simply mean making the support sufficiently broad to include all the

available data points.

The relationship between m and N is non-trivial. If the selected bin size is large, the

estimated joint probability density will be a coarse approximation to the true density

and is likely to lead to an underestimate of MI. Conversely, if there are too few data

points for the chosen number of bins, the estimated joint probability density will contain

spurious features which are likely to result in an overestimate of MI.

A further complication comes in the form of a systematic bias which can be reduced

by increasing m but not by increasing N as illustrated in Figure 2.3a. The cause of sys-

tematic bias is that the curvature of the probability density manifold is poorly estimated

when assuming that the number of samples in the bin corresponds to density at the centre

of the bin.

Although the number of data points which can realistically be obtained by simulating

from a model far exceeds that produced by experimental studies, it is not practical to

rely solely on brute force, repeated simulations, to obtain accurate estimates of MI.

Discretisation of continuous variables creates a bias in the MI estimate. A number of

methods of correcting for this bias have been proposed, including Miller-Madow, shrink

entropy, and Schumann Grassberger [37].

Diffusion based kernel density estimation

One of the draw-backs of the simplest implementation of the Gaussian kernel density

estimator is that the estimated density is not reconciled with known boundary conditions

of the true distribution. Botev et al [41] developed a density estimator that is consistent

near the boundary by treating the estimated density as the probability density of a diffu-

sion process. The authors began with the observation that the Gaussian kernel density

estimate (Equation 2.10) corresponds to the solution of a partial differential equation,

∂

∂t
f̂ (x; t) =

1
2
∂2

∂x2 f̂ (x; t)

which describes the state of a diffusion process after time t given initial conditions,

f̂ (x; 0) =
1
N

N∑
i=1

δ(x − Xi)
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b 

Figure 2.3: Dependence of different estimators of MI on the number of available
data points and the discretisation of the joint distribution space. Means of 1000 in-
dependent estimates of MI (solid lines) are plotted against the number of samples
used for each estimate. Dashed lines indicate a distance of two standard deviations
from the mean. Samples were taken from a bivariate Gaussian distribution with a
correlation coefficient of 0.9406. Estimates were made using (a) the plug-in method
and (b) the kernel density estimator. For each estimator the joint probability distri-
bution is represented numerically by 25 (blue), 26 (dark green), 27 (light green), 28

(yellow) 29 (red) discrete bins, for the plug-in method or mesh points, for the kernel
density estimator.
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where δ is Dirac’s delta function. They demonstrate that for sufficiently small values of

t this is equivalent to the standard Gaussian kernel density estimator and as t → ∞ the

estimated distribution approaches a uniform distribution over the bounded region. To

tackle the problem of selecting an appropriate value of t, the authors developed a non-

parametric bandwidth selection algorithm for use with their Gaussian kernel density

estimator.

We employ the kernel density estimator developed by Botev et al to obtain an estimate

of the joint probability distribution of two variables based on a limited number of sam-

ples. The distribution is represented numerically by a discrete mesh of 2n points. The

density at each mesh point is normalised before being used to calculate the MI estimate

according to Equation 2.6.

Choice of estimator

Figure 2.3b provides an example of how the MI estimate for a bivariate Gaussian dis-

tribution is affected by varying the number of available data points and the number of

mesh points (n).

Figure 2.3 illustrates some of the practical challenges faced when the joint probability

distribution of interest is unknown. For very large numbers of samples the accuracy of

the plug-in method increases as the number of bins is increased. However, for a fixed

number of samples, increasing the number of bins may lead to a decrease in the accu-

racy of the estimate. Most saliently, it is unclear a priori, what combinations of m and

N are appropriate for a given distribution. The KDE based estimator suffers from an

analogous problem but with respect to the number of mesh points used to approximate

the joint probability distribution. The use of a more fine mesh (higher n) requires addi-

tional computational time. The key difference is that an inappropriate choice of bin sizes

when using the plug-in estimator leads to large errors in bins which contain few samples.

These errors create spurious complexity in the estimate of the joint probability distribu-

tion, resulting in an inflated estimate of MI. The adaptive KDE algorithm compensates

for this by picking a higher bandwidth for lower values of N. Thus, in the example

shown in Figure 2.3, as n increases, the accuracy of the MI estimate improves regardless

of N. For this reason, we rely on the adaptive KDE estimator in the subsequent work.
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2.4 Parameter Inference and Likelihood

When constructing a mathematical model of a system or process, one is presented with

two basic types of choices. Firstly, an abstract, mathematical description of the process

is required. Secondly, numeric values for model parameters need to be selected. Here,

we focus on the problem of inferring model parameters when experimental measure-

ments and a model of the system are available.

One common approach is to employ maximum likelihood estimation (MLE). When us-

ing MLE, we are assuming that there exists a parameter set that corresponds to the ‘true’

parameter set of the real system. Thus, the observed data represents a sample from a

probability distribution which is a function of the true parameter set. To proceed with

the MLE, we need to define a likelihood function,

L(θ; D) = p(D|θ),

where θ is the model parameter set and D corresponds to experimental observations or

data. The likelihood function, or simply “likelihood”, allows us to compare parameter

sets and identify those that have a greater chance of corresponding to the true parameter.

The aim is then to find the parameter set, θ̂, that has the highest likelihood

θ̂ = argmax
θ
L(θ; D).

In practice, this problem can rarely be solved analytically. Instead, numerical optimi-

sation techniques are often used to explore parameter space and attempt to identify the

global maximum of the likelihood [42]. One of the main challenges is to find the global

maximum in a realistic amount of computational time without becoming trapped in a

local maximum. Whether the numerical approach will succeed in a particular case de-

pends on the method used and the shape of the likelihood function. A detailed discussion

of optimisation methods is beyond the scope of this chapter, for a detailed discussion of

the topic see reference [43].

Alternatively the problem of model parameter inference can be considered in the Bayesian

framework. The relationship between the available data (D) and a set of model parame-

ters (θ) can be described using Bayes’ theorem,

p(θ|D) =
p(D|θ)p(θ)

p(D)
(2.12)

where p(θ|D) is the (inferred) posterior, p(D|θ) is the likelihood, p(θ) describes our

(prior) belief or knowledge about the possible parameter ranges, and p(D) is termed
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the evidence. The goal of Bayesian parameter inference is to obtain the (posterior)

distribution of model parameters which are plausible given the available data.

posterior ∝ likelihood × prior

Since we are interested in the relative likelihood that a particular parameter produces

model behaviour which is in agreement with the data, we do not need to calculate p(D)

[44]. In other words, we may consider all the available data to be of equal importance.

2.5 Approximate Bayesian Computation

For most models of biomolecular systems, it is difficult or impossible to obtain an ana-

lytical expression for the likelihood [45]. Here we discuss how, so called, likelihood-free

methods based on approximate Bayesian computation (ABC) may be used to circumvent

explicit calculation of the likelihood and instead provide samples of model parameters

that fall within credible intervals of the true parameter value.

To achieve this, model parameter sets, also referred to as particles, are sampled from

a prior distribution and used to obtain realisations from the model. These simulated

outcomes are then compared to the data using an appropriately chosen distance metric d

and tolerance ε, which determine how stringently the posterior is approximated [46].

The rejection sampler

A relatively simple but robust ABC method, called the rejection sampler [46–49], in-

volves sampling parameters directly from the prior distribution (π) and simulating from

the model (M) until a sufficient number (N) of particles that fall within ε of the data are

obtained (Algorithm 1). As every particle is sampled independently, the ABC rejection

algorithm does not run the risk of becoming trapped in local minima. The price of this

robustness is that only a small proportion of particles are accepted. Thus, the computa-

tional time needed for this algorithm becomes prohibitive as model complexity and the

number of model parameters increase.

ABC Markov chain Monte Carlo

To tackle the problem of low acceptance rates, an alternative ABC algorithm, known as

Markov chain Monte Carlo (MCMC), has been developed [47–49]. The ABC-MCMC
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Algorithm 1 ABC rejection algorithm
Inputs: M, π, N, ε
Outputs: Set of N accepted particles

1: i← 1
2: while i ≤ N do
3: Sample a new candidate particle θ∗ ∼ π(θ)
4: Simulate from the model to obtain x = f (θ∗,M)
5: if d(D, x) ≤ ε then
6: Accept particle
7: i← i + 1
8: end if
9: end while

algorithm is related to the Metropolis-Hastings algorithm, which produces dependent

samples from a target distribution. Both algorithms start from an initial sample or point

in parameter space and proceed in a step-wise fashion to create a Markov chain of parti-

cles. Each new particle (θ∗) is either the same as the previous particle (θi) or corresponds

to a sample from a proposal distribution q(θ|θi). The Metropolis-Hastings algorithm re-

quires us to be able to evaluate a function g(θ), that is proportional to the target distribu-

tion (Algorithm 2). For a symmetric proposal distribution q(θi|θ
∗) = q(θ∗|θi), candidate

Algorithm 2 The Metropolis-Hastings algorithm
Inputs: f , N, q
Outputs: Set of N samples from g(θ)

1: i← 1
2: Initialise θi

3: while i ≤ N do
4: Sample new candidate particle θ∗ ∼ q(θ|θi)
5:

α← min
(
1,
g(θ∗)q(θi|θ

∗)
g(θi)q(θ∗|θi)

)
6: Set θi+1 ← θ∗ with probability α, otherwise θi+1 ← θi

7: i← i + 1
8: end while

particles are accepted according to the ratio of the target distribution at the two points θ∗

and θi.
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In the ABC-MCMC algorithm, our aim is to obtain samples that approximate the poste-

rior distribution. However, while we can evaluate the function describing the prior, we

do not have a function which is proportional to the posterior. As with the ABC rejec-

tion method, a distance metric and tolerance are used to constrain the set of accepted

particles and approximate the posterior (Algorithm 3). The sampled particles form a

Algorithm 3 ABC-MCMC algorithm
Inputs: M, π, N, ε, q
Outputs: Set of N accepted particles

1: i← 1
2: Initialise θi

3: while i ≤ N do
4: Sample new candidate particle θ∗ ∼ q(θ|θi)
5: Simulate from the model to obtain x = f (θ∗,M)
6: if d(D, x) ≤ ε then
7:

α← min
(
1,
π(θ∗)q(θi|θ

∗)
π(θi)q(θ∗|θi)

)
8: With probability α, set θi+1 ← θ∗ and j← j + 1.
9: else

10: θi+1 ← θi

11: end if
12: i← i + 1
13: end while

Markov chain and the algorithm comes to a halt once the desired number of particles

(i = N) have been accepted into the approximation of the posterior.

The stationary distribution of accepted particles is π(θ|d(D, x) ≤ ε). However, unlike

the ABC rejection algorithm, ABC-MCMC produces dependent samples. One practical

concern is that, if the posterior distribution contains more than one local minimum, the

Markov chain may be confined to one of the minima for a disproportionate number of

steps. A related problem may occur if the Markov chain enters a region of parameter

space where there is little overlap between the proposal and posterior distributions. In

this case, the probability of accepting a new candidate particle may become very low,

reducing the efficiency of the algorithm [48].
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ABC sequential Monte Carlo

To overcome some of the practical challenges of estimating posterior parameter distribu-

tions using the ABC-MCMC algorithm, Sisson et al [48] and Toni et al [49] developed

an alternative approach, based on sequential Monte Carlo (SMC). The ABC-SMC al-

gorithm generates a series of particle populations that converge on the region of higher

likelihood. The initial population is sampled from the prior distribution. Subsequent

populations are obtained by generating new particles from the preceding population and

accepting or rejecting them according to how well they reproduce the data, as measured

by a distance metric d. The acceptance thresholds for each new population (εt) become

increasingly stringent (εt < εt−1) so that the final population represents a sample from

the target distribution. To generate a new particle (θ∗∗), a particle (θ∗) is sampled from

the previous population according to the particle weights, then perturbed according to a

perturbation kernel Kt.

The sequence of acceptance threshold distances ε1, ..., εT , referred to as the ε schedule,

can be determined in advance, as in Algorithm 4, or adjusted dynamically based on

the distances associated with particles in the preceding population. In practice, the

performance and efficiency of the ABC-SMC algorithm are dependent on the choice of

the ε schedule and the perturbation kernel [50]. However, the ABC-SMC algorithm has

less of a tendency to become trapped in a region of low likelihood than the ABC-MCMC

algorithm.

Of the three ABC methods described here, ABC-SMC has emerged as the most powerful

and widely used approach. It continues to be a subject for further research and finds

applications in a variety of settings [6, 51–53]. While the ABC-SMC approach has also

been extended to tackle the problem of model selection [49], in this work we only use it

for parameter inference.
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Algorithm 4 ABC-SMC algorithm with a pre-defined ε schedule
Inputs: M, π, N, ε1, ..., εT , Kt

Outputs: Set of m populations of N accepted particles
1: i← 1
2: t ← 0
3: while t ≤ T do
4: if t = 0 then
5: while i ≤ N do
6: Sample a new particle θ∗ ∼ π(θ)
7: Simulate from the model to obtain x = f (θ∗,M)
8: if d(D, x) ≤ εt then
9: Accept particle θ(i,t) ← θ∗

10: ω(i,t) ← 1
11: i← i + 1
12: end if
13: end while
14: else
15: while i ≤ N do
16: Sample θ∗ from {θ( j,t−1)}1≤ j≤N with probability {ω( j,t−1)}1≤ j≤N .
17: Perturb to obtain a new particle θ∗∗ ∼ Kt(θ|θ∗)
18: Simulate from the model to obtain x = f (θ∗∗,M)
19: if d(D, x) ≤ εt then
20: Accept particle θ(i,t) ← θ∗∗

21:

ω(i,t) ←
π(θ(i,t))∑n

j=1 ω
( j,t)Kt(θ(i,t)|θ( j,t−1))

22: i← i + 1
23: end if
24: end while
25: end if
26: Normalise particle weights
27: t ← t + 1
28: end while
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Chapter 3

Extrinsic noise in ODE models of
small signalling motifs

3.1 Introduction

Intracellular signal transduction and processing takes place through changes in the abun-

dances and activities of specific molecular species. Natural or synthetic biochemical sig-

nalling pathways and regulatory systems are often described in terms of networks where

the nodes represent species and directed edges describe interactions between them. Sev-

eral connected nodes can be referred to as a motif. Alon and co-workers have proposed

a definition of network motifs based on the relative frequency of their appearance in re-

alistic networks as compared to a suitable statistical null model of network organization

[54]. Among many other applications this was applied to the E. coli transcriptional reg-

ulation network. Different motif concepts have been introduced in the recent literature

and here the term is used to describe any small network of connected nodes. The par-

ticular relevance of motifs (and this has driven the choice of definition used here) is that

they represent functional units that can be joined together to form larger networks. In a

bottom-up perspective there is the hope that understanding the dynamics of individual

motifs will translate (at least partially) to larger systems composed of such motifs.

Variants of similar motifs may appear in homologous systems [55] or as a result of

convergent evolution in distantly related species which have evolved similar solutions

to the problems of signal transduction [56, 57]. This motivates the search for general

trends and conclusions regarding the dynamical properties of broad classes of small
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networks and interaction types. More generally, the ability of cellular systems to sense

their environment and respond appropriately to any changes in it have moved into the

focus of evolutionary, but also synthetic biology. In the former context we can associate

differential reproductive success to differences in how reliably and quickly an organism

parses its environment and initiates appropriate responses. In the latter context, we may

be interested in having reliable biosensors, which rely on potentially complex molecular

machines in order to sense and indicate the presence or absence of target stimuli.

In order to fully appreciate the ability of molecular systems to process and transmit

information, we set out to model the dynamics of simple motifs and how differences

between cells affect cell populations. Here we will specifically consider cases where

the molecular abundances inside cells are sufficiently high that stochastic effects can be

ignored. In practice this is often thought to be the case in eukaryotic signalling systems

[58] and we can therefore employ deterministic, ordinary differential equation (ODE)

models. These, of course, allow for complex and non-linear behaviour, but even for rel-

atively simple system dynamics the link between dynamical behaviour and information

transmission capability can give rise to surprisingly rich behaviour.

We use mutual information to quantify the differences in information transmission along

the simplest motifs. Information theory provides a very general mathematical frame-

work for this analysis, and has recently gained great prominence in molecular and cell

biology. Information here is defined probabilistically as the “level of surprise upon see-

ing a given instance of a random variable.” In real-world systems, however, as we discuss

below, even populations of genetically identical cells exhibit considerable levels of cell-

to-cell variability. The causes of such variability are manifold and are only beginning

to be understood: differences in cell-cycle stage, availability of ribosomes, proteasomes

etc, cause cells to respond differently to identical stimuli as can the local microenvi-

ronment, particularly when extracellular signalling is important. Examples of processes

that may be affected by this include cell differentiation in multicellular organisms and

the transmission of signals between neurones [59].

Here we investigate the role that such cell-to-cell variability has on the transduction of

simple signals along simple motifs. To represent extrinsic noise, we perturb the ODE

model parameters using a Gaussian kernel. In doing this, we depart from the commonly

used assumption that the input and output of the model are jointly Gaussian. We then

assess the influence of model parameters on the system’s ability to robustly transmit

information about an external signal by estimating the mutual information (MI) between
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the system’s states and properties of the input signal.

By perturbing model parameters, rather than adding noise to the observed output of

the model, we acknowledge that the effects of extrinsic noise are subject to the non-

linear dynamics of the system. This is also what differentiates extrinsic noise from

measurement error.

We begin by considering a constant input signal, which can take values of either zero

or one. The output corresponds to the steady state of the system given the input signal.

We determine which motifs are most likely to robustly transmit information about the

input. Next, we investigate how signal transduction is affected when the input is chang-

ing dynamically and note that, in this regime, information transmission is dominated by

the response time of the system. Finally, we compare each motif’s ability to transmit

information about the current state of the signal with its ability to extract information

about the average signal intensity. Both are dominated by the response time of the sys-

tem. We observe a trade-off between transmitting information about the current state of

the input signal and its average intensity over a period of time. Different, and sometimes

conflicting, requirements are placed on the model’s parameters when trying to achieve

close to maximum information transmission in these two scenarios.

3.2 Motifs subject to extrinsic noise

Modelling signalling motifs

Two common modelling formalisms for relating the structure of a network to an ODE

model are mass action and Hill kinetics. These regulate the way in which the rate of

change in one species can be explained by interactions with another. The mass action

kinetic model of a single node with an activating input is described by,

dX
dt

= aX + bXS − δXX (3.1)

where X is the amount of gene product, S is the strength of the input signal, aX is the

basal expression rate in the absence of an input signal, bX represents the strength of the

promoter and δX is the degradation rate of the gene product. The corresponding Hill

equation model, which is typically used to describe cooperative effects in enzymatic

reactions, but which also serves as a model for gene activation and repression, for a
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Figure 3.1: The set of motifs considered in this study. Nodes (X or Y) represent
genes while edges represent either activating (arrows) or repressing (blunt arrows)
interactions.

single node with an activating input is given by,

dX
dt

= aX + bX
(S/KS X)HS X

1 + (S/KS X)HS X
− δXX (3.2)

and for a deactivating input,

dX
dt

= aX + bX
1

1 + (S/KS X)HS X
− δXX (3.3)

We choose to use models based on Hill kinetics to account for the fact that intracellular

biochemical processes must become saturated at some level due to the limited amount

of material in a cell. Each node corresponds to a state variable in an ODE model.

Figure 3.1 illustrates the combinations of interconnections between nodes considered

here. Edges represent either activating or repressive interactions. Nodes which are sub-

ject to regulation from two different sources, in this case node X for each of the motifs

with feedback, can be regulated in two different ways. In the first case, both input sig-

nals are required to elicit a response. This is represented in the ODE model by the

multiplication of terms representing the incoming edges,

dX
dt

= aX + bX
(S/KS X)HS X

(1 + (S/KS X)HS X )
(Y/KYX)HYX

(1 + (Y/KS X)HYX )
− δXX (3.4)

Alternatively, the incoming signals may act independently, in an additive fashion,

dX
dt

= aX + bX

(
(S/KS X)HS X

(1 + (S/KS X)HS X + (Y/KYX)HYX )
+

(Y/KYX)HYX

(1 + (S/KS X)HYX + (Y/KYX)HYX )

)
−δXX

(3.5)
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The two mechanisms have been previously described as AND and OR respectively, by

analogy to electronic circuits [60].

The Hill kinetic model is relatively simple and generic. It has previously been used to

represent regulatory interactions between genes [23, 61, 62], as well as other biochemi-

cal processes such as cooperative enzymatic reactions and changes in the concentrations

of covalently modified species in a signalling pathway [14, 63]. While in principle a

two-node model may also be used to describe transcription and translation, here we ab-

stract away the mechanistic detail of gene expression to focus on the effects of different

combinations of regulatory interactions between genes.

Extrinsic noise

Biomolecular signal transduction involves non-linear, dynamic responses in the pres-

ence of noise. The noise prevalent at molecular levels can be broadly categorised as

being either intrinsic or extrinsic. Even in a genetically homogeneous population of

cells, the copy numbers of individual proteins may vary considerably. Stochastic simu-

lation algorithms have often been used to account for variation in the number of species

comprising the system of interest. Such variability, due to random effects at the level

of molecular interactions has been termed ‘intrinsic noise’. In contrast, ‘extrinsic noise’

has emerged as a catch-all term used to describe variability due to factors that are not ex-

plicitly accounted for in the model. These may include differences in the copy numbers

of transcriptional and/or translational machinery, ribosomes, proteasomes, concentra-

tions of the relevant metabolites or inhomogeneities in the extracellular environment

that affect cells differently.

Investigations of both prokaryotic and eukaryotic gene expression [17, 18] have demon-

strated that Poisson production and degradation of individual mRNA and protein molecules

is not sufficient to account for the overall observed variability in a population of other-

wise identical cells. Extrinsic noise is one potential mechanism that could generate

higher than Poissonian variability at the population level. In the context of mathematical

modelling, extrinsic noise may conveniently be represented as variability in the param-

eter values of the model. In this approach a set of simulations with varying rate param-

eters represents a sample from a population of cells. Here, we model extrinsic noise

by sampling each rate parameter of our model from a truncated Gaussian distribution

(N), limiting model parameters to non-negative values. The mean of this distribution
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(θ) represents the population average and will be referred to as the ‘nominal’ parameter

value. The parameters used for each simulation (θ̂) are then obtained according to,

θ̂i ∼ N(θi, (ηθi)2) (3.6)

where θi is the ith nominal parameter value, θ̂i is referred to as the ‘perturbed’ parameter,

η is the magnitude of extrinsic noise, and i is an index over all the model parameters

which are subject to such extrinsic noise. The noise affecting each parameter is assumed

to be uncorrelated to noise in other parameters.

3.3 Results

Steady state response

We begin by considering the steady states of nodes X and Y in response to one of two

constant input signal states for the case when H = 1. In order to explore model param-

eter space the remaining nominal parameters are sampled from a log10-uniform prior

ranging from 10−2 to 102. The ODEs describing the behaviour of the system are solved

analytically to obtain samples from the joint probability distribution of the input and

model output at steady state.

Estimates of I(S ; X) are calculated from an approximation of the joint probability dis-

tribution obtained using a one-dimensional kernel density estimator. To determine how

many samples from the joint probability distribution are required we tested the adaptive

KDE estimator on a range of bivariate Gaussian distributions with known parameters,

and thus know MI values (see Chapter 2). We conclude that 104 samples are sufficient to

obtain reasonable estimates of MI based on the joint input-output distributions produced

by these models. Figure 3.2a shows an example of the distributions of steady states ob-

tained at a node subject to an activating or repressing input signal. The full set of motifs

analysed here is shown in Figure 3.3a.

Information carried by steady state outputs

Due to extrinsic noise, a distribution of steady state outputs is produced in response to

each input. In this regime the motif’s ability to transmit information about the signal is

determined by the extent of overlap between these distributions. This, in turn, depends
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Figure 3.2: Relationship between output distributions and MI. (a) Output distribu-
tions produced by an activating (top) or repressing (bottom) input signal affecting a
single node. The signal takes on one of two possible value, S = 0 (red) or S = 1
(blue). Histograms show 104 steady state output values (X) produced by perturbing
the same nominal parameter set (aX = 2.77, bX = 12.53, KS X = 0.84, HS X = 1,
σ = 0.2). (b) Scatter plot demonstrating the relationship between ∆ and I(S ; X) for
the node X subject to activating (blue) and repressing (red) inputs with σ = 0.1.
(c) Cumulative distribution plot of ∆(X) values obtained for the activating (blue) and
repressing (red) inputs.

30



b 
bits 

Motifs without feedback 
Motifs with feedback 
Multiplicative (AND) 

Motifs with feedback 
Additive (OR) 

a 

bits 

cumulative distribution 

cumulative distribution 

Motifs with feedback 

Motifs without feedback 
bits 

Figure 3.3: Information contained in steady state distributions. (a) Edges between
nodes represent either activating (arrows) or repressive (blunt arrows) interactions.
For nodes with two incoming edges there are two possible regulatory mechanisms,
multiplicative (blue) or additive (red). Horizontal lines under each motif indicate the
line types and colours used to represent the cumulative distributions of I(S ; X) (top
line) and I(S ; Y) (bottom line) in b. (b) Cumulative distributions of the mutual infor-
mation between the chosen input signal (S ) and the steady state response at each
node (X or Y). Nominal parameters were perturbed using a Gaussian kernel with
σ = 0.1.
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on the sensitivity of the model’s steady state to the various parameters. The relative dif-

ference between steady state responses (∆) at each node provides a convenient measure

of the system’s ability to produce distinct outputs:

∆(X) =

∣∣∣∣∣ X1 − X0

max(X0, X1)

∣∣∣∣∣ , (3.7)

where X0 and X1 are the steady state outputs of the model for a given nominal parameter

set with S 0 = 0 and S 1 = 1 respectively. There is a clear relationship between ∆ and

I(S ; X) or I(S ; Y) (Figure 3.2b). However, an analytical expression for this relationship

is difficult to obtain.

The main conclusions that can be drawn from the observed distributions of MI estimates

and ∆ values are as follows. Firstly, motifs containing activating interactions tend to

produce more distinct (or distinguishable) distributions than those involving deactivat-

ing interactions (Figures 3.2c and 3.3) and thus are more likely to yield higher values

of MI. Secondly, multiplicative (AND) interactions are more likely to produce distinct

outputs, and thus also higher MIs, than additive (OR) interactions (Figure 3.3). Finally,

adding feedback acts to decrease the probability of obtaining a high I(S ; X) or I(S ; Y)

for the explored parameter range (Figure 3.3). Increasing the magnitude of extrinsic

noise makes high MI values less likely, but does not change the relative ordering of the

motifs with respect to their ability to transmit information about the input.

Response to a dynamically changing input

Up to this point we have only considered steady state inputs and outputs. To inves-

tigate how a temporally changing signal can be transmitted, we look to the telegraph

process. This is a Markov jump process which can take one of two possible states. The

probability of switching from one state to the other is determined by two constant rate

parameters, kon and koff . We first generate the input signal trajectory by simulating a

realisation of the telegraph process. This trajectory is then used to obtain a piece-wise

numerical solution of the ODE model (Figure: 3.4). An independent telegraph process

trajectory is generated for every simulation of the model.

Responding to signal state

We begin by considering the relationship between the state of the telegraph process (S )

after some time (Tm) and the state of either the first (X) or second (Y) node of the motif
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time 

Figure 3.4: An example of how extrinsic noise may lead to different output trajecto-
ries given the same input trajectory. In this illustration, the same telegraph process
trajectory is used for different instances of extrinsic noise. In the remainder of this
work, a new input telegraph process trajectory is sampled for each simulation.

at the same time point (Figure 3.4).

Solving the model ODEs numerically also allows us to include perturbation of the Hill

coefficient as part of our model of extrinsic noise. In addition, we repeat the simula-

tions and analysis using fixed nominal Hill coefficient values of 2 and 4 and find that

applying noise to the Hill coefficient does not cause qualitative changes in the relation-

ship between MI and model parameters. Since the input signal takes on values of either

S = 0 or S = 1, increasing the Hill coefficient exaggerates the importance of the Km

parameters. For higher Hill coefficients a lower Km is required to produce sufficiently

different outputs. As a result of this, models with a higher Hill coefficient are less likely

to exhibit a high I(S ; X) or I(S ; Y) for the signal values used here.

A comparison of the cumulative probability distributions of the MI estimates shows that

high MI values are less likely with a dynamically changing input. This is due to the

added constraint of the output needing to respond sufficiently rapidly to the stochas-

tic switching of the input. However, the relative order of motifs with respect to their

tendency to yield a high MI values remains the same (Figure 3.5).

For all the tested motifs the degradation parameters are clear limiting factors for achiev-

ing a high I(S ; X). An example of this is shown in Figure 3.6. In the case of motifs

involving repressive interactions the Km parameter also constrains the maximum mutual

information. However, the causes of these two dependences are different. Two features
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Figure 3.5: Information about a dynamically changing signal. (a) Edges be-
tween nodes represent either activating (arrows) or repressive (blunt arrows) interac-
tions.(b) Cumulative distributions of the mutual information between the final state of
the dynamically changing (S ) and the final response at each node (X or Y). Nominal
parameters were perturbed using a Gaussian kernel with σ = 0.1.
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Figure 3.6: The relationships between I(S ; X) or I(S ; Y) and nominal parameter
values for three, two-node motifs. Scatter plots of 104 sampled nominal parameters
against the corresponding MI estimate. Redder hues indicate higher density.

35



of the responding system affect its ability to transmit information about the current state

of a telegraph process, the time taken to respond to input changes, and the extent of over-

lap between output distributions. While the degradation rates determine the former, the

remaining parameters influence the latter. Lower values of basal activation and higher

promoter strengths favour a higher I(S ; X), although the significance of these parameters

is much less than that of degradation rates and Km values.

Response Time

For a single node, the time taken for the output to respond to a switch in the input state

is determined solely by its degradation rate if the output is governed by an ODE of the

following form,
dX
dt

= A(θ, S ) − δX (3.8)

Where A is the function determining the production rate, θ is the vector of model param-

eters, S is the state of the telegraph process and δ is the degradation rate. Consider node

X without feedback.

dX
dt

= aX + bX
(S/KS X)HS X

(1 + (S/KS X)HS X )
− δXX (3.9)

At steady state X = A
δX

where A = aX + bX
S

S +KS X
.

Given an in initial steady state X = X0 with S = S 0, let a step change in signal from S 0

to S occur at time t = 0.

If X0 =
A0
δX

=
(
aX + bX

S 0
S 0+KS X

)
/δX , equation (3.9) can be integrated to give,

X =
1
δX

(
A − (A − A0)e−δX t

)
(3.10)

Let the response time (τ) be the time taken for X to change from A0
δX

to A0
δX

+ ε
(

A
δX
−

A0
δX

)
where 0 ≤ ε ≤ 1 is an arbitrary threshold indicating proximity to the new steady state.

Using equation (3.10) the following expression for τ can be obtained,

τ = −
ln(1 − ε)
δX

(3.11)

In the absence of extrinsic noise, the response time depends only on the degradation

parameter δX . This is consistent with the observation that numerically estimateed MI

values are strongly dependent on the degradation rates for each node. While the rela-

tionship between model parameters and the response time will be more complicated for

36



motifs involving feedback, high degradation rates are nonetheless a prerequisite for high

I(S ; X) or I(S ; Y).

Responding to the “on” / “off” ratio

A temporally varying input can encode information in a variety of ways. As well as

considering the strength of the input state at a given time point, we are interested in the

relative amount of time spent in either the “on” or “off” state.

The telegraph process may be parametrised in terms of the ratio of probabilities of

switching events (R) and the overall frequency with which events occur (φ),

R =
kon

kon + koff

φ = 2
konkoff

kon + koff

To investigate how I(R; X) and I(R; Y) are affected by different motif connectivities,

parameters and interaction mechanisms, we repeat the above parameter sampling proce-

dure with R ∼ U(0, 1). In order to keep the mean number of switching events per unit

time (φ) constant regardless of the sampled value of R, the switching rates are calculated

as functions of R,

koff =
φ

2R

kon =
koffR
1 − R

Changing the characteristics of the signal alters its average information content. The

entropy of S is maximised when R = 0.5 and the current state of the signal contains,

on average, one bit of information (H(S ) = 1). While it is possible to calculate the, so

called, differential entropy of a continuous random variable, this quantity does not have

the same meaning as the entropy of a discrete random variable. The differential entropy

may be negative and in this case H(R) = 0. Thus, H(R) does not provide an upper

limit for the amount of information that may be encoded in R. In fact, a continuous ran-

dom variable may be used to encode an infinite amount of information. Conveniently,

MI does not lose its meaning for the case of two continuous variables. It remains con-

strained to non-negative values. The amount of information about R that may be rep-

resented by some other variable is determined by the joint probability distribution of

the two variables. To obtain MI estimates for two continuous variables, we employ a

two-dimensional kernel density estimator.
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First, consider the effects of sampling R on the transmission of information about S =

S (R). R corresponds to the probability of the signal being in the “on” state at a given

point in time. When the value of R is fixed,

H(S ) = −

1∑
i=0

p(S i) log(p(S i)) = −
(
R log(R) + (1 − R) log(1 − R)

)
In the case when R comes from a set of N discrete values,

H(S ) = −

N∑
j=1

p(R j)
(
R j log(R j) + (1 − R j) log(1 − R j)

)
with p(R j) = 1/N if the distribution is uniform. For a continuous uniform distribution,

N → ∞ and p(R j) = (b − a)/N = ∆R j.

H(S ) = − lim
N→∞

N∑
j=1

∆R j
(
R j log(R j) + (1 − R j) log(1 − R j)

)
= −

∫ b

a
R log(R) − (1 − R) log(1 − R)dR

(3.12)

For R ∼ U(0, 1), H(S ) = 1
2 nats ≈ 0.721bits. Although the expectation E[R] = 0.5

corresponds to the previously fixed R = 0.5, the average amount of information encoded

in S is lower for variable R. Since S remains a discrete variable, H(S ) still provides

an upper limit on the information that may be encoded by it. However, this observation

does not take into account limits on the response time of the system. In fact, the observed

maximum I(S ; X) in the dynamic system under varying R is always less than half a nat

(Figure 3.7).

We now turn our attention to the MI between the states of each node and R. To trans-

mit the optimal amount of information about R, the system must integrate input states

over a period of time. This can be achieved if the system does not reach a steady state

between signal switching events. After some time, the distribution of X or Y will carry

information about the relative amount of time spent in each state (R). Slower response

times (lower degradation rates) result in higher I(R; X) or I(R; Y), as can be seen in the

example in Figure 3.8.

However, a rapidly responding system may still transmit some information about R. In

other words, knowing something about the ratio may also tell us something about the

likely state of the signal at a given time. If the input signal state at a given time point is
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Figure 3.7: The relationships between I(S ; X) or I(S ; Y) and nominal parameter
values under the condition that R ∼ U(0, 1). Scatter plots of 104 sampled nominal
parameters against the corresponding MI estimate. Redder hues indicate higher
density.

39



lo
g 1

0(
a X
)	
  

lo
g 1

0(
a Y
)	
  

lo
g 1

0(
b X
)	
  

lo
g 1

0(
b Y
)	
  

lo
g 1

0(
δ X
)	
  

	
  

lo
g 1

0(
δ Y
)	
  

lo
g 1

0(
K S

X)
	
  

lo
g 1

0(
K X

Y)	
  
	
  

lo
g 1

0(
K Y

X)
	
  

lo
g 1

0(
a X
)	
  

lo
g 1

0(
a Y
)	
  

lo
g 1

0(
b X
)	
  

lo
g 1

0(
b Y
)	
  

lo
g 1

0(
δ X
)	
  

	
  

lo
g 1

0(
δ Y
)	
  

lo
g 1

0(
K S

X)
	
  

lo
g 1

0(
K X

Y)	
  

I(R; X) I(R; Y) I(R; X) I(R; Y) 

I(R; X) I(R; Y) 
0                1 

sample density, arbitrary units 

X Y X Y X Y 

Activating input, 
multiplicative (AND) interaction at X Deactivating input Activating input 

Figure 3.8: The relationships between I(R; X) or I(R; Y) and nominal parameter
values for three, two-node motifs. Scatter plots of 104 sampled nominal parameters
against the corresponding MI estimate. Redder hues indicate higher density.
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“on”, it is more likely that R is high and vice versa. This also explains why systems with

very low degradation rates (δX or δY ) are able to represent up to 0.2 bits of information

about S (Figure 3.7).

There is a trade off between retrieving information about the current state of the signal

and information about the recent trend for the signal to be “on” or “off” (Figure: 3.9). It

is possible for X or Y to robustly represent the current state of the signal, transmitting up

to 0.5 nats of information about S , while carrying a similar amount of information about

the ratio. However, transmitting close to the optimum amount of information about R

requires a low δX or δY , which precludes accurate representation of S . A signalling

motif is able to retrieve close to the optimum amount of information about both S and R

provided that it is relayed by separate nodes. For example, if node X carries information

about S , node Y is free to average this information over a period of time, and thus, carry

information about R.

3.4 Discussion

A values of I(S ; Y) or I(R; Y) can been seen as measures of the signalling system’s

ability to robustly extract and transmit information about specific properties of the input

signal. The observation that I(S ; Y) ≤ I(S ; X) for the steady state case can be explained

in terms of the data processing inequality. In the steady state limit, the signal and the

system nodes form a Markov chain, S → X → Y as S can only influence the steady

state of Y via the steady state of X. Although in the case of the dynamically changing

input, the (Markovian) conditions for the data processing inequality are not satisfied,

the qualitative behaviour of the system still resembles that observed for the steady state

case. Specifically, X is a bottleneck through which information about S must pass before

reaching Y .

The distributions of steady state outputs for equivalent parameter sets demonstrate that

activation and repression are not equivalent processes when extrinsic noise is taken into

account. The cumulative distributions of MI values indicate that all of the examined

motifs are capable of transmitting close to the maximum possible amount of information

about the state of the signal. Added complexity in the form of feedback leads to a

decrease in the likelihood of a high MI. This is caused by the increase in the size of

the parameter space of the system leading to a decrease in the fraction of parameter

space that produces a high MI. This observation suggests that added complexity may
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Figure 3.9: The trade-off between obtaining information about the current state of
the signal and the average “on”/“off” time of the signal. Scatter plots of 104 sam-
pled nominal parameters for the two node motif with multiplicative feedback and all
activating interactions.
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not necessarily increase the robustness of signal transmission. However, we do not

try to equate the natural selection process with simple exploration of parameter space.

The cumulative distributions of MI merely hint at the role that complexity may play

in the evolutionary process. Another caveat to this is that these models only consider a

single channel for information transition. In actual cellular signalling systems additional

robustness may be provided by, so called, cross-talk between signalling pathways.

Extracting information about the ratio of times spent in each state may be relevant for sit-

uations in which downstream cellular processes are too slow to respond to every change

in the signal. Alternatively, it may be advantageous to extract information about underly-

ing properties of the signal. For example, the binding and unbinding of a transmembrane

receptor to other cells in the environment may appear as a binary signal, however the

relevant information may be the concentration of cells, rather than the activity of the

receptor per se.

Here, we choose kon and koff parameters of the telegraph process so that the frequency of

switching events remains the same. This is to exclude behaviour which may be depen-

dent on the frequency of switching. However, this is not to say that frequency dependent

behaviour has no biological relevance, but rather to consider it as a separate topic. The

importance of frequency dependent behaviour has previously been demonstrated in both

natural [64] and synthetic signalling pathways [65].

Systems with both a high I(S ; X) and high I(R; Y) can be described as both transmitting

and processing the input signal. Alternatively they can be viewed as transmitting infor-

mation about different properties of the signal. However, it is not possible for a single

node to transmit the optimum amount of information about both S and R. Obtaining

information about both aspects of the signal, necessitates a division of labour between

different components of the signalling pathway. Extracting an optimal amount of infor-

mation about R requires loss of information about S . Hence parameter sets which yield

both high I(R; X) and high I(S ; Y) are not observed.

The significance of this work stems from the fact that it does not rely on any implicit

assumptions of linearity, such as the linear noise approximation, and constitutes an ex-

haustive exploration of parameter space for 14 motifs representing signalling systems.

The key conclusion is that a signalling motif’s topology may predispose it to trans-

mit more information about the input but all the tested topologies have the potential of

achieving the maximum signal transmission fidelity.
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Much attention has previously been focused on the MI between concentrations or num-

bers of species at a given time point [2–4, 34]. Rather than focusing on quantifying the

exact number of bits transmitted, it is arguably more pertinent to consider what kind of

information is relevant in each particular case. The answer to this question carries im-

plications for how the signalling or regulatory system in question extracts information

about its environment.
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Chapter 4

Inferring extrinsic noise in E. coli
gene expression

4.1 Introduction

Experiments have demonstrated the presence of considerable cell-to-cell variability in

mRNA and protein numbers [66–70] and slow fluctuations on timescales similar to the

cell cycle [17, 71]. Broadly speaking, there are two plausible causes of such variabil-

ity. One is the inherent stochasticity of biochemical processes which are dependent on

small numbers of molecules. The other relates to differences in numbers of protein,

mRNA, metabolites and other molecules available for each reaction or process within

a cell, as well as any heterogeneity in the physical environment of the cell population.

These sources of variability have been dubbed as “intrinsic noise” and “extrinsic noise”,

respectively.

One of the earliest investigations into the relationship between intrinsic and extrinsic

noise employed two copies of a protein with different fluorescent tags, expressed from

identical promoters equidistant from the replication origin in E. coli [72]. By quantify-

ing fluorescence for a range of expression levels and genetic backgrounds the authors

concluded that intrinsic noise decreases monotonically as transcription rate increases

while extrinsic noise attains a maximum at intermediate expression levels. Other studies

have considered extrinsic noise in the context of a range of cellular processes includ-

ing the induction of apoptosis [73]; the distribution of mitochondria within cells [74];

and progression through the cell cycle [75]. From a computational perspective, extrin-
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sic variability has been modelled by linking the perturbation of model parameters to

perturbation of the model output using the Unscented Transform [76].

Taniguchi et al [17] carried out a high-throughput quantitative survey of gene expres-

sion in E. coli. By analysing images from fluorescent microscopy they obtained discrete

counts of protein and mRNA molecules in individual E. coli cells. They provided both

the measurements of average numbers of protein and mRNA molecules in a given cell

and also the measurements of cell-to-cell variability of molecule numbers. The depth

and scale of their study revealed the influence of extrinsic noise on gene expression lev-

els. The authors demonstrated that the measured protein number distributions can be

described by Gamma distributions, the parameters of which can be related to the tran-

scription rate and protein burst size [77]. To quantify extrinsic noise they consider the

relationship between the means and the Fano factors of the observed protein distribu-

tions. They also illustrate how extrinsic noise in protein numbers may be attributed to

fluctuations occurring on a timescale much longer than the cell cycle.

Here we aim to describe extrinsic noise at a more detailed, mechanistic, level using a

stochastic model of gene expression. Such a description calls for quantitative inference

of the model’s parameters. We achieve this by relying on the data made available by

Taniguchi et al and employing approximate Bayesian computation (ABC). One diffi-

culty that arises when trying to investigate the extent and effect of extrinsic noise is that

it is difficult to separate it from intrinsic noise. To overcome this confounding effect,

the parameters of our model come in two varieties. Firstly, reaction rate parameters

describe the probability of events occurring per unit of time. These correspond to the

reaction rate parameters of a typical stochastic model which accounts for intrinsic noise.

Secondly, noise parameters describe the variability in reaction rate parameters caused

by the existence of extrinsic noise. This approach allows us to simultaneously infer the

rate parameters and the magnitude of extrinsic noise.

Stochastic simulation and ABC inference methods are both computationally costly en-

deavours. In this particular case, the experimental data corresponds to snapshots of the

system at a single time point. Thus, a complete temporal trajectory of the system is not

necessary to carry out comparisons with the data. This allows us to make the problem

computationally tractable. To this end, we develop a model-specific simulation method

which takes advantage of the Poissonian relationship between the number of surviving

protein molecules produced from a given mRNA molecule and its lifetime, under certain

assumptions.
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4.2 Modelling gene expression

A simple model of gene expression may represent the processes of transcription and

translation using mass-action kinetics to describe production and degradation of vari-

ous species as pseudo-first order reactions. Such a model may be simulated stochasti-

cally to take into account the intrinsic variability of processes involving low numbers of

molecules. In the simplest version of this model, mRNA is produced from the promoter

at a constant rate. However, such Poissonian mRNA production is often not sufficient to

account for the variability in mRNA numbers measured experimentally in both prokary-

otic and eukaryotic cells. In addition to this, for many genes, transcription appears to

occur in bursts rather than at a constant rate. These characteristics of gene expression

have been observed in organisms as diverse as bacteria [17], yeast [69], amoeba [67]

and mammals [68]. One model of gene expression that takes this into account is the, so

called, two-state model.

The two-state promoter model

In the two-state model of gene expression, a gene’s promoter is represented as either

active or inactive [70, 78]. Here we use a variant of the two-state model with the inactive

state corresponding to a lower transcription rate rather than no transcription at all. For

each state of the promoter, transcription events at that promoter are represented by a

Poisson process with rate parameter corresponding to the transcription rate. Biochemical

processes such as transcription factor binding or reorganisation of chromatin structure

may account for the existence of several distinct levels of promoter activity. However,

which factors play a dominant role in the apparent switching, remains an unanswered

question.

The Gillespie algorithm [13] may be used to simulate all the reactions represented by this

model and obtain a complete trajectory of the system through time. However, in this case

we are only interested in the number of molecules present at the time of measurement.

We use a model-specific stochastic algorithm (Algorithm 5) which allows us to reduce

the number of computational steps required to obtain a single realisation from the model.

The following reactions, represented using mass-action kinetics, comprise the two-state

47



model:

inactive-promoter
kon
−→ active-promoter

active-promoter
koff
−→ inactive-promoter

inactive-promoter
k0
−→ inactive-promoter + mRNA

active-promoter
k1
−→ active-promoter + mRNA

mRNA
k2
−→ mRNA + Protein

mRNA
d1
−→ ø

Protein
d2
−→ ø

The propensity functions (hazards) for each of the above reactions are listed below:

h0 = kon[inactive-promoter]

h1 = koff[active-promoter]

h2 = k0[inactive-promoter]

h3 = k1[active-promoter]

h4 = k2[mRNA]

h5 = d1[mRNA]

h6 = d2[Protein]

Here the square brackets refer to the number of molecules of a species rather than its

concentration.

The model presented here relies on a number of assumptions about the process of gene

expression. Firstly, that the production of mRNA and protein can be described suffi-

ciently well by pseudo-first-order reactions. Secondly, that degradation of mRNA and

protein can be described as an exponential decay. In a bacterial cell, mRNA molecules

are degraded enzymatically and typically have a half-life on the scale of several minutes.

The half-life of protein molecules usually exceeds the time required for cell growth and

division during the exponential growth phase. Thus, dilution due to partitioning of pro-

tein molecules between daughter cells tends to be the dominant factor in decreasing the

number of protein molecules. Here we do not build an explicit model of cell division,
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instead the decrease in protein numbers is approximated by an exponential decay. Fi-

nally, it is assumed that there is no feedback mechanism by which the number of mRNA

or protein molecules produced by the gene affects its promoter switching, transcription

or translation rates.

Representing extrinsic noise

Here we model extrinsic noise using a similar approach to that in the previous chapter

on models of two-node regulatory motifs. Extrinsic noise is represented by using a

Gaussian kernel to perturb the reaction rate parameters before each simulation of the

model. The effect of extrinsic noise on each reaction is assumed to be independent. The

reaction rates associated with a particular gene are termed nominal parameters (θn).

θn = [kon, koff, k0, k1, k2, d1, d2]

The values determining the magnitude of the perturbation are termed the noise parame-

ters (η).

η = [ηkon , ηkoff
, ηk0 , ηk2 , ηd1 , ηd2]

Together they comprise the full parameter set for the model θ = [θn, η].

In the case of the two-state model of a single gene, each θn has a corresponding extrinsic

noise parameter with the exception that the basal transcription rate (k′0) is defined as a

fraction of the active transcription rate (k′1) so the two reaction rates are subject to the

same perturbation (ηk0) before each simulation. This is motivated by the idea that ex-

trinsic factors affecting the transcription rate do not depend on the state of the promoter.

The parameters used to generate a single realisation from the two-state model are ob-

tained by sampling from f (µ, σ). Where f is a truncated normal distribution, restricted

to non-negative values by rejection sampling with µ and σ being the mean and standard
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deviation of the corresponding normal distribution.

k′on ∼ f
(
kon, konηkon

)
k′off ∼ f

(
koff, koffηkoff

)
k′1 ∼ f

(
k1, k1ηk1

)
k′0 = k0k′1

k′2 ∼ f
(
k2, k2ηk2

)
d′1 ∼ f

(
d1, k1ηd1

)
d′2 ∼ f

(
d2, k2ηd2

)

The final time point of each simulation represents the number of mRNA and protein

molecules in a single cell at the time of measurement.

Simulation procedure

In order to reduce the computational cost of each simulation, rather than using Gille-

spie’s direct method to simulate the entire trajectory of mRNA and protein numbers,

we employed Algorithm 5 to obtain samples of the numbers of mRNA and protein

molecules at the time of measurement (tm). First, a realisation of the telegraph pro-

cess is used to obtain the birth and decay times of mRNA molecules. These are then

used to sample the number of protein molecules that were produced from each mRNA

molecule and survived until tm. This procedure makes use of the Poissonian relationship

between the life time of an individual mRNA molecule and the number of surviving

protein molecules that were produced from it. This relationship is derived in Appendix

6.4 and its use is illustrated in Figure 4.1. The final output is the number of both mRNA

(M) and protein (P) molecules present in the system at tm.
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Figure 4.1: An illustration of how the birth and death times of an mRNA molecule are
used to obtain the number of proteins that were produced from it and then survived
until the time at which mRNA and protein numbers were measured.
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Algorithm 5 Simulation of the two-state model
Inputs: θn, η, tm

Outputs: M, P
1: Obtain perturbed parameters using the nominal (θn) and noise (η) parame-

ters.
Stage one: simulate mRNA production subject to an underlying telegraph
process.

2: S ← 1 with probability k′on/(k
′
on + k′off

)), otherwise S ← −1
. Select the initial state of the telegraph process.

3: t ← 0 . Initialise simulation time.
4: Mb ← 0 . Initialise the number of mRNA molecules produced.
5: i← 1 . Initialise index of mRNA molecules.
6: while t < tm do
7: if S = -1 then
8: kS ← k′on
9: km ← k′0

10: else
11: kS ← k′off

12: km ← k′1
13: end if
14: τ ∼ Exp(kS ) . Sample the time until the next switching event.
15: if t + τ > tm then . Ensure that t + τ does not exceed the final time point.
16: τ← tm − t
17: end if
18: Mτ ∼ Poisson(τkm) . Sample the number of mRNA molecules

produced.
19: Mb ← Mb + Mτ

20: while i ≤ Mb do
21: ui ∼ Uni f orm(t, t + τ) . Sample birth times for each mRNA.
22: i← i + 1
23: end while
24: t ← t + τ
25: S ← −S
26: end while
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Stage two: simulate mRNA degradation; protein production and degrada-
tion.

27: M ← 0 . Initialise the number of mRNA molecules at tm.
28: P← 0 . Initialise the number of protein molecules at tm.
29: i← 1
30: while i ≤ Mb do . For each mRNA molecule that was produced:
31: v ∼ Exp(d′1) . Sample the time until mRNA decay.
32: Tl ← min(ui + v; tm) − ui . Calculate mRNA lifetime.
33: Pl ∼ Poisson

(
k′2
d′2

(1 − e−d′2Tl)
)

. Sample the number of surviving proteins at time point ui + v.
34: Td ← tm − min(ui + v; tm) . Time since mRNA decay.
35: if Td = 0 then
36: M ← M + 1 . mRNA survived until tm.
37: P← P + Pl

38: else
39: Ps ∼ Binomial(Pl, e−d′2Td )

. Sample the number of surviving proteins at time tm.
40: P← P + Ps

41: end if
42: i← i + 1
43: end while

Taniguchi et al [17] used images of about a thousand cells to obtain estimates of mean

mRNA numbers, mRNA Fano factors, mean protein numbers and protein number vari-

ances. For this reason, we use 103 simulation runs when calculating summary statistics.

The experimental measurements of mRNA lifetimes are compared directly to the mRNA

degradation rate parameter (d1) in the model by assuming that lifetimes correspond to

the inverse of the decay rate.

The run time of each simulation largely depends on the number of mRNA molecules

produced during the simulated time period and thus on the model parameters. In the

dataset considered here, mRNA numbers in the cell at any one time are in the low tens

while the corresponding protein may be present in hundreds or thousands of copies.

There is a significant computational advantage to using algorithm (5) in this context.

Nonetheless, inferring the posterior distribution for a given gene can take several days

or even weeks of computational time on a modern processor core.
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Inference procedure

We use an ABC-SMC algorithm to infer plausible parameter sets for the two-state model

based on the experimental data. The inference procedure is similar to that employed by

[49, 50, 79], as described in Algorithm 6.

For the distance metric, d, we take the Euclidean distance between the logarithms of

each type of experimental measurement (Di) and the corresponding simulation results

(xi):

d(D, x) =

√√√ i=5∑
i=1

(
log Di − log xi

)2

D =

µmRNA,
σ2

mRNA

µmRNA
, µprot, σ

2
prot, τ

−1
mRNA


Where µmRNA is the mean number of mRNA molecules; σ2

mRNA/µmRNA is the Fano factor

of the mRNA distribution; µprot is the mean number of protein molecules; σ2
prot is the

variance of the protein distribution and τ−1
mRNA gives the exponential decay rate constant

for mRNA degradation based on the measured mRNA lifetime (τmRNA).

x =

µM,
σ2

M

µM
, µP, σ

2
P, d1


Where µM is the mean number of mRNA molecules; σ2

M/µM is the Fano factor of the

mRNA distribution; µP is the mean number of protein molecules; σ2
P is the variance of

the protein distribution and d1 corresponds to the nominal mRNA degradation rate. The

first sampled population of particles (population zero in Algorithm 6), provides a bench-

mark for the choice of ε values in the next population. Since we have no knowledge of

the distribution of distances until a set of particles is sampled, all particles are accepted

in the first population. For subsequent populations, ε values are chosen such that the

probability of acceptance with the new ε value is equal to qt. The vector q is chosen

prior to the simulation. This allows for larger decreases in ε in the first few populations

while keeping the actual epsilon values used, a function of the distances (g) in the pre-

vious population. New populations are sampled until the final epsilon value is reached

ε f = 0.1. To obtain θ∗ from θ we use a uniform perturbation kernel:

θ∗ ∼ U(θ − µt−1, θ + µt−1)

where µt−1 is the vector of standard deviations of each parameter in the previous popu-

lation.
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Algorithm 6 ABC SMC with summary statistics
Inputs: π, N, ε f

Outputs: Set of populations of N accepted particles
1: i← 1
2: t ← 0
3: q← [0.01, 0.05, 0.25, 0.75, ..., 0.75]
4: Initialise ε vector.
5: while ε > ε f do
6: if t = 0 then
7: while i ≤ N do
8: Sample a new θ from π.
9: Simulate from the model 103 times according to Algorithm 5.

10: Calculate summary statistics, x, from the simulation outputs.
11: if d(D, x) < ε then
12: Accept particle.
13: ω(i,t) ← 1
14: i← i + 1
15: end if
16: end while
17: else
18: while i ≤ N do
19: Sample θ from {θ( j,t−1)}1≤ j≤N with probability {ω( j,t−1)}1≤ j≤N .
20: Perturb θ to obtain θ∗.
21: Simulate from the model 103 times according to Algorithm 5.
22: Calculate summary statistics, x, from the simulation outputs.
23: if d(D, x) < ε then
24: Accept particle
25:

ω(i,t) ←
π(θ(i,t))∑n

j=1 ω
( j,t)Kt(θi,t|θ( j,t−1))

26: i← i + 1
27: end if
28: end while
29: end if
30: Normalise weights.
31: t ← t + 1
32: Set ε such that Pr(gi ≤ εi) = qt

33: end while
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Use of experimental data

We focus on a subset of 87 genes from the published data set from [17]. These are all

the genes for which, in addition to protein numbers, the experimental data include both

fluorescence in situ hybridization (FISH) measurements [80] of mRNA numbers and

mRNA lifetimes measurements obtained using RNAseq [81]. We are able to directly

use the summary statistics provided in the supplementary data of [17]. We note that

these genes are not a random sample from the set of all genes and exhibit higher than

average expression levels.

To identify model parameters for which the two-state model, with extrinsic noise, is able

to reproduce the experimental measurements, we carry out Bayesian inference using an

ABC-SMC algorithm that compares summary statistics from simulated and experimen-

tal data [79]. Specifically we used the following summary statistics: (1) the mean num-

bers of mRNA molecules; (2) the Fano factors of mRNA molecule distributions; (3) the

mean numbers of protein molecules; (4) the variances of protein molecule numbers; and

(5) mRNA lifetimes converted to expontial decay rate parameters. The distributions of

these summary statistics are shown in Figure 4.2. We assume that the summary statistics

correspond to steady state expression levels for each gene. While there is no guarantee

that this is the case for every gene, the majority of genes are unlikely to be undergoing

major changes in their expression level given that the cells are in a relatively constant

environment.

Parameter prior

The telegraph process may be parametrized in terms of the ratio of probabilities of

switching events (kr) and the overall frequency with which events occur (k f ):

kr =
kon

kon + koff

k f = 2
konkoff

kon + koff
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Figure 4.2: Experimentally measured summary statistics. Each point on the scatter
plots is an estimate of the corresponding summary statistic or mRNA lifetime exper-
imental measurement. Histograms on the diagonal all use the same vertical axis as
the top left most histogram.
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To obtain θ, the vector of parameters used in the ABCSMC inference procedure (Algo-

rithm 6), rate and noise parameters are sampled from the following uniform priors,

kr ∼ U(0, 1)

k f ∼ U(0, 0.1)

k0 ∼ U(0, 1)

k1 ∼ U(0, 1)

k2 ∼ U(0, 10)

d1 ∼ U(0.01, 0.6)

d2 ∼ U(0.0005, 0.05)

ηkon ∼ U(0, 0.5)

ηkoff
∼ U(0, 0.5)

ηk1 ∼ U(0, 0.4)

ηk2 ∼ U(0, 0.4)

ηd1 ∼ U(0, 0.4)

ηd2 ∼ U(0, 0.4).

The parameters for the telegraph process, sampled from the prior as kr and k f , are con-

verted to kon and koff before being passed to the simulation algorithm (Algorithm 5) as

follows,

koff =
k f

2kr

kon =
koffkr

1 − kr
.

Rate parameters kr and k0 as well as the noise parameters (η) are unit-less. The remain-

ing parameters have units 1s−1.

To ensure that M and P are from a distribution close to equilibrium, simulation duration

is set depending on the nominal degradation rates for mRNA (d1) and protein (d2),

tm = L(d−1
1 + d−1

2 )

where tm is the final time point and L is a constant chosen arbitrarily to indicate the

desired proximity to the steady state distribution. Here we use L = 5.
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4.3 Results and discussion

Posterior distributions of parameters

We begin our analysis by examining the posterior distributions of parameters obtained

for each gene using the ABC-SMC inference procedure. The simulated summary statis-

tics converged to within the desired threshold of the experimental measurements for 86

out of 87 genes. The inferred posterior for the one remaining gene converged relatively

slowly and we chose to terminate the process after 30 days of computational time. Fig-

ure 4.3 shows a contour plot of the distribution of summary statistics and the mRNA

degradation rate, obtained from particles in the final ABC-SMC population for a typical

gene (dnaK). Other examples can be seen in Figures 1, 2, 3 and 4. We begin with a

discussion of features of the posterior parameter distributions, that are common to most

genes. Next, we examine the relationships between model parameters and summary

statistics of the model outputs. Lastly, we carry out a type of sensitivity analysis on the

inferred posteriors.

In the two-state model, the switching of the promoter between active and inactive states

is described by a telegraph process which can be parametrised either in terms of the

switching reaction rates (kon and koff) or in terms of the on/off bias (kr) and frequency

of switching events (k f ). The simulation algorithm takes parameters in the form of kon

and koff. However, the effects of kr and k f on the observed mRNA distribution may be

interpreted more directly and intuitively.

For the majority of genes the k0 and kr parameters are relatively small. This appears to

be a prerequisite for a high Fano factor of the mRNA distribution and the mean marginal

inferred values of these parameters are negatively correlated with Fano factors across

all 86 genes as discussed below. A low switching rate combined with a low basal ex-

pression rate ensures that there are two distinct mRNA expression levels. This in turn

produces a larger variance in measured mRNA counts and results in Fano factor values

well above one. Conversely, genes for which mRNA production appears to be more

Poissonian were inferred to have basal mRNA production rates close to one, i.e. similar

to the active mRNA production rates. In other words, these genes appear to be con-

stitutively active. Here again, we point out that the two-state promoter model provides

a convenient abstraction and a hypothesis for explaining the super-Poissonian variance

in mRNA copy number [70, 78]. However, based on these observations it is difficult
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Figure 4.3: Posterior distribution of summary statistics for the gene dnaK. Contour
plots indicating the density of points with the corresponding summary statistic for
each particle in the final population.
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to determine whether a model with more states or some other more elaborate regula-

tory model, would not be more appropriate. Our preliminary attempts at carrying out

the inference procedure with a one-state model indicate that extrinsic noise alone does

not explain the observed mRNA distributions without also producing unacceptably high

variability in protein numbers.

Our initial inference attempts used only the summary statistics from the data. We ob-

served that the production and degradation rate parameters for mRNA (k1 and d1) and

protein (k2 and d2) tended to be positively correlated in the posterior parameter distri-

butions of many genes. This is due to limited identifiability of model parameters since

different combinations of rates may produce similar steady state expression levels. The

problem is partly alleviated by using data on the mRNA degradation rate to constrain the

range of acceptable values for d1 for each gene (Figure 4.4). In addition, the model of

extrinsic noise prevents extremely high rate parameter values from being accepted since

they would result in greater extrinsic noise. Despite these limitations, our approach does

provide an indication of the possible range of extrinsic noise values that can account for

the observed variability in mRNA and protein numbers.

Although the posterior summary statistics (and mRNA degradation rate) are reasonably

well constrained and distinct for each gene, the distributions of model parameters may

still be relatively broad (Figure 4.4). There are a number of reasons for this. Firstly,

changes in parameters associated with active transcription and translation, as well as

degradation rates, are more easily inferred than parameters describing switching be-

tween promoter states, basal transcription or extrinsic noise. In particular, when the

production and degradation rates for the same species are subjected to differing extrin-

sic noise parameters, the inference procedure struggles to resolve between the different

source of extrinsic noise. This explains the correlation between the means of inferred

extrinsic noise parameters (Figure 4.5). Such correlations between extrinsic noise pa-

rameters are not observed in the posterior of each gene or when taking the single particle

with the highest weight from the final population of each gene as in Figure 4.6.

A comparison of Figues 4.5 and 4.6 suggests that a certain level of extrinsic noise is

expected for all genes. However, the extrinsic noise may affect various combinations

of rate parameters and it may not be possible to discern if, for example, the production

rate or the degradation rate is more affected by extrinsic variability. While our inference

procedure does not indicate a distinctive lower boundary for the amount of extrinsic

noise affecting each reaction rate, there is usually an upper limit to the inferred noise
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Figure 4.4: Posterior distribution of model parameters for the gene dnaK. Contour
plots indicating the density of points with the corresponding parameter values for
each particle in the final population.
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Figure 4.5: Relationships between means of the marginal parameter posteriors.
Scatter plots of the means of the marginal distributions of parameter posteriors are
shown for all pairs of parameters. Each point corresponds to a gene.
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cles with the highest weight in the final ABC-SMC population, shown for all pairs of
parameters. Each point corresponds to a particle from the inferred posterior of one
gene.
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Figure 4.7: Heat maps of correlation coefficients between parameters and sum-
mary statistics. Heat maps are of the correlation coefficients calculated between
experimentally obtained summary statistics and the mean (top) or the variance (bot-
tom) of the marginal posterior for each model parameter. Correlation coefficients
for which the associated p-values are greater than 0.05, after correcting for multiple
testing using the Benjamini-Hochberg method [82], are treated as zero for plotting
purposes.

parameters ranges. The extrinsic noise parameters for most genes are below 0.2 (Figure

4.6), however, for some genes, ηkon and ηkoff
have relatively broad posterior marginal

distributions.

To better understand the relationship between model parameters and observed patterns

of gene expression, we look for correlations between means and variances of the in-

ferred marginal parameters of each gene and the summary statistics used in the infer-

ence procedure (Figure 4.7). As expected, the correlation between the measured mRNA

degradation rate, calculated from mRNA lifetime, and the inferred mRNA degradation

rate parameter of the model, is close to one.
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The promoter switching rate parameters, kon and koff display positive and negative corre-

lation with the mean mRNA number, respectively. They have the opposite relationship

with the mRNA distribution Fano factor. This is consistent with the idea that distinct

levels of transcription are required to account for the observed mRNA Fano factors.

The corresponding extrinsic noise parameters ηkon and ηkoff
are positively correlated with

mRNA abundance. However, the means and variances of the marginal distributions of

these parameters are negatively correlated with the Fano factor of the mRNA distribu-

tion. This indicates that when promoter switching is affected by higher extrinsic noise,

the mRNA distribution becomes more Poissonian as the effect of the two distinct pro-

moter states is averaged out.

Curiously, the mean and variance of the protein degradation rate (d2) are positively cor-

related with mean mRNA number and negatively correlated with the mRNA Fano factor.

Unlike the translation rate (k2), it shows no significant correlation with the mean or vari-

ance of the protein number.

Parameter stiffness/sloppiness

There are two complementary approaches to investigating the sensitivity of a modelled

system to its parameters or inputs. One approach is to consider a single point in pa-

rameter space and study how the model responds to infinitesimal changes in parameters.

This local approach usually involves calculating the partial derivatives of the model out-

put with respect to the parameters of interest. Alternatively, one may consider how the

model behaviour varies within a region of parameter space by sampling parameters and

observing model behaviour. Regardless of the method used, different linear combina-

tions of parameters will affect the model output to varying degrees [83]. Gutenkunst et

al [84] coined the terms “stiff” and “sloppy” to describe these differences. They defined

a Hessian matrix,

Hχ2

i, j ≡
d2χ2

d log θid log θ j

where χ2 provides a measure of model behaviour, such as the average squared change

in the species time course. By considering the eigenvalues of this Hessian, λi, the au-

thors were able to quantify the (local) responsiveness of the system to a given change

in parameters. Conceptually, moving along a stiff direction in parameter space causes a

large change in model behaviour, conversely moving along a sloppy direction results in

comparatively little effect on the output of the system.
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Secrier et al [85] later demonstrated how these ideas can be applied to the analysis of

posterior distributions obtained by ABC methods. Principal component analysis (PCA)

may be used to approximate the log posterior density using a multivariate normal (MVN)

distribution. They showed that the eigenvalues of the covariance matrix, si, of this MVN

distribution are related to the eigenvalues of the Hessian as λi = 1/si.

To assess the the stiffness/sloppiness of the inferred parameters we carry out PCA of the

covariance matrices of log posterior distributions for each gene. In interpreting the re-

sults of the PCA we assume that the posterior distribution is, in practice, unimodal. The

principal components (eigenvectors), ν, and the corresponding loadings (eigenvalues),

s, provided by the PCA are then used to obtain the eigen-parameters, q, as

qi = siνi.

We calculate the projections of each parameter, θi, onto each eigen-parameter, q j, as

ci, j = θi · q j.

As a measure of the overall sloppiness of each parameter, l, we use the sum of the

contributions of each parameter to the eigen-parameters, li =
∑

j ci, j. This can also be

thought of as the sum of the projections of each principal component onto the parameter,

weighted by the fraction of total variance explained by each of the principal components.

Having obtained a measure of the sloppiness of each parameter, for each gene, we carry

out hierarchical clustering [86] of genes and parameters using a Euclidean distance met-

ric for both (Figure 4.8).

The majority of genes show a similar pattern of parameter stiffness/sloppiness. The

most distinctive and the second most distinctive clusters consist of just two genes each,

yiiU with aceE and cspE with map, respectively. These four genes are distinguished

by unusually sloppy promoter activity ratio, kr, and promoter switching frequency, k f ,

parameters. The pair yiiU and aceE display a high ratio of protein variance to protein

mean (Fano factor) and are stiff with regard to the protein degradation rate noise param-

eter ηd1 . cspE also has a high Fano factor of the protein distribution while map has an

unusually low mRNA Fano factor. What these four genes appear to have in common

is that the variability in their protein numbers is difficult to explain based solely on the

mRNA variability. Thus, a higher level of extrinsic noise is inferred to account for the

observed variability. Since these genes comprise a small minority, it may be that their
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Figure 4.8: Clustering of genes and inferred posteriors according to parameter slop-
piness. Clustergram showing a heat map of parameter sloppiness for each gene.
Dendograms above and to the left of each heat map display the hierarchical tree
obtained using a Euclidean distance metric.



expression is subject to regulatory mechanisms that are not well approximated by the

two state model. The remaining majority of genes are broadly divided into two similar

groups which differ mostly in the sloppiness of k0.

The noise and rate parameters segregate into two clusters with the noise parameters gen-

erally being sloppier than the rate parameters (Figure 4.8). The least sloppy parameter

is the mRNA degradation rate (d1). This is not surprising since it was used, together

with the molecule number summary statistics, to infer the posterior distribution. Of the

rate parameters, the basal transcription rate (k0) is the sloppiest and often approaches

the noise parameters in its sloppiness. Since this parameter is defined as a fraction of

the active transcription rate (k1), its relative sloppiness should not be equated to a lack

of importance. For most genes the marginal posterior of k0 is largely constrained to

the lower half of its prior distribution, U(0, 1). The only exception being the gene map

for which the measured mRNA Fano factor was close to one and the marginal posterior

of k0 is in the top half of the prior range. The mean of the marginal posterior of k0 is

negatively correlated with the mRNA Fano factor across all genes (Figure 4.7). The two

other parameters that influence the mRNA Fano factor, kr and k f , are the next sloppiest

rate parameters.

4.4 Conclusions

Cell-to-cell variability in genetically homogeneous populations is a ubiquitous phe-

nomenon [87–89]. Attempts to quantify it are complicated by the difficulty of assigning

it to a single cellular process or any one experimentally measurable variable. It can also

be difficult to distinguish between the intrinsic stochasticity of biochemical processes in

the short term and longer term variations which may have been inherited from previous

cell generations.

By including a representation of extrinsic noise in our model of gene expression we at-

tempt to infer the extent to which the rates of biochemical processes can vary between

cells while still producing the experimentally measured mRNA and protein variability.

We demonstrate the usefulness of an efficient method for exact stochastic simulation

of the two-state model of gene expression. This model is necessary to explain the ex-

perimentally measured mRNA variation (Fano factor) and is capable of describing the

majority of the observed data. We show that the amount of extrinsic noise affecting most

genes appears to be limited, but non-negligible.
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The exact simulation method described here occupies a niche between those cases when

only samples from the steady state mRNA distribution of the two-state model [68, 90,

91] are required and cases when an approximation to the protein distribution [77, 92]

is sufficient. The computational advantages of the simulation method described here

are limited to specific conditions, such as, low numbers of mRNA molecules and higher

numbers of protein molecules. The most limiting factor of this simulation method is that

it is not applicable to models in which the protein products affect upstream processes

such as promoter activity, transcription or translation. The addition of such interactions

would mean that the assumptions used in deriving the Poissonian relationship between

the number of surviving protein molecules produced form a given mRNA molecule and

mRNA’s lifetime would no longer be satisfied. Perhaps an approximate algorithm could

be developed on the basis of algorithm (5) to handle such situations. Alternatively, the

tau-leaping algorithm [93] may be more appropriate for models involving these kinds of

feedback interactions. Algorithm (5) could, however, be naturally extended to models

involving regulatory interactions between non-coding RNAs as the simulation of that

part of the model is equivalent to Gillespie’s exact algorithm. Although here we use

summary statistics of mRNA and protein number measurements, the simulation method

is also applicable to cases where a direct comparison between sample distributions, for

example using the Hellinger distance, is required.

The inferred extrinsic noise parameters will also include the effects of regulatory mech-

anisms that are not well described by the two-state model. In this sense, our definition

of noise becomes blurred with our ignorance about the regulatory interactions involved

in the expression of each gene. Nonetheless, the biochemical mechanisms governing

gene expression in a given species are shared between many genes. This is in agree-

ment with our observation that, for most genes, inferred model parameters show similar

patterns of sloppyness. If we are able to refine our understanding of the shared aspects

of gene expression, we may be able to improve our understanding of both the nature of

the noise affecting it, and the regulatory mechanisms controlling it. In practice this may

mean finding a mechanistic explanation for the two-state model or further refining it to

achieve a better agreement between simulations and experimental results.

The in silico approach used here not only relied on, but was inspired by the experimen-

tal work of Tanaguchi et al [17]. As the resolution of high throughput experimental

techniques and the quantity of data they generate continues to increase, more complete

observations of cellular processes may begin to yield data amenable to statistical analysis
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and inference of extrinsic noise. These may in turn require other modelling, computa-

tional and theoretical approaches which would not rely on the assumptions and simplifi-

cations that we make in this work [94]. Models involving interactions between multiple

genes, mediated by the protein products of those genes, require more general simulation

methods. If sufficient computational capacity is available, they could be simulated using

Gillespie’s direct method [13]. Alternatively, approximate methods using, for example,

the unscented transform [95] or moment expansion [11], could be employed.
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Chapter 5

Signal transduction by
two-component systems

5.1 Two-component signalling systems

A common mechanism by which cells sense and respond to their environment revolves

around membrane bound receptors coupled to downstream biochemical processes. Bac-

terial two-component systems (TCS) are an example of such a sensing system. A TCS is

comprised of a transmembrane histidine kinase (HK) receptor and a response regulator

(RR) protein. TCSs are ubiquitous in bacteria. As many as 50000 proteins belonging to

TCSs have been identified on the basis of sequence analysis [96]. They are responsible

for regulating a plethora of cellular functions including metabolism, virulence, stress re-

sponses and sporulation. The E. coli K-12 genome encodes 30 different TCSs responsi-

ble for sensing a wide range of environmental variables, from osmolarity (EnvZ/OmpR),

to phosphate levels (PhoR/PhoB). The well studied chemotaxis proteins also comprise

an atypical variant of a TCS [97]. Similarities in TCSs between bacterial species can be

attributed to both horizontal gene transfer and co-evolution [98]. Homologues of TCSs

have also been identified in Saccharomyces cerevisiae [99] and Arabidopsis thaliana

[100], however, eukaryotic TCSs are comparatively rare.

The basic steps involved in TCS signal transduction are as follows. The receptor HK

consumes ATP to auto-phosphorylate a conserved histidine residue. The HK can interact

with a cognate RR protein. If the RR is unphosphorylated at a specific, conserved,

aspartate residue, the phosphate group may be transferred from the HK to the RR. In the
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event that the RR is phosphorylated, the HK can act as a phosphatase, dephosphorylating

the RR. Phosphorylation controls RR activity. The active RR may behave as an enzyme,

as is the case with the chemotaxis protein CheB. However, it is more common for the

RR to act as a transcription factor.

TCSs can be divided into two distinct categories, orthodox and non-orthodox (Figure

5.1), based on the domains present in the HK [96]. The typical, orthodox HK consists of

a sensing domain linked to a conserved kinase core. The RR is comprised of a receiver

(REC) domain linked to an effector domain, such as a DNA binding domain. Non-

orthodox HKs possess two additional domains, a REC domain and a histidine phospho-

transfer (HPt) domain. Rather than directly transferring the phosphate from the kinase

core to the REC domain of the RR, as is the case with orthodox systems, non-orthodox

HKs first pass the phosphate to an aspartate residue of their own REC domain and then

to a histidine on the HPt domain. Such modular structure may be what allowed TCSs to

diversify their functions during the course of evolution. In the future, TCSs may provide

a toolbox of interchangeable components for synthetic biologists [101–103].

HKs and RRs are usually thought of as acting in cognate pairs to perform a specific

function. In fact, 23 of the E. coli K-12 cognate pairs are co-localised on the chromo-

some [98]. Nonetheless, so called, cross-talk between different cognate pairs exists and

may play a significant role in cellular signalling. In addition, interactions between TCSs

can be mediated by accessory proteins and allosteric regulators [97].

While signal transduction via phosphotransfer from the HK to the RR is a core feature

of TCSs, the details of the signalling mechanism may differ between systems. The HK

can respond to a stimulus either by altering its kinase activity (e.g. CpxA, LuxN), its

phosphatase activity (e.g. KdpD) or both (e.g. NtrB, PhoQ) [96]. In turn, the active

RR can function as a monomer (e.g. Spo0F, CheY, CheB), a dimer (e.g. FixJ, OmpR,

KdpE, PhoB, Spo0A) or a even as an oligomer (NtrC, UhpA) [104]. It may also exist

as a mixture of dimers and monomers irrespective of its phosphorylation state, as is the

case with PhoP [105].

5.2 Modelling TCS phosphotransfer

Bacterial TCSs are relatively well characterised compared to many other biomolecu-

lar signalling pathways. Despite this, the task of building a model of TCS signalling
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Figure 5.1: A schematic illustration of orthodox and non-orthodox TCS signalling.
The input signal is detected by the signalling domain on the HK. Information about
the signal is transmitted by changes in the phosphorylation state of conserved histi-
dine (His) or aspartate (Asp) residues on the HK and RR. The HK’s kinase domain
consumes ATP to phosphorylate a histidine residue. In orthodox TCSs this phos-
phate can be transferred directly to the REC domain of the RR. Non-orthodox HKs
contain two additional domains, REC and HPt. The phosphate is transferred to these
domains before reaching the RR. Figure based on reference [96].
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is fraught with uncertainties. As discussed above, the details of the signalling process

vary between particular TCSs. While there are many studies which provide experimen-

tal measurements, these studies focus on a range of different strains, TCSs, molecular

species, or processes. Even experiments involving the same TCS from the same bac-

terial strain may have been carried out under different conditions, in vitro or in vivo.

For example, some experiments rely on measurements of a reporter gene’s expression

level in live bacterial cells [106] while methods such as surface plasmon resonance can

provide information about binding affinities but require purified sample of the relevant

macromolecules [105].

Previous modelling studies include the use of deterministic models to compare orthodox

and non-orthodox TCSs [107] as well as investigations into ultrasensitivity and bista-

bility exhibited by atypical histidine kinases [108]. Stochastic models have provided

insight into the effects of varying the kinetic parameters of the system on the qualitative

nature of its response to the signal [109].

The aims of the work presented in this chapter are two-fold. Firstly, to develop a plau-

sible model of TCS signalling based on published data about rate parameters and to

connect it to the gene expression model described in the previous chapter. Secondly, to

use this model to provide an illustrative example of how approaches rooted in informa-

tion theory may be applied in the modelling of cellular signalling.

We begin by considering three closely related models describing interactions between

the HK and the RR. We compare the behaviours of the deterministic versions of these

models with the numbers of protein molecules remaining fixed. Although many of the

parameters used in these models are derived from experimental measurements of the

PhoR/PhoB TCS, these model are not necessarily a realistic representation of that par-

ticular TCS. Subsequently we focus on one of these models in a less idealised setting by

carrying out stochastic simulation of the TCS together with its operon and a downstream

gene.

Model 1

Model 1 consists of 14 reactions (appendix B.1) and forms the core of the more complex

models, 2 (appendix B.2) and 3 (appendix B.3). The dimerisation and autophosphoryla-
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tion of HK is described by the following reactions.

2HK
c1
−→ HK2 c1 = 0.0125s−1

HK2
c−1
−→ 2HK c−1 = 0.005s−1

HK2
ck
−→ HK2p ck = 0.025s−1

HK2p
c−k
−→ HK2 c−k = 0.0077s−1

Experimental studies of the EnvZ HK in vitro have indicated that at equilibrium, the

dimeric form (HK2) of the receptor is favoured [110]. The precise values of c1 and c−1

were chosen arbitrarily but remain consistent with this observation. The parameter ck

represents the autophosphorylation rate of the HK dimer. This is the parameter which

is altered in response to a signal affecting the receptor kinase activity. In the absence of

any external signal we set ck = 0. The value of ck when a signal is present can also be

interpreted as the strength of the external signal. The magnitude of the chosen values

of ck and c−k is consistent with in vivo work on the PhoR/PhoB system [111] and also,

crudely, with the timescales of PhoR phosphorylation in vitro [112].

A more pronounced response to the signal can be obtained by increasing ck. While HK

autophosphorylation carries an energetic cost for the cell, alternative ways of increasing

responsiveness to the signal, such as synthesising more HK proteins may also be costly.

We chose to focus on TCSs in which the active form of the RR is the dimer (RRp2). The

following reactions describe background phosphorylation of the RR and dimerisation of

the phosphorylated form.

RR
ca
−→ RRp ca = 8.67e − 05s−1

RRp
cg
−→ RR cg = 0.00026s−1

2RRp
c2
−→ RRp2 c2 = 0.00166s−1

RRp2
c−2
−→ 2RRp c−2 = 0.02158s−1

In the absence of phosphatase activity from its cognate HK (PhoR), PhoB becomes

phosphorylated in vivo. The autodephosphorylation rate of the RR (cg) corresponds to

the experimental measurement for PhoB [111]. The background phosphorylation rate ca

was then chosen so that 1/3 of the RR is phosphorylated at equilibrium in the absence
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of HK. The parameter c2 was chosen arbitrarily but falls within the range of plausible

protein association rates [113], c−2 was them chosen to give a Kd = 13 µM as measured

for Spo0A [104].

TCS signalling requires the temporary association of the HK and RR proteins. Depend-

ing on whether each protein is phosphorylated or not, there are four possible combina-

tions of pairs. Model 1 only includes the reactions necessary for phosphate transfer and

the dephosphorylation of phosphorylated RR by the unphosphorylated HK dimer.

HK2:RR
c−3a
−→ HK2 + RR c−3a = 0.00498s−1

HK2p + RR
c3b
−→ HK2p:RR c3b = 0.00166s−1

HK2 + RRp
c3c
−→ HK2:RRp c3c = 0.00166s−1

HK2:RRp
c−3c
−→ HK2 + RRp c−3c = 0.00498s−1

HK2p:RR
ct
−→ HK2:RRp ct = 0.0279s−1

HK2:RRp
cp
−→ HK2:RR cp = 0.0087s−1

Protein association rates were chosen as before. The dissociation rates c−3a and c−3c

are picked assuming that all HK:RR complexes have a Kd = 3 µM [111] regardless of

phosphorylation state. Phosphate transfer (ct) and phosphatase (cp) rates are in accor-

dance with in vivo measurements for PhoR/PhoB [111]. As with a signal affecting the

HK kinase activity, phosphatase activity is treated as being on when the signal is present

and zero when signal is absent.

Experimental measurements indicate that RR is more abundant than HK by an order of

magnitude and that this ratio is maintained over a range of expression levels [111]. We

simulate the system with 100 and 1000 molecules of HK and RR, respectively. Figure

5.2 shows the trajectory of RRp2 in model 1 in response to signals affecting kinase ac-

tivity, phosphatase activity or both. Model 1 shows a greater response when the signal

affects phosphatase activity (cp) than when it affects kinase activity (ck) (Figure 5.2).

The parameter cp directly influences the rate of removal of RRp from the system. In

contrast, ck affects the production of HK2p so its influence on RRp abundance is at-

tenuated by the dephosphorylation rate of HK2p (c−k) as well as the rate of phosphate

transfer from HK to RR (ct).

To better understand the significance of various model parameters we carried out sensi-
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Figure 5.2: Trajectories of RRp2 for each of the three models with three different
mechanisms for responding to the input signal. Each row corresponds to one of the
three models. Each column shows the response to a signal type. Trajectories are
plotted for a constitutively active signal (solid black lines), no signal (dashed black
lines) and an alternating signal (red lines). First column, HK kinase activity repre-
sented by the parameters ck and cl (model 3 only) is zero when the signal is zero
(off) and 0.025s−1 when the signal is one (on). Second column, HK phosphatase
activity is 0.087s−1 when the signal is zero and zero when the signal is one. Third
column, both HK kinase and HK phosphatase activities are affected by the signal.
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tivity analysis using the StochSens package [114]. This package is an implementation of

an alternative approach to the typical local sensitivity analysis. Rather than considering

the derivative of the model’s output with respect to the model parameters (θ), StochSens

focuses on the changes in the probability distribution of the model’s output (ψ). This

approach is more appropriate when the system in question is stochastic since its output

is not defined by a single observable value but by a probability distribution. StochSens

places this approach in a determinist setting by using the linear noise approximation

to approximate ψ and quantifies how it changes using the Fisher Information Matrix,

defined as,

IF(θ) = E

(
δ logψ(X, θ)

δθ

)2

where X is the model’s output.

We calculate the local sensitivity of the model at steady state, using the parameter values

as listed above. Visual inspection of the model output trajectories indicates that 90000

seconds of simulated time is more than sufficient for the steady state to be reached. Since

the amount of active RR is considered to be the output of the TCS in response to a signal,

we are particularly interested in the sensitivity of RRp2 with respect to model parameters

at steady state. In model 1, RRp2 is most sensitive to the background phosphorylation

rate of RR (ca) and the rate of association of RRp with HK2 (c3c) (Figure 5.3). The next,

most influential parameters are those governing HK autophosphorylation (ck) and HK

phosphatase activity (cp). These are the parameters upon which the input signal acts.

Model 2

Model 2 builds on model 1 by including the unproductive binding of unphosphorylated

HK to uphosphorylated RR.

HK2 + RR
c3a
−→ HK2:RR c3a = 0.00166s−1

The association rate c3a was chosen to be the same as for other reactions which produce

a complex containing the HK and RR proteins. It is entirely plausible that the affinity

of HK for phosphorylated and unphosphorylated RR differ. Models 1 and 2 can be

considered to be two extreme cases of this. The formation of the unphosphorylated

complex leads to a decrease in the abundance of free HK2, effectively inhibiting both

the kinase and phosphatase activities of HK. The abundance of RRp2 increases (Figure
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Figure 5.3: Sensitivity analysis of RRp2 with respect to model parameters for each of
the three models. Sensitivity analysis was carried out using the StochSens package.
Models were simulated until a steady state was reached before sensitivity values
were calculated.
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5.2) but the system becomes much less sensitive to signals affecting ck (Figure 5.3) since

almost all the HK is bound to either RR or RRp. The equilibrium state of model 2 is

even more sensitive to the basal phosphorylation (ca) and dephosphorylation (cg) rates

of RR and RRp than that of model 1.

Model 3

In addition to the reactions making up model 2, model 3 includes two more reactions.

These reactions allow for the phosphorylation and dephosphorylation of HK in complex

with RR.

HK2:RR
cl
−→ HK2p:RR cl = 0.025s−1

HK2p:RR
c−l
−→ HK2:RR c−l = 0.0077s−1

In this model, signals affecting HK kinase activity alter both the ck and cl parameters

so that the signal is sensed by HK dimers bound to unphosphorylated RR. Since most

HK in the system at any one time is in complex with RR, this feature of the model has

a significant effect on the behaviour of the system. Model 3 is much more responsive

to a signal affecting HK kinase activity. Sensitivity analysis confirms that this due to

the autophosphorylation of HK in complex with RR, with cl being a more influential

parameter than ck (Figure 5.3). Conversely, the response of model 3 to changes in HK

phosphatase activity is considerably lower than that of the other two models. (Figure

5.2). Removing the need for HK:RR dissociation puts the phosphatase activity of HK in

more direct competition with its kinase activity. Curiously, the rate of phosphate transfer

from HK to RR (ct) from does not appear to be a very influential parameter in any of the

three models at steady state. However, model 3 is the one most sensitive to it.

5.3 Modelling the TCS operon

For all three models the amount of RRp2 depends on the initial amounts of HK and

RR in the system. This raises two question. Firstly, how can a TCS robustly transmit a

signal given that HK and RR protein numbers fluctuate due to both intrinsic and extrinsic

noise? Secondly, given that the active RR regulates gene expression, does the inherent

noisiness of the process of regulating gene expression swamp any information about the

input signal?
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To try to answer these questions we constructed a model (model 4, appendix B.4) which

includes the production of HK and RR from an operon that is also subject to regulation

by RRp2. In addition, we model a gene which is regulated by RRp2 and produces a

protein (X) that is not involved in TCS signalling. As well as simulating the stochastic

model using the Gillespie algorithm, we perturbed the reaction rate parameters of the

two-state model governing gene expression before each simulation run, to represent

extrinsic noise as discussed in Chapter 4.

This model includes all the reactions from model 3 as well as the following reactions
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describing promoter activity, transcription and translation.

promoter-off
kon
−→ promoter-on kon = 0.0431s−1, ηkon = 0.0672

promoter-on
koff
−→ promoter-off koff = 0.4479s−1, ηkoff

= 0.0428

RRp2 + promoter-off
con
−→ RRp2-promoter-on con = 0.000332s−1

RRp2 + promoter-on
con
−→ RRp2-promoter-on con = 0.000332s−1

RRp2-promoter-on
coff
−→ RRp2 + promoter-off coff = 0.006s−1

RRp2-promoter-on
k1
−→ mRNA + RRp2-promoter-on k1 = 0.434s−1, ηk1 = 0.0516

promoter-on
k1
−→ promoter-on + mRNA k1 = 0.434s−1, ηk1 = 0.0516

promoter-off
k0k1
−→ promoter-off + mRNA k0k1 = 0.025649s−1, ηk1 = 0.0516

mRNA
d1
−→ ∅ d1 = 0.396s−1, ηd1 = 0.0441

mRNA
k2HK
−→ HK + mRNA k2HK = 0.87416s−1, ηk2 = 0.0369

mRNA
k2RR
−→ RR + mRNA k2RR = 8.7416s−1, ηk2 = 0.0369

HK
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

HK2
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

HK2p
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

RR
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

RRp
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

RRp2
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

HK2:RR
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

HK2p:RR
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

HK2:RRp
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

Parameters describing the binding of RRp2 to the promoter (con and coff) are based on

experimental measurements for the KdeE RR [115]. In this model we assume that only

the active form of the RR binds to the promoter region and that transcriptional activity is

in the more active state as long as it is bound. Dissociation of the RR puts the promoter
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in the inactive state but does not preclude it from stochastically switching to the active

state.

The parameters regulating promoter switching (kon and koff), basal and active transcrip-

tion rates (k0 and k1), the translation rate of RR (k2RR) and the noise parameters were

obtained by taking the particle with the highest weight from the inferred posterior dis-

tribution of parameters for gene rcsB, which encodes the RR for the RcsC/RcsB TCS

[106] (see Chapter 4). The translation rate of HK (k2HK) was set to be one tenth of that

of RR to account for the ratio of their abundances. We use equivalent reactions with the

same parameters to describe the promoter activity, transcription and translation of the

gene encoding protein X.

promoter(X)-off
konX
−→ promoter(X)-on

konX = 0.0431s−1, ηkon = 0.0672

promoter(X)-on
koffX
−→ promoter(X)-off

koffX = 0.4479s−1, ηkoff
= 0.0428

RRp2 + promoter(X)-off
conX
−→ RRp2promoter(X)-on conX = 0.000332s−1

RRp2 + promoter(X)-on
coffX
−→ RRp2promoter(X)-on coffX = 0.000332s−1

RRp2promoter(X)-on
coffX
−→ RRp2 + promoter(X)-off coffX = 0.006s−1
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RRp2promoter(X)-on
k1X
−→ mRNA(X) + RRp2promoter(X)-on

k1X = 0.434s−1, ηk1 = 0.0516

promoter(X)-on
k1X
−→ promoter(X)-on + mRNA(X)

k1X = 0.434s−1, ηk1 = 0.0516

promoter(X)-off
k0Xk1X
−→ promoter(X)-off + mRNA(X)

k0Xk1X = 0.025649s−1, ηk1 = 0.0516

mRNA(X)
d1X
−→ ∅

d1X = 0.396s−1, ηd1 = 0.0441

mRNA(X)
k2X
−→ mRNA(X) + protein(X)

k2X = 8.7416s−1

protein(X)
d2X
−→ ∅

d2X = 0.0035s−1, ηd2 = 0.1664

From the perspective of cellular signalling, we are most interested in the behaviours of

RRp2 and protein X. The former represents the TCSs response to the input signal while

the latter servers and example of how this response may be propagated to downstream

processes. Figure 5.4 shows an example of the trajectories of these two species.

5.4 Quantifying information flow

We can estimate the mutual information (MI) between the state of the input signal and

various outputs of the model to quantify how well information about the signal is being

transmitted. As discussed previously (Chapters 2 and 3), the MI will depend on proper-

ties of the signal as well as the model. For the input signal we use a telegraph process

with on and off switching rates of 10−5 s−1. We begin by estimating the MI between

the state of the signal and the numbers of each species present in the system at the final

simulation time point (90000 seconds).

While the number of molecules of a particular species present at a given time point pro-

vides an obvious measure of the behaviour of the system, it will not necessarily be the

feature that carries the most information about the signal. In an idealised system, the
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Figure 5.4: Example trajectories of RRp2 and protein X in response to an input
signal affecting HK kinase activity. The red and green lines illustrate how the weights
used to calculate average molecule numbers depend on time relative to the final
simulation time point.
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complete trajectory of a particular species or set of species could be tracked to extract

the maximum amount of information about the signal. However, the cell itself contains

no mechanism for recording or “reading” such temporal trajectories. Similarly, there is

no biological mechanism for counting the numbers of molecules present in the cell at

a given time. Instead, cellular processes which respond to the signal do so by cumula-

tively aggregating the effects of indirect influences of the signal over a period of time.

In reality, such processes are stochastic and the details are specific to each signalling

mechanism or system.

Here we look at two toy examples of how information may be extracted from the tem-

poral trajectory without resorting to analysing the whole trajectory or restricting infor-

mation gathering to a single time point. The number of molecules of each species does

not change during the time period between reactions (τ). Thus, we can take a uniformly

weighted average (Au) of the number of molecules of a given species over a period of

time (T seconds).

Au =
1
T

N∑
i=1

τiS i

where i is an index over all (N) the time segments contained within T and S i is the num-

ber of molecules of the species of interest during the i-th time period. This approach

is a natural extension of considering just the number of species at a single time point.

However, the temporal dynamics of cellular signalling do not conform to such abstrac-

tions. The influence of past molecule numbers on subsequent events will, in reality, not

be uniform over an arbitrary time period. Complex dynamics such as multistability or

ultrasensitivity may dictate how past information is integrated.

Our second example is motivated by a relatively simple scenario in which the “memory”

about the molecule number decays exponentially over time. A biological example of this

could be a system in which S is an enzyme producing a metabolite that decays via a first

order reaction. Our exponential average Ae then corresponds to the expected abundance

of the metabolite, given a temporal trajectory of the number of molecules of S .

Ae =
1
C

M∑
j=1

w jS j

where j is an index over all time segments, C is a normalising constant, S j is the

molecule count from the j-th time period and w j is the weight given to S j.

C =

∫ t′0

0
e−λt′dt′
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where λ is the rate parameter of exponential decay, t′ is the time until the final time point

and t′0 is the earliest time point from which Ae is calculated.

wi =
1
λ

(
e−λt′j − e−λt′j−1

)
where t′j and t′j−1 correspond to the end and beginning respectively, of the j-th time

segment. This type of weighting is illustrated in Figure 5.4.

We obtain estimates of MI between the state of the signal and molecule numbers at the

final time point. For species which do not exceed 255 molecules in any of the final

time points, we use the plug-in estimator of MI. For more abundant species we use the

one-dimensional kernel density estimator described in Chapter 2. To estimate the MI

between the signal state and the uniform average Au or the exponential average Ae we

also use the one dimensional kernel density estimator. The MI estimates are based on

10000 simulation runs. We calculate Au and Ae for a range of time periods (T ) and

exponential decay parameters (λ) respectively. Figure 5.5a shows how the MI estimates

depend on the time period over which the average is taken for RRp2 and for protein

X. We note that the values of T or λ which yield the highest MI are different for each

species. For some species, such as RRp2, MI is highest for relatively small values of T or

1/λ. In such cases there is little benefit in averaging the species abundance over a period

of time and the MI between the signal and the number of molecules at that time point is

almost as high as the best average. For other species, for example protein X, using the

average species abundance over a period of time produces a noticeable increase in MI.

Figure 5.5b shows a comparison of the highest MI values obtained using each averaging

method.

5.5 Discussion

The TCS signalling mechanism

The three models of TCS signalling demonstrate how relatively minor mechanistic dif-

ferences can have a significant impact on the way the system responds to a particular

kind of input signal. While it is not possible to say which of the mechanisms, if any,

best resemble actual TCS systems based purely on computational modelling, they do

provide testable hypotheses for potential experimental studies. Whether the kinetics of

HK autophosphorylation are significantly affected by complex formation with the RR
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Figure 5.5: Extracting information from species trajectories. (a) MI between final
signal state and molecule number averages obtained using either a uniform (green)
or an exponential (red) weighting plotted as a function of the averaging parameter
(1/λ). (b) Bar graph showing the highest MI values obtained between the final signal
state and the molecule number at the final time point (black) or the average number
of molecules using a uniform (green) or exponential (red) weighting.
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may determine whether the system is more responsive to changes in HK kinase or HK

phosphatase activities. Models 2 and 3 illustrate two possible alternatives. These obser-

vations are related to effects, previously termed, retroactivity [116] and load-induced

modulation [117], which have been investigated using other models of cellular sig-

nalling. The sensitivity of the models to parameters governing complex formation and

dissociation (Figure 5.3) suggests that the affinity of protein interactions may be a fea-

ture of the system that allows for fine tuning, either through natural selection or genetic

engineering.

The focus on extrinsic noise and information transmission makes our modelling efforts

complementary to other recently published TCS models [107–109]. While increasing

the model complexity by extending it to include transcription and translation further

increases uncertainty about the quantitative fidelity of these models, the qualitative be-

haviour shown here appears to be plausible and illustrates both the degree of noise that

needs to be taken into consideration and the potential for robust signalling in what may

appear to be an extremely noisy system.

Extracting information

MI can be thought of as measuring the rate of information transfer. If the cellular ma-

chinery could “read” the number of molecules present in the system at regular time

intervals, I(S , X) could be interpreted directly as a rate of information transfer. How-

ever, in reality, a cell does not have access to the complete trajectory over any period of

time. Instead, downstream processes could act as a kind of memory, responding to the

state of the system and recording a moving average.

From the point of view of extracting more information about the input signal state, the

benefits of averaging molecule counts over a period of time vary depending on charac-

teristics of the trajectory of the species in question as well as the trajectory of the input

signal. When averaging over longer time periods, information about the state of the

signal will be lost as the chance of the signal changing during the relevant time period

increases. This loss of information may be counterbalanced by the benefit of averag-

ing out the intrinsic stochasticity, or intrinsic noise, in the system. Promoter states and

mRNA molecule counts provide examples of the benefit of taking an average over time

(Figure 5.5b). For these species there is very little MI between the signal state and the

number of molecules at the final time point. Nonetheless, information about the signal
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state is not lost. Instead, more of it is encoded in the temporal changes to molecule

numbers. For a more abundant species, such as protein X, taking the average over a

period of time does not bring as much of an improvement. For signals that change on

a much slower time scale, averaging may be more advantageous even when the species

molecule count is high. It may allow downstream processes to accumulate information

about the input signal over a longer period of time, leading to a more precise response.

Higher MI values could be obtained by optimising model and signal parameters but this

was not the goal here. The parameters were chosen primarily with the aim of obtaining

biologically plausible values, based on current literature, and not with the aim of attain-

ing a particular MI. We also note that other parameter values may drive the model into

alternative regimes. For example increasing the affinity of the RR for the promoter can

result in the system being very slow to respond to a decrease in the input signal. The

signal was then chosen arbitrarily to provide an illustrative case for the kind of features

of biomolecular signal transduction that should be taken into consideration and may be

relevant in the real system.

In reality the relationship between the signal being sensed and the response of the system

is likely to be much more complex. If the expression of TCS components is significantly

altered by a prolonged stimulus, the system may become more sensitive to the signal

over time. Thus, the rate of information transmission about the signal state may increase

or decrease in response to longer term changes in the signal.
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Chapter 6

Conclusion

6.1 Defining noise

Information theory provides a holistic approach for understanding cellular signalling.

However, it does not necessarily yield simple answers. Instead we are faced with difficult

questions about the precise nature of signalling mechanisms, the probability distribution

of signals being sensed by the cell and what it is that we mean when we talk about

noise. In this work, we have always represented extrinsic noise as a relatively small

Gaussian perturbation of the model parameters. The precise definition of extrinsic noise

depends on the system in question and the particular context of the model. Consider, for

example, a rapidly acting signalling pathway which needs to reliably interpret changes in

the environment despite the presence of cell-to-cell variability. The most relevant model

of extrinsic noise may be the distribution of the numbers of relevant proteins within

each cell. In this case, a gamma distribution [17] may be a better model for noise than

a truncated Gaussian. The extent of correlation between the numbers of components of

the signalling pathway also becomes an important question. Alternatively if the system

in question is responsible for regulating homeostatic processes within the cell, some of

the cell-to-cell variability can no longer be considered as noise and instead becomes part

of the signal. A concrete example of this is the cell size checkpoint in the yeast cell cycle

[118].
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6.2 Implications

Information in context

The problem of picking an appropriate context when estimating the entropy of a variable

is an old one in information theory [119]. The context determines the probabilities of

outcomes and thus the entropy. One example is the entropy of a piece of text. Should

it be calculated based on the frequency of letters or words in the relevant language?

Even the boundaries of a language are fuzzy. The same problem exists in the biological

context. It becomes most obvious when trying to define a probability distribution for an

environmental variable sensed by a cell or organism. For simplicity, the input signals

considered in this work are limited to two possible states. This permitted us to abstract

away not only uncertainty about the signal distribution but also a layer of complexity

created by the non-linear relationship between an external signal and the response of

a receptor complex [108, 120]. An applied analysis of information transmission by a

cellular signalling pathway calls for a statistical analysis of the environmental variable

being sensed by it as well as the output of the sensory system. Nonetheless, even without

knowledge of the true probability distribution of the signal in the environment, an infor-

mation theoretic approach may be taken to carry out a comparative analysis of different

signalling pathways (or models) subject to a proposed input signal distribution.

Motifs

Our work with motifs illustrates the importance of the timescales of fluctuations in the

signal in relation to the response time of the signal transduction system. From the per-

spective of transmitting information there is no fundamental difference between activa-

tion and deactivation. However, the response time of the system may be largely deter-

mined by deactivation or degradation rates. The practical implication of this observation

is that when investigating biological signalling it is worth considering not only the dy-

namics of the response to the appearance of a signal but also to its removal.

The importance of protein degradation rates for signalling dynamics [121] and the prop-

agation of noise [122] has been noted previously. Here we only consider first order

degradation or dilution but even this simple model highlights its importance for signal

transduction. Protein degradation in eukaryotic cells is facilitated by specialised cellular

machinery [123] and complex regulatory mechanisms [124]. What effect do these have
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on the response times of signalling systems? How do they affect the ‘memory’ of the

system and its ability to integrate out intrinsic stochasticity? Whether these questions

have general answers or are only meaningful in the context of a particular signalling

system remains to be resolved.

Inferring noise

Distinguishing between intrinsic and extrinsic noise can be problematic both concep-

tually and practically. Conceptually, what is considered to be extrinsic depends on the

definition of the system in question. Practically, the observed distribution of a mea-

surable variable is an amalgamation of the effects of both types of noise. Considering

noise in gene expression is convenient from a conceptual point of view. In Chapter 5 we

demonstrate how approximate Bayesian computation in combination with a sufficiently

fast simulation method may be used to tackle the practical problem inferring the origin

and magnitude of extrinsic noise.

Bacterial signalling systems

By studying a stochastic model of a two-component signalling system we are able to

show how such a system is capable of transmitting information about an extracellular

signal despite considerable variability in the the number of protein molecules caused by

both intrinsic and extrinsic noise. A more general observation from this piece of work

is that the amount of information that can be extracted by cellular signalling systems

over time depends on how the temporal trajectory of molecule numbers is processed

by downstream components. This point relates back to the tradeoff between extracting

information about the value of a variable at a given time point as opposed to information

about its average value over a period of time as observed for models of signalling motifs.

Information content of trajectories

When considered together, the results presented in Chapters 3 and 5 suggest that intrinsic

and extrinsic noise create different obstacles for achieving effective signal transduction.

Extrinsic noise may place an upper limit on the amount of information transmitted. An

apparently noisy time series may still contain information, masked by intrinsic stochas-

ticity. This information may potentially be extracted by a downstream process which
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measures and remembers the system state. For a cell, extracting this information in-

curs a cost. This cost may be born metabolically, by synthesising more components of

a signalling pathway and allowing a larger number of energy consuming reactions or

processes to occur. It may also be born by sacrificing response time and relying on the

memory of the system to integrate out the noise in the signal over a longer period of

time.

While terms such as “measure” and “remember” may appear anthropomorphic, they can

be defined precisely for specific biomolecular systems, in terms of changes in molecule

numbers, reaction rates, concentration gradients or other quantifiable biochemical prop-

erties. As with the precise definition of extrinsic noise, their meaning depends on the

context.

6.3 Ideas for future work

The modelling of motifs could be extended to more complex topologies with higher

numbers of nodes. This would probably need to be done in a more selective fashion as

the number of possible motif topologies increases sharply with the number of nodes in

the motif. The computational cost of each simulation also increases. Perhaps a more

interesting approach would be to consider a selection of model and parameter combina-

tions chosen on the basis of their qualitative temporal dynamics. Non-linear dynamics

such as adaptation, oscillation and chaotic behaviour could be studied to determine their

effect on MI. On a similar note, one could consider a range of more complex temporal

signal trajectories and then attempt to find motif and parameter combinations capable

of extracting information about particular properties of the signal. The representation of

signalling motifs using stochastic models may provide another avenue for future inves-

tigations.

The work presented in Chapter 4 could be continued in the same vein by trying to find

more efficient methods of simulating other biologically relevant models. On the pa-

rameter inference front, additional types of experimental data, such as measurements of

protein degradation rate, could potentially be used to further constrain posterior distri-

bution of both rate and noise parameters. The two-state model used here can be further

extended to explicitly include cell division with binomial partitioning of molecules be-

tween the daughter cells. If this were to be done, measurements of cell cycle duration
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and chromosomal duplication times, as well as the variability in these values, may prove

useful in constraining posterior parameter distributions.

Theoretically, the magnitude of extrinsic noise affecting different genes should be sim-

ilar. It may be worthwhile to try to find a vector of noise parameters that can satisfy a

particular distance metric for the majority of genes. There is no obvious correct way of

doing this and the high dimensionality of the model parameter space may prove prob-

lematic. However if the prior distribution of noise parameters could be constrained or

even fixed to a point value, the inference of reaction rate parameters may require fewer

computational steps. One caveat to this is that the two-state model will not necessarily

be applicable to genes which are undergoing changes in their expression level.

One natural extension of the work done on the model of a two-component system pre-

sented in Chapter 5 may be to consider the effect of dimerisation of the response regula-

tor. This could involve constructing alternative models in which the response regulator

dimerises regardless of its phosphorylation state. Dephosphorylation of the dimeric form

could also be included. Further studied could consider the effects of oligomerisation of

the response regulator. Model validation could potentially be carried out using quanti-

tative data about an input signal, such as the concentration of a particular molecule in

the growth media, coupled to measurements of the TCS’s activity. MI depends on the

distributions of both the response and the input signal. Obtaining a sufficient number of

samples by varying the input signal experimentally and measuring the system’s output

may be too costly as discussed above. However, if the distribution of input signals is

known and a satisfactory model of the system is available, simulated data could be used

to obtain estimates of the MI between the signal and the response.

6.4 Applying information theory

From a practical perspective, the application of estimating mutual information (MI) is

limited by the number of data points obtained in experiments. Traditional experimental

techniques in molecular biology, such as gel electrophoresis or quantitative PCR, often

yield only tens of data points. This makes it impractical to use such measurements to

estimate MI directly. Difficulties also arise from the potentially complex relationship

between the number of data points and parameters of the estimator such as the number

of bins or the bandwidth in a kernel density estimator (see Chapter 2). One approach

for overcoming these issues, is to use the available data to construct a plausible model
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of the system. This model could then be used to obtain sufficient samples from the joint

probability distribution.

With the continued development of high-throughput experimental methods the quantity

of data generated continues to increase. One notable example is flow cytometry ex-

periments in which the fluorescence intensity from two different markers is measured

simultaneously [125]. Such experiments can provide measurements from thousands of

individual cells in a sample in a matter of minutes. Each one of these measurements

could effectively correspond to a point in the joint probability distribution of variables

quantifying the abundances of the two different markers. Perhaps MI could be a use-

ful measure of their potential for identifying cell lineages or different regimes of cellular

function [126]. In this case, estimates of MI may be a suitable substitute for a parametric

model of the relationship between such variables.

More generally, information theoretic measures should not be seen as a substitute for

parametric models of signalling systems. Building a model may be beneficial for ex-

posing our underlying assumptions about the mechanism in question and the manner in

which information is transmitted through the system. These models need not necessar-

ily be detailed mechanistic models. The key point is that the model should capture the

behaviour that is most relevant for signal transduction. It is worth making an effort to

determine whether the properties of the model that are thought to describe information

flow, correspond to those which encode a significant proportion of this information in the

real system. These features may be molecule numbers or concentrations. Alternatively

information may be encoded in the timescales or frequencies with which biochemical

changes occur.

One of the strengths of Shannon’s formulation of information is that it disassociates the

concepts of information and meaning. Estimates or calculations of entropy or mutual

information for any given variable(s) do not require a justification in of themselves.

However, when the results of quantifying information flow through signalling systems

are interpreted, this quantity is imbued with meaning by the interpreter. This is where

caution should be taken to make assumptions explicit.
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[5] J. O. Dubuis, G. Tkačik, E. F. Wieschaus, T. Gregor, W. Bialek, Positional infor-

mation, in bits., Proceedings of the National Academy of Sciences 110 (2013)

16301–16308.

[6] J. Liepe, S. Filippi, M. Komorowski, M. P. H. Stumpf, Maximizing the informa-

tion content of experiments in systems biology, PLoS Computational Biology 9

(2013) e1002888.

[7] A. Pomerance, E. Ott, M. Girvan, W. Losert, The effect of network topology

on the stability of discrete state models of genetic control, Proceedings of the

National Academy of Sciences 106 (2009) 8209–8214.

[8] T. M. Schmeing, V. Ramakrishnan, What recent ribosome structures have re-

vealed about the mechanism of translation., Nature (2009).

98



[9] M. C. Gibson, Bicoid by the numbers: quantifying a morphogen gradient., Cell

130 (2007) 14–16.

[10] J. Elf, M. Ehrenberg, Fast evaluation of fluctuations in biochemical networks

with the linear noise approximation., Genome Research (2003) 2475–2484.

[11] A. Ale, P. Kirk, M. P. H. Stumpf, A general moment expansion method for

stochastic kinetic models, The Journal of Chemical Physics 138 (2013) 174101.

[12] M. A. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems

with many species and many channels, The Journal of Physical Chemistry A 104

(2000) 1876–1889.

[13] D. T. Gillespie, A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions, Journal of computational physics 22

(1976) 403–434.

[14] W. Ma, A. Trusina, H. El-Samad, W. A. Lim, C. Tang, Defining network topolo-

gies that can achieve biochemical adaptation, Cell 138 (2009) 760–773.

[15] P. J. Ingram, M. P. H. Stumpf, J. Stark, Network motifs: structure does not

determine function., BMC Genomics 7 (2006) 108.

[16] Y. Fu, T. Glaros, M. Zhu, P. Wang, Z. Wu, J. J. Tyson, L. Li, J. Xing, Network

topologies and dynamics leading to endotoxin tolerance and priming in innate

immune cells., PLoS Computational Biology 8 (2012) e1002526.

[17] Y. Taniguchi, P. J. Choi, G.-W. Li, H. Chen, M. Babu, J. Hearn, A. Emili, X. S.

Xie, Quantifying E. coli proteome and transcriptome with single-molecule sen-

sitivity in single cells., Science 329 (2010) 533–538.

[18] J. R. S. Newman, S. Ghaemmaghami, J. Ihmels, D. K. Breslow, M. Noble, J. L.

DeRisi, J. S. Weissman, Single-cell proteomic analysis of S. cerevisiae reveals

the architecture of biological noise., Nature 441 (2006) 840–846.

[19] C. E. Shannon, A mathematical theory of communication, The Bell System

Technical Journal XXVII-3 (1948) 379–423.

[20] T. M. Cover, J. A. Thomas, Elements of information theory, John Wiley & Sons,

Inc., 1991.

99



[21] N. Brunel, J.-P. Nadal, Mutual information, Fisher information, and population

coding, Neural Computation 10 (1998) 1731–1757.

[22] R. Vicente, M. Wibral, M. Lindner, G. Pipa, Transfer entropy–a model-free mea-

sure of effective connectivity for the neurosciences., Journal of computational

neuroscience 30 (2011) 45–67.

[23] A. Tiwari, O. A. Igoshin, Coupling between feedback loops in autoregulatory

networks affects bistability range, open-loop gain and switching times, Physical

biology 9 (2012) 055003.

[24] G. Tkacik, C. G. Callan, W. Bialek, Information flow and optimization in tran-

scriptional regulation, Proceedings of the National Academy of Sciences 105

(2008) 12265–12270.
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Inferring extrinsic noise in E. coli
gene expression

Derivation of the Poisson parameter

Consider the following system of reactions.

ø
λ
−→ X

X
ρ
−→ Y

X
δ
−→ ø

Y
γ
−→ ø

The system is allowed to run, starting with zero tokens of X and Y , from time t0 until

time tm. The following table lists events of interest which can occur in the system and

the symbols used to represent the number of times each even occurs in the time interval

T = tm − t0.

Symbol Event being counted

i X is produced

j X survived until time tm
î X does not survive until time tm (i.e. X is degraded or converted to Y)

ĵ X is degraded

k X is converted into Y

l Y survives until time tm
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Deriving probability distributions for the numbers of events

A standard result is that the number of events which occur over a time period will have

a Poisson distribution if the events are occurring with a uniform probability in a time

interval. This applies to the production of X.

P(i) =
(λT )i

i!
e−λT (1)

Where P(i) is the probability that X is produced i times during the time period T .

Finding the number of surviving tokens of X

In order to find the probability distribution of the number of X tokens after the time

period T we consider the probability that j tokens of X remain given that i tokens of X

were produced.

P( j|i) =

(
i
j

)
p j(1 − p)i− j (2)

Where p is the probability that X survives given that it was produced during the time

period T .

Let P( j) be the probability that j tokens of X were produced during T and survived

regardless of the number (i) of X tokens produced.

P( j) =

∞∑
i= j

P(i)P( j|i) (3)

Using equations 1 and 2.

P( j) =

∞∑
i= j

(λT )i

i!
e−λT

(
i
j

)
p j(1 − p)i− j

= e−λT p j
∞∑
i= j

(λT )i

i!
i!

j! (i − j)!
p j(1 − p)i− j
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=
e−λT p j

j! (1 − p) j

∞∑
i= j

qi

(i − j)!

Where q = λT (1 − p).

Considering just the summation term.

∞∑
i= j

qi

(i − j)!
=

q j

0!
+

q j+1

1!
+

q j+2

2!
+

q j+2

2!
+ ... +

j + i
(i − j)!

+ ...

= q j
(
1 +

q
1

+
q2

2!
+

q3

3!
+ ... +

qi

(i − j)!
+ ...

)

= q j
∞∑

n=0

qn

n!
= q jeq

= (λT ) j(1 − p) jeλT (1−p)

Thus, the expression for P( j) can be written as:

P( j) =
e−r p j(λT ) j(1 − p) jeλT (1−p)

j! (1 − p) j

P( j) =
(pλT ) j

j!
e−pλT (4)

P( j) has a Poisson distribution with the parameter pλT .

Next, we need to find p. The probability that X was produced during a infinitesimally

short time interval dt is given by dt/T . That is to say that X is produced once at some

point during T and the probability of X production is uniform over T . The probability of

a token of X produced at time t surviving until time tm follows an exponential decay with

a rate δ′. In this case δ′ = ρ + δ. Thus the probability of a token of X being produced at

time t and surviving until tm is given by

dt
T

e−δ
′(tm−t)
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The overall probability that X survives given that it was produced can be found by inte-

grating over the time period T .

p =

∫ tm

t0

dt
T

e−δ
′(tm−t)

p =
1
δ′T

(
1 − e−δ

′T
)

(5)

Where T = tm − t0.

The numbers of the other events are also Poisson distributed. Similarly to P( j), the

number of tokens of X which did not survive (P(î)) will also be Poisson distributed.

P(î) =
pîλT

î!
e−pîλT

Where pî = (1 − p) = 1 − 1
δ′T

(
1 − eδ

′T
)
.

Also, for P(k), the distribution of the number of tokens of Y produced

P(k) =
(pkλT )k

k!
e−pkλT

with pk =
ρ
ρ+δ (1 − p).

Examples of parameter posterior distributions
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Figure 1: Posterior distribution of model parameters for the gene rcsB. Contour
plots indicating the density of points with the corresponding parameter values for
each particle in the final population.
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Figure 2: Posterior distribution of model parameters for the gene yiiU. Contour plots
indicating the density of points with the corresponding parameter values for each
particle in the final population.
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Figure 3: Posterior distribution of model parameters for the gene yebC. Contour
plots indicating the density of points with the corresponding parameter values for
each particle in the final population.
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Figure 4: Posterior distribution of model parameters for the gene eno. Contour
plots indicating the density of points with the corresponding parameter values for
each particle in the final population.
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Signal transduction by
two-component systems

Model 1

2HK
c1
−→ HK2 c1 = 0.0125s−1

HK2
c−1
−→ 2HK c−1 = 0.005s−1

HK2
ck
−→ HK2p ck = 0.025s−1

HK2p
c−k
−→ HK2 c−k = 0.0077s−1

RR
ca
−→ RRp ca = 8.67e − 05s−1

RRp
cg
−→ RR cg = 0.00026s−1

2RRp
c2
−→ RRp2 c2 = 0.00166s−1

RRp2
c−2
−→ 2RRp c−2 = 0.02158s−1

HK2:RR
c−3a
−→ HK2 + RR c−3a = 0.00498s−1

HK2p + RR
c3b
−→ HK2p:RR c3b = 0.00166s−1

HK2 + RRp
c3c
−→ HK2:RRp c3c = 0.00166s−1

HK2:RRp
c−3c
−→ HK2 + RRp c−3c = 0.00498s−1

HK2p:RR
ct
−→ HK2:RRp ct = 0.0279s−1

HK2:RRp
cp
−→ HK2:RR cp = 0.0087s−1
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Model 2

2HK
c1
−→ HK2 c1 = 0.0125s−1

HK2
c−1
−→ 2HK c−1 = 0.005s−1

HK2
ck
−→ HK2p ck = 0.025s−1

HK2p
c−k
−→ HK2 c−k = 0.0077s−1

RR
ca
−→ RRp ca = 8.67e − 05s−1

RRp
cg
−→ RR cg = 0.00026s−1

2RRp
c2
−→ RRp2 c2 = 0.00166s−1

RRp2
c−2
−→ 2RRp c−2 = 0.02158s−1

HK2 + RR
c3a
−→ HK2:RR c3a = 0.00166s−1

HK2:RR
c−3a
−→ HK2 + RR c−3a = 0.00498s−1

HK2p + RR
c3b
−→ HK2p:RR c3b = 0.00166s−1

HK2 + RRp
c3c
−→ HK2:RRp c3c = 0.00166s−1

HK2:RRp
c−3c
−→ HK2 + RRp c−3c = 0.00498s−1

HK2p:RR
ct
−→ HK2:RRp ct = 0.0279s−1

HK2:RRp
cp
−→ HK2:RR cp = 0.0087s−1
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Model 3

2HK
c1
−→ HK2 c1 = 0.0125s−1

HK2
c−1
−→ 2HK c−1 = 0.005s−1

HK2
ck
−→ HK2p ck = 0.025s−1

HK2p
c−k
−→ HK2 c−k = 0.0077s−1

HK2:RR
cl
−→ HK2p:RR cl = 0.025s−1

HK2p:RR
c−l
−→ HK2:RR c−l = 0.0077s−1

RR
ca
−→ RRp ca = 8.67e − 05s−1

RRp
cg
−→ RR cg = 0.00026s−1

2RRp
c2
−→ RRp2 c2 = 0.00166s−1

RRp2
c−2
−→ 2RRp c−2 = 0.02158s−1

HK2 + RR
c3a
−→ HK2:RR c3a = 0.00166s−1

HK2:RR
c−3a
−→ HK2 + RR c−3a = 0.00498s−1

HK2p + RR
c3b
−→ HK2p:RR c3b = 0.00166s−1

HK2 + RRp
c3c
−→ HK2:RRp c3c = 0.00166s−1

HK2:RRp
c−3c
−→ HK2 + RRp c−3c = 0.00498s−1

HK2p:RR
ct
−→ HK2:RRp ct = 0.0279s−1

HK2:RRp
cp
−→ HK2:RR cp = 0.0087s−1
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Model 4

2HK
c1
−→ HK2 c1 = 0.0125s−1

HK2
c−1
−→ 2HK c−1 = 0.005s−1

HK2
ck
−→ HK2p ck = 0.025s−1

HK2p
c−k
−→ HK2 c−k = 0.0077s−1

HK2:RR
cl
−→ HK2p:RR cl = 0.025s−1

HK2p:RR
c−l
−→ HK2:RR c−l = 0.0077s−1

RR
ca
−→ RRp ca = 8.67e − 05s−1

RRp
cg
−→ RR cg = 0.00026s−1

2RRp
c2
−→ RRp2 c2 = 0.00166s−1

RRp2
c−2
−→ 2RRp c−2 = 0.02158s−1

HK2 + RR
c3a
−→ HK2:RR c3a = 0.00166s−1

HK2:RR
c−3a
−→ HK2 + RR c−3a = 0.00498s−1

HK2p + RR
c3b
−→ HK2p:RR c3b = 0.00166s−1

HK2 + RRp
c3c
−→ HK2:RRp c3c = 0.00166s−1

HK2:RRp
c−3c
−→ HK2 + RRp c−3c = 0.00498s−1

HK2p:RR
ct
−→ HK2:RRp ct = 0.0279s−1

HK2:RRp
cp
−→ HK2:RR cp = 0.0087s−1

promoter-off
kon
−→ promoter-on kon = 0.0431s−1, ηkon = 0.0672

promoter-on
koff
−→ promoter-off koff = 0.4479s−1, ηkoff

= 0.0428

RRp2 + promoter-off
con
−→ RRp2-promoter-on con = 0.000332s−1

RRp2 + promoter-on
con
−→ RRp2-promoter-on con = 0.000332s−1

RRp2-promoter-on
coff
−→ RRp2 + promoter-off coff = 0.006s−1

RRp2-promoter-on
k1
−→ mRNA + RRp2-promoter-on k1 = 0.434s−1, ηk1 = 0.0516
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promoter-on
k1
−→ promoter-on + mRNA k1 = 0.434s−1, ηk1 = 0.0516

promoter-off
k0k1
−→ promoter-off + mRNA k0k1 = 0.025649s−1, ηk1 = 0.0516

mRNA
d1
−→ ∅ d1 = 0.396s−1, ηd1 = 0.0441

mRNA
k2HK
−→ HK + mRNA k2HK = 0.87416s−1, ηk2 = 0.0369

mRNA
k2RR
−→ RR + mRNA k2RR = 8.7416s−1, ηk2 = 0.0369

HK
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

HK2
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

HK2p
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

RR
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

RRp
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

RRp2
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

HK2:RR
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

HK2p:RR
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

HK2:RRp
d2
−→ ∅ d2 = 0.0035s−1, ηd2 = 0.1664

promoter(X)-off
konX
−→ promoter(X)-on

konX = 0.0431s−1, ηkon = 0.0672

promoter(X)-on
koffX
−→ promoter(X)-off

koffX = 0.4479s−1, ηkoff
= 0.0428

RRp2 + promoter(X)-off
conX
−→ RRp2promoter(X)-on conX = 0.000332s−1

RRp2 + promoter(X)-on
coffX
−→ RRp2promoter(X)-on coffX = 0.000332s−1

RRp2promoter(X)-on
coffX
−→ RRp2 + promoter(X)-off coffX = 0.006s−1

122



RRp2promoter(X)-on
k1X
−→ mRNA(X) + RRp2promoter(X)-on

k1X = 0.434s−1, ηk1 = 0.0516

promoter(X)-on
k1X
−→ promoter(X)-on + mRNA(X)

k1X = 0.434s−1, ηk1 = 0.0516

promoter(X)-off
k0Xk1X
−→ promoter(X)-off + mRNA(X)

k0Xk1X = 0.025649s−1, ηk1 = 0.0516

mRNA(X)
d1X
−→ ∅ d1X = 0.396s−1, ηd1 = 0.0441

mRNA(X)
k2X
−→ mRNA(X) + protein(X) k2X = 8.7416s−1

protein(X)
d2X
−→ ∅ d2X = 0.0035s−1, ηd2 = 0.1664
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