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Abstract

A batch fabrication process for nano-electro-mechanical systems (NEMS) based on sidewall

transfer lithography (STL) is developed and demonstrated. The STL is used to form nanoscale

flexible silicon suspensions entirely by conventional lithography. A two-step process is designed

for single-layer STL to fabricate simple electrothermal actuators, while a three-step process is

designed to allow nanoscale features intersecting with each other for more complicated device

lay-outs. Fabricated nanoscale features has a minimum in-plane width of approx. 100nm and

a high aspect ratio of 50 : 1. Combined structures with microscale and nanoscale parts are

transferred together into silicon by deep reactive etching (DRIE). Suspensions are achieved

either by plasma undercut or HF vapour etch based on BSOI.

The STL processes are used to form nanoscale suspensions while conventional lithography

is used to form localised microscale features such as anchors. A wide variety of demonstrator

devices have been fabricated with high feature quality. Analytic models have been developed

to compare with experimental characterization and finite element analysis (FEA) predictions.

Lattice structures fabricated by multi-layer STL have also be investigated as a novel type of

mechanical metamaterial. Thus, the process could allow low-cost and mass parallel fabrication

of future NEMS with a wider range of potential applications.
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1 Introduction

1.1 MEMS

Miniaturization has been an over-riding theme in the development of the integrated circuit (IC)

and its associated manufacturing industry. Continuous investment in fabrication technology

has driven device integration and performance, and resulted in a thriving global market. The

newer field of Micro-electro-mechanical systems (MEMS) has developed rapidly in the past

forty years, largely by adapting silicon (Si) based micromachining technology. Apart from

economies of scale following from smaller device dimensions, reduced size contributes to im-

proved electrical and mechanical performance, for example through lower power consumption

and higher sensitivity, and also contributes to higher reliability and the ability to exploit new

physical phenomena.

The history of MEMS is closely associated with the development of IC technology. Microma-

chining of semiconductors such as Si and Ge has received attention since the first generation of

transistors in the late 1940s, which launched the era of micro-electronics. Almost from the start,

there was an awareness of potential mechanical applications [1], and the first MEMS device -

the resonant gate transistor - was demonstrated by Nathanson in 1967 [2]. Commercialization

of MEMS began in the 1970s, and since then a wide variety of devices and potential applica-

tions have been investigated [3]. Improvements to bulk and surface micromachining techniques

have been continual, allowing the integration of MEMS with ICs [4] as well as increases in sys-

tem complexity (for example, by enabling 3D fabrication and assembly) [5]. Since the 1990s,

advanced micromachining technology has greatly increased the possibilities for microstructure

fabrication and reduced the associated manufacturing cost, leading to a boom in applications

and an increasingly global MEMS market.

Microsystems have been successfully adapted to a wide diversity of physical domains, oper-

ating on mechanical, electrical, optical, thermal, fluidic, chemical, and biochemical principles.
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The most common devices are miniaturized sensors and actuators, or complete analysis sys-

tems. However, many other miniaturized components such as displays and switches have been

demonstrated and applications have been found in the automotive, aerospace, communications,

consumer, defense, energy, general industrial, IT, medical and security sectors. Figure 1.1 shows

a forecast of markets for different MEMS applications. The predicted market in 2019 will be ap-

prox. 24 billion US dollars, almost triple the 2010 market (Yole Development Inc., France) [6].

Figure 1.1: 2014 MEMS application market forecast by Yole Development.

1.1.1 MEMS fabrication

Most MEMS fabrication processes were initially inherited from the silicon IC industry, but have

been substantially modified to allow fabrication of the three-dimensional structures needed for

MEMS. In contrast to microelectronics, alternative materials such as glasses, ceramics, plastics,

metals are also often required for specific application domains. Thus, MEMS fabrication has

tended to diverge from microelectronics technology.
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1.1.1.1 Phototlithography

Photolithography (also known as optical lithography) is the most basic tool of mass parallel

fabrication, and largely drove the semiconductor industry from its inception. The typical pat-

tern resolution of contact photolithography is down to 2µm (limited by the wavelength of the

radiation), which is usually used in research and developing prototype devices. However, the

resolution has been continuously improved, and photolithography has been extended to feature

size below 50nm by modern techniques such as excimer laser lithography, immersion lithogra-

phy, multiple patterning, etc.

The process involves the transfer of a master pattern from a photomask to a target substrate

using a thin layer of light-sensitive material or "photoresist". Figure 1.2 shows a typical process

on silicon. The process starts with a clean substrate surface (1), typically a semiconductor

wafer or a wafer coated with a metal or oxide, and a source pattern defined on a clear glass

substrate as a set of opaque and clear areas, typically with micron-scale dimensions. The wafer

is first coated with a uniform layer of photoresist (2), normally either positive (a) or negative

(b) resist. The pattern is transferred to the resist layer by exposure to light of an appropriate

wavelength, typically in the ultraviolet range. A developer is then used to remove either the

exposed (positive) or the unexposed (negative) parts of the photoresist, due to the chemical

reaction caused during illumination (4). Hence the original pattern is transferred to the resist,

which can serve as a mask for later etching steps (a(5) and b(5)). The photoresist is then removed

to leave a clean surface with patterned features (a(6) and b(6)). In the alternative lift-off process,

a relatively thin layer of target material is deposited after development (c(5)). Removal of the

resist then lifts off unwanted regions of the target material, resulting in a reversed pattern (c(6)).

1.1.1.2 Bulk micromachining

Bulk micromachining was one of the first processes developed for MEMS fabrication, and in-

volves the formation of deep features on single crystal silicon substrates by wet etching. A

patterned mask layer is first formed, and the substrate is then immersed in a specialised etching

solution (such as potassium hydroxide, tetramethylammonium hydroxide, or ethylenediamine

pyrocatechol). Conventional etch processes result in isotropic material removal. However, bulk

micromachining exploits the different etching rates that can be obtained in different crystallo-

graphic directions due to variations of chemical bond densities. For example, in single crystal
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Figure 1.2: Schematic diagram of photolithography process on silicon.

silicon the etching rate on < 100 > planes is the fastest, while etching of < 111 > may be up

to 100 times slower. As a result, deep features with sidewalls sloped at a fixed angle of 54.74◦,

can easily be formed, including V-groves and inverted pyramids, and additional etch stop layers

can be used to form suspended structures. However, despite its apparent simplicity, bulk micro-

machining is difficult to incorporate into a process flow, and can yield only a restricted set of

features.

1.1.1.3 Surface micromachining

Surface micromachining was established to fabricate structures which are difficult or impossible

to achieve by bulk machining. A broad definition of the surface micromachining process is the

formation of microscale structures by depositing, patterning and etching thin layers of materials

on the surface of the substrate wafers. The thickness of the deposited layer is typically from a

fraction of a micron to a few microns. Surface micromachining can be a multi-layer process,

and consequently allows precise definition especially on complex MEMS designs. Suspended

structures can easily be achieved by undercutting mechanical parts through removal of sacrifi-

cial layers. Surface micromachining has largely replaced bulk micromachining because of its
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flexibility and compatibility with IC fabrication.

A derivative and promising technique developed is the silicon-on-insulator (SOI) process.

Here, device fabrication is based on multi-layer wafers containing an insulating interlayer (nor-

mally silicon dioxide or sapphire, which can also act as a sacrificial layer) between a silicon

device layer and the substrate or handle layer. The thickness of the device layer and the in-

terlayer can range from nanometers to micrometers depending on the application. Two main

methods are used to manufacture SOI wafers, thermal wafer bonding and oxygen ion implanta-

tion; both allow the precise definition of each layer. SOI processes have been industrialized in

the last ten years, opening more opportunities for applications.

Several processes have been developed to fabricate features with a much higher aspect ratio

than surface micromachined structures. The first, additive, type involves a combination of thick

resist patterning, electroplating and micromolding. Free-standing structures can also be formed,

by removing a sacrificial layer from beneath the high-aspect-ratio (HAR) structure. Typical ex-

amples include LIGA (Lithographie Galvanoformung Abformung) and SU-8 patterning. LIGA

requires an expensive synchrotron exposure tool, while SU-8 patterning can be carried out us-

ing a conventional ultraviolet (UV) source. A key restriction is that the structures are typically

formed in electroplated metals or moulded plastics, and hence cannot easily be combined with

electronics for sensing.

The second, subtractive process, deep reactive ion etching (DRIE), forms HAR features di-

rectly in silicon, and consequently is more useful. It is a cyclic dry etching process involving

alternate reactive ion etching (RIE) and passivation steps that protect sidewall features while

achieving highly vertical etching through the silicon device layer or handle layer. DRIE is car-

ried out using relatively simple inductively coupled plasma (ICP) etching equipment, and can

be easily adapted to bonded silicon-on-insulator (BSOI) wafers and other micromachining tech-

niques such as micromolding, which also improves the process flexibility. As a result, it has

had considerable industrial impact and is the fabrication technique of choice for many MEMS

devices.

1.1.2 Mechanical MEMS

The core concept of MEMS devices is to achieve transduction between different types of sig-

nals. A wide range of signal types can be involved, including mechanical, electrical, magnetic,

thermal, optical and chemical signals, as detailed in Table 1.1 [7]. However, it is also worth
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noting that multiple mechanisms can be involved in a single system, for example using both

electrical and mechanical signals as intermediate links.

Table 1.1: Table of common transduction mechanisms used in MEMS.

Mechanical MEMS were the earliest category to be developed. Most mechanical MEMS

contain suspended micromachined structures (e.g. cantilevers, springs, thin films, etc.), and

involve elastic effects such as stress and strain in their operation. The most common applications

are mechanical microsensors and microactuators.

1.1.2.1 Mechanical microsensor

Mechanical microsensors detect the signal to be measured and convert it to an electrical signal

via a suitable transduction mechanism. Such sensors can be subdivided into many groups based

on their different motion modes (angular or linear), supporting structures (springs, cantilevers,

torsional bars), transduction mechanism (capacitive, piezoresistive, piezoelectric, optical) and

control mode (open or closed loop). Examples of typical mechanical microsensors are given as

below.

Pressure sensors were first built by Honeywell Research Centre and the Bell Labs in 1960s,

utilising the transverse and shear piezoresistance effects [8]. After that, other device types with

different transduction mechanisms were quickly investigated, including capacitive and resonant

force detection. Due to the advantages of mature manufacturing process, small size and high

performance and price ratio, pressure sensors are the most widely used MEMS sensors. Perfor-

mance usually depends on the measurement range, accuracy, linearity and operating temperature

range. The main aim of future research on pressure sensors is to develop new materials for harsh

environments.
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Accelerometers represent another high-volume application for MEMS, and were originally

developed for automotive safety applications. The main performance indicators include mea-

surement range, resolution, scale factor stability and noise performance. Figure 1.3a shows the

scanning electron microscope (SEM) image of a 400× 400µm2 3-axis MEMS accelerometer

before capping [9]. MEMS accelerometers can easily be integrated with peripheral circuits to

combine small size with low power consumption. The piezoresistive accelerometer by Amaras-

inghe is a representative of an ultra-small device [10]. As shown in Figure 1.3b, with a package

size of 700µm×700µm×550µm, it can fully meet the requirements of low volume and weight

in miniaturized applications such as biomedical sensors. Another typical example of ultra-low

power consumption is the ADXL346 3-axis digital accelerometer by Analog Devices. With

supply voltage of 2.75V, the supply current is as low as 23µA in measurement mode and 0.2µA

in standby mode [11].

Thermal sensors are another important application of mechanical MEMS. Most devices ex-

ploit thermal deformation due to different expansion between multi-layers or HAR geometries

to analyse heat transfer effects or environment temperature changes. MEMS thermal sensors

can easily be fabricated in arrays, to form thermal imaging devices. Applications have been ex-

tended in recent years to include biomedical sensors. For example, a MEMS differential thermal

biosensor with thermopiles was developed for sensitive metabolite measurements in microfluid

flows by monitoring the heat produced in enzyme-catalyzed reactions [12].
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(a) (b)

(c) (d)

Figure 1.3: (a) SEM view of a 400×400µm2 3-axis MEMS accelerometer before capping; (b) a
fabricated miniature three-axis micro accelerometer; (c) close-up SEM view show-
ing the comb-finger array and beam anchors of a comb-drive MEMS actuator; (d)
SEM view of a planar three degree-of-freedom parallel micro-manipulator.

1.1.2.2 Mechanical microactuator

Microactuators may be needed to actuate a resonant sensing system, to tune a variable com-

ponent such as filter or a beam deflector, or to self-test a miniaturized system. The general

operation principle is to transform an input signal (ideally, electrical) into an output response in

the form of a displacement or an actuation force. The most common operating principles are

electrothermal, electrostatic, piezoelectric and electromagnetic actuators. All have different size

scaling laws and consequently different applications.

Electrostatic utilise the attractive electrostatic force between positive and negative electrodes.

The earliest designs used parallel plate electrodes, and suffered from an unfortunate snap-down
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instability. Later designs used comb-drive [13] or interdigitated electrodes, which are intrin-

sically more stable. Figure 1.3c shows a close-up view of a comb-finger array and beam an-

chors [14]. Such designs have been developed into rotary motors [15], and used as drive units in

complex microsystems. Other designs include scratch drive, inchworm [16], impact [17], repul-

sive [18], and curved [19] [20] actuators. The main disadvantage of all electrostatic actuators is

their relatively large size, and the requirement of high drive voltage (around hundreds of volts),

which makes it difficult to achieve on-chip integration with smaller movable structures.

MEMS Electrothermal actuators have been studied extensively with various designs and func-

tions. Devices usually operate by differential thermal expansion between electrically heated

parts of a suspended structure, and other unheated parts. The first-generation devices were sus-

pended bimorphs, with different thermal expansion between different layers of materials [21]

[22]. Later designs eliminated the need for multiple materials by using asymmetric beam lay-

outs or arrangements for differential heating [23]. The common type of devices can be built by

etching and undercutting a mechanical layer on the top of a sacrificial layer to form free-movable

suspended structures [24]. In-plane or out-of-plane motion of the device is then achieved passing

a current between anchors to form thermal heating. Figure 1.3d shows a planar three degree-

of-freedom parallel micro-manipulator by using the non-uniform Joule heating and constrained

thermal expansion of the device structures [25]. Recent development of thermal actuators has

involved novel materials such as shape memory alloy (SMA), which can generate large force

with a relatively small temperature change [26] [27]. Phase change materials such as paraffin,

whose solid and liquid states have considerable volumetric difference, have also been explored

recently due to their large actuation force [28].

The most common arrangements of electrothermal actuators are shape bimorph [29, 30]and

buckling [31–33] actuators. In the former case, actuation is caused by differential thermal ex-

pansion between hot and cold arms, and in the latter between a hot arm and the substrate. Two

well-known types of device designs have been developed and studied. One is known as a V-

beam actuator, because the beams are initially shaped into a chevron layout, while the other

has a raised cosine pre-buckle. The basis of actuation for both has been investigated using Eu-

ler buckling theory and finite element analysis (FEA), typically using a simplified single-beam

model, as well as the thermal aspects [34, 35]. In addition, more complex arrangements have

been developed, including cascaded, out-of-plane and feedback-controlled actuators, and actua-

tors with in-built strain gauges. Such electrothermal actuators have a wide range of applications.
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For example, V-beam actuators have been used as the basis of linear and rotary stepping motors.

Other applications include optical alignment, micro-optical devices, devices for cell manipula-

tion and movable neural microelectrode arrays.

1.1.3 Size scaling

Miniaturization involves size scaling effects in addition to a simple reduction of system dimen-

sions. These effects typically involve changes to material properties, the alteration of the rela-

tive significance of different physical phenomena (for example, the relative effects of different

forces), and the introduction of new phenomena.

Most MEMS devices are based on thin layers of deposited or etched materials, and their

electrical and mechanical performance can therefore be significantly differently from equivalent

macroscopic structures. The causes might lie in the processes used to form the thin films, or

deviations from material homogeneity when the device dimension is approaching that of an

individual material grain. For example, single crystal silicon is one of the mostly used materials

in MEMS, and its defect distribution (point, line and plane defect) can normally be neglected

under micro-mechanical analysis. However, the same is not true of deposited polycrystalline

materials such as polysilicon and metals.

Studies of scaling effects have been carried out on a large range of MEMS materials, including

metals (copper [36] and nickel [37]), composites [38], polymers [39] and polysilicon [40]. The

material properties studied include Young’s modulus (the ratio between stress and mechanical

strain), Poisson’s ratio, the yield stress, plastic deformation effects and the electrical and thermal

conductivity. This work has confirmed that material properties can change dramatically with

feature size, depending on the material. For example, in 1994, Fleck used tension and torsion

experiments with copper wires to confirm that the strain gradient plasticity rose as the diameter

fell from millimeter to micrometer scale [36]. Similarly, in 1998, Stolken and Evans observed

that the strain gradient plasticity was increased in foil when its thickness was reduced from

50µm to 12.5µm [37].

Scaling effects are also reflected in the mechanical properties of MEMS due to their large

surface-to-volume ratio. For example, scaling down of all linear dimensions by a factor of ten

( f = 10) leads to a reduction in surface area (S) by a factor of a hundred and in volume (V ) by

a factor of a thousand. Other mechanical parameters such as mass (m) and mechanical stiffness

(k) are reduced accordingly. For example, for a cantilever of length L, second moment of area I
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and Young’s modulus (E), we can obtain:

S ∝ f 2

m = ρV ∝ f 3

k =
3EI
L3 ∝ f

(1.1)

One obvious conclusion is that the reduction of mass (which determines the system inertia)

is much larger (by a factor of 1000) than the reduction in stiffness. This means MEMS de-

vices could maintain a good quality of mechanical strength with greatly reduced device mass.

Benefiting from this, a large variety of MEMS inertial devices have been developed including

accelerometers [41], gyroscopes [42], and seismometers [43]. Other obvious advantages include

reduced shock sensitivity in inertial sensors, increased resonant frequency in signal processing

devices, reduced drive power and voltage in actuators, and so on.

Another category of effects are new physical phenomena that may arise when device dimen-

sions are reduced to the nanoscale. For example, quantum mechanical effects cannot be ignored

when analysing very small electrothermal systems since both the electrons involved in the cur-

rent flow and the phonons involved in the heat flow can no longer be understood in terms of

classical physics; instead, both will be quantised [44]. Alternative physics could provide advan-

tages in some applications and disadvantages in others. However, quantum effects lie beyond

the scope of this thesis, which focuses instead on the classical benefits of size scaling.

1.2 NEMS

Nano-electro-mechanical systems (NEMS) are a further development of MEMS, which were

first investigated in the 1990s. Since most NEMS are simply integrated electromechanical sys-

tems with nanoscale dimensions, many of the design, fabrication and characterisation techniques

developed for MEMS can be adapted directly for NEMS. In many cases, the benefits of size

scaling are performance improvements as described earlier. However, NEMS can also involve

new physical phenomena, including small size effects, surface and boundary effects, quantum

size effects and the macroscopic quantum tunnelling effect. NEMS devices can therefore have

unique characteristics and functions that are impossible to achieve using microscale devices,

such as ultra-high frequency, ultra-low energy consumption, ultra-high sensitivity, excellent

surface quality control, high adsorption capacity and nanoscale control of actuation.
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Often these advantages can be achieved using a combination of localized nanoscale features

with a mainly microscale structure for readout. However, it will be difficult to exploit any po-

tentially advantageous effects without appropriate methods of fabricating extremely small struc-

tures. Unfortunately, the low-cost, mass-parallel replication method - optical lithography - that

powered the microelectronics revolution cannot be used to replicate features with dimensions

significantly below the wavelength of UV light. This apparently innocuous limitation has very

significant consequences: there are no industrial NEMS fabrication processes, no equivalent of

a MEMS foundry for NEMS, and few if any NEMS devices in production.

1.2.1 NEMS fabrication

Just as it was in the IC industry, the existence of suitable patterning methods is likely to be

a key determinant of the ultimate commercial success of the NEMS industry. Because of the

difficulties involved, a number of very different approaches have been investigated, but none

have been particularly successful. NEMS fabrication processes can be divided into two main

categories: top-down and bottom-up. At the moment, most processes used for research purposes

are top-down methods that allow the fabrication of one-off prototypes, but are far too costly

for large-scale production. In contrast, bottom-up processes are much cheaper, but lack the

flexibility to form general device layouts, and generally yield only periodic or random arrays

of simple structures. As a result, there is a need (addressed as the main topic of this thesis) for

processes that are flexible enough for low-cost fabrication of at least a subset of NEMS devices.

1.2.1.1 Nanoscale lithography

In nanoscale lithography, the diffraction limit of the optical light source used for pattern transfer

in microelectronics and MEMS is overcome by using a particle beam of much shorter wave-

length, based on the theory of wave-particle duality. Examples of such processes include elec-

tron beam lithography (EBL) [45] and focused ion beam (FIB) lithography, both developed as

fabrication techniques for two dimensional nanoscale structures with a planar resolution of a

few nanometers [46] [47] [48]. Both methods rely on large, complex items of capital equipment

and fabricate patterns by slow, serial writing. EBL uses an electron source based on a hot fila-

ment or a cold cathode to write on a specialized electron beam resist; FIB uses a liquid metal

ion source, typically of a low-melting point metal such as In and Ga, to erode a surface directly.

In each case, the field of view that can be addressed using electronic beam deflection is limited
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to around 1mm2, and larger areas can only be written by moving between fields using a stepper-

motor controlled table. As a result, while EBL and FIB are commonly used for definition or

local modification of master patterns, they are simply too expensive for mass parallel fabrication

of devices.

Recent approaches have involved a combination of direct writing with other common fab-

rication processes. One example is focused-ion-beam chemical-vapor-deposition (FIB-CVD)

[49, 50], which combines FIB machining with chemical vapour deposition (CVD) to deposit

patterned nanoscale structures with arbitrary 3D arrangements. For example, Figure 1.4a shows

a SEM photograph of a microwine glass with 2.75µm external diameter and nanoscale wall

thickness fabricated using FIB-CVD [51]. FIB can also be combined with a reactive gas to

carry out directed nanoscale etching.

FIB lithography can also be used to achieve 3D nanoscale structures that self-assemble by

directed stress release [52,53]. The principle is to use FIB machining to introduce tensile stress

in a suspended layer of material by producing a thin (usually < 100nm) damaged region. The

strain thus generated can be used to power out-of-plane rotation of a set of patterned flat parts,

and hence achieve a self-assembled 3D structure. Figure 1.4b shows a self-assembled nanoscale

cubic frame fabricated with FIB-introduced stress [54].

(a) (b)

Figure 1.4: (a) Microwine glass with 2.75µm external diameter and 12µm height; (b) a stand-up
3D cubic frame fabricated using self-assembled FIB stress-introducing process.

Particle beam lithography methods represent the most common approaches to nanoscale pat-

terning. Less common methods include dip-pen lithography and atomic force microscopy [55].
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In each case, the advantages to researchers are very obvious, as they can define arbitrary ar-

rangements of features with high resolution and precision. However, the slow speed, expense

and unreliability of the equipment involved limit their use in mass production. What is required

are methods that can easily replicate nanoscale patterns.

1.2.1.2 Nanoimprint

The most common nanoscale replication technology is nanoimprint lithography (NIL), initially

proposed by Chou in 1996 [56]. The process involves replication of a master stamp (which must

itself typically be formed by a combination of e-beam lithography and reactive ion etching, but

which can be re-used many times) by embossing of a thin layer of resist. Figure 1.5a shows

the process flow of a general NIL process. A thin layer of imprint resist is first coated on

the substrate to be patterned [57]. A rigid stamp with pre-patterned nanoscale features is then

pressed into the resist surface. The resist is then reshaped by mechanical force to follow the

shape of the stamp. After removing the stamp, the nanoscale patterns generated in the imprint

resist can easily be transferred to the substrate material by RIE.

Shortly after the publication of the initial process, a series of process variations were devel-

oped. For example, in thermoplastic NIL, the imprint resist is heated to a controlled temperature,

reducing its viscosity and ensuring that it fully flows to fill in the mold [57]. In step-and-flash

imprint lithography (SFIL), a liquid resist is embossed, and then cured by parallel exposure to

UV light so that it cross-links and solidifies. In soft lithography [58], a poly-dimethyl-siloxane

stamp is used to transfer an alkanethiol ink onto a gold-coated substrate. The thiol groups bind to

the gold, leaving the tails of the molecules to form a self-assembled monolayer that can be used

as a resist for further processing. However, the resist is relatively fragile and cannot withstand

aggressive etches.

Figure 1.5b and 1.5c shows SEM photographs of imprinted patterns with feature sizes down

to 25nm [59,60]. However, current NIL processes can produce features with dimensions below

5nm [60]. Because replication does not involve series patterning, NIL has significantly higher

throughput and lower cost than direct-write techniques. However, it clearly works best when

the surface to be patterned is completely planar, and hence may be less suitable for fabrication

of more general NEMS, when intermediate processing results in surface steps.
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(a) (b) (c)

Figure 1.5: (a) Schematic diagram of nanoimprint lithography process; top SEM views of (b)
imprinted PMMA mesas of 45nm and (b) a close-up grid pattern of 20nm.

1.2.1.3 Nanosphere lithography

An entirely different approach is offered by nanosphere lithography, a very simple parallel fab-

rication process for producing ordered nanoscale particle arrays [61]. The arrays are generated

by spin coating a wafer with a solution containing suspended nanoscale spheres (typically, la-

tex, with a size ranging from 100nm to 1µm), which are forced by a combination of convection

and surface tension into close-packed hexagonal arrays. The arrays can then serve as masks for

subsequent processing steps, including reactive ion etching and lift-off of a metal film, creat-

ing surfaces that can act as filters, textured surfaces for surface-enhanced Raman spectroscopy

or periodic optical structures. Feature sizes below 100nm can be routinely achieved using very

simple equipment [62], and nanosphere lithography can be used with terraced substrates to mod-

ify the periodic arrangement. However, its key restriction – its natural tendency to form close

packed hexagonal arrays – cannot easily be overcome.

Although a wide variety of nanoscale fabrication process has been developed as mentioned

above, industrialization of NEMS is still limited by the lack of an appropriate patterning pro-

cess. Direct patterning processes including EBL and FIB lithography are too expensive and

too slow. Undirected processes such as nanosphere lithography are cheap and parallel, but can

only generate specific nanoscale features. Replication processes including nanoimprint lithog-

raphy and soft lithography also provide possible approaches to nanoscale patterning. However,

these methods are only marginally useful for mass production because of their own inherent

restrictions.

Thus, for NEMS devices to be successful in commercial production, a key requirement is the

development of an alternative nanoscale patterning process. Three main features are desirable:

(1) a parallel process capable of mass production, (2) the ability to fabricate a wide range of
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commonly required features, and (3) low-cost, easily available process equipment.

1.2.2 Mechanical NEMS devices

As defined earlier, many NEMS are miniature version of MEMS, again with electrical and

mechanical functionality but with nanoscale dimensions. However, there is a common misun-

derstanding that NEMS are just miniaturized MEMS. As explained in Section 1.1.3, the size

scaling effects after miniaturization should affect many aspects including material properties,

physics of operation, and even introducing new phenomena at the nanoscale. These all provide

considerable improvement on the system performance such as higher Q factors and reduced

mass, as well higher frequency operation. This section will briefly review and highlight recent

progress in mechanical NEMS research.

Using the nanoscale fabrication techniques described above, MEMS dimensions have already

been pushed below the microscale. For example, Figure 1.6a shows doubly clamped nanoscale

silicon beams released from BSOI substrates, which have been patterned by EBL [63]. The

in-plane beam width varies from 0.16µm to 1.4µm. At such size scales, the techniques used

for actuation mainly involve magneto-motive [64] and electrostatic actuation [65]. The former

utilises the Lorentz force generated in the current-carrying structure in a magnetic field while

the later uses the electrostatic force between charged capacitor plates. Existing work shows

functional NEMS devices can operate at frequencies of 1GHz and 700MHz respectively, Other

actuation techniques include electrothermal heating and piezoelectricity. However, compared

with MEMS, the challenge of NEMS actuation is transducing excitation energy effectively to

nano structures at high frequency.

In terms of operating functions, most current mechanical NEMS can be divided into two

groups: (1) devices that benefit from the scaled dimension of the system to achieve improved

performance from current sensors and actuators, and (2) devices that utilise the unique properties

of NEMS materials and structures to exploit new features from existing MEMS devices.

NEMS resonators are typical representatives that belong to the first group. Research in NEMS

resonators has attracted extensive attention due to unique structural and functional characteris-

tics obtained at nanoscale dimensions. Improved device performance has been achieved by

scaling down the size of core elements from micro- to nanoscale. In addition to improving the

operating frequency, NEMS resonators show have improved quality factors than comparable

microscale devices [66], which show significant potential in signal processing. Another typical
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advantage of NEMS is the high sensitivity. As shown in Figure 1.3b, the electrometer developed

by Cleland in 1998 achieved a much higher charge sensitivity of 0.1eHz−0.5 than conventional

field-effect transistors, with additional advantages such as higher operating temperature and

larger bandwidth [67].

NEMS inertial sensors benefit from small mass and high Q factors [68]. Analytic evaluation

and numerical estimates of mass sensitivity indicate an enormous potential for mass sensing.

For example, since nanoscale cantilevers typically have a cross-sectional dimension of 10nm,

the active mass can be reduced to 10−18g, suitable for detecting extremely small additional

masses. Devices based on NEMS resonator arrays have been able to detect the binding of

individual DNA molecules [69] (Figure 1.6c). It is likely that similar devices may achieve a

mass sensitivity of 1 Dalton (one twelfth of the mass of an unbound neutral atom of carbon-

12) [68], almost reaching the boundary of conventional mass spectrometry.

(a) (b) (c)

Figure 1.6: (a) SEM images of doubly clamped NEMS beams on BSOI patterned by EBL; (b)
a nanometre-scale charge detector (the inset schematically depicts the torsional me-
chanical resonator, detection electrode and gate electrode); (c) Optical micrography,
SEM images and schematic showing arrays of cantilevers to detect the binding of
DNA molecules by NEMS oscillators.

NEMS devices that take advantages of carbon nano tubes (CNTs) could be typical examples

in the second group. In recent research, CNTs have demonstrated promising mechanical and

electrical properties: a great difference between axial and radial elasticity [70], tolerance of

extremely large non-linear deflection and buckling [71], high current densities [72] and high

thermal conductivity [73]. These properties may make CNTs appropriate for NEMS. Important

applications of CNT based sensors are AFM probe tips, which reduces the effective tip radius

down to 3nm [74, 75]. The lateral resolution is thus increased up to 70% compared with silicon

tips. CNTs have also used in mechanical strain sensors [76, 77]. For example, in [76], single-
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walled carbon nanotubes (SWCNTs) were embedded in a polymer substrate to make strain

sensors, since the position of the D* Raman band strongly depends on the strain transferred

from the substrate to the nanotubes . Other applications have involved chemical and biochemical

CNT sensors [78]. The integration of CNTs offers many possibilities for future NEMS, however

a key requirement will be to control their growth or assembly.

1.3 Sidewall transfer process

Sidewall transfer lithography (STL) (also known as edge-defined lithography or spacer lithog-

raphy) is a type of self-aligned double patterning method that provides a low cost solution for

nanoscale patterning (as illustrated in Figure 1.7). STL is designed to produce sub-micron fea-

tures by utilising the transformation of thin-layer materials deposited on microscale moulds.

Ultra-narrow lines can be defined by the thickness of the sidewall films. Due to its superior

control of dimension and high production efficiency, STL has been investigated consistently in

recent years, and the critical feature dimension has now been reduced below 10nm [79, 80].

(a) (b)

Figure 1.7: Schematic diagrams of (a) a typical STL process for FinFET fabrication; (b) STL
process combined with additional lithography steps

STL was originally developed for CMOS (complementary metalâĂŞoxideâĂŞsemiconduc-

tor) fabrication. In 1975, Nicholas et al. successfully defined edge features on existing mesas by

controlling lateral diffusion in polysilicon [81]. The method was then developed to form polysil-

icon gate CMOS devices by selectively removing non-highly doped polysilicon [82]. Mean-

while, Jackson et al. fabricated GaAs MESFETS (metalâĂŞsemiconductor field-effect transis-

tors) using edge plated Au to define sub-micron (0.4µm) lines [83]. However, a more practicable

method was developed by Hunter et al. in 1981, by conformal coating and anisotropic etching
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of a polysilicon layer over original SiO2 mesas. Sub-micron elements (0.1−0.4µm) were then

defined by the polysilicon left by the sidewalls, which could be adjusted during the conformal

coating [84]. Afterwards, the development of STL was driven in conjunction with thin film

technology and surface micromachining. In recent years, STL has been widely used for FinFET

fabrication [85–91].

In addition, STL has also been used for fabrication of nanowire arrays. Various materials

have been investigated, including silicon [79], diamond [92], platinum [93,94], platinum silicide

[95] and nickel silicide [96]. Corresponding applications range from sensors [92] to catalytic

surfaces [97]. Further applications also include field emitters [98, 99] and quantum dots [100–

102]. Fabrication of silicon moulds has also been extensively investigated [103–105] combined

with modern fabrication processes such DRIE and lift-off. STL processes have also been used

to fabricate nanoimprint templates [106–109].

A typical STL process consists of the four main steps illustrated in Figure 1.7a [110]. Firstly,

a sacrificial layer is deposited on the substrate and patterned to form a set of mesas or spacers

(step 1). Secondly, a conformal layer of the material is coated over the whole surface, covering

all the mesas (step 2). In the next step, the mask layer is anisotropically removed from all the

horizontal surfaces, leaving only material on the vertical sidewalls of the mesas (step 3). Thus,

the in-plane linewidth of the sidewall features is defined by the mask material thickness, which

can easily be controlled to be sub-micron. Finally, the sacrificial layer is removed, and the

sidewall pattern is transferred into the substrate by further etching (step 4). A variety of features

can be transferred, including nanoscale ribs [111–115], slots [116–118] and vertically stacked

multilayers [107, 119, 120].

Various techniques have been used to form sidewall masks in different materials, such as

silylated resist [112], silicon nitride [111] and silicon oxide [108]. Smaller critical dimensions

can be achieved by reducing the thickness of the mask layer. The spacing of final patterns is

defined by width of mesas, which is normally limited by optical lithography. However, using a

repeated sidewall process, this can be further reduced by replacing the sacrificial features with

a previously-fabricated set of sidewall masks.

Although the basic STL features are closed paths following the perimeters of the sacrificial

patterns, the process can be combined with additional conventional lithography steps to increase

feature diversity. Figure 1.7b shows a process that uses additional lithography and etching

steps to remove parts of the sidewall masks allowing open shapes [110]. Isolated paths can
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then be combined with additional patterns for more complicated designs. For example, Figure

1-8 shows two types of thin-body MOSFETs (metalâĂŞoxideâĂŞsemiconductor field-effect

transistors) gate process (gate-first and gate-last), in which STL is used to form nanoscale fins

[110].

Figure 1.8: Schematic diagrams of (a) gate-first and (b) gate-last thin body MOSFET gate pro-
cesses.

As a mass parallel nanoscale fabrication process, STL has received limited attention in more

general 3D micromachining. The only applications which have been investigated are nanoscale

needles [121] and channels [122]. However, it should be possible to adapt STL to low-cost

NEMS fabrication. Ideally, it should be possible to achieve comparable in-plane feature sizes

to those obtained in CMOS fabrication, although the minimum might be restricted by other

micromachining process such as deep silicon etching. Combined with additional lithography

steps, it should be possible to achieve a wide variety of pattern geometries and combine them

with micro- and nanoscale parts. Developed processes should be applicable to either bulk silicon

or BSOI wafers, however the later should offer more precise definition of vertical depth of

structures. The aim of this thesis is to investigate exactly these possibilities.
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1.4 Thesis plan

The structure of the remainder of the thesis is as follows. In Chapter 2, a STL NEMS process is

introduced, together with the DRIE process needed to form and undercut HAR NEMS features.

Elementary in-plane electrothermal actuators are then demonstrated in Chapter 3. Prototype

devices in bulk and BSOI wafers are presented, and the new processing issues experienced are

discussed. In Chapter 4, the mechanical and electrothermal performance of completed NEMS

actuators is then characterised, and compared with the results of FEA. Because the latter is

somewhat unsatisfactory, new analytic models for two specific NEMS electrothermal actua-

tors (with chevron and raised cosine pre-buckle, respectively) are developed in Chapter 5. In

Chapter 6, a multi-layer STL NEMS process is demonstrated as an extension of the single-

layer process. The process is used to fabricate a wide range of different device layouts, and

specific fabrication issues are again discussed. In Chapter 7, the 2D lattice fabricated by the

multi-layer STL is further analysed theoretically and experimentally, which can be understood

as a novel type of mechanical metamaterial. Reasonable agreement has been achieved between

theory, experiments and FEA predictions, although accuracy of the last is limited by simulated

device lay-outs. Finally, conclusions are drawn in Chapter 8, and possibilities for future work

are introduced.
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2 Sidewall transfer lithography

In this chapter, sidewall transfer lithography (STL) is introduced, together with the related fab-

rication processes used for general 3D micromachining. Section 2.1 gives a brief introduction

to the STL process, and corresponding background information. The process is then detailed in

a step-by-step fashion, based on the provided process flow in Section 2.2. Section 2.3 provides

detailed information on the modified Bosch process for deep reactive ion etching (DRIE) to

form nanoscale features. The standard Bosch process is now optimized to be compatible with

NEMS fabrication. The etching rate is also calibrated to obtain suitable feature profiles, using

experimental results. In Section 2.4, a novel technique of plasma undercut is introduced as an

extension of the Bosch process to achieve dry release of both micro- and nano-scale suspen-

sions. The technical essentials are explained, and the results of experimental fabrication trials

are again described. Finally, the process constraints are discussed in Section 2.5, where a short

conclusion is presented.

2.1 Introduction

Future nano-electro-mechanical systems will require low-cost, mass-parallel fabrication pro-

cesses. However, many current fabrication techniques involve either an expensive atomic force

microscope or dip-pen lithography or processes such as soft lithography, nanoimprint lithog-

raphy that themselves require nanoscale masters as mentioned in Chapter 1. In each case, the

cost, slow speed and complexity of the patterning step may prevent the translation of NEMS into

practical use. However, many NEMS only require localized nanoscale parts surrounded by sup-

porting microscale features. It is therefore highly desirable to develop cheap, parallel processes

for fabricating nano-structures, which can be made compatible with most NEMS applications.

One possibility is sidewall transfer lithography, a set of processes that can transform the

perimeter of a microscale feature into a nanoscale surface mask. The general approach is to

coat an etched mesa with a conformal layer of material that may be selectively removed from
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horizontal surfaces, leaving the vertical surfaces to provide a mask whose width is determined

by the coating thickness. STL is a wafer-scale process entirely based on optical lithography and

DRIE, and hence that can be carried out using much simpler equipment. It can also be used

with either bulk silicon or bonded silicon-on-insulator (BSOI) wafers. The process effectively

uses the techniques and equipment of conventional photolithography designed for microscale

features to fabricate nanoscale features, thereby reducing the fabrication cost and increasing the

yield rate.

Figure 2.1 outlines the range of possible STL processes. Figure 2.1a shows how sidewall

processes may be used to form nanoscale ribs, by first forming a mesa, and coating it with a

layer of material which is then etched except on the vertical perimeter. Figure 2.1b shows how

it may be used to form slots, by using the nanoscale feature in Figure 2.1a as a mask in an

additional lift-off process. If the coating is a multilayer, and one of the layers may be selectively

removed from between the others, nanoscale separations between nanoscale parts may also be

formed, as shown in Figure 2.1c. Generally, the patterns follow closed polygonal perimeters.

However, additional etch steps may be used to remove parts of the pattern to leave separate

lines as shown in Figure 2.1d, and selective etching of a multilayer sidewall allows a stepped

variation in width in a nanoscale line as shown in 2.1e.

Microscale

Nanoscale

Slot

Trilayer

Etch

Etch

Bilayer

Etch

(a)

(b)

(c)

(d)

(e)

Figure 2.1: STL processes: (a) conventional; (b) reverse; (c) multiline; (d) interrupted; (e) vari-
able width.

Applications for STL include microelectronics, optoelectronics, field emission devices, nanowires,
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nanofluidics and nanoimprint templates. In each application demonstrated to date, the nanoscale

features are one-dimensional; however, here we argue that the method has considerable poten-

tial for fabrication two-dimensional device lay-outs if suitably developed, as detailed in Chapter

6.

In this chapter, the basic principle of the STL process will be introduced, based on a single

sidewall patterning step followed by a DRIE step to transfer the pattern into high-aspect-ratio

(HAR) silicon features.

2.2 Process flow

Figure 2.2 illustrates the process flow of two different STL processes based on BSOI wafers.

One uses the outer edges of mesas to form nanoscale features, while the other uses the inner

edges of slots. Starting with bare wafers (step 1), optical lithography is first used to form an

initial set of microscale patterns (step 2), which are then transferred into shallow silicon mesas

(left) or slots (right) by an anisotropic etching process (step 3). After removing the photoresist

mask (step 4), the whole surface is conformally coated using the sidewall mask material, to leave

all the surface steps fully covered (step 5). The coated layer on the horizontal surface is then

selectively etched, leaving only the vertical parts of the coating as a mask defining nanoscale

beam arrays (step 6). The pattern is then transferred into the silicon substrate using DRIE,

typically etching down to the oxide interlayer (step 7). Finally, the sidewall mask is removed to

leave only the silicon features on a oxide substrate (step 8).

As shown above, the sidewall features follow any shallow steps patterned in the initial conven-

tional lithography including both mesas and slots. Thus both positive and negative photoresist

can be adapted to the process easily, with appropriate resolution. To form nanoscale suspended

parts, an additional conventional lithography step can be added before transferring the combined

pattern into the silicon substrate (i.e., before step 7), to define other microscale features such as

anchors. The suspended parts can then be freed by etching of the sacrificial oxide interlayer

beneath the nanoscale parts at the end (after step 8).

Previous work has also used photoresist as mesas. This method shows some advantages as it

is then possible to remove the original mesa easily after the sidewall mask formation (after step

6). The two silicon surfaces on both sides of a single sidewall will then be at the same height

for the following DRIE step. However, it is difficult to achieve vertical edges from photoresist

47



Figure 2.2: Process flow for BSOI STL: (1) starting BSOI wafers; (2) coat and pattern resist; (3)
DRIE to form mesas and slots; (4) strip resist; (5) sputter coat Cr/Au; (6) selective
sputter-etch Cr/Au; (7) DRIE to oxide interlayer; (8) remove sidewall masks.

mesas, which have curved corners in most cases. This aspect normally results in poor quality

in the attached sidewall masks. Thus, silicon mesas were chosen for the highly vertical step

features that can be formed using optimised DRIE.

The sidewall mask formation is the critical step in the STL process. A malleable material

with low stress is the ideal choice for the sidewall material. However, there are also other

factors to be considered: the material must a) be compatible with selective horizontal etching,

b) have low intrinsic stress, c) have good adhesion and d) be easy to remove. After careful

consideration, Au was chosen for preliminary tests, although other materials such as silica are

easier to remove at the end of the process. The main reason for the choice was low stress. For

example, in separate experiments, thermal oxide was proven to have good adhesion but very

high intrinsic stress. However, low-temperature deposition methods such as plasma enhanced

chemical vapour deposition (PECVD) would provide more compatible SiO2 layers.

The width of the sidewall mask defines the critical feature size produced by the STL (6
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100nm with current experimental results) which obviously shows a close connection with the

thickness of the mask layer deposited in step 5. Details about the sidewall mask profile can be

found in Chapter 3.

2.3 Nanoscale deep reactive ion etching

Deep reactive ion etching (DRIE) is a silicon etching process widely used in industrial MEMS

fabrication. The Bosch DRIE process was originally developed by the German company Robert

Bosch GmbH. It was subsequently licensed to STS (Surface Technology Systems), a UK man-

ufacturer of ICP (inductively coupled plasma) DRIE systems. It is a cyclic process contains

alternate SF6/O2 plasma etching and C4F8 passivation steps, and can operate with a dual fre-

quency plasma to allow conventional deep silicon etching and stop-on-oxide. The Bosch process

is the process most commonly used in MEMS fabrication, when HAR microscale structures are

required.

2.3.1 Standard Bosch DRIE process

The standard Bosch STS ICP DRIE process offers great advantages compared with isotropic

RIE in microscale silicon etching. It achieves high selectivity with the most common mask

materials in microelectronics, including photoresist (60 : 1) and SiO2 (100 : 1) typically. Con-

sequently, much greater feature depth can be achieved (for example, etching right through a

500µm thick wafer). It can also achieve high verticality in the step profile of etched features, if

the parameters of each process cycle are well chosen. As result, very deep beam structures can

be fabricated, with well-defined mechanical properties.

Figure 2.3 shows a schematic diagram of the standard Bosch DRIE process. A mask layer is

first patterned to define feature areas to be etched on the silicon substrate. Before each etching

cycle, a C4F8 polymer passivation layer is deposited on the whole surface. In the next etching

step, a SF6/O2 plasma is used to etch the silicon substrate almost in a vertical direction, punch-

ing through the horizontal surface and etching away the silicon at the bottom of the window.

However, some lateral etching inevitably occurs, so that small scallop-shaped features are gen-

erated as well. A passivation layer is then deposited, and the cycle of etching and passivation

is repeated. The presence of passivation on the sidewalls protects vertical features from lateral

over etching. Using this general operating principle, the Bosch DRIE process can easily form
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macroscale HAR features, but generally suffers from periodic scallops in the sidewall, with a

typical scallop size of approx. 0.4µm.

Mask Mask

C4F8 plasma

SF6 plasma

C4F8 plasma

SF6 plasma

1

2

3

5

Si

Mask

Polymer

Scallops

4

Figure 2.3: Schematic diagram of standard Bosch DRIE process.

2.3.2 Compatible Bosch process for NEMS

Although the standard Bosch DRIE process works very well for MEMS fabrication, it must

be further investigated and optimized for HAR nanostructures. This work and all subsequent

etching were carried out using a STS Single-Chamber Multiplex ICP DRIE at Imperial College.

As the critical feature size is determined by the scalloping inherent in cyclic etching, most of the

effort was devoted to minimizing the scallop size and ensuring that the scallops did not destroy

the nanoscale features. Particularly, erosion of any 100nm wide beam must occur when the

scallop size rises above 50nm, since the scalloping must occur on both sides.

Figure 2.4 shows SEM views of experimental features etched with different scallop sizes.

In each case, the nanoscale features are defined by a Cr/Au sidewall mask (approx. 200nm in

width) and etched using DRIE. In Figure 2.4a, severe erosion can be observed on the silicon

walls, which have clearly collapsed in some places. The remaining features show a series of

scallop-shaped indentations in the walls inherent from the cyclic process. Figure 2.4b shows
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the result of a modified etching process, with the same sidewall mask. Here, the duration of the

etch cycle (and consequently the scallop size) has been reduced. The horizontal traces on the

nanoscale beam show that it has survived multiple cycles of etching. Although there are some

signs of erosion at the base of the beam, the etching is uniform and highly anisotropic even

near the joints between micro- and nano-scale features. Figure 2.4c shows a cross-sectional

view obtained by cleaving the nanoscale beam. Scallops can now be seen clearly on the silicon

wall, with sizes gradually decreasing from the top down. Despite this, the beam width is also

decreasing. Consequently, erosion can then be predicted if etching goes further, which explains

wall damage at the bottom in Figure 2.4b. Figure 2.4d shows the upper part of a structure etched

with much larger scallops. Here the sidewall mask (the feature with much smaller scallops) has

been completely undercut. As a result, there can be no nanoscale beam formation if the etching

is carried any further.

(a) (b)

(c) (d)

Figure 2.4: SEM views of (a) and (b) etched nanoscale features with different scallop sizes;
(c) cross-sectional view of nanoscale beam; (d) sidewall mask undercut by large
scallops.

The DRIE parameters must therefore be chosen to minimize the scallop sizes in order to
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prevent erosion and achieve uniformity in nanoscale etching. Table 2.1 shows the parameters

of two comparable process, one giving large scallops and suitable for microscale etching, the

other giving much smaller scallops for nanoscale etching. As can be seen, the etching power

and the duration of each etching cycle must be greatly reduced to obtain a process with small

scallops. Experimental results show that only the lowest values yield etched features compatible

with nanoscale structuring. The corresponding parameters for the passivation cycles must also

be changed to achieve an appropriate ratio between the etching and passivation cycle times,

and hence to prevent grass formation due to over-passivation. The scallop size of the nanoscale

etch process (LCD-350) is approx. 35nm compared with 420nm in a typical microscale process

(LCD-1), a 12-fold reduction.

Recipe RF Power (W) Cycle time (s) Gass flow (sccm) Pressure (mtorr) Scallop size
Coil Platen Etch Passivation SF6, O2 C4F8 Etch Passivation (nm)

LCD-1 600 15 13.8 9 130, 13 110 20 15 420
LCD-350 350 11 10 5.2 50, 5 80 6.2 7.3 35-40

Table 2.1: Different parameters of two DRIE process for (a) microscale and (b) nanoscale fea-
tures.

Figure 2.5 shows the variation of scallop size with the duration of each etch cycle for the two

different RF powers (350W and 600W). These data were extracted from SEM photographs of

etched samples experimentally, assuming a semi-circular scallop profile, which can be overesti-

mated in practice. These data confirm the results of Table 2.1, namely low power and short etch

cycles are required for successful nanoscale etching.

Figure 2.5: Variation of scallop depth with etch step duration, at different RF powers.

Figure 2.6 shows SEM views of silicon features obtained after optimization of the DRIE
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process parameters. The cross-sectional views are obtained by cleaving the structures to evaluate

the wall profiles. Figure 2.6a shows a nanoscale beam with a high (> 35 : 1) aspect ratio and only

minor variations in thickness after a deep etching. The scallop is minimized and almost invisible,

thus preventing the lateral erosion effectively. The modified process can also be used to improve

the etching of the original mesa features, and hence improve the profile of the sidewall mask.

Figure 2.6b shows a silicon mesa with 10µm width, which has been etched to a depth of 6.5µm

with minimal scallops. A highly vertical sidewall is now achieved, with a very smooth surface.

Although this result is generally useful in shallow, microscale etching, it is specially promising

for the STL process as the profile of the mesa edge will affect the sidewall mask attaching to it.

Hence, the optimised DRIE process can now be used to etch both microscale (Figure 2.2, step

3) and nanoscale (Figure 2.2, step 7) patterns in the STL process.

(a) (b)

Figure 2.6: Cross-sectional SEM views of (a) nanoscale and (b) microscale silicon features
etched by optimised DRIE process.

The optimised DRIE process was then calibrated to achieve appropriate etch depths. For

example, Figure 2.7aa shows the variation of the etch depth with the number of etch cycles, for

the etching recipe LCD-350 in Table 2.1. With an RF power of 350W and duration of 4s in each

etching cycle, a etching depth of 4.5µm was achieved after 60 cycles, with an almost linear

etching rate (approx. 75nm/min). Some over-etching is necessary to remove the additional

silicon in the mesa regions and to compensate for any variation in the device layer thickness

when using BSOI wafers. However, because of the low RF power used, it was found to be

unnecessary to use low-frequency plasma (normally required to prevent charge build-up) to

stop on the oxide interlayer.

The DRIE process was then adjusted further to control the beam profile. Figure 2.7b compares
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the variation of beam width with depth for beams etched with two different processes. These

data were extracted from SEM photographs of cleaved test specimens. Trace A shows the

variation for an etching recipe with excessive passivation. Starting from an initial value of

150nm (which is over-large due, to excessive scalloping of the mesa as shown in Figure 2.4a),

the beam width clearly increases significantly with depth, to approx. 300nm at its base. One

possible explanation is that it takes longer for the reactive ions in a plasma to arrive at the

reaction surface as etching proceeds. If the duration of the etching cycle is kept constant, the

etch cycle may fail to consume all of the passivation layer in a deep trench. Any passivation

remaining at the feet of sidewalls then causes gradually increasing sidewall dimensions. To

avoid this effect, the duration of both the etching and passivation cycles should be adjusted to

maintain feature quality as etching goes deeper. Trace B shows the variation that can be achieved

with an optimised recipe; here, the beam width is close to 100nm throughout, with a high aspect

ratio (40 : 1).

(a)

(b)

Figure 2.7: Variation of (a) etch depth with number of etching cycles, and (b) beam width with
depth, for different process schedules.
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2.4 Plasma undercut

Plasma undercut is a novel and promising extension of the Bosch DRIE process. Undercut

was previously presented as a flaw in etched features (for example, as shown in Figure 2.4d).

However, it is always more interesting to turn waste into wealth. Figure 2.8 shows a dry release

process, based on the use of an isotropic SF6 plasma RIE step after deep etching of HAR silicon

features to form suspended nanoscale structures. Before undercut, sufficient passivation must

be be deposited to prevent lateral erosion of the suspended parts. Microscale features such as

anchors will also be undercut; however, these will not be released, due to their significantly

larger size.

Micron Nano

RIE

Figure 2.8: Schematic diagram of a dry releasing process using plasma undercut.

It was found that different processes are needed to undercut structures with different dimen-

sions. For nanoscale features, the best solution is to utilize the modified cyclic Bosch DRIE

process with much larger scallop sizes. As described earlier, since it is possible to control the

scallop size precisely by adjusting the etching parameters, appreciate processes can be devel-

oped to undercut nanoscale features in a wide range of sizes, up to a few hundred nanometres.

Figure 2.9a shows a nanoscale silicon beam during undercut. Two large semi-circular scallops

are formed at the bottom of each side of the silicon wall. They are vertically staggered because

of the original height variation introduced by the silicon mesa structure. Hence, the scallop

radius needed for undercut is almost the same as the beam width, as the entire beam must be
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undercut by a single scallop.

A relative complex process is needed to undercut microscale features, since it is very easy to

damage any nearby nanostructures using a highly isotropic etch. A polymer layer of C4F8 must

be deposited prior to etching, to provide sufficient protection of the whole structure, followed

by a short but highly vertically SF6/O2 plasma to punch through the horizontal parts of the

passivation layer. This step is extremely important to avoid any footing effect from the residual

polymer. It is then safe to undercut the features with a much stronger isotropic RIE process. As

the final RIE step is usually quite rapid and aggressive, special care must be taken to prevent

erosion, by adjusting the amount of passivation. However, with practice, microscale features up

to 5µm may be successfully undercut using the above techniques. Figure 2.9b shows a series of

microscale beams that are partly undercut, with only a very small width of silicon at the bottom

still connected to the substrate. Because these microscale parts are not formed using a mask

derived from a mesa structure, undercut occurs from both sides of the beam at the same height,

so the scallop depth needed for undercut is only half of the beam width.

(a) (b)

Figure 2.9: SEM views of (a) nanoscale and (b) microscale silicon features undercut by SF6/O2
plasma.

Etched features were further investigated to obtain a better understanding of the undercut

process. Figure 2.10 shows the bottom of the silicon beam after full undercut of both nanoscale

(Figure 2.10a) and microscale (Figure 2.10b) features. In Figure 2.10a, a small hole can be

seen near the bottom in the middle of the beam. Since the beam should have been protected

by passivation on both sides, and that the etching mask should still remain at the top, it is

reasonable to deduce that the beam must have been slightly over-etched by isotropic etching

from the bottom up. Figure 2.10b shows a close-up of the bottom profile of an over-turned
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microscale beam after undercut. As predicted in Figure 2.9b, the bottom shows a multiply-

curved profile resulting from attack by the isotropic plasma etch in several directions.

(a) (b)

Figure 2.10: SEM views of bottom profiles obtained from (a) nanoscale and (b) microscale un-
dercut silicon beams.

Such all-in-one process can simplify fabrication, by accomplishing multiple steps without

the need to remove the wafer from the deep etching plant. This approach greatly improves the

reliability and feasibility of the whole STL NEMS process. With this technique, it is possible

to form combined micro- and nanoscale suspensions on bulk silicon wafers instead of BSOI,

which should lower the process cost. More importantly, dry release can greatly improve MEMS

fabrication yields, since it eliminates the surface tension collapse that often occurs in the drying

step that must immediately follow a wet release process.

2.5 Discussion

Geometric constraints are more fundamental. For example, all the nanoscale features must

follow the perimeters of closed polygons. This makes the STL well suited to the formation of

multiple built-in beams (as here) but will present a significant limitation for other designs. For

example, it is not possible to form single cantilevers using the process in Figure 2.2. However,

it is simple to envisage additional patterning steps that interrupt polygons to allow cantilevers,

or overlay polygons to generate more complex designs such as intersecting suspensions.

Similarly, all nanoscale features must have constant width. However, it would be possible to

employ additional sidewall layers, which are removed over part of the perimeter by patterning

and differential etching, to yield nanoscale features with variable width. This approach might

be used (for example) to construct shape bimorphs, but clearly requires additional deposition,
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lithography and etching steps.

Finally, it is not simple to introduce nanoscale separations; typically, STL yields nanoscale

features or slots, but not both at the same time. The use of multilayer sidewalls based on al-

ternating materials should allow at least the formation of parallel beams with nanoscale gaps.

Other post-processes such thermal, surface tension or electrostatic actuation might be used to

adjust structures after release. However, it is hard to see how some components that are common

in MEMS (for example, electrostatic comb drives) could be formed with both nanoscale parts

and nanoscale gaps. Thus, the method does have significant constraints.

Such processes are potentially attractive for mass production of NEMS, since they allow

wafer-scale fabrication using widely available, low-cost equipment. However, they suffer from

key topological constraints, and overcoming these limitations should extend the range of appli-

cations.
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3 Single-layer NEMS actuators

In this chapter, the design of a series of NEMS electrothermal actuators is introduced, fabri-

cation processes suitable for bulk silicon and bonded silicon-on-insulator (BSOI) materials are

developed and the results of initial processing are described. In Section 3.1, the designs of

double- and single-ended actuators are described, together with the corresponding mask lay-

outs. The fabrication results obtained using processes based on sidewall transfer lithography for

bulk Si and BSOI are then described in Section 3.1 and Section 3.3 respectively. In each case,

the results of lithography and etching are discussed and complete prototype devices are demon-

strated. In Section 3.4, a number of residual processing issues are discussed and conclusions are

drawn in Section 3.5.

3.1 Device concept and design

Using the STL process introduced in Chapter 2, two well-known designs of electrothermal actu-

ators have been fabricated to prove the process concept. As shown in Figure 3.1, a combination

of micro- and nanoscale structures was adapted to demonstrate the compatibility of the STL.

Specific dimensions were chosen to highlight particular aspects of processing, especially the

stress effect.

The lay-out of a double-ended buckling actuator of V-beam or chevron shape is shown in

Figure 3.1a [33, 35]. A set of parallel beams patterned by STL layer 1 defines the nanoscale

beams. Microscale anchors at both ends are patterned using STL layer 2, as well as a central

crossbeam to tie all the nanoscale beams together. When the beams are heated electrically, by

passing a current between the anchors, an in-plane motion of the crossbeam is generated due

to differential thermal expansion of the pre-buckled shape. Detailed analysis of the thermo-

mechanical response of a V-beam actuator in Chapter 5 shows that the motion is quasi-linear.

Clearly, the crossbeam ties the entire nanobeam array together, and constrains the motion to

collective deflection in the pre-buckling direction. The occurrence of higher-order buckling
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modes is thus minimized.

Figure 3.1b shows an alternative design of single-ended thermal actuator based on a folded

V-beam shape [123, 124]. The actuator consists of sets of cold and hot beam arrays, which are

tied together at their free ends by a crossbeam. At the fixed ends, anchors are subdivided for

each set of beams to allow a heater current to be passed through the hot arms. The cold arms

then serve as tethers, so that in plane motion due to differential thermal expansion of the hot

beam array is constrained in the direction shown.

L
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Figure 3.1: Lay-out of (a) a double-ended and (b) single-ended V-beam actuators designed based
on STL process.

A mask set containing both types of electrothermal micro actuators was then designed, for

100mm diameter wafers. For all devices, the total beam length was 1mm, with two different

beam separations of 5µm and 10µm. In both cases, the number of hot beams was much larger

than those shown in Figure 3.1, up to 58 for the folded V-beam actuator and 116 for the single-

ended actuator. All the hot arms were designed with a slope angle of θ = 0.01rad. For the single-

ended device, 4 parallel cold beams were provided at each end to constrain the displacement

direction. The width of the crossbeam was 2µm and 10µm of crossbeam projected beyond the

beam array ends. The total number of dies on the whole wafer was 2420, and a mixture of

various designs was included in each block of dies. The overall design was based on fabrication

of 100nm nanoscale beams on BSOI wafers with 5µm device layer thickness, so that the aspect

ratio of the resulting nanobeams was approximately 50 : 1. The corresponding ratio of out-of-

plane to in-plane stiffness of a single beam is 2500 : 1.
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3.2 NEMS actuators on bulk silicon wafers

Demonstrator devices were firstly fabricated in 100mm diameter bulk silicon wafers (P-type,

< 100 > crystal oriented, resistivity 1− 5Ω · cm) as shown in Figure 3.2a. The fabrication

process was designed for both bulk silicon and BSOI wafers. Obviously, BSOI wafers provide

more accurate definition of the device layer. However, bulk silicon wafers were used to test the

process and discover potential fabrication issues, thus improving the yield and reducing cost.

Prototype devices were fabricated based on the CAD lay-outs shown in Figure 3.1. Figure

3.2 shows the top view of complete devices in bulk Si. For both double-ended V-beam (Figure

3.2b) and single-ended (Figure 3.2c) actuators, the overall die size is 1400µm× 640µm. All

devices were released from the silicon substrate by isotropic plasma undercut.

(a) (b) (c)

Figure 3.2: (a)Demonstrator NEMS actuators fabricated on a 4-inch silicon wafer; top SEM
views of (b) double-ended and (c) single-ended NEMS V-beam actuators on bulk
silicon.

3.2.1 Fabrication steps

Fabrication was based on a set of processes developed from the elementary STL process intro-

duced in Chapter 2. Figure 3.3 shows the process steps for bulk silicon wafers. Conventional

lithography is firstly used to form the initial microscale pattern using an optical resist and a

mask that defines the nanoscale features (step 1). The pattern is then transferred into the silicon

substrate by DRIE to form a set of shallow mesas (step 2). The resist is stripped off and the sil-

icon surface is thoroughly cleaned (step 3). A semi-conformal metal coating is then deposited

over the whole wafer by RF sputtering (step 4). The horizontal surfaces of this layer are then

selectively removed to leave only the sidewall features following the perimeter of the initial

mesa pattern as masks for the nanoscale features such as suspension beams (step 5). A second

conventional lithography step is then used to pattern microscale features such as anchors (step

6), and the combined pattern is then transferred simultaneously into the silicon by DRIE to form
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all structures including joints between micro- and nano-scale structures (step 7). An isotropic

plasma etching step is then used to release the nanoscale suspensions while the microscale fea-

tures remaining in place as anchors (step 8). The resist is stripped in an oxygen plasma asher

(step 9), and a thin aluminium layer is deposited over the entire structure (step 10), providing

electrical contact for subsequent characterization.

Figure 3.3: Schematic diagram of bulk STL process developed for NEMS.

The mask set was a low-cost chrome-on-glass set manufactured by laser writing at Delta

Mask B.V., Enschede, with a nominal resolution of 1.5µm and a minimum feature size of 2µm.

Initial pattern transfer was carried out using a Quintel Q7000 mid-UV contact mask aligner,

with a typical resolution of 1µm. A 0.4µm layer of Shipley S1805 photo resist was spin coated

on the entire wafer surface to pattern the initial microscale mesas. The wafer was then etched

in a Surface Technology Systems inductively coupled Single-chamber Multiplex DRIE system

based on a cyclic process with SF6 and O2 for etching and C4F8 for passivation. The height

of the initial etched mesa was 0.6µm which was chosen to make the height of the sidewall

masks significantly (> 8 times) less than the overall depth of the Si beams, and hence reduce

the deformation resulting from any residual stress in the sidewall mask. The resist was then
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stripped off thoroughly in acetone and Microposit remover 1165.

Figure 3.4 shows the details of the etched silicon mesas. It was found that the etched feature

quality could be high if the etching cycle time of the DRIE was minimized and sufficient passi-

vation was deposited to protect the sidewalls during subsequent etching cycles. However, it was

also found that excessive passivation leads to a residual layer of C4F8 on the wafer surface after

etching. This polymer layer could cause other problems in the following DRIE steps to form

HAR Si suspensions, as described later. Thus, the initial etching step was modified carefully to

start and end with etching cycles so that most of the passivation was removed in the last etch-

ing cycle, especially on the horizontal Si surface. As shown in Figure 3.4a, high-quality mesas

were formed with both the top and bottom corners almost right-angled in a cross-sectional view.

However, in the enlarged view of Figure 3.4b, evidence of the sidewall scallops formed in a

6-step cyclic process can clearly be seen in the mesa sidewall.

(a) (b)

Figure 3.4: SEM views of (a) a silicon mesa etched in the cyclic Bosch DRIE process and (b)
close-up sidewall scallops formed in a 6-step etch.

Sputter deposition and Ar plasma etching were chosen to form the Cr/Au sidewall masks

following the perimeter of the patterned Si mesas as the next fabrication step. Among many

candidate metals and dielectrics, gold was finally selected as a malleable material with low

intrinsic stress to form a conformal layer over the whole wafer surface. However, to ensure

adhesion, a thin Cr layer had to be deposited. This layer normally introduced higher stress.

The sidewall mask was therefore deposited as a bilayer with total width of 100nm (90nm Au

and 10nm Cr). The sidewall material was deposited at high pressure (1.5×10−2mbar) and then

etched at relatively low pressure (2× 10−3mbar) using in a Nordiko RF sputtering system. To

further reduce intrinsic stress, both processes were carried out at low enough power (100W) to
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maintain a low temperature.

Figure 3.5a shows a completed Cr/Au sidewall mask layer attached to the original Si mesa

after selective sputter etching. The metal mask clearly follows the perimeter of the initial Si

mesa. The appearance of scallops inherited from the cyclic etching process shows good attach-

ment of the metal layer. The cross-sectional view in Figure 3.5b shows the height of the etched

metal masks was only 2/3 of the original mesa, possibly due to over-etching. It can also be seen

that the upper corner of the silicon mesa is rounded, possibly due to a concentration of the Ar

plasma during sputter etching.

(a) (b)

Figure 3.5: SEM views of Cr/Au sidewall masks attached to Si mesas after selective sputter
etching.

As the sidewall mask formation is the most critical step of the STL process, further experi-

ments were carried out to characterize this structure. A shallow silicon mesa with a height of

approx. 450nm was etched on a single-crystal silicon wafer. A 150nm SiO2 layer was then ther-

mally grown on the entire wafer surface, to provide an interlayer between the original mesa and

metal sidewall. After similar sputter deposition and etching steps to those described above, the

oxide layer was partially removed from the vertical section in HF vapour. The introduction of

this feature inserts contrast into subsequent SEM images, setting the sidewall mask apart from

the silicon substrate. In Figure 3.6a, it can be seen that the thickness of the sputter-deposited

Au on the horizontal surface (approx. 300nm) is almost three times that on the vertical side-

wall (approx. 100nm). It can also be seen that the metal layer conformally covers the silicon

mesa, despite the degradation of the mesa due to oxidation. In Figure 3.6b, the coated feature

is etched to half of the etching time used before. A similar selectivity can be found in sputter

etching, as the metal on horizontal surface is almost removed while a thinner (< 100nm) side-
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wall feature now has almost the same height as the the Si mesa. Lack of thickness uniformity

and over-etching are therefore the explanations for the previous results.

(a) (b)

Figure 3.6: Cross-sectional SEM views to characterize sidewall mask formation obtained after
(a) deposition of Cr/Au and (b) half selective sputter etching.

A final Cr wet etching step was used to remove any residual metal specks after sputter etching.

The etchant is a mixture containing 22% ceric ammonium nitride, 9% acetic acid and 69% water.

This etching step prevents Si grass being formed in the DRIE process used to form nanoscale

features.

The second optical lithography was then used to pattern the microscale features including the

anchors and the crossbeams. A thicker resist (Shipley S1813) was chosen this time, to maintain

a good planarization of the existing mesa features. Figure 3.7 shows a 2µm crossbeam patterned

over a set of parallel mesas; this feature will tie together the resulting nanoscale beam array. The

thickness of the second resist is approx. 1.6µm, which is thick enough to cover the 0.6µm step

of the initial mesa. With sufficient resist flow, a good planarization of the mesa array can be

achieved. The combined features were then transferred into the Si substrate using the Bosch

DRIE process, and then undercut.

As stated in Chapter 2, the standard Bosch process can be further developed to form HAR

NEMS features. Although the process itself is quite well understood, special care is needed

to prevent any possible lateral erosion of such narrow structures. Firstly, very short etching

cycles must be used to minimize the depth of any scallops, preventing two scallops etched from

opposite sides of the Si nanobeams meeting each other. Secondly, sufficient passivation must

be deposited between etching cycles to maintain anisotropic etching. Here, 350W coil power

and 11W platen power were chosen with a 4s during time for both the etching and passivation
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Figure 3.7: SEM views showing resist planarization on the pattern of a crossbeam after the
second optical lithography.

cycles.

Figure 3.8a shows a SEM photograph obtained by cleaving across a nanobeam after DRIE.

The cleaving results in the Si nanobeam and sidewall mask breaking at different positions. Here

the nanobeam has a depth of approximately 3µm and width of < 100nm. The nanobeam is

highly vertical and the adhesion of the sidewall mask is excellent. Large scallops inherited from

the rear of the Si mesa can be seen in the sidewall mask in the enlarged view. Figure 3.8b shows

a similar view of multiple nanobeams with 5µm suspension separation. The location of the

original mesa can easily be identified from the position of the higher Si horizontal surface, and

the step between the two Si surfaces is the same as the mesa height (0.6µm). The vertical Si

sheets were etched further to 4µm enclosing both sides of the mesa. The vertical striations on

the nano sheets are typical results obtained from the mid-UV contact optical lithography.

(a) (b)

Figure 3.8: Cross-sectional SEM views of nanoscale silicon beams after DRIE.

Figure 3.9 shows an etched structure obtained after using two-step lithography to combine
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microscale and nanoscale features. Multiple nanoscale Si beams with a microscale crossbeam

tying them together at the centre are shown in Figure 3.9a. Enlarged views then show details

of different positions of the structure: micro-to-nano joints on the crossbeam (Figure 3.9b) and

buried ends of nanoscale beams near the anchor (Figure 3.9c) show solid connection of the struc-

ture. In Figure 3.9d, etched nanoscale beams show extremely high quality with a translucent

view under SEM illumination. The height difference between the two horizontal Si surfaces can

again be verified by the dark bottom observed from the outer side of the Si sheets. In all cases,

resist in the second optical lithography remains on top of all the microscale features as evidence

of the use of two different levels of lithography. Some minor misalignment resulting from the

second lithography can also be seen.

(a) (b)

(c) (d)

Figure 3.9: SEM views of etched HAR structures showing: (a) and (b) multiple nanoscale beams
tied by a microscale crossbeam; (c) solid connection near the anchor; (d) combined
micro- and nanoscale features with high quality.

The whole structure was then undercut in a continuous SF6 plasma etching step to release the

moveable parts. Nanoscale features were firstly released in a modified Bosch DRIE process with

increased etching cycle time. The increased scallops now should meet beneath the nanobeams,
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thus undercutting the nanoscale suspension. The modified process starts with a passivation cycle

to deposit a passivation layer order to prevent lateral erosion of the suspension itself. To release

the microscale crossbeams, a thin layer of C4F8 polymer was deposited, followed by a short,

high-power SF6 plasma to punch through the horizontal surface. This step effectively removes

the deposited polymer on the Si substrate but keeps the polymer on the vertical feature as a

passivation layer in the following step. A final isotropic SF6 plasma etching step was then used

to undercut the microscale crossbeams. The RF power in the final etching step was deliberately

be kept low to avoid over-heating the nano suspensions.

Figure 3.10a shows partially undercut nanobeams. A clear gap at the bottom of the Si sheets

shows where effective undercutting has occurred. Further undercutting will then gradually re-

lease the nanobeams as shown in Figure 3.10b. Figure 3.10c shows cleaved nanobeam before

completing undercut. Here, part of the nano suspensions has been formed without any sign of

erosion. Figure 3.10d shows fully released nano suspensions in a single-ended actuator. The

nanoscale beams are thoroughly released from the Si substrate. This can be confirmed from

the identifiable remnant of the original mesa feature underneath (a closed cross-sectional view

can also be found in Figure 3.10c). This behaviour greatly assists assessment of the distortion

of released structures, which otherwise can be difficult. A further isotropic etching step is then

necessary to undercut the crossbeam. Details of a fully released device will be shown in the

following section.
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(a) (b)

(c) (d)

Figure 3.10: SEM views showing: (a) partially and (b) completely undercut nanobeams; (c)
cross-sectional view before completing undercut; (d) released nanoscale beam ar-
rays.

3.2.2 Prototype devices

Prototype devices based on bulk silicon wafers are described in this section. As shown in Figure

3.11 all devices here are thoroughly released for approx. 4µm by SF6 plasma undercut. Figure

3.11a and 3.11b show the released central crossbeam on a double-ended actuator. In each case,

an etched remnant can be seen in the silicon substrate beneath both the micro- and nanoscale

features after release. Similarly, released single-ended NEMS actuators are shown in Figure

3.11c and 3.11d. At the end of the single-ended crossbeams, continuous 3D Si sidewalls can be

seen as a supplementary feature. All features show robust connections between microscale and

nano-scale features, with little sign of residual stress and erosion.
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(a) (b)

(c) (d)

Figure 3.11: SEM views of completely released double-ended ((a) and (b)) and single-ended
((c) and (d)) actuators by plasma undercut.

The prototype devices here prove the viability of the STL NEMS process, and have demon-

strated a satisfactory yield over 70%. Verification of mechanical movement can now be investi-

gated. However, in order to analyse the mechanical performance of any electrothermal actuator,

it is necessary to drive the device electrically. Using bare Si, however, there will be a consid-

erable current leakage through the silicon substrate. Hence, it is necessary to extend the STL

process to BSOI wafers (which contain an oxide interlayer than can be used as an insulator) as

described in the next section.

3.3 NEMS actuators on BSOI wafers

The process details and fabrication results of the single-layer STL process based on BSOI wafers

will be described in this section. In addition to electrical insulation, BSOI wafers allow a much

more control of the depth of any mechanical parts, and consequently much better control of

mechanical performance. Here, prototype devices were fabricated in 100mm diameter BSOI
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wafers, obtained commercially from Icemos Technology, Belfast, with a 2µm thick buried oxide

layer and a 5µm thick device layer.

3.3.1 Fabrication steps

A modified STL process was developed to fabricate NEMS on BSOI wafers as shown in Figure

3.12 [125]. As before, a first conventional lithography step is used to pattern the initial mesas,

which are then etched by DRIE (steps 1, 2). The resist is then stripped (step 3). A conformal

metal coating is then deposited, and horizontal surfaces of this metal are removed by directional

etching (steps 4, 5). The result is a surface mask defining the nanoscale features. The second

conventional lithography step is then carried out to add microscale parts (step 6). The process

steps, so far, are the same as that used for a bulk silicon device. However, to transfer the

combined pattern into the substrate, the final DRIE step must be extended to reach the buried

oxide layer everywhere (step 7). After stripping the resist (step 8), suspended parts are now

freed by etching of sacrificial oxide in HF vapour (step 9) and metal is deposited over the entire

structure to provide electrical contact (step 10). Alternatively, the final metal layer may be

localized to the anchors by depositing and patterning the metal after step 5, before the final

etching.

Figure 3.12: Schematic diagram of BSOI STL process developed for NEMS.

The mask set as previously described for the bulk device (Figure 3.1) was used. Similar
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results were obtained for the early fabrication steps until final etching down to the buried oxide

layer. To transfer the combined pattern into the Si substrate, the same fine etching Bosch DRIE

process was also used. However, as shown Figure 3-12, the initial mesa pattern led to terracing

of the wafer surface, so that the final etching would reach the buried oxide layer in some regions

before others. Hence over-etching had to be carried to ensure all features etched down to the

oxide. A dry process was used afterwards to strip the resist off with O2 plasma asher.

Figure 3.13a shows a SEM image of a combined feature immediately after the final DRIE

(step 7). The resist from the second optical lithography can be seen remaining on top of the cen-

tral crossbeam; clearly, this resist has planarized the metal sidewall mask well. After stripping

the resist (step 8), the top of the crossbeams shows a stepped nature inherited from the initial

mesa pattern (Figure 3.13b). The metal sidewall mask can also be found continuously extending

to the Si nano sheets. In both figures, it is very clear that etching has been sufficient, and has

been correctly stopped by the buried oxide layer since now there is no height difference between

the two horizontal surfaces of the mesa and the slot.

(a) (b)

Figure 3.13: SEM views of etched double-ended actuators (a) before and (b) after removing the
resist.

Figure 3.14a shows a cross-sectional view of the nanoscale beam obtained by cleaving across

a fully etched but unreleased device. Once again, it is clear that the silicon etching has bottomed

on the oxide layer since the surfaces on either side of the beam are at the same level. The etching

follows the gap width at the bottom defined by the original mesa pattern in the first conventional

lithography. This beam has 100nm width and 4.5µm depth, and shows that a very high aspect

ratio (> 45 : 1) can be obtained, with only minor variations in the vertical direction. An enlarged

view of the top of the beam in Figure 3.14b shows the bilayer (Cr/Au) sidewall mask is still in
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place.

Adhesion of the sidewall mask is quite good, thus it requires some extra effort to detach it.

More detailed information is shown in Figure 3.14c and 3.14d in a closed view. Here, parts

the Si nanoscale beams has been broken and become detached from the metal masks by the

cleaving. The sidewall masks keep continuous with the two layers peeled apart. These two

figures shows two beams on each side of a mesa (c) left and d) right) so that the bilayer structure

are symmetrical as two sidewall features. Scalloped shape of the rear of the original mesas also

reflects on a similar profile of the mask inter layer.

(a) (b)

(c) (d)

Figure 3.14: Cross-sectional SEM views of etched nanoscale beams highlighting the sidewall
masks.

Devices were then released in an Idonus HF VPE (vapour phase etch) system to remove the

buried oxide layer. The process was chosen as a dry process thus to avoid any structure collapse

due to surface tension in drying step. 40% HF was chosen to achieve a rapid undercutting.

However, the rate of undercutting really depended on various experimental factors, such as the

substrate temperature, etching area, window size, etc. A typical rate measured in experiment for
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a single-ended actuator is approx. 10−15nm/min.

Figure 3.15 shows a partially released single-ended actuator. As can be seen, nanoscale sus-

pensions are fully undercut, and show little sign of stress-induced distortion. Any small re-

dundant features due to artefacts in processing will also be removed in this step. The process

has been found to be much less aggressive than the plasma undercut used for bulk silicon de-

vices. The whole device will then be freed by further etching of the residual oxide beneath the

crossbeams,as described in the next section.

Figure 3.15: SEM views of a partially released BSOI single-ended actuator.

3.3.2 Prototype devices

In this section, completed BSOI device structures are demonstrated with SEM photographs.

Figure 3.16shows double-ended (a) and single-ended (b) electrothermal actuators. There are 58

unbroken nanoscale beams in each with a beams separation of 10µm. In both devices, the beam

arrays are uniform and parallel with little sign of stress buckling. Due to the accurate control of

device layer thickness and the low temperature release step, fabrication results show that BSOI

provides a more reliable wafer-scale process, with a higher yield.

Details of fully released devices are shown in Figure 3.17. Figure 3.17a shows a close-up of

the central crossbeam of the double-ended actuator. The microscale crossbeam has now been

fully released from the Si substrate, together with the nanoscale suspensions. Etching quality

for both structures are extremely high without any lateral erosion, especially on the nanobeams.

The suspended beams have highly vertical walls, with little sign of twisting or lateral deflection

caused by residual stress possibly contained in the Cr/Au sidewall masks.

Although devices with suspensions built in at both ends might be expected to show limited
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(a) (b)

Figure 3.16: Full SEM views of completed BSOI devices: (a) double-ended and (b) single-
ended actuators.

stress distortion, similar good results are obtained on the released single-ended device as shown

in Figure 3.17b. With the length of the nanobeams doubled, the structures at the free end still

show similar high quality as above.

Details of the anchors are shown in Figure 3.17c followed by a close-up view in Figure 3.17d.

The micro-to-nano joints between the Si microscale anchors and nanoscale suspensions are solid

and robust. The metal masks continuously follow the initial mesa patterns, which can be tracked

from the overlaid ends at the anchor rear. The anchors are clearly undercut in the HF vapour,

thus eliminating a tracking path to the Si substrate for metallization as shown in Figure 3.12

step 10. This will help to avoid short circuit in device electrical characterization. All devices

presented here are entirely released from the handle layer without noticeable deformation.

To drive the device electrically, a 300nm thick aluminium layer was deposited afterwards on

the entire surface to provide an electrical contact. As shown in Figure 3.18, the trace of the Al

layer below the nanoscale beams also confirms complete release of the suspended structure.
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(a) (b)

(c) (d)

Figure 3.17: SEM views of completely released BSOI devices showing details of: crossbeam for
(a) double-ended and (b) single-ended actuators; (c) and (d) features near anchors.

Figure 3.18: SEM views of a double-ended actuator after metallization.
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3.4 Processing Issues

In this section, processing issues encountered in the fabrication of the prototype devices will be

discussed. Following appropriate failure analysis, many of the problems have been overcome

by adjusting the relevant parameters of single fabrication steps. Other difficulties can be elim-

inated by adopting alternative processing methods, such as changing the sidewall material and

adding extra conventional lithography steps. However, analysing these problems offers a deep

understanding of the STL process and reveals potential problems in future NEMS applications.

3.4.1 Lithography planarization

The second conventional lithography step does suffer from minor difficulties of resist planariza-

tion. During spin coat, care is needed to ensure sufficient coverage of all the original mesas;

failure to do so results in the creation of voids during the long DRIE step. For example, Figure

3.19a shows an SEM view of the central crossbeam of a double-ended actuator after developing

the second resist layer. Here, a thin resist (Shipley 1805) was being evaluated, in an attempt to

achieve higher resolution. Although the resist has filled in the slots between the etched silicon

mesas, it has a poor coverage over the mesas themselves. These would result in a deep slot on

the crossbeam, which is supposed to provide a rigid link between the nanoscale beams.

Figure 3.19b shows another typical failure of planarization. Here a thicker resist (Shipley

S1813) is used to obtain sufficient coverage. However, the stepped nature of the patterned

mesas causes different thickness of the resist on different surfaces, leading to different sizes. A

dentate shaped crossbeam can then be predicted after the final deep etching, and the exposure

and development of the second resist layer must be carried out with special care to minimize

such differences.
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(a) (b)

Figure 3.19: SEM views obtained after the second photolithography showing failure of (a) pla-
narization and (b) pattern transfer.

Effective planarization is therefore required, and a thick resist must be used to ensure full

coverage of the stepped surface. Care is then needed to ensure complete exposure and appro-

priate development; failure to do so results in notched beam shape and creation of additional

artefacts. These difficulties may be minimized by reducing the mesa height as far as possible.

3.4.2 Sidewall mask in deep etching

The quality of the sidewall masks is one of the key elements of the STL process. To begin with,

the adhesion between the sidewall mask and the Si mesa must be good enough to survive the

final DRIE step. Figure 3.20a shows a typical example of mask detachment occurring during

etching. Here, a single-layer Au sidewall has been used as the hard mask for etching nanoscale

features. However, this has detached from the original mesa in the plasma DRIE due to the lack

of a suitable adhesion layer. Hence, the use of an additional Cr layer is essential, despite the

fact that a bilayer Cr/Au sidewall mask is likely to suffer from increased residual stress, as will

shortly be described.

Figure 3.20b shows an obvious distortion of the sidewall masks after DRIE with high plasma

power. Here, a bilayer Cr/Au layer has been used as the sidewall mask, but has been severely

damaged by the high power SF6 plasma etching and melted into localized metal balls. An

appropriate low etching power is therefore needed to prevent sidewall mask deformation and to

maintain it vertical through the complete etching process.

The initial mesa shape is another key to obtaining high quality sidewall masks. Since its shape

will be inherited by the sidewall mask, the mesa edge must be vertical. For example, Figure
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3.20c shows a trapezoidal mesa cross-section with the metal sidewalls leaning inward from both

sides. The trapezoidal mesa shape results from the isotropic etching in the first conventional

lithography. The sidewall shape has been caused by etching occurring simultaneously on two

different Si surfaces, combined with an undercut near the bottom of the sidewall masks. Figure

3.20d shows a similar view of the metal masks peeling off from the mesa as etching proceeds,

well before any HAR nano-structure can be formed.

(a) (b)

(c) (d)

Figure 3.20: SEM views showing: metal masks (a) detachment, (b) distortion and (d) peeling
off during DRIE; (c) cross-sectional view of metal masks on a trapezoidal mesa.

3.4.3 Erosion

The main difficulty in deep etching and plasma undercut is to control scalloping and passivation.

Based on the aspects mentioned in Chapter 2, the erosion effect in device fabrication can now

be fully understood. For example, Figure 3.21 shows two typical erosion effects occurring at

the micro-to-nano joints near the anchor (a) and crossbeam (b). In both cases, the combined

structure has been suspended far (almost 5µm) above the Si substrate by plasma undercut. It is

noticeable that most parts of the nanobeams are intact, except the joints. A possible explanation
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is that after the nano suspensions formed, cooling through conductive heat transfer becomes

available only from the anchors and the large crossbeams, which still sit on the substrate. Lo-

calised temperature rises might then increase the etching rate; additionally, the the plasma might

be concentrated at concave corners in the structure.

(a) (b)

Figure 3.21: SEM views of double-ended actuators with erosion occurring near the (a) anchor
and (b) crossbeam.

Most of the erosion effects stem from oversized scallops in nanoscale deep etching. For

example, Figure 3.22a shows erosion occurring at the joints to the central crossbeam of a double-

ended actuator. Once again, it is at the corners that the erosion is concentrated. However, the

damaged parts here appear to be completely different from those in Figure 3.21, presenting a

scalloped outlook arising from the cyclic nature of the DRIE process. This is because the DRIE

process used to undercut the nanobeams is designed to etch with much larger scallops, and the

concentrated plasma again causes unexpected erosion on the joints.

Similarly, Figure 3.22b shown a nanobeam eroded by large scallops from both sides, so that

the damage meets in the middle. Here the bilayer Cr/Au sidewall mask at the top of the structure

is intact, but large scallops and severe erosion can be observed underneath. The erosion has also

led to a poor support for the structures above, with a potential for further collapse in subsequent

deep etching.

In addition to the joints, erosion can also occur along the nanobeams due to the lack of

passivation. As shown in Figure 3.22c, over-etch clearly starts right under the metal sidewall

masks, and once any notches have been formed, the remainder of the Si nanobeam will then

be eroded very quickly. An isotropic etching step in SF6 plasma was therefore developed to

undercut all the silicon features beneath deliberately and leave only the mask metal as a free
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standing structure, as shown in Figure 3.22d. Using this method, suspended Cr/Au beams can

now be realised as nano-structures. These can be used to carry out further analysis of the stress

contained in the metal sidewall masks, as detailed in the next section.

(a) (b)

(c) (d)

Figure 3.22: SEM views of different erosion occurring along the nanobeams.

To conclude, erosion can be fatal in the formation of NEMS structures since there is little

margin for lateral error. However, based on a good knowledge of the Bosch process, most of the

erosion can be overcome by either reducing the scallop size or depositing sufficient passivation

material between two etch cycles. Scalloping may make it difficult to preserve nanoscale feature

width in structures narrower than 100nm. However, modern cyclic DRIE equipment allows

extremely rapid gas switching to minimize scallop formation. Consequently it is likely that the

45 : 1 aspect ratio achieved here can be exceeded.

3.4.4 Stress

The main difficulty with the STL NEMS process is to avoid intrinsic stress in the sidewall

masks. The cause of the effect is most likely the stress formed during the deposition of the two
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sputtered metal layers, due to the large difference between the thermal expansion coefficients of

the two materials (Cr 6.2× 10−6K−1 and Au 14× 10−6K−1). Various types of distortion have

been observed experimentally in fabrication.

For example, Figures 3.23a and 3.23b show double- and single-ended actuators deformed by

residual stress in the sidewall mask. Obviously, the device with built-in beams at both ends

shows less stress distortion, especially with the use of a central crossbeam to tie all the beams

in the array together. Without this constraint, and with a longer beam length, a much more

significant out-of-plane curvature can also be observed in the single-ended device. In this case,

the residual stress in the sidewall mask has clearly overcome the suspension after HF vapour

release.

Figure 3.23c shows the SEM photograph of buckled and broken sidewall masks on a bulk

silicon device. The metal sidewalls are now clearly detached from the silicon sheets underneath

by the stress. The stress is clearly large, as the force is sufficient to fracture the nano sheets

as well. Freed mask metal and adherent silicon sheets also show sign of twisting, which might

suggest the presence of residual stress in both horizontal and vertical parts of the metal mask

layers.

To investigate this effect, a set of free-ended nanoscale suspensions was formed by cleaving,

to assess the lateral deflection of the beams. The separation between each beam was 10µm,

while their length was reduced to 50µm to prevent excessive deflection. As shown in Figure

3.23d, the nanoscale Si suspensions have clearly bent towards the side with the Au layer for

each pair undercut from the same mesa. This directionality can be confirmed by locating the

higher Si surface in the vicinity of each original mesa.

The existence and nature of such stress can then be revealed using alternative processing that

effectively forms gauges for the sidewall stress, as we now show. For example, Figure 3.24

shows the sidewall mask for double- ((a) and b)) and single-ended ((c) and (d)) actuators, which

has been deliberately undercut by isotropic etching in SF6 plasma to remove the silicon and

leave only the sidewall masks in place. In this way, the stiffness of the nanoscale suspensions

is significantly reduced for both in-plane and out-of-plane motion, allowing the deformation

to be magnified. In Figure 3.24a, suspended metal beams from either side of the same mesa

have clearly bunched together, bending towards the outer Au layer in agreement with previous

results. This result indicates differential stress between the Cr and Au layer in vertical parts of

the bilayer metal sidewalls. Figure 3.24b shows a close-up of the structures near the anchor.
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(a) (b)

(c) (d)

Figure 3.23: SEM views showing: deformed (a) double-ended and (b) single-ended actuators;
(c) buckled and broken sidewall masks; (d) deformed free-ended nanoscale sus-
pensions.

The original 10µm separation is retained only at the anchors, and the stress is large enough to

force the beams together in pairs away from these points.

Figure 3.24c and 3.24d show single-ended metal sidewall suspensions that have been released

using a similar isotropic etching process, but with lower power. Although the beam length is

almost double that of the double-ended one, much less deformation is found, with only a minor

out-of-plane deflection at the far free ends. Despite the presence of some minor silicon grass,

the conclusion is clear: etching with higher power plasma may increase the stress in the metal

sidewalls.

The out-of-plane deflection of the single-ended actuators are demonstrated in Figure 3.25.

Figure 3.25a shows the SEM photograph of a BSOI device obtained after HF vapour releasing.

Due to the silicon suspensions under the metal masks, a comparably small out-of-plane deflec-

tion (< 30◦)is found on the free end. This result is then used to compare with the freed bilayer

sidewall masks only in Figure 3.25b: the metal masks have curled out-of-plane by more than
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(a) (b)

(c) (d)

Figure 3.24: SEM views of suspended metal sidewall masks for double-ended ((a) and (b)) and
single-ended ((c) and (d)) actuators showing residual stress.

180◦, confirming the existence of differential stress between horizontal mesa layers. This effect

is attributed to a vestigial layer of Cr beneath the foot of the sidewall masks.

The stress contained in the Cr/Au sidewall masks can now be estimated by using Stoney’s

film-substrate system model published in 1909 [126–128]. The film stress (σ f ) in a bimorph

system (film on substrate) can be estimated using the following equation:

σ f =
1

6Rt f

[(
E f

1−ν f

)
t f

3

t f + ts
+

(
Es

1−νs

)
ts3

t f + ts

]
(3.1)

where R is the radius of the curvature, E f and Es are the Young’s modulus, ν f and νs are the

Poisson’s ratio and t f and ts are the layer thickness of the films and substrate, respectively. When

the film is much thinner than the substrate, the first term in the brackets can then be neglected.

Thus, the film stress can be calculated as:

σ f =
1

6R

[
Ests2

(1−νs)t f

]
(3.2)
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In the case shown in Figure 3.25b, as all the silicon has been removed deliberately, the bi-

layer sidewall masks hence consist of a layer of Cr (t f = 10nm) and a layer of Au (ts = 500nm).

The radius of curvature R is measured as 475.1µm. And the following substrate material con-

stants were assumed: Young’s modulus Es = 79×109N/m2 and Poisson’s ratio νs = 0.4. The

estimated stress σ f is hence 1.15×109N/m2.

The third example of stress effects is shown in Figure 3.25c: here, the Si nano sheets have

again been undercut, but this time leaving the microscale crossbeam remaining at the free end.

This now results in a larger out-of-plane curvature, since the free end now is much heavier than

that shown in Figure 3.25b. A close-up of the crossbeam is shown in Figure 3.25d. Clearly, all

the Si nanobeams have been etched to leave only the metal mask and the supporting crossbeam.

The underside of the crossbeam shows new microscale features formed by undercut in SF6

plasma.

(a) (b)

(c) (d)

Figure 3.25: SEM views showing the out-of-plane deflection of single-ended actuators.

In most cases, in-plane and out-of-plane deflections are observed at the same time as shown in

Figure 3.23b. Of course, both effects could be eliminated with an obvious solution: remove the
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mask before sacrificial undercut using wet chemical etching. However, this can cause a variant

of surface tension collapse in which the fragile suspension is twisted down onto the substrate

during the drying step as shown in Figure 3.26. The approach used here - to leave the mask

in place over a deep silicon structure - does allow fabrication of operating devices. However,

a better solution would be to use a single layer SO2 mask, since this can be removed together

with the oxide interlayer during HF vapour undercut.

Figure 3.26: SEM views of nanoscale beams showing surface tension collapse.

3.4.5 Grass

Silicon grass is a common phenomenon in MEMS fabrication. In the STL process, there are

two main reasons for grass formation after the final deep etching. One is the residual specks of

metal on the silicon substrate remaining from previous processes, which in most cases have been

proven to be residual Cr. These specks might be caused by re-deposition during the selective

sputter etching in Ar plasma. However, lengthy wet Cr etching afterwards can remove these

specks successfully.

The other cause is excessive passivation deposited in the final deep etching step. If the passi-

vation layer on the horizontal surface is not consumed in the next etching cycle, residual specks

of polymer will act as micromasks, causing silicon grass all over the wafer. For our NEMS

process, this is more severe than usual. Since the Bosch DRIE process has been deliberately

modified to protect nanoscale structures from lateral erosion, any similar-sized artefacts and

grass will also be protected. As shown in Figure 3.27a, silicon grass can be formed almost

everywhere as a result [129]. A cross-sectional view of the sample is shown in Figure 3.27b.

Here, the length of the grass is almost the same as the nanoscale Si sheets, suggesting that the
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formation of the grass most likely starts at the same time as the final deep etching.

(a) (b)

Figure 3.27: (a) Top and (b) cross-sectional view of silicon grass formed after DRIE.

In the examples above, the devices are fabricated on bulk silicon wafers and the images

are taken after the final etching step. In the following plasma undercut process, most of the

grass will then be cut and fall onto the silicon substrate, which would not be helpful to solve

the problem. Nevertheless, a much better result can be obtained when similar BSOI devices

are released in HF vapour. Since the wafer is mounted upside down in the etcher, the grass

simply falls away when the oxide layer is removed. However, the best solution is to prevent the

formation of grass in the first place, which requires further adjustment of the etching process.

3.5 Discussion

In this chapter, a single-layer STL process has been designed and developed for mass paral-

lel fabrication of NEMS. The nanoscale features are formed by depositing a conformal layer

of metal mask which is then selective etched on the horizontal surfaces, leaving the vertical

surfaces as a sidewall mask. The defined pattern is then transferred into silicon by DRIE to

form extremely HAR features. Fabricated nanoscale structures have been successfully com-

bined with microscale parts patterned by a second lithography step before final DRIE. Structure

suspensions can be achieved by either plasma undercut for bulk devices or HF vapour under-

cut for BSOI. The typical in-plane dimension of the nanostructures obtained is 100nm with an

aspect ratio of 45 : 1.

Two device lay-outs have been designed and fabricated based on the developed single-layer

STL including double-ended and single-ended electrothermal actuators. Fabrication results
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show success on both bulk silicon and BSOI substrates. Prototype devices have been demon-

strated with excellent feature quality. However, the process still suffers from a number of

processing issues, mainly in optical lithography, DRIE and residual stress in sidewall masks.

Possible approaches to solutions have been proposed including optimising existing or adding

additional process steps. Also, the process is still limited by typical topological constrains in-

herited from general STL, as it cannot form single cantilevers and all nanoscale features must

have the same in-plane width.

Apart from these, good results have been obtained for NEMS devices with combined struc-

tures of microscale and nanoscale parts. Hence a wider range of NEMS devices with various

potential applications [130, 131] can be designed based on STL later.
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4 Characterization of single-layer NEMS

actuators

In this chapter, models and initial performance characterizations are presented for the NEMS

electrothermal actuators fabricated in Chapter 3. In Section 4.1, surface profiles of double-ended

BSOI electrothermal actuators are acquired using a non-contact interferometric optical pro-

filometer, to evaluate the condition of the completed device and investigate any distortions due

to stress. Experimental characteristics of a complete device are then presented. The equipment

and experimental set-up are introduced, and electro-mechanical performance is characterized

by actuating the device using DC and AC drive currents, and static and dynamic performance is

presented. Difficulties with measuring nanoscale devices are highlighted. Finite element anal-

ysis (FEA) is then used to provide numerical models for device performance. Problems with

numerical simulation and the general inadequacy of this approach for devices with ultra-thin

beams are also highlighted.

In Section 4.2, single-ended shape bimorph actuators which can also act as stress gauges are

characterized experimentally using similar methods to show the diversity of the device types

that can be fabricated by STL. Experimental data and FEA analysis are both presented once

again. In Section 7.6, the difficulties encountered in designing and testing NEMS devices are

further discussed based on practical experience of experimental measurement and numerical

modelling.

4.1 Buckling-mode actuator

Figure 4.1a shows the lay-out of a double-ended V-beam actuator fabricated by the single-layer

STL process. The actuator has S parallel chevron-shaped nanoscale beams with length L tied by

a cross beam with in-plane width WC at the center. All the hot arms have a common slope angle

of θ and are anchored at either end. The device can therefore be actuated electrothermally by
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passing a current between the anchors and through the nanoscale beam array. Figure 4.1b shows

SEM view of the overall structure of a prototype device after fabrication.

L

Anchor

Crossbeam

Hot arms Anchor

θ

S

I

(a) (b)

Figure 4.1: (a) Lay-out of a double-ended buckling-mode V-beam actuator; SEM vies of the
overall view and close-up of a prototype device after fabrication.

4.1.1 Surface profile

Surface profiles of completed devices were characterized using a scanning white light interfer-

ometric profilometer (Wyko NT9100, Veeco Inc.) as shown in Figure 4.2a. The non-contact

imaging system is mounted on a vibration isolation table. It measures surface topography from

nanometre-scale roughness through millimetre-scale steps, providing 3D surface metrology for

device development and failure analysis. A typical resolution for roughness analysis is below

10nm depending on the surface condition.

(a) (b)

Figure 4.2: (a) Wyko NT9100 white light interferometric profilometer; (b) the general arrange-
ment for electrothermal actuation using probe tips positioned by 3-axis micro-
manipulators.
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Figure 4.3 shows the reconstructed surface profiles of a double-ended electrothermal actuator.

The device is fabricated on a 5µm device layer on BSOI with a beam separation of 10µm. The

combined structure of a nanoscale beam array and a microscale crossbeam is fully undercut

and released from the substrate using HF vapour. However, the gaps between the suspensions

and the Si substrate cannot be seen using the top-down optical inspection system. Although

the dimensions of the nanoscale beams (100nm) are clearly below the in-plane resolution of the

imaging system, there is sufficient reflection to generate the complete 3D structure as shown.

Figure 4.3a shows an oblique view near the crossbeam. The stepped surface of the crossbeam

follows the mesas used to define the sidewalls. This effect could be eliminated by replacing the

Si mesas by sacrificial layer such as silica. The nanoscale beams are parallel and highly vertical,

with an almost perpendicular connection to the crossbeam without any tilting or twisting due

to stress, despite the fact that the sidewall mask is still in place. The exposed wafer surface

is extremely clean, and lacking in particulate debris. The oblique view shows the solid joints

at the corner of intersections. Figure 4.3b shows a similar 3D image near the anchors. After

stripping the resist, terracing can be seen on the top of the anchors, where the original mesa

array intersects the anchors. The vertical striations on the nanobeams are typical results from

optical lithography. The 3D reconstructions verify the high structural integrity and quality of

the completed device, especially the multiple nanoscale suspensions.

(a) (b)

Figure 4.3: Reconstructed 3D surface profiles of a double-ended electrothermal actuator show-
ing regions near the (a) crossbeam and (b) anchors.

Figure 4.4a shows a line-scan profile extracted from the 3D data above, measured along

the crossbeam. The feature height corresponds well to the original device layer thickness and

its consistency shows that the structure has been released without any significant out-of-plane
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deflection.

Figure 4.4b shows a line scan profile measured at 1
4 of the beam span, where the spacing

between the beams is unconstrained. The spacing of the nanoscale beams accurately reflects

the original mesa width (10µm), again confirming a lack of stress-induced distortion. However,

since the beam width lies below the resolution of the imaging system, there is insufficient reflec-

tion from the top surfaces of the nanoscale beams and some variation in apparent height. The

reconstructed 3D images confirm the surface profiles of the double-ended actuator shown in the

SEM photographs in Chapter 3. To evaluate realistic performance, mechanical performance of

prototype devices was then characterized experimentally.

(a) (b)

Figure 4.4: Line-scan profiles extracted from 3D surface profiles measured (a) along the top of
the crossbeam and (b) across the nanoscale beam span.

4.1.2 Mechanical performance

Mechanical motion was first confirmed using a vibration stage, to ensure the suspended structure

was thoroughly released from the substrate. The device was then actuated by electrothermal

heating, and the corresponding static and dynamic performance was characterized.

After removing the oxide interlayer using HF vapour phase etching, it is important to verify

the mechanical motion of the device prior to further quantitative characterization, as it is easy

for the suspended structure to remain fixed by any residual oxide underneath. Verification of

mechanical motion was carried using a piezoelectrically driven vibration stage, which consisted

of a right-angled stainless steel mount and a ceramic disc piezoelectric element (RS 7243166). A

double-ended device was mounted on the stage and vibrated in plane. Motion was then verified

using an optical microscope equipped with a ×50 objective. In principle, evidence of collective
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resonance could then be obtained by sweeping the drive frequency. However, the very small

in-plane dimensions of both the beams themselves and the resulting displacements lay below

the resolution of the instrument. Other testing methods were therefore investigated to improve

the metrology.

For electrothermal characterization, a thin layer of aluminium was deposited over the whole

structure to form electrical contacts. The device was then mounted on a substrate, placed under

the microscope of an optical metrology system, and electrical contact was made using probe

tips positioned using two 3-axis micro-manipulators. To characterize the static performance, a

DC current was passed between the anchors. The in-plane deflection could then be monitored

using a top-down optical imaging system as illustrated in Figure 4.5a. It was generally difficult

to measure deflections, because of the nanoscale feature size, the transparency of the supporting

beams and the small in-plane displacement. In the end, the Veeco interferometer was found to

give the most useful results with improved in-plane resolution. Figure 4.2b shows the general

arrangement for testing with this equipment.

I

Actuation

Optical observing direction

(a) (b)

Figure 4.5: (a) Schematic diagram of static in-plane deflection measurement using a top-down
optical imaging system; (b) variation of static electrothermal deflection with drive
power.

Figure 4.5b shows the variation of deflection with drive power extracted from the difference

between the thermally relaxed and distorted states of multiple suspension beams using image

analysis software (Vision 4.20, Veeco Inc.). The points of Data 1 and 2 show two sets of data,

together with error bars, obtained from different chevron actuators(S = 58 multibeams with

110nm width, D = 5µm depth, L = 1mm length, 10µm separation and WC = 2µm crossbeam

width). The drive powers were calculated from the drive voltage (up to 21V) and the resistance

(approx. 8.8kΩ) measured between the anchor points. The variation of deflection with drive

power follows a quasi-linear characteristic, which will be compared with the initial numerical
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predictions described below and the theoretical predictions in Chapter 5 later. The device then

suffered from obvious thermal damage with drive power over 50mW, where the measurement

stopped. Data 3 shows the unreasonable behaviour of a device due to thermal damage after a

few measurements.

The experimental results shows that very low powers are needed to achieve a microscale

displacement, compared with a similar MEMS chevron actuator described in [35]. In particular,

for a displacement of approx. 5µm, only 25mW is needed for the NEMS actuator, in other

words, 0.43mW for a single nanoscale beam compared with 180mW for a microscale beam.

A number of attempts were made to characterise dynamic performance. Initially a measure-

ment system consisting of an optical microscope equipped with an ×100 objective, a video

camera and a calibrated on-screen cursor was used to measure the displacement of the cross-

beam tip when driving the actuator at different frequencies. Dark-field microscopy was used to

visualise the motion of the nanoscale beams, whose in-plane dimensions otherwise lie below the

resolution of the instrument. Figure 4.6 shows images obtained near the central crossbeam, with

the device (a) fixed and (b) moving at resonance. For a double-ended electrothermal actuator

with a 58-beam array (W = 110nm width, D = 5µm depth and L1mm length) and a WC = 2µm

crossbeam, a maximum in-plane displacement of approx. 10µm was observed at a resonant

frequency near 1kHz. However it was difficult to measure frequency responses quantitatively

this way since the displacement was generally too small except near resonance.

(a) (b)

Figure 4.6: Dark-field microscope views of (a) fixed and (b) moving double-ended actuators.

A fibre-based confocal microscope system was then used to measure the scattering from a

driven device. Figure 4.7a shows the general arrangement for testing. Light was generated

from a laser diode and then coupled into a fiber, whose tip was placed near the crossbeam
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of the actuator. Backscattered light from the device was coupled into the fiber, and detected

using a mode-stripping photodiode. The output from the photodiode was then further analysed

using an oscilloscope or PC. The device was actuated with a sinusoidal drive and electrical

contacts were made using probe contacts as before. As with all electrothermal actuators, the

mechanical response was at twice of the driving frequency. Once again, experiments were

extremely difficult to perform.

Figure 4.7b shows the measured variation of deflection with drive frequency. The deflec-

tion clearly falls slowly at low (< 1kHz) frequency and more rapidly at high (> 5kHz) fre-

quency. The former effect is ascribed to the well-known first-order roll-off of an electrothermal

transducer, and the latter to the second-order roll-off of a resonant system above the resonant

frequency. There is some evidence of resonance at around 1kHz; however, it was difficult to

distinguish the collective resonance from uncorrelated vibration of individual nanoscale beam.

Hence, to achieve more accurate characterization, it is worth developing a suitable measuring

system with higher resolution for NEMS device.

I

Actuation

Optical measurement 
system

(a)

(b)

Figure 4.7: (a) Schematic diagram of dynamic performance characterization using an optical
measurement system; (b) variation of deflection with drive frequency.

4.1.3 Finite element analysis

Finite element analysis (FEA) was used to build numerical models of device performance. The

simulation environment here is the MEMS module of COMSOL® Multiphysics 4.4.

To provide an FEA estimation of the performance of a pre-buckled V-beam actuator, a 2-D

model of the actuator was built in the X-Y plane. Three physics modules were then used to

analyse the structure, namely the Electrical Currents, Heat Transfer in Solids and Solid Me-
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chanics modules. The first module was used to calculate the local current density and power

dissipation when a heater current is passed through the structure. The second module calculates

the resulting temperature rise after solving the heat conduction equation for solids. The third

module then calculates the deflections caused by constrained thermal expansion. In each case,

appropriate material constants and boundary conditions are defined.

Single crystal silicon was the default material for the whole structure, which is united and

converted to solid in the model. The following material constants were assumed: coefficient of

thermal expansion α = 2.6× 10−6K−1, thermal conductivity kth = 130W·m−1 ·K−1, Young’s

modulus E = 170×109N/m2, Poisson’s ratio ν = 0.28, density ρ = 2329kg/m3 and electrical

resistivity ρ = 20Ω · cm. The boundary conditions assumed at either end of the device were a

voltage difference between DV and zero, zero temperature rise, zero deflection and zero rotation.

Meshing parameters are critical for accurate simulation, and these must generally be chosen

according to experience. Since the geometries of NEMS devices here generally involve high

aspect ratios (100 6 L : W 6 10000), there must be enough elements in the narrow regions to

ensure the accuracy of the numerical calculation. However increasing the number of elements

leads to a rapid rise of the memory and time required for simulation. For very narrow (0.1µm)

beams, it was often the case that no solution was achieved, due to a failure in convergence

and the maximum allowable iteration number (50) was reached without tolerable errors. A

customised mesh size was therefore used depending on the beam width. For example, the

mesh parameters used for the 0.1µm beam were as follows: maximum element size 1×10−5m,

minimum element size 5× 10−9m, maximum element growth rate of 1.05, curvature factor of

0.2, resolution of narrow regions of 10.

A number of different beam widths were considered, namely 0.1µm, 0.5µm, 1µm, 5µm

and 10µm. All structures had a beam length of 1mm and an initial pre-buckle of 10µm at the

midpoint, structured for the 2D model with multi-physics analysis.

To verify the accuracy of each physics module, analysis results were generated separately.

Figure 4.8 shows the current density distribution and temperature distribution for beam width

W = 10µm and 0.1µm respectively, calculated by the Electrical Currents and Heat Transfer

in Solids modules. As shown in Figure 4.8a and 4.8b, the 2D surface plots for W = 10µm

beam show good agreement with the boundary conditions of fixed voltage difference and fixed

temperature at both ends. Hence the current density is almost uniform along the arc length

except small changes due to the pre-buckled V-shape, for a voltage sweep from 1 to 20V as
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shown in Figure 4.8c. In Figure 4.8d, the temperature change clearly follows the solution of

a classic heat conduction equation with zero change at ends and a parabolic variation with a

maximum temperature rise at the midpoint of the span, which will be detailed in Chapter 5

later. For W = 10µm, the peak temperature rise is approx. 8K. Similar results for beam width

W = 0.1µm have also been plotted in Figure 4.8e and 4.8f for comparison. Here, the simulated

voltage ranges again from 1 to 20V to match the parameters in previous experiments. Thus the

current density increases linearly and the peak temperature rise reaches the similar value as that

of the 10µm beam, indicating the analysis of both electrical and thermal modules are valid.
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Figure 4.8: FEA simulation results of V-beam actuators showing: (a) surface current den-
sity distribution and (b) temperature distribution for a 2D model with beam width
W = 10µm; line graphs of variation of (c) current density and (d) temperature with
arc length (W = 10µm); line graphs of variation of (d) current density and (f) tem-
perature with arc length (W = 0.1µm).

Although the FEA analysis shows convincing results in both electrical and thermal analysis,

practical experience shows that the next stage in the calculation (namely, application of the Solid

Mechanics module) is very likely to give erroneous results due to a failure in convergence. For
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example, a 2D thermal expansion model was build with a uniform temperature rise applied

to the whole structure to monitor the buckling deformation. Figure 4.9a shows the deflected

beam shape for a 10µm beam with a temperature change of 350◦C. Here, the deflection in the

y-direction has been exaggerated.

At first sight, this result appears reasonable. However, all three modules were then used

together for the complete evaluation of electrothermal performance. Electrical heating was ap-

plied using a parametric sweep in input voltage for beam widths from 0.1 to 10µm. Power

consumption was then calculated as the product of the applied current and corresponding volt-

age. The y-deflection of the midpoint of the beams was then monitored for all structures, and

plotted as a function of drive power. Figure 4.9b compares the FEA simulation results (points)

with the predictions of an analytic theory (full lines) which will be developed in Chapter 5. Ob-

viously, good agreement is obtained for wide beams (w > 1µm). However, for thinner beams

the FEA results differs significantly from the analytic results, and the scatter in the data for a

beam width W = 0.1µm indicates that it is the FEA result that is erroneous.
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Figure 4.9: (a) 2D FEA model showing the deflected beam shape for a W = 10µm V-beam
actuator; variation of deflection with power consumption for a V-beam actuator with
different values of W in microns, points showing the FEA simulation results and full
lines showing the analytic theory predictions.

The results above suggest that FEA simulation is a suitable method to gaining insight and

estimating device performance. However it is less appropriate for high-aspect-ratio NEMS with

slender beams due to the requirement for very fine meshing to achieve sufficient accuracy.
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4.2 Shape bimorph actuator

Single-ended shape bimorph actuators that can also act as stress gauges were also fabricated

using the single-layer STL process. The original aim was to monitor any deformation caused by

intrinsic stress inherited from the process. These devices were fabricated with a wide arrange of

geometries, based on those of standard MEMS shape bimorph actuators. Figure 4.10a shows the

lay-out of example devices, which typically contain a pointer supported on a set of long arms

and a set of short arms, each of different length (LC and LH) and with a variable number of hot

arms (typically, 2 or 4). The dimensions of the link unit and pointer are indicated as shown in

Figure 4.10a(i) and 4.10a(ii). Strain with respect to the substrate would result in an observable

deflection of the pointer. However, similar deflections could be achieved mechanically and

electrothermally, either by applying a displacement to the pointer tip (Figure 4.10a(iii)) or using

a heater current to generate the strain (Figure 4.10a(iv)).

Figure 4.10b shows a SEM view of the overall structure of a pair of prototype devices after

fabrication. Here two released devices have been designed with a cold beam length of LC =

100µm, hot beam length of LH = 200µm and different beam separations of 10µm and 5µm

respectively. Both have the same in-plane nanoscale beam width of W = 100nm. However,

little sign of deformation has been observed in either case. As a result, we can conclude that the

intrinsic stresses inherited from the STL process (for example, due to the presence of residual

mask material) are very small.
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(a) (b)

Figure 4.10: (a) Lay-outs of single-ended shape bimorph actuators with 2 (i) and 4 (ii) hot arms
with testing diagrams showing mechanical (iii) and electrothermal (iv) actuation.

4.2.1 Surface profile

Surface profiles of completed devices were again obtained using the Veeco interferometric pro-

filometer. Figures 4.11 shows the reconstructed surface profiles of a released device fabricated

on BSOI with a nanoscale beam separation of 10µm. Again, the gaps between the suspensions
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and the Si substrate cannot be seen using the top-down optical inspection system. However, the

3D reconstruction presents a clear picture of the completed device, showing great difference of

in-plane dimension magnitude between the microscale and nanoscale features.

Figure 4.11a shows lateral view of the nanoscale beams connecting to the microscale link

unit. The two sets of nanoscale beams (which are initially parallel to each other) have each

buckled slightly. This effect possibly results from the intrinsic stress in the sidewall masks,

which are still in place after release. Any localised defects and imperfection in material or

structure arising from optical lithography might magnify such phenomena. Apart from that, the

connections between the micro- and nano-scale parts are excellent, with an almost perpendicular

intersection and overlap at the joints.

Figure 4.11b shows the oblique view of link unit and the pointer. Intersecting features have

clearly resulted in solid joints. The vertical striations on the nanobeams are typical results from

optical lithography. The etched structures show highly HAR features from micro- to nano-scale

with nearly vertical edges down to the substrate.

(a) (b)

Figure 4.11: Reconstructed 3D surface profiles of a single-ended shape bimorph actuator show-
ing (a) nanoscale beams with perpendicular intersection and (b) link unit and
pointer.

Figure 4.12 shows line-scan profiles extracted from the 3D data above, measured along region

A (blue line) and B (black and red lines) as shown in Figure 4.11a. All line-scans again clearly

show the combined features from microscale to nanoscale of the demonstrated device. Region

A shows a line-scan across a set of hot arms and the link unit while region B shows that across a

set of hot and cold arms. The spacing of the nanoscale beams is 10µm which reflects the original

mesa width. However, presented nanoscale beam height is less than the microscale parts due to

insufficient reflection from the top surfaces. In region B, the two line-scans (black and red lines)
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of different positions confirm that buckling of the hot arms has occurred due to larger intrinsic

stress on the long beams.

(a)

Figure 4.12: Line-scan profiles extracted from 3D surface profiles measured along region A
(blue line) and different positions in region B (black and red lines) in Figure 4.11a.

4.2.2 Mechanical performance

Displacement can easily be applied to the released device using a probe tip, and the corre-

sponding deflection can then be observed under an optical microscope. For example, Figure

4.13 shows a deflected device before and after applying a transverse deflection to the pointer.

The cold and hot beams have two length (LC = 100µm and LH = 200µm respectively) and the

same in-plane width of W = 100nm. The following lay-out dimensions as illustrated in Figure

4.10a(i) are used: L1 = 110µm×, L2 = 10µm×, L3 = 90µm×, W1 = 33µm×, W2 = 21µm× and

W3 = 4µm×. Surprisingly, large displacements (approximately 16µm here) could be imposed

on the structure by external actuation without any destructive effects. In addition, the deflection

returned back to zero after removal of external actuation, showing good linearity.
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(a) (b)

Figure 4.13: Optical microscope photographs of single-ended shape bimorph actuators (a) be-
fore and (b) after application of a transverse deflection to the pointer.

To evaluate the electrothermal performance, a current was passed between the anchors to

achieve electrothermal actuation (as shown in Figure 4.10a(iv)). The device was again mounted

on a substrate under the microscope of an optical metrology system. A DC current was applied

by probe tips positioned using two 3-axis micro-manipulators and the in-plane deflection of the

pointer was then characterized. This time, deflection measurement should have been easier than

before, as the pointer dimension is now microscale. However, the displacement achieved was

still small < 2µm, and special care had to be taken of the amount of applied current. Since

there were fewer beams in the structure (which could easily be damaged by extensive thermal

heating), it was often found that unpredictable behaviour was obtained with a combination of

buckling and thermal runaway.

Figure 4.14 shows the experimental variation of the in-plane y-deflection versus the square

of applied voltage (V 2) of a complete device with 2 cold arms and 4 hot arms. The following

lay-out dimensions as illustrated in Figure 4.10a(ii) are used: LC = 105µm, LH = 205µm, L1 =

110µm, L2 = 10µm, L3 = 90µm, W1 = 31.5µm, W2 = 21µm and W3 = 4µm. The plotted data

is an average of 10 data sets extracted from the tip of the moving pointing arm. The variation of

deflection follows a quasi-linear characteristic, in reasonable agreement with the trend predicted

by FEA simulations that follow. The maximum deflection is approximately 1.73µm at a voltage

of 3V.
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(a)

Figure 4.14: Variation of in-plane pointer deflection with the square of applied voltage for a
single-ended actuator.

4.2.3 Finite element analysis

FEA analysis has also been used to simulate single-ended actuators by 2D models of the com-

plete device built in COMSOL® using a similar method as before. Single crystal silicon was

again selected as the mechanical material with the same material constants assumed. In contrast

to the buckling mode devices, these structures do have some modes of linear operation, but some

difficulties were still experienced.

Firstly, a 2D model of a 2-2-arm actuator was built in the X-Y plane to estimate the deflection

obtained when a force was applied in y-direction at the free end of the pointer, mimicking

the experiment of Figure 4.13. A fixed constraint was applied at the LHS of each nanoscale

beam as boundary condition, since these attached to the anchors. Meshing parameters were

carefully chosen based on structure dimensions with previous experience. The following lay-out

dimensions as illustrated in Figure 4.10a(i) were used: LC = 100µm, LH = 200µm, L1 = 110µm,

L2 = 10µm, L3 = 90µm, W1 = 33µm, W2 = 21µm and W3 = 4µm. The in-plane widths of the

nanoscale beams covered a range from 0.05µm to 1µm. A point load of 1N/m was applied at

the free end of the pointer in each case.

Figure 4.15a shows the deflected device shape estimated by FEA with a W = 0.5µm nanoscale

beam width. Using the resulting deflection, the equivalent transverse stiffness keq of the structure

was then calculated as shown in Column 2 of Table 4.1.

Despite the slight rotation of the microscale link unit (which can almost certainly be ne-

glected), the nanoscale beams must deflect under this load much like a conventional beam with

one end fixed and one end guided. A free body diagram can then be drawn for each individual
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Figure 4.15: (a) 2D FEA model showing the deflected device shape of a single-ended actuator
for nanoscale beam width W = 0.5µm; (b) free body diagram of a loaded single
beam with one end fixed and one end guided.

Beam width W (µm) FEM keq (N/m) Analytic keq (N/m) Relative error
1 1.9650 1.9125 2.74%

0.8 1.0280 0.9792 4.98%
0.5 0.2559 0.2391 7.05%
0.2 0.0164 0.0153 7.06%
0.1 0.0014 0.0019 27.32%
0.08 0.0001 0.0010 80.88%
0.05 0.0020 0.0002 740.78%

Table 4.1: Comparison between FEA and analytic calculations of the transverse stiffness of a
single-ended shape bimorph actuator.

beam as shown in Figure 4.15b. For a point end load, the beam should undergo a transverse

deflection of4y = PL3

12EI , where P is the applied load, E is Young’s modulus of the material and

I is the second moment of area of the beam as I = W 3D
12 . Thus, the transverse stiffness k of a

single beam should be:

k =
P
4y

=
12EI

L3 (4.1)

For two pairs of nanoscale beams of different length arranged in parallel, the equivalent stiffness

keq can be estimated as:

k = 2× (k1 + k2) (4.2)

where k1 and k2 are the stiffnesses of the hot and cold arms respectively.

Numerical predictions obtained from this analytic theory are presented in Column 3 of Table

4.1. For beam widths W between 0.2µm and 1µm, good agreement is obtained with the previous

FEA simulation. However, the relative error gradually increases as W decreases, indicating
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that simulation in COMSOL® again starts to require considerable time and memory to achieve

accurate estimates for very slender beams. For beam widths W < 0.1µm, there is a rapid rise in

error with current mesh parameters, suggesting that numerical estimates from the FEA model

must once again be invalid.

To model the electrothermal performance, two types of device lay-outs were considered for

evaluation of electrothermal performance, namely the 2-2-arm and 2-4-arm single-ended ac-

tuators as shown in Figure 4.10a(i) and (ii). The lay-out dimensions were kept the same as

corresponding devices tested experimentally described in Section 4.2.2. 2D models of the com-

plete devices were build in the X-Y plane with all three physics modules applied to the structures

as before. A voltage difference of DV was applied between the fixed ends of the cold and hot

arms to form electrical heating, where the boundary conditions assumed were zero temperature

rise, zero deflection and zero rotation.

Since the structure considered here has a combined feature of micro-to-nanoscale, meshing

parameters have to be carefully chosen to ensure the accuracy of the calculation. Also, in-

plane beam width W = 1µm was finally chosen for the cold and hot arms due to the failure

of convergence when solving models with thinner beams. After practice, the following mesh

parameters are used: maximum element size 4.24× 10−7m, minimum element size 8.49×

10−10m, maximum element growth rate of 1.05, curvature factor of 0.2, resolution of narrow

regions of 6.

Figure 4.16 shows the FEA results of a 2-2-arm device. Figure 4.16a shows the deflected ac-

tuator shape predicted by the 2D model. Clearly the deformed shape could be obtained matching

the experiment results when applying a fixed displacement on the pointer as before. This proves

that the slight rotation of the microscale link unit can almost be neglected when applying elec-

trothermal heating on such structures. Figure 4.16b and 4.16c shows the current density and

temperature distribution for the cold (points) and hot arms (full lines) respectively along the

arc length, calculated by the Electrical Currents and Heat Transfer in Solids modules. Both

two plots show good agreement with the boundary conditions of the same current density in

each arm and fixed temperature at the fixed ends. The temperature change along the cold arms

matches the variation of the front part of the hot arms, whose later shows a trend of rise first

then falls due to cooling from the link unit at the RHS. The end temperature on the moving

ends of both arms are found to be close, showing the temperature rise on the microscale link

unit are minor. However, with DV ranging from 1 to 3000V, the peak temperature rise has been
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enormous and unrealistic. Figure 4.16d shows the y-deflection of the pointer with the square of

applied voltage (DV 2). Here, the variation is clearly linear, however reasonable displacement

(14µm) is achieved by a large voltage (3000V). Considering the enormous temperature rise

obtained before, we should then believe the prediction of deflection is erroneous. Hence FEA

simulation is very likely to be wrong when coupling the third mechanical module with the first

two as before.
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Figure 4.16: (a) 2D FEA model showing the deflected actuator shape for W = 1µm; (b) surface
current density distribution and (c) temperature distribution predicted by FEA sim-
ulations; (c) variation of deflection with the square of applied voltage predicted by
FEA.

Other factors that might lead to the failure of the model should also be considered, due on the

special combination of the micro- and nanoscale features here. Firstly, the extra cooling cool-

ing such as convection may occur due to the small cross-sections and large surface area of this

NEMS beams. This might result in an increase in the power needed to obtain a given deflection.

Secondly, with the experimentally observed pre-buckled shape, the deflection of single-ended

actuator is to some extent less controllable than the V-beam actuators above. Thirdly, all there
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physics module have been applied on the combined structure of micro-to-nanoscale, hence re-

quiring a higher standard of meshing especially on the joint parts.

4.3 Discussion

Completed nanoscale devices have been shown to be fully released from the Si substrate without

significant distortion. However, it is difficult to carry out any electro-mechanical performance

characterization because (a) the width of the nanoscale beams lies below the resolution of the

available measurement systems, (b) the displacement is very small and (c) the roll-off of the

electrothermal transducer disturbs the observation of the collective resonance in dynamic op-

eration. Thus the corresponding parameters should be adjusted in future designs for ease of

testing, for example, a larger displacement might be achieved by changing the beam parameters

W,D,L. Alternatively, characterization could be performed in an electron microscope equipped

with suitable feed-throughs.

In addition, the experimental results that have been obtained show large deviations from the

performance predicted using commercial FEA software. The obvious explanation is that the

structure of the nanoscale beams here involves an extremely high aspect ratio (L : W : D =

10000 : 1 : 50), which requires large number of elements in meshing, especially in the narrow

regions. Customized fine meshing helps to solve the problem to some extent, however the

rapid rise in the number of elements generated still greatly increases the memory requirements

and simulation time in practical use. Thus it is necessary to construct an analytic model for

the behaviour of the NEMS actuator to further analyse the mechanical performance. For the

buckling mode actuator, a suitable theory will be developed in Chapter 5.
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5 Theoretical model for NEMS actuators

In this chapter, we consider the design of pre-buckled electrothermal actuators. As shown in

Figure 5.1a, in plane motion of the device is achieved by passing a current through an array

of beams anchored at both ends. The beams have a pre-buckled shape to ensure motion in the

desired direction, and a central crossbeam is provided to force collective motion. Two well-

known lay-outs have been studied in literature. The first is the actuator with a raised cosine

pre-buckle shown in Figure 5.1b. The second is chevron or V-beam actuator shown in Figure

5.1c. In each case the basis of actuation has been investigated using Euler buckling theory and

FEA, typically using a simplified single-beam model.

Motion
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Figure 5.1: (a) Schematic diagram of a double-ended actuator; geometry of a single (b) actuator
with raised cosine pre-buckle and (c) V-beam actuator.
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However, neither the analytic nor the finite element model of the elastic deformation is very

satisfactory. The former does not provide closed form expressions, while the latter often fails

when the beams are very long and narrow, which increases the required number of elements

rapidly so that the memory and run time quickly become large. An exception is an analytic

approximation for deflection in [33] which is purely derived from geometric arguments.

In this chapter, analytic single-beam models are developed for the two actuator types above.

The aim is to remedy the deficiency of existing work by developing approximations with closed-

form solutions. Particular solutions are found for very slender beams (valid in the double-

ended NEMS actuator in Chapter 3), in which the bending dominates over axial compression.

Actuators with a raised cosine pre-buckle are investigated in Section 5.1 and V-beam actuators

are discussed in Section 5.2. A number of additional considerations (alternative approximations,

intrinsic stress, the relation between deflection and power, and the transverse stiffness) are also

included. Conclusions are drawn in Section 5.3.

5.1 Buckling actuator with raised cosine pre-buckle

We begin with the raised cosine pre-buckle, following the general approach used in [35] (an

extension of earlier work on strain sensors [34]). Figure 5.1(b) shows a double-ended single

beam of length L and central offset h with a raised cosine pre-buckle. The cross-section has

in-plane width W and depth D. The initial shape y00(x) of the beam is described by the static

variation:

y00(x) = hsin2
(

πx
L

)
(5.1)

5.1.1 Analytic model

Buckling is achieved by applying an axial force F0 which generates a corresponding bending

moment M(x). The shape of the loaded beam y0(x) is described by solving the Euler buckling

equation:

EI
d2(y0− y00)

dx2 = M(x) (5.2)

Here I = W 3D
12 is the second moment of area of the beam, and E is Young’s modulus for the beam

material used. In this case, we have M(x) = MA−F0y0, where MA is an unknown end-moment.
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The analysis is then best carried out by substituting y0 = y00 +u0, yielding:

d2u0

dx2 +

(
F0

EI

)
u0 =

MA

EI
− F0

EI
y00 (5.3)

Equation (5.3) can be solved in terms of the sum of a complementary function (CF) and

particular integral (PI). Applying the boundary conditions of:

1© u0(0) = 0

2© u0(L) = 0

3© du0(x)
dx

∣∣∣∣
x=0

= 0

4© du0(x)
dx

∣∣∣∣
x=L

= 0


Boundary conditions (5.4)

the result is:

u0(x) = h
(

k2
0L2

4π2− k2
0L2

)
sin2

(
πx
L

)
(5.5)

where k0 =
√

F0
EI .

This result demonstrates a special quality of the raised cosine pre-buckle: only the amplitude

of the deflection changes during actuation, not the deflected shape. The midpoint deflection

dmax0 is:

dmax0 = u0

(
L
2

)
= h

(
k2

0L2

4π2− k2
0L2

)
(5.6)

Equation (5.6) implies that dmax0 will be infinite when k0L = 2π , which is the Euler buckling

condition.

The axial force F0 is due to constrained thermal expansion and can be found by calculating

the total length of the deflected beam along its length. The total length is approximately:

∫ L

0

√
1+
(

dy
dx

)2

dx≈
∫ L

0

[
1+

1
2

(
dy
dx

)2
]

dx (5.7)

Integrating the deflected beam shape allows the change in length due to bending to be found

as4L = δL−δL0, where δL is the difference from the horizontal length and δL0 is the integral

in the unloaded case:

δL =
∫ L

0

[
1+

1
2

(
dy
dx

)2
]

dx−L =
1
2

∫ L

0

(
dy
dx

)2

dx (5.8)
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Hence, the fractional change in length 4L
L is:

4L
L

=
π2h2k2

0(8π2− k2
0L2)

4(4π2− k2
0L2)2 (5.9)

We now assume that buckling has induced a constrained thermal expansion following from

an average temperature rise4Tavg. The compatibility condition can be written as:

F0

EWD
=4Tavgα−4L

L
(5.10)

Here α is the linear thermal expansion coefficient of the beam material. The three terms in

Equation (5.10) describe change in length due to axial compression, thermal expansion and

bending, respectively. Substituting for F0, the result can be written in the alternative form:

4Tavgα =
4L
L

+β
2k2

0L2 (5.11)

where β = W√
12L

.

Since 4L
L is a function of k0L, and dmax0 is also a function of k0L, it should be possible

to plot dmax0 as a function of 4Tavg. For example, Figure 5.2a shows the variation of dmax0

with 4Tavg based on the analytic model built (full lines), for a silicon beam with the following

assumed parameters: E = 170×109N/m2, α = 2.6×10−6K−1, L = 1×10−3m, h= 5×10−6m,

D = 5× 10−6m and different values of W ranging from 0.1µm to 10µm. In each case, the

variation is generally similar. When the temperature rise4Tavg is negative (so the beam is being

artificially cooled, and hence is under tension) the deflection dmax0 is negative, rapidly tending

to−h. This result implies that a negative temperature rise tends to straighten the beam, as might

be expected. When the temperature rise is positive (so the beam is under compression) the

deflection rises monotonically as the beam buckles. For values of W above 1µm, the variations

differ significantly; however, for values below 1µm they tend to one another. These results

generally correspond to the predictions of FEA (points) and experimental measurements.
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(a) (b)

Figure 5.2: (a) Variation of deflection dmax0 with average temperature rise 4Tavg for a raised
cosine actuator, assuming different values of W in microns (full lines show analytic
theory, points show FEA results); (b) Comparison of the exact and approximate
variations of dmax0 with 4Tavg for a raised cosine (RC) and V-beam actuators (V),
assuming W = 0.1µm. Also shown are the reference predictions (M. J. Sinclair, "A
high force low area mems thermal actuator," in 7th Intersociety Conf. on Thermal
and Thermomechanical Phenomena in Electron. Syst. ITHERM 2000., Las Vegas,
USA, May 2000.)

Although complete, this solution is somewhat unsatisfactory, since it requires numerical eval-

uation. It would be a considerable advantage to have an analytic solution for dmax0 in terms of

4Tavg, so that performance could be estimated directly from geometric parameters.

For very slender beams, as W/L� 1, β ≈ 0. In this case, we may neglect the second term

on the RHS of Equation (5.11). This approximation amounts to neglecting the effects of axial

compression. In this case, we have:

4L
L

=4Tavgα (5.12)

To obtain a suitable solution for dmax0, we then combine Equation (5.6) and Equation (5.9),

to obtain the quadratic:

d2
max0 +2hdmax0−

4L24Tavgα

π2 = 0 (5.13)

Equation (5.13) has two solutions. Retaining only the positive one, the following expression

for the deflection may be obtained:

dmax0 = h

(√
1+

4L2

π2h2 4Tavgα−1

)
(5.14)

Equation (5.14) is the desired analytic solution. It should be noted that it yields a real re-
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sult even when 4Tavg is negative, until 4Tavg = − π2h2

4αL2 . Figure 5.2b compares the exact and

approximate variation of the deflection with the average temperature rise for the same param-

eters as Figure 5.2a, but only the smallest beam width (W = 0.1µm, for which W/L = 10−4).

This agreement is excellent, and the approximate analytic formula tracks the full solution ex-

actly even when the deflection is large. Other curves are superimposed on this figure; these are

discussed in the following sections.

We now consider alternative approximation that might be viable for less slender beams, when

the axial compression term in Equation (5.11) cannot be neglected. Retaining this term, it is

simple to show that:

d2
max0 +2hdmax0−

4L2

π2 4Tavgα +

(
4W 2

3

)
dmax0

h+dmax0
= 0 (5.15)

Equation (5.15) is a cubic function of dmax0, which clearly has an exact numerical solution.

However, focusing again on solutions that yield insight, we now derive an analytic approxi-

mation. We simply assume that the solution dmax0 to this cubic function is close to the earlier

quadratic solution and can be written as:

dmax0c = dmax0q + ε (5.16)

where dmax0q is the solution to Equation (5.13) given in Equation (5.14) and ε is a perturbation.

By substituting, it is simple to obtain:

2ε(dmax0q +h)+ ε
2 +

(
4W 2

3

)
dmax0q + ε

h+dmax0q + ε
= 0 (5.17)

At this point, it might be accurate enough to neglect the term ε2 and the two ε terms in the

fraction, to get:

ε1 =−
(

2W 2

3

)
dmax0q

(h+dmax0q)2 (5.18)

Alternatively, by keeping the two ε terms in the fraction in Equation (5.17), ε can be obtained

as:

ε2 =−
(

2W 2

3

)
dmax0q

(dmax0q +h)2 +
(

2W 2

3

)
h

dmax0q+h
(5.19)
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Thus, the effect of axial compression is to reduce the deflection, by an amount that depends on

W , and (at least for small deflections) ε is proportional to dmax0q. Consequently, the initial slope

of the deflection characteristic must reduce for wider beams. To illustrate this, we now compare

the full solution with the three approximations A1 (Equation (5.14)), A2 = A1 + ε1 (5.18) and

A3 = A1 + ε2 (Equation (5.19)) in Figure 5.3. The exact variation for the maximum deflection

dmax0 with temperature change4Tavg is shown black and the three approximations A1 (blue), A2

(green) and A3 (red) are shown in colour. The assumed parameters are as before, but the beam

width W is increased up to 5µm (so that W/L = 2×10−3) to highlight the differences.

(a) (b)

(c) (d)

Figure 5.3: Comparison of the exact and three approximate variations of deflection with the
average temperature rise for a raised cosine actuators with beam width of (a) 5µm,
(b) 3.37µm, (c) 1.73µm and (d) 0.1µm respectively.

The results show that for a temperatures up to 350◦C (W = 0.1µm), all three approximations

agree with the exact solution for very slender beams (Figure 5.3d). As W rises, the simplest

approximation A1 becomes increasingly inaccurate. However A2 and A3 are both good matches

to the exact solution with W increasing up to 5µm, although both lose efficacy when dmax0 tends

to −h. This behaviour is expected from the form of Equation (5.16), but is unimportant for
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practical applications when positive temperature rises are norm. The best approximation is A3

for a better performance under negative temperature change compared with A2.

5.1.2 Transverse stiffness

We now evaluate the maximum force that can be generated by the raised cosine actuator. We

start by considering the case of a structure with an axial force F0 and an additional transverse

force F at the midpoint as shown in Figure 5.4. The beam bending equation is Equation (5.2),

but the bending moment variation is now:

M(x) = MA−F0y+F
x
2

0≤ x≤ L
2

(5.20)

Here MA is an unknown end-moment. To solve the equations, we substitute y= y00+u, yielding:

d2u
dx2 +

F0

EI
u =

MA

EI
− F0

EI
y00 +

F
2EI

x 0≤ x≤ L
2

(5.21)

y

L

h

MA

xF0 F0

MA

F

F/2 F/2

Figure 5.4: A combined loading on a buckling actuator with raised cosine pre-buckle.

Note that the bending moment is a discontinuous function. Thus the bending must be analysed

in two separate parts. However, since the structure is symmetric, it should be sufficient to assume

a symmetric deflection, satisfying the boundary conditions in the left-hand half of the structure

alone.

Equation (5.21) can again be solved in terms of a sum of CF and PI again. By applying the
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boundary conditions, namely:

1© u(0) = 0

2© du(x)
dx

∣∣∣∣
x=0

= 0

3© du(x)
dx

∣∣∣∣
x=L/2

= 0


Boundary conditions (5.22)

the result is:

u =

(
F
EI

)(
1

2k3

)
{kx− sin(kx)+G[cos(kx)−1]}+u0 (5.23)

And the deflected beam shape is y = u+ y00. The midpoint deflection is then:

dmax = u
(

L
2

)
=

(
F
EI

)(
1

2k3

)(
kL
2
−2G

)
+dmax0 (5.24)

Clearly the first term above is due to the transverse load, while the second term is due to

the axial compression. Note that the value of k is not fixed, but will change when the transverse

force F is applied. To find out how it change, we must examine the strain compatibility condition

(Equation (5.10)). However, for very slender beams, we may again neglect the term F0
EWD on the

LHS.

Calculation of 4L
L follows the method previously used. Using the deflected shape in Equa-

tion (5.23). Also, from the strain compatibility condition, we must again have 4L
L =4Tavgα .

However, the temperature has not changed, so that:

4L0

L
=
4L
L

=4A+4B+4C (5.25)

where4A,4B and4C are three separate terms composing the calculated results of 4L
L .

Unfortunately, evaluation of Equation (5.25) is likely to be very difficult, unless we make

appropriate approximations. If kL is small, we can expand the results as power series, giving:

4A =−π
2h2 768k2

(4π2− k2L2)3 (5.26)

4B = π
2h2 k2(8π2− k2L2)

4(4π2− k2L2)2 (5.27)

4C = h2 12k4L2

5(4π2− k2L2)2 (5.28)

(5.29)

117



Re-arranging, we then get:

4L
L

= π
2h2 k2

4(4π2− k2L2)3

[(
1− 48

5π2

)
k4L4 +

(
192
5
−12π

2
)

k2L2 +
(
32π

4−3072
)]
(5.30)

This yields the value of 4L
L needed in Equation (5.9). Substituting, we get:

k2

k2
0
=

(
4π2− k2L2

4π2− k2
0L2

)3 k4
0L4−12π2k2

0L2 +32π4(
1− 48

5π2

)
k4L4 +

(192
5 −12π2

)
k2L2 +(32π4−3072)

(5.31)

When both k0L and kL are small, we get:

k2

k2
0
≈ 32π4

32π4−3072
=

1
1− 96

π4

≈ 69.13 (5.32)

The stiffness of the actuator is defined as the force needed to return the transverse deflection

to zero. Clearly, the deflection dmax in Equation (5.24) can be eliminated if:

F =
4k5hL2

(4G− kL)(4π2− k2L2)
EI (5.33)

To evaluate the stiffness, the results above now need to be related to the deflection dmax0 in

Equation (5.6). Combining the necessary results we obtain:

kT =
F

dmax0
= f

(
EI
L3

)
(5.34)

where,

f =
k2

k2
0

·
4k3L3

4G− kL
·
4π2− k2

0L2

4π2− k2L2 (5.35)

When k0L and kL are small, we can expand G as a power series, to get f ≈ k2

k2
0
× 192. Conse-

quently, the stiffness of the actuator is:

kT = f
(

EI
L3

)
≈ 69.13×192

(
EI
L3

)
≈ 1.33×104

(
EI
L3

) (5.36)

The term 192
(EI

L3

)
is the transverse stiffness of a centrally loaded built-in beam. The action

of shaping the beam and adding an axial restraint at either end therefore raises the stiffness by

considerable amount, the factor 1
1− 96

π4
≈ 69.13 previously found.
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The results above are valid only for small kL. For comparison, we need an accurate calcula-

tion. Earlier work suggests that we must perform two calculations, firstly with axial force alone

(to find the transverse displacement caused by buckling), and secondly with both axial force

and transverse force (to find the transverse force needed to restore the transverse displacement

to zero).

Clearly, all that is needed are values for k0L and kL, which should satisfy the strain compat-

ibility condition Equation (5.25). A MATLAB program was written to implement the above

algorithm, using Newton’s method to find kL for 100 values of k0L between 0 and 2π . Con-

vergence is easily achievable, even when k0L approaches 2π , and the relative error is less than

10−8.

Using these values, the deflected beam shapes can be found. Figure 5.5 shows typical shapes,

for k0L = 0π , 0.39π , 0.79π , 1.18π , 1.57π and 1.96π . The black line shows the original beam

shape, a raised cosine peaking at y00 = h. The blue line shows the shape after applying the axial

load. Once again, this is a raised cosine, but with a much larger peak amplitude. The red line

shows the shape after applying a transverse force FT to return the beam to its initial position at

the midpoint. Clearly the final shape now incorporates higher order buckling modes. However,

it appears to satisfy all the boundary conditions (position and slope at x = 0 and x = L
2 ) correctly.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Variations of y00/h, y0/h, y/h with x/L, for k0L = 0π , 0.39π , 0.79π , 1.18π , 1.57π

and 1.96π .

A second MATLAB program was used to compare results for the transverse stiffness. New-

ton’ method was again used to find kL values for each k0L based on Equation (5.25). Figure 5.6

shows the variation of the accurate and approximate scaling factors with k0L. The black line

shows the accurate scaling factor (Equation (5.35)), while the blue line shows the approximate

factor (Equation (5.36)). The largest value (1.33×104) is obtained when k0L tends to zero. This
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is in good agreement with the approximate theory, and implies that the transverse stiffness is

very high at low deflections (approximately 69 times that of a centrally loaded built-in beam).

However, the value falls rapidly as k0L increases, implying that this increase is quickly lost.

Furthermore, the approximate theory is only valid over a very restricted range (for k0L up to

0.5π), since the addition of a transverse load must increase the axial load.

Figure 5.6: Variations of stiffness scaling factor with k0L/π .

5.2 Buckling actuator with chevron pre-buckle

We now repeat the analysis for the V-beam actuator shown in Figure 5.1(c). The beam has

length L and tilt angle θ , so the central offset is h = L
2 tanθ . As before, the beam cross-section

has in-plane width W and depth D. The initial beam shape y00(x) is described by the static

variation: 
y00(x) =

h
2

tanθ ·x 0≤ x≤ L
2

y00(x) =
h
2

tanθ ·(L− x) 0≤ x≤ L
2

(5.37)

5.2.1 Analytic model

Buckling is again achieved by applying an axial force F0. Since y00 is a linear function of x

when 0≤ x≤ L
2 , Equation (5.2) can be written in the form:

d2y0

dx2 +
F0

EI
y0 =

MA

EI
(5.38)
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Here MA is an unknown moment, I = DW 3

12 is the second moment of area, and E is Young’s

modulus.

The boundary conditions are:

1© y0(0) = 0

2© dy0(x)
dx

∣∣∣∣
x=0

= tanθ

3© dy0(x)
dx

∣∣∣∣
x=L/2

= tanθ


Boundary conditions (5.39)

Using the PI and CF method, the general solution of the deflected beam shape can be found

as [34]:

y0(x) =
tanθ

k0

{
sin(k0x)+ tan

(
k0L
4

)
[1− cos(k0x)]

}
(5.40)

This result implies that the beam changes shape significantly as it deflects in contrast to the

raised cosine actuator. The maximum deflection is:

dmax0 =
2tanθ

k0
tan
(

k0L
4

)
−
(

L
2

)
tanθ (5.41)

Similar to the analysis in the case of raised cosine beam, Equation (5.41) can be easily eval-

uated as a function of k0L.

Integrating the deflected beam shape again following the method previous used, the fractional

change in length 4L
L can be found by calculating the difference from the horizontal length δL

and the corresponding value δL0 in the unloaded case. The result is:

4L
L

=
tan2 θ

4k0L

{
2G[1− cos(k0L)]+(1−G2)[sin(k0L)− k0L]

}
(5.42)

where G = tan
(

k0L
4

)
and δL0 =

L
2 tan2 θ .

These results then allow4Tavg to be found as a function of k0L as before, and consequently,

dmax0 may be plotted in terms of 4Tavg. Assumption of the same parameters as those used for

Figure 5.2a yields remarkably similar results, suggesting that the overall deflection in a V-beam

actuator is dominated by excitation of the lowest-order buckling mode.

As before, we now explore possible approximations to the above that might yield a closed-

form solution. A similar approach - relating dmax0 to 4L
L and then solving an approximate

compatibility equation - should work. However, this time, there are difficulties caused by the
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trigonometric functions in (5.41) and (5.42). These can be circumvented using power series

approximations. We first make the substitution λ = k0L
4 . Considering two functions f (λ ) and

g(λ ), Equation (5.41) and Equation (5.42)can be written as:

dmax0

L
= f (λ ) tanθ

f (λ ) =
1

2λ
[tanλ −λ ]

(5.43)

4L
L

= g(λ ) tan2
θ

g(λ ) =
1

4λ

{
tanλ −λ [1− tan2

λ ]
} (5.44)

Since tan(x) can be expanded as a power series as tanx = x+ 1
3 x3 + 2

15 x5 + · · · , we can now

obtain a power series for f (λ ) valid to order λ 4, as:

f1(λ )≈
1
2

(
1
3

λ
2 +

2
15

λ
4
)

(5.45)

Similarly, we can obtain a power series for g(λ ) as:

g1(λ ) =
1
3

λ
2 +

3
15

λ
4 (5.46)

In Figure 5.7, we compare the variations of f1 and f with k0L (Figure 5.7a), and g1 and g with

k0L (Figure 5.7b). The approximations are quite reasonable up to k0L = π , but clearly cannot

predict the exact variations beyond this when both f and g tend to infinity.

Despite this, by combining Equation (5.45) and (5.46), we can now write g in terms of f as:

g2(λ ) = 2 f (λ )+
12
5

f 2(λ ) (5.47)

In Figure 5.7c, we compare the variation of the functions g2 and g with k0L. This time, despite

the obvious inaccuracy in the functions f1 and g1, g2 appears to be accurate even for values of

k0L approaching 2π . A possible explanation is that the errors in the two expansions of power

series have cancelled out.
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(a) (b) (c)

Figure 5.7: Comparison of functions (a) f (blue) and f1 (red); (b) g (blue) and g1 (red); (c)g
(blue) and g2 (red).

Generally, we would prefer to have f expressed in terms of g. Rearranging Equation (5.47),

we get a standard quadratic equation which clearly has two roots; retaining only the positive

root, we obtain:

f =
5
12

(√
1+

12
5

g−1

)
(5.48)

Noting our original definitions of f and g, we can then obtain an analytic expression for the

midpoint deflection dmax0 as:

dmax0 =
5L tanθ

12

[√
1+

12
5tan2 θ

·
4L
L
−1

]
(5.49)

Neglecting the second term on the LHS of Equation (5.10) as before (assuming a very slender

beam), we then have 4L
L =4Tavgα . Thus:

dmax0 =
5L tanθ

12

[√
1+

12
5tan2 θ

4Tavgα−1

]
(5.50)

This result can of course be written in the alternative form:

dmax0 =
5h
6

[√
1+

3L2

5h2 4Tavgα−1

]
(5.51)

This result is the desired analytic expression for dmax0 in terms of 4Tavg. Note that dmax0

is only a function of the beam length L, central offset h (namely angle θ ), and the average

temperature change4Tavg; the other beam parameters such as W and D have disappeared.

Compared with previous results, the performances of the two actuators are very similar.

Clearly, the analytic expressions Equation (5.14) and (5.51) can both be written in the form
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dmax0 = A
√

1+B4Tavg− 1. Consequently, the initial sensitivity of deflection to temperature

change S = ddmax0
d4Tavg

∣∣∣
0

is S = 1
2 AB. We can then obtain the sensitivities SV and SRC of the two

types of actuator, as:

SRC =
2

π2

(
α

L2

h

)
SV =

1
4

(
α

L2

h

) (5.52)

Thus, the sensitivity is always proportional to L2 and inversely proportional to h; for a common

geometry, the ratio Sv
SRC

= π2

8 ≈ 1.2337.

If θ is very small, we can approximate the results in Equation (5.50) further as:

dmax0 = L

√
54Tavgα

12
(5.53)

In these circumstances, the deflection is only a function of the beam length and the temperature

rise.

To evaluate the approximations, we assume the same numerical parameters as before. Figure

5.8 shows the variation of midpoint deflection with average temperature change predicted by the

exact model (black), and the approximation (red) in Equation (5.50) for beam width W ranging

from 0.1µm to 5µm. The results are very similar to those obtained in the raised cosine case

earlier. For W up to about 1.5µm, the agreement between the exact and approximate model

is good, even for large deflections. The approximation then loses its efficacy as W increases

further.
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(a) (b)

(c) (d)

Figure 5.8: V-beam actuator deflection comparison between analytic model (black) and approx-
imation (red) for beam width of (a) 5µm, (b) 3.37µm, (c) 1.73µm and (d) 0.1µm
respectively.

Equation (5.51) is clearly analogous to the similar Equation (5.14) for the raised cosine pre-

buckle. Its predictions are shown superimposed on the earlier Figure 5.2b for the same param-

eters as before, together with the exact solution (for W = 0.1µm). Once again there is good

agreement between the exact and approximate models, despite the apparent inaccuracy of the

functions f and g. In fact, we have constructed higher-order approximations to both these func-

tions, and find that Equation (5.47) is generally an excellent approximation despite the addition

of extra terms in the power series. However, the V-beam actuator gives a slightly larger deflec-

tion for a given temperature rise.

We now compare the results above with the well-known formula for the deflection of a V-

beam actuator in [33] which simply considers the two beam sections to remain straight but

increase in length by an amount4Lh due to thermal expansion:

dmax0 =
√

L2
h +2Lh4Lh−L2

h cos2 θ −Lh sinθ (5.54)
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Where Lh =
L
2 . Re-arranging, and substituting h for Lh · tanθ and4Tavgα for 4Lh

Lh
, we get:

dmax0 = h

[√
1+

L2

2h2 4Tavgα−1

]
(5.55)

Equation (5.55) clearly has a similar form to our new expressions for raised cosine and V-

beam actuators. Its predictions are also superimposed on the earlier Figure 5.2b. It is clearly

a worse approximation than Equation (5.51); however, its prediction is remarkable considering

the crudity of the model.

Figure 5.9 shows the variation of the deflection with average temperature change for different

beam angles, as predicted by the analytic model (full lines) and Equation (5.53) (points). The

variation clearly tends to the limit predicted by Equation (5.53) when θ decreases.

Figure 5.9: Variation of a V-beam actuator deflection with average temperature change for dif-
ferent beam angles θ , as predicted by the analytic model (full lines) and Equation
(5.53) (points).

We now consider briefly the additional effect of intrinsic stress, which can arise in many

processes used for depositing the mechanical layers in MEMS and NEMS. The analysis starts

with the strain compatibility condition in Equation (5.10). The effect of tensile intrinsic stress

σint is to insert an axial strain term −σint
E , so that 4Tavgα can be replaced with 4Tavgα −

σint
E in any subsequent expression. The effect of intrinsic stress is therefore to shift deflection

characteristics of the form presented here to the right. If deflection measurements are then made

from the rest position, the general effect will be to reduce the apparent deflection.

Finally, we consider the relation between average temperature and power, which is of course

well-known (see e.g. [132] [133]). Assuming that the beam is heated along its length by a power

P, and cooled by conduction through the solid, the steady state temperature rise 4T (x) is the
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solution to heat conduction equation:

kthWD
d24T

dx2 +
P
L
= 0 (5.56)

Here kth is the thermal conductivity of the beam material. Hence,

P =−kthWDL
d24T

dx2 (5.57)

Now the solution to the ordinary differential equation Equation (5.56) subject to the boundary

conditions of
1© 4T (0) = 0

2© 4T (L) = 0

 Boundary conditions (5.58)

is

4T = 44Tmax
xL− x2

L2 (5.59)

Here4Tmax is the temperature at x = L
2 . Differentiating, we obtain:

4Tmax =
PL

8kthWD
(5.60)

The peak temperature change 4Tmax and the drive power P are therefore linearly proportional

to each other.

The average temperature rise may then be found by integration as:

4Tavg =
1
L

∫ L

0
4T (x)dx =

2
3
4Tmax (5.61)

So that4Tavg is related to the drive power by:

P =4Tavg ·
12kthWD

L
(5.62)

All the previous expressions for deflection may be converted into variations with power by

making this substitution. For an actuator with N beams, the total drive power is simply PT =NP.

If other forms of cooling such as convection occur, a higher power will be required to achieve
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the same average temperature. This effect can be modelled by writing:

PT = βNP (5.63)

where β > 1 is a factor that models thermal inefficiency (the higher the value of β , the greater

the cooling effect should be). We cannot easily calculate β , but because the cross-sections of

NEMS beams are so small and their surface area is so large, we might expect its value to be

quite large.

We now compare the predictions of our V-beam actuator model with our previous exper-

imental results for a BSOI NEMS actuator. To begin with, the following model parameters

are assumed: N = 58,W = 110× 10−9m,D = 5× 10−6m,L = 1× 10−3m,θ = 0.01rad,α =

2.6×10−6K−1,E = 170×109N/m2,kth = 130W·m−1 ·K−1,ρ = 2330kg m−3.

Model predictions (full lines) are compared with experimental data (points) in Figure 5.10.

Figure 5.10a shows results obtained with the thermal inefficiency term set to β = 1. Clearly,

the theory predicts much larger displacements than are observed experimentally. The initial

slope of the characteristic can be better predicted by assuming an increased value of β . For

example, Figure 5.10b shows the results obtained with β = 6. However, the model still cannot

predict the experimental displacement at large power, but if β is increased further, the agreement

becomes much worse at low power. Much better agreement overall is obtained when a tensile

residual stress of σint = 8× 106N/m2 is combined with a β value of 22, as shown in 5.10c.

This figure also shows the result obtained when σint = 0N/m2 and β = 22. The residual stress

seems consistent with experimental observation, and the large value of β implies that cooling is

dominated by effects other than solid conduction.

(a) (b) (c)

Figure 5.10: Comparison of deflection between analytic model and experimental data with as-
sumption of (a) β = 1, σint = 0N/m2; (b) β = 6, σint = 0N/m2; c) β = 22,
σint = 8×106N/m2 (blue) and 0 (black).
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5.2.2 Transverse stiffness

As before, we now evaluate the force and stiffness of a V-beam actuator. The stiffness can again

be estimated from the transverse force needed to eliminate the deflection caused by actuation.

We consider the case of a V-beam with an axial force F0 and a transverse force F at the midpoint

as shown in Figure 5.11a.

y

L

MA

xF0 F0

θ

MA

F

F/2F/2

L/2

F/2

F0 F0

F/2

(a)

(b)

Figure 5.11: (a) A V-beam actuator actuator with combined loading; (b) force involved when
there is no bending for a V-beam structure.

The beam bending equation and bending moment are defined in Equations (5.2) and (5.20).

Since the V-beam is symmetric, it should be sufficient to assume a symmetric deflection. Hence,

we must solve:
d2y
dx2 +

F0

EI
y =

MA

EI
+

F
2EI

x 0≤ x≤ L
2

(5.64)
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With the boundary conditions as:

1© y(0) = 0

2© dy(x)
dx

∣∣∣∣
x=0

= tanθ

3© dy(x)
dx

∣∣∣∣
x=L/2

= tanθ


Boundary conditions (5.65)

Using the PI and CF method, the solution of Equation (5.64)for the deflected beam shape is:

y(x) =
1
k

(
tanθ − F

2F0

){
sin(kx)+ tan

(
kL
4

)
[1− cos(kx)]

}
+

F
2F0

x (5.66)

And the midpoint deflection dmax is:

dmax =

(
tanθ − F

2F0

)[
2
k

tan
(

kL
4

)
− L

2

]
(5.67)

The stiffness of the actuator is defined as the force needed to return the transverse deflection

to zero. Clearly, according to Equation (5.67), dmax can be reduced to zero if

F = 2F0 tanθ (5.68)

At this point, the end moment MA is zero, and the vector sum of the forces at either end of

each half-beam must yield a force that is entirely axial, as shown in Figure 5.11b, so there can be

no bending. The net axial force Faxial must equal the axial force induced by constrained thermal

expansion as:

Faxial = F0

√
1+ tan2 θ =4TavgαEWD (5.69)

Substituting F0 back to Equation (5.68), the transverse force F needed to reduce the deflection

to zero is:

F = 24TavgαEWDsinθ (5.70)

To evaluate the transverse stiffness, the results must now be related to the deflection dmax0

without a transverse load F . Provided that bending dominates over axial compression in the
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strain compatibility condition, we can write 4L
L = 4Tavgα . Since the temperature has not

changed, the previous analysis of 4L0
L is still valid. Simplifying Equation (5.42) and expanding

4L as a power series, we then get:

4L
L

=
4L0

L
=4Tavgα

≈ tan2
θ

[
k2

0L2

48
+

k4
0L4

1280

] (5.71)

Retaining only the first term, we have:

k2
0L2 =

484Tavgα

tan2 θ
(5.72)

We can also make a power series approximation for dmax0 based on Equation (5.41) as:

dmax0 ≈ tanθ
k2

0L3

96
=
4TavgαL

2tanθ
(5.73)

By combining dmax0 (Equation (5.73)) and F (Equation (5.70)), the transverse stiffness of the

V-beam actuator can be found as:

kT =
F

dmax0
=

4EWD
L

sinθ tanθ ≈ 4EWD
L

sin2
θ (5.74)

This result corresponds well to an expression derived using the complementary energy method

in [34].

5.3 Conclusion

In this chapter, the analytic approximations to the results of Euler theory have been presented

which allow the response of buckling-mode electrothermal actuators to be obtained in closed

form for the first time. Similar deflection characteristics are obtained for actuators with raised

cosine and chevron pre-buckles, suggesting that deflection is dominated by excitation of the low-

est order buckling mode. For both types of actuators, the transverse stiffness is also evaluated

with the analytic model built, to estimate the maximum force that can be generated. The approx-

imations made are valid for actuators with slender beams, when the effects of bending dominate

over those of axial compression. However, we have compared the approximations with nu-
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merical solutions and shown them to be surprisingly accurate, and have presented higher-order

corrections for less slender beams. These results should be useful in future designs of buckling

actuators.
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6 Multi-layer STL for NEMS

In this chapter, a multi-layer sidewall transfer lithography (STL) process is introduced and pre-

sented based on fabrication results of a collection of mechanical NEMS devices with different

structures. This process is an extension of the single-layer STL with three pattern transfer steps,

each only requiring optical lithography, making the method suitable for low-cost, wafer scale

fabrication. However, the main advantage now is to allow nanostructures intersecting with each

other, breaking an important restriction of the single-layer STL.

Process concept and design for the multi-layer STL are introduced in Section 6.1 with il-

lustrated principles. In Section 6.2, pattern transfer and fabrication results obtained in different

process stages are demonstrated. A number of devices with variable functions are then presented

with fabrication results based on the introduced process in Section 6.3. In Section 6.4, typical

processing issues encountered in the multi-layer process are discussed and analysed, possible

improvements are suggested compared with the single-layer process. In the end, a conclusion is

draw n in Section 6.5.

6.1 Process concept and design

As introduced previously, the sidewall transfer lithography is a set of process that can transform

the perimeter of a microscale feature into nanoscale only with facilities and techniques needed

for conventional lithography, making the method suitable for low-cost, wafer scale fabrication.

The general approach is to coat an etched mesa with a conformal layer of material that may be

selectively removed from horizontal surfaces, leaving the vertical surfaces to provide a mask

whose width is determined by the coating thickness. Conventional lithography is used to add

microscale features such as the anchors, and the combined pattern is transferred into silicon

using DRIE. Suspended parts are then freed by etching of a sacrificial oxide interlayer. As

stated in Chapter 3 and 4, two kinds of typical electrothermal actuators have been designed,

fabricated and tested based on such process. In each case, the nanoscale features are generally
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one-dimensional.

Although such processes are potentially attractive for mass production of NEMS, they suffer

from key topological constraints, and overcoming these limitations should extend the range

of applications. For example, additional patterning steps can be easily added to the single-

layer STL process to interrupt the polygons to generate more complex designs. Here, a multi-

layer STL process is developed which provides intersecting nanoscale features. The three-

layer process involves two STL steps to form the nanoscale suspensions in addition to one

conventional lithography to form the microscale parts [134].

Figure 6.1 shows the design of an example two-axis electrothermal stage based on the multi-

layer STL process. The central stage is actuated in two directions (X and Y) by two chevron-

shaped double-ended actuators in each. The layer 1 and 2 STL steps produce nanoscale features

in two directions separately, allowing them to intersect with each other. The layer 3 optical

lithography step is then used to add microscale patterns of anchors and central stage. This

structure represents a useful target, since it contains regions where two of the STL patterns must

overlay (A), regions where each STL pattern overlays a conventional pattern (B) and a region

where all three layers are present (C).
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Layer 1 STL Layer 2 STL

Layer 3 optical lithography DRIE pattern transfer

Y-Drive
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Figure 6.1: Design and lay-out of a two-axis electrothermal stage based on multi-layer STL
process.

Figure 6.2 shows 3D schematic diagram of the formation of overlaid sidewall mask features.

All that is required to form intersecting nanoscale features is the repetition of a process based on

conventional lithography and DRIE to form a shallow mesa, followed by common deposition

of a conformal coating whose horizontal surfaces are removed. The remaining vertical surfaces

form a sidewall mask that follows the combined perimeter of the overlaid mesa patterns. The

repetition of single-layer STL can now fabricate two-dimensional nanoscale lay-outs. A final

conventional lithography step can again be used to add microscale features, and the whole pat-

tern can be transferred into the silicon as before, using DRIE. The detailed information of each

fabrication step is demonstrated in section 6.2.
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Figure 6.2: 3D schematic diagram of the overlaid sidewall masks formed by the multi-layer
STL.

6.2 Fabrication steps

Although the fabrication process can be easily modified to be adapted to both bulk silicon and

BSOI wafers, demonstrator devices are initially fabricated on 100mm diameter bulk silicon

wafers (P-type, < 100 > orientation, with a resistivity of 1−5Ω · cm) for diagnostic purposes.

Here structures were evaluated by SEM using a LEO 1450VP variable pressure instrument,

and by optical surface profilometer using a Wyko NT9100. The latter instrument lacks the in-

plane resolution to visualise 100nm features fully, but nonetheless yields 3D images that aid

structural interpretation.

6.2.1 Process flow

Figure 6.3 shows a suitable process for fabricating suspended NEMS using BSOI wafers. Here,

for simplicity, overlaid nanoscale features are shown side by side. Two different structures

correspond to regions A and B in Figure 6.2 respectively; however, they may clearly intersect
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one another. The two STL steps are carried out by patterning and etching a first set of mesas

(steps 1-3), and then patterning and etching a second set (steps 4, 5). A low-stress conformal

metal coating is then deposited, and horizontal surfaces of this metal are removed by directional

etching (steps 6, 7). The result is a surface mask defining overlaid nanoscale features. A third

conventional lithography step is then carried out to add any microscale parts (step 8). The

combined pattern is transferred into the silicon substrate by deep reactive ion etching (steps 9,

10). Suspended mechanical parts are freed by etching of sacrificial oxide (step 11) and metal is

deposited over the entire structure to provide electrical contact (step 12). Alternatively, the final

metal layer may be localized to the anchors by depositing and patterning the metal after step 7,

before the final deep etching. A similar process may be developed for bulk Si wafer, on which

the suspensions are undercut by SF6 isotropic plasma undercut.

Figure 6.3: Schematic diagram of multi-layer STL based on BSOI.

The process has been firstly used to form NEMS for diagnostic purposes using bulk silicon in

place of BSOI. The masks were a low-cost three-layer chrome-on-glass set fabricated by laser

writing from Delta Mask B.V., Enschede. The nominal resolution is 1.5µm with a minimum

feature size of 2µm. Pattern transfer was carried out using a Quintel Q7000 mid-UV contact

mask aligner, with a typical resolution of 1µm. A 0.4µm thick layer of Shipley S1805 optical

photoresist was used for patterning the first STL layer; 1.6µm of Shipley S1813 resist was used
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for the second, and a thicker resist S1828 of 3µm was used to define the anchors to achieve pla-

narization. Development was carried out using Microposit MF-319, followed by an O2 plasma

descum.

Mesa etching was carried out using a STS single chamber multiplex ICP deep reactive ion

etcher, using a cyclic process based on SF6 and C4F8. The DRIE parameters were 6.8mtorr

pressure, 350W coil RF power and 11W platen power, with a 10s etch cycle using 50sccm SF6

and 5sccm O2 followed by a 5.2s passivation cycle using 80sccm C4F8. Here a short passivation

cycle was chosen to avoid any residual C4F8 layer remaining after each etching step, which

might lead to grass in the final deep etching.

Figure 6.4a shows an SEM view of 10µm wide overlaid mesas formed by two consecutive

cycles of patterning a layer of photoresist and then transferring the resulting features into bare

Si to a depth of approx. 1µm by DRIE. The terraced nature of the compound mesa may clearly

be seen. Figure 6.4b shows the corresponding optical surface profile, which demonstrates that

two sets of mesas with comparable height have been formed. The central block of the nine

patch is the parts of the overlaid mesa from the two-step STL, surrounded by four blocks in a

cross shape which have been through only one DRIE step. And the remaining four blocks in the

corners are etched twice thus being the lowest surfaces.

(a) (b)

Figure 6.4: (a) SEM view and (b) surface profile of overlaid mesas.

Sputter deposition and etching were carried out using a Nordiko RF sputter coater. A confor-

mal layer of 10nm Cr and 90nm Au was first deposited, and horizontal layers of this material

were then etched away by RF sputtering in Ar gas at 2×10−3mbar pressure. The Au layer was

used to form a low-stress metal sidewall mask, while the higher-stress Cr was used to ensure

adhesion.
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Figure 6.5 shows details of the mesas after deposition of Cr/Au and sputter etching. Fig-

ure 6.5a and 6.5b show different views of the terraced mesas with the sidewall mask formed.

The sidewall has a stepped structure that follows the original mesa pattern. Its horizontal sur-

faces have been completely removed and vertical surfaces eroded to roughly half the original

mesa height by sputter etching, as has the edge of the Si mesa. However, continuous joints are

clearly formed between the two layers of metal in both views. Figure 6.5c and 6.5d shows SEM

photographs obtained in region A (c) and C (d) of the two-axis electrothermal stage illustrated

in Figure 6.1. Similarly, metal sidewall mask joints are found following the perimeters of the

combined mesa pattern, indicating the intersecting features to be formed.

(a) (b)

(c) (d)

Figure 6.5: SEM views of sidewall masks formed after sputter etching.

Sputter etching can lead to re-deposition of chromium spots; however, this can be removed

using an additional wet etch in ceric ammonium nitrate/HCl as explained before.

The following deep silicon etching was again carried out using ICP DRIE. However, the

cycle time of the etching step was reduced to 4s to prevent erosion of the nanoscale beam by

scalloping. Similarly, the cycle time of the passivation step was reduced to hold the width of the
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beam close to 100nm for the full feature height. To reach a depth over 5µm, at least 70 cycles

were required in DRIE. Undercut of suspended structures, if needed, could be carried out using

a single cycle with a passivation time of 11s and an etch time of 19s.

Figure 6.6 shows the details of the HAR nanoscale features formed after the combined pattern

has been transferred into the silicon substrate by deep etching for diagnostic purposes. As shown

in Figure 6.6a, the nanoscale features are again continuous from layer-to-layer. A large area of

latticed pattern is fenced up by the nanoscale silicon sheets. Figure 6.6b is the corresponding

optical surface profile, showing that the depth of the cellar is approx. 8µm with an aspect ratio

of 80 : 1.

Figure 6.6c shows a close-up of the top parts of the combined features. The remaining side-

wall masks can be seen at the top. The stepped appearance indicates that they are formed in two

different levels of the STL process. However, if the original height of the mesas are lowered,

or the sidewall masks are over-etched by sputter etching, the thickness of the sidewall masks

can be further reduced. As shown in Figure 6.6d the height difference between the two-level

masks is minimized so that they are almost levelled horizontally. Apart from this, the adhesion

between the sidewall masks and the silicon sheet is quite good, and the HAR features are not

distorted by residual stress in all cases.

141



(a) (b)

(c) (d)

Figure 6.6: (a) SEM view and (b) surface profile of HAR latticed pattern after DRIE; (c) and (d)
close-ups of the top parts of the combined features.

6.2.2 Test dies

It is now important to verify the quality of the features formed in each STL process. To ad-

dress this, a series of test dies are designed with features assigned to the two STL layers in

reverse orders. Figure 6.7 shows the lay-outs of three sets of test dies containing nested and

stacked nanoscale features. All structures are connected to the anchors by overlaying patterned

in the layer 3 optical lithography. The feature quality is then characterized at different stages of

fabrication process using SEM photographs and reconstruction of surface profiles.

Figure 6.8 shows the fabrication results after the third lithography before deep etching. Figure

6.8a shows the SEM photograph of a pair of dies containing nested features (a square, inside

a square border) designed to yield three concentric squire sidewalls with 20µm spacing after

completion of pattern. And Figure 6.8b and 6.8c show stacked features with (b) and without (c)

intersecting parts designed to yield corresponding nanoscale features with 10µm spacing. The

resist remains to show the pattern of the anchors. Figure 6.8d, 6.8e and 6.8f show the surface
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Layer 1 STL

Layer 2 STL

Layer 3 optical lithography

Figure 6.7: Lay-outs of three sets of test dies by multi-layer STL.

profiles. In each case, the difference between the mesas patterned in different STL can barely be

seen. However, the planarization of the resist is less satisfied as stepped features can be found in

the overlaid regions on the anchors. This will potentially cause problems in the following deep

etching, which will be investigated shortly.
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: SEM views ((a), (b) and (c)) and surface profiles ((d), (e) and (f)) of test dies after
the third lithography.

Figure 6.9 shows the corresponding results for the three test dies obtained after the final

etching. Resist are stripped off to characterized the overlaid features. As shown with the SEM

photographs in Figure 6.9a, 6.9b and 6.9c, the HAR nanoscale features are formed following

the perimeters of all mesas as designed. The feature width here is clearly far below that of

the original mesas patterned in the optical lithography process. As expected, the following 3D

surface profiles shows the same depth of nanoscale Si sheets are formed in all cases. Among

these, there are regions where show the joins between the two levels of STL and the anchors are

at the same level (Figure 6.9d) and stacked with an intersecting structure (Figure 6.9e), as well

as those with a stepped appearance (Figure 6.9f).
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: SEM views ((a), (b) and (c)) and surface profiles ((d), (e) and (f)) of test dies after
final DRIE.

With all the results above, similar features have been clearly achieved for all test dies. It

is hence proved that fabrication results of the combined micro- and nanoscale structures are

independent of the assignment of features to the two different levels of STL process.

6.3 Prototype devices

Using the multi-layer STL process introduced above, a batch of prototype devices with different

structures have been fabricated to validate the method and demonstrate a satisfactory yield. A

combination of micro- and nanoscale structures have been adapted to demonstrate the better

compatibility of the multi-layer STL in more potential applications than a single-layer process.

In each case, the main aim is to demonstrate possibilities for patterning rather than investigate

device performance.

6.3.1 Two-axis electrothermal stage

The detailed lay-outs of two types of two-axis electrothermal stages are shown in Figure 6.10.

Figure 6.10a demonstrates the design of type I stage. Four sets of double-ended chevron-shaped

buckling actuators are linked by two long crossbeams intersecting in the center. As shown

in Figure 6.1, they are split into two groups and patterned in the two STL layers separately

to define the nanoscale beams. The intersecting are thus formed after the patterning of the

145



layer 1 and 2 STL. Microscale anchors at both ends are then defined using the layer 3 optical

lithography, as well as the central movable stage supported by the crossbeams. The central stage

can then be driven in both X and Y directions by actuating the V-beam actuators linked with the

long crossbeams patterned in separated groups, when passing a current between corresponding

anchors.

In some cases, similar results may be achieved using alternative lay-outs. For example, as

shown in Figure 6.10b, in type II stage the intersections between the crossbeams and the central

stage may be achieved by sub-dividing the beams into non-intersecting segments that are linked

by the stage itself. Similarly, the intersections between the crossbeams and the actuators may

instead be achieved using additional link-bars as well. As the nanoscale features no longer

intersect with each other, this design can easily be achieved by using a simpler single-layer STL

comparable to the type I stage. However, disadvantages of this approach to design may be a

reduction in dynamical performance due to the inertia of the additional microscale components

required.

Nanoscale

Microscale

Nanoscale

Stage Stage

(a) Type I 2-axis Stage (b) Type II 2-axis Stage

Layer 1 and 2 STL
Layer 3 optical lithography

Figure 6.10: Lay-outs of two types of two-axis electrothermal stages by multi-layer STL.

In both designs, the nanoscale beam has two different lengths of 1mm and 500µm with 10µm

beam separation and θ = 0.01rad slope. The beam length is shortened to reduce the stress effect
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based on previous experience. In both cases, the numbers of actuator beams are much larger

than those shown in Figure 6.10, up to 58 for each V-beam actuator. The central stage is also

designed to be two different sizes of 10µm and 26µm. In type I stage, the long crossbeam has

a total length of 2060µm with a 2µm width, and 10µm of the crossbeam projected beyond the

beam array ends. This length is shortened to 820µm in the type II design as the structures are

now connected by four link-bars with 10µm width and 770µm length. The final mask contains

a mixture of structures with various sizes, and eventually 10 different lay-outs of the two-axis

electrothermal stage are designed and fabricated.

Prototype devices were fabricated based on the CAD lay-outs shown in Figure 6.10. Figure

6.11 shows the top view of complete devices on bulk silicon and BSOI. For a mixture 10 dif-

ferent lay-outs of both type I and type II stages, the overall die size is 22951µm× 13575µm.

All nano structures were released from the silicon substrate by isotropic plasma undercut or HF

vapour.

(a) (b)

Figure 6.11: SEM views of complete two-axis stages after fabrication.

Figure 6.12 shows SEM photographs of type I stage after completion of deep etching. Fig-

ure 6.12a shows supporting structure formed by the two long intersecting crossbeams without

patterning the central stage in the third conventional lithography. A solid and robust support

is achieved which shows that STL Levels 1 and 2 are combined correctly. Figure 6.12b shows

a similar view of the same region, however, this time a 10µm central stage is patterned and

formed simultaneously with the crossbeams in the deep etching. Here fabrication results of all

three levels of lithography are presented together. The double cross shaped support can still be

found after stripping the resist off. A stepped feature can also be found on the top, namely the

upper surface of the central stage is slightly lower than the top of the cross beams, which results
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from resist planarization in the third lithography.

Figure 6.12c shows the combined pattern of the nanoscale beams, with a crossbeam beam

tying the multiple parallel beams together in the middle. Similar to Figure 6.12a, these inter-

secting structures are also formed in the STL levels 1 and 2. Compared with the single-layer

STL process, all beam width here are in nanoscale with a two-dimensional structure.

Figure 6.12d shows a SEM view of half of the V-beam electrothermal actuator after comple-

tion of deep etching. The attachment of the actuator beams to their anchors shows the combina-

tion of STL level 1 and the conventional lithography level 3. The ends of the polygons defining

the beam array are buried in the anchors, so these common features have no effect on the final

device.

(a) (b)

(c) (d)

Figure 6.12: SEM views of type I stage after DRIE showing: two long supporting crossbeams
intersecting each other with (a) and without (b) patterning the central stage; (c)
nanoscale crossbeam tying the multiple beams together; (d) half of the V-beam
electrothermal actuator.

Figure 6.13 contains SEM photographs obtained on a type II stage device after completion

of deep etching. In Figure 6.13a, the nanoscale intersections are replaced and connections have
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been successfully made by the microscale link-bar patterned in the third lithography. The end of

the long beam is buried in the link-bar with a long overlay to ensure solid connection, while the

other end expected to support the central stage. Figure 6.13b shows a central stage of side 26µm

supported on four sets of supporting beams with 4µm overlay. The supporting beams have 2µm

separation, which are all patterned in STL lever 1 and transferred into HAR nano structures in

the final etching. The distribution of small windows is designed on the stage purposefully for in

order to reduce the time needed in undercutting.

(a) (b)

Figure 6.13: SEM views of type I stage after DRIE showing: (a) microscale link-bar connecting
nanoscale beams; (b) central stage supported by four nanoscale beams.

Figure 6.14 shows the completed type I device after plasma undercut. The final isotropic

plasma etch has sufficient range to undercut nanoscale parts, leaving many structures completely

suspended. Since the microscale crossbeam have been replaced by nanoscale intersections, it

is now even easer to achieve suspension on movable parts except the central stages. Released

structures charged quickly during SEM imaging, unless high pressure or thin sputtered metal-

lization was used; however, in this case high quality images could be obtained. For example,

Figure 6.14a shows an SEM view of a chevron actuator from the type I 2-axis stage in Figure

6.10a. Microscale parts remain as anchors fixing the two ends of multiple nanoscale beams

in parallel. Figure 6.14b shows a close-up of the intersecting structure, where the crossbeam

projects beyond the array. The combined structure including the joints has clearly been under-

cut which can be told by the remnant beneath following the original features.
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(a) (b)

Figure 6.14: SEM views of completed type I stage after plasma undercut.

6.3.2 Microgripper

It is also worth noting that functional devices may be fabricated on the same wafer using both

single- and double-layer STL patterning simultaneously. For example, Figure 6.15 shows the

design of two electrothermal microgripper structures, in which the upper half has deliberately

been fabricated in one case using layers 1 and 3 and the lower half using layers 1, 2 and 3. At

the fixed ends, anchors are also patterned in layer 3 and subdivided for each half of the gripper

to allow a heater current to be passed through all the arms. An in-plane motion of the gripper

tip is thus generated due to differential thermal expansion between the hot and cold arms. And

the direction of motion is decided by the position of the cold arms as illustrated.

Combined patterns can be achieved in different ways which depends on the feature size. For

example, Figure 6.16a shows an SEM view of the designed microgripper obtained after the final

deep etching step. The gripper tip consists of two parts with similar shapes but clearly different

feature scales: the lower half is made of nanoscale thin walls following a similar shape of the

outer border of the upper half in microscale. Gripper arms are nanoscale Si beams patterned in

5µm spacing whose left ends are buried in the upper half but intersecting with the lower ones.

Hence, a process combination of either STL layer 1 or 2 with 3 yields micro-to-nano joints,

while nanoscale intersecting is achieved by repeating the first two levels of STL process.

Figure 6.16b shows the an optical surface profile of the achieved structure. Feature size in

the lower half of the gripper is obviously far below that of the upper half defined by the original

mask. The overlaid ends of the nanoscale arms keep the same spacing defined by the original

mesas in the lower half, while those regions are protected by photoresist in the upper half. Here,
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Layer 1 STL

Layer 2 STL

Layer 3 optical lithography

DRIE pattern transfer

I Ihot arms

cold arms

cold arms

Figure 6.15: Design and lay-outs of microgrippers by multi-layer STL.

all nanoscale features have a similar etch depth as the microscale ones but with a much higher

aspect ratio.

(a) (b)

Figure 6.16: (a) SEM view and (b) surface profile of a microgripper after DRIE.

Completed devices then can be realised either by plasma undercut from bulk silicon substrate

(Figure 6.17a) or HF vapour for a BSOI device (Figure 6.17b). The main difference is the

remnant beneath the released features formed in plasma undercut as mentioned before. Besides,

it might also be difficult to undercut large features such as the half microscale tips (up to 15µm)

in SF6 plasma due to lateral erosion on the nanoscale features. As shown in Figure 6.17a, the

lower half of the structure is completely released, while the upper half remains attached to the

substrate in places. With comparison, in Figure 6.17b, a fully released structure is achieved by
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removing the interlayer of a BSOI device in HF vapour.

(a) (b)

Figure 6.17: SEM views of completed microgrippers released by (a) plasma undercut and (b)
HF vapour.

6.3.3 Mesh spring

Two-dimensional nanoscale structuring may be used to create surfaces with mechanical anisotropy

or other forms of anisotropy. To prove this, meshing springs with different lay-outs are designed

and fabricated on the same mask set. Figure 6.18 shows the schematic diagram of a mesh spring

based on the two-layer STL process. Two layers of squares in a staggered pattern are defined in

the STL lever 1 and 2 separately with overlapping on the corners. A meshed structure is thus

formed with microscale anchors and linking block patterned in the third lithography. The effect

of structuring has been to create a spring based on a regular mesh of interlocking, flexible square

elements, with adjacent elements originally assigned to alternating STL layers.

Figure 6.19 shows structures of the designed mesh spring at different stages during process.

Figure 6.19a shows the SEM view of a meshed structure based on overlapping squares with side

length 30µm after completion of patterning of all layers 1, 2 and 3. Each square and its adjacent

elements are assigned to different STL layers 1 and 2. Figure 6.19b shows the optical surface

profile for the same structure. A good planarization is achieved for the overlaid features after

patterning the mesa.

Figure 6.19c and 6.19d show the corresponding results of the same device after the final

DRIE. HAR features a clearly formed exactly as expected with intersecting corners following

the perimeters of defined polygons in previous steps.

Figure 6.20 contains SEM photographs of released structures. As all the movable parts here
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Layer 1 STL

Layer 2 STL

Layer 3 optical lithography

DRIE pattern transfer

Figure 6.18: Design and lay-outs of mesh springs by multi-layer STL.

are nanoscale Si sheets, interlocking structures are cut thoroughly in a rapid process. Figure

6.20a shows a close-up of the suspended features, which verifies that structural integrity of the

interlocking parts has been maintained with good junctions. In Figure 6.20b, a clear gap of

approx. 1µm can be observed between the nanoscale suspensions and the silicon substrate by

tilting the device in a certain angle. Etching quality in the final DRIE must be high due to the

smooth sidewall features for the combined pattern.

It has also been proved that nanoscale parts may easily be combined with common MEMS

components. For example, Figure 6.20c shows a SEM view of a nanoscale mesh spring in Fig-

ure 6.18 combined with a conventional comb-drive electrostatic actuator based on 5µm wide

fingers with 5µm gaps. With this combination, it is now possible to permit reciprocate and

flex the spring during operation of the comb-drive, instead of just the heating the nanoscale in-

terlocking elements electro-thermally. Figure 6.20d presents mesh springs with 15µm elements

with linking blocks. All structures have been thoroughly released from the substrate without any

distortion. These results also proves that all layers of the STL (1, 2, and 3) are compatible with

optical lithography patterns in a very wide size range from a few micrometers to millimetres.
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(a) (b)

(c) (d)

Figure 6.19: (a) SEM view and (b) surface profile of the meshed structure after the third lithog-
raphy; (c) SEM view and (d) surface profile of the meshed structure after DRIE.

(a) (b)

(c) (d)

Figure 6.20: SEM views of completed meshed structures released by (a) and (b) plasma under-
cut and (c) and (d) HF vapour.
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6.3.4 Other springs

Mechanical springs with variable geometries have been designed on the same mask set to prove

the process viability further in different structures. For example, Figure 6.21a illustrates a an-

chored meander spring defined by a comb-shaped mesa which only requires one STL pattern

(either layer 1 or 2) combined with layer 3. Figure 6.21b shows two designs of multi-turn spiral

springs, which have two different types of central tables assigned to process layers 3 and 2,

respectively.

After 3-layer STL pattern

After DRIE pattern transfer

Layer 1 STL
Layer 2 STL
Layer 3 optical lithography

(a) (b)

Figure 6.21: Design and lay-outs of (a) meander spring and (b) spiral springs by multi-layer
STL.

Figure 6.22 shows the completed meander spring after plasma undercut from different views.

In Figure 6.22a, the telltale can be seen as a thin white line indicating the original features with

a 1µm gap from the suspended spring. It is then possible to confirm there is minor distortion

of the released structures which might be induced by stress contained in the sidewall masks.

Similar results can also be found in Figure 6.22b with different spring spacing of 5µm (lower)

and 10µm (upper) respectively.

Figure 6.23 shows the SEM photographs of the spiral springs with two types of central tables.

Clearly the one in microscale (Figure 6.23a) is patterned in layer 3 and the other in nanoscale

(Figure 6.23b) in layer 2. The former yields a solid feature that cannot be undercut using a short-

range isotropic plasma etching, while the latter yields a hollow feature that can. Thus, the two

structures differ in that the former spring is anchored at its centre while the other is free. Detailed
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(a) (b)

Figure 6.22: SEM views of completed meander springs released by plasma undercut.

comparison shows little observable difference in the nanoscale features. Results of these devices

indicate little stress-induced distortion even for large, complex suspended nanostructures.

(a) (b)

Figure 6.23: SEM views of completed spiral springs released by plasma undercut.

Verification of mechanical movement can now be investigated on most of the prototype de-

vices by electrothermal heating, in which BSOI devices should surely provide much better per-

formance. However, most behaviour can also be predicted based on previous experience on

single-layer devices. Hence, it is now more interesting to investigate processing issues that

specifically occurs in the multi-layer STL process, which will be detailed in the next section.

6.4 Processing Issues

In this section, processing issues encountered in the fabrication of the multi-layer STL process

will be discussed. These issues including the common ones which occurred in the single-layer
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STL process, as well as those only found in the multi-layer process. With appropriate failure

analysis, many of the problems have been overcome by adjusting the relevant parameters of

single fabrication steps. Also, analysing these problems offers a deep understanding of the

multi-layer STL process and reveals potential problems in future NEMS applications.

6.4.1 General issues

As an extension of the single-layer STL process, the multi-layer STL inherits potential process

flaws from the previous generation. These issues includes planarization in optical lithography,

erosion in deep etching, stress induced distortion, etc., most of which have been fully analysed

and solved previously. Although common causes are shared, the failure presents in variable

appearance due to complex structures and the additional STL step in the multi-layer process,

which is worth investigating in order to improve device design and yield rate.

Miss alignment is a common problem in MEMS fabrication, which has been observed in the

fabrication of the single-ended NEMS actuator in Chapter 3 based on a single-layer STL pro-

cess. However, this problem can now be fatal in a more complex process as the critical nanoscale

features are now in two dimensions. For example, Figure 6.24a show the SEM view of the cen-

tral part of a miss-aligned two-axis electrothermal stage after deep etching. The nanoscale

intersecting beams have 2µm spacing which are supposed to support the central stage with a

side length of 10µm. However, clear upward miss alignment (> 4µm) can be observed due to

failure in the layer 3 conventional pattern as shown.

Effects of diffraction have been found on many patterned features below 4µm. Figure 6.24b

shows the fabrication results of conducting only STL layer 1 on 4µm square mesa shapes. The

formed mesas have a circular shape in stead of square, with a small hole in the middle in some

cases, due to common diffraction effect in optical lithography. Thus HAR nanoscale features

after deep etching present a cylindrical shape following the outer border of the circular mesas,

where a much smaller cylinder induced by the small holes is enclosed. It is hence noticeable

that additional nanoscale features can be formed by defected features due to diffraction, as the

sidewall masks are formed on any feature borders. The final structure can thus be complicated

and unpredictable. Such common problems existing in optical lithography might be solved by

improving the aligning accuracy or compromised with enlarged feature size in mask design.

During the step of undercut, attempts to increase the range of the plasma-based undercut lead

to rapid erosion of the nanoscale beams as before. As shown in Figure 6.24c, a large area of
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the interlocking structures are eroded on a mesh spring, implying that more selective processes

such as HF vapour release are required. Deformation induced by intrinsic stress contained in

the sidewall masks are still problems unless an alternative mask material is chosen such as

SiO2. However, the structures are found surprisingly robust in some geometric pattern. As

shown in Figure 6.24d, parts of the released spiral spring have be coincidentally noticed can

do so without breaking due to distortion caused by gas flow during pumping and venting of the

vacuum systems.

(a) (b)

(c) (d)

Figure 6.24: SEM views of general process issues showing: (a) miss alignment; (b) diffraction;
(c) erosion in plasma undercut; (d) distortion caused by gas flow.

6.4.2 Multi-layer planarization

For the multi-layer STL process, the pattern transfer does still suffer from difficulties in pla-

narization between different layers. And the problems may start to occur from the layer 2

pattern, not only in the final conventional lithography step as shown before. Thus special care

is needed during lithography to ensure sufficient coverage of all mesas during spin coating of
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resist; failure to do so results in the creation of voids during the DRIE step.

For example, failure of planarization is most likely to occur in regions which need all 3 layers

of STL. Figure 6.25a shows the SEM photograph of a two-axis electrothermal stage with the

overlaid mesas patterned in the first two STL layer (1 and 2) and the central stage in layer

3 after lithography. A similar surface profile in Figure 6.25b shows that the resist thickness in

conventional lithography level 3 appears sufficient at the overlay of STL level 1 and 2. However,

the enlarged SEM view after deep etching in Figure 6.25c contains a large squared hole in the

middle of the intersecting beams. In Figure 6.25d, the corresponding optical surface profile

indicates that the hole is quite deep, which means the resist on the top surface of the combined

mesas has been exhausted rapidly in the final DRIE step.

(a) (b)

(c) (d)

Figure 6.25: SEM views and surface profiles showing failure of planarization in regions pat-
terned by three STL layers before ((a) and (b)) and after ((c) and (d)) final DRIE.

Such problems may exist in regions patterned only in two STL layers as well. Figure 6.26a

shows a SEM view of the chevron actuator and suspension link bar after the final deep etching.

There is a deep slot between the supposedly buried nanoscale beam ends, which is formed due
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to insufficient resist coverage on the polygon shaped mesa in the patterning of layer 3. In Figure

6.26b, another example of the overlaid area near the anchors appears to suffer from similar

failure. These results shows that in a multi-layer STL process, attention still needs to be paid to

achieving good planarization on features only patterned in one STL layer without intersecting.

(a) (b)

Figure 6.26: SEM views and surface profiles showing failure of planarization in regions pat-
terned by two STL layers.

Full planarization is therefore required in both cases. Thus the thickest photoresist has to be

chosen among all three layers and spin coated uniformly over the entire structure during the

conventional pattern of layer 3. However, care is then needed to ensure complete exposure of

the thickest resist layers; failure to do so results in the creation of additional artefacts. These

difficulties may be minimised by reducing the mesa height as far as possible.

6.4.3 Degradation

Degradation is another key problem in the multi-layer process. During the initial patterning of

the overlaid mesas, edge quality of the first set of mesas is degraded by the DRIE step used

to form the second set. In addition, the physical sputtering used to strip the horizontal metal

surfaces does also erode the vertical surfaces of the the Si mesas, as well as remove some of

attached sidewall masks. All these may result in sidewall masks degradation with poor qualities.

As shown in Figure 6.27a, sidewall masks on the higher mesa surface has been over-etched

which breaks the links between the two metal layers. Hence, etched HAR features in Figure

6.27b are found discontinuous in these regions which should certainly affect the stability of the

two-dimensional mechanical structures. And worse still, the over-etched masks are too thin to

protect the Si beam underneath in the deep etching from lateral erosion. Almost 1/3 of the Si
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features are eroded as shown in Figure 6.27b.

The degradation effect can be worse if there is a significant quality difference between the

two metal layers of the formed sidewall masks. As shown in Figure 6.27c, nanoscale features

patterned in only one STL layers manage to survive after the final DRIE step while the remaining

all be eroded severely. This must be attributed to degraded layer 1 mesa quality in layer 2

etching. Figure 6.27d shows a similar failure on the mesh spring. However, this time only

features derived from the overlaid mesas are eroded, which illustrates that sidewall masks in

intersecting regions are initially exhausted in an over-etched case.

(a) (b)

(c) (d)

Figure 6.27: SEM views showing the effect of degradation.

To maintain the integrity and continuity of the sidewall masks, special care is needed to

prevent over-etching in sputtering, and highly vertical overlaid mesas should surely improve

achieved feature quality. Increased mesa height should provide better shading for the sidewall

masks thus alleviate the problem somehow, however other processing problems such as pla-

narization should also be taken into comprehensive consideration to balance the effects. Hence,

process parameters in a multi-layer STL process need to be chosen carefully depending on dif-
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ferent factors in practice.

6.5 Discussion

As introduced in this chapter, a multi-layer sidewall transfer lithography process has been de-

signed and developed for mass parallel fabrication of NEMS. Nanoscale features are spread

over multiple photomasks, and repetitive cycles of optical lithography and shallow etching are

used to transfer these features into a terraced structure. The nanoscale features are formed by

depositing a common layer of low stress metal whose vertical surfaces are selectively etched to

provide a sidewall mask. The defined pattern is transferred into the silicon as a HAR nanostruc-

ture by DRIE, together with other microscale features which can be added in extra conventional

lithography steps. The formation of suspended parts is then achieved by either removing the

sacrificial layer on a BSOI device or plasma undercut on bulk silicon. Using such processes,

multilayer nanoscale structuring of silicon has been demonstrated with a width of 100nm and

an aspect ratio of 50 : 1.

Although achieved intersecting nanostructures have broken certain topological constrains and

extended the range of applications of previous STL, the process still suffers from a number of

limitations. Some of these limitations are inherited from the single-layer STL while the others

are initially observe in multi-layer STL. Firstly, additional photomasks are required, since the

nanoscale features are spread over multiple layers. Nevertheless, the masks contain relatively

large features, and may therefore be low cost. Secondly, overlaid nanoscale features can suffer

from microscale alignment errors, and it is important that these do not impact on device op-

eration. Thirdly, overlaid features suffer a gradual degradation in repetitive etching steps, and

a thicker resist is required to achieve planarization on mesa features formed in earlier stages.

Fourthly, intersecting features contain shallow steps derived from the original mesa pattern. Fi-

nally, additional efforts are needed to remove the metal sidewall masks which currently remains

in situ. Appropriate mask materials have to be chosen and deposited with special care to avoid

stress induced distortion on suspended structures.

Apart from these, surprisingly good results can be obtained. And it is worth noting that

the 100nm in plane feature size demonstrated here is limited mainly by the use of a cyclic

DRIE process with relatively deep sidewall scallops. Much smaller features are clearly possible

using improved etching process and equipment. Current results shows that a wide range of
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nanostructures with different potential application aims can be designed and fabricated. And it

is likely that the range of possible features can be increased using additional process steps and

alternative structure lay-outs.
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7 Nanoscale metamaterial suspensions

7.1 Introduction

In Chapter 6 multi-layer STL has been used to fabricate different types of 2D NEMS suspen-

sions, including nano-scale mesh springs. In this chapter, a simple analysis is developed to

allow the mechanical performance of the mesh springs to be compared with the COMSOL®

FEA predictions and experimental results. Using this analysis we then show that the 2D lattice

can be understood as a material, with equivalent mechanical properties. However, since the

structure can become very complicated as the number of repeating units increases, it is difficult

to construct an exact analytic theory. Although FEA solvers such as COMSOL® should provide

a suitable method of exact analysis, special care must be taken in modelling complicated struc-

tures consisting of slender beams, due to the rapid rise of elements in meshing which greatly

increases the memory requirements and simulation time.

7.2 Mechanical metamaterials

Mechanical metamaterials make use of internal structuring to obtain tailored or new elastic

properties [135–137]. Most existing structures are relatively large and made of polymers which

cannot be integrated easily in silicon-based MEMS and NEMS. Here we show that multi-layer

STL can be used for mechanical metamaterial fabrication, and also for combining nanostruc-

tures with microscale parts. Although in comparison with most existing methods, the resulting

metamaterials must necessarily be two-dimensional, multi-layer STL still has advantages in

terms of its high compatibility and throughput.

Different lattices can be constructed using multi-layer STL, simply by change the patterns

used in STL layer 1 and layer 2. For example, Figure 7.1 shows two types of mesh springs

considered here. In Figure 7.1a, long, thin rectangles are laid out in two perpendicular directions

in the two mask layers, and overlap to form a periodic structure with a square element as a unit
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cell (type 1). In Figure 7.1b, an alternative design is demonstrated by overlapping smaller

squares, leading to a castellated unit cell (type 2).

Obviously, the two types of material should deflect in different ways, depending on the end

loads. For example, if the loads are applied in the x- or y-directions, the structure can distort

by bending. However, if the loads are applied in the direction of x = ±y,only axial loads are

presented on the individual elements, so no bending can be expected. Thus, it can be expected

that the mechanical performance of both types of lattices will be highly anisotropic.

y

x
STL1

STL2

Unit cell Unit cell
(a) (b)

Figure 7.1: Lay-out of (a) type 1 and (b) type 2 nano-mesh suspensions and unit cells fabricated
using the multi-layer STL process.

Due to the large open space at the centre of each unit cell, one likely advantage is a large

reduction in the effective Young’s modulus for the material under axial loads. The other is a

larger deflection that can be sustained before the breaking strain of the bulk material is reached.

As known, all crystalline media (e.g. silicon) are really anisotropic, and have different values

of Young’s modulus in different crystal orientations. The artificial lattice structure constructed

using multi-layer STL can introduce an additional mechanical periodicity, which makes the

value of Young’s modulus controllable and adaptable independently of the crystalline material

itself. The new structure hence can be recognised as a new type of mechanical metamaterial.

A number of attempts have already been made to develop suitable techniques for fabricat-

ing such materials, including moulding, direct-write laser nanolithography [138], microstere-

olithography [139] and micro-origami [140]. Some novel properties have been demonstrated

and investigated, such as negative Poisson’s ratio and negative compressibility. Nonetheless,

most of these structures have been made of materials with poor mechanical properties such as

polymers. In addition, since most of the processes are not compatible with existing silicon fab-
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rication methods, it is also difficult to integrate these structures with other conventional parts

in a complete system. Hence, limited progress has been made on investigating the mechani-

cal response of such structures, apart from the case of pure tensile loads. As a low-cost nano

fabrication process, multi-layer STL enables 2D silicon structures such as a metamaterials to

be combined easily with conventional MEMS parts, allowing more complex loads to be ap-

plied [134]. Also, the structures can be integrated with conventional MEMS such as actuators

for further investigation.

7.3 Analytic model

In this section, analytic models are developed for type 1 and type 2 lattices shown in Figure

7.1 for diagnostic purposes. The analysis begins with a single unit cell and is then extended to

complete mesh structures. The response of the material is considered under different types of

loads (e.g. axial and transverse). Results are then combined with data from FEA simulation

and experiments for comparison in Section 7.4 and 7.5 respectively. For both types of lattice,

the new materials have shown different effective mechanical properties. For reason that will

become evident, type 2 lattice has been used for experiments. However, the theoretical analysis

starts with type 1 since this has a simpler structure.

7.3.1 Type 1 lattice

7.3.1.1 Analysis of single cell

Figure 7.2a shows a single unit cell of type 1 lattice with side length of L, in-plane width of

w and depth of d. The corresponding second moment of area for a individual beam is hence

I = w3d
12 , and E is the Young’s modulus of the material forming the structure. The analysis

begins by assuming an in-plane, uni-axial tensile load F along the diagonal.

A free body diagram can then be drawn for each beam of the loaded cell. As show in Figure

7.2b, for the upper half of the cell, the load F
2 can be resolved into parallel and perpendicular

directions for each beam, resulting in an axial and a transverse force both equal to F
2
√

2
, with

an additional moment M in each case. Since the beams are likely to be slender (assuming

w = 0.1µ from STL), it is then reasonable to ignore the axial extension compared with the

effects of bending. The model is then simplified into the case of bending of a fixed-guided

beam, well-known in classical theory.
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Figure 7.2: (a) Schematic diagram of isolated type 1 unit cell under uni-axial load F ; (b) free
body diagram of a loaded single beam.

For this case, the beam should undergo a transverse deflection 4 = PL3

12EI , where the load

P = F
2
√

2
. Considering that a single cell in Figure 7.2a has two sets of beams in series, a net axial

extension 4x is obtained, which is twice the value of 4 after projection in the direction of F .

Thus4x = FL3

24EI , and the stiffness k of a single unit cell is:

k =
F
4x

= 2d
(w

L

)3
E (7.1)

However, it should be noted that the beam may deflect in completely different ways under

other types of loads as shown Figure 7.3. For example, Figure 7.3a shows a single cell under

uniaxial tension in the y-direction; clearly, the analysis here should be exactly the same as the

case in Figure 7.2a except that the whole structure is rotated by 90◦. However, Figure 7.3b

shows a single cell loaded by biaxial tension; in this case there can be be no bending at all,

since only axial tensile forces are present. Figure 7.3c shows a single cell loaded by uniaxial

compression. The value of k can be calculated in a similar analysis above. Again the distorted

pattern should be the same as shown in Figure 7.2a although rotated by 90◦. Finally, Figure 7.3d

shows a single cell loaded by biaxial compression. With only axial compressive force on each

beam, the elements must buckle after the bukling load is reached.
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Figure 7.3: Schematic diagrams of type 1 cell under different types of loads: (a) uniaxial tension
in y-direction; (b) biaxial tension; (c) uniaxial compression in x-direction; (d) biaxial
compression.

7.3.1.2 Equivalent bulk parameters

As a novel type of mechanical metamaterial, one advantage is that it is now possible to derive

the equivalent bulk parameters of the lattice from the structural parameters and constituent ma-

terials. As shown in Figure 7.2a, with a uniaxial load F applied over the cell, the equivalent

cross-sectional area is A =
√

2Ld. Hence, the equivalent normal stress is σeqxx =
F√
2Ld

. Consid-

ering that the change in length occurs over a span of
√

2L, the equivalent normal strain εeqxx is

hence 4x√
2L

. Thus we can obtain the equivalent Young’s modulus of the material as:

Eeq =
σeqxx

εeqxx
=

F
d4 x

(7.2)

Knowing that4x = FL3

24EI and substituting I = w3d
12 , we then obtain the effective Young’s modulus

as:

Eeq = 2
(w

L

)3
E (7.3)

It thus appears that the value of Young’s modulus is reduced by a factor of 2
(w

L

)3 by con-

structing a latticed structure using the bulk material (i.e. silicon). In actual experiments, the

factor can be very small due to w� L (w = 0.1µ, L = 30µ, 2
(w

L

)3 ≤ 7.41×10−8). Moreover,

it is now possible to change the value of Eeq of the material simply by varying the value of w

and L, which is comparably easy from a design point of view. Also, from the analytic model of

a single cell above, it is easy to obtain the corresponding contraction 4y in y direction, which

clearly has the same value as4x. Thus the structure should have a Poisson’s ratio of ν = 1 as a

2D material. Although this value may be too large for most of the applications, it is also possible

to change the value of ν by varying the angle of the beams. With an angle θ , the corresponding
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Poisson’s ratio should be ν = cotθ . However, this may change the value of Eeq as well.

7.3.1.3 Effect of boundaries

The method to analyse a loaded free mesh with multiple cells should be similar as above. As

shown in Figure 7.4b, a 3× 2 mesh is attached to a rigid boundary on one end and free on the

other. However, due to the boundaries of the practical structure, there is expected to be small

departures from the exact periodicity at the edges of the repeated pattern. Although such effects

also occur in a crystalline lattice, they are less noteworthy since the size of each unit cell is much

smaller.

However, there should be additional differences between the boundary cells rigidly attached

to the anchor and those on the free end. It is again less noticeable in a crystalline medium since

the Poisson’s ratio is smaller than here. If the mesh structure has a sufficiently large number of

cells, these effects could be ignored for similar reasons as conventional media. But the increased

size of the whole structure may be difficult to integrate into MEMS/NEMS devices of realistic

size.

The analysis begins with the simplest case with a 2× 1 mesh attached to a rigid boundary,

as shown in Figure 7.4a. Here the boundary span S cannot change between fixed nodes B and

C. Similarly, node A cannot move if the axial forces are neglected for thin beams. Thus it is

impossible for the structure to distort in the same way as a free cell. Instead, if nodes D and

E on the free end are constrained from rotating, the structure should deflect as a portal frame

under shear as shown in Figure 7.4a.

In this case, a similar analysis of the distorted structure can be drawn as before. A shearing

force F is applied on each portal with two single beams. Projected in the transverse direction,

the transverse load is hence F
2
√

2
on each beam, leading to a transverse deflection 4 = PL3

12EI

according to classical theory. Substituting P = F
2
√

2
and projecting in the direction of F as

before, the final axial extension is 4x = FL3

48EI . Although 4x is half the value in the case of a

free cell, we shall still obtain 4y = FL3

24EI for two portals in parallel. Hence the deformed span

S′ for the portal frames is exactly the same as that of a set of free cells as shown in Figure 7.4b.

Consequently, there is no need to repeat the analysis for the attached mesh, since we can simply

attach the set of free cells directly to the boundary cells without any discontinuity in span. It is

therefore convenient to do the analysis separately for boundary and free cells and combine the

results together.
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Figure 7.4: Schematic diagrams of: (a) attachment of two type 1 cells to a fixed boundary; (b)
continuation to a free lattice; (c) 2× 2 and (d) 1× 2 lattice with both ends con-
strained.

However, it is noticeable that these results are obtained on the assumption that there is no

rotation of the cells on the free ends. Such artificial constraint may be invalid in the realistic

case. Nevertheless, for individual cells fully surrounded by other elements, the rotation on each

corner should be constrained by the other three elements. Consequently, limited rotation should

be expected.

The same principle can be easily adapted to analyse meshes with rigid constraints at both

ends. For example, as shown in Figure 7.4c, a 2×2 mesh is fixed at one end and linked with a

rigid connector on the other. Obviously, only the single cell in the middle can distort as a free

cell while the other four surrounding it should deflect as portal frames. Figure 7.4d shows a

1×2 mesh, where the structure cannot move at all.

The next step is to extend the analysis to meshes with an increased number of cells attached

to a boundary. As shown in Figure 7.5, a 10× 4 mesh spring with rigid constraints are loaded

with axial tensile force. On both ends near the boundaries, there must be a triangular region

where the beams cannot deflect at all. The two adjacent regions should contain cells that distort
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as portal frames. Beyond these, the rest of the cells, particularly in the middle of the spring,

then behave as free structures. The deformed shape of the mesh spring is shown by the lines

at the edge. The width of the spring should taper gradually and then reach a constant value in

the middle, where the cells are unconstrained. Based on the analytic model above, it is then

reasonable to expect a linear decrease of the spring width from the boundary, until it reaches

the width of a stretched free mesh in the middle. As shown, to reach this ’free width’, the

symmetric regions on both ends cannot overlap. As a result, a general M×N mesh must satisfy

the constraint that M ≥ 2N. Also, the elements near the boundaries cannot relax as much as the

free cells, which should make the spring stiffer. If the spring is not long enough, for example as

shown in Figure 7.5b, where the portal frame regions at each end overlap, new regions of fixed

cells will be generated, with less free cells. Consequently, if the spring is extremely short and

wide, the two fixed regions will overlap completely and the whole structure will be unable to

move.

Figure 7.5: Schematic diagrams of: (a) a 10× 4 and (b) 5× 4 type 1 spring with both ends
constrained under axial tensile loads.
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7.3.1.4 Transverse load

A similar analysis can be made for the deflected mesh under bending. For example, Figure

7.6a shows two parallel cells loaded with equal forces F in the opposite directions (upper cell

under tension and lower cell under compression). The horizontal axis of symmetry roughly

corresponds to the neutral axis in the conventional bending theory. It is then reasonable to

expect bending to occur on the lines A−A′ and B−B′ under F . For a cascaded mesh with

more elements, the structures are expected to curve into a circular arc, much as a uniformly bent

beam.

F

F

F

F

A

A'

B

B'

R

√2L

√2LNeutral axis

(a)

√2L

F

F/2

F/2

F

F

F/2

F/2

F

3√2LNeutral axis

(b)

Figure 7.6: Schematic geometries for calculating relation between applied loads band bending
of (a) two-cell and (b)four-cell beam.

In this case, the analysis can follow the general approach of classic beam bending theory.

Figure 7.6a shows two cells that have been bent into an arc of a radius of R. Based on previous

analysis, the axial deflection of both cells are 4x = FL3

24EI , when the upper cell extends and the

lower cell contracts. The two cells are
√

2L apart (the distance between the two centres). Thus,

the subtended angle θ can be approximated as θ = 24x√
2L

. Considering the cell width is
√

2L, we
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also have θ =
√

2L
R . Eliminating θ from the two equations above, we then obtain:

θ =

√
2L
R

=
24 x√

2L
1
R
=

FL
24EI

(7.4)

The bending moment M of F on the structure is M =
√

2FL. Considering the equivalent Young’s

modulus obtained in Equation (7.3), it is then possible to combine these results and achieve:

1
R
=

M√
2EeqdL3

(7.5)

Assuming the equivalent second moment of area Ieq of the structure in Figure 7.6a as Ieq =
√

2dL3, we can then get:
1
R
=

M
EeqIeq

(7.6)

Obviously, this result agrees with the beam bending equation in the conventional theory. With

the approximation that 1
R ≈

d2y
dx2 where y is the transverse deflection, Equation (7.6) should be a

standard Euler beam bending equation. It is then reasonable to expect the metamaterial beams

to bend in plane like conventional beams, with suitable values of Eeq and Ieq chosen.

The analysis then should be extended to beams with more cells across the equivalent beam

width. Figure 7.6b shows a four-cell structure loaded in the same way as before, assuming that

the axial load changes linearly towards the neutral axis as in the conventional theory. Again, the

top cell should extend and the bottom cell should contract by the same amount of 4x = FL3

24EI .

Now the effective width of the beam is 3
√

2L, we shall have θ = 24x
3
√

2L
. Since the width of the

individual cell remains the same (
√

2L) we can obtain:

θ =

√
2L
R

=
24 x
3
√

2L
1
R
=

1
3

·
FL

24EI

(7.7)

Considering that the new moment due to the loading is now M = 7
2

√
2FL, we can again combine

the above results with the equivalent Young’s modulus as before, to obtain:

1
R
=

M
3× 7

2

√
2dL3

(7.8)
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Thus, the value of Ieq in the four-cell structure is Ieq = 3× 7
2

√
2dL3. The same method can

then be used to find the value of Ieq for even wider beams. The results are shown in Table 7.1.

Here, the first column shows the number N of cells across the beam width. The second column

shows the values of Ieq calculated using the method above. These results are re-arranged for in

the third column. Using this column, an exact induction formula for the variation on Ieq with N

can then be extracted as:

Ieq =

(
N3 +

1
2

N2− 5
2

N +1
)

d(
√

2L)3

12
(7.9)

Clearly, Ieq follows the form of the standard result for a rectangular beam, namely I = dw3

12 , with

a factor f = N3 + 1
2 N2− 5

2 N +1. As the value of N increases, it is clear that the factor f ≈ N3.

In this regime, Ieq can be approximated as Ieq =
d(N
√

2L)3

12 , as shown in the fourth column.

There is clearly close agreement between the third and fourth columns in Table I, implying

that the equivalent second moment of area of the metamaterial beam can be predicted from

the equivalent beam width N
√

2L and depth d. Departures from the conventional formula can

be understood in terms of weakened edge effects of the meshed structure. In other words, the

deflection of a metamaterial beam during bending should approach that of a conventional beam

as the beam becomes wider, even though the internal structure may be complex.

N Ieq
N3

12 d(
√

2L)3

2
√

2dL3 6
12 d(
√

2L)3 8
12 d(
√

2L)3

4 3× 7
2

√
2dL3 63

12 d(
√

2L)3 64
12 d(
√

2L)3

6 5× 22
3

√
2dL3 220

12 d(
√

2L)3 216
12 d(
√

2L)3

8 7× 50
4

√
2dL3 525

12 d(
√

2L)3 512
12 d(
√

2L)3

10 9× 95
5

√
2dL3 1026

12 d(
√

2L)3 1000
12 d(

√
2L)3

Table 7.1: Equivalent second moments of area for type 1 metamaterial beams with different
numbers of cell.

However, for a cascaded set of meshed structures curved into a circular arc, it is worth noting

that the cells in series on both the top and bottom edges should contain a series of discrete steps

due to the tensile and compressive loads. Thus there should be additional rotations of the beams

expected to join the cells together without discontinuities. FEA has also been used to investigate

the deflection in a realistic case to prove the estimation made above. These details will be shown

in Section 7.4.
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7.3.2 Type 2 lattice

We now consider the development of a similar analytic model for the type 2 lattice. Figure 7.7a

shows a unit cell consisting of 12 individual beams of length 1
3 L, loaded with an axial tensile

forces F . Obviously, only the four beams at the top and bottom of the cell are loaded, with

a transverse load F
2
√

2
. Using the textbook transverse deflection 4 = PL3

12EI where P = F
2
√

2
, we

shall have4= F
648
√

2EI
for each beam. However, the structure in Figure 7.7a has four beams in

series for each half cell. Consequently, projected in the axial direction, the net axial extension

is4x = FL3

324EI . As a result, the stiffness k of a single type 2 cell can be found as:

k =
F
4x

= 27d
(w

L

)3
E (7.10)

Comparing the above result with the type 1 cell in Equation (7.10), the stiffness of type 2

cell is 27
2 times larger. This result can be understood as the effects of reducing the beam length

L by a factor of 3 (the numerator 27 = 33) and doubling the number of beams in series (the

denominator 2).

The next step is then derive the equivalent bulk parameters of the type 2 material as before. As

shown in Figure 7.7a, with a uniaxial load F applied over the cell, the equivalent cross-sectional

area is A = 4
3

√
2Ld. Hence, the equivalent normal stress is σeqxx =

3
√

2F
4Ld . Considering that the

change in length occurs over a span of A, the equivalent normal strain is: εeqxx =
3
√

24x
4L . Thus

we can obtain the equivalent Young’s modulus of the material as:

Eeq =
σeqxx

εeqxx
=

F
d4 x

(7.11)

Knowing that4x = FL3

324EI and substituting I = w3d
12 , we can get:

Eeq = 27
(w

L

)3
E (7.12)

Consequently, the value of Young’s modulus for the type 2 metamaterial is also larger by a factor

of 27
2 compared with the type 1 material. It then seems that the type 2 material is stiffer than the

type 1 material mechanically. Nevertheless, care must be taken of other mechanical properties

for comprehensive comparison of relative performance. For example, as the elements in type 2

structure can also twist, we may expect the structure to be less resistant to out-of-plane bending

compared with the type 1. Such prediction has successfully been verified experimentally: most

175



F/2

F/2 F/2

F/2
L/3

L/3

σeqqxσeqqx

2√2L/3

2√2L/3

(a)

(b)

Figure 7.7: Schematic diagrams of: (a) isolated single type 2 cell and (b) 2×2 mesh under axial
tensile loads.

type 2 structures tend to buckle out-of-plane easily under axial compressive loads.

Ideally, the deflection of a free mesh under loads, as shown in Figure 7.7b, should be analysed

in the same way as before. Obviously, similar results can be expected that there should be

difference between the free cells and those attached to a rigid boundary. However, the analytic

model is expected to be much more complicated than before, due to the complexity of the type

2 structure. Considering the above analysis for both type 1 and type 2 lattice has provided a

reasonable estimation of the spring performance under different types of end loads, it is now

worth investigating the behaviour properly. Hence, numerical methods such as FEA should

really be used for comparison. Details of these will be fully explained in the next section.
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7.4 Finite element model

In this section, FEA is carried out using the 2D solid mechanics module of a finite element

modelling software COMSOL® for comparison with the previous analytic results. Different

structure geometries have been investigated, including variations of M×N mesh of both type 1

and type 2 materials. Structures have also been analysed subjected to axial and transverse loads

with appropriate boundary conditions. For the mesh structures made of bulk material silicon,

the following parameters have been assumed: the Young’s modulus E = 170× 109N/m2, the

Poisson’s ratio ν = 0.28, the element length L = 30µm, the depth d = 4µm and different values

of in-plane individual beam width w. The parameters are chosen to match those of the devices

fabricated on BSOI later experimentally. Although COMSOL® struggles to model HAR struc-

tures, the deflected shape of different types of structures have been generated successfully for

comparisons. In each case, the simulation generates similar deformed patterns as predicted by

the analytic model, showing good agreement with the basic analysis.

To begin with, geometries of single unit cell of both type 1 and type 2 materials are investi-

gated to calculate the axial stiffness k in each case. These results are compared with the analytic

theory as shown in Table 7.2. For single beam width w varying from 0.05µm to 0.2µm, good

agreement has been obtained between COMSOL® and the analytic model in each case, although

the former is approximately 10% larger than the later for type 1 and 15% for type 2. However,

the differences gradually reduce as w reduces. Considering that bending should dominate more

over axial stresses for thinner single beams, the results again agree with the approximate the-

ory. Although the two predictions match better with smaller values of w, it is found difficult

to model large arrays with thin elements. Thus, the value w = 0.2µm has been chosen for

subsequent simulations.

Type 1 w (µm) Analytic k1 (N/m) FEM k1 (N/m) Ratio
0.2 0.403 0.4535 1.125
0.1 0.0504 0.0556 1.1036
0.05 0.0063 0.0069 1.0926

Type 2 w (µm) Analytic k2 (N/m) FEM k2 (N/m) Ratio
0.2 5.44 6.472 1.1897
0.1 0.68 0.7728 1.1364
0.05 0.085 0.094 1.11

Table 7.2: Comparison between analytic and FEM predictions of single cell axial stiffness for
type 1 (upper) and 2 (lower) metamaterials.

Metamaterial beams based on M×N lattices have then been investigated under axial tensile
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loads for both type 1 and type 2 materials. For example, Figure 7.8a shows the deflected beam

shape of a 10× 2 array of type 1 cells with a total beam length Lb. The assumed boundary

constraints are that the left end is fixed and the right end is connected by rigid bar. The predicted

deflected shape is shown as sketched.

FEA modelling results for loaded type 1 and 2 beams are shown in Figures 7-9a and b respec-

tively. In each case, the applied axial force is 4×10−7N. The deflections in x- and y-directions

have been calculated for all the top and bottom elements. The data is plotted as circles for 10×2

and crosses for 10×4 lattices. As shown in Figure 7.9a, for type 1 beams, the dotted lines show

analytic predictions obtained using the method stated in Section 7.3. Good agreement has been

obtained between the two predictions. Both methods have shown that the boundary elements

should behave differently from elements in the center of the beam. The stiffness in this region is

approximately twice the value of the free cell, as the deflections in the x- and y-directions vary

gradually. The 10×4 array clearly takes longer to reach a constant ’free’ width in the middle. In

Figure 7.9b, similar behaviour can be found for type 2 beams, but with much smaller deflections

obtained under the same load due to the comparably high value of k for type 2 lattice. Also, the

beam now relaxes from the boundary into the centre region much more quickly than the type 1

beam.

Figure 7.8: Numerical models of loaded metamaterial beams: (a) 10×2 type 1 beam under axial
tensile load; (b) 10×2 type 2 beam under transverse load.

The same method has also been used to model deflected beams with M×N lattices under

bending. For example, Figure 7.8b shows the deflected beam shape of a 10×2 array of type 2
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cells with a total beam length Lb. To mimic conventional boundary conditions, a fixed constraint

is applied on the left end, while the right end is tied by a rigid connector and guided. A transverse

load of 4×10−8N is applied on the right, and the predicted deflected shape is shown as sketched.

Figure 7.10a and 7.10b shows the predicted results of type 1 and type 2 beams respectively, both

with 10×2 (circles) and 10×4 (crosses) structures. As before, the deflection of edge elements

in the x- and y-directions are plotted. In Figure 7.10a , the dotted lines show the prediction

of the analytic theory. For a uniform beam with one end fixed and the other end guided, the

transverse deflection along the beam based on the conventional beam bending theory is:

y(x) =
F

12EI
x2(3Lb−2x) (7.13)

The lines show the deflections obtained by substituting the values of Eeq and Ieq developed

previously. Clearly, the analytic prediction achieved using the effective medium method agrees

well with the numerical FEA results, although there is a large axial deflection due to the high

value of ν . In Figure 7.10b, smaller x-deflections can be observed for type 2 beam, which might

indicate a greater utility for the type 2 structure.

(a) (b)

Figure 7.9: Comparisons between analytic (dotted lines) and FEA (points) predictions of x- and
y-deflections of edge elements for 10×2 (black) and 10×4 (blue) (a) type 1 and (b)
type 2 beams under axial tensile loads.
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(a) (b)

Figure 7.10: Comparisons between analytic (dotted lines) and FEA (points) predictions of x-
and y-deflections of edge elements for 10× 2 (black) and 10× 4 (blue) (a) type 1
and (b) type 2 beams under transverse loads.

7.5 Experiment results

7.5.1 Prototype devices

Fabricated devices have been tested experimentally to compare with the predictions of the an-

alytic models developed above. Devices with a variety of lay-outs have been made on BSOI

wafers using the multi-layer STL process described in Chapter (6). As shown in Figure 7.11,

test results for two main geometries will be presented. Figure 7.11a shows two sets of mesh

springs anchored at one end and connected together by a rectangle linking unit on the other

end. This arrangement allows displacements to be applied to the linking unit in both the x- and

y-directions using a probe tip. In Figure 7.11b, a mesh spring is fixed at the left-hand end and

attached to an electrostatic comb drive on the right, which allows calibrated axial loads to be

applied.

However, it is worth noting that the meshed structures in both devices are made of the type 2

instead of type 1 metamaterial. Based on the previous analytic theory, type 1 metamaterial has a

number of disadvantages. The effective Poisson’s ratio is ν = 1 which is too large for most ap-

plications. In addition, its unit cell can only be sheared in particular ways. These characteristics

make it very different from conventional materials, with large unwanted perpendicular displace-

ments and difficulties when attached to boundaries. However, the COMSOL® simulations show

that type 2 material can behave much better; it has smaller perpendicular displacements, and

matches much more smoothly to boundaries due to an effective Poisson’s ratio ν = 0.54. In

addition, its unit cell can easily be distorted. These two facts provide considerably improved
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Figure 7.11: Schematic diagrams of test devices: (a) anchored type 2 mesh spring with link unit;
(b) mesh spring combined with comb drive.

mechanical performance for the type 2 material.

Figure 7.12 shows SEM views of completed prototype devices before testing. Figure 7.12a

shows two metamaterial beams with built-in ends attached to anchors on the left side. The

meshes have been built with two different individual cell sizes (L = 15µm and L = 30µm).

Different beam widths have also been demonstrated with 6 and 2 cells in parallel respectively.

Figure 7.12b and 7.12c show metamaterial springs attached to microscale linking units and

comb electrodes, respectively. In both cases, suspension has been achieved for released struc-

tures including nanoscale and microscale parts, with little sign of deformation due to the residual

stress. Figure 7.12d shows a close-up of a metamaterial spring that has been buckled out-of-

plane. The curved shape are smooth with the joints of nanostructures intact, showing that the

type 2 structure can sustain very large out-of-plane deflection.

Large displacements can easily be applied to fabricated mesh springs using probe tips, and

deflections can then be observed under an optical microscope. For example, Figures 7.13 and

7.14 shows the deformed structures of the device in Figure 7.11a after applying an axial tensile

and a transverse deflection on the linking unit. The size of the mesh spring is 18×16 cells with

element cell length of 30µm. Microscope views of the device before and after loading have

been taken for comparisons.
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(a) (b)

(c) (d)

Figure 7.12: SEM views of type 2 metamaterial springs showing: (a) built-in ends attaching to
anchors with two different single cell sizes; springs attaching to (c) linking unit and
(d) comb electrodes; (d)close-up of out-of-plane buckling.

In Figure 7.13, a significant large tensile strain around 6% has been obtained, although ev-

idence of fracture starts apparently at the bottom right-hand corner. The lattice structure must

be broken further more with larger axial extension applied. Similarly, Figure 7.14 shows that a

large transverse deflection can be obtained for the same structure.

Figure 7.15 shows the effect of applying a similar axial compressive deflection to a 18× 6

mesh spring. Clearly, the mesh buckles out-of-plane due to the compressive strains. Such

behaviour has be observed in experiments for the type 2 metamaterial universally. Thus the

structure is expected to be less resistant to out-of-plane bending.
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(a) (b)

Figure 7.13: Optical microscope photographs of metamaterial springs (a) before and (b) after
application of an axial tensile deflection.

(a) (b)

Figure 7.14: Optical microscope photographs of metamaterial springs (a) before and (b) after
application of a transverse deflection.

(a) (b)

Figure 7.15: Optical microscope photographs of metamaterial springs (a) before and (b) after
application of an axial compressive deflection.
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7.5.2 Fitted shape of deflection

To further investigate the elastic performance of the mesh spring, deflected beam shapes ob-

tained experimentally are compared with the predictions from the analytic model. For example,

transverse deflections along the beam are then extracted from the optical microscope views such

as Figure 7.16a, and then plotted versus axial position as shown in Figure 7.16b. Four sets of

data, obtained with different end-deflections, are compared with the analytic model. The anal-

ysis is based on boundary conditions for end-loaded beams with one end fixed and the other

guided. Thus the theoretical variation of transverse deflection versus axial position should fol-

low Equation (7.13). The four predictions are then plotted, by matching the peak deflections

obtained in the experiments. Clearly the agreement obtained for small deflections is good, but

starts to become poorer as the total transverse deflection increases. This suggests that the ap-

proximate effective medium theory is valid for small in-plane deflections, but less accurate for

large defections, possibly due to the axial tension induced.

A similar analysis has also been made for buckled mesh springs. Figure 7.17a shows an SEM

view of an 18×6 spring that has buckled out-of-plane strongly with one end fixed and the other

effectively pinned in position. Clearly, the beam has undergone very significant out-of-plane

deflection.

Although we have not so far presented a similar step-by-step analysis for out-of-plane bending

of a metamaterial beam, it is reasonable to assume that a similar effective medium theory should

also be valid in this case. Namely, the metamaterial beam should behave much as a conventional

beam, with suitable value of Eeq and Ieq. The deflection shown above can then be modelled as

an axially loaded beam with boundary conditions of one end fixed and the other pinned.

The theoretical variation of transverse deflection should therefore follow standard Euler buck-

ling theory. For a fixed-pinned, buckled beam, the transverse deflection is well known to be

given by:

y(x) =
V
kF

[sin(kx)− kLb cos(kx)+ k(Lb− x)] (7.14)

Here F is the axial force causing the buckling, and V is a support reaction. In addition, k =√
F

EeqIeq
and kL is the solution of the eigenvalue equation kLb cos(kLb)− sin(kLb) = 0. The first

solution is kLb = 4.4934.

The resulting variaton is plotted in Figure 7.17b for comparison. Experiment data extracted

from SEM photographs is plotted as circles and the predictions of Equation (7.14) as a dashed
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(a)

(b)

Figure 7.16

line, with the value of V
kF normalised to match the peak deflection. Clearly, the agreement is

not excellent. However, if we adjust the axial coordinate to take the large transverse deflection

into consideration, much better agreement can be obtained as shown by the full line. Thus,

the above results suggest that the effective medium theory should also be approximately valid

within certain limits for out-of-plane buckling of metamaterial structures.
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(a)

(b)

Figure 7.17: (a) SEM views of a metamaterial beam buckling out-of-plane; (b) comparison of
the experimental deflection (points) with theoretical predictions before (dashed
line) and after (full line) compensation for axial contraction.

7.5.3 Measurement of spring constant

Previously, we have shown in Figure 7.11b a 18×16 mesh spring combined with a comb-drive

actuator to measure the spring constant by applying calibrated axial force. The spring consists of

unit cells with side length of 30µm. There are 48 electrode gaps measured as 5µm each for the

comb actuator, driven by applied voltage between the spring anchor and fixed part of the comb.

The fixed end of the spring and the substrate are both grounded to avoid floating. Both in- and

out-of-plane deflection have been measured accurately by using Veeco optical surface profiler.

Data obtained from different positions of the device are averaged to produce final deflection

versus the square of applied voltage (V 2).

Figure 7.18a shows the experimental variation of in-plane x-deflection (circles) and out-of-
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plane z-deflection (diamonds) with the square of applied voltage (V 2). The x-deflection initially

increases rapidly with V 2, and then follows a much smaller slope which is approximate linear.

The variation of the z-deflection shows that the moving electrode is initially about 0.5µm higher

then the fixed electrode, suggesting some initial misalignment (confirmed in Figure 7.18b). As

the value of V 2 rises, the moving comb is gradually brought into alignment, and the expected

linear variation in deflection occurs. Eventually, at very large voltages, the moving electrode

collapses onto the substrate (as shown in Figure 7.18c). This behaviour might result from elec-

trostatic attraction towards the substrate due to failure of grounding.

For the x-deflection, the initial rapid rise might be explained by the misalignment of the

comb electrodes. The moving electrodes are possibly tilted by curvature of the mesh spring

during release, which can be verified in SEM photographs. As the applied voltage increases,

the curvature is removed by straightening the spring, resulting in a rapid increase in deflection

at small axial force. Once the metamaterial spring has completely straightened, the behaviour

of the spring and comb drive should then follow the standard model of an electrostatic actuator.

For a comb drive with electrode capacitance C, the force in the moving direction under a DC

voltage V is:

F =
dC
2dx

V 2 (7.15)

For a comb drive with N electrode gaps each of width g, the capacitance variation can be calcu-

lated as dC
dx = Nε0d

g . The metamaterial spring should be stretched by the electrostatic force until

an equilibrium state is achieved when the spring force equals the electrostatic force, as:

F = kT 4 xT =
Nε0d

2g
V 2

4xT =
Nε0d
2kT g

V 2
(7.16)

where ε0 is the permittivity of free space, kT is the elastic stiffness of the mesh spring and4xT

is the axial displacement. Assuming the axial stiffness of type 2 cell is k2, with a Ns×Np mesh

spring, the stiffness can be calculated as kT =
Np
Ns

k2. Using the predicted value of k2 from the

analytic model in Table 7.2, kT = 16
18 × 0.68 = 0.604N/m. Knowing N = 48, d = 4µm and

g = 5µm, we can obtain the predicted axial displacement4xT in microns as:

4 xT = 0.28×10−3V 2 (7.17)
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Equation (7.17) is plotted as a dashed line in Figure 7.18a for comparison. By assuming

an offset of 2.6µm derived from the initial misalignment, good agreement has been achieved

between the theoretical predictions and the later experimental data. This is a remarkable result,

and proves that the estimated elastic properties of the metamaterial are essentially accurate.

(a)

(b) (c)

Figure 7.18: (a) Experimental variation of x- (circles) and y-deflections (diamonds) versus volt-
age for electrostatically driven metamaterial springs, compared with theoretical
prediction (dashed line); surface profile of misaligned (b) and collapsed (c) actua-
tor at the beginning and end of characterisation.

7.6 Discussion

In this chapter, multi-level STL has been used to fabricate novel 2D nanostructured mechanical

metamaterials. The process shows many advantages over the existing techniques as it forms

realistic sized metamaterial structures using single crystal silicon, which is fully compatible

with today’s microelectronics fabrication processes. In addition, it is now possible to combine

the new material with other conventional MEMS parts to form a complete device or system.

Although the structuring must necessarily be 2D due to the use of a top-down process, the high-
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yield, low-cost process has demonstrated its potential for new opportunities in metamaterial

development.

Two different types of mesh structures have been proposed to form metamaterials. A sim-

ple effective medium analytic theory has been developed. The theory derives from conven-

tional analysis and provides approximate predictions for the metamaterial beams under axial

and transverse loads. The behaviour of the metamaterial beams is similar to that of conventional

theory but with certain boundary effects. The theory has been compared with the predications

of FEA modelling using COMSOL®, and with the deflection of experimental structures under

different loadings. It has been shown that fabricated structures are intact and robust, and can

easily undergo large, reversible in-plane and out-of-plane deformations. Good agreement has

been achieved between analytic theory, FEA modelling and experiment results, indicating that

the theory and model are reasonable and credible. Although these results are preliminary, the

excellent combination of the design, fabrication and theory of the metamaterial shows a good

potential for developing NEMS with novel properties in the future.
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8 Conclusion

8.1 Summary

In this thesis, a new fabrication process for nano-electro-mechanical systems based on sidewall

transfer lithography has been demonstrated. Originally developed for mass-parallel fabrication

in microelectronics, STL can realise sub-micron features using only techniques and equipment

for microscale fabrication, greatly reducing cost and improving throughput. However, STL

was originally targeted at CMOS fabrication and consequently has received limited attention

for more general 3D micromachining. Here a wide range of NEMS devices has been designed

and fabricated using STL, including actuators, microgrippers and 2D mechanical metamaterials.

Analytic and experimental characterizations of the different devices have also been carried out

to highlight differences from traditional MEMS devices. A brief overview and summary of the

thesis is presented below.

A general introduction introduction is provided in Chapter 1 together with on the literature

review. The chapter starts with a brief summary of the current MEMS industry and existing

MEMS fabrication techniques, followed by a description of typical mechanical MEMS sensors

and actuators. Recent development of NEMS is then reviewed, different methods of fabricating

nanoscale devices are introduced, and example NEMS devices are described. The development

of STL is then reviewed, together with the original CMOS applications, and the potential ap-

plication of STL to 3D micromachining is proposed. An outline of the thesis is provided in the

end of the chapter.

In Chapter 2, a STL NEMS process for use in general 3D micromachining is introduced.

Firstly, the process is presented in a step-by-step fashion based on a common process flow.

Then a modified Bosch process for deep reactive ion etching is developed to allow the nanoscale

silicon etching needed for NEMS fabrication. A plasma undercut process is also introduced as

an extension of the Bosch process to enable dry release of suspended parts. For each process
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step, technical details are presented together with the results of experimental fabrication trials.

The process constraints and issues are highlighted and discussed.

Chapter 3 covers the design principles of and fabrication results obtained from NEMS elec-

trothermal actuators based on a single-layer STL process. Completed prototype devices are

demonstrated in bulk silicon and bonded silicon-on-insulator, confirming that STL has been

successfully used to form continuous 3D features with high aspect ratio. In each case, nanoscale

lithography and HAR silicon etching are discussed in detail using evidence provided by SEM

photographs. Residual issues encountered during the process are highlighted and possible solu-

tions are presented.

Chapter 4 describes the characterization of devices fabricated using the single-layer NEMS

process. The devices investigated include double-ended buckling-mode electrothermal actua-

tors and single-ended shape bimorph actuators. In each case, surface profiles obtained using a

non-contact interferometric optical profilometer show low residual distortion due to stress. Dif-

ferent approaches are investigated to characterize the mechanical performance experimentally.

For example, the devices have been electro-thermally actuated to characterize both static and

dynamic performance. Problems with experimental measurement of such small structures are

discussed. Finite element analysis is also used to construct 2D models of device performance,

whose results are then compared with the analytic estimation and experimental results. The in-

adequacy of FEA for NEMS design is highlighted, due to its inability to model ultra-thin beams

without inaccuracy or convergence failure.

In Chapter 5, an alternative analytic theory is then developed for buckling-mode electrother-

mal actuators, to address the design problems observed using FEA. Two actuator lay-outs are

investigated, with a raised cosine and V-beam pre-buckle, respectively. In each case, the model

is based on Euler buckling theory, and closed-form, analytic approximations for deflections are

obtained using the assumption that bending dominates over axial compression. The theoreti-

cal predictions are compared with FEA predictions and with experimental results. Reasonable

agreement is achieved in each case, confirming the validity of the analytic models for the design

of NEMS buckling actuators.

In Chapter 6, a more advanced multi-layer STL process is presented. In contrast to single-

layer STL NEMS processing, nanoscale features can now intersect with each other, allowing

more complex lay-out designs to be realised. The process concept is first introduced, and results

obtained at different fabrication stages are then presented using example SEM photographs.
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A wide variety of prototype device lay-outs are then demonstrated, showing the diversity of

designs that can be realised. Typical issues and constraints of the multi-layer STL are then

discussed.

Chapter 7 presents a key new target application for multi-layer STL, namely nanostructured

mechanical metamaterials. A brief introduction to mechanical metamaterials is first presented,

and existing problems in design and fabrication are highlighted. Two-dimensional analytic mod-

els are then developed for two different unit cells arranged as a mesh in a periodic mechanical

lattice, by using a simple effective medium analytic theory. Analysis is then presented for the

deflected mesh under axial and transverse loads. Finite element analysis is then carried out

for comparison. Since the beam elements are much shorter, much better results are now ob-

tained, but this time computational limits are reached when the number of unit cells is too

large. Finally, experimental results from prototype devices are presented, which show excellent

agreement with the analytic theory. Despite the simplicity of the models, the approach shows a

good combination of design, fabrication and characterization of the novel applications of STL,

proposing more promising possibilities in the future.

8.2 Conclusions and future work

In this thesis, a sidewall transfer lithography process for NEMS fabrication has been intro-

duced. The process uses conventional optical lithography to allow localised nanoscale parts to

be combined with supporting microscale features, making the method suitable for low-cost and

wafer-scale fabrication. Prototype devices have been designed and fabricated with a minimum

in-plane width of 100nm and an aspect ratio of > 50 : 1. Device performance has been charac-

terized experimentally, and the results have been compared with FEA simulations and analytic

theory. The process has been shown to be particularly suitable for fabricating 2D nanostructured

mechanical metamaterials. The thesis has therefore presented a detailed investigation of STL

NEMS, covering a diversity of aspects including process development, device design, experi-

mental characterization and analytic theory.

Although STL has been successfully adapted to applications in 3D micromachining, further

work is still needed to solve residual process issues. Firstly, there is some evidence of stress in

released structures, leading to distortion of nanoscale suspensions. These effects can be elim-

inated by removing the sidewall masks using extra dry etching steps or by replacing the metal
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masks with SiO2 masks, which can be removed using HF vapour phase etching. Secondly, to

achieve better nanoscale etching, the Bosch DRIE process should be further optimised to elim-

inate the erosion and grass caused by excessive etching and passivation respectively. Thirdly,

other process issues such as planarization during lithography and degradation of second-layer

features must be solved to improve feature quality. However, any such solutions must be com-

patible with the current process, to retain the advantages of low-cost and mass parallel fabrica-

tion.

STL NEMS design is mainly restricted by the geometric constraints of the process. Although

multi-layer STL allows nanoscale features to intersect, breaking one key restriction of single-

layer STL, nanoscale features must still follow the perimeters of closed polygons and have con-

stant width. Furthermore, it is currently impossible to realise nanoscale features with nanoscale

separations. Such restrictions may well be significant in many NEMS designs. However, greater

design freedom can be introduced by adding additional patterning steps that interrupt the closed

polygons or employ extra sidewall layers that allow feature widths to be varied in discrete steps.

If these problems can be successfully addressed, sidewall processing may be a significant en-

abler for the commercialization of NEMS sensors with enhanced sensitivity arising from (for

example) reduced suspension width. In addition, the use of sidewall NEMS processing to fabri-

cate nanostructured metamaterials may have a role in improving sensor properties. This thesis

has demonstrated the ease with which effective material properties can be altered by varying

simple overlaid patterns, which suffer from none of the lay-out restrictions described above.

Experimental characterization of NEMS has been proved difficult, due to the limited res-

olution of the available measurement equipment. Thus, it is necessary to develop measuring

systems with higher resolution for assessing NEMS performance. There are several possibili-

ties, including electron beam microscopy and optical interferometry; however, the latter must be

adapted to in-plane motion. A further possibility is the use of capacitance variations; however,

suitable structures must be embedded in the design at the outset.

Due to the general inaccuracy of FEA when simulating slender beams, which form the main

elastic elements of many NEMS designs, it is necessary to develop appropriate analytic theo-

ries. For linear devices, the best approach is likely to be the stiffness matrix method. The matrix

elements are standard results from the Euler theory for linear beam elements, and consequently

are inherently accurate for slender beams. The method allows flexure-based devices with mod-

erately complex topology to be analysed easily by inversion of a simple set of matrix equations
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that incorporate all necessary boundary conditions and loads. For non-linear devices, such ap-

proaches cannot easily be used. However, we have already shown how quasi analytic results

can be obtained from suitable modification to the Euler buckling and compatibility equations,

and it is possible that this approach can be extended to connected elements.

From the above, we can conclude that STL NEMS processing has been successfully estab-

lished as a new method of nanoscale device fabrication. There are many applications in sensing

and actuation, many possibilities for design and process development, and the future of the

method is bright.
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2. D. Liu, R. R. A. Syms, "NEMS by sidewall transfer lithography," J. Microelectromech.
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