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Abstract

We develop a consistent, arbitrage-free framework for valuing derivative trades with

collateral, counterparty credit risk, and funding costs. This is achieved by modifying

the payout cash-flows for the trade position. The framework is flexible enough to

accommodate actual trading complexities such as asymmetric collateral and funding

rates, replacement close-out, and rehypothecation of posted collateral. We show also

how the traditional self-financing condition is adjusted to reflect the new market

realities. The generalized valuation equation takes the form of a forward-backward

SDE or semi-linear PDE. Nevertheless, it may be recast as a set of iterative equations

which can be efficiently solved by our proposed least-squares Monte Carlo algorithm.

We numerically implement the case of an equity option and show how its valuation

changes when including the above effects. We also discuss the financial impact of the

proposed valuation framework and of nonlinearity more generally. This is fourfold:

Firstly, the valuation equation is only based on observable market rates, leaving

the value of a derivatives transaction invariant to any theoretical risk-free rate.

Secondly, the presence of funding costs and default close-out makes the valuation

problem a recursive and nonlinear one. Thus, credit and funding risks are non-

separable in general, and despite common practice in banks, the related CVA, DVA,

and FVA cannot be treated as purely additive adjustments without running the risk

of double counting. To quantify the valuation error that can be attributed to double

counting, we introduce a nonlinearity valuation adjustment (NVA) and show that

its magnitude can be significant under asymmetric funding rates and replacement

close-out at default. Thirdly, as trading parties cannot observe each others liquidity

policies nor their respective funding costs, the bilateral nature of a derivative price
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breaks down. Finally, valuation becomes aggregation-dependent and portfolio values

cannot simply be added up. This has operational consequences for banks, calling

for a holistic, consistent approach across trading desks and asset classes.
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Notations

Gt Filtration that models the flow of information of the whole market.

Ft Default-free market filtration.

Ht Filtration generated by the default events.

τC , τI Default times of the counterparty and the investor respectively.

τ The first-to-default time, τI ∧ τC .

Ft, Ht, Ct Funding cash account, risky-asset account and collateral account.

εC,τ , εI,τ The close-out amounts on the investor’s and the counterparty’s default.

Π(t, u) The sum of the discounted contractual cash-flows from t to u.

γ(t, u;C) The sum of the discounted margining costs over the period (t, u].

θτ (C, ε) The on-default cash-flow.

ϕ(t, u;F ) The sum of the discounted funding costs over the period (t, u].

λt The first-to-default intensity.

c+, c− The positive and negative collateral interest rates respectively.

c̃t(T ) The effective funding rates from t to T , c−t (T )1{Ct<0} + c+
t (T )1{Ct>0}.

f+, f− The borrowing and lending rates respectively.

f̃t(T ) The effective funding rates from t to T , f−t (T )1{Ft<0} + f+
t (T )1{Ft>0}.

h+, h− The risky asset borrowing and lending rates respectively.

h̃t(T ) The effective hedging rates from t to T , h−t (T )1{Ht<0} + h+
t (T )1{Ht>0}.

NC , N I The initial margin accounts posted by the counterparty and the investor.

Mt The variation margin account.

fN,C , fN,I The funding rates of the initial margin accounts for the counterparty

and the investor respectively.
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Chapter 1

Introduction

Recent years have seen an unprecedented interest among banks in understanding

the risks and associated costs of running a derivatives business. In the wake of the

financial crisis in 2007-2008, dealers and financial institutions have been forced to

rethink how they value and hedge contingent claims traded either in the over the

counter (OTC) market or through central clearing house (CCPs). OTC derivatives

are bilateral financial contracts negotiated between two default-risky entities. Yet,

prior to the crisis, institutions tended to ignore the credit risk of high-quality rated

counterparties, but as recent history has shown this was a particularly dangerous

assumption. Moreover, as banks became reluctant to lend to each other with the

crisis rumbling through the Western economies, the spread between the rate on

overnight indexed swaps (OISs) and the LIBOR rate blew up.

To keep up with this sudden change of game, dealers today make a number of

adjustments when they book OTC trades. The credit valuation adjustment (CVA)

corrects the price for the expected costs to the dealer due to the possibility that

the counterparty may default, while the so-called debt valuation adjustment (DVA)

is a correction for the expected benefits to the dealer due to his own default risk.

The latter adjustment has the controversial effect that the dealer can book a profit

as his default risk increases and is very hard (if not impossible) to hedge. Finally,

dealers often adjust the price for the costs of funding the trade. In the industry,

this practice is known as a liquidity and funding valuation adjustment (LVA, FVA).
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When a derivatives desk executes a deal with a client, it hedges the trade with other

dealers in the market, posts or receives collateral, and additionally receives or pays

interest on the posted collateral. This involves borrowing or lending money and

other assets. Classical derivatives pricing theory rests on the assumption that one

can borrow and lend at a unique risk-free rate of interest, a theoretical risk-free rate

that is proxied by a number of market rates. The seminal work of Black-Scholes-

Merton showed that in this case an option on equity can be replicated by a portfolio

of equity and risk-free debt over any short period of time. Prior to the crisis, this

assumption may have been reasonable with banks funding their hedging strategies

at LIBOR. However, with drastically increasing spreads emerging as the crisis took

hold, it became apparent that LIBOR is contaminated by credit risk (besides fraud

risk) and as such is an imperfect proxy of the risk-free rate. While overnight rates

have replaced LIBOR as proxies for the risk-free rate, it would be preferable for a

pricing framework not to feature theoretical rates in the final valuation equations.

Recent headlines such as J.P. Morgan’s results in January 2014 underscores the

sheer importance of accounting for funding valuation adjustment. Michael Rapoport

reports on January 14, 2014 in the Wall Street Journal:

”[...] So what is a funding valuation adjustment, and why did it cost J.P. Morgan

Chase $1.5 billion? The giant bank recorded a $1.5 billion charge in its fourth-

quarter earnings announced Tuesday because of the adjustment – the result of a

complex change in J.P. Morgans approach to valuing some of the derivatives on its

books. J.P. Morgan was persuaded to make the FVA [Funding Valuation Adjustment]

change by an industry migration toward such a move, the bank said in an investor

presentation. A handful of other large banks, mostly in the U.K. and Europe, have

already made a similar change.

When dealing with funding costs, one may take a single deal (micro) or homo-

geneous (macro) cost view. In the micro view, funding costs are determined at deal

level. This means that the trading desk may borrow funds at a different rate than at

which it can invest funds, and the rates may vary across deals even in the same desk.

In a slightly more aggregate cost view, average funding spreads are applied to all
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deals yet the spread on borrowing funds may still be different from that on lending.

Finally, if we turn to the macro and symmetric view, funding costs of borrowing

and lending are assumed the same and a common funding spread is applied across

all deals. Clearly, the treasury department of a bank plays an active part in the

micro approach and works as an operational center, while in the macro approach it

takes more the role of a supporting function for the trading business. In this work

we stay as general as possible and adopt a micro cost view. Naturally, the macro

view is just a special case of the micro view. This will be implicit in making the

otherwise exogenously assigned funding rates a function of the specific deal value.

One should also notice that the specific treasury model one adopts also impacts the

presence of credit risk, and in particular of DVA, on the funding policy. This effect

is occasionally referred to as DVA2, but we will not adopt such terminology here.

Despite its general market acceptance, the practice of including an adjustment for

funding costs has stirred quite some controversy among academics and practitioners

(see the debate following Hull and White [53]). At the center of this controversy

is the issue that funding-contingent pricing becomes subjective due to asymmetric

information. The particular funding policy chosen by the client is not (fully) known

to the dealer, and vice versa. As a result, the price of the deal may be different

to either of the two parties. Theoretically, this should mean that the parties would

never close the deal. However, in reality, the dealer may not be able to recoup his

full funding costs from the client, yet traders say that funding risk was the key factor

driving bid-ask spreads wider during the crisis.

The introduction of funding risk makes the pricing problem highly recursive and

nonlinear. The price of the deal depends on the trader’s funding strategies in future

paths, while to determine the future funding strategies we need to know the deal

price itself in future paths. This recursive structure was also discovered in the studies

of Pallavicini et al. [60], Crépey [39] and Burgard and Kjaer [35], yet the feature is

neglected in the common approach of adding a funding spread to the discount curve.

The inherent nonlinearity manifests itself in the valuation equations by taking the

form of a forward-backward stochastic differential equation (in short, FBSDE) or a

semi-linear partial differential equation (in short, PDE).
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In this thesis we develop an arbitrage-free framework for consistent valuation

of collateralized as well as uncollateralized trades under counterparty credit risk,

collateral margining and funding costs. The need to consistently account for the

changed trading conditions in the valuation of derivatives is stressed by the sheer

size of the OTC market. Indeed, despite the crisis and the previously neglected risks,

the size of derivatives markets remains staggering, the market value of outstanding

OTC derivative contracts equaled $24.7 trillion by the end of 2012 with a whopping

$632.6 trillion in notional value (as stated in Bank for International Settlements,

2013 [4]). Adopting the risk-neutral valuation principle, we derive a general pricing

equation for an OTC derivative deal where the new or previously neglected types

of risks (CVA, DVA, collateral and funding costs) are included simply as modifi-

cations of the payout cash-flows. This approach can also be tailored to address

trading through a central clearing house (CCP) with variation and initial margins

as investigated in Brigo and Pallavicini [30]. In addition, we address the current

market practices in accordance with the guidelines of the International Swaps and

Derivatives Association without assuming restrictive constraints on the collateral

margining procedures and close-out netting rules. In particular, we allow for asym-

metric collateral and funding rates as well as exogenously given liquidity policies

and hedging strategies. We also discuss rehypothecation of collateral guarantees

and risk-free/replacement close-out conventions.

To explore valuation under funding costs concretely, we show how the general

pricing equation can be cast as a set of iterative equations that can be conve-

niently solved by means of least-squares Monte Carlo (see for example, Carrier

[36], Longstaff and Schwartz [58], Tilley [71] and Tsitsiklis and Van Roy [72]) and

we propose an efficient simulation algorithm. Additionally, we derive a continuous-

time approximation of the solution of the pricing equation as well as the associated

FBSDE and semi-linear PDE. We study the existence and uniqueness problems for

both the FBSDE and the semi-linear PDE cases. Moreover, we present an invari-

ance theorem showing that the risk-free rate disappears from the funding inclusive

PDE, which implies that the valuation of the trade depends no longer on some un-

observable risk-free rates. In other words, valuation is purely based on observable
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market rates. The invariance theorem first appeared implicitly in Pallavicini et al.

[60] and later in Brigo et al. [22, 23].

Valuation under funding risk poses a significantly more complex and computa-

tionally challenging problem than standard CVA and DVA computations (except

for possibly CVA/DVA under replacement close-out), since it requires forward sim-

ulation and backward induction at the same time. In addition, FVA does not take

the form of a simple additive term as appears to be commonly assumed by market

participants. More fundamentally, this means that, by its very nature, identifying

FVA with DVA is generally wrong, and only under restrictive assumptions would

the two concepts collapse into one. Funding and Credit costs do not split up in a

purely additive way. A consequence of this is that valuation becomes aggregation-

dependent as portfolios prices do not simply add up. It is therefore difficult for

banks to create CVA and FVA desks with separate and clearcut responsibilities.

Nevertheless, banks often make such simplifying assumptions when accounting for

the various price adjustments. This can be done, however, only at the expense of

tolerating a degree of double counting in the different valuation adjustments.

In order to study such double counting, we introduce a nonlinearity valuation

adjustment (in short NVA) to quantify the valuation error that one makes when

treating CVA, DVA, and FVA as separate, additive terms. In particular, we exam-

ine the financial error of neglecting nonlinearities such as asymmetric borrowing and

lending funding rates and substituting the replacement close-out at default by the

more stylized risk-free close-out. We analyze the large scale implications of nonlin-

earity of the valuation equations: non-separability of risks, aggregation dependence

in valuation, and local pricing measures as opposed to universal ones. Finally, our

numerical results confirm that NVA and asymmetric funding rates can have a non-

trivial impact on the valuation of financial derivatives. More generally, nonlinearity

implies organizational challenges which we point out in the conclusion.

Literature Review In terms of available literature in this area, several studies

have analysed the various valuation adjustments separately, but few have tried to

build a valuation approach that consistently takes counterparty credit risk, collat-



Chapter 1. Introduction 16

eralization and funding costs into account. Under unilateral default risk, i.e. when

only one party is defaultable, Brigo and Masetti [24] consider valuation of deriva-

tives with CVA, whereas particular applications of their approach are given in Brigo

and Pallavicini [28], Brigo and Chourdakis [19], and Brigo et al [27]; see Brigo et

al. [26] for a summary. Bilateral default risk appears in Bielecki and Rutkowski [7],

Brigo and Capponi [16], Brigo et al. [31], and Gregory [51] who evaluate both the

CVA and DVA of a derivative deal.

The fundamental impact of collateralization on default risk and on the credit val-

uation adjustment and debit valuation adjustment has been investigated in Cheru-

bini [38] and more recently in Brigo et al. [17] and Brigo et al. [18]. The works of

[17, 18] look at the CVA and DVA gap risk under several collateralization strate-

gies, with or without rehypothecation, as a function of the margining frequency

with wrong way risk and with possible instantaneous contagion. Minimum thresh-

old amounts and minimum transfer amounts are also considered. We also cite Brigo

et al. [26] for a list of frequently asked questions on the subject.

Assuming no default risk, Piterbarg [68] provides an initial analysis of deriva-

tive transactions under collateralization and funding risk in a stylized Black-Scholes

economy. Yet, the introduction of collateral in a world without default risk is ques-

tionable since its main purpose is to mitigate such a risk. Moreover, the study does

not consider the nonlinearities due to replacement close-out nor asymmetric fund-

ing rates. Fujii et al. [50] analyses the consequences of multi-currency features in

collateral proceedings. The basic implications of funding in presence of default risk

have been considered in Morini and Prampolini [59], see also Fries [49] and Castagna

[37].

The above works constitute a beginning for the funding costs literature. However,

these references focus only on simple financial products, such as zero-coupon bonds

or loans, and do not offer the level of generality needed to include all the required

features in a consistent framework that can be used to manage complex products.

Thus, a general theory under the new risks is still missing. The most comprehensive

attempts are those of Burgard and Kjaer [34, 35], Crépey [39–41], Pallavicini et

al. [60, 61] and Brigo et al. [21–23]. Nonetheless, as [34, 35] resort to a PDE
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approach, their results are constrained to low dimensions. They neglect the hidden

complexities of collateral modelling and mark-to-market discontinuities at default,

and also do not state explicitly the funding assumptions for all the assets in their

replicating portfolio. The approach in the series [39–41] is more general, using

backwards stochastic differential equations, although it does not allow for credit

instruments in the deal portfolio. We note that the papers [60, 61], [21–23] follow

the same level of generality of Crépey [40] and address the inherent nonlinearity

of the valuation problem, as well as considering different models of funding policy

and still accounting for CVA, DVA collateralization and rehypothecation. Wu [74]

studies the pricing problem of cash collateralized derivatives trades when credit and

funding risks are present, and proposes a PDE representation for the derivatives

price, which is solved as a Feynman-Kac formula. However, the author assumes

that the margin account earns the CSA rate for positive balance or costs the CSA

rate plus a spread for negative balance, discarding the funding benefit, which is

obviously not realistic.

Brigo and Pallavicini [30] deal with the same general framework tailored to Cen-

tral Counterparties Clearing (CCPs) and standard Credit Support Annex (CSA)

trades with variation and initial margins. The paper Biffis et al. [9] studies longevity

swaps under credit risk, collateralization and funding costs. Despite being applied

to the specific and atypical asset class of longevity derivatives, the paper is one of

the first to develop a comprehensive approach to an extended pricing framework

addressing previously neglected risks.

Besides the above papers, as a testimony to the increasing effort in this research

area, books have started to include funding costs analysis; see for example Kenyon

and Stamm [56], Brigo et al. [26] and Crépey et al. [42].

In this thesis, we continue the work in [22, 23], which follows the work of [60, 61]

and consider a general pricing framework for OTC deals that fully and consistently

takes collateralization, counterparty credit risk, and funding risk into account. The

valuation framework is conceptually simple and intuitive in contrast to previous at-

tempts. It is based on the celebrated risk-neutral valuation principle and the new

risks are included simply by adjusting the payout cash-flows of the deal. The val-
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uation equation takes the form of an FBSDE or a semi-linear PDE. We show that

the traditional self-financing condition can be adjusted to address the new market

realities. We present a numerical case study that extends the benchmark theory of

Black-Scholes for equity call options to credit gap risk (CVA/DVA after collateral-

ization), collateralization and funding costs. We find that the precise patterns of

funding-inclusive values depend on a number of factors, including the asymmetry

between borrowing and lending rates. We stress such inputs in order to analyse their

impact on the funding inclusive price. Our numerical results confirm that funding

risk impacts non-trivially the deal price and that nonlinearity valuation adjustment

can be relevant as well.

To summarize, the financial implications of our valuation framework are fourfold:

• Valuation is invariant to any theoretical risk-free rate and only based on ob-

servable market rates.

• Valuation is a nonlinear problem under asymmetric funding and replacement

close-out at default, making funding and credit risks non-separable.

• Valuation is no longer bilateral because counterparties cannot observe each

others liquidity policies nor their respective funding costs.

• Valuation is aggregation-dependent and portfolio values can no longer simply

be added up.

1.1 Specific contribution

In the following, we briefly list the main contributions of the thesis.

1. Numerical case studies of the consistent valuation framework. This work can

be found in Chapter 5 and was originally carried out in Brigo et al. [21, 23].

2. Introduction and numerical study of the nonlinearity valuation adjustment.

This work can be found in Chapter 5 and was carried out also in Brigo et al.

[22].
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3. Analysis of the self-financing condition of the new funding inclusive valuation

framework. The related work can be found in Chapter 4. A common mistake

in the literature and the correct formulation can be found also in Brigo et al.

[14].

4. Analysis of the formulation of the funding inclusive forward-backward SDE and

semi-linear PDE and the existence and uniqueness problem of their solutions.

The related work was conducted in Chapter 3. A preprint associated to this

research is in preparation.

1.2 Credit and debit valuation adjustment

In this section, we introduce a fundamental valuation framework for over the counter

(OTC) trades including the counterparty risk valuation adjustment, which forms

the foundation of the study we are going to conduct when more market realities are

introduced.

Due to the large amount of financial contracts that are traded over the counter,

the importance of the credit quality of a counterparty is fundamental, and coun-

terparty credit risk is introduced when evaluating a derivative contract. Basel II

defines the counterparty credit risk as the risk that a counterparty in a financial

contract will default prior to the final settlement of the transaction and fail to make

the future obligatory payments. When investing in default risky assets, market par-

ticipants will charge a risk premium to account for the counterparty credit risk. As

a result, the value of a contingent claim with a defaultable counterparty will be

smaller than the value of the same claim with a non-defaultable counterpary. Our

goal in this section is to discuss how to quantify such a difference, and introduce

a general arbitrage-free valuation framework taking into account the counterparty

credit risk.

Probabilistic Framework We postulate the following probabilistic assumption

throughout the section. Let T ∈ R+ be the expiry time of the derivative deal.

Consider a filtered probability space (Ω,G, (Gt)t∈[0,T ],Q), where Q is the risk-neutral
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probability measure, Ω represents the set of all possible outcomes of the random

experiment, and the σ-algebra G represents the set of events A ∈ Ω. The filtration

(Gt)t∈[0,T ] models the flow of information of the whole market up to time t, including

default. The default time τ is defined on this probability space and is a G-stopping

time. This space is endowed with a right-continuous and complete sub-filtration

(Ft)t∈[0,T ] called the default-free market filtration, which represents all the observable

market quantities except for default events. Therefore, we have Gt = Ft ∨ Ht with

Ht = σ({τ ≤ u}, u ≤ t) being the right-continuous filtration generated by the

default events. Moreover, we adopt the notational convention that Et is the risk-

neutral expectation conditional on the filtration Gt.

1.2.1 Unilateral counterparty risk

Let’s first consider the valuation problem where only one of the two parties is de-

faultable. Taking the viewpoint of the default-free party, the problem is to compute

the adjustment to the default-free price of the deal when entering a financial trade

with a counterparty that has a positive probability of defaulting before the maturity

of the trade. Such adjustment is called unilateral credit valuation adjustment (in

short UCVA). UCVA has been studied for example by Sorensen and Bollier in [70]

and by Bielecki and Rutkowski in [7]. Brigo and Masetti in [24] considered pricing

with UCVA under netting, whereas Cherubini [38] discussed UCVA with collateral

in some stylized cases.

General pricing formula Consider the case when the investor is default-free. At

the time of default τ < T , the investor will calculate the net present value (in short

NPV) being the residual value of the deal until maturity. If the NPV is negative to

the investor, the investor will pay in full the NPV to the defaulted conterparty. If

the NPV is positive to the investor, the investor will face a loss and receive only a

recovery fraction of the NPV, denoted as R. In the case where no default happens,

i.e. τ > T , the derivative trade is the same as in the default-free case.

We denote by Π(t, T ) the sum of the discounted (at the risk-free rate) payoff at
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time t < T happening over the time period (t, T ]. We have immediately

NPV (τ) = Eτ [Π(τ, T )].

The defaultable derivative price denoted as V̄t at time t < τ can be calculated as

V̄t = Et
{

1{τ>T}Π(t, T ) + 1{τ<T}

[
Π(t, τ) +D(t, τ)

(
R(NPV (τ))+ − (−NPV (τ))+

)]}
,

where we use the short hand nations X+ := max{X , 0} and X− := min{X , 0}.

D(t, u) is the risk-free (and funding-free) discount factor, given by the ratio

D(t, u) =
Bt

Bu

, (1.1)

where

dBt = rtBtdt

is the bank account driven by the risk-free instantaneous interest rate r and associ-

ated to the risk-neutral measure Q. The rate r is assumed to be (Ft)t∈[0,T ] adapted.

Applying the properties of conditional expectations, the following result can be

proved.

Proposition 1.2.1 (General unilateral counterparty risk pricing formula

[24]). At time t < τ , the price of the derivative trade under counterparty credit risk

is

V̄t = Et[ Π(t) ]− LGDEt
[
1{t<τ≤T}D(t, τ)(NPV (τ))+

]
,

where LGD = 1 − R is the loss given default, and the recovery rate R is assumed to

be deterministic.

We notice that the counterparty risk adjusted deal price consists of the default-

free deal price and an adjustment term which is called credit valuation adjustment

denoted by CVA given as

CVA(t) = LGDEt
[
1{t<τ≤T}D(t, τ)(NPV (τ))+

]
. (1.2)
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The CVA term takes the form of an option price, more specifically, a call option on

the NPV with zero strike, only when default happens (τ ≤ T ). Including couterparty

credit risk into valuation makes the pricing model dependent, even when the original

valuation is model independent (for instance an interest rate swap).

However, it has been made clear that the unilateral assumption of the counter-

party credit risk was not realistic during the financial crisis. If both parties in a

transaction may default, the counterparty risk adjustment becomes a bilateral one.

Indeed, the bilateral nature of counterparty risk has been recognised by market

participants.

1.2.2 Arbitrage-free valuation of bilateral counterparty risk

In this section, we consider the valuation problem when the default possibility of the

investor is included, in contrary to the previous section. The bilateral counterparty

risk was first introduced by Duffie and Huang in [46], where a valuation model ac-

counting for the default of both parties was presented. Bielecki and Rutkowski [7]

gave a general formula for bilateral counterparty risk evaluation and Brigo and Cap-

poni [16] developed a pricing formula for bilateral counterparty risk valuation adjust-

ment (BCVA) considering the sequence of default events to avoid double counting.

The introduction of bilateral counterparty risk brings in the symmetry: the coun-

terparty risk adjustment to the investor is the opposite of that to the counterparty.

The adjustment driven by the default of the party who calculates the deal value is

called debit valuation adjustment (in short DVA) which is a positive value added on

to the deal price. However, DVA has some counter-intuitive features, as it increases

the mark-to-market when the party’s credit quality worsens.

We denote by τI and τC the default times of the investor and counterparty,

respectively, both being G-stopping times. Recall that Gt = Ft ∨ Ht, and the

right-continuous filtration generated by the default events either of the investor

or of the counterparty Ht = σ ({τI ≤ u} ∨ {τC ≤ u}, u ≤ t). The stopping time

τ = min{τC , τI} is the first to default time.

Unlike the unilateral counterparty risk pricing, we need to consider at the first



Chapter 1. Introduction 23

default time τ which party is the defaulting party, namely, τ = τI or τ = τC . Let’s

define the following six events:

A = {τI ≤ τC ≤ T} B = {τI ≤ T ≤ τC} C = {τC ≤ τI ≤ T}

D = {τC ≤ T ≤ τI} E = {T ≤ τI ≤ τC} F = {T ≤ τC ≤ τI}.
(1.3)

Remark 1.2.2. Throughout this thesis, we assume that there is no simultaneous

default. In practice, the case when two parties of a transaction default simultaneously

is very rare, and the liquidation procedures in such a case are not clear. Therefore,

we postulate that the probability of the event τI = τC is zero - the default times of

the two entities are never equal. Of course, the two default times can be very close.

One party can default very closely to the other party with high probability.

Taking the point of view of the investor, at t < T the adjusted price of a deal

including bilateral counterparty risk can be calculated as

V̄t =Et
{

1{E∪F}Π(t, T )

+ 1{C∪D}

[
Π(t, τC) +D(t, τC)

(
RC(NPV (τC))+ − (−NPV (τC))+

)]
+ 1{A∪B}

[
Π(t, τI) +D(t, τI)

(
(NPV (τI))

+ −RI(−NPV (τI))
+
)]}

,

where RC and RI denote respectively the recovery fraction of the counterparty and

the investor. If there is no default event (only the events E and F happen), the

above pricing formula reduces to the classical risk-neutral valuation formula. If the

investor is taken as default-free (event A and B will not happen), the pricing formula

will reduce to the unilateral counterparty risk pricing case.

An application of the properties of conditional expectation yields the following

result for bilateral counterparty risk pricing.

Proposition 1.2.3 (General bilateral counterparty risk pricing formula

[15]). At time t < τ , the price of the derivative trade under bilateral counterparty

risk is

V̄t = Et[ Π(t, T ) ]− LGDC Et
[
1{C∪D}D(t, τC)(NPV (τC))+

]
+ LGDI Et

[
1{A∪B}D(t, τI)(−NPV (τI))

+
]
,

(1.4)
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where LGDC = 1−RC and LGDI = 1−RI are the loss given default to the counterparty

and the investor, and the recovery rates are assumed to be deterministic.

Again, we see that the adjusted price is the sum of the risk-free deal price, the

price of a short call option position if the counterparty defaults first, and the price of

a long put option position if the investor defaults first, where both options have zero

strikes. The adjustment added to the risk-free price to account for the counterparty

credit risk is the so called bilateral counterparty risk valuation adjustment (BCVA),

which can be either positive or negative. It is composed of a credit valuation adjusted

term and a debit valuation adjustment term, denoted by CVA and DVA respectively.

Taking the viewpoint of the investor, these terms can be expressed as

BCV A(t) = DVA(t)− CVA(t),

CVA(t) = LGDC Et
[
1{C∪D}D(t, τC)(NPV (τC))+

]
, (1.5)

DVA(t) = LGDI Et
[
1{A∪B}D(t, τI)(−NPV (τI))

+
]
.

Unlike the unilateral credit valuation adjustment, when considering bilateral coun-

terparty risk, both parties can agree on the adjustment term being added to the

default-free deal price. Indeed, the CVA of the investor is the DVA of the counter-

party, whereas the CVA of the counterparty is the DVA of the investor.

The inclusion of DVA has been controversial. One objection is that one party

books positive mark-to-market when its credit quality worsens. The defaulting party

would gain if it defaults and to price this component might appear unusual. More-

over, the hedging of DVA is very difficult as the institution cannot sell CDS protec-

tion on their own name. In practice, the hedging is done by selling protection on

some highly correlated names.

In the following sections, we analyse some practical consequences of the bilateral

counterparty risk valuation adjustment.
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1.2.3 Close-out convention

When closing a deal, we have a choice of which close-out convention to use: the risk-

free close-out, or the replacement close-out. The close-out amount is the net present

value (NPV) of the deal that is computed when the first default happens for default

settlement. A risk-free close-out amount is the NPV calculated when assuming the

surviving party to be default-free, whereas a replacement close-out amount is the

NPV computed by taking into account the credit quality of the surviving party upon

default of the first entity. Clearly, such a replacement close-out can be different

from a risk-free one, and the counterparty risk valuation adjustment can change

dramatically depending on the choice of close-out convention. From the perspective

of valuation continuity, the replacement close-out is consistent with the counterparty

risk valuation adjustment, whereas the risk-free close-out introduces a dependence

of counterparty risk for a pre-default evaluation but discards any future obligation

for the surviving party on the default event.

Risk-free Close-out Under a risk-free close-out, upon the first default event, the

default probability for the surviving party will not be considered, so the NPV is

computed as a risk-free price of the deal at the first default time, namely,

NPV (τi) = Eτi [ Π(τi, T ) ] , for i ∈ {I, C}.

Therefore, the bilateral counterparty risk pricing formula at any time t < τ reads,

V̄t = Et[ Π(t, T ) ]− LGDC Et
[
1{C∪D}D(t, τC) (EτC [ Π(τC , T ) ])+ ]

+ LGDI Et
[
1{A∪B}D(t, τI) (−EτI [ Π(τI , T ) ])+ ] , (1.6)

Replacement Close-out When replacement close-out is used in the settlement

of a default, we take into account the default risk of the surviving party. In other

words, the DVA of the surviving party needs to be included in the NPV calculation,

NPV (τC) = EτC [ Π(τC , T ) ] + DVAI(τC), NPV (τI) = EτI [ Π(τI , T ) ] + DVAC(τI),
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where DVAi denotes the debit valuation adjustment viewed from the perspective of

party i, i ∈ {I, C}, defined as (1.5). Therefore, the bilateral counterparty risk

pricing formula at any time t < τ reads,

V̄t = Et
[
1{E∪F}Π(t, T )

]
+ Et

{
1{C∪D}

[
Π(t, τC) +D(t, τC)

(
RC (EτC [ Π(τC , T ) ] + DVAI(τC))+

− (−EτC [ Π(τC , T ) ]−DVAI(τC))+
)]}

+ Et
{

1{A∪B}

[
Π(t, τI) +D(t, τI)

(
(−EτI [ Π(τI , T ) ]−DVAC(τI))

+

−RI(EτI [ Π(τI , T ) ] + DVAC(τI))
+
)]}

.

The above formula was also expressed in [25] for t < τ , as

V̄t = Et[ Π(t, T ) ]

+ Et
{

1{C∪D}D(t, τC)
[
DVAI(τC)− LGDC(EτC [ Π(τC , T ) ]−DVAI(τC))+

]}
+ Et

{
1{A∪B}D(t, τI)

[
LGDI(DVAC(τI)− EτI [ Π(τI , T ) ])+ −DVAC(τI)

]}
.

(1.7)

Risk-free or Replacement? The risk-free close-out does not require an assess-

ment of the default probability of the surviving party, and all contracts with the

same payoff will have the same close-out value, which to a large extent, simplifies the

valuation problem. Due to the computational simplicity, risk-free close-out seems

more preferable. However, intuitively, replacement close-out is more fair. The re-

placement close-out is consistent with the counterparty risk valuation adjustment

as the counterparty risk is considered throughout the valuation. Brigo and Morini

[25] provided a quantitative analysis of the consequences of the different close-out

conventions. They showed that for a simple derivative, assuming risk-free close-out,

the bilateral counterparty risk adjustment formula is not consistent with the mar-

ket practice on uncollateralized claims which, on the contrary, can be avoided with

replacement close-out. The paper also studied the effects of the two close-out con-

ventions in terms of default contagion. If a replacement close-out is used, there will
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be lower recovery for creditors. If, on the other hand, a risk-free close-out is used,

there will be unexpected losses affecting also the debtors of the defaulted entity,

which is at odds with standard counterparty risk for products like bonds and loans.

1.2.4 Double counting: first to default

A certain degree of double counting can be included when a bilateral counterparty

risk inclusive valuation is carried out. One possible issue is when the first to de-

fault close-out proceeding is neglected. In the industry, a simplification of bilateral

counterparty risk valuation adjustment is sometimes used, see for example Picoult

[67]. This simplified expression allows one to consider the bilateral counterparty

risk as a simple combination of the unilateral counterparty risk which may seem

to be desirable. However, the approach does not conform with the fact that when

the first default event happens, close-out proceedings start and the transaction is

closed. Moreover, it ignores the default dependence between the two parties in the

transaction.

A Simplified Formula We first recall that the full bilateral counterparty risk

pricing formula is given in (1.4) and the counterparty risk valuation adjustments

are defined in (1.5). If a risk-free close-out is in force, the bilateral counterparty

risk pricing follows equation (1.6), whereas for the replacement close-out case, one

should use the pricing formula (1.7).

In the unilateral case, only one of the two parties is considered to be defaultable.

We write the unilateral credit valuation adjustment (UCVA) and unilateral debit

valuation adjustment (UDVA) as

UCVAI(t) = LGDC Et
[
1{τC≤T}D(t, τC)(NPV (τC))+

]
, (1.8)

UDVAI(t) = LGDI Et
[
1{τI≤T}D(t, τI)(−NPV (τI))

+
]
,

where the NPV (τ) is calculated as the residual risk-free price of the deal as the

survival party is default free. Notice that the unilateral credit valuation adjustment

evaluated by the investor due to the default possibility of the counterparty is equiv-
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alent to the debit valuation adjustment of the counterparty due to its own default

risk, precisely,

UCVAI(t) = UDVAC(t).

We now consider a simplified case of the bilateral counterparty risk adjustment

where the first to default is neglected. More precisely, instead of considering all of

the six events (1.3), we only study the following three scenarios:

{τC ≤ T}, {τI ≤ T} and {T < min{τI , τC}}.

In this case, each adjusted term is computed as if only one of the two parties is

defaultable since the first to default is no longer checked. Therefore, the dependence

between the defaults of the two parties is not required in determining the adjusted

price.

Risk-free Close-out In the case of risk-free close-out, the simplified adjusted

price, denoted as V̄ ∗t , can be computed as

V̄ ∗t = Et[ Π(t, T ) ]− LGDC Et
[
1{τC≤T}D(t, τC) (EτC [ Π(τC , T ) ])+ ]

+ LGDI Et
[
1{τI≤T}D(t, τI) (−EτI [ Π(τI , T ) ])+ ]

= Et[ Π(t, T ) ]− UCVAI(t) + UCVAC(t).

The bilateral counterparty risk valuation adjustment in this case is simply the dif-

ference of two UCVA, which dramatically simplifies the calculation and gives great

practical advantage.

Replacement Close-out The main assumption of the simplified formula is

that each term is computed as in the unilateral case (only one of the parties can

default), and the default party would be the one that defaults first in the full bilateral

case. Therefore, when replacement close-out is used, the simplified adjusted price
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can be calculated as

V̄ ∗t = Et[ Π(t, T ) ]

+ Et
{

1{τC≤T}D(t, τC)
[
DVAI(τC)− LGDC(EτC [ Π(τC , T ) ]−DVAI(τC))+

]}
+ Et

{
1{τI≤T}D(t, τI)

[
LGDI(DVAC(τI)− EτI [ Π(τI , T ) ])+ −DVAC(τI)

]}
= Et[ Π(t, T ) ]

− Et
{

1{τC≤T}D(t, τC)LGDC

(
EτC [ Π(τC , T ) ]

)+
}

+ Et
{

1{τI≤T}D(t, τI)LGDI

(
− EτI [ Π(τI , T ) ]

)+
}

=Et[ Π(t) ]− UCVAI(t, T ) + UCVAC(t, T ),

which is identical to the simplified formula with risk-free close-out. Here, the second

equality holds because each term is calculated as if only one of the two names is

defaultable, so the DVA associated to the default-free party will be zero.

The Impact of the Simplification In the full adjusted pricing formula, six

events (1.3) are considered. However, in the simplified version, we only considered

three cases: {τC ≤ T}, {τI ≤ T} and {T < min{τI , τC}}. Since E ∪ F = {T <

min{τI , τC}}, events A, C, D are contained in {τC ≤ T}, and events A, B, C are

contained in {τI ≤ T}, the double counting is then obvious. For t < min{τI , τC},

we have

1{A∪B} − 1{τI≤T} = −1{τC<τI<T},

1{C∪D} − 1{τC≤T} = −1{τI<τC<T}.

Therefore, the difference of the full bilateral counterparty risk valuation and the

simplified version is

V̄t − V̄ ∗t = Et
{

1{τI<τC<T}D(t, τC)LGDC

(
EτC [ Π(τC , T ) ]

)+
}

− Et
{

1{τC<τI<T}D(t, τI)LGDI

(
− EτI [ Π(τI , T ) ]

)+
}
.
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As we see, the difference is due to the so called second to default term.

The impact of the first to default time was closely studied in Brigo et al. [12],

where the authors considered the errors caused by the simplification in two sim-

ple products: a zero coupon bond and an equity forward contract, and presented

a number of cases where the simplified formula differs considerably from the full

formula.

1.2.5 Wrong way risk

The full valuation formula in (1.4) depends on the joint distribution of the default

times and the underlying asset. Wrong way risk (in short WWR) is the risk the

investor has when the underlying portfolio and the default of the counterparty are

“correlated” in the worst possible way from the investor’s perspective. Wrong way

risk has been studied in the literature in different asset classes. For example, Brigo

and Tarenghi [32, 33] analyse the counterparty risk valuation adjustment on Equity,

Brigo and Masetti [24] examine CVA with netting, and Brigo et al. [27] consider the

particular case of an Equity Return Swap with counterparty risk. Counterparty risk

valuation adjustment on commodities with WWR is analysed in Brigo and Bakkar

[11]. In interest rate products, Brigo and Pallavicini [28] incorporate the WWR

in a stochastic intensity model which is correlated with the multi-factor short rate

process driving the interest rate dynamics, whereas Brigo et al. [31] introduce

methods for bilateral counterparty risk adjustment and allow also for correlation

between the default times of the investor and counterparty. Brigo and Chourdakis

[19] consider counterparty risk for Credit Default Swaps (CDS) in the presence of

correlation between default of the counterparty and default of the CDS reference

credit, but the paper only deals with unilateral and asymmetric counterparty credit

risk. Crepey et al. [43] model wrong way risk for CDS with counterparty credit

risk using a Markov chain copula model, whereas Lipton and Sepp [57] introduce a

structural model with jumps. Brigo and Capponi [15] include the default risk of the

investor by using a trivariate copula function on the default times to model default

dependence.
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Other subjects related to the counterparty risk adjusted pricing problem include

collateralization and close-out netting rules, which will be closely studied in the next

chapter.

1.3 Structure of the thesis

The thesis is organized as follows. Chapter 2 describes the general pricing framework

with collateralization, credit, debit and funding valuation adjustments. We derive an

iterative solution of the pricing equation as well as a continuous time approximation.

In Chapter 3 we discuss the consistent valuation framework in a continuous time

setting. We give both FBSDE and semi-linear PDE expressions for the deal price

in the consistent framework and discuss the existence and uniqueness conditions

in each case. The invariance theorem stating that the pricing framework does not

depend on the theoretical risk-free rate is given at the end of the chapter. Chapter 4

addresses an important problem with the self-financing condition used in a derivative

pricing framework with funding, collateral and discounting. We give the correct

derivation by specifying the gain processes, the price processes and the dividend

processes. We also show how the traditional self-financing condition is adjusted in

our market settings. Chapter 5 describes a least-square Monte Carlo algorithm and

provides numerical results on deal positions in European call options on equity under

the benchmark model of Black and Scholes. A nonlinearity valuation adjustment

(NVA) is introduced and computed. Chapter 6 provides details about how the

consistent valuation framework can be tailored to address other market realities.

We discuss a valuation framework which includes also the costs/benefits from assets

borrowing/lending. We then study when the trade is cleared by a central clearing

house (CCP) or governed by bilateral Credit Support Annex (CSA) with variation

and initial margins. Moreover, we consider the case when the margin period of risk

is included. We conclude the thesis in the last section and hint at the financial

implications.
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Proceedings in Mathematics and Statistics, Springer.

6. No-arbitrage bounds for the forward smile given marginals. S. Badikov, A.
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Chapter 2

Consistent Valuation Framework

In this chapter we develop a general arbitrage-free valuation framework for over

the counter (OTC) derivative deals. The chapter clarifies how the traditional pre-

crisis derivative price is consistently adjusted to reflect the new market realities of

counterparty credit risk, collateralization and funding risk.

We refer to the two parties of an OTC deal as the investor or dealer (“I”) on one

side, and the counterparty or client (“C”) on the other side. Recall the probabilistic

set-up in section 1.2. Fixing a finite time horizon of the deal, T ∈ R+, we define our

risk-neutral pricing model on a filtered probability space (Ω,G, (Gt)t∈[0,T ],Q), where

Q is the risk-neutral probability measure. The filtration (Gt)t∈[0,T ] models the flow of

information of the whole market, including credit, such that the default times of the

investor τI and the counterparty τC are G-stopping times, and we have Gt = Ft∨Ht

with the default-free market filtration given by (Ft)t∈[0,T ] and the filtration generated

by the default events denoted by Ht = σ ({τI ≤ u} ∨ {τC ≤ u}, u ≤ t). Throughout

this work, we adopt the notational convention that Et is the risk-neutral expectation

conditional on the filtration Gt (unless otherwise specified), while Eτi denotes the

conditional risk-neutral expectation given the stopped filtration Gτi for i ∈ {I, C}.

Moreover, we exclude the possibility of simultaneous defaults for simplicity, and

define the time of the first default event among the two parties as the stopping

time,

τ := (τI ∧ τC).
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In the sequel we adopt the view of the investor and consider the cash-flows and

consequences of the deal from his perspective. In other words, when we price the

deal we obtain the value of the position to the investor. As we will see, with funding

risk this price will often not just be the value of the deal to the counterparty with

an opposite sign.

The gist of the valuation framework is conceptually simple and rests neatly on

the classical finance disciplines of risk-neutral pricing and discounting cash-flows.

When a dealer enters into a derivative deal with a client, a number of cash-flows are

exchanged, and just like valuation of any other financial claim, discounting these

cash in- or outflows gives us a deal price. Post-crisis market practice distinguishes

four different types of cash-flow streams occurring once a trading position has been

entered:

(i) Cash-flows coming directly from the derivative contract such as payoffs, coupons,

dividends, etc. We denote by Π(t, T ) the sum of all the discounted (at the risk-free

rate) cash-flows of a given contract happening over the time period (t, T ], where

Π is an arbitrary càdlàg process with finite variation. The process Π models all

discounted cash-flows which are either paid out from or added to the wealth of a

contract. This is where classical derivatives pricing would usually stop and the price

of a derivative contract with maturity T would be given by

Vt = Et [ Π(t, T )] .

This price assumes no credit risk of the parties involved and no risk of funding the

trade.

However, present-day market practice requires the price to be adjusted by taking

further cash-flow transactions into account:

(ii) Cash-flows required by collateral margining. If the deal is collateralized, cash-

flows happen in order to maintain a collateral account that in the case of default

will be used to cover any losses. γ(t, T ;C) denotes the sum of the discounted (at the

risk-free rate) margining costs over the period (t, T ] with C denoting the collateral

account.
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(iii) Cash-flows exchanged once a default event has occurred. We let θτ (C, ε) denote

the on-default cash-flow with ε being the residual value of the claim traded at

default.

Lastly, (iv) cash-flows required for funding the deal. We denote the sum of the

discounted (at the risk-free rate) funding costs over the period (t, T ] by ϕ(t, T ;F )

with F being the cash account needed for funding the deal.

Collecting all the terms and taking expectation under the risk-neutral pricing

measure, we obtain a consistent adjusted price V̄ of a derivative deal taking into

account counterparty credit risk, collateral margining costs and funding costs

V̄t(C,F ) = Et [ Π(t, T ∧ τ) + γ(t, T ∧ τ ;C) + ϕ(t, T ∧ τ ;F ) (2.1)

+1{t<τ<T}D(t, τ)θτ (C, ε)
]
,

where D(t, τ) is the risk-free discount factor defined in (1.1).

By using a risk-neutral valuation approach, we see that only the payout needs

to be adjusted under collateralization, counterparty credit and funding risks. In the

following sections we will expand the terms in (2.1) and carefully discuss how to

compute them.

2.1 Valuation under collateralization and close-out netting

The ISDA master agreement is the most commonly used framework for full and

flexible documentation of OTC derivative transactions and is published by the In-

ternational Swaps and Derivatives Association ([54]). Once agreed between two

parties, the master agreement sets out standard terms that apply to all deals en-

tered into between those parties. The ISDA master agreement lists two tools to

mitigate counterparty credit risk: collateralization and close-out netting. Collater-

alization of a deal means that the party which is out-of-the-money is required to

post collateral – usually cash, government securities or highly rated bonds – corre-

sponding to the amount payable by that party in the case of a default event. The

credit support annex (CSA) to the ISDA master agreement defines the rules under
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which the collateral is posted or transferred between counterparties. Close-out net-

ting means that in the case of default all transactions with the counterparty under

the ISDA master agreement are consolidated into a single net obligation which then

forms the basis for any recovery settlements.

Risk-neutral evaluation of counterparty risk taking into account the collateral-

ization and close-out netting rules can be difficult due to the complexity of clauses.

Early literature dealing with collateral inclusive pricing commonly assume that the

collateral is a risk-free asset such as in Alavian et al. [1] and Assefa et al. [3].

Brigo et al. in [18] generalized an arbitrage-free framework for valuation including

collateralization and possible rehypothecation.

The purpose of this section is to develop a model independent formula for OTC

deals, inclusive of collateralization mitigation and close-out netting convention, be-

fore we introduce the funding risk. We will analyse the margining costs required by

the collateralization, taking into account the counterparty credit effects and netting

rules at close-out.

2.1.1 Collateral convention and margin account

Collateralization of a deal usually happens according to a margining procedure.

Such a procedure involves that both parties post collateral amounts to or withdraw

collateral amounts from the collateral account C according to their current exposure

on a pre-fixed time-grid {t1, . . . , tn = T} during the life of the deal. We define the

collateral account Ct at t ∈ [0, T ] to be a stochastic process adapted to the filtration

Gt. The terms of the margining procedure may, furthermore, include independent

amounts, minimum transfer amounts, thresholds, etc., as described in [18]. However,

here we adopt a general description of the margining procedure that does not rely

on the particular terms chosen by the parties.

Collateral accounts in general can be any type of assets (both defaultable and

risk-free), which can be liquidated at the default time. In this thesis, we assume that

the collateral account is a risk-free cash account. Furthermore, we postulate that for

each new deal, a new collateral account is opened, and when a default event happens
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or when the maturity of the trade is reached, the collateral account is closed. In

particular, Ct = 0 for all t ≤ 0 and Ct = 0 for all t ≥ T . Upon the closure of

the collateral account, any remaining collateral held by the collateral taker will be

returned to the collateral provider.

Without loss of generality, we consider a collateral account C held by the investor.

Moreover, we assume that the investor is the collateral taker when Ct > 0 and

the collateral provider when Ct < 0. The CSA ensures that the collateral taker

remunerates the account C at an accrual rate. If the investor is the collateral taker,

he remunerates the collateral account by the accrual rate c+
t (T ), while if he is the

collateral provider, the counterparty remunerates the account at the rate c−t (T ).

c+
t (T ) and c−t (T ) are Ft-adapted, thus are also Gt-adapted processes. To fix ideas,

let us resort to a toy example.

Example. (Collateral example) Suppose we are at time t1 during the trade of an

equity return swap, and that the swap value is negative now with a mark to market

equal to $2M (2 Million USD) in favour of our counterparty. In this case we have

Ct1 = −$2M in the collateral account, posted by us in the past margining activity.

Since Ct1 = −$2M < 0, we receive collateral interest c−, say 1% annually, on this.

With simple compounding we will receive 1%×$2M×1/250 = $80 on this day. Now

time moves to the next day at t2 = t1 + 1/250, the market swings heavily, the mark

to market turns around and goes to +$2M to us, or −$2M for the counterparty, so

that we expect to receive $2M in collateral while we take back the amount we had

posted previously from the collateral account. As we receive collateral, Ct2 = $2M ,

we now have to pay interest c+ to the counterparty, say 1.2% annually, so that we

pay 1.2%×$2M×1/250 = $96 as interest over the next day. Clearly we see that the

asymmetry of rates makes the interest on collateral posted or received on an opposite

mark to market not symmetric. We will return to this example later on.

More generally, to understand the cash-flows originating from collateralization of

the deal, let us consider the consequences of the margining procedure to the investor.

At the first margin date, say t1, the investor opens the account and posts collateral

if he is out of the money, i.e. if Ct1 < 0, which means that the counterparty is the
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collateral taker. On each of the following margin dates tj, j ∈ {2, . . . , n − 1}, the

investor posts collateral according to his exposure as long as Ctj < 0. As collateral

taker, the counterparty pays interest on the collateral at the accrual rate c−tj(tj+1)

between the following margin dates tj and tj+1. We assume that interest accrued

on the collateral is saved into the account and thereby directly included in the

margining procedure and the close-out. Finally, if Ctn < 0 on the last margin date

tn, the investor closes the collateral account given no default event has occurred

in between. Similarly, for positive values of the collateral account (Ctj > 0), the

investor is instead the collateral taker. The counterparty faces corresponding cash-

flows at each margin date, and is entitled to interest payments from the investor at

the rate c+
tj(tj+1) for the associated margin period. If we do not take into account the

default events and sum up all the discounted margining cash-flows of the investor

and the counterparty occurring within the time interval [t, (T ∧ τ)], we obtain the

following expression for the margining cash-flows denoted as Γ(t, T ∧ τ ;C).

Γ(t, T ∧ τ ;C) =
n−1∑
j=1

1{tj<τ}
(
D(t, tj)Ctj −D(t, tj+1)µ(tj, tj+1)

)
(2.2)

+
n−1∑
j=1

1{tj<τ <tj+1}D(t, tj+1)µ(tj, tj+1) ,

where

µ(tj, tj+1) :=
C−tj

P c−
tj (tj+1)

+
C+
tj

P c+
tj (tj+1)

,

denotes the value of the collateral account accrued from date tj to date tj+1 as

required by the CSA, and the (collateral) zero-coupon bond is defined as P c±
t (T ) :=

[1 + (T − t)c±t(T )]−1.

We use the short-hand notation X+ := max(X , 0) and X− := min(X , 0), so for

a random variable X we have X = X+ + X−.

Moreover, we assume that the probability of default at a particular time is zero.

In other words, the distribution of the default times τ is assumed to be continuous

so that Q(τ = u) = 0 for all u ≥ 0. We define the effective accrual collateral rate
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c̃t(T )1 as

c̃t(T ) := c−t (T )1{Ct<0} + c+
t (T )1{Ct>0}. (2.3)

From (2.2) the price of the collateral margining cash-flows is obtained by taking

the risk-neutral expectation to the discounted cash-flows

Et[ Γ(t, T ∧ τ ;C) ] = Et
[
γ(t, T ∧ τ ;C) + 1{τ<T}D(t, τ)Cτ−

]
,

where we introduce the pre-default value Cτ− of the collateral account as

Cτ− :=
n−1∑
j=1

1{tj<τ<tj+1}Ctj
Pτ (tj+1)

P c̃
tj(tj+1)

, (2.4)

and the collateral margining costs γ(t, T ∧ τ ;C) entering (2.1) are defined as

γ(t, T ∧ τ ;C) :=
n−1∑
j=1

1{t6tj<(T∧τ)}D(t, tj)Ctj

(
1−

Ptj(tj+1)

P c̃
tj(tj+1)

)
, (2.5)

with the zero-coupon bond P c̃
t (T ) := [1 + (T − t)c̃t(T )]−1, and the risk-free zero

coupon bond, related to the risk-free rate r, given by Pt(T ).

The pre-default value of the collateral account may be different from the actual

value of the collateral account at default since part or all of the collateral may be

rehypothecated. In accordance with the CSA, this pre-default value of the collateral

account is used to compute the netted exposure at close-out. In particular, we will

first net the exposure against the pre-default value of the collateral Cτ−, and then

treat any remaining collateral as an unsecured claim.

Let αj be the year fraction between tj and tj+1. If we adopt a first order expansion

(for small c and r), we can approximate

γ(t, T ∧ τ ;C) ≈
n−1∑
j=1

1{t6tj<(T∧τ)}D(t, tj)Ctjαj
(
rtj(tj+1)− c̃tj(tj+1)

)
, (2.6)

1We stress the slight abuse of notation here: A plus and minus sign does not indicate that the
rates are positive or negative parts of some other rate, but instead it tells which rate is used to
accrue interest on the collateral according to the sign of the collateral account.
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where with a slight abuse of notation we call c̃t(T ) and rt(T ) the continuously (as

opposed to simple) compounded interest rates associated with the bonds P c̃ and P .

This last expression clearly shows a cost of carry structure for collateral costs. If

C is positive to the investor, then the investor is holding collateral and will have

to pay (hence the minus sign) an interest c+, while receiving the natural growth r

for cash, since we are in a risk-neutral world. In the opposite case, if the investor

posts collateral, the collateral account value C is negative to the investor and the

investor receives interest c− while paying the risk-free rate, as should happen when

one shorts cash in a risk-neutral world.

A crucial role in collateral procedures is played by rehypothecation. We discuss

rehypothecation and its inherent liquidity risk in the following.

Rehypothecation Liquidity Risk Often the CSA grants the collateral taker

relatively unrestricted use of the collateral for his liquidity and trading needs un-

til it is returned to the collateral provider. This unrestricted use includes selling

collateral to a third party and lending or selling the collateral under a “repo” agree-

ment. Rehypothecation is widespread as a practice, since it can lower the costs of

remuneration of the provided collateral. However, while without rehypothecation

the collateral provider can expect to get any excess collateral returned after hon-

oring the amount payable on the deal, if rehypothecation is allowed, the collateral

provider has to face the risk of losing a fraction or all of the excess collateral in case

of default on the collateral taker’s part. Indeed, when the collateral is rehypoth-

ecated, the collateral taker leaves the collateral provider as an unsecured creditor

with respect to the collateral reimbursement.

We denote the recovery fraction on the rehypothecated collateral by R′I when the

investor is the collateral taker and by R′C when the counterparty is the collateral

taker. Recall that we defined in Chapter 1 that the general recovery fraction on

the market value of the deal that the investor receives in the case of default of

the counterparty is denoted by RC , while RI is the recovery fraction received by

the counterparty if the investor defaults. All such quantities are defined on a unit

notional. The collateral provider typically has precedence over other creditors of
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the defaulting party in getting back any excess capital, which means RI 6 R′I 6 1

and RC 6 R′C 6 1. If no rehypothecation is allowed and the collateral is kept

safely in a segregated account, we have that R′I = R′C = 1. We do not rule out the

case where the collateral losses are treated as standard unsecured debit losses upon

default events, namely, when R′ = R.

Example. (Collateral example continued) As in our previous case, suppose we

have posted $2M in the collateral account and we receive 1% annual interest from

the counterparty. If the counterparty can rehypothecate collateral, they can use this

collateral and post it in another trade, and gain interest on that. This will offset

the $80 daily cost they pay us and ease their funding costs. Clearly we may also like

to rehypothecate collateral when we receive it, for the same reason. Suppose how-

ever that the mark to market moves in our favour at t2 as in the previous example

to +$2M . We move to t2 but before the counterparty may post $2M collateral it

defaults. This is the worst case. Not only we face a loss on our mark to market,

since there is no collateral in the account to cover our loss, but also when we go to

the account to take back at least the collateral we posted the previous day, we find

that we can only get a recovery of that since the counterparty had rehypothecated

our collateral and has now defaulted. We may only receive a recovery on that collat-

eral. If the recovery rate R′C is 20%, we will receive back only 20%× $2M , namely

$400, 000, losing $2M on the mark to market of today and $1.6M on the collateral

posted yesterday.

Detailed analysis for the impact of rehypothecation on the pricing of counterparty

risk was carried out in Brigo et al. [18] for interest-rate derivatives and in Brigo et

al. [17] for credit derivatives.

Perfect Collateralization Let’s consider a special case for the counterparty risk

valuation including collateralization–perfect collateralization. By perfect collateral-

ization, we mean when the collateral margining is done in continuous time, with

continuous mark-to-market of the deal upon default events. Under perfect collater-

alization, the collateral account is defined as the sum of the mark-to-market of the
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deal and the collateral margining costs at any time t < T , namely,

Ct := Et[ Π(t, T ) + γ(t, T ;C) ] ,

and the close-out amount is equivalent to the collateral price,

εC,τ = εI,τ = Cτ .

Here εI,τ is the close-out amount on the counterparty’s default priced at time τ by

the investor and εC,τ is the close-out amount computed by the counterparty if the

investor defaults.

Recall the adjusted price of a deal before introducing the funding risk is calcu-

lated by taking the risk-neutral expectation of the contractual cash-flows and the

margining cash-flows, written as

V̄t(C) = Et
[

Π(t, T ∧ τ) + γ(t, T ∧ τ ;C) + 1{t<τ<T}D(t, τ)Cτ
]
. (2.7)

Under the assumption of perfect collateralization, the above expression can be sim-

plified as

V̄t(C) = Et[ Π(t, T ) + γ(t, T ;C) ] = Ct. (2.8)

If we consider two adjacent margining dates in the discrete setting tj and tj+1,

with 1 ≤ j ≤ n− 1, tn = T , by substituting the expression for margining cash-flows

into equation (2.8) up to maturity, we get

V̄tj(C) =
P c̃
tj

(tj+1)

Ptj(tj+1)
Etj
[
D(tj, tj+1)V̄tj+1

(C) + Π(tj, tj+1)
]
, V̄tn(C) = 0.

Making use of the recursive nature, we can write

V̄t(C) = Et

[
n−1∑
j=1

Π(tj, tj+1)D(t, tj)

j∏
i=1

P c̃
ti

(ti+1)

Pti(ti+1)

]
.

In the perfect collateralization case, collateral margining and mark-to-market are
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assumed to be carried out continuously in time. Taking the limit of the above

expression, one has

V̄t(C) = Et
[ ∫ T

t

e−
∫ s
t c̃uduΠ(s, s+ ds)

]
. (2.9)

Therefore, the adjusted price of a deal under perfect collateralization is obtained

by taking the expected value of the future cash flows discounted at the effective

collateral rate c̃. One interesting result is that the risk-free rate r disappears from

the valuation formula.

2.1.2 Close-out netting rules

In case of default all terminated transactions under the ISDA master agreement

with a given counterparty are netted and consolidated into a single claim. This also

includes any posted collateral to back the transactions. In this context the close-out

amount plays a central role in calculating the on-default cash-flows. The close-out

amount is the costs or losses that the surviving party incurs when replacing the

terminated deal with an economic equivalent. Clearly, the close-out amount is not

symmetric to the two parties, since the size of these costs will depend on which

party survives. We define the close-out amount as

ετ := 1{τ=τC<τI}εI,τ + 1{τ=τI<τC}εC,τ , (2.10)

where εI,τ is the close-out amount on the counterparty’s default priced at time τ

by the investor and εC,τ is the close-out amount computed by the counterparty

if the investor defaults. Bearing in mind that the investor and the counterparty

may evaluate close-out amount differently, we always consider the deal from the

investor’s viewpoint in terms of the sign of the cash-flows involved. This means that

if the close-out amount εI,τ as measured by the investor is positive, the investor

is a creditor of the counterpaty, while if it is negative, the investor is a debtor of

the counterparty. Analogously, if the close-out amount εC,τ to the counterparty but

viewed from the investor is positive, the investor is a creditor of the counterparty,
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and if it is negative, the investor is a debtor to the counterparty.

We note that the ISDA documentation is, in fact, not very specific in terms of

how to actually calculate the close-out amount. Since 2009 ISDA has allowed for

the possibility to switch from a risk-free close-out rule to a replacement close-out

rule that includes the DVA of the surviving party in the recoverable amount. Parker

and McGarry [65] and Weeber and Robson [73] show how a wide range of values of

the close-out amount can be produced within the terms of ISDA. We refer to Brigo

et al. [18] and the references therein for further discussions on these issues. Here,

we adopt the approach of [18] listing the cash-flows of all the various scenarios that

can occur if default happens. Our aim is to determine the present value of all cash

flows taking into account the collateral margining procedures and close-out netting

rules upon default events.

We start by considering all possible scenarios that may arise upon the first default

event. For example, if the counterparty defaults first (ετ = εI,τ ), one of the following

four different scenarios can happen:

1. If the investor has a positive exposure on the default of the counterparty and

the counterparty has posted collateral to the investor, then the on-default

cash-flow is given as the investor’s exposure netted by any available collateral

θ1
τ (εI,τ ) = 1{τ=τC<T}1{ετ>0}1{Cτ−>0}

(
RC(ετ − Cτ−)+ + (ετ − Cτ−)−

)
.

2. If the investor has a positive exposure on counterparty’s default but the in-

vestor has posted collateral to the counterparty, then the investor suffers a loss

on the whole exposure and on the collateral if it has been rehypothecated

θ2
τ (εI,τ ) = 1{τ=τC<T}1{ετ>0}1{Cτ−<0} (RCετ −R′CCτ−) .

3. If the investor has a negative exposure towards the counterparty and the coun-

terparty has posted collateral to the investor, then the investor returns the
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collateral and pays the full exposure to the creditors of the counterparty

θ3
τ (εI,τ ) = 1{τ=τC<T}1{ετ<0}1{Cτ−>0} (ετ − Cτ−) .

4. If the investor has a negative exposure but has posted collateral to the counter-

party, then the exposure is netted with the posted collateral and the investor

pays any remaining exposure or receives any excess collateral

θ4
τ (εI,τ ) = 1{τ=τC<T}1{ετ<0}1{Cτ−<0}

(
(ετ − Cτ−)− +R′C(ετ − Cτ−)+

)
.

Similarly, we can list the cash-flows exchanged under all the scenarios in the case

when the investor defaults first, where ετ = εC,τ :

5. If the close-out amount to the counterparty is positive from the investor’s

point of view on the default of the investor, and the collateral is posted by the

counterparty to the investor, then the investor receives the remaining exposure

netted by the collateral, or pays any excess collateral

θ5
τ (εC,τ ) = 1{τ=τI<T}1{ετ>0}1{Cτ−>0}

(
(ετ − Cτ−)+ +R′I(ετ − Cτ−)−

)
.

6. If the counterparty has a negative exposure, i.e. ετ > 0 from the investor’s

point of view, and the investor has posted collateral to the counterparty, then

the counterparty pays the full exposure to the investor and returns the collat-

eral

θ6
τ (εC,τ ) = 1{τ=τI<T}1{ετ>0}1{Cτ−<0}(ετ − Cτ−) .

7. If the close-out amount to the counterparty is negative seen by the investor,

and the counterparty has posted collateral to the investor, then the counter-

party would face a loss on the exposure and a possible loss on the collateral if

it has been rehypothecated

θ7
τ (εC,τ ) = 1{τ=τI<T}1{ετ<0}1{Cτ−>0}(RIετ −R′ICτ−) .
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8. If the counterparty have a positive exposure, i.e. ετ < 0, viewed by the

investor, and the investor has posted collateral to the counterparty, then the

on-default cash-flow is given as the exposure netted by any available collateral

θ8
τ (εC,τ ) = 1{τ=τI<T}1{ετ<0}1{Cτ−<0}

(
(ετ − Cτ−)+ +RI(ετ − Cτ−)−

)
.

If we aggregate all these cash-flows and the pre-default value of collateral account,

we have the discounted on-default cash-flow given as

θτ (C, ε) = Cτ− + θ1
τ (εI,τ ) + θ2

τ (εI,τ ) + θ3
τ (εI,τ ) + θ4

τ (εI,τ )

+ θ5
τ (εC,τ ) + θ6

τ (εC,τ ) + θ7
τ (εC,τ ) + θ8

τ (εC,τ ).

Combining the above cash-flow with the contractual cash flows and the cash

flows from the collateral margining, and taking expectation under the risk-neutral

pricing measure, we reach the following proposition.

Proposition 2.1.1. The collateral inclusive bilateral counterparty risk valuation

adjusted pricing formula (without considering funding and investing costs) at time

t < τ is given by

V̄t(C) = Et
[

Π(t, T ∧ τ) + γ(t, T ∧ τ ;C) + 1{t<τ<T}D(t, τ)θτ (C, ε)
]
, (2.11)

where the on-default cash-flow is defined as

θτ (C, ε) := 1{τ=τC<τI}
(
εI,τ − LGDC(ε+

I,τ − C
+
τ−)+ − LGD

′
C(ε−I,τ − C

−
τ−)+

)
+ 1{τ=τI<τC}

(
εC,τ − LGDI(ε

−
C,τ − C

−
τ−)− − LGD

′
I(ε

+
C,τ − C

+
τ−)−

)
. (2.12)

We define the loss-given-default as LGDC := 1 − RC, and the collateral loss-given-

default due to rehypothecation as LGD
′
C := 1−R′C.

Proof. The first two terms in the pricing formula (2.11) are straightforward. We

focus on the simplification of the on-default cash-flow term which has been broken

down into the pre-default collateral value and eight default cases. We now combine
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the cases step by step:

θ1
τ (εI,τ ) + θ2

τ (εI,τ )

= 1{τC<τI}1{εI,τ<0}

[
1{Cτ−>0}(εI,τ − Cτ−)

+ 1{Cτ−<0}

(
(εI,τ − Cτ−)− +R′C(εI,τ − Cτ−)+

)]
= 1{τC<τI}1{εI,τ<0}

[
(εI,τ − Cτ−)− 1{Cτ−<0}

(
(εI,τ − Cτ−)+ −R′C(εI,τ − Cτ−)+

)]
= 1{τC<τI}

[
1{εI,τ<0}(εI,τ − Cτ−)− LGD

′
C(ε−I,τ − C

−
τ−)+ − 1{εI,τ>0}LGD

′
CC
−
τ−

]
;

For case 3 and 4, we have

θ3
τ (εI,τ ) + θ4

τ (εI,τ )

= 1{τC<τI}1{εI,τ>0}

[
1{Cτ−>0}

(
(εI,τ − Cτ−)− +RC(εI,τ − Cτ−)+

)
+ 1{Cτ−<0}(RCεI,τ −R′CCτ−)

]
= 1{τC<τI}1{εI,τ>0}

[
(RCεI,τ −R′CCτ−) + 1{Cτ−>0}

(
(εI,τ − Cτ−)− LGDC(εI,τ − Cτ−)+

− (RCεI,τ −R′CCτ−)
)]

= 1{τC<τI}

[
1{εI,τ>0}(RCεI,τ −R′CCτ−) + 1{εI,τ>0}1{Cτ−>0}(LGDCεI,τ − LGD

′
CCτ−)

− LGDC(ε+
I,τ − C

+
τ−)+ + 1{Cτ−<0}LGDCε

+
I,τ

]
.

Combining the above 4 cases yields

θ1
τ (εI,τ ) + θ2

τ (εI,τ ) + θ3
τ (εI,τ ) + θ4

τ (εI,τ )

= 1{τC<τI}

[
εI,τ − Cτ− − LGDC(ε+

I,τ − C
+
τ−)+ − LGD

′
C(ε−I,τ − C

−
τ−)+

]
.

Using a similar technique, we can calculate the sum of the rest of cash flows:

θ5
τ (εC,τ ) + θ6

τ (εC,τ )

= 1{τI<τC}

[
1{εC,τ>0}(εC,τ − Cτ−)− LGD

′
I(ε

+
C,τ − C

+
τ−)− − 1{εC,τ<0}1{Cτ−>0}LGD

′
ICτ−

]
,
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and

θ6
τ (εC,τ ) + θ7

τ (εC,τ )

= 1{τI<τC}

[
1{εC,τ<0}(RIεC,τ −R′ICτ−) + 1{εC,τ<0}1{Cτ−<0}(LGDIεC,τ − LGD

′
ICτ−)

− LGDI(ε
−
C,τ − C

−
τ−)− + 1{εC,τ<0}1{Cτ−>0}LGDIεC,τ

]
.

Therefore, the sum of the cash flows of cases 5-8 is

θ5
τ (εC,τ ) + θ6

τ (εC,τ ) + θ7
τ (εC,τ ) + θ8

τ (εC,τ )

= 1{τI<τC}

[
εC,τ − Cτ− − LGDI(ε

−
C,τ − C

−
τ−)− − LGD

′
I(ε

+
I,τ − C

+
τ−)−

]
.

Putting all terms together with the pre-default value of the collateral account, we

arrive at expression (2.12) for the on-default cash-flow.

If both parties agree on the exposure, namely εI,τ = εC,τ = ετ , when we take the

risk-neutral expectation in (2.12), we see that the price of the discounted on-default

cash-flow,

Et[1{t<τ<T}D(t, τ)θτ (C, ε)] = Et[1{t<τ<T}D(t, τ) ετ ]− CVA(t, T ;C) + DVA(t, T ;C),

(2.13)

is the present value of the close-out amount reduced by the collateralized CVA and

DVA terms

CVA(t, T ;C) := Et
[
1{τ=τC<T}D(t, τ)ΠCVAcoll(τ)

]
,

DVA(t, T ;C) := Et
[
1{τ=τI<T}D(t, τ)ΠDVAcoll(τ)

]
, (2.14)

and

ΠCVAcoll(s) =
(
LGDC(ε+

I,s − C
+
s−)+ + LGD

′
C(ε−I,s − C

−
s−)+

)
≥ 0,

ΠDVAcoll(s) = −
(
LGDI(ε

−
C,s − C

−
s−)− + LGD

′
I(ε

+
C,s − C

+
s−)−

)
≥ 0.

Also, observe that if rehypothecation of the collateral is not allowed, the terms
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multiplied by LGD
′
C and LGD

′
I drop out of the CVA and DVA calculations.

In order to aid the reader, for the rest of the thesis, we will simplify the model

by assuming that both parties agree on the exposure, i.e. εI,τ = εC,τ = ετ , unless

otherwise stated.

2.2 Valuation under funding risk

The hedging strategy that perfectly replicates the no-arbitrage price of a derivative

is formed by a position in cash and a position in a portfolio of hedging instruments.

When we talk about funding of a derivative deal, we essentially mean the cash

position that is required to establish the hedging strategy, and with funding costs

we refer to the costs of maintaining this cash position. If we denote the cash account

by F and the risky-asset account by H, we get

V̄t = Ft +Ht .

In the classical Black-Scholes-Merton theory, the risky part H of the hedge would

be a delta position in the underlying stock, whereas the risk-less part F would be a

position in the risk-free bank account.

If the deal is collateralized, the margining procedure is included in the deal

definition insuring that funding of the collateral is automatically taken into account.

Moreover, if rehypothecation is allowed for the collateralized deal, the collateral taker

can use the posted collateral as a funding source, and thereby reduce or maybe even

eliminate the costs of funding the deal. Thus, we have the following two definitions

of the funding account:

(i) If rehypothecation of the posted collateral is forbidden, we have

Ft := V̄t −Ht, (2.15)

(ii) If such rehypothecation is allowed, then

Ft := V̄t −Ht − Ct. (2.16)
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By implication of (2.16) and (2.15) it is obvious that, at time t, if the funding

account Ft > 0, the dealer needs to borrow cash to establish the hedging strategy.

Correspondingly, if the funding account Ft < 0, the hedging strategy requires the

dealer to invest surplus cash. Specifically, we assume the dealer enters a funding

position on a discrete time-grid {t1, . . . , tm} during the life of the deal. Given two

adjacent funding times tj and tj+1, for 1 ≤ j ≤ m−1, the dealer enters a position in

cash equal to Ftj at time tj. At time tj+1 the dealer redeems the position again and

either returns the cash to the funder if it was a long cash position and pays funding

costs on the borrowed cash, or he gets the cash back if it was a short cash position

and receives funding benefits as interest on the invested cash. We assume that these

funding costs and benefits are determined at the start date of each funding period

and charged at the end of the period.

The price of the contracts used by the investor to fund the deal, without loss of

generality, are assumed to be adapted processes. Let P f̃
t (T ) represent the price of a

borrowing (or lending) contract measurable at t where the dealer pays (or receives)

one unit of cash at maturity T > t. We introduce the effective funding rate f̃t as

a function: f̃t = f(t, F,H,C), assuming that it depends on the cash account Ft,

hedging account Ht and collateral account Ct. Moreover, the zero-coupon bond

corresponding to the effective funding rate is defined as

P f̃
t (T ) := [1 + (T − t)f̃t(T )]−1.

If we assume that the dealer hedges the derivatives position by trading in the

spot market of the underlying asset(s), and the hedging strategy is implemented

on the same time-grid as the funding procedure of the deal, the sum of discounted
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cash-flows from funding the hedging strategy during the life of the deal is equal to

ϕ(t, T ∧ τ ;F,H)

=
m−1∑
j=1

1{t6tj<(T∧τ)}D(t, tj)

(
Ftj − (Ftj +Htj)

Ptj(tj+1)

P f̃
tj(tj+1)

+Htj

Ptj(tj+1)

P f̃
tj(tj+1)

)

=
m−1∑
j=1

1{t6tj<(T∧τ)}D(t, tj)Ftj

(
1−

Ptj(tj+1)

P f̃
tj(tj+1)

)
. (2.17)

This is, strictly speaking, a discounted payout and the funding cost or benefit at

time t is obtained by taking the risk neutral expectation of the above cash-flows.

For a trading example giving more details on how the above formula for ϕ originates

see [20].

As we can see from equation (2.17), the dependence of the hedging account

dropped off from the funding procedure. For modelling convenience, we can define

the effective funding rate f̃t faced by the dealer as

f̃t(T ) := f−t (T )1{Ft<0} + f+
t (T )1{Ft>0} . (2.18)

A related framework would be to consider the hedging account H as being perfectly

collateralized and to use the collateral to fund the hedging account, so that there is

no funding cost associated with the hedging account.

As before with collateral costs, we may rewrite the cash flows for funding as a

first order approximation in continuously compounded rates f̃ and r associated to

the relevant bonds. We obtain

ϕ(t, T ∧ τ ;F ) ≈
m−1∑
j=1

1{t6tj<(T∧τ)}D(t, tj)Ftjαj

(
rtj(tj+1)− f̃tj(tj+1)

)
, (2.19)

where αj is the time fraction between tj and tj+1. To help clarify the process, we

look at the following toy example.

Example. (Equity call option example) We consider a one period Binomial

model for the stock price where the current stock price is S0 = $100 and moves to

S1, which can be either $125 or $75 in one years time. Let us consider a one year
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expiry call option on this stock with strike $100. The option payoff V1 will then be

either $25 or $0 at expiry. We now investigate what happens at each time step if

we sell this option.

At time 0 we receive cash V0 from selling the option and we put cash C0 into

the collateral account. We borrow ∆S0 ($∆100) amount of cash from the treasury

and buy ∆ units of the stock to set up the delta hedging portfolio. At this step, the

risky-asset account is given by H0 = ∆S0 and the funding cash account is given by

F0 = V0 − C0 −H0.

Now we consider the cash-flows in one year. We pay V1 to the counterparty to

close the deal. We sell the stock and receive ∆S1 (either $∆125 or $∆75 depending

on the state of the world). Finally, we get back the collateral and receive interest at

the collateral rate c+ resulting in a net cash-flow of C0(1+c+). The net amount that

is borrowed from the treasury is given by F0, which accrues at the funding borrowing

rate f+ and generates a cash-flow of (V0 − C0 −H0)(1 + f+).

The sum of all the net cash-flows yields

(V0 − C0 −H0)(1 + f+)− V1 + C0(1 + c+) + ∆S1

= (V1 − V0)− f+V0 + (f+ − c+)C0 −∆(S1 − S0)− f+H0,

which needs to be zero over this period in order to avoid arbitrage and replicate the

option. We therefore obtain the following two equations in our binomial model:

(25− V0)− f+V0 + (f+ − c+)C0 −∆(125− 100)− f+∆100 = 0, (2.20)

(0− V0)− f+V0 + (f+ − c+)C0 −∆(75− 100)− f+∆100 = 0. (2.21)

If we assume perfect collateralization, i.e. C0 = V0, and that the collateral rate is

c+ = 1% and the borrowing rate is f+ = 1.2%, we find that the derivative price V0

is $12.97 and the delta hedge is ∆ = 0.5.

We should also mention that, occasionally, we may include the effects of repo

markets or stock lending in our framework. In general, we may borrow/lend the

cash needed to establish H from/to our treasury, and we may then use the risky
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asset in H for repo or stock lending/borrowing in the market. This means that

we could include the funding costs and benefits coming from this use of the risky

asset. In this chapter we assume that the bank Treasury automatically recognizes

this benefit/cost to us at the same rate f̃ used for cash, but for a more general

framework involving repo rate h̃ see Chapter 6 for a quick discussion and see for

example [20, 61] for a more detailed analysis.

The particular positions entered by the dealer to either borrow or invest cash

according to the sign and size of the funding account depend on the bank’s liquidity

policy. In the following we discuss two possible cases: One that the dealer can fund

at rates set by the bank’s treasury department, and another that the dealer goes to

the market directly and funds his trades at the prevailing market rates. As a result,

the funding rates and therefore the funding effect on the price of a derivative deal

depends intimately on the chosen liquidity policy.

2.2.1 Treasury funding

If the dealer funds the hedge through the bank’s treasury department, at time t,

the treasury determines the funding rates f±t faced by the dealer. We assume an

average of funding costs and benefits is applied across all deals, regardless of the

specific deal. This leads to two curves as functions of maturity: one for borrowing

funds f+ and one for lending funds f−.

After entering a funding position Ftj at time tj, for 1 ≤ j ≤ m − 1, the dealer

faces the following discounted cash-flow

Φj(tj, tj+1;F ) := −NtjD(tj, tj+1) , (2.22)

with

Ntj :=
F−tj

P f−

tj (tj+1)
+

F+
tj

P f+

tj (tj+1)
.

Under this liquidity policy, the treasury – and not the dealer himself – is in charge

of debt valuation adjustments due to funding-related positions. Also, being entities

of the same institution, both the dealer and the treasury disappear in case of the
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default of the institution without any further cash-flows being exchanged and we

can neglect the effects of funding in this case. So, when default risk is considered,

this leads to the following definition of the funding cash flows

Φ̄j(tj, tj+1;F ) := 1{τ>tj}Φj(tj, tj+1;F ) .

Thus, the risk-neutral price of the cash-flows due to the funding positions entered

at time tj is

Etj
[

Φ̄j(tj, tj+1;F )
]

= −1{τ>tj}

(
F−tj

Ptj(tj+1)

P f−

tj (tj+1)
+ F+

tj

Ptj(tj+1)

P f+

tj (tj+1)

)
.

If we consider a sequence of such funding operations at each time tj during the life

of the deal, we can define the sum of the cash-flows coming from all the borrowing

and lending positions opened by the dealer to hedge the trade up to the first-default

event as follows,

ϕ(t, T ∧ τ ;F ) :=
m−1∑
j=1

1{t6tj<(T∧τ)}D(t, tj)
(
Ftj + Etj

[
Φ̄j(tj, tj+1;F )

])
=

m−1∑
j=1

1{t6tj<(T∧τ)}D(t, tj)

(
Ftj − F−tj

Ptj(tj+1)

P f−

tj (tj+1)
− F+

tj

Ptj(tj+1)

P f+

tj (tj+1)

)
.

In terms of the effective funding rate, this expression collapses to

ϕ(t, T ∧ τ ;F ) :=
m−1∑
j=1

1{t6tj<(T∧τ)}D(t, tj)Ftj

(
1−

Ptj(tj+1)

P f̃
tj(tj+1)

)
, (2.23)

where the zero-coupon bond corresponding to the effective funding rate is defined as

P f̃
t (T ) := [1+(T−t)f̃t(T )]−1. This is, strictly speaking, a discounted payout and the

funding cost or benefit at time t is obtained by taking the risk-neutral expectation

of the above cash-flows.

As before with collateral costs, we may rewrite the cash flows for funding as a

first order approximation in continuously compounded rates f̃ and r associated to
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the relevant bonds. We obtain

ϕ(t, T ∧ τ ;F ) ≈
m−1∑
j=1

1{t6tj<(T∧τ)}D(t, tj)Ftjαj

(
rtj(tj+1)− f̃tj(tj+1)

)
. (2.24)

2.2.2 Market funding

If the dealer funds the hedging strategy directly in the market – and not through the

bank’s treasury – the funding rates are determined by prevailing market conditions

and are often deal specific. This means that the rate f+ the dealer can borrow funds

at may be different from the rate f− at which funds can be invested. Moreover, these

rates may differ across deals depending on the deals’ notional, maturity structures,

dealer-client relationship, and so forth. Similar to the liquidity policy of treasury

funding, we assume a deal’s funding operations are closed down in the case of default.

Furthermore, as the dealer now operates directly on the market, he needs to include

a debit valuation adjustment due to his funding positions when he marks-to-market

his trading books. For simplicity, we assume that the funder in the market is default-

free so no funding CVA needs to be accounted for. The discounted cash-flows from

the borrowing or lending position, incorporated with the default probability of the

dealer, between two adjacent funding times tj and tj+1, for 1 ≤ j ≤ m− 1, is given

by

Φ̄j(tj, tj+1;F ) := 1{τ>tj}1{τI>tj+1}Φj(tj, tj+1;F )

− 1{τ>tj}1{τI<tj+1}(LGDIε
−
F,τI
− εF,τI )D(tj, τI) ,

or equivalently,

Φ̄j(tj, tj+1;F ) := 1{τ>tj}1{τI>tj+1}Φj(tj, tj+1;F )

− 1{τ>tj}1{τI<tj+1}(RIε
−
F,τI

+ ε+
F,τI

)D(tj, τI) ,
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where Φj(tj, tj+1;F ) is as defined in (2.22), and εF,t is the close-out amount calcu-

lated by the funder on the dealer’s default as

εF,τI := −NtjPτI (tj+1) .

To price this funding cash-flow, we take the expectation under the risk-neutral prob-

ability measure

Etj
[

Φ̄j(tj, tj+1;F )
]

= Etj

[
−1{τ>tj}1{τI>tj+1}D(tj, tj+1)

(
F−tj

P f−

tj (tj+1)
+

F+
tj

P f+

tj (tj+1)

)

−1{τ>tj}1{τI<tj+1}D(tj, τI)

(
F−tj

P f−

tj (tj+1)
+RI

F+
tj

P f+

tj (tj+1)

)
PτI (tj+1)

]
.

Since PτI (tj+1) = EτI [D(τI , tj+1) ], we can write the above expectation as

Etj
[

Φ̄j(tj, tj+1;F )
]

= Etj

{
−1{τ>tj}1{τI>tj+1}D(tj, tj+1)

(
F−tj

P f−

tj (tj+1)
+

F+
tj

P f+

tj (tj+1)

)

−EτI

[
1{τ>tj}1{τI<tj+1}D(tj, tj+1)

(
F−tj

P f−

tj (tj+1)
+RI

F+
tj

P f+

tj (tj+1)

)]}

= −Etj

{
1{τ>tj}D(tj, tj+1)

[
1{τI>tj+1}

(
F−tj

P f−

tj (tj+1)
+

F+
tj

P f+

tj (tj+1)

)

+ 1{τI<tj+1}

(
F−tj

P f−

tj (tj+1)
+RI

F+
tj

P f+

tj (tj+1)

)]}

= −Etj

{
1{τ>tj}D(tj, tj+1)

(
F−tj

P f−

tj (tj+1)
+

F+
tj

P f+

tj (tj+1)
(RI + 1{τI>tj+1}LGDI)

)}
.

If we define the zero-coupon funding bond for borrowing cash adjusted for the

dealer’s credit risk as

P̄ f+

t (T ) :=
P f+

t (T )

ETt
[

LGDI1{τI>T} +RI

] ,
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with the expectation on the right hand side being taken under the T -forward mea-

sure, we can write the risk-neutral price of the cash-flows due to the funding positions

at time tj as

Etj
[

Φ̄j(tj, tj+1;F )
]

= −1{τ>tj}

(
F−tj

Ptj(tj+1)

P f−

tj (tj+1)
+ F+

tj

Ptj(tj+1)

P̄ f+

tj (tj+1)

)
.

Naturally, since the seniority could be different, one might assume a different re-

covery rate on the funding position than on the derivatives deal itself (see [39]).

Extensions to this case are straightforward.

Now, summing up the discounted cash-flows from the sequence of funding oper-

ations through the life of the deal, we get

ϕ(t, T ∧ τ ;F ) :=
m−1∑
j=1

1{t6tj<T∧τ}D(t, tj)
(
Ftj + Etj

[
Φ̄j(tj, tj+1;F )

])
=

m−1∑
j=1

1{t6tj<T∧τ}D(t, tj)

(
Ftj − F−tj

Ptj(tj+1)

P f−

tj (tj+1)
− F+

tj

Ptj(tj+1)

P̄ f+

tj (tj+1)

)
.

Notice that, if we set RI = 1 (so that LGDI = 0), we get that P̄ f+

t (T ) is equal to

P f+

t (T ), and we recover the previous example.

To avoid cumbersome notation, we will not explicitly write P̄ f+ in the sequel,

but just keep in mind that when the dealer funds directly in the market then P f+

needs to be adjusted for funding DVA. Thus, in terms of the effective funding rate,

we obtain (2.17).

2.3 General pricing equations for OTC contracts

In the previous section we analysed the discounted cash-flows of a derivative deal

and we developed a framework for consistent valuation of such deals under collat-

eralization, counterparty credit risk and funding risk. The arbitrage-free pricing

framework is captured in the following theorem.

Theorem 2.3.1 (General pricing equation). The consistent arbitrage-free price

V̄t(C,F ) of collateralized OTC derivative deals with counterparty credit risk and
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funding costs takes the form

V̄t(C,F ) = Et [ Π(t, T ∧ τ) + γ(t, T ∧ τ ;C) + ϕ(t, T ∧ τ ;F ) (2.25)

+1{t<τ<T}D(t, τ)θτ (C, ε)
]
,

where

1. Π(t, T ∧ τ) is the discounted cash-flows from the contract’s payoff structure up

to the first-default event.

2. γ(t, T ∧ τ ;C) is the discounted cash-flows from the collateral margining proce-

dure up to the first-default event and is defined in (2.5).

3. ϕ(t, T ∧τ ;F ) is the discounted cash-flows from funding the hedging strategy up

to the first-default event and is defined in (2.17).

4. θτ (C, ε) is the on-default cash-flow with close-out amount ε and is defined in

(2.12).

If funding and collateral margining costs are discarded, while collateral is re-

tained for loss reduction at default, this pricing equation collapses to the formula

derived in [18] for the price of a derivative under bilateral counterparty credit risk.

If further collateral guarantees are dropped, the formula reduces to the bilateral

credit valuation formula in Proposition 1.2.3.

While the pricing equation is conceptually clear – we simply take the expectation

of the sum of all discounted cash-flows of the deal under the risk-neutral measure

– solving the equation poses a recursive, nonlinear problem. The future paths of

the effective funding rate f̃ depend on the future signs of the funding account F ,

i.e. whether we need to borrow or lend cash on each future funding date. At

the same time, through the relations (2.16) and (2.15), the future sign and size of

the funding account F depend on the adjusted price V̄ of the deal which is the

quantity we are trying to compute in the first place. One crucial implication of

this recursive structure of the pricing problem is the fact that FVA is generally not

just an additive adjustment term, in contrast to CVA and DVA. More importantly,
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the conjecture identifying the DVA of a deal with its funding is wrong in general.

Only in the unrealistic setting where the dealer can fund an uncollateralized trade

at equal borrowing and lending rates, i.e. f+ = f−, do we achieve the additive

structure often assumed by practitioners. If the trade is collateralized, we need to

impose even further restrictions as to how the collateral is linked to price of the

trade V̄ .

Remark 2.3.2. The law of one price. On the theoretical side, the pricing equa-

tion shakes the foundation of the celebrated Law of One Price prevailing in classical

derivatives pricing. Clearly, if we assume no funding costs, the dealer and coun-

terparty agree on the price of the deal as both parties can – at least theoretically –

observe the credit risk of each other through CDS contracts traded in the market and

the relevant market risks, thus agreeing on CVA and DVA. In contrast, introduc-

ing funding costs, they will not agree on the FVA for the deal due to asymmetric

information. The parties cannot observe each others’ liquidity policies nor their re-

spective funding costs associated with a particular deal. As a result, the value of

a deal position will not generally be the same to the counterparty as to the dealer

just with an opposite sign. In principle, this should mean that the dealer and the

counterparty would never close the trade, but in practice trades are executed as a

simple consequence of the fundamental forces of supply and demand. Nevertheless,

among dealers it is a general belief that funding costs were one of the main factors

driving the bid-ask spreads wider during the recent financial crisis.

Finally, as we adopt a risk-neutral valuation framework, we implicitly assume

the existence of a risk-free interest rate. Indeed, since the valuation adjustments

are included as additional cash-flows and not as ad-hoc spreads, all the cash-flows

are discounted by the risk-free discount factor D(t, T ) in (2.25). Nevertheless, the

risk-free rate is merely an instrumental variable of the general pricing equation.

We clearly distinguish market rates from the theoretical risk-free rate avoiding the

false claim that the over-night rates (e.g., EONIA) are risk-free. In fact, as we will

show later in continuous time, if the dealer funds the hedging strategy of the trade

through cash accounts available to him – whether as rehypothecated collateral or
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funds from the treasury, repo market, etc. – the risk-free rate vanishes from the

pricing equation.

2.3.1 Discrete-time formulation

Our purpose in this section is to turn the recursive pricing equation (2.25) into

a set of iterative equations that can be solved numerically. The use of the least-

squares Monte Carlo methods is already standard in CVA and DVA calculations

(for example in Brigo and Pallavicini [28]). To this end, we introduce the auxiliary

function

Π̄(tj, tj+1;C) := Π(tj, tj+1∧τ)+γ(tj, tj+1∧τ ;C)+1{tj<τ<tj+1}D(tj, τ)θτ (C, ε) (2.26)

which defines the cash-flows of the deal occurring between time tj and tj+1 adjusted

for collateral margining costs and default risks. We stress the fact that the close-

out amount used for calculating the on-default cash-flow still refers to a deal with

maturity T . If we then solve pricing equation (2.25) at each funding date tj in the

time-grid {t1, . . . , tn = T}, we obtain the deal price V̄ at time tj as a function of

the deal price on the next consecutive funding date tj+1,

V̄tj = Etj
[
V̄tj+1

D(tj, tj+1) + Π̄(tj, tj+1;C)
]

+

1{τ>tj}

(
Ftj − F−tj

Ptj(tj+1)

P f−

tj (tj+1)
− F+

tj

Ptj(tj+1)

P f+

tj (tj+1)

)
,

Furthermore, we have the terminal condition V̄tn := 0 on the final date tn =

T . Recall the definitions of the funding account in (2.16) if no rehypothecation of

collateral is allowed and in (2.15) if rehypothecation is permitted. We can substitute

the two equations of F and then solve the above equation for the positive and

negative parts of the funding account respectively. The outcome is a discrete-time

iterative solution of the recursive pricing equation, provided in the following theorem.

Theorem 2.3.3 (Discrete-time solution of the general pricing equation).

We may solve the full recursive pricing equation in Theorem 2.3.1 as a set of
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backward-iterative equations on the time-grid {t1, . . . , tn = T} with V̄tn := 0. For

τ < tj, we have

V̄tj = 0,

while for τ > tj, we have

(i) if re-hypothecation is forbidden:

(
V̄tj −Htj

)±
= P f̃

tj(tj+1)

(
Etj+1

tj

[
V̄tj+1

+
Π̄(tj, tj+1;C)−Htj

D(tj, tj+1)

])±
,

(ii) if re-hypothecation is allowed:

(
V̄tj − Ctj −Htj

)±
= P f̃

tj(tj+1)

(
Etj+1

tj

[
V̄tj+1

+
Π̄(tj, tj+1;C)− Ctj −Htj

D(tj, tj+1)

])±
,

where the expectations are taken under the Qtj+1-forward measure.

The ± sign in the theorem is supposed to stress the fact that the sign of the

funding account, which determines the effective funding rate, depends on the sign

of the conditional expectation. Further intuition may be gained by moving to the

continuous time setting which is the case we will now turn to.

2.3.2 Continuous-time formulation

Let us consider a continuous-time approximation of the general pricing equation. In

the following, we assume that rehypothecation is allowed, but similar results hold if

this is not the case. This implies that collateral margining, funding procedures and

hedging strategies are executed in continuous time. By taking the time limit, we

have the following expressions for the discounted cash-flow streams of the deal

Π(t, T ∧ τ) =

∫ T∧τ

t

D(t, s)Π(s, s+ ds),

γ(t, T ∧ τ ;C) =

∫ T∧τ

t

(rs − c̃s)CsD(t, s)ds,

ϕ(t, T ∧ τ ;F ) =

∫ T∧τ

t

(rs − f̃s)FsD(t, s)ds,
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where as before, Π(t, t+ dt) is the payoff coupon process of the derivative contract

and rt is the risk-free rate. These last two equations can be immediately derived by

looking at the approximations given in equations (2.6) and (2.24).

Then, putting all the above terms together with the on-default cash-flow as

in Theorem 2.3.1, and substituting the funding account as defined in (2.16), the

recursive pricing equation yields

V̄t =

∫ T

t

Et
[
D(t, s)

(
1{s<τ}Π(s, s+ ds) + 1{τ∈ds}θs(C, ε)

) ]
+

∫ T

t

Et
[
1{s<τ}(rs − c̃s)CsD(t, s)

]
ds+

∫ T

t

Et
[

1{s<τ}(rs − f̃s)FsD(t, s)
]

ds.

(2.27)

By recalling equation (2.13), we can write the following

Proposition 2.3.4. The value V̄t of the claim under credit gap risk, collateral and

funding costs can be written as

V̄t = Vt − CVAt + DVAt + LVAt + FVAt (2.28)

where Vt is the price of the deal when there is no credit risk, no collateral, and

there is no funding costs. LVA is a liquidity valuation adjustment accounting for the

costs/benefits of collateral margining, FVA is the funding costs/benefits for the deal

hedging strategy, and CVA/DVA are the familiar credit and debit valuation adjustments

after collateralization. These different adjustments can be written by rewriting for-

mula (2.27). One obtains

Vt =

∫ T

t

Et
{
D(t, s)1{τ>s}

[
Π(s, s+ ds) + 1{τ∈ds}εs

]}
(2.29)
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and the valuation adjustments

CVAt =

∫ T

t

Et
{
D(t, s)1{τ>s}1{s=τC<τI}ΠCVAcoll(s)

}
ds

DVAt =

∫ T

t

Et
{
D(t, s)1{τ>s}1{s=τI<τC}ΠDVAcoll(s)

}
ds

LVAt =

∫ T

t

Et
{
D(t, s)1{τ>s}(rs − c̃s)Cs

}
ds

FVAt =

∫ T

t

Et
{
D(t, s)1{τ>s}(rs − f̃s)Fs

}
ds

As usual, CVA and DVA are both positive, while LVA and FVA can be either positive or

negative. Notice that if c̃ equals the risk-free rate, LVA vanishes. FVA vanishes if the

funding rate f̃ is equal to the risk-free rate.

The proof is immediate. Notice that equation (2.29) simplifies further under a

risk-free close-out

ετ = Vτ .

Indeed, in such a case the presence of τ does not alter the present value. In fact

one can show that, since the unwinding at τ happens at the fair price Vτ and with

recovery one, this is equivalent, in terms of valuation at time t, to valuing the whole

deal:

Vt =

∫ T

t

Et
{
D(t, s)Π(s, s+ ds)

}
.

Remark 2.3.5. Separability? As pointed out earlier and in Pallavicini et al. [60],

valuation formula (2.28) is not really splitting risk components in different terms.

For example, to determine f̃ , one needs to know future signs of F and hence future

V̄ ’s. Such future V̄ ’s depend on all risks together, and so does f̃ . Hence interpreting

the f̃ -dependent term FVA as a pure funding adjustment is misleading. Similarly, if

we adopt a replacement close-out at default where ετ = V̄τ−, then the CVA and DVA

terms will depend on future V̄ ’s, and hence on all other risks as well. Therefore, CVA

is no longer a pure credit valuation adjustment. If enforcing the above separation

a posteriori after solving the total equation for V̄ , then one has to be careful in

interpreting this as a real split of risks.
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A further point concerns the presence of the short rate rt in the terms above.

Since rt is a theoretical rate with no direct market counterpart, this decomposition is

not ideal. To implement the pseudo-decomposition, one would have to proxy rt with

a real market rate, such as an overnight rate.

2.3.3 Formulation under the market filtration F

Recalling equation (2.16), we may rewrite equation (2.27) as

V̄t =

∫ T

t

Et
[ (

1{s<τ}Π(s, s+ ds) + 1{τ∈ds}θs(C, ε)
)
D(t, s)

]
+

∫ T

t

Et
[

1{s<τ}(f̃s − c̃s)CsD(t, s)
]

ds

+

∫ T

t

Et
[

1{s<τ}(rs − f̃s)
(
V̄s −Hs

)
D(t, s)

]
ds.

We now adopt an immersion hypothesis and switch to the default-free market fil-

tration (Ft)t≥0. This step implicitly assumes a separable structure of our complete

filtration (Gt)t≥0. In other words, Gt is generated by the pure default-free market fil-

tration Ft and by the filtration generated by all the relevant default times monitored

up to t.

We can easily describe an event which belongs to the σ-algebra Gt on the set

{t < τ}. For example, if the event A ∈ Gt, then there exists some event B ∈ Ft such

that A ∩ {t < τ} = B ∩ {t < τ}. Therefore, for any Gt-measurable random variable

X, there exists an Ft-measurable random variable x, such that 1{t<τ}X = 1{t<τ}x.

The following lemma in Bielecki and Rutkowski [7] (Section 5.1) explains how

the information expressed by filtration G relates to the one expressed by filtration

F .

Lemma 2.3.6. For any integrable F-measurable random variable X and t ∈ [0, T ],

we have

Et
[
1{t<τ}X

]
= 1{t<τ}

E
[
1{t<τ}X|Ft

]
E
[
1{t<τ}|Ft

] .
An extension of the above lemma when dealing with a predictable process instead

of a simple random variable can be found in Bielecki et al. [6], as follows:
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Lemma 2.3.7. Suppose that ϕs is a G-predictable process. Consider a default time

τ with F-intensity λ. The following equality then holds:

Et
[ ∫ τ∧T

t

ϕsds

]
= 1{t<τ} E

[∫ T

t

e−
∫ s
t λudu ϕ̃sds | Ft

]
, (2.30)

where ϕ̃s is an Fs-measurable variable such that 1{s<t}ϕs = 1{s<t}ϕ̃s.

We now assume that the basic portfolio cash flows Π(0, t) are Ft-measurable and

that default times of all parties are conditionally independent given filtration F (see

also Brigo and Pallavicini [30] for the full details in the present set-up). The above

lemmas allow us to rewrite the previous price equation under the default-free market

filtration F as

V̄t = 1{τ>t}

∫ T

t

Et[ (Π(s, s+ ds) + λsθs(C, ε)ds)D(t, s; r + λ)|F ]

+ 1{τ>t}

∫ T

t

Et
[

(f̃s − c̃s)CsD(t, s; r + λ)|F
]

ds (2.31)

+ 1{τ>t}

∫ T

t

Et
[

(rs − f̃s)
(
V̄s −Hs

)
D(t, s; r + λ)|F

]
ds,

where λt is the first-to-default intensity and the discount factor is defined asD(t, s; ξ) :=

e−
∫ s
t ξudu for some F -adapted process ξu. Notice that we use the same notations for

the processes under both filtrations for notational simplicity.

We need to stress that the above continuous formulation is not a pricing formula

for the deal. The recursive nature of our consistent valuation framework is hidden

in the fact that the paths of the effective funding rates f̃ depend on the future signs

of the funding account F , which is defined as V̄ −C−H. Although in the equations,

it looks like the different adjustments are achieved as additive decompositions, in

fact the dependence of the future adjusted price V̄ is still present and there is no

real decomposition. Nevertheless, in the case of symmetric funding rates, we have

f+ = f−, and the dependence no longer exists. However, such an assumption that

one can borrow and fund at the same rate is unrealistic.

We will continue the discussion of the consistent valuation framework in contin-

uous time in later chapters.
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Chapter 3

Funding Inclusive Valuation in a

Continuous Time Setting

In this chapter, we continue the study of a consistent valuation framework including

credit risk, collateralization and funding risk in the continuous time setting using

both a forward-backward stochastic differential equation approach and a semi-linear

partial differential equation approach.

3.1 FBSDE approach

Forward-backward stochastic differential equations (FBSDEs) have been widely used

for pricing and optimization problems in mathematical finance. The earliest version

of such an FBSDE was introduced by Bismut [10] in 1973, with a decoupled form,

namely, a system of a usual (forward) stochastic differential equation and a (linear)

backward stochastic differential equation (in short, BSDE). In 1983, Bensoussan [5]

proved the well-posedness of general linear BSDEs by using the martingale represen-

tation theorem. The first well-posedness result for nonlinear BSDEs was proved in

1990 by Pardoux and Peng [62], while studying the general Pontryagin-type maxi-

mum principle for stochastic optimal controls. El Karoui et al. [48] in 1997 provided

an overview for the use of BSDEs in the field. In this section, we continue the study

of a consistent valuation framework in continuous time, adopting a BSDE approach.

Throughout this section, we consider a probability space (Ω,F , (Ft),Q), where
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{(Ft), t ∈ [0.T ]} is the filtration generated by the Brownian motion W , and Q is the

risk-neutral probability measure.

3.1.1 Introduction to FBSDEs

In this section we will introduce some usual assumptions and important theorems

on forward-backward stochastic differential equations (in short FBSDEs).

Consider the triplet (X, Y, Z) = {(Xt, Yt, Zt), t ∈ [0, T ]} of square-integrable FT -

adapted processes with values in Rn×Rm×Rm×d, satisfying the following FBSDE:

dXt = µ(t,Xt, Yt, Zt)dt+ σ(t,Xt, Yt, Zt)dWt, X0 = x0, (3.1)

dYt = −B(t,Xt, Yt, Zt)dt+ ZtdWt, YT = Ψ(XT ), (3.2)

or, equivalently,

Xt = x0 +

∫ t

0

µ(s,Xs, Ys, Zs)ds+

∫ t

0

σ(s,Xs, Ys, Zs)dWs,

Yt = Ψ(XT ) +

∫ T

t

B(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs,

where the coefficient mappings are given by µ : [0, T ] × Rn × Rm × Rm×d 7→ Rn,

σ : [0, T ]× Rn × Rm × Rm×d 7→ Rm×d, B : [0, T ]× Rn × Rm × Rm×d 7→ Rm and the

terminal condition is given by the map Ψ : Rn 7→ Rm. The process X is the forward

component of the FBSDE and B(t,Xt, Yt, Zt) is the so called driver of the FBSDE.

The above FBSDE is called a coupled FBSDE. When the solution (Y, Z) of the

BSDE (3.2) does not interfere with the forward component (3.1), or more precisely,

µ(t,Xt, Yt, Zt) = µ(t,Xt) and σ(t,Xt, Yt, Zt) = σ(t,Xt), the FBSDE is said to be

decoupled.

The existence and uniqueness of the solution to the system (3.1) and (3.2) was

first addressed by Pardoux and Peng in [62], after which an extensive literature has

been published on this topic. Here we adopt the results in [62] for the case of a

decoupled FBSDE.

Assumption 1. The coefficient functions are continuous with respect to (x, y, z) ∈
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Rn × Rm × Rm×d, and satisfy: There exist constants K > 0 and p ≥ 1/2, such that

for all t, x, x1, x2, y1, y2, z1, z2,

(i) |µ(t, x1)− µ(t, x2)|+ |σ(t, x1)− σ(t, x2)| ≤ K |x1 − x2| ;

(ii) |µ(t, x)|+ |σ(t, x)| ≤ K (1 + |x|) ;

(iii) |B(t, x, y1, z1)−B(t, x, y2, z2)| ≤ K (|y1 − y2|+ |z1 − z2|) ;

(iv) |B(t, x, 0, 0)|+|Ψ(x)|≤ K(1 + |x|p).

Notice that under the above assumption, the forward SDE (3.1) has a unique

strong solution Xt (see Karatzas and Shreve [55]). We follow the existence and

uniqueness study in [62], and have the following theorem.

Theorem 3.1.1 (Exisitence and uniqueness of decoupled FBSDEs). If As-

sumption 1 is in force, then there exists a unique adapted triplet (X, Y, Z) which

solves the FBSDE system (3.1) and (3.2).

In the case of a coupled FBSDE, we follow the study in Delarue [44] and have

the following results.

Assumption 2. The coefficient functions are continuous with respect to (x, y, z) ∈

Rn×Rm×Rm×d, and satisfy: There exist constants K > 0 and λ > 0 such that for

all t, x, x1, x2, y, y1, y2, z, z1, z2,

(i) |µ(t, x1, y1, z1)− µ(t, x2, y2, z2)|+ |σ(t, x1, y1, z1)− σ(t, x2, y2, z2)|

≤ K (|x1 − x2|+ |y1 − y2|+|z1 − z2|) ;

(ii) |µ(t, x, y, z)|+ |σ(t, x, y, z)|+ |B(t, x, y, z)|+|Ψ(x)|≤ K (1 + |y|+|z|) ;

(iii) |B(t, x, y1, z1)−B(t, x, y2, z2)|+|Ψ(x1)−Ψ(x2)|

≤ K (|x1 − x2|+|y1 − y2|+ |z1 − z2|) ;

(iv) ∀ζ ∈ Rn, 〈ζ, a(t, x, y)ζ〉 ≥ λ|ζ|2, where 〈 , 〉 is the euclidean scalar product on

Rn and the function a is defined as follows on [0, T ]× Rn × Rm,

∀(t, x, y) ∈ [0, T ]× Rn × Rm, a(t, x, y) = σ(t, x, y)σ∗(t, x, y).
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Theorem 3.1.2 (Exisitence and uniqueness of coupled FBSDEs). If As-

sumption 2 is satisfied, then there exits a unique solution (X, Y, Z) to the FBSDE

system (3.1) and (3.2).

3.1.2 Consistent valuation framework in terms of FBSDE

In this section we derive the FBSDE expression for the collateralized, credit and

funding risks inclusive consistent valuation equation built up in Chapter 2. We then

discuss the existence and uniqueness of the solution to such an FBSDE.

Derivation of the FBSDE for the Funding Equation

Let’s start by looking at the continuous time pricing equation derived in Chapter 2,

at time t < τ ,

V̄t =

∫ T

t

Et[ (Π(s, s+ ds) + λsθs(C, ε)ds)D(t, s; r + λ)|F ]

+

∫ T

t

Et
[

(f̃s − c̃s)CsD(t, s; r + λ)|F
]

ds

+

∫ T

t

Et
[

(rs − f̃s)
(
V̄s −Hs

)
D(t, s; r + λ)|F

]
ds,

where the discount factor is defined as D(t, s; ξ) := e−
∫ s
t ξudu. Multiplying both sides

of the above equation by D(0, t; r + λ) gives us

V̄tD(0, t; r + λ) =

∫ T

t

Et
[

(rs − f̃s)
(
V̄s −Hs

)
D(0, s; r + λ)|F

]
ds

+

∫ T

t

Et
[ (

Π(s, s+ ds) + λsθs(C, ε) + (f̃s − c̃s)Cs
)
D(0, s; r + λ)|F

]
ds. (3.3)

Our aim is to obtain a BSDE expression for V̄t, so we introduce the following process

Xt :=

∫ t

0

(
Π(s, s+ ds) + λsθs(C, ε) + (f̃s − c̃s)Cs

+ (rs − f̃s)
(
V̄s −Hs

) )
D(0, s; r + λ)ds.
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We can now construct an F -martingale by adding Xt to both sides of (3.3), and we

have

V̄tD(0, t; r + λ) +Xt = Et[XT |F ] . (3.4)

We define Mt = Et[XT |F ]. Differentiating both sides of (3.4) with respect to t

yields

−(rt + λt)D(0, t; r + λ)V̄tdt+D(0, t; r + λ)dV̄t + dXt = dMt.

Now substitute Xt into the above equation and we have

−(rt+λt)V̄tdt+dV̄t+Π(t, t+dt)+
[
λtθt(C, ε) + (f̃t − c̃t)Ct + (rt − f̃t)

(
V̄t −Ht

)]
dt

= dMt/D(0, t; r + λ). (3.5)

Let dM′
t = dMt/D(0, t; r+ λ). Since the process (Mt)t≥0 is a closed F -martingale

under the risk-neutral probability measure,
∫ t

0
dM′

u is a local Ft-martingale. As-

suming that
∫ t

0
dM′

u is adapted to the Brownian filtration σ(W ), we can then apply

the martingale representation theorem, and write
∫ t

0
dM′

u =
∫ t

0
ZudWu for Zu being

a σ(W )-predictable process.

Recall that the on-default cash-flow θt(C, ε) depends on the close-out amount ε

and the collateral amount C. If we adopt a replacement close-out rule, the close-out

amount is equivalent to the adjusted full deal price, i.e. εt = V̄t. Additionally, if we

assume that the collateral amount is a function of the full deal price, the on-default

cash-flow is then a function of the full deal price. More precisely, we can denote

θt(C, ε) = θ(t, V̄t) for some adapted function θ.

Moreover, we define a process π by

πtdt = Π(t, t+ dt), (3.6)

for a small time period dt, where πt is assumed to be Ft-adapted. We can then

rewrite equation (3.5) as follows,

dV̄t = −
[
πt − λtV̄t + f̃t(Ct − V̄t +Ht)− c̃tCt − rtHt + λtθ(t, V̄t)

]
dt+ZtdWt. (3.7)
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Furthermore, assume that the price process V̄t satisfies the following smoothness

assumptions:

V̄t = V̄ (t, St) and V̄t ∈ C1,2
(
[0, T ]× R+

)
, (3.8)

and also that the underlying risk factor follows the SDE

dSt = µ(t, St, V̄t)dt+ σ(t, St, V̄t)dWt.

We can then apply Itô’s formula to V̄t yielding

dV̄t =
∂V̄

∂t
dt+ µ(t, St, V̄t)

∂V̄

∂S
dt+

1

2
σ(t, St, V̄t)

2∂
2V̄

∂S2
dt+ σ(t, St, V̄t)

∂V̄

∂S
dWt. (3.9)

Now, we match the dWt terms in (3.9) and in (3.7) and we have that

Zt = σ(t, St, V̄t)
∂V̄

∂S
.

This leads to the following theorem:

Theorem 3.1.3. Define a stochastic process Yt = V̄t. Suppose there exists a four

dimensional deterministic linear function H such that the hedging process Ht satisfies

Ht = H(t, St, Yt, Zt). Assume that the close-out amount is taken to be the adjusted

full price of the deal, i.e. εt = V̄t, and also that the collateral account is proportional

to the adjusted deal price such that Ct = αtV̄t, for some Ft-predictable process αt ≤ 1

a.s.. The consistent funding inclusive valuation framework introduced in Chapter 2

can then be expressed in terms of the following (coupled) forward-backward stochastic

differential equation (FBSDE) :

dSt = µ(t, St, Yt)dt+ σ(t, St, Yt)dWt, S0 = s0,

dYt = −B(t, St, Yt, Zt)dt+ ZtdWt, YT = 0, (3.10)

B(t, St, Yt, Zt) = πt + λtθ(t, Yt)− λtYt + f̃t(αt − 1)Yt − c̃tαtYt − (rt − f̃t)H(t, St, Yt, Zt),

where s0 is the initial underlying stock price, and B(t, St, Yt, Zt) is the driver of the
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FBSDE.

Furthermore, if the stock price follows the Black-Scholes dynamics, and delta hedging

is used, i.e. Ht = ∂V̄
∂S
St, then the funding inclusive valuation (decoupled) FBSDE

can be written as:

dSt = rtStdt+ σtStdWt, S0 = so,

dYt = −B(t, St, Yt, Zt)dt+ ZtdWt, YT = 0, (3.11)

B(t, St, Yt, Zt) = πt − λtYt + f̃t

(
(αt − 1)Yt +

Zt
σt

)
− c̃tαtYt −

rt
σt
Zt + λtθ(t, Yt).

Proof. The proof of the coupled FBSDE expression is immediate from the derivation

above. In the decoupled case, because Zt = σ(t, St, V̄t)
∂V̄
∂S

= σtSt
∂V̄
∂S

, we have that

the delta hedging account is Ht = St
∂V̄
∂S

= Zt/σt. The result is then straightforward

after substituting the expression for Ht (in terms of Zt) into the driver of the BSDE

of the coupled case.

Remark 3.1.4. In most realistic cases the dynamic of the underlying asset will have

a risk-neutral type drift and a volatility part that will lead to a decoupled structure.

3.1.3 Existence and uniqueness of solution to the funding inclusive

FBSDE

For both the decoupled and the coupled cases, we postulate the following assump-

tion.

Assumption 3. The coefficients in the forward components are uniformly Lipschitz-

continuous in time.

Under Assumption 3, (i) and (ii) in Assumption 1 and (i) in Assumption 2 hold.

In fact this is a very standard assumption since it guarantees the existence and

uniqueness of the underlying price process St.

Recall that the terminal conditions of the FBSDEs of (3.10) and (3.11) are both

Ψ(ST ) = YT = 0. The following result shows that under some assumptions on the

market rates, the drivers of the FBSDEs are uniformly Lipschitz-continuous, and so
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there exists a unique solution. Note that in the case of the coupled FBSDE (3.10),

we have to deal with the stochastic dependence of the rates involved in the driver.

We postulate that all the rates depend only on t, St, Yt, namely,

f̃t = f(t, St, Yt), c̃t = c(t, St, Yt), λt = λ(t, St, Yt), rt = r(t, St, Yt).

Theorem 3.1.5. Suppose Assumption 3 is satisfied. If all the rates f̃ , c̃ and r

in the decoupled case are bounded, and functions f, c, λ, r in the coupled case are

deterministic and bounded, then there exist unique solutions for both the coupled

and the decoupled FBSDEs defined in Theorem 3.1.3.

Proof. Let’s first consider the decoupled FBSDE (3.11). Since under Assumption 3

(i, ii) in Assumption 1 hold, we show that the driver (3.11) is Lipschitz-continuous

and has linear growth, so that Assumption 1 is satisfied.

Let’s first look at the driver of the FBSDE (3.11). It can be rewritten as

B(t, St, Yt, Zt) =πt − λtYt −
rt
σt
Zt + f+

t

(
(αt − 1)Yt +

Zt
σt

)+

+ f−t

(
(αt − 1)Yt +

Zt
σt

)−
− c+

t αt(Yt)
+ − c−t αt(Yt)− + λtθ(t, Yt)

=πt − λtYt −
rt
σt
Zt + f+

t

(
(αt − 1)Yt +

Zt
σt

)
− c+αtYt

+
(
f−t − f+

t

)(
(αt − 1)Yt +

Zt
σt

)−
− (c−t − c+

t )αt(Yt)
− + λtθ(t, Yt)

=πt +
(
f+
t (αt − 1)− c−t αt − λt

)
Yt +

(f+
t − rt)
σt

Zt

+
(
f−t − f+

t

)(
(αt − 1)Yt +

Zt
σt

)−
− (c−t − c+

t )αt(Yt)
− + λtθ(t, Yt).

We know that the sum of Lipschitz-continuous functions is still Lipschitz-continuous.

SplitB(t, St, Yt, Zt) into the sum of four terms, i.e. B(t, St, Yt, Zt) = B1(t, St, Yt, Zt)+
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B2(t, St, Yt, Zt) +B3(t, St, Yt, Zt) +B4(t, St, Yt, Zt), with

B1(t, St, Yt, Zt) = πt +
(
f+
t (αt − 1)− c−t αt − λt

)
Yt +

(f+
t − rt)
σt

Zt,

B2(t, St, Yt, Zt) =
(
f−t − f+

t

)(
(αt − 1)Yt +

Zt
σt

)−
,

B3(t, St, Yt, Zt) = (c−t − c+
t )αt(Yt)

−,

B4(t, St, Yt, Zt) = λtθ(t, Yt).

Let’s first look at a general function of the form

B̃(t, s, y, z) := ãty − b̃tz, (3.12)

where the coefficients ãt and b̃t are bounded. For any t, s, y1, y2, z1, z2,

|B̃(t, s, y1, z1)− B̃(t, s, y2, z2)|

= |(ãty1 − b̃tz1)− (ãty2 − b̃tz2)|

≤ |ãt||y1 − y2|+|̃bt||z1 − z2|

= max{|ãt|, |̃bt|}

(∣∣∣∣∣ ãt

max{|ãt|, |̃bt|}

∣∣∣∣∣ |y1 − y2|+

∣∣∣∣∣ b̃t

max{|ãt|, |̃bt|}

∣∣∣∣∣ |z1 − z2|

)
≤ max{|ãt|, |̃bt|}(|y1 − y2|+|z1 − z2|).

Define a constant K > 0 such that K = max{|ãt|, |̃bt|}. We have

∣∣∣B̃(t, s, y1, z1)− B̃(t, s, y2, z2)
∣∣∣ ≤ K(|y1 − y2|+|z1 − z2|),

and so functions of the form (3.12) are Lipschitz-continuous. Since B1 is of the form

(3.12), and f̃t, c̃t, rt and λt are bounded, B1(t, s, y, z) is then K-Lipschitz-continuous

with

K = max

(∣∣∣∣f+
t − rt
σt

∣∣∣∣ , ∣∣f+
t (αt − 1)− c−t αt − λt

∣∣) .
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Next, let’s look at functions of the form

B̂(t, s, y, z) := Ât(âty − b̂tz)−, (3.13)

where Ât, ât and b̂t are all bounded. For any t, s, y1, y2, z1, z2, let’s consider the

following cases:

(1) If âty1 − b̂tz1 < 0 and âty2 − b̂tz2 > 0, then

∣∣∣B̂(t, s, y1, z1)− B̂(t, s, y2, z2)
∣∣∣ =

∣∣∣Ât(âty1 − b̂tz1)
∣∣∣

≤
∣∣∣Ât(âty1 − b̂tz1)− Ât(âty2 − b̂tz2)

∣∣∣ ≤ |Âtât||y1 − y2|+|Âtb̂t||z1 − z2|

= max{|Âtât|, |Âtb̂t|}

(∣∣∣∣∣ Âtât

max{|Âtât|, |Âtb̂t|}

∣∣∣∣∣ |y1 − y2|

+

∣∣∣∣∣ Âtb̂t

max{|Âtât|, |Âtb̂t|}

∣∣∣∣∣ |z1 − z2|

)
≤ max{|Âtât|, |Âtb̂t|}(|y1 − y2|+|z1 − z2|).

Therefore, B̂(t, s, y, z) is K-Lipschitz-continuous with K = max{|Âtât|, |Âtb̂t|}.

(2) If âty1 − b̂tz1 < 0 and âty2 − b̂tz2 < 0, B̂(t, s, y, z) is of the form (3.12) and is

then Lipschitz-continuous.

(3) The case when âty1−b̂tz1 > 0 and âty2−b̂tz2 < 0 is similar to (1) and B̂(t, s, y, z)

is Lipschitz-continuous.

(4) If âty1 − b̂tz1 > 0 and âty2 − b̂tz2 > 0,

|B̂(t, s, y1, z1)− B̂(t, s, y2, z2)|= 0.

B̂(t, s, y, z) is obviously Lipschitz-continuous.

Combining the four observations, we can conclude that functions of the form (3.13)

are Lipschitz-continuous. Notice that both the terms B2(t, s, y, z) and B3(t, s, y, z)

in the driver of the funding FBSDE are of the form (3.13) so are both Lipschitz-

continuous functions. Moreover, since εI = εC = Yt, the on-default cash-flow can be
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expressed as

θ(t, Yt) = Yt −Q(τ 1 = τC < τI)LGDC(Yt)
+ + Q(τ 1 = τI < τC)LGDI(−Yt)+.

Thus,

B4(t, s, y, z) = λt
[
Yt −Q(τ 1 = τC < τI)LGDC(Yt)

+ + Q(τ 1 = τI < τC)LGDI(−Yt)+
]

= λtYt + λtQ(τ 1 = τC < τI)LGDC(−Yt)− − λtQ(τ 1 = τI < τC)LGDI(Yt)
−.

Because λt is bounded, the first term λtYt is Lipschitz, and the second and third

terms are of the form (3.13) which was shown to be Lipschitz. So B4(t, s, y, z) is

also Lipschitz-continuous.

Collecting everything, we can now conclude that the driver B(t, s, y, z) of the

funding FBSDE (3.11) is Lipschitz-continuous in Yt and Zt. Moreover, since all the

rates are bounded, B(t, s, y, z) has linear growth. According to Theorem 3.1.1, there

exists a unique solution (St, Yt, Zt) to FBSDE (3.11).

In the case of the coupled FBSDE (3.10), since Assumption 3 is in force and

all the rates are bounded, (i, iv) in Assumption 2 are satisfied. Moreover, since

all functions of the rates are deterministic and bounded, we can then adopt the

previous result for the decoupled case and conclude that (ii, iii) in Assumption 2

are satisfied. According to Theorem 3.1.2, there then exists a unique solution to the

coupled FBSDE (3.10).

3.2 Semi-linear PDE approach

There exists a very strong link between FBSDEs and quasi-linear parabolic systems

of partial differential equations (in short PDEs). Following the study in [62], Peng in

[66] gave a probabilistic formula for the given solution of a system of parabolic partial

differential equations. Pardoux and Peng then in [63] showed that a given function

expressed in terms of the solution to the BSDE solves a certain system of parabolic

PDEs. Their results generalised the well known Feynman-Kac formula. Later, in

Pardoux and Tang [64], the authors deduced that, under certain assumptions, the
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solution of the FBSDE provides a viscosity solution to the quasi-linear parabolic

PDE.

A PDE of order m is called quasi-linear if it is linear in the derivatives of order

m with coefficients that depend on the independent variables and derivatives of the

unknown function or order strictly less than m. Quasi-linear PDEs are categorised

into two: Semi-linear and Non-semilinear. A quasi-linear PDE where the coefficients

of derivatives of order m are functions of the independent variables only is called a

semi-linear PDE.

In this section, we continue the study of the consistent valuation framework in

the continuous time setting. We find the consistent valuation equation takes the

form of a semi-linear PDE. Our aim is to obtain such a semi-linear PDE form of

the funding inclusive valuation equation, find the condition of the existence and

uniqueness of the solution to the PDE and study the properties of the solution.

3.2.1 From a FBSDE to a semi-linear PDE

In this section, we focus on the decoupled case. We postulate that f̃t = f(t, St, Yt),

c̃t = c(t, St, Yt), λt = λ(t, St, Yt) and rt = r(t, St, Yt), where functions f, c, λ, r are

deterministic and bounded. We also assume that the price process V̄ has suffi-

cient smoothness, as required in (3.8). Let’s now look at equations (3.7) and (3.9).

Keep in mind that in the decoupled case, we have µ(t, St, Yt, Zt) = µ(t, St) and

σ(t, St, Yt, Zt) = σ(t, St). Equating the drift and the diffusion terms of dV̄ in the

equations, we obtain the following for τ > t (for the ease of notation, from now on

we denote Ht = H(t, St, Yt, Zt)),

πt − λtV̄t + f̃t(Ct − V̄t +Ht)− c̃tCt − rtHt + λtθ(t, V̄t) +
∂V̄

∂t
+ µ(t, St)

∂V̄

∂S

+
1

2
σ(t, St)

2∂
2V̄

∂S2
= 0, Zt = σ(t, St)

∂V̄

∂S
.

(3.14)
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Therefore, the adjusted deal price V̄ satisfies the following semi-linear PDE for all

(t, s) ∈ [0, T ]× R+:

∂tν(t, s) + µ(t, s)∂sν(t, s) +
1

2
σ(t, s)2∂2

sν(t, s) +B (t, s, ν(t, s), (∂sνσ)(t, s)) = 0,

ν(T, s) = 0,

(3.15)

where B (t, s, ν(t, s), (∂sνσ)(t, s)) is the driver of the FBSDE defined in Theorem

3.1.3.

3.2.2 Existence and uniqueness of the solution to the funding inclu-

sive PDEs

In this section we seek a link between the funding inclusive FBSDE and PDE (3.15)

without postulating the smoothness assumption (3.8) for the price process V̄ . Let’s

now return to the FBSDE (3.10) in a decoupled case where µ(t, St, Yt, Zt) = µ(t, St)

and σ(t, St, Yt, Zt) = σ(t, St). For (t, s) ∈ [0, T ] × R+, let {St,su ; t ≤ u ≤ T} denote

the diffusion process S on the time interval [t, T ], starting at time t from the point

s. More precisely, for t ≤ u ≤ T ,

dSt,su = µ(u, St,su )du+ σ(u, St,su )dWu,

St,st = s,

dY t,s
u = −B(u, St,su , Y

t,s
u , Zt,s

u )du+ Zt,s
u dWu,

Y t,s
T = 0.

(3.16)

In this section we shall discuss the existence and uniqueness of viscosity, weak

and classical solutions to the semi-linear parabolic PDE associated to the above

FBSDE.

We recall that in Section 3.1 we showed that under the assumptions in Theorem

3.1.5, the funding inclusive valuation FBSDE (3.16) has a unique solution. El Karoui

et al. in [47] showed that the solution (St,su , Y
t,s
u , Zt,s

u ) to FBSDE (3.16) is Markovian

in the sense that these processes can be expressed through deterministic functions

of u and St,su . More precisely,
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Theorem 3.2.1. Under Assumption 1, there exists two measurable deterministic

functions ν(t, s) and d(t, s) such that the solution (St,su , Y
t,s
u , Zt,s

u ) of FBSDE (3.16)

is given by

∀u ≤ T, Y t,s
u = ν(u, St,su ) and Zt,s

u = d(u, St,su )σ(u, St,su ).

We now show that the FBSDE’s solution is a viscosity solution of some non-linear

PDE.

Viscosity solution

In order to avoid restrictive assumptions on the coefficients in (3.16), we will consider

the PDE (3.15) in the viscosity sense. We start with defining the notion of viscosity

solution of (3.15).

Definition 3.2.1. Let ν ∈ C ([0, T ]× R+) satisfy ν(T, s) = 0, s ∈ R+. ν is said

to be a viscosity subsolution (resp. supersolution) of (3.15) if for any ϕ ∈

C1,2((0, T ) × R+) and (t, s) ∈ (0, T ) × R+ such that ϕ(t, s) = ν(t, s) and (t, s) is a

minimum of ϕ− ν,

∂tϕ(t, s) + µ(t, s)∂sϕ(t, s) +
1

2
σ(t, s)2∂2

sϕ(t, s) +B (t, s, ϕ(t, s), (∂sϕσ)(t, s)) ≥ 0

(resp. ∂tϕ(t, s)+µ(t, s)∂sϕ(t, s)+
1

2
σ(t, s)2∂2

sϕ(t, s)+B (t, s, ϕ(t, s), (∂sϕσ)(t, s)) ≤ 0).

ν ∈ C ([0, T ]× R+) is called a viscosity solution of (3.15) if it is both a vis-

cosity subsolution and supersolution of (3.15).

We now have the following results due to Pardoux and Peng [63].

Theorem 3.2.2. If the mapping s 7→ B(t, s, 0, 0) is continuous and Assumption 1

is satisfied, then ν(t, s) := Y t,s
t is a viscosity solution of PDE (3.15).

We have proved in Theorem 3.1.5 that when the coefficients in the forward

components are uniformly Lipschitz-continuous in time (Assumption 3), and the

rates f̃ , c̃ and r are all bounded, Assumption 1 is in place. Hence, according to
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Theorem 3.2.2 it is easy to see that the funding inclusive valuation PDE (3.15)

associated to FBSDE (3.16) has a viscosity solution.

For a more complete theory, one should also study the uniqueness of the solution

to the semi-linear PDE (3.15). However, the uniqueness of the viscosity solution is

by no means trivial. Moreover, to consider a hedging strategy, one needs to compute

the derivative of the deal price process with respect to the underlying price process,

which does not exist when the deal price process is a viscosity solution. Therefore,

from a practical point of view, we will not include the uniqueness discussion here.

Regular solution

In this section we are interested in the relationship between FBSDE (3.16) and

regular solutions of the semi-linear PDE (3.15).

Classical solution We will first study the classical solution. Lp-estimates of the

diffusion solution as well as its first and second derivatives are required in order to

show the solution to the semi-linear PDE is classical. The following theorem in El

Karoui et al. [47] gives a probabilistic interpretation for solutions of the semi-linear

PDE (3.15) using the solution of the Markovian FBSDE (3.16).

Theorem 3.2.3. (El Karoui et al. [47]) Suppose that Assumption 1 is in force and

that the functions µ, σ and B are C3 with bounded derivatives. Then:

(i) (ν(u, St,su ), ∂sν(u, St,su )σ(u, St,su )) is the solution of the FBSDE (3.16) in the

time interval [u, T ] if ν ∈ C1,2([0, T ] × R+) is a classical solution of PDE

(3.15). In addition, for any t < T , ν(u, s) = Y t,s
t .

(ii) If (St,su , Y
t,s
u , Zt,s

u ) is the unique solution of the FBSDE (3.16), then ν(t, s) :=

Y t,s
t , 0 ≤ t ≤ T , s ∈ R+ belongs to C([0, T ]×R+) and is a classical solution of

the PDE (3.15).

Weak solution As we can see, only under some very restrictive smoothness as-

sumptions on the coefficients does the semi-linear PDE (3.15) have a classical so-

lution. If we assume that the driver B of the FBSDE (3.16) is merely a Lipschitz
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function, we need to consider the solution in a weak sense. We first introduce the

following Hilbert space:

H :=
{
ν ∈ L2

(
[0, T ]× R+

)
| ∇νσ ∈ L2

(
[0, T ]× R+

)}
.

Here, we adopt the convention of a weak solution in [47]. We say that a solution

ν ∈ H of PDE (3.15) is a weak solution if the following relation holds for all ϕ ∈

C1,∞
c ([0, T ]× R+):

∫ T

u

(ν(t, ·), ∂tϕ(t, ·)) dt+ (ν(u, ·), ϕ(u, ·)) +

∫ T

u

E(ν(t, ·), ϕ(t, ·))dt

=

∫ T

u

(B(t, ·, ν(t, ·), (∇νσ)(t, ·)), ϕ(t, ·)) dt,

where (ν, ϕ) =
∫
R+ ν(x)ϕ(x)dx is the scalar product in L2 and

E(ν, ϕ) =

∫
R+

[
(∇νσ)(∇ϕσ) + ϕ∇

((
1

2
σ∗∇σ + µ

)
ϕ

)]
dx

is the energy of the system associated with the PDE.

The following theorem in [47] gives the weak Feynman-Kac’s formula for the

solution of PDE (3.15).

Theorem 3.2.4. Assume that functions µ and σ are C2 and C3 respectively, and with

bounded derivatives. Further, suppose that the function B is uniformly Lipschitz in

(y, z) with Lipschitz constant K, i.e.

|B(u, s, y1, z1)−B(u, s, y2, z2)|≤ K(|y1 − y2|+|z1 − z2|).

Then there exists a unique weak solution ν ∈ H of the PDE (3.15). Moreover,

ν(t, s) = Y t,s
t and ∇νσ = Zt,s

t , where {(St,su , Y t,s
u , Zt,s

u ), t ≤ u ≤ T} is the solution of

FBSDE (3.16) and

Y t,s
u = ν(u, St,su ), Zt,s

u = (∇νσ)(u, St,su ).
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3.2.3 Invariance of valuation with respect to the short rate

In this section, we show that the value of a deal does not depend explicitly on the

theoretical risk-free rate. We start by assuming that the underlying St is a tradable

asset. In the convention of the decoupled case (3.11), the underlying follows the

Black-Scholes type dynamic. According to the standard no-arbitrage theory, the

drift of the underlying asset is the risk-free rate under the risk-neutral probability

measure, more precisely, for t ≤ u ≤ T ,

dSt,su = r(u)St,su du+ σ(u)St,su dWu,

St,st = s.
(3.17)

If we assume that the smoothness assumption (3.8) of the price process is satisfied,

namely, V̄ (t, St) = Y t,s
t ∈ C1,2([0, T ] × R+), we can rewrite equations (3.14), such

that V̄ satisfies the following equations for t < τ ,

∂tν(t, s) + rts∂sν(t, s) +
1

2
σ(t)2s2∂2

sν(t, s) + f̃t ((α− 1)− c̃tα− λt) ν(t, s)

−
(
rt − f̃t

)
H(t, s, ν(t, s), Zt) + πt + λtθ(t, ν(t, s)) = 0, Zt = σ(t)s∂sν(t, s).

Observe that ∂sν(t, s)s =
Zt,st
σ(t)

is the delta-hedging process. Therefore, we choose

H(t, s, ν(t, s), Zt) = ∂sν(t, s)s = Zt
σ(t)

. For the ease of notation, from now on we

denote Ht = H(t, s, ν(t, s), Zt) and θt = θ(t, ν(t, s)). The equation (3.15) collapses

to

(∂t − f̃t − λt + Lf̃t )ν(t, s) + (f̃t − c̃t)Ct + λtθt + πt = 0,

ν(T, s) = 0,
(3.18)

for (t, s) ∈ [0, T ]× R+, where the infinitesimal generator Lf̃t is defined as follows,

Lf̃t ν(t, s) := f̃tHt + L2
tν(t, s) := f̃tHt +

1

2
σ(t, s)2∂

2ν

∂s2
.

We can see that the pre-default PDE no longer depends on the risk-free rate rt.

Equation (3.18) may be solved numerically as in Crépey [40]. On the other hand, we

can also express the pre-default PDE as an expectation, as we show in the following



Chapter 3. Funding Inclusive Valuation in a Continuous Time Setting83

theorem:

Theorem 3.2.5 (Continuous-time solution of the general pricing equation).

If we assume collateral rehypothecation and delta-hedging, then the funding inclusive

adjusted deal price can be expressed as

V̄t =

∫ T

t

Ef̃t
[(
πs + λsθs + (f̃s − c̃s)Cs

)
D(t, s; f̃ + λ) | F

]
ds. (3.19)

where the expectation is taken under the pricing measure Qf̃ for which the underlying

risk factors grow at the effective funding rate f̃ if no dividend is paid.

Proof. Assume ν(t,Xt) is a solution to the PDE (3.18), with boundary condition

ν(T,XT ) = 0,

where Xt satisfies the SDE

dXt = f̃tXtdt+ σtXtdW
f̃
t ,

with W f̃
t being the Brownian motion under the pricing measure Qf̃ where the un-

derlying risk factor X grows at the rate f̃ .

For s > t, s ≤ T , define a process

Ys =

∫ s

t

[
(f̃u − c̃u)Cu + λuθu + πu

]
D(t, u; f̃ + λ)du+D(t, s; f̃ + λ)ν(s,Xs).

If we define F (u,Xu, Cu, V̄u) = (f̃u − c̃u)Cu + λuθu + πu, then we can write

Ys =

∫ s

t

F (u,Xu, Cu, V̄u)D(t, u; f̃ + λ)du+D(t, s; f̃ + λ)ν(s,Xs).
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Differentiating Ys, we get

dYs = dD(t, s; f̃ + λ)ν(s,Xs) +D(t, s; f̃ + λ)dν(s,Xs) + dD(t, s; f̃ + λ)dν(s,Xs)

+ d

(∫ s

t

F (u,Xu, Cu, V̄u)D(t, u; f̃ + λ)du

)
= D(t, s; f̃ + λ)

(
∂sνs + f̃sXs

∂νs
∂Xs

+
1

2
σ2
sX

2
s

∂2νs
∂X2

s

− (f̃s + λs)νs + F (s,Xs, Cs, V̄s)

)
ds

+D(t, s; f̃ + λ)σsXs
∂νs
∂Xs

dW f̃
s .

Since νs is a solution to the PDE (3.18), the ds term can be cancelled and we obtain

YT = Yt +

∫ T

t

D(t, s; f̃ + λ)σsXs
∂νs
∂Xs

dW f̃
s .

Therefore, the process Y is a continuous local martingale. If we take the conditional

expectation with respect to the filtration Ft, we have

Ef̃t [YT | F ] = Ef̃t [Yt | F ] = ν(t,Xt).

The solution to the PDE (3.18) is therefore

ν(t,Xt) = Ef̃t
[∫ T

t

F (s,Xs, Cs, V̄s)D(t, s; f̃ + λ)ds+D(t, T ; f̃ + λ)ν(T,XT ) | F
]

= Ef̃t
[∫ T

t

(
πs + λsθs + (f̃s − c̃s)Cs

)
D(t, s; f̃ + λ)ds | F

]
.

Theorem 3.2.5 decomposes the deal price V̄ into three intuitive terms. The first

term is the value of the deal cash flows, discounted at funding plus credit. The

second term is the price of the on-default cash-flow in excess of the collateral, which

includes the CVA and DVA of the deal after collateralization. The last term collects

the cost of collateralization. In addition, we see that any dependence on the hedging

strategy H can be dropped by taking all expectations under the pricing measure Qf̃ .

At this point it is very important to appreciate once again that f̃ depends on F ,

and hence on V̄ .
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Remark 3.2.6. (Deal dependent pricing measure, local risk neutral mea-

sures). Since the pricing measure depends on f̃ which in turn depends on the very

value V̄ we are trying to compute, we have that the pricing measure becomes deal

dependent. Every deal or portfolio has a different pricing measure.

Finally, we stress once again a very important invariance result that first ap-

peared in [61] and [26]. The proof of the following theorem is immediate by inspec-

tion and follows directly from our analysis.

Theorem 3.2.7. (Invariance of the valuation equation with respect to the

short rate rt). Equations (3.18) or (3.19) for valuation under credit, collateral

and funding costs are completely governed by market rates; there is no dependence

on a risk-free rate rt and the final price is invariant to it. This confirms our earlier

conjecture that the risk-free rate is merely an instrumental variable of our valuation

framework and we do not, in fact, need to know the value of such a rate.
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Chapter 4

The Self-financing Condition

In this chapter, we present an outline of the derivation of the self-financing condi-

tion used in a derivative pricing framework with the presence of funding risk and

collateral margining. The derivation is done in a way that clarifies the structure

of the relevant funding accounts. This clarification is achieved by properly distin-

guishing between price processes, dividend processes and gains processes. Without

this explicit distinction the resulting self-financing condition can be erroneous, as

we illustrate in the case of two papers: Piterbarg [68] and Burgard and Kjaer [35]

in the first section. We then in the second section follow a study carried out by

Bielecki and Rutkowski [8] and show how the adjusted self-financing condition fits

in our funding inclusive valuation framework.

4.1 A common mistake

This section is an update of the papers [13] and [14]. In this section we address

an important problem with the self-financing condition used in the derivative pric-

ing framework in [68] and [35]. In the first paper, the self-financing condition is

equivalent to assuming that the equity position is self-financing on its own with-

out including the cash position. In the second paper, the self-financing condition

is equivalent to assuming that a sub-portfolio is self-financing on its own, contrary

to the assumption that the whole portfolio is self-financing. The error stems from

a failure in applying the stochastic Leibnitz rule and is present even in mainstream
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textbooks such as Hull [52] (see also a discussion with explicit calculations in Shreve

[69] Exercise 4.10). It is important to highlight the issue not only because [68] is

highly quoted at industrial conferences worldwide in the practitioners’ space, while

[35] has received extensive exposure, but also to provide a useful tool in the flour-

ishing research on the valuation of the cost of funding.

We then provide an alternative derivation for the funding formula using the self-

financing condition. We show that the final result in [68] is correct, even if the

related self-financing condition is not. In the process, we raise a further question on

the appropriateness of the replication approach described in that paper.

4.1.1 The self-financing condition and the problem in [68]

In the traditional derivative pricing in the Black-Scholes setting, replication is achieved

by borrowing/lending at the risk-free rate. In modern practice funding costs are an

important consideration in replication, especially when considering repo, unsecured

funding and collateral accounts with different rates, as was done in the paper by

Piterbarg [68].

Integral to the replication argument used for derivative pricing in [68] is the

use of a self-financing trading strategy, and with respect to this we highlight the

following problem. (We note that the same problem affects the proofs in [35]).

Formula (2) in [68] reads, for the portfolio Π that replicates the derivative V

(here we use identical notation to the paper [68]):

V (t) = Π(t) = ∆(t)S(t) + γ(t) (4.1)

where S is the “price process” of the underlying asset, and γ is the “cash amount

split among a number of accounts [...]”.

Then [68] continues in reference to “equation (2)”, which is (4.1) above:

“On the other hand, from (2), by the self-financing condition

dγ(t) = dV (t)−∆(t) dS(t)

[...]”

(4.2)
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We argue that the above formulation of the self-financing condition is wrong. It

is enough to directly differentiate both sides of equation (4.1) to obtain:

dV (t) = d(∆(t)S(t)) + d γ(t) (4.3)

and combine this last equation (4.3) with (4.2) to obtain:

d(∆(t)S(t)) = ∆(t) dS(t) (wrong). (4.4)

In light of the assumptions in [68], equation (4.4) is wrong because it would imply

that the position in the risky asset S is self-financing on its own, in that the change

in the total value of the position, namely d(∆(t)S(t)), is funded by the asset market

movements alone: ∆(t) dS(t).

A further consequence of the above error follows immediately from the stochastic

Leibnitz rule, leading to:

d∆t = 0 (wrong), (4.5)

and indeed if equity needs to be self-financing on its own, the only possibility is that

the amount of equity is constant (there is no re-balancing of the single position).

We briefly point out also that, in the reference book Hull [52], equation (14.12)

and (14.13) yield exactly the same problem we are discussing here.

4.1.2 The self-financing condition and the problem in [35]

Burgard and Kjaer in [35] consider credit risk in addition to funding costs by allowing

corporate bonds of the two parties of the derivative transaction in the replicating

portfolio. However, the same problem affects their self-financing condition.

Specifically, in that work it is stated explicitly that the portfolio consisting of

the stock S, the bond PB of party B, the bond PC of party C and β(t) cash is

self-financing. This portfolio value can be written as in the first equation following

equation (3.2) of [35], namely (we use identical notation):

−V̂ (t) = Π(t) = δ(t)S(t) + αB(t)PB(t) + αC(t)PC(t) + β(t). (4.6)
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The self-financing condition stated in equation (3.3) of [35] reads:

−dV̂ (t) = δ(t)dS(t) + αB(t)dPB(t) + αC(t)dPC(t) + dβ(t). (4.7)

The reader can clearly see where the problem is: if we now differentiate equation

(4.6) and equate the resulting equation with (4.7) we immediately obtain:

d (δ(t)S(t) + αB(t)PB(t) + αC(t)PC(t)) = δ(t)dS(t) + αB(t)dPB(t) + αC(t)dPC(t)

(wrong). (4.8)

This is wrong because it implies that the portfolio of the three assets:

S, PB, PC

is self-financing, which is clearly at odds with [35] stating instead that the entire

portfolio:

S, PB, PC , Cash account

is self-financing.

This is the same problem that afflicts the self-financing condition in [68], except

that here it is distributed across more than one asset.

4.1.3 Presentation of the correct formulation in the framework of [68]

Since the derivation of the result is important, as it provides a description of the

funding account and of the funding strategy, we believe it is appropriate at this

point to illustrate the proper formulation of the self-financing condition in the case

of [68].

We point out that we do not discuss the assumptions in [68], not least because of

some inconsistencies that we could not reconcile. Specifically, it is mentioned that

the spread between the funding rate and the short (CSA) rate can be thought of

as stochastic, and its dynamics follow a one-factor Gaussian model in the related

example. Since the short (CSA) rate and the repo rate are assumed to be determin-
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istic, it follows that at least the funding rate is stochastic. Indeed, the replicating

portfolio contains a certain amount of cash V (t)−C(t) borrowed from (lent to) the

treasury desk at the unsecured funding rate rF . However, this funding rate is driven

by the Brownian motion WF driving the funding spread, which is distinct from the

Brownian motion W driving the stock price (the two are assumed to be correlated

in the example of this article). But this distinction is neither made clear, nor taken

into account in the replication argument.

In light of this we rather concentrate on the correct formulation of the self-

financing condition in the framework of [68], but further assuming deterministic rates

to avoid the potential inconsistencies described above. For a more comprehensive

framework going beyond [68] assumptions and including explicit default modeling,

collateral modeling, rehypothecation and debit valuation adjustments we refer the

reader elsewhere, for example Pallavicini et al. [60] or Crépey [39], and especially

to Bielecki and Rutkowski [8] who analyze the matter from a rigorous point of view

in the specific context of replication (see also Antonov and Bianchetti [2]).

One of the problems in the above derivation is that it does not distinguish be-

tween gains processes, price processes and dividend processes, and not doing so

brings about the error highlighted in equation (4.4). We present below the correct

formulation (for the full theory see Duffie [45]).

We start with a filtered probability space (Ω,F , {Ft},Q), with the filtration

{Ft}t≥0 generated by a Brownian motion W . We consider a stock with price dy-

namics given by a geometric Brownian motion with deterministic coefficients:

dSt = µ(t)Stdt+ σ(t)StdWt. (4.9)

The financial market consists of a vector A = {Ai : 1 ≤ i ≤ n} of traded assets

available for hedging claims. At time t ≥ 0 each asset Ai has a price PAi
t and has

had since inception a cumulative dividend DAi
t . The gains process of asset Ai is

defined in terms of the price and cumulative dividend processes by:

GAi
t := PAi

t +DAi
t , t ≥ 0. (4.10)
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A trading strategy θ is an Ft-predictable square-integrable stochastic process

having as components the numbers of units of each asset held at time t:

θt = (θ1
t , θ

2
t , . . . , θ

n
t ).

The time t value of the portfolio that results from employing the strategy θ is

given as:

V θ
t := θ1

tP
A1
t + . . .+ θnt P

An
t , (4.11)

while the gains (profits/losses) generated by holding a position θit in asset Ai is

θitdG
Ai
t . By relation (4.10) this is coming from changes in the price of the asset and

from changes in the cumulative dividend process (new dividends).

A trading strategy θ is self-financing if:

V θ
t = V θ

0 +Gθ
t , t ≥ 0, (4.12)

where the gains process associated with θ is:

dGθ
t := θ1

t dG
A1
t + . . .+ θnt dGAn

t , Gθ
0 = 0. (4.13)

This implies in particular that the only change in the value of the portfolio comes

from the change in the gains process associated with the strategy θ, namely,

dV θ
t = dGθ

t , (4.14)

or, using (4.11) and (4.13), from the changes in the gains processes of the assets:

d(θ1
tP

A1
t + . . .+ θnt P

An
t ) = θ1

t dG
A1
t + . . .+ θnt dGAn

t .

However, in general it is true that:

d(θ1
tP

A1
t + . . .+ θnt P

An
t ) 6= θ1

t dP
A1
t + . . .+ θnt dPAn

t . (4.15)
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Indeed, the trading strategy θ being self-financing does not imply that:

dGAi
t = dPAi

t

for the single asset i. Clearly, if all single assets have null dividend process, it follows

that the self-financing condition for the strategy implies an equality in (4.15), but

more generally this does not hold.

Finally, a claim Y with payoff V Y
t at time 0 ≤ t ≤ T is replicated by the strategy

θ if the value V θ of the portfolio corresponding to this strategy satisfies:

V Y
t = V θ

t , (4.16)

for all t ≥ 0 and up to the claim maturity T .

We now apply the above framework to the setup in [68]. Here the vector A of

assets characterizing the financial market has the following components: A1 is a

repo contract for the risky stock given in (4.9), A2 is a collateral account (like a

cash account), and A3 is the funding account (opened for example with the internal

treasury). The collateral account is used to post an amount related to the claim

value, and the funding account is used to borrow/invest as necessary to replicate

the claim, so the only source of randomness in the assets of this market is the

one-dimensional Brownian motion W driving the stock price (4.9).

The price processes for these assets are denoted by:

PA1
t = 0, PA2

t = Ct, PA3
t = αt, t ≥ 0, (4.17)

where Ct is a market observable collateral requirement at time t and αt is to be

determined below.

From the point of view of an investor holding these assets, the incoming stock

dividends rD(t)Stdt and the outgoing repo interest payments rR(t)Stdt are accounted

for in the gains process GA1
t associated with the repo on stock, so as to maintain
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the zero price PA1
t of the repo contract. It leads to the following gains processes:

dGA1
t = dSt + (rD(t)− rR(t))Stdt,

dGA2
t = rC(t)Ctdt,

dGA3
t = rF (t)αtdt,

(4.18)

where rD(t) is the rate at which stock dividends are paid at time t, rR(t) is the

short rate at time t on funding secured via repo, rC(t) is the short rate at time t of

cash/collateral, and rF (t) is the time t short rate for unsecured funding.

The dividend processes for the three assets are written using (4.10) as follows:

dDA1
t = dGA1

t − dPA1
t =dSt + (rD(t)− rR(t))Stdt, DA1

0 = 0,

dDA2
t = dGA2

t − dPA2
t =rC(t)Ctdt− dCt, DA2

0 = 0,

dDA3
t = dGA3

t − dPA3
t =rF (t)αtdt− dαt, DA3

0 = 0.

(4.19)

We seek a trading strategy θ to replicate a derivative Y with time t value V Y
t . The

strategy θ = (θ1, θ2, θ3) is chosen to be, for some yet unknown process ∆:

θ1
t = ∆t, θ2

t = 1, θ3
t = 1. (4.20)

(We remark that here the single asset dividend processes are not null, so (4.15)

reminds us that attention is needed in devising the correct setup.)

The time t value V θ
t of the replicating portfolio obtained from strategy θ given

by (4.20) is obtained from (4.11) with the prices (4.17):

V θ
t = ∆t 0 + 1Ct + 1αt. (4.21)

This gives a funding account price of αt = V θ
t −Ct = V Y

t −Ct (V Y = V θ by (4.16)).

Contrast the replicating condition (4.21) with (4.1): the replicating portfolio has

interests in the stock price via the dividend process (4.19) of the repo, but doesn’t

hold the stock.

Note that by replacing αt = V Y
t −Ct into equations (4.17), (4.18) and (4.19) the
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dynamics of the price, gains and dividend processes can be expressed in terms of

the market observable quantities:

St, Ct, V
Y
t .

Then the gains process (4.13) associated with θ is:

dGθ
t = ∆t [dSt + (rD(t)− rR(t))Stdt] + 1 [rC(t)Ctdt] + 1 [rF (t)(V θ

t − Ct)dt]. (4.22)

The self-financing condition for the strategy θ can be obtained using (4.14), with

dGθ
t given by the equation (4.22) above.

We have thus proved that for the market in [68] with assets: repo on stock,

collateral account and unsecured funding account, the self-financing condition for

the trading strategy θ that replicates a claim Y requires:

dV θ
t = ∆t [dSt + (rD(t)− rR(t))Stdt] + 1 [rC(t)Ctdt] + 1 [rF (t)(V θ

t − Ct)dt]. (4.23)

On the other hand, assuming that the payoff can be written as V Y
t = vY (t, S)

for some C1,2 function vY , Itô’s formula gives:

dvY (t, St) = vYt (t, St)dt+
∂vY

∂S
dSt +

1

2

∂2vY

∂S2
d(St)

2. (4.24)

Equating the right hand sides of the equations (4.23) and (4.24) gives:

vYt (t, St) +
1

2

∂2vY

∂S2
σ(t)2S2

t =
∂vY

∂S
(t, St)(rD(t)− rR(t))St

+ rC(t)Ct + rF (t)(vY (t, St)− Ct),

∆t =
∂vY

∂S
(t, St). (4.25)

With (4.25) we have now completely identified the strategy (4.20) that replicates

the claim, so the pricing derivation may continue as in [68] with their “equation (3)”.

Summarizing, the wrong self-financing condition implies that the portfolio with-

out cash is self-financing on its own (see (4.4) and (4.8)). Fortunately, the error can
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be corrected and the correct self-financing condition can be derived rigorously. We

showed how to do this in the setup of [68], casting light on the necessary distinction

between dividend processes, price processes and gains processes, and obtaining the

correct self-financing condition (4.23).

While the original published versions of [68] and [35] have the problems we have

signaled in this article, the authors of [68] and [35] have updated the online versions

of their articles with our proposed corrections following personal communication

with us at the time the research report [13] (upon which the present section is

based) appeared.

Nonetheless, we think it is necessary and useful to specify the setting explicitly

in this section, since a sound funding theory depends crucially on financing costs,

and the violation of the self-financing condition is an important problem.

4.2 Self-financing condition in our framework

In the following, we will show how the traditional self-financing condition is ad-

justed to reflect the new market realities of funding risk and collateralization in our

framework. By adjusting the self-financing condition, we can derive our consistent

valuation framework using only market observable quantities. The analysis carried

out in this section is inspired by the work conducted by Bielecki and Rutkowski in

[8], where the authors provided a theoretical underpinning for a unified framework

for the nonlinear approach to hedging and pricing of OTC contracts. However, the

default events and close-out conventions were not discussed.

Our goal is to derive the consistent valuation framework set up in the previous

chapters using the adjusted self-financing condition. We start by giving the classical

definition of a self-financing strategy.

We denote Π′ all contractual cash flows directly generated by a derivative from

the point of view of the investor (without discounting). Note that Π′(t, T ) = Π(t,T )
D(t,T )

,

and Π′ is an arbitrary càdlàg process of finite variation. A trading strategy (ϕ,Π′)

will be used to replicate all cash flows Π′, where ϕ = (ξ, ψ) is a dynamic replicating

portfolio that consists of a risky asset S and a cash account B. For model simplicity,
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we assume that there is only one risky asset in this set-up that pays no dividend.

Definition 4.2.1. (Self-financing strategy) A trading strategy (ϕ,Π′) is said to

be self-financing if the wealth process given by

Vt(ϕ,Π
′) := ξtSt + ψtBt, (4.26)

satisfies

dVt(ϕ,Π
′) = ξtdSt + ψtdBt − dΠ′t. (4.27)

We assume that the account will be empty at the end of the derivative trade, in

particular, we have VT (ϕ) = 0.

4.2.1 Different lending and borrowing rates

As a first adjustment to the classical pricing framework, we introduce different

unsecured borrowing and lending rates. Denoting the cash account in the replicating

strategy (ϕ,Π′) associated with a contract Π′ by an F -adapted stochastic process

F , we have

Ft = Vt(ϕ)− ξtSt. (4.28)

Let’s now introduce different lending and borrowing cash accounts:

Ft = Ft1{Ft≥0} + Ft1{Ft<0} = F+
t + F−t , (4.29)

where F+
t stands for the cash value the investor needs to borrow in order to establish

the replicating strategy, and F−t represents the surplus cash value from the replicat-

ing strategy that can be used for assets lending. We use the short-hand notation

X+ := max(X , 0) and X− := min(X , 0).

We denote by Bl
t and Bb

t the strictly positive cash account processes correspond-

ing to the lending and borrowing accounts respectively. Formally, we postulate that

ψltB
l
t = (Vt(ϕ)− ξtSt)−, ψbtB

b
t = (Vt(ϕ)− ξtSt)+.
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where for all t ∈ [0, T ],

ψlt = (Bl
t)
−1(Vt(ϕ)− ξtSt)− ≤ 0, ψbt = (Bb

t )
−1(Vt(ϕ)− ξtSt)+ ≥ 0. (4.30)

We assume that at any time simultaneous lending and borrowing is prohibited,

namely, ψltψ
b
t = 0.

We say that the wealth process of a portfolio ϕ = (ξ, ψl, ψb) given by

Vt(ϕ) = ξtSt + ψltB
l
t + ψbtB

b
t (4.31)

is self-financing if the following condition is satisfied:

dVt(ϕ) = ξtdSt + ψltdB
l
t + ψbtdB

b
t − dΠ′t. (4.32)

If we further assume that the account processes Bb and Bl are absolutely continu-

ous, and the corresponding borrowing and lending rates are denoted by F -adapted

processes f+ and f− respectively (one may assume f+
t ≥ f−t for all t ∈ [0, T ] to

avoid arbitrage opportunity), the following relations hold:

dBl
t

Bl
t

= f−t dt,
dBb

t

Bb
t

= f+
t dt,

and the dynamic of the wealth process Vt(ϕ) (4.32), can be re-written as

dVt(ϕ) = ξtdSt + f−t (Vt(ϕ)− ξtSt)−dt+ f+
t (Vt(ϕ)− ξtSt)+dt− dΠ′t. (4.33)

4.2.2 Trading strategies under collateralization

When a deal is collateralized, we need to consider our problem in both scenarios

when rehypothecation is forbidden and allowed. As introduced in Chapter 2, when

rehypothecation is forbidden, the collateral will be kept in segregated accounts,

whereas if rehypothecation is allowed, the collateral can be used as a source of

funding by the collateral taker. Again, we assume that the collateral to be a risk-

free cash account. We denote the cash collateral account by a stochastic process C,
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with

Ct = Ct1{Ct≥0} + Ct1{Ct<0} = C+
t + C−t ,

where C+
t stands for the cash value of collateral received, whereas C−t represents

the cash value of collateral posted, both from the investor’s point of view for any

0 ≤ t < T . As before we set CT = 0.

Collateral trading with segregated accounts

If rehypothecation is not allowed, cash collateral will be placed in segregated ac-

counts. The collateral amount that is received can not be used for trading. The

wealth process V (ϕ) of the collateralized trading strategy (ϕ,Π′, C) should not ex-

plicitly depend on the collateral process. Therefore, the value of the replicating

portfolio is

Vt(ϕ) = ξtSt + ψltB
l
t + ψbtB

b
t ,

which is the same as (4.31). However, the self-financing condition reads

dVt(ϕ) = ξtdSt + ψltdB
l
t + ψbtdB

b
t − dγt − dΠ′t, (4.34)

where

ψltB
l
t = (Vt(ϕ)− ξtSt)−, ψbtB

b
t = (Vt(ϕ)− ξtSt)+,

and we denote the costs/benefits from the collateral margining account as γt.

In order to determine dγt, we examine carefully what happens during collateral

margining. We assume that the collateral processes are absolutely continuous with

accrual rates c+
t when Ct ≥ 0 and c−t when Ct < 0. Both the rates c+ and c− are

F -adapted processes. At time t ∈ [0, T ), if the investor is the collateral provider,

i.e. Ct < 0, he needs to borrow cash for the collateral amount C−t from the cash

borrowing account Bb
t at the borrowing rate f+

t , and receives interest from the

counterparty on the posted collateral at the accrual rate c−t . On the other hand, if the

investor is the collateral taker, i.e. Ct > 0, he needs to pay the counterparty interest

at the collateral accrual rate c+
t , and (perhaps unlikely in practice) receives from
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the collateral custodian interest for the positive cash amount C+
t in the segregated

account at some rate denoted by an F -adapted process rC,+t . Formally, we have the

following expression for dγt,

dγt = (f+
t − c−t )C−t dt+ (rC,+t − c+

t )C+
t dt. (4.35)

Collateral trading with rehypothecation

For the case when rehypothecation is allowed, the collateral taker has the right to

use the posted collateral for his liquidity and trading needs. In other words, at time

t ∈ [0, T ), when the investor is the collateral taker, he is granted an unrestricted use

of the full collateral amount C+
t received from the counterparty and pays interest on

C+
t at collateral accrual rate c+

t . However, if the investor is the collateral provider,

namely Ct < 0, he is entitled to interest payments on the posted collateral amount

C−t at collateral rate c−t .

In the case of collateral rehypothecation, the posted collateral can be used to

reduce the funding costs of the collateral taker. The cash account for the trading

strategy is then defined as

Ft = Vt(ϕ)− ξtSt − Ct. (4.36)

Moreover, the wealth process V (ϕ) reads

Vt(ϕ) = ξtSt + ψltB
l
t + ψbtB

b
t + Ct, (4.37)

and the dynamics of Vt(ϕ) follows

dVt(ϕ) = ξtdSt + ψltdB
l
t + ψbtdB

b
t − dγt − dΠ′t, (4.38)

where

ψltB
l
t = (Vt(ϕ)− ξtSt − Ct)−, ψbtB

b
t = (Vt(ϕ)− ξtSt − Ct)+.
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We assume that the cash collateral posted by the investor is also funded by the same

cash accounts which fund the replicating strategy (at rates f− and f+ as defined

before).

If the collateral account processes are absolutely continuous, the costs/benefits

of the margining account is then given by

dγt = −c−t C−t dt− c+
t C

+
t dt. (4.39)

Assume that the borrowing and lending account processes are absolutely continuous.

Adopting the notations f̃ and c̃ from Chapter 2 for the effective funding rate (2.18)

and the effective collateral accrual rate (2.3) respectively, the above dynamics of the

wealth process Vt(ϕ) for the rehypothecation case can be expressed as

dVt(ϕ) = ξtdSt + f̃t(Vt(ϕ)− ξtSt − Ct)dt+ c̃tCtdt− dΠ′t, (4.40)

or equivalently,

dVt(ϕ) = ξtdSt + f̃t(Vt − ξtSt)dt− (f̃t − c̃t)Ctdt− dΠ′t. (4.41)

Let’s now discuss how the adjusted self-financing condition (4.41) can be used

to derive our consistent pricing equation.

4.2.3 Funding risk inclusive pricing formula

From now on, we assume that rehypothecation is allowed, but analogous results hold

for the case where collateral is placed in segregated accounts.

We consider a replicating portfolio (ϕ,Π′, C) associated with a contract Π′. The

wealth process V (ϕ) is given in (4.37) and we have that the dynamic of V (ϕ) is

given in (4.41).

In order to derive the consistent valuation framework set up in the previous

chapters, we now define a new process Ṽt(ϕ), associated with an arbitrary self-
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financing trading strategy ϕ, as follows,

Ṽt(ϕ) := Vt(ϕ) +Bλ
t

∫ t

0

[
(λs − f̃s)(Vs(ϕ)−Hs) + (f̃s − c̃s)Cs + πs

]
(Bλ

s )−1ds,

(4.42)

where Ht = ξtSt is the hedging account. We use the notation πtdt = Π(t, t + dt)

with Π′(t, T )D(t, T ) =
∫ T
t
D(t, s)Π(s, s+ds), and Bλ

t is an arbitrary process of finite

variation, such that for t ≥ 0,

dBλ
t = λtB

λ
t dt, Bλ

0 > 0.

Assumption 4. There exists a probability measure Qλ such that the process S/Bλ

is a Qλ-local martingale.

Notice that if the rate λ is the risk-free rate, the measure Qλ is then the risk-

neutral probability measure and Assumption 4 is satisfied in a typical market model

(such as Black-Scholes model).

Proposition 4.2.1. The process Ṽ (ϕ)/Bλ with Ṽ (ϕ) defined in (4.42) is a Qλ-local

martingale.

Proof. To prove Ṽ (ϕ)/Bλ is a Qλ-local martingale, it is sufficient to show that

d

(
Ṽt(ϕ)

Bλ
t

)
= ξtd

(
St
Bλ
t

)
.

By applying Itô’s formula to both sides of the above equation, we obtain (we drop

ϕ from the notation in the following proof for notational simplicity)

1

Bλ
t

(dṼt − Ṽt
dBλ

t

Bλ
t

) =
ξt
Bλ
t

(dSt − St
dBλ

t

Bλ
t

),

which is equivalent to showing that

dṼt − λtṼtdt = ξt(dSt − λtStdt).
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Applying Itô’s formula to Ṽt yields

dṼt = dVt + (λt − f̃t)(Vt −Ht)dt+ (f̃t − c̃t)Ctdt+ dΠ′t + λt(Ṽt − Vt)dt.

Now substituting the self-financing condition property of (ϕ,Π′, C), i.e. equation

(4.41), we obtain

dṼt − λtṼtdt =ξtdSt + f̃t(Vt − ξtSt)dt− (f̃t − c̃t)Ctdt− dΠ′t + (λt − f̃t)(Vt −Ht)dt

+ (f̃t − c̃t)Ctdt+ dΠ′t + λtṼtdt− λtVtdt− λtṼtdt

=ξtdSt + λt(Vt −Ht)dt− λtVt

=ξtdSt − λtξtStdt

as we were required to show.

Using the result in Proposition 4.2.1 and the terminal condition VT (ϕ) = 0, we

establish the following theorem.

Theorem 4.2.2. Suppose that Assumption 4 is in force. In the case of collateral

rehypothecation and delta-hedging, the price of a derivative contract with contractual

cash-flow Π′ that is replicated by a self-financing trading strategy (ϕ,Π′, C) is given

by

Vt(ϕ) = Eλt
[
Bλ
t

∫ T

t

(
(λs − f̃s)(Vs(ϕ)−Hs) + (f̃s − c̃s)Cs + πs

)
(Bλ

s )−1ds | F
]
.

(4.43)

where the expectation is taken under some pricing measure Qλ for which the under-

lying risk factors grow at the rate λ if no dividend is paid.

Proof. According to Proposition 4.2.1 the process Ṽt(ϕ)/Bλ
t defined as (4.42) is a

Qλ-local martingale. Therefore, for t ∈ [0, T ],

Ṽt(ϕ)/Bλ
t = Eλt

[
ṼT (ϕ)/Bλ

T | F
]
,
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which implies that

Ṽt(ϕ)

Bλ
t

=
Vt(ϕ)

Bλ
t

+

∫ t

0

[
(λs − f̃s)(Vs(ϕ)−Hs) + (f̃s − c̃s)Cs + πs

]
(Bλ

s )−1ds

= Eλt
[
VT (ϕ)

Bλ
T

+

∫ T

0

[
(λs − f̃s)(Vs(ϕ)−Hs) + (f̃s − c̃s)Cs + πs

]
(Bλ

s )−1ds | F
]
.

Since VT (ϕ) = 0, we can obtain

V H
t (ϕ) = Eλt

[
Bλ
t

∫ T

t

(
(λs − f̃s)(Vs(ϕ)−Hs) + (f̃s − c̃s)Cs + πs

)
(Bλ

s )−1ds | F
]
.

We notice that if we set the rate λ in Theorem 4.2.2 to be the risk-free rate rt,

the pricing equation (4.43) becomes

Vt(ϕ) = Et
[∫ T

t

(
(rs − f̃s)(Vs(ϕ)−Hs) + (f̃s − c̃s)Cs + πs

)
D(t, s)ds | F

]
,

which is the same as the pricing equation (2.31) in continuous time without credit

default events.

If, however, we set λ equal to the funding rate f̃ , the valuation equation (4.43)

becomes

Vt(ϕ,Π
′, C) = Ef̃t

[∫ T

t

(
(f̃s − c̃s)Cs + πs

)
D(t, s; f̃) ds | F

]
,

which coincides with the result in Theorem 3.2.5 without the introduction of coun-

terparty default risk (and the close-out conventions).

4.2.4 Funding risk inclusive PDE

Again, we consider the wealth process Vt(ϕ) corresponding to a self-financing repli-

cating strategy (ϕ,Π′, C) associated with a contract Π′. The dynamic of the wealth

process Vt(ϕ) follows

dVt(ϕ) = ξtdSt + f̃t(Vt − ξtSt)dt− (f̃t − c̃t)Ctdt− dΠ′t, (4.44)
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with terminal condition VT (ϕ) = 0.

Now assume that the price process Vt(ϕ) satisfies the smoothness Assumption

3.8, and also that the underlying risk factor S follows the following SDE (we drop

ϕ from the notation here for simplicity)

dSt = µ(t, St)dt+ σ(t, St)dWt.

We can then apply Itô’s formula to Vt(ϕ) giving us

dVt =
∂V

∂t
dt+ µ(t, St)

∂V

∂S
dt+

1

2
σ(t, St)

2∂
2V

∂S2
dt+ σ(t, St)

∂V

∂S
dWt. (4.45)

Equating the right hand sides of equations (4.44) and (4.45), we can write

[
∂V

∂t
− ξtµ(t, St) + µ(t, St)

∂V

∂S
+

1

2
σ(t, St)

2∂
2V

∂S2
− f̃tVt + f̃tξtSt

+(f̃t − c̃t)Ct + πt

]
dt+

[
−σ(t, St)ξt + σ(t, St)

∂V

∂S

]
dWt = 0.

Since the coefficient of the diffusion term needs to be zero, we have

ξt =
∂V

∂S
,

substituting which into the the drift term yielding,

∂V

∂t
− f̃tVt + f̃t

∂V

∂S
St +

1

2
σ(t, St)

2∂
2V

∂S2
+ (f̃t − c̃t)Ct + πt = 0.

Observe that ∂V
∂S
St is the delta-hedging process. If we define the hedging account

Ht = ∂V
∂S
St, the price process of the hedging portfolio V satisfies the following semi-

linear PDE,

∂ν(t, s)

∂t
− f̃tν(t, s) + f̃tHt +

1

2
σ(t, s)2∂

2ν(t, s)

∂s2
+ (f̃t − c̃t)Ct + πt = 0,

ν(T, s) = 0.

(4.46)

Comparing the above PDE to the pre-default PDE (3.18) we obtained previously,
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we see that the two semi-linear PDEs are identical if there is no counterparty credit

risk (hence nor the on-default cash-flow).
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Chapter 5

Numerical Results

This chapter provides a numerical study of the valuation framework outlined in

the previous chapters. We investigate the impact of funding risk on the price of a

derivatives deal under default risk and collateralization. Also, we analyse the valua-

tion error of ignoring nonlinearties of the general valuation problem. Specifically, to

quantify this error, we introduce the concept of a nonlinearity valuation adjustment

(in short, NVA). A generalized least-squares Monte Carlo algorithm is proposed

inspired by the simulation methods of Carriere [36], Longstaff and Schwartz [58],

Tilley [71], and Tsitsiklis and Van Roy [72] for pricing American-style options. As

the purpose is to understand the fundamental implications of funding risk, we focus

on relatively simple deal positions in European call options. However, the Monte

Carlo method we propose below can be applied to more complex derivative contracts,

including derivatives with bilateral payments.

5.1 Monte Carlo algorithm

Recall the recursive structure of the general pricing equation: The deal price depends

on the funding decisions, while the funding strategy depends on the future price

itself. The intimate relationship among the key quantities makes the pricing problem

computationally challenging.

We consider K default scenarios during the life of the deal – either obtained

by simulation, bootstrapped from empirical data, or assumed in advance. For each
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first-to-default time τ corresponding to a default scenario, we compute the price of

the deal V̄ under collateralization, close-out netting and funding costs. The first

step of our simulation method entails simulating a large number of sample paths

N of the underlying risk factors X. We simulate these paths on the time-grid

{t1, . . . , tm = T ∗} with step size ∆t = tj+1 − tj from the assumed dynamics of the

risk factors. T ∗ is equal to the final maturity T of the deal or the consecutive time-

grid point following the first-default time τ , whichever occurs first. For simplicity,

we assume the time periods for funding and hedging decisions and collateral margin

payments coincide with the simulation time grid.

Given the set of simulated paths, we solve the funding strategy recursively in

a dynamic programming fashion. Starting one period before T ∗, we compute for

each simulated path the funding decision F and the deal price V̄ according to the

set of backward-inductive equations of Theorem 2.3.3. The algorithm then proceeds

recursively until time zero. Ultimately, the total price of the deal is computed as

the probability weighted average of the individual prices obtained in each of the K

default scenarios.

The conditional expectations in the backward-inductive funding equations are

approximated by across-path regressions based on least squares estimation similar

to Longstaff and Schwartz [58]. We regress the present value of the deal price at time

tj+1, the adjusted payout cash flow between tj and tj+1, the collateral account and

funding account at time tj on basis functions ψ of realizations of the underlying risk

factors at time tj across the simulated paths. To keep notation simple, let us assume

that we are exposed to only one underlying risk factor, e.g. a stock price. Extensions

to higher dimensions are straightforward. Specifically, the conditional expectations

in the iterative equations of Theorem 2.3.3, taken under the risk-neutral measure,

are equal to

Etj
[
Ξtj(V̄tj+1

)
]

= α∗tj ψ(Xtj), (5.1)

where we have defined Ξtj(V̄tj+1
) := D(tj, tj+1)V̄tj+1

+Π̄(tj, tj+1;C)−Ctj−Htj . Note

the Ctj term drops out if rehypothecation is not allowed. The usual least-squares
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estimator of α is then given by

α̂tj :=
[
ψ(Xtj)ψ(Xtj)

∗]−1
ψ(Xtj) Ξtj(V̄tj+1

). (5.2)

Orthogonal polynomials such as Chebyshev, Hermite, Laguerre, and Legendre may

all be used as basis functions for evaluating the conditional expectations. We find,

however, that simple power series are quite effective and that the order of the poly-

nomials can be kept relatively small. In fact, linear or quadratic polynomials, i.e.

ψ(Xtj) = (1, Xtj , X
2
tj

)∗, are often enough.

Further complexities are added, as the dealer may – realistically – decide to

hedge the full deal price V̄ . Now, the hedge H itself depends on the funding strat-

egy through V̄ , while the funding decision depends on the hedging strategy. This

added recursion requires that we solve the funding and hedging strategies simulta-

neously. For example, if the dealer applies a delta-hedging strategy, we can write,

heuristically,

Htj =
∂V̄

∂X

∣∣∣
tj
Xtj ≈

V̄tj+1
− (1 + ∆tj f̃tj)V̄tj

Xtj+1
− (1 + ∆tj f̃tj)Xtj

Xtj . (5.3)

We obtain, in the case of rehypothecation, the following system of nonlinear equa-

tions 
Ftj −

P f̃tj
(tj+1)

Ptj (tj+1)
Etj
[
Ξtj(V̄tj+1

)
]

= 0,

Htj −
V̄tj+1−(1+∆tj f̃tj )V̄tj

Xtj+1−(1+∆tj f̃tj )Xtj
Xtj = 0,

V̄tj = Ftj + Ctj +Htj ,

(5.4)

where all matrix operations are on an element-by-element basis. An analogous result

holds when rehypothecation of the posted collateral is forbidden.

For each period and for each simulated path, we find the funding and hedging de-

cisions by solving this system of equations, given the funding and hedging strategies

for all future periods until the end of the deal. We apply a simple Newton-Raphson

method to solve the system of nonlinear equations numerically, but instead of using

the exact Jacobian, we approximate it by finite differences. As an initial guess, we
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use the Black-Scholes delta position

H0
tj

= ∆BS
tj
Xtj .

The convergence is quite fast and only a small number of iterations are needed

in practice. Finally, if the dealer decides to hedge only the risk-free price of the

deal, i.e. the classical derivative price V , the pricing problem collapses to a much

simpler one. The hedge H no longer depends on the funding decision and can be

computed separately and the numerical solution of the nonlinear equation system

can be avoided altogether.

In the following we apply our valuation framework to the case of a stock or equity

index option. Nevertheless, the methodology extends fully to any other derivatives

transaction. For instance, applications to interest rate swaps can be found in Brigo

and Pallavicini [29] and [30]. We now fully specify our modeling setup.

5.2 Case outline

Let St denote the price of some stock or equity index and assume it evolves according

to a geometric Brownian motion dSt = rStdt + σStdWt where W is a standard

Brownian motion under the risk neutral measure. The risk-free interest rate r is

100 bps, the volatility σ is 25%, and the current price of the underlying is S0 = 100.

The European call option is in-the-money and has strike K = 80. The maturity T

of the deal is 3 years and, in the full case, we assume that the investor delta-hedges

the deal according to (5.3). The usual default-free funding-free and collateral-free

Black-Scholes price V0 of the call option deal is given by

Vt = StΦ(d1(t))−Ke−r(T−t)Φ(d2(t)), d1,2 =
ln(St/K) + (r ± σ2/2)(T − t)

σ
√
T − t

,

for t = 0 and is V0 = 28.9 with our choice of inputs. As usual, Φ is the cumulative

distribution function of the standard normal random variable. In the usual setting

the hedge would not be (5.3) but a classical delta-hedging strategy based on Φ(d1(t)).

We consider two simple discrete probability distributions of default. Both parties
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of the deal are considered default risky but can only default at year 1 or at year 2.

The localized joint default probabilities are provided in the matrices below. The rows

denote the default time of the investor, while the columns denote the default times

of the counterparty. For example, in matrix Dlow the event (τI = 2yr, τC = 1yr)

has a 3% probability and the first-to-default time is 1 year. Simultaneous defaults

are introduced and we determine the close-out amount by a random draw from a

uniform distribution. If the random number is above 0.5, we compute the close-out

as if the counterparty defaulted first, and vice versa.

For the first to default distribution, we have a low dependence between the

default risk of the counterparty and the default risk of the investor

Dlow =


1yr 2yr n.d.

1yr 0.01 0.01 0.03

2yr 0.03 0.01 0.05

n.d. 0.07 0.09 0.70

 , τK(Dlow) = 0.21, (5.5)

where n.d. means no default and τK denotes the rank correlation as measured by

Kendall’s tau. In the second case, we have a high dependence between the two

parties’ default risks,

Dhigh =


1yr 2yr n.d.

1yr 0.09 0.01 0.01

2yr 0.03 0.11 0.01

n.d. 0.01 0.03 0.70

 , τK(Dhigh) = 0.83. (5.6)

Note also that the distributions are skewed in the sense that the counterparty has a

higher default probability than the investor. The loss given default is 50% for both

the investor and the counterparty and the loss on any posted collateral is considered

the same. The collateral rates are chosen to be equal to the risk-free rate. We assume

that the collateral account is equal to the risk-free price of the deal at each margin

date, i.e. Ct = Vt. This is reasonable as the dealer and client will be able to agree

on this price, in contrast to V̄t due to asymmetric information. Also, choosing the
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collateral this way has the added advantage that the collateral account C works as

a control variate, reducing the variance of the least-squares Monte Carlo estimator

of the deal price.

5.3 Preliminary analysis without credit risk and with sym-

metric funding rates

To provide some ball-park figures on the effect of funding risk, we first look at the

case without default risk and without collateralization of the deal. We compare our

Monte Carlo approach to four alternative (simplified) approaches:

(i) Simple discounting of the risk-free Black-Scholes price with a symmetric fund-

ing rate f̂ = f+ = f−. We obtain

V
(i)
t = e−f̂T

(
StΦ(d1(t))−Ke−r(T−t)Φ(d2(t))

)
,

assuming a continuously compounded funding rate.

(ii) The Black-Scholes price where both discounting and the growth of the under-

lying happens at the symmetric funding rate

V
(ii)
t =

(
StΦ(g1(t))−Ke−f̂(T−t)Φ(g2(t))

)
, g1,2 =

ln(St/K) + (f̂ ± σ2/2)(T − t)
σ
√
T − t

.

(iii) Simple discounting of the forward price with the symmetric funding rate. This

approach can be justified by the fact that the price of a deep out-of-the-money

call option will approximately be equal to that of a forward contract.

V
(iii)
t = St −Ke−f̂(T−t).

(iv) We use the above FVA formula in Proposition 2.3.4 with some approxima-

tions. Since in a standard Black-Scholes setting Ft = −Ke−r(T−t)Φ(d2(t)), we
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Figure 5.1: Funding valuation adjustment of a long call position as a function of
symmetric funding spreads sf := f̂ − r with f̂ := f+ = f−. The adjustments are
computed under the assumption of no default risk nor collateralization.

compute

FVA(iv) = (r − f̂)

∫ T

0

E0

{
e−rs[Fs]

}
ds = (f̂ − r)Ke−rT

∫ T

0

E0 {Φ(d2(s))} ds.

We illustrate the four approaches in the case of an equity call option (long posi-

tion). Moreover, let the funding valuation adjustment in each case be defined by

FVA(i,ii,iii,iv) = V (i,ii,iii,iv) − V . Figure 5.1 plots the resulting funding valuation ad-

justment with credit and collateral switched off under the four different approaches

and under the full valuation approach. Recall that if the funding rate is equal to

the risk-free rate, the value of the call option collapses to the Black-Scholes price

and the funding valuation adjustment is zero.

Remark 5.3.1. (Current market practice for FVA). It is important to realize

in looking at Figure 5.1, that at the time of writing this thesis, for a simple call

option most market players would adopt a methodology like (iv) or (ii). Even if

borrowing or lending rates were different, most market players would average them

and apply a common rate to borrowing and lending, in order to avoid nonlinearities.

We will discuss the approximation error entailed in this symmetrization later when
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introducing the nonlinearity valuation adjustment. For the time being, we notice

that method (iv) produces the same results as the quicker method (ii), that simply

replaces the risk-free rate by the funding rate. In the simple case of a long position

in a call option without credit and collateral, and with symmetric borrowing and

lending rates, we can show that this method is sound since it stems directly from

our rigorous Formula (3.19). We also see that both methods (ii) and (iv) are quite

close to the full numerical method we adopt. Occasionally, the industry may adopt

methods such as (i), but this is not recommended, as we can see from the results.

Method (iii) is not accurate either, since it ignores optionality, and would not be

used by the industry in a case like this. Overall industry-like methods such as (ii)

or (iv) work well here, and there would be no need to implement the full machinery.

However, once collateral and credit risk are in the picture, and once nonlinearities

due to replacement close-out at default and asymmetry in borrowing and lending are

present, there is no way we can keep using something like (ii) or (iv) and we need

to implement the full methodology.

5.4 Complete valuation under credit risk, collateral, and

asymmetric funding

Let us now switch on credit risk and consider collateralized deals. The recursive

structure of our simulation method makes the pricing problem particularly demand-

ing in terms of computational time, so we are forced to choose a relatively small

number of sample paths. We use 1,000 sample paths but, fortunately, the presence

of collateral as a control variate mitigates large errors. In Tables 5.1-5.2 we con-

duct a ceteris paribus analysis of funding risk under counterparty credit risk and

collateralization. Specifically, we investigate how the value of a deal changes for

different values of the borrowing (lending) rate f+ (f−) while keeping the lending

(borrowing) rate fixed to 100 bps. When both funding rates are equal to 100 bps

the deal is funded at the risk-free rate and we are in the classical derivatives pricing

setting.
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Remark 5.4.1. (Potential arbitrage). Note that if f+ < f− arbitrage opportuni-

ties might be present, unless certain constraints are imposed on the funding policy of

the treasury. Such constraints may look unrealistic and may be debated from view-

point of arbitrageability, but since our point here is strictly to explore the impact

of asymmetries in the funding equations we will still apply our framework to a few

examples where f+ < f−.

Table 5.1 reports the impact of changing funding rates for a call position when

the posted collateral may not be used for funding the deal, i.e. rehypothecation is

not allowed. First, for the long position, increasing the lending rate f− while keeping

the borrowing rate f+ fixed causes an increase in the deal value. On the other hand,

an increase in the borrowing rate while fixing the lending rate, decreases the value

of the short position, i.e. the negative exposure of the investor increases. As a call

option is just a one-sided contract, increasing the borrowing rate for a long position

only has a minor impact. Recall that F is defined as the cash account needed as

part of the derivative replication strategy or, analogously, the cash account required

to fund the hedged derivative position. To hedge a long call, the investor goes short

in delta position of the underlying asset and invests excess cash in the treasury at

f−. Correspondingly, to hedge the short position, the investor enters a long delta

position in the stock and finances it by borrowing cash from the treasury at f+,

so changing the lending rate only has a small effect on the deal value. Finally, due

to the presence of collateral, we observe an almost similar price impact of funding

under the two different default distributions Dlow and Dhigh.

Assuming cash collateral, we consider the case of rehypothecation and allow

the investor and counterparty to use any posted collateral as a funding source. If

the collateral is posted to the investor, this means it effectively reduces his costs of

funding the delta-hedging strategy. As the payoff of the call is one-sided, the investor

only receives collateral when he holds a long position in the call option. However, as

he hedges this position by short-selling the underlying stock and lending the excess

cash proceeds, the collateral adds to his cash lending position and increases the

funding benefit of the deal. Analogously, if the investor has a short position, he
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Table 5.1: Price impact of funding with default risk and collater-
alization

Default risk, lowb Default risk, highc

Fundinga Long Short Long Short

Borrowing rate f+

100 bps 28.70 (0.15) -28.72 (0.15) 29.06 (0.21) -29.07 (0.21)
125 bps 28.53 (0.17) -29.37 (0.18) 28.91 (0.21) -29.70 (0.20)
150 bps 28.37 (0.18) -30.02 (0.22) 28.75 (0.22) -30.34 (0.20)
175 bps 28.21 (0.20) -30.69 (0.27) 28.60 (0.22) -30.99 (0.21)
200 bps 28.05 (0.21) -31.37 (0.31) 28.45 (0.22) -31.66 (0.25)

Lending rate f−

100 bps 28.70 (0.15) -28.72 (0.15) 29.06 (0.21) -29.07 (0.21)
125 bps 29.35 (0.18) -28.56 (0.17) 29.69 (0.20) -28.92 (0.21)
150 bps 30.01 (0.22) -28.40 (0.18) 30.34 (0.20) -28.76 (0.22)
175 bps 30.68 (0.27) -28.23 (0.20) 31.00 (0.21) -28.61 (0.22)
200 bps 31.37 (0.32) -28.07 (0.39) 31.67 (0.25) -28.46 (0.22)

Standard errors of the price estimates are given in parentheses.
a Ceteris paribus changes in one funding rate while keeping the other fixed
to 100 bps.
b Based on the joint default distribution Dlow with low dependence.
c Based on the joint default distribution Dhigh with high dependence.

posts collateral to the counterparty and a higher borrowing rate would increase his

costs of funding the collateral he has to post, as well as his delta-hedge position.

Table 5.2 reports the results for the short and long positions in the call option when

rehypothecation is allowed. Figures 5.2-5.3 plot the values of collateralized long and

short positions in the call option as a function of asymmetric funding spreads. In

addition, Figure 5.4 reports the corresponding FVA defined as the difference between

the full funding-inclusive deal price and the full deal price but symmetric funding

rates equal to the risk-free rate. Recall that the collateral rates are equal to the

risk-free rate, so the LVA collapses to zero in these examples.

This shows that funding asymmetry matters even under full collateralization

when there is no repo market for the underlying stock. In practice, however, the

dealer cannot hedge a long call by shorting a stock he does not own. Instead,

he would first borrow the stock in a repo transaction and then sell it in the spot

market. Similarly, to enter the long delta position needed to hedge a short call, the

dealer could finance the purchase by lending the stock in a reverse repo transaction.
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Figure 5.2: The value of a long call position for asymmetric funding spreads s−f =
f−− r, i.e. fixing f+ = r = 0.01 and varying f− ∈ (0.01, 0.0125, 0.015, 0.0175, 0.02).
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Figure 5.3: The value of a short call position for asymmetric funding spreads s+
f =

f+− r, i.e. fixing f− = r = 0.01 and varying f+ ∈ (0.01, 0.0125, 0.015, 0.0175, 0.02).



Chapter 5. Numerical Results 117

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
−4

−3

−2

−1

0

1

2

3

4

Funding spread

Fu
nd

in
g 

va
lu

at
io

n 
ad

ju
st

m
en

t

 

 
Long call (coll.)
Long call (coll. & rehyp.)
Short call (coll. & rehyp.)
Short call (coll.)

Figure 5.4: Funding valuation adjustment as a function of asymmetric funding
spreads. The adjustments are computed under the presence of default risk and
collateralization.
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Table 5.2: Price impact of funding with default risk, collateraliza-
tion, and rehypothecation

Default risk, lowb Default risk, highc

Fundinga Long Short Long Short

Borrowing rate f+

100 bps 28.70 (0.15) -28.73 (0.15) 29.07 (0.22) -29.08 (0.22)
125 bps 28.55 (0.17) -29.56 (0.19) 28.92 (0.22) -29.89 (0.20)
150 bps 28.39 (0.18) -30.40 (0.24) 28.77 (0.22) -30.72 (0.20)
175 bps 28.23 (0.20) -31.26 (0.30) 28.63 (0.22) -31.56 (0.23)
200 bps 28.07 (0.22) -32.14 (0.36) 28.48 (0.22) -32.43 (0.29)

Lending rate f−

100 bps 28.70 (0.15) -28.73 (0.15) 29.07 (0.22) -29.08 (0.22)
125 bps 29.53 (0.19) -28.57 (0.17) 29.07 (0.22) -28.93 (0.22)
150 bps 30.38 (0.24) -28.42 (0.18) 32.44 (0.29) -28.78 (0.22)
175 bps 31.25 (0.30) -28.26 (0.20) 36.19 (0.61) -28.64 (0.22)
200 bps 32.14 (0.37) -28.10 (0.22) 32.44 (0.29) -28.49 (0.22)

Standard errors of the price estimates are given in parentheses.
a Ceteris paribus changes in one funding rate while keeping the other fixed
to 100 bps.
b Based on the joint default distribution Dlow with low dependence.
c Based on the joint default distribution Dhigh with high dependence.

Effectively, the delta hedging position in the underlying stock would be funded at

the prevailing repo rate. Thus, once the delta hedge has to be executed through the

repo market, there is no funding valuation adjustment (meaning any dependence on

the funding rate f̃ drops out) given the deal is fully collateralized, but the underlying

asset still grows at the repo rate. More detailed discussions are carried out later in

Chapter 6. If there is no credit risk, this would leave us with the result of Piterbarg

[68]. However, if the deal is not fully collateralized or the collateral cannot be

rehypothecated, funding costs enter the picture even when there is a repo market

for the underlying stock.

5.5 Nonlinearity valuation adjustment

In this last section we introduce a nonlinearity valuation adjustment, and to stay

within the usual jargon of the business, we abbreviate it NVA. The NVA first in-

troduced by Brigo et al. in [23] is defined as the difference between the true price
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V̄ and a version of V̄ where nonlinearities have been approximated away through

blunt symmetrization of rates and possibly a change in the close-out convention

from a replacement close-out to a risk-free close-out. This entails a degree of double

counting (both positive and negative interest). In some situations the positive and

negative double counting will offset each other, but in other cases this may not hap-

pen. Moreover, as pointed out briefly in Chapter 1 section 1.2.4 (for a more detailed

analysis, we refer the reader to Brigo et al. [12]), a further source of double counting

might be neglecting the first-to-default time in the bilateral CVA/DVA valuation,

which is done in a number of industry approximations.

Let V̂ be the resulting price of our full pricing algorithm when we replace both f+

and f− by f̂ := (f+ +f−)/2. We adopt both a risk-free close-out and a replacement

close-out at default, respectively, for this approximated price V̂ in our valuation

framework. A further simplification in V̂ could be to neglect the first-to-default

check in the close-out. We have the following definition

Definition 5.5.1. (Nonlinearity valuation adjustment, NVA) The nonlinear-

ity valuation adjustment (NVA) is defined as

NVAt := V̄t − V̂t,

where V̄ denotes the full nonlinear deal value while V̂ denotes an approximate lin-

earized price of the deal.

As an illustration, we revisit the above example of an equity call option and

analyze the NVA in a number of cases. The results are reported in Figures 5.5 and

5.6.

In both figures, we compare NVA under a risk-free close-out and under a replace-

ment close-out. We can see that, depending on the direction of the symmetrization,

NVA may be either positive or negative. As the funding spread increases, NVA

grows in absolute value. In addition, adopting the replacement close-out amplifies

the presence of double counting. Moreover, the NVA accounts for up to 8% of the

full deal price V̄ depending on the funding spread - a relevant figure in a valuation

context.
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Figure 5.5: Nonlinearity valuation adjustment (in percentage of V̂ ) for different
funding spreads s+

f = f+ − f− ∈ (0, 0.005, 0.01, 0.015, 0.02) and fixed f̂ = (f+ +
f−)/2 = 0.01.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

2

4

6

8

10

12

14

16

Funding spread

N
on

lin
ea

r v
al

ua
tio

n 
ad

ju
st

m
en

t

 

 
Risk free close−out
Replacement close−out

Figure 5.6: Nonlinearity valuation adjustment (in percentage of V̂ ) for different
funding spreads s−f = f− − f+ ∈ (0, 0.005, 0.01, 0.015, 0.02) and fixed f̂ = (f+ +
f−)/2 = 0.01.
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Table5.3:%NVAwithdefaultrisk,collateralizationandrehypothecation

Riskfree Replacement

FundingRates %NVA %NVA %NVA %NVA %NVA %NVA

sf f̂
0bps 100bps 0% 0% 0% 0% 0% 0%
25bps 112.5bps 1.65% 1.62% 1.67% 1.79% 1.75% 1.81%
50bps 125bps 3.31% 3.20% 3.39% 3.58% 3.46% 3.68%
75bps 137.5bps 5.02% 4.78% 5.19% 5.39% 5.12% 5.61%
100bps 150bps 6.70% 6.28% 7.01% 7.24% 6.75% 7.62%

i.Fundingspreadsf=f −f
+.

ii.ThepricesofthecalloptionarebasedonthejointdefaultdistributionDhighwithhigh
dependence.

Table5.3reports(a)%NVAdenotingthefractionoftheapproximateddealprice

V̂explainedbyNVA,(b)%NVA denotingthefractionofthefulldealpriceV̄,and

(c)%NVAdenotingthefractionofthedealpricewithsymmetricfundingratesequal

totherisk-freeraterexplainedbyNVA.Noticethatforthosecaseswhereweadopt

arisk-freeclose-outatdefault,theresultsprimarilyhighlightthedouble-counting

errorduetosymmetrizationofborrowingandlendingrates.

Weshouldfinallypointoutthatclose-outnonlinearitiesplayalimitedrolehere,

duetotheabsenceofwrongwayrisk.Ananalysisofclose-outnonlinearityunder

wrongwayriskisunderdevelopment.
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Chapter 6

Extension and Conclusion

In this chapter, we describe how our model can be extended to address other market

realities. We show with a few adjustments that the consistent valuation framework

can be used to model trades where the trader implements a hedging strategy via the

repo-market, and when the trade is cleared via a central clearing house or governed

by a bilateral Credit Support Annex with variation and initial margins. Moreover,

we explain how we can include the margin period risk into the model by listing all

possible cash flows upon an early default event. The conclusion of the thesis is given

at the end of the chapter.

6.1 Repo-Market

So far, we have more or less silently made the assumption that the dealer hedges

the derivatives position by trading in the spot market of the underlying asset(s).

Nonetheless, to be in business, the dealer might decide or even be forced to imple-

ment a hedging strategy that involves trading the underlying assets through stock-

lending or repo markets or by entering other derivatives positions, e.g., (synthetic)

forward contracts on the underlying risk factors. As a result, the dealer may incur

additional costs or revenues which we obviously need to include when pricing the

deal.
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6.1.1 Incorporating the hedging costs

To address this issue, we introduce two general adapted processes: h−t (T ) is the

rate of hedging revenue for lending risky assets from time t to T , while h+
t (T ) is

the hedging cost rate for asset borrowing. The corresponding effective hedging rate

h̃t(T ) is defined as

h̃t(T ) := h−t (T )1{Ht<0} + h+
t (T )1{Ht>0} .

For example, if the dealer hedges in the stock-lending or repo market, we can apply

the quoted repo rate as the hedging rate.

Another example is hedging by trading in collateralized markets, i.e. markets

where only collateralized financial contracts are quoted. The money market falls in

this category and contracts traded in this market are collateralized on a daily basis

at the over-night rate. So, if the hedging strategy implies trading directly in the

money market, the effective hedging cost is simply given by the collateral rate itself.

If we assume that the hedging strategy is implemented on the same time-grid

as the funding procedure of the deal, we can sum both the funding and hedging

costs in a single term. This leads us to redefine ϕ in (2.17) so it explicitly takes the

dependence on the hedging strategy into account:

ϕ(t, T ∧ τ ;F,H) :=
m−1∑
j=1

1{t6tj<(T∧τ)}D(t, tj)Ftj

(
1−

Ptj(tj+1)

P f̃
tj(tj+1)

)
(6.1)

−
m−1∑
j=1

1{t6tj<(T∧τ)}D(t, tj)Htj

(
Ptj(tj+1)

P f̃
tj(tj+1)

−
Ptj(tj+1)

P h̃
tj(tj+1)

)
,

where the zero-coupon (hedging) bond is defined as P h̃
t (T ) := [1 + (T − t)h̃t(T )]−1.

From now on, we assume that rehypothecation is allowed (i.e. Ft = V̄t −Ht − Ct).

For the case when rehypothecation is forbidden, analogous results can be obtained.
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If we take the continuous-time limit, we obtain

ϕ(t, T ∧ τ ;F,H) =

∫ T∧τ

t

(rs − f̃s)
[
V̄s(C,F )− Cs

]
D(t, s)ds (6.2)

−
∫ T∧τ

t

(rs − h̃s)HsD(t, s)ds ,

which assumes that funding and hedging of the deal takes place in continuous time.

Summing up all the cash-flow streams of the deal: the discounted contractual

cash-flows Π, the on-default cash-flow θ, the collateral margining cash-flows γ and

the new funding cash-flows including the costs and revenues from the repo market

ϕ, we have

V̄t =

∫ T

t

Et
[ (

1{s<τ}Π(s, s+ ds) + 1{τ∈ds}θs(C, ε)
)
D(t, s)

]
+

∫ T

t

Et
[

1{s<τ}(f̃s − c̃s)CsD(t, s)
]

ds

+

∫ T

t

Et
[

1{s<τ}

(
(rs − f̃s)V̄s − (rs − h̃s)Hs

)
D(t, s)

]
ds. (6.3)

A simple trading example

We use a trading example in the report [20] as a justification of the above cash-flows.

Suppose that a trader buys a call option on an equity asset St with strike K at time

t < T :

1. The trader borrows V̄t amount of cash from the treasury and buys the option.

2. He receives cash Ct from the counterparty as collateral, which is then given to

the treasury.

In order to hedge the deal, he needs to hold a short position in the underlying asset,

which requires him to repo-borrow the stock on the repo-market:

3. He borrows Ht = ∆tSt cash from the treasury as the guarantee for the repo-

borrowing on the repo-market.

4. He then borrows ∆t units of stock and posts cash Ht as guarantee.
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5. The trader sells the stock for Ht and gives the amount back to the treasury.

At time t, the trader owes to the treasury the cash amount V̄t − Ct. Denote the

underlying stock price at t + dt by St+dt. Then at time t + dt the trader needs to

return the borrowed stock on the repo-market and engages in the following actions:

6. The trader borrows cash ∆tSt+dt from the treasury.

7. He buys ∆t units of stock and returns to the repo-market to close the position.

8. He receives Ht(1 + h̃tdt) amount of cash from the deposit.

9. He then pays ∆tSt+dt cash back to the treasury.

The net value from the repo position is then given by

Ht(1 + h̃tdt)−∆tSt+dt = −∆tdSt + h̃tHtdt. (6.4)

10. The trader closes the derivative position, and receives cash V̄t+dt, which is

given back to the treasury.

The trader needs to pay the collateral with interest back to the counterparty. To do

so,

11. He borrows Ct(1 + c̃tdt) amount of cash from treasury.

12. He pays the collateral amount with interest back to the counterparty.

The trader’s debt to the treasury at time t+ dt is then given by

−V̄t+dt + (V̄t − Ct)(1 + f̃tdt) + Ct(1 + c̃tdt) = −dV̄t + f̃tV̄tdt+ (c̃t − f̃t)Ctdt. (6.5)

The total amount of cash flows is (combining (6.4) and (6.5))

dV̄t − f̃tV̄tdt− (c̃t − f̃t)Ctdt−∆tdSt + h̃tHtdt.

Assuming that the contract pays a dividend during the time interval [t, t+dt] denoted

as dD, and we have Et
[

dV̄t
]

= rtV̄tdt − dD. No-arbitrage risk-neutral pricing



6.1 Repo-Market 126

requires the price of the above cash-flows to be equal to zero, so we write

0 = Et
[

dV̄t − f̃tV̄tdt− (c̃t − f̃t)Ctdt−∆tdSt + h̃tHtdt
]

= (rt − f̃t)V̄tdt− (c̃t − f̃t)Ctdt−∆t(rt − h̃t)Htdt− dD

= (rt − f̃t)Ftdt+ (rt − c̃t)Ctdt+ (h̃t − f̃t)Htdt− dD.

Therefore, we have

dD = (rt − f̃t)Ftdt+ (rt − c̃t)Ctdt+ (h̃t − f̃t)Htdt

= (rt − f̃t)V̄t + (f̃t − c̃t)Ctdt− (rt − h̃t)Htdt,

which coincides with the cash flows in (6.3) that come from the collateral margining,

funding and hedging procedures.

6.1.2 Continuous time formulation

If we assume all needed technical conditions to be satisfied as in Section 2.3.2, we

can switch from the filtration G to the default-free market filtration F , and rewrite

equation (6.3) as follows:

V̄t = 1{τ>t}

∫ T

t

Et[ (Π(s, s+ ds) + λsθs(C, ε)ds)D(t, s; r + λ)|F ]

+ 1{τ>t}

∫ T

t

Et
[

(f̃s − c̃s)CsD(t, s; r + λ)|F
]

ds (6.6)

+ 1{τ>t}

∫ T

t

Et
[ (

(rs − f̃s)V̄s − (rs − h̃s)Hs

)
D(t, s; r + λ)|F

]
ds.

We can now repeat the calculations in Chapter 3 to obtain the FBSDE and

the semi-linear PDE for the continuous-time consistent pricing problem including

hedging costs.

We start by introducing the following stochastic process,

Xt :=

∫ t

0

(
πs + λsθs(C, ε) + (f̃s − c̃s)Cs + (rs − f̃s)V̄s − (rs − h̃s)Hs

)
D(0, s; r + λ)ds.
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Now we multiply by D(0, t; r + λ) and then add Xt to both sides of (6.6):

V̄tD(0, t; r + λ) +Xt = Et[XT |F ] . (6.7)

Define Mt = Et[XT |F ], and differentiate both sides of (6.7) with respect to t

yielding

− (rt + λt)V̄tdt+ dV̄t +
[
πt + λtθt(C, ε) + (f̃t− c̃t)Ct + (rt− f̃t)V̄t− (rt− h̃t)Ht

]
dt

= dMt/D(0, t; r + λ).

Observe that
∫ t

0
dMt/D(0, t; r+λ) is a local Ft-martingale. Applying the martingale

representation theorem, we can write
∫ t

0
dMt/D(0, t; r+λ) =

∫ t
0
ZudWu for Zu being

a σ(W )-predictable process.

Define a stochastic process Yt = V̄t. Suppose that there exists a deterministic

linear function H such that Ht = H(t, St, Yt, Zt). Moreover, we postulate that the

close-out amount is taken to be the price of the deal, i.e. εt = V̄t, and also that

the collateral account is a function of the adjusted deal price, so that the on-default

cash-flow θt(C, ε) is a function of the derivative price V̄t, denoted as θ(Yt) for some

measurable function θ. The (coupled) FBSDE for the consistent pricing equation

including funding and hedging costs is then given by

dSt = µ(t, St, Yt)dt+ σ(t, St, Yt)dWt, S0 = s0,

dYt = −Bh̃(t, St, Yt, Zt)dt+ ZtdWt, YT = 0, (6.8)

Bh̃(t, St, Yt, Zt) = πt + λtθ(Yt)− (f̃t + λt)Yt + (f̃t − c̃t)Ct − (rt − h̃t)H(t, St, Yt, Zt),

with s0 being the initial underlying stock price and Bh̃(t, St, Yt, Zt) being the driver

of the FBSDE.

Assume that Assumption 3 is in force and all the rates f̃ , c̃, h̃ and r are bounded.

Following analogous arguments to the proof of Theorem 3.1.5, there exists a unique

solution to the above FBSDE (6.8).

We now focus on the decoupled case. We postulate that, as in section 3.2.1, f̃t =
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f(t, St, Yt), c̃t = c(t, St, Yt), h̃t = h(t, St, Yt), λt = λ(t, St, Yt) and rt = r(t, St, Yt),

where functions f, c, h, λ, r are deterministic and bounded. In the decoupled case,

we have µ(t, St, Yt, Zt) = µ(t, St) and σ(t, St, Yt, Zt) = σ(t, St) for the forward com-

ponent. If we further assume that the price process V̄ has sufficient smoothness,

as required in (3.8), we can apply Itô’s formula to V̄t, and compare the drift and

diffusion terms with the BSDE in (6.8). We obtain the following for τ > t (For the

ease of notation, we denote Ht = H(t, s, ν(t, s), Zt) in the following),

− f̃tV̄t − λtV̄t + (f̃t − c̃t)Ct − (rt − h̃t)Ht + πt + λtθt(V̄t) +
∂V̄

∂t
+ µ(t, St)

∂V̄

∂S

+
1

2
σ(t, St)

2∂
2V̄

∂S2
= 0, Zt = σ(t, St)

∂V̄

∂S
.

(6.9)

Hence, the adjusted deal price with hedging costs V̄ satisfies the following semi-linear

PDE for all (t, s) ∈ [0, T ]× R+:

∂tν(t, s) + µ(t, s)∂sν(t, s) +
1

2
σ(t, s)2∂2

sν(t, s) +Bh̃ (t, s, ν(t, s), (∂sνσ)(t, s)) = 0,

ν(T, s) = 0,

(6.10)

with Bh̃ (t, s, ν(t, s), (∂sνσ)(t, s)) being the driver of the FBSDE defined in (6.8).

6.1.3 Invariance theorem

We now assume that the underlying St is a tradable asset and follows the Black-

Scholes type dynamic. According to standard no-arbitrage theory, the drift of the

underlying asset is the risk-free rate under the risk-neutral probability measure.

Substituting the dynamics of the underlying asset (3.17) to the PDE (6.10), we

have

∂tν(t, s) + rts∂sν(t, s) +
1

2
σ(t)2s2∂2

sν(t, s) +
(
f̃t − λt

)
ν(t, s) +

(
f̃t − c̃t

)
Ct

−
(
rt − h̃t

)
H(t, s, ν(t, s), Zt) + πt + λtθ(ν(t, s)) = 0, Zt = σ(t)s∂sν(t, s).
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If we choose H(t, s, ν(t, s), Zt) = ∂sν(t, s)s = Zt
σ(t)

and assume that the investor

adopts delta-hedging, equation (6.10) collapses to

(
∂t − f̃t − λt + Lh̃t

)
ν(t, s) +

(
f̃t − c̃t

)
Ct + λtθt + πt = 0,

ν(T, s) = 0,
(6.11)

where the generator is defined as

Lh̃t ν(t, s) := h̃tHt + L2
tν(t, s) := h̃tHt +

1

2
σ(t, s)2∂

2ν

∂s2
.

The above semi-linear PDE is the pre-default (τ > t) PDE for the consistent pricing

problem including hedging costs.

Again, we could solve this equation numerically, but we choose to apply the

reasoning of Section 3.2.3 to reach a similar result as Theorem 3.2.5:

Corollary 6.1.1 (Continuous-time Solution with Hedging Costs). Suppose

that collateral rehypothecation is allowed and that delta-hedging is implemented by

trading on a derivative market where the effective hedging rate is h̃. The consistent

valuation equation in continuous time is then given by

V̄t(C;F ) =

∫ T

t

Eh̃t
[(
πs + λsθs + (f̃s − c̃s)Cs

)
D(t, s; f̃ + λ) | F

]
ds, (6.12)

where the expectation is taken under a pricing measure Qh̃ for which the underlying

risk factors grow at the rate h̃ if no dividend is paid.

Proof. Assume that ν(t, St) is a solution to the PDE (6.11), with boundary condition

ν(T, ST ) = 0, where the process St satisfies the following SDE

dSt = h̃tStdt+ σtStdW
h̃
t ,

with W h̃
t being the Brownian motion under the pricing measure Qh̃.

For t < s ≤ T , we define a process

Ys =

∫ s

t

F (u, Su, Cu, V̄u)D(t, u; f̃ + λ)du+D(t, s; f̃ + λ)ν(s, Ss),
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where

F (u, Su, Cu, V̄u) = (f̃u − c̃u)Cu + λuθu + πu.

Differentiating Ys, we get

dYs = dD(t, s; f̃ + λ)ν(s, Ss) +D(t, s; f̃ + λ)dν(s, Ss) + dD(t, s; f̃ + λ)dν(s, Ss)

+ d

(∫ s

t

F (u, Su, Cu, V̄u)D(t, u; f̃ + λ)du

)
= D(t, s; f̃ + λ)

(
∂sνs + h̃sSs

∂νs
∂Ss

+
1

2
σ2
sS

2
s

∂2νs
∂S2

s

− (f̃s + λs)νs + F (s, Ss, Cs, V̄s)

)
ds

+D(t, s; f̃ + λ)σsSs
∂νs
∂Ss

dW h̃
s .

Since νs is a solution to the PDE, the ds term in the above equation cancels out,

leaving

YT = Yt +

∫ T

t

D(t, s; f̃ + λ)σsSs
∂νs
∂Ss

dW h̃
s .

Therefore, the process Y is a (Qh̃,F)-local martingale. Taking the conditional ex-

pectation with respect to filtration Ft, we have

Eh̃t [YT | F ] = Eh̃t [Yt | F ] = ν(t, St).

So the solution to the PDE is

V̄t = ν(t, St)

= Eh̃t
[∫ T

t

F (s, Ss, Cs, V̄s)D(t, s; f̃ + λ)ds+D(t, T ; f̃ + λ)ν(T, ST ) | F
]

= Eh̃t
[∫ T

t

(
πs + λsθs + (f̃s − c̃s)Cs

)
D(t, s; f̃ + λ)ds | F

]
.

Analogous to the case of hedging in the spot market, we incorporate the addi-

tional hedging costs by altering the drift of the price processes of the underlying

risk factors. Additionally, by handling hedging costs via a change of measure, we

observe that the explicit dependence on Ht disappears from the pricing equation.
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Moreover, the dependence on the risk-free rate rt dropped out from the valuation

equation as we found for the case without assets lending/borrowing.

Remark 6.1.1. (Invariance of the valuation equation with respect to the

short rate rt). There is no dependence on a risk-free rate rt in equations (6.11)

or (6.12) for valuation under credit, collateral, funding and hedging costs. The

valuation is completely governed by market rates and is invariant to rt.

6.2 CCP cleared or bilateral CSA trades with variation and

initial margins

The growing attention on counterparty credit risk resulted in an increased number of

operations moved from a bilateral OTC agreement under a Credit Support Annex

(CSA) to a cleared trade through central clearing houses (CCPs), while most of

the remaining contracts are traded under collateralization regulated by a CSA with

variation and intial margins. The Tabb group estimated a 2 USD trillion liquidity

impact lead by the full onset of CCPs. A CCP acting as a market participant

interposes itself between two parties, takes the risk of the counterparty default and

ensures the exchange of payments even in case of default. Brigo and Pallavicini in

[30], for the first time, developed a comprehensive approach for pricing under CCP

clearing, including variation and initial margins, gap credit risk and collateralization.

In this section we explain, based on the study in [30], how the consistent pricing

framework we set up in the previous chapters can be tailored to address trading

through a CCP or via a bilateral CSA with initial and variation margins.

6.2.1 Variation and initial margins

When a client (“C”) enters into a CCP cleared trade, he will trade with his clearing

member denoted in the following as “I”. There will be no direct obligation between

each client. If the mark-to-market moves against one of the parties, this party will

post collateral margins called variation margin (VM) which protects the clearing

house against credit and market risk. The VM will be passed to the other party by
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the CCP and can be rehypothecated. The VM provider will receive interest on the

posted cash collateral as is done in uncleared bilateral trades under CSA. Addition-

ally, an initial margin (IM) is posted as needed to protect the CCP over additional

risks, for example gap risk, wrong way risk, deteriorating quality of collateral and

so forth, and it will be held in a segregated account by the CCP during the life of

the trade. So the IM is a source of funding costs but does not generate a funding

benefit.

In the case of bilateral CSA trades, when initial margins are posted to cover for

additional risks which are not protected by variation margins, such as gap risk, the

approach is similar to that of CCPs.

We now modify the pricing framework set up previously to address variation

and initial margining. The total amount of collateral assets Ct exchanged by the

margining procedure of a derivative trade with variation and initial margins at time

0 ≤ t < T (taking the point of view of the investor/clearing member) is defined as

Ct := Mt +NC
t +N I

t , NC
t ≥ 0, N I

t ≤ 0, (6.13)

where we denote the variation margin account as an adapted process Mt, the initial

margin account posted by the counterparty as an adapted process NC
t and the initial

margin account posted by the investor as an adapted process N I
t . Note that the

initial margins are posted without netting to cover for the gap risk. However, when

a derivative trade is cleared by a CCP, only the counterparty (or client) posts initial

margin, the clearing member “I” does not, and we can set N I
t = 0 in this case.

As in the classical theory, a derivative price can be perfectly replicated by a cash

position F and a risky component of the hedging portfolio H, namely,

V̄t = Ft +Ht. (6.14)

When rehypothecation is allowed, the variation margin can be used by the collateral

taker as a source of funding to reduce the costs of funding the deal. In such case,
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we replicate the derivative price by means of the following

V̄t = Ft +Ht +Mt. (6.15)

We assume that the variation margin can always be rehypothecated. The results for

the case when rehypothecation is forbidden can be analogously obtained.

6.2.2 Funding costs under CCP clearing and bilateral CSA

In the case of CCP clearing or bilateral CSA with variation and initial margins,

additional cash accounts are needed to implement the collateral margining proce-

dures. The cash flows for the funding of the segregated initial margins, NC
s ≥ 0

posted by the counterparty and N I
s ≤ 0 posted by the investor, should be taken into

account when we calculate the funding cash flows. If a party is posting the initial

margin, he is facing extra costs to fund this collateral. On the contrary, the party

that receives the initial margin may book a funding benefit, if he is allowed to invest

this collateral.

Recall that when the investor implements its hedging strategy via repo market,

the funding cash-flow ϕ is defined as (6.2). If we add the additional funding costs

for the initial margins to (6.2), the funding cash-flow can be redefined as

ϕ(t, T ∧ τ) :=

∫ T∧τ

t

(rs − f̃s)FsD(t, s)ds−
∫ T∧τ

t

(f̃s − h̃s)HsD(t, s)ds (6.16)

+

∫ T∧τ

t

(fN,Cs − rs)NC
s D(t, s)ds+

∫ T∧τ

t

(fN,Is − rs)N I
sD(t, s)ds ,

where we assume that funding and hedging procedures take place in continuous

time. We denote processes fN,C and fN,I for the funding rates associated with the

initial margin accounts for the counterparty and the investor respectively. Notice

that the funding rates for the initial margin accounts fN,C and fN,I , in principle,

can be different from the funding rate f̃ , because the initial margins are not in the

funding netting set of the derivative. Moreover, if the initial margin funding rate

fN,I is greater than the risk-free rate rt, the funding adjustment term will act as a
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penalty for the investor. In the case when the investment of the received IM is not

allowed, the initial margin funding rate fN,C is equal to the risk-free rate rt, and

there will be no adjustment to the derivative price.

We now replace the funding cash-flow in the pricing equation (6.3) with (6.16)

to find that

V̄t =

∫ T

t

Et
[ (

1{s<τ}Π(s, s+ ds) + 1{τ∈ds}θs(C, ε)
)
D(t, s)

]
+

∫ T

t

Et
[

1{s<τ}(f̃s − c̃s)MsD(t, s)
]

ds

+

∫ T

t

Et
[

1{s<τ}

(
(rs − f̃s)V̄s − (rs − h̃s)Hs

)
D(t, s)

]
ds

+

∫ T

t

Et
[
1{s<τ}

(
(fN,Cs − c̃s)NC

s + (fN,Is − c̃s)N I
s

)
D(t, s)

]
ds. (6.17)

Again, assuming that all needed technical conditions are satisfied as in Section

2.3.2, we switch from the filtration G to the default-free market filtration F , and

rewrite the above equation (6.17) as

V̄t = 1{τ>t}

∫ T

t

Et[ (Π(s, s+ ds) + λsθs(C, ε)ds)D(t, s; r + λ)|F ]

+ 1{τ>t}

∫ T

t

Et
[

(f̃s − c̃s)MsD(t, s; r + λ)|F
]

ds (6.18)

+ 1{τ>t}

∫ T

t

Et
[ (

(rs − f̃s)V̄s − (rs − h̃s)Hs

)
D(t, s; r + λ)|F

]
ds

+ 1{τ>t}

∫ T

t

Et
[ (

(fN,Cs − c̃s)NC
s + (fN,Is − c̃s)N I

s

)
D(t, s; r + λ)|F

]
ds.

The above pricing equation takes the form of an FBSDE.



Chapter 6. Extension and Conclusion 135

6.2.3 FBSDE formulation

In the following, we repeat the calculations in Chapter 3 to obtain the FBSDE of the

pricing problem including VM and IM. Firstly, we introduce the following process

Xt :=

∫ t

0

(
πs + λsθs(C, ε) + (f̃s − c̃s)Ms + (rs − f̃s)V̄s − (rs − h̃s)Hs

+ (fN,Cs − c̃s)NC
s + (fN,Is − c̃s)N I

s

)
D(0, s; r + λ)ds.

We now construct an F -martingale by multiplying D(0, t; r + λ) and then adding

Xt to both sides of (6.18):

V̄tD(0, t; r + λ) +Xt = Et[XT |F ] . (6.19)

We defineMt = Et[XT |F ], and then differentiate both sides of (6.19) with respect

to t,

− (rt + λt)V̄tdt+ dV̄t +
[
πt + λtθt(C, ε) + (f̃t − c̃t)Mt + (rt − f̃t)V̄t − (rt − h̃t)Ht

+ (fN,Ct − c̃t)NC
t + (fN,It − c̃t)N I

t

]
dt = dMt/D(0, t; r + λ).

We see that the right hand-side
∫ t

0
dMt/D(0, t; r + λ) is a local Ft-martingale.

Assuming it is adapted to the Brownian filtration σ(W ), we can apply the martingale

representation theorem, and write
∫ t

0
dMt/D(0, t; r + λ) =

∫ t
0
ZudWu for Zu being

a σ(W )-predictable process.

Define a stochastic process Yt = V̄t. Suppose that there exists a deterministic

linear function H such that Ht = H(t, St, Yt, Zt). Moreover, we postulate that the

on-default cash-flow θ(C, ε) is a function of the derivative price V̄t, i.e. θ(C, ε) =

θ(t, Yt) for some measurable function θ. (In the following, we write θt instead of

θ(t, Yt) for the sake of notation simplification.) The funding risk inclusive valuation

equation including variation and initial margins can be expressed in terms of the
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following (coupled) FBSDE:

dSt =µ(t, St, Yt)dt+ σ(t, St, Yt)dWt, S0 = s0,

dYt =−
[
πt + λtθt −

(
f̃t + λt

)
Yt +

(
f̃t − c̃t

)
Mt −

(
rt − h̃t

)
H(t, St, Yt, Zt)

+
(
fN,Ct − c̃t

)
NC
t +

(
fN,It − c̃t

)
N I
t

]
dt+ ZtdWt, YT = 0,

(6.20)

where s0 is the initial underlying stock price.

Suppose that Assumption 3 is satisfied and all the rates f̃ , c̃, h̃, r, fN,C and

fN,I are bounded. In the case of funding inclusive valuation with variation and

initial margins we can prove the existence of a unique solution to the FBSDE (6.20)

analogously to the proof of Theorem 3.1.5.

6.2.4 Semi-linear PDE

In the following, we consider the decoupled case, where the forward component is

given as (t < u)

dSu = µ(u, Su)du+ σ(u, Su)dWu, St = s.

Assume that f̃t = f(t, St, Yt), c̃t = c(t, St, Yt), h̃t = h(t, St, Yt), λt = λ(t, St, Yt),

rt = r(t, St, Yt), f
N,C = fC(t, St, Yt) and fN,I = f I(t, St, Yt), where the functions

f, c, h, λ, r, fC and f I are all deterministic and bounded. Moreover, we postulate

that the price process V̄ satisfy the smoothness assumption (3.8). Applying Itô’s

formula to V̄t and comparing the drift and diffusion terms with the FBSDE (6.20),

we obtain the following relations for τ > t (For ease of notation, we denote Ht =

H(t, s, ν(t, s), Zt)),

−
(
f̃t + λt

)
V̄t +

(
f̃t − c̃t

)
Mt −

(
rt − h̃t

)
Ht +

(
fN,Ct − c̃t

)
NC
t +

(
fN,It − c̃t

)
N I
t

+ πt + λtθt +
∂V̄

∂t
+ µ(t, St)

∂V̄

∂S
+

1

2
σ(t, St)

2∂
2V̄

∂S2
= 0, Zt = σ(t, St)

∂V̄

∂S
.

(6.21)
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In other words, the adjusted deal price with variation and initial margins V̄ satisfies

the following semi-linear PDE for all (t, s) ∈ [0, T ]× R+:

∂tν(t, s) + µ(t, s)∂sν(t, s) +
1

2
σ(t, s)2∂2

sν(t, s) + πt + λtθt −
(
f̃t + λt

)
ν(t, s)

+
(
f̃t − c̃t

)
Mt −

(
rt − h̃t

)
Ht +

(
fN,Ct − c̃t

)
NC
t +

(
fN,It − c̃t

)
N I
t = 0,

ν(T, s) = 0.

(6.22)

Now assume that the underlying Su is a tradable asset and follows the Black-

Scholes dynamic for (t < u):

dSu = ruSudu+ σuSudWu, St = s,

and also that the investor adopts delta-hedging, i.e. Ht = ∂sν(t, s)s = Zt
σt

. We can

then rewrite (6.22) as follows,

∂tν(t, s) + h̃tHt +
1

2
σ(t)2s2∂2

sν(t, s)−
(
f̃t + λt

)
ν(t, s) +

(
f̃t − c̃t

)
Mt

+
(
fN,Ct − c̃t

)
NC
t +

(
fN,It − c̃t

)
N I
t = 0,

ν(T, s) = 0.

(6.23)

The above semi-linear PDE is the pre-default (τ > t) PDE for the pricing problem

in the case of trading via CCP clearing or bilateral CSA with variation and initial

margins.

Again, we notice that the risk-free rate rt disappears in (6.23). The PDE is

completely governed by market observable quantities as in the previous set-ups.

Applying similar reasoning as before, we obtain the following result.

Corollary 6.2.1 (Continuous-time Solution for CCP cleared or bilateral

CSA trades with variation and initial margins). Assuming that rehypothe-

cation is allowed and delta-hedging is used, we can solve the pricing problem in

continuous time when trading via CCP clearing or bilateral CSA with variation and
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initial margins. We have

V̄t(C;F ) =

∫ T

t

Eh̃t
[(
πs + λsθs +

(
f̃s − c̃s

)
Ms +

(
fN,Ct − c̃t

)
NC
t +

(
fN,It − c̃t

)
N I
t

)
D(t, s; f̃ + λ) | F

]
ds,

(6.24)

where the expectation is taken under a pricing measure Qh̃ where the underlying risk

factors grow at the rate h̃ if no dividend is paid.

We will not go into detail of the proof here as the reasoning is analogous to that

of Corollary 6.1.1.

We see that there is no dependence on a risk-free rate rt in equations (6.24) either.

In other words, the final adjusted price is invariant to the theoretical risk-free rate

rt.

6.3 Margin period of risk

In the case of early default, the default procedure may take several days to be

completed. The time elapsed between the default event and the completion of the

close-out procedure is called the margin period of risk. During this time period,

the mark-to-market of the derivative may change considerably, resulting in a large

mismatch between the posted collateral and the exposure. Moreover, the surviving

party may default during this period, which should also be considered when we

compute the on-default cash-flow.

In this section, we continue our discussion for the CCP cleared or bilateral CSA

trades following the analysis carried out in Brigo and Pallavicini [30] and discuss

the cash flows occurring upon an early default event taking into consideration the

margin period of risk.

6.3.1 On-default cash-flow

The case of trades where there was a bilateral CSA was discussed in Section 2.1.2.

Here, we extend the study and consider also the initial margins that are posted
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to cover the additional risks. In the case of CCP cleared trades, if the client “C”

defaults first, the clearing member “I” will take responsibility for the position as in

a bilateral trade and evaluate the close-out amount.

Assume that the default procedure takes time δ to be completed. The default

procedure can be considered as though the surviving party at the default time τ

enters a deal with a cash-flow θ and maturity τ + δ. This cash-flow will depend on

the close-out amount ετ+δ (with consideration of the margin period risk) and the

value of (the pre-default) variation and initial margin accounts denoted respectively

as Mτ− , NC
τ− and N I

τ− .

Applying the results in Corollary 6.2.1, the adjusted price of such a deal denoted

as ϑ at time τ can be expressed as (we take the conditional expectations under the

filtration Gτ , using the same technique as in Section 2.3.2),

ϑτ := Eh̃τ
[
θτ+δ

(
ετ+δ,Mτ− , N

C
τ− , N

I
τ−

)
D(τ, τ + δ; f̃S)

]
, (6.25)

where the expectation is taken under the probability measure Qh̃, and f̃S is the

effective funding rate of the surviving party that is funding such a deal.

The above pricing equation depends on the funding rates of both parties. How-

ever, practically, one cannot know the other party’s liquidity policy. [30] approxi-

mates the discount factors by assuming that the payment takes place at the default

time τ without modelling the funding rates of both parties and points out that the

effects of this approximation are second order compared to the uncertainties of the

recovery rates and close-out values. Therefore, instead of (6.25) we write

ϑτ := Eh̃τ
[
θτ+δ

(
ετ+δ,Mτ− , N

C
τ− , N

I
τ−

)]
. (6.26)

Bare in mind that in the case of a CCP cleared trade we have N I
τ− = 0.

6.3.2 Close-out netting rule

In order to determine the cash-flow θτ+δ, we need to investigate the close-out net-

ting rules. We repeat the analysis in [30] here and consider all possible scenarios
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that may happen upon the first default event. Starting with the case where the

counterparty/client default first τ = τC < τI , we analyse the following scenarios.

When ετ+δ ≥ 0 and Mτ− ≥ 0, the investor has a positive exposure and the

counterparty has posted variation margin. We then have the following cases:

1. The exposure is netted with the variation and initial margins posted by the

counterparty, but the collateral is not enough to cover the exposure, and the

investor can get back his initial margin:

1{ετ+δ≥Mτ−+NC
τ−
}(RC(ετ+δ −Mτ− −NC

τ−)−N I
τ−).

2. The exposure is covered by the variation and initial margins. The investor

does not face a loss and gets back his initial margin:

1{ετ+δ<Mτ−+NC
τ−
}(ετ+δ −Mτ− −NC

τ− −N I
τ−).

3. In the case where the exposure is completely covered by the variation margin,

we need to consider two more scenarios:

• The investor does not default or defaults after the margin period. He

faces no loss and gets back his initial margin:

1{ετ+δ<Mτ−}1{τI>τC+δ}(ετ+δ −Mτ− −NC
τ− −N I

τ−).

• The investor defaults during the margin period. In this case, the in-

vestor’s initial margin can be used to reduce losses:

1{ετ+δ<Mτ−}1{τI≤τC+δ}
(
(ετ+δ −Mτ− −N I

τ−)+

+R′I(ετ+δ −Mτ− −N I
τ−)− −NC

τ−

)
.

When ετ+δ ≥ 0 and Mτ− < 0, the investor has a positive exposure and the

investor has posted variation margin. We then have the following cases:
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4. If the initial margin posted by the counterparty is not enough to cover the

investor’s exposure, the investor faces a loss and gets back the initial margin

and the variation margin if it is not rehypothecated:

1{ετ+δ≥NC
τ−
}(RC(ετ+δ −NC

τ−)−R′CMτ− −N I
τ−).

5. If the initial margin is enough to cover the investor’s exposure, the investor

gets back his initial margin and does not suffer a loss unless the variation

margin is rehypothecated:

1{ετ+δ<NC
τ−
}((ετ+δ −Mτ− −NC

τ−)− −R′C(ετ+δ −Mτ− −NC
τ−)+ −N I

τ−).

When ετ+δ < 0 and Mτ− ≥ 0, the investor has a negative exposure and the

counterparty has posted variation margin. We then have the following cases:

6. The counterparty expects to get back the variation and initial margins.

• If the investor does not default or defaults after the margin period, the

counterparty gets back the collateral in full:

1{τI>τC+δ}(ετ+δ −Mτ− −NC
τ− −N I

τ−).

• If the investor defaults before the margin period, the counterparty may

face a loss depending on where the collateral is rehypothecated:

1{τI<τC+δ}

(
RI(ετ+δ −N I

τ−)− +R′I
(
(ετ+δ −N I

τ−)+ −Mτ−
)−

+
(
(ετ+δ −N I

τ−)+ −Mτ−
)+ −NC

τ−

)
.

When ετ+δ < 0 and Mτ− < 0, the investor has a negative exposure and the in-

vestor has posted variation margin. The exposure is netted with the posted collateral

unless the variation margin is rehypothecated, in which case the initial margin is

used to reduce the losses. We then have the following cases:
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7. If the initial margin is not enough to cover the losses due to the rehypotheca-

tion, the investor suffers a loss and gets back his initial margin:

1{ετ+δ−Mτ−≥N
C
τ−
}(R

′
C(ετ+δ −Mτ− −NC

τ−)−N I
τ−).

8. If the initial margin is enough to cover the losses due to the rehypothecation,

the investor gets back his collateral in full:

1{ετ+δ−Mτ−<N
C
τ−
}(ετ+δ −Mτ− −NC

τ− −N I
τ−).

9. If the investor has to pay a greater exposure, we consider the following two

cases:

• If the investor does not default or defaults after the margin period, the

investor gets back his initial margin:

1{ετ+δ<Mτ−1{τI>τC+δ}}(ετ+δ −Mτ− −NC
τ− −N I

τ−).

• If the investor defaults before the margin period, the investor’s initial

margin can be used to reduce the losses:

1{ετ+δ<Mτ−}1{τI<τC+δ}
(
(ετ+δ −Mτ− −N I

τ−)+

+RI(ετ+δ −Mτ− −N I
τ−)− −NC

τ−

)
.

Similarly, we can list the cash flows when the investor defaults first. If we sum

up all the cash flows for all the possible scenarios, we can reach an expression for

the on-default cash-flow θτ+δ (see [30] for more details). Substituting θτ+δ in (6.26)

we see that the price of the on-default cash-flow can be expressed as follows,

ϑτ = Eh̃τ [ετ+δ]− CVA(τ, T ;M,NC , N I) + DVA(τ, T ;M,NC , N I), (6.27)

where the first term is the replacement price of the deal, and it is reduced by



Chapter 6. Extension and Conclusion 143

collateralized CVA and DVA terms with

CVA(τ, T ;M,NC , N I) := Eh̃τ
[
1{τC<τI+δ}ΠCVAcoll(τ)

]
,

DVA(τ, T ;M,NC , N I) := Eh̃τ
[
1{τI<τC+δ}ΠCVAcoll(τ)

]
,

(6.28)

and

ΠCVAcoll(s) =
(

LGDC

(
(ετ+δ −NC

τ−)+ −M+
τ−

)+
+ LGD

′
C

(
(ετ+δ −NC

τ−)− −M−
τ−

)+
)
,

ΠDVAcoll(s) = −
(

LGDI

(
(ετ+δ −N I

τ−)− −M−
τ−

)−
+ LGD

′
I

(
(ετ+δ −N I

τ−)+ −M+
τ−

)− )
.

(6.29)

Observe that if rehypothecation of the collateral is not allowed, the terms multiplied

by LGD
′
C and LGD

′
I drop out of the CVA and DVA calculations.

In the case where the trade is cleared by a CCP, only the client posts initial

margin, so we can set N I = 0 in equation (6.27). Moreover, if upon the default of

a clearing member the transaction will be transferred to a backup clearing member,

we can then assume that the loss given default for the clearing member is close to

zero.

6.4 Conclusions and Financial Implications

We have developed a consistent framework for valuation of derivative trades under

collateralization, counterparty credit risk, and funding costs. Based on no arbitrage,

we derived a generalized pricing equation where CVA, DVA, LVA, and FVA are in-

troduced by simply modifying the payout cash-flows of the trade. The framework

is flexible enough to accommodate actual trading complexities such as asymmetric

collateral and funding rates, replacement close-out, and rehypothecation of posted

collateral. We also provided a detailed analysis of the adjusted self-financing con-

dition that incorporates in the new market realities. Moreover, we presented an

invariance theorem showing that the valuation framework does not depend on any

theoretical risk-free rate, but is purely based on observable market rates.

The generalized valuation equation under credit, collateral and funding takes the

form of a forward-backward SDE or a semi-linear PDE. We discussed the conditions
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under which such a forward-backward SDE or a semi-linear PDE has a unique

solution.

The consistent valuation equation can also be recast as a set of iterative equations

which can be efficiently solved by a proposed least-squares Monte Carlo algorithm.

Our numerical results confirm that funding risk as well as asymmetries in borrow-

ing and lending rates have a critical impact on the ultimate value of a derivatives

transaction.

Introducing funding costs into the pricing equation makes the valuation problem

recursive and nonlinear. The price of the deal depends on the trader’s funding

strategy, while to determine the funding strategy we need to know the deal price

itself. Credit and funding risks are in general non-separable; this means that FVA

is not an additive adjustment, let alone a discounting spread. Thus, despite being

common practice among market participants, treating it as such comes at the cost

of double counting. We introduce the nonlinearity valuation adjustment (NVA)

to quantify the effect of double counting and we show that its magnitude can be

significant under asymmetric funding rates and replacement close-out at default.

Furthermore, valuation under funding costs is no longer bilateral as the particular

funding policy chosen by the dealer is not known to the client, and vice versa. As

a result, the value of the trade will generally be different to the two counterparties.

Conceptually, this should mean that the parties would never close the deal, but

in reality dealers confirm that this was a key factor driving bid-ask spreads wider

during the crisis.

Finally, valuation depends on the level of aggregation; asset portfolios cannot

simply be priced separately and added up. Theoretically, valuation is conducted

under deal or portfolio-dependent risk-neutral measures. This has clear operational

consequences for financial institutions; it’s difficult for banks to establish CVA and

FVA desks with separate, clear-cut responsibilities. Instead, they should adopt a

holistic, consistent valuation approach across all trading desks and asset classes. A

trade should be priced on an appropriate aggregation-level to quantify the value it

actually adds to the business. This, of course, leads us to the old distinction between

price and value: Should funding costs be charged to the client or just included
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internally to determine the profitability of a particular trade? The relevance of this

question is reinforced by the fact that the client has no direct control on the funding

policy of the bank and therefore cannot influence any potential inefficiencies for

which he or she would have to pay.
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