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1 Introduction

The AdS/CFT correspondence (see e.g. [1–4] for reviews) relates a string theory on a

d-dimensional anti-de Sitter space (AdSd) to a conformal field theory (CFT) on its (d−1)-

dimensional conformal boundary, ∂AdSd. This correspondence is a particular realization

of the more general concept known as holographic duality. In general, the latter relates

gravity theories with gauge field theories in a large-N limit [5], where N is associated with
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the rank of a gauge group. Powerful tools introduced by holographic duality have found

interesting applications, not only in string theory but also in as diverse fields as nuclear

and condensed matter physics.

Essentially, the power of holographic duality lies in the fact that it often relates a

perturbative regime of a theory on one side of the correspondence to a strongly coupled

regime of a theory on the other side and vice versa. This, in turn, allows one to extract

information about the behavior of the theories at strong coupling, to which the perturbative

methods do not normally apply.

Instances of holographic dualities include the AdSd/CFTd−1 correspondences [6] for

d = 2, 3, 4, 5. The most developed and the best understood example is the AdS5/CFT4

correspondence between type IIB superstring theory in an AdS5 × S5 background and

the SU(N), N = 4 supersymmetric Yang-Mills (SYM) theory on the four-dimensional

conformal boundary of AdS5. A striking feature of this correspondence, based on the 4-

dimensional superconformal group PSU(2, 2|4), is the integrability of both the AdS5 × S5

superstring theory and the planar limit (N → ∞) of the SYM theory [7, 8]. It connects

the regime of perturbative gauge theory with the regime of perturbative string theory.

Integrability has also been observed in other instances of the AdS/CFT correspondence.

Integrability manifests itself in various features of the theory. For instance, it is believed

to be at the core of the relation between planar scattering amplitudes and Wilson loops

at strong and weak gauge coupling in the SYM theory, and is related to the existence of

a hidden dual superconformal symmetry of gauge theory scattering amplitudes which acts

on the momenta as ordinary conformal symmetry acts on coordinates and associates each

amplitude to a string worldsheet in a dual AdS space (see [4] for a review and references).

On the string theory side, the existence of the dual superconformal symmetry is at-

tributed to the self-duality of the superstring sigma model under (Buscher-like) T-duality

transformations of fermionic and bosonic string modes on the worldsheet associated with

certain (anti-)commuting isometries of the AdS5 × S5 background [9, 10] (see also [11]).

In turn, this self-duality is an immediate consequence of the important property that the

combined bosonic and fermionic T-dualities do not change the values of the AdS5 × S5

background fields, in particular the Ramond-Ramond flux and the dilaton (see [12] for

review and references).

Fermionic T-duality and its relation to the dual superconformal symmetry are pretty

well understood and studied in detail in the case of the AdS5 × S5 superstring and cor-

responding dual N = 4 SYM theory [9, 10, 12]. However, the manifestation and role in

the AdS/CFT correspondence of the fermionic T-duality of the sigma models describing

superstrings in less supersymmetric integrable1 AdS backgrounds which give rise to other

examples of AdSd/CFTd−1 correspondence, such as AdS2×S2×M6, AdS3×S3×M4 (where

M10−2d is a compact manifold, e.g. T 10−2d or Sd×T 10−3d) and, especially, in AdS4×CP 3

are much less understood.

1The classical integrability of the (full) superstring in these backgrounds has been analyzed in [13–18]

and recently a general construction for all symmetric space Ramond-Ramond backgrounds preserving some

amount of supersymmetry was given in [19].
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In particular, the AdS4 × CP 3 background, which preserves 24 out of 32 supersym-

metries of the type IIA superstring theory remains the most challenging case, since it

seems to face obstructions in performing the fermionic T-duality of the corresponding su-

perstring sigma model [20, 21] and the supergravity background itself [21–24]. On the

other hand, results in the dual field theory indicate that the AdS4 × CP 3 string model

should be self-dual under bosonic and fermionic T-duality transformations. In fact, dual

superconformal symmetry appears in the planar amplitude sector of the ABJM model

both at the tree level [25, 26] and at the loop level [27, 28], Yangian invariance has been

observed at the tree level [29], and the amplitudes/Wilson loop duality has been found

up to two loops [30, 31]. In [21] it was assumed that an obstruction in performing the

fermionic T-duality may be caused by the presence of worldsheet fermionic fields associ-

ated with 8 broken supersymmetries [32] in the complete superstring Lagrangian. Indeed,

the role of the ‘broken supersymmetry’ fermions still needs to be better understood and

reconciled with other issues caused by a singularity of the bosonic and fermionic T-duality

transformations along CP 3 isometries, as observed for example in [20, 24, 33].

We will leave aside the AdS4×CP 3 case in this paper, concentrating rather on the study

of remaining issues of the T-duality of superstrings on AdSd × Sd ×M10−2d backgrounds,

with the hope that the better understanding of the latter may also provide new insights

into the issues of AdS4 ×CP 3.

So far T-(self-)duality has been demonstrated for supercoset sigma models associated

with strings propagating in AdSd × Sd (d = 2, 3, 5) upon imposing a partial gauge fixing

of the kappa symmetry of the sigma model actions by putting to zero a quarter (complex

spinors) of the supercoset fermionic modes [9, 10, 20]. In [9], the T-self-duality of the

AdS5 × S5 superstring was demonstrated in the pure spinor formulation, which does not

possess kappa symmetry but is instead BRST invariant. The proof used BRST cohomology

arguments to extend the kappa-gauge fixed result of the Green-Schwarz formulation to the

whole set of the fermionic modes of the pure spinor string. As was mentioned in [9], if the

T-dualised Green-Schwarz action could be written in a kappa-invariant form, in order to

directly prove the T-self-duality of the pure spinor action, one could use the prescription

of [34] which relates the Green-Schwarz kappa symmetry transformations with the pure

spinor BRST transformations.

In the cases of the AdSd × Sd supercoset models (with d = 2, 3) an additional issue

arises. It is related to the fact that the supercoset models describe only particular sectors

of the complete superstring theories on the AdSd × Sd × M10−2d backgrounds. In the

d = 3 case, these backgrounds preserve 16 of the 32 supersymmetries in ten dimensions,

while in the d = 2 case the number of preserved supersymmetries reduces to 8. Therefore,

respectively, only 16 and 8 fermionic modes on the string worldsheet can be associated

with the fermionic directions of the corresponding coset superspace, while the remaining

16 and 24 fermionic modes correspond to broken supersymmetries. The supercoset sectors

of the theory are non-trivially coupled to the non-supercoset directions M10−2d via these

fermionic modes.

In the d = 3 case, one can use kappa symmetry to put all the 16 non-supercoset

(‘non-supersymmetric’) fermionic modes to zero, but this gauge fixing is not admissible
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for a wide class of classical string configurations (including those when the string moves

only in AdS3 × S3, [35]). Moreover, though the AdS3 × S3 supercoset sigma model with

16 fermions possesses kappa symmetry with 8 independent parameters (see e.g. [20]), this

kappa symmetry is broken when the supercoset model is coupled via the Virasoro con-

straints to the T 4 sector of the complete superstring action in AdS3 × S3 × T 4 [13] in

which the 16 non-supercoset fermions have already been kappa gauge fixed to zero. In

other words, the kappa symmetry of the AdS3 × S3 supercoset subsector is part of the

kappa symmetry of the complete 10-dimensional superstring and is lost when the latter is

completely gauge fixed.

In the d = 2 case kappa symmetry allows one to remove (for certain classical string

solutions) only 16 of the 24 non-supersymmetric fermions, so at least 8 non-supercoset

fermionic modes are always present in the AdS2×S2×M6 string spectrum (see e.g. [13, 15]

and references therein for the discussion of these issues). In these cases the self T-duality of

the corresponding supercoset models has been proved in a (partially) fixed kappa symmetry

gauge where some of the fermionic coset coordinates are set to zero [20]. However, when the

supercoset models are used to describe a gauge-fixed sector of the superstring sigma model

where kappa symmetry has already been used to remove (part of) the non-supersymmetric

fermions, one cannot use kappa symmetry anymore for proving the self T-duality of the

corresponding supercoset sectors of the AdSd × Sd ×M10−2d superstrings.

In view of the above mentioned issues, it is important to demonstrate explicitly the

T-self-duality of superstring theory on the AdSd×Sd×M10−2d backgrounds without fixing

kappa symmetry and taking into account the non-supercoset fermionic modes. This is the

main goal of this paper. Specifically, we verify the combined bosonic and fermionic T-self-

duality of Green-Schwarz supercoset sigma models on AdSd ×Sd backgrounds (d = 2, 3, 5)

without fixing a kappa symmetry gauge. Furthermore, we prove the same for AdSd×Sd×Sd

backgrounds (d = 2, 3) described by supercoset sigma models with the isometries governed

by the exceptional supergroups D(2, 1;α) (for d = 2) and D(2, 1;α)×D(2, 1;α) (for d = 3).

In these supercoset models (which, by the way, do not possess kappa symmetry), in order

to map the dualised actions to the original ones, the T-dualisation of d − 1 directions

in AdSd and of 2(d − 1) fermionic directions should be accompanied by T-dualisation of

(complexified) d− 1 directions of one sphere.

We also prove the T-(self-)duality of complete type IIA and IIB Green-Schwarz su-

perstring actions on AdS3 × S3 × T 4 and AdS2 × S2 × T 6 backgrounds with different

Ramond-Ramond fluxes, by taking into account (up to the second order) the contribution

of their non-supercoset fermionic modes. An important consequence of the presence of these

non-supersymmetric fermions is that for the actions to be invariant under the combined

fermionic and bosonic T-duality transformations, the latter should involve the dualisation

of half of the torus directions. This is in accordance with results of [36] in which the com-

bined bosonic-fermionic T-duality of some of AdSd × Sd ×M10−2d superbackgrounds was

studied from the supergravity perspective.

In this respect, for completeness, in section 7 we extend the results of [9, 36] (see

also [22–24] for the AdS4 × CP 3 case) and prove (using the T-duality rules [37–39]) the

invariance under the combined T-duality of the whole class of the AdSd × Sd × T 10−2d

– 4 –
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IIB AdS2 × S2 × T 6

with F (5), and Φ = 0

IIB* with imaginary F (3),

and Φ′ = log|y|

IIA AdS2 × S2 × T 6

with F (2) + F (4), and Φ′′ = 0

Fermionic T-duality

E1, E2

Time-like bosonic T-duality,

and define y′ = 1/|y|

∂0

3 bosonic T-dualities

along T 6 directions
∂1, ∂2, ∂3

Figure 1. The idea of self-duality we study is that a sequence of fermionic and bosonic T-dualities

returns us to the same background. This is depicted here for the case in which we start with type

IIB AdS2×S2×T 6 supported by F (5) Ramond-Ramond flux, in which the bosonic duality is along

the only boundary direction of AdS and along three torus directions. The other cases are similar,

although the number of Killing spinors varies, and for AdSd × Sd × Sd × T 10−3d cases some of the

four bosonic dualities are along complexified Killing vectors of one sphere.

superbackgrounds with Ramond-Ramond fluxes (see figure 1). The combined T-duality

involves the directions along the (d − 1)-dimensional Minkowski boundary, half of the T d

torus directions and 2(d−1) complex fermionic T-dualities. For the AdSd×Sd×Sd×T 10−3d

cases we also find it necessary to perform bosonic T-duality along complexified directions

of one sphere.

2 General setup

In this section, we recall some basic facts about superstring sigma models and their T-

dualisation.

The conventional form of the Green-Schwarz action describing the propagation of a

superstring in a generic 10-dimensional type II background is [40]

S = −T

2

∫

Σ
(∗EA ∧ EBηAB + 2κB2) . (2.1)

Here, T denotes the string tension and Σ is a 2-dimensional worldsheet with a curved

metric hpq(τ, σ) of Lorentz signature so that the corresponding worldsheet Hodge duality

operation ∗ squares to one (∗2 = 1) when acting on one-forms.2 The EA = EA(X,Θ) with

A,B, . . . = 0, . . . , 9 are vector supervielbeins where (X,Θ) are target space coordinates (10

Graßmann-even (bosonic) coordinates X and 32 Graßmann-odd (fermionic) coordinates

Θ) and (ηAB) = diag(−1, 1, . . . , 1) is the 10-dimensional target tangent space Minkowski

metric. In addition to EA = EA(X,Θ), the description of the geometry also involves

spinor supervielbeins E α̂ = E α̂(X,Θ) with α̂, β̂, . . . = 1, . . . , 32. Furthermore, B2(X,Θ) is

the worldsheet pullback of the Neveu-Schwarz-Neveu-Schwarz 2-form gauge superfield. In

2Explicitly, in local coordinates (τ, σ) on Σ, ∗EA ∧ EB =
√

− det(hrs)h
pqEA

p EB
q .
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the models in which we are interested, it has vanishing field strength at Θ = 0, that is,

dB2|Θ=0 = 0. Kappa symmetry invariance requires the coupling constant κ to be ±1. In

what follows, we shall choose κ = 1. Note that for generic supergravity backgrounds, the

action (2.1) is known explicitly up to fourth order in Θ [41].

We will be interested in (bosonic) symmetric space backgrounds of the type AdSd ×
Sd × T 10−2d, d = 2, 3, 5 and AdSd × Sd × Sd × T 10−3d, d = 2, 3. As shown in [15] for d = 2

and in [19] in general, the full type II superspace corresponding to these backgrounds

contains a sub-superspace which is a supercoset space G/H = {gH | g ∈ G}, G being the

superisometry group and H the isotropy subgroup of the background in question. For

a background with no Neveu-Schwarz-Neveu-Schwarz flux, G/H is, in fact, a so-called

semi-symmetric superspace meaning that the Lie algebra of G admits a Z4-automorphism

Ω : G → G whose fixed point set is H, that is, Ω4 = 1 and Ω(H) = H. Correspondingly,

there exists a truncation of the Green-Schwarz string action to a supercoset sigma model.

If the background admits at least 16 supersymmetries, this sigma model can be viewed as

a kappa symmetry gauge fixing of the full superstring (for configurations where this gauge

fixing is consistent). Below we give the coset superspaces relevant for our discussion.

Z4-graded coset superspaces. For the AdSd × Sd × T 10−2d backgrounds, we have the

following supercosets3

d = 5 :
PSU(2, 2|4)

SO(1, 4)× SO(5)
=̂ AdS5 × S5 + 32 fermionic directions ,

d = 3 :
PSU(1, 1|2)× PSU(1, 1|2)

SU(1, 1)× SU(2)
=̂ AdS3 × S3 + 16 fermionic directions ,

d = 2 :
PSU(1, 1|2)

SO(1, 1)×U(1)
=̂ AdS2 × S2 + 8 fermionic directions . (2.2a)

while for AdSd × Sd × Sd × T 10−3d, we deal with

d = 3 :
D(2, 1;α)×D(2, 1;α)

SO(1, 2)× SO(3)× SO(3)
=̂ AdS3 × S3 × S3 + 16 fermionic directions ,

d = 2 :
D(2, 1;α)

SO(1, 1)× SO(2)× SO(2)
=̂ AdS2 × S2 × S2 + 8 fermionic directions , (2.2b)

where 0 ≤ α ≤ 1. Note that while for d = 5 the coset superspace describes the full super-

string theory, for d = 2, 3, the listed coset superspaces describe only those subsectors of

the full superstring theories in which the non-supersymmetric fermions have been removed

by truncation/gauge-fixing and the string does not fluctuate along the torus directions.

Maurer-Cartan form. The Z4-automorphism Ω : G → G induces a corresponding

automorphism on the Lie superalgebra g of G, which we shall again denote by Ω : g → g (see

e.g. [42] for a classification). We therefore have a decomposition g⊗C ∼=
⊕3

m=0 g(m) into

the eigenspaces of Ω, that is, Ω(V(m)) = imV(m) for V(m) ∈ g(m). In addition, [g(m), g(n)] ⊆
g(m+n mod 4) and g(0) is the Lie algebra of H. Furthermore, g comes with a Z2-grading,

3Note that since all these coset superspaces are smooth supermanifolds, they naturally fiber over their

bosonic part, that is, they are smooth vector bundles with bosonic base and fermionic fibers.
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and the generators of g(0) and g(2) are bosonic while the generators of g(1) and g(3) are

fermionic. For various general properties of the Lie superalgebras associated with the Lie

supergroups appearing in (2.2), we refer the reader to e.g. [43].

Next, we consider maps g : Σ → G from a 2-dimensional worldsheet Riemann surface

Σ with an (arbitrarily chosen) Lorentzian metric into G and introduce the (pull-back to Σ

via g of the) Maurer-Cartan form

J := g−1dg . (2.3)

Here, d denotes the exterior derivative on Σ.4 By construction, the g-valued differential

1-form J is invariant under global left G-transformations g 7→ g0g for g0 ∈ G and satisfies

the Maurer-Cartan equation, dJ − J ∧ J = 0. Using the Z4-automorphism Ω : g → g, we

may decompose J into the eigenspaces of Ω according to

J = J(0) + J(1) + J(2) + J(3) with Ω (J(m)) = imJ(m). (2.4)

It is then straightforward to check that under local right H-transformations g 7→ gh for

h ∈ H, the part J(0) behaves as a g(0)-valued connection 1-form, J(0) 7→ h−1J(0)h +

h−1dh, while the J(m)s for m = 1, 2, 3 transform adjointly, J(m) 7→ h−1J(m)h. Since the

physical fields will take values in the coset superspace G/H = {gH | g ∈ G} for (2.2), the

corresponding action must be invariant under such local right H-transformations. This, in

turn, implies that the action will involve only the J(m) for m = 1, 2, 3. Correspondingly,

G/H is parametrised by db bosonic local coordinates X and df fermionic local coordinates

ϑ, where db + df := dim(G/H) = dim(G)− dim(H), so that we will be dealing with maps

(X, ϑ) : Σ → G/H. Furthermore, J(2) play the role of bosonic supervielbeins while J(1) and

J(3) play the role of fermionic supervielbeins.

Supercoset action. The supercoset string action for a Z4-graded G/H coset superspace

is constructed from the 1-forms J(m) for m = 1, 2, 3, and it has the following form (see [13,

44–49] and references therein)

S = −T

∫

Σ
LG/H = −T

2

∫

Σ
Str(∗J(2) ∧ J(2) + J(1) ∧ J(3)) . (2.5)

where Str denotes the supertrace compatible with the Z4-grading,

Str(V(m)V(n)) = 0 for V(m) ∈ g(m) and m+ n 6= 0 mod 4 , (2.6)

As in (2.1), in the non-exceptional cases the relative coefficient of the two terms in (2.5)

is fixed by kappa symmetry, while in the exceptional cases the action (2.5) is not kappa

symmetry invariant [50, 51]. In the latter cases, the relative coefficient gets fixed by their

relation to the original Green-Schwarz action and/or by integrability of the sigma-models.

Clearly, the action (2.5) is invariant under rigid left G-transformations and local right H-

gauge transformations. The Wess-Zumino term (the second term in this action) was first

given in the above form in [47]. Comparison with the Green-Schwarz action (2.1) tells us

that B2 =
1
2Str(J(1) ∧ J(3)).

4In our conventions, d acts from the right.
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Schematic form of the superconformal algebra. The T-dualisation of the

action (2.5) is performed along certain bosonic and fermionic directions of the G/H super-

coset which correspond to an (anti-)commuting (that is, Abelian) subgroup of the isome-

tries of the underlying coset superspace. To identify these isometries, one chooses a basis

of the Lie superalgebra g of G which is associated with the superconformal group on the

Minkowski (conformal) boundary R1,d−2 of the AdSd space. In this basis, g is described

schematically as follows. The bosonic conformal algebra and the R-symmetry on R1,d−2

are given by (we only display non-vanishing commutators)

[P,K] ∼ D +M ,

[D,P ] ∼ P , [D,K] ∼ K , [M,P ] ∼ P , [M,K] ∼ K ,

[M,M ] ∼ M , [R,R] ∼ R ,

(2.7)

where P are the (d−1) translation generators, M are the 1
2(d−1)(d−2) Lorentz generators,

K are the (d − 1) conformal boost generators, and D is the dilatation generator. In the

AdSd×Sd case the R-symmetry generators R are associated with the SO(d+1) isometries

of Sd, while in the case of AdSd × Sd × Sd they correspond to the SO(d+ 1)× SO(d+ 1)

isometries of Sd × Sd.

The superconformal extension of the algebra (2.7) contains the fermionic generators

Q, Q̂, S, and Ŝ which are the complex supersymmetry and superconformal generators

related by Hermitian conjugation (the specific form of the conjugation rules depends on

the chosen superalgebra), each being 2(d − 1)-dimensional. The additional non-vanishing

(anti-)commutation relations have the following schematic form

[D,Q] ∼ Q , [M,Q] ∼ Q , [K,Q] ∼ Ŝ , [R,Q] ∼ Q+ αQ̂ ,

[D,S] ∼ S , [M,S] ∼ S , [P, S] ∼ Q̂ , [R,S] ∼ S + αŜ ,
(2.8a)

and similarly for Q̂ and Ŝ, plus

{Q, Q̂} ∼ P , {S, Ŝ} ∼ K , {Q, Ŝ} ∼ αR , {Q̂, S} ∼ αR

{Q,S} ∼ D +M +R , {Q̂, Ŝ} ∼ D +M +R .
(2.8b)

In these relations, α is the parameter appearing in the coset superspaces (2.2b). Note that

the d = 2, 3 coset superspaces in (2.2a) are obtained from those in (2.2b) by taking the

limit α → 0. Hence, in the case of the AdSd×Sd×T 10−2d backgrounds we simply set α = 0.

In summary, the Lie superalgebra g is generated by g = 〈P,K,D,M,R,Q, Q̂, S, Ŝ〉 and
described by the (anti-)commutation relations (2.7) and (2.8).

Choice of Z4-grading. As we shall see below, the specific choice of a Z4-grading and its

superconformal splitting onto Abelian sub-isometries are crucial when performing the T-

duality transformations — an inappropriate choice would make the proof of the self-duality

of the complete superstring actions much more complicated if at all possible. Decomposing

the R-symmetry generators R as R = (R(0), R(2)) with R(0) ∈ g(0) and R(2) ∈ g(2), the

Z4-grading we shall be using is formally of the form

g(0) := 〈P +K,M,R(0)〉 , g(2) := 〈P −K,D,R(2)〉 ,
g(1) := 〈Q− S, Q̂− Ŝ〉 , g(3) := 〈Q+ S, Q̂+ Ŝ〉 .

(2.9)
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We emphasize that the specific form of the decomposition R = (R(0), R(2)) will depend on

the particular form of the superconformal algebra, and we shall say a few things about this

in the next paragraph.

Coset representative and associated current. In the AdSd × Sd × T 10−2d case, the

form of the superalgebra (2.7) and (2.8) (with α = 0) implies that the (d − 1) generators

P and 2(d− 1) complex supercharges Q are in involution, and, hence, a maximal Abelian

subalgebra of g is simply 〈P,Q〉. Thus, the (anti-)commuting isometries of the G/H Green-

Schwarz sigma model can be associated with 〈P,Q〉.
In the AdSd×Sd×Sd case, the situation is somewhat more complicated, and as we shall

see in section 6, a maximal Abelian subalgebra of g is again generated by P and Q but also

by some of the R-symmetry generators which we denote formally by L+. To jump ahead

of our story a bit, we will have one complex generator L+ ≡ L1
+ for d = 2 and two complex

generators L+ ≡ L1,2
+ for d = 3. Hence, the (anti-)commuting isometries are associated

with 〈P,Q,L+〉 in this case. In the following, we shall denote the Hermitian conjugate of

L+ by L− and we have [L1
+, L

1
−] ∼ L3 ∼ [L2

+, L
2
−]. In view of the Z4-grading (2.9), it turns

out that L1
+ + L1

− ∈ g(0), L
1
+ − L1

− ∈ g(2), L
2
+ − L2

− ∈ g(0), L
2
+ + L2

− ∈ g(2), and L3 ∈ g(2)

will be the appropriate choice. See section 6 for details.

Motivated by this discussion, to perform the T-dualisation of the action (2.5) along

these isometries, it is convenient to take the supercoset representative g in a form similar

to that of [9, 10, 51]

g := exP+θQ+
√
αλ+L+eBeξS , eB := eθ̂Q̂+ξ̂Ŝ |y|De−

√
αλ3L3Λα(y) , (2.10)

where x are the coordinates of the Minkowski boundary and |y| is associated with the

radial (bulk) direction in AdSd. In the AdSd × Sd × T 10−2d case (α = 0) the coordinates y

parametrize Sd, whereas in the AdSd×Sd×Sd background (α 6= 0) one Sd is parametrized

by y and the second one is described by λ+ and λ3. The latter coordinates are assumed

to be complex (we will explain this in more detail in section 6). Moreover, the specific

form of Λα = Λα(y) will depend on the chosen background. The set of 2(d − 1) (complex

conjugate) fermionic coordinates (θ, θ̂, ξ, ξ̂) parametrize the Graßmann-odd directions of

the coset superspace. In order to achieve the form (2.10) of the representative, we have

employed local right H-transformations, and since P , Q, and L+ are in involution, this

choice of the representative ensures that the action (2.5) will depend on x, θ, and λ+ only

through their derivatives dx, dθ, and dλ+.

So far, the proof of self-duality of supercoset sigma models (2.5) under bosonic and

fermionic T-duality has been performed in a fixed kappa symmetry gauge, the most conve-

nient choice being ξ = 0 [9, 10, 51]. However, as already explained, if the supercoset model

describes the gauge-fixed version of the corresponding superstring action, the kappa sym-

metry has been already used to (partially) gauge away the non-supersymmetric fermions,

and cannot be used once again in the T-dualisation procedure. Moreover, for sigma mod-

els based on the exceptional Lie supergroups (2.2b), the rank of the kappa symmetry is

zero [13, 50, 51] and one cannot put any of the fermionic coordinates to zero. Therefore, in
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what follows we are not going to (partially) fix kappa symmetry to get rid of some of the

fermionic coordinates. All the fermionic coordinates in (2.10) will be taken into account.

In the realization (2.10) of the coset element, the current (2.3) has the following form

J = g−1dg = e−ξSJ (0)eξS + dξS , (2.11)

where J (0) is the current at ξ = 0. Writing the currents J and J (0) as

J = JPP + JKK + · · · and J (0) = J
(0)
P P + J

(0)
K K + · · · (2.12)

the components of J (0) are given by

J
(0)
P =

[
e−B(dxP + dθQ+

√
α dλ+L+)e

B
]

P
, J

(0)
K = 0 ,

J
(0)
D =

[
e−BdeB

]

D
, J

(0)
M =

[
e−BdeB

]

M
,

J
(0)
R =

[
e−BdeB

]

R
,

J
(0)
L+

=
[
e−B(dxP + dθQ+

√
α dλ+L+)e

B
]

L+
, J

(0)
L−

= 0 , J
(0)
L3

=
[
e−BdeB

]

L3
,

J
(0)
Q =

[
e−B(dxP + dθQ+

√
α dλ+L+)e

B
]

Q
, J

(0)

Q̂
=

[
e−BdeB

]

Q̂
,

J
(0)
S = 0 , J

(0)

Ŝ
=

[
e−BdeB

]

Ŝ
, (2.13a)

where [· · · ]P etc. indicates the projection onto the generators P etc., while the components

of J read schematically as

JP = J
(0)
P , JQ = J

(0)
Q , JL+ = J

(0)
L+

,

JD = J
(0)
D + J

(0)
Q ξ, JM = J

(0)
M + J

(0)
Q ξ ,

JR = J
(0)
R + J

(0)
Q ξ , JL3 = J

(0)
L3

+ αJ
(0)
Q ξ ,

JQ̂ = J
(0)

Q̂
+ J

(0)
P ξ , JŜ = J

(0)

Ŝ
+ αJ

(0)
L+

ξ ,

JK = J
(0)

Ŝ
ξ + αJ

(0)
L+

ξ2 , JL−
= αJ

(0)

Q̂
ξ + αJ

(0)
P ξ2 ,

JS = dξ + (J
(0)
D + J

(0)
M + J

(0)
R + αJ

(0)
L3

)ξ + J
(0)
Q ξ2 .

(2.13b)

We note that thanks to the appropriate choice of the coset representative (2.10), the current

J depends on ξ at most quadratically. This will drastically simplify the T-dualisation

procedure.

Finally, decomposing the current J according to the Z4-grading (2.9), the supercoset

sigma model action (2.5) takes the following schematic form

S = −T

2

∫

Σ

[

∗ (JP − JK) ∧ (JP − JK) + ∗JD ∧ JD + ∗JR(2)
∧ JR(2)

+

+
d−1∑

k=1

∗(JLk
+
+ (−)kJLk

−
) ∧ (JLk

+
+ (−)kJLk

−
) + ∗JL3 ∧ JL3+

+
(
JQ ∧ γJQ − JŜ ∧ γJŜ − JS ∧ γJS + JQ̂ ∧ γJQ̂

)
]

.

(2.14)
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Here, γ in the last four terms stands for a constant symmetric matrix being part of the G-

invariant bilinear form contracting the spinor indices of the fermionic currents. The form of

this matrix is related to the value of Ramond-Ramond fluxes supporting the corresponding

AdSd × Sd ×M10−2d background.

T-duality procedure. In the α = 0 case, we T-dualise the action (2.14) along x and θ,

following the discussion of [9, 10]. For the α 6= 0 case, we dualise also along λ+, following

ideas of [51].

According to the standard procedure [37–39], starting from the action (2.14) we first

make the substitution (dx, dθ, dλ+) 7→ (Ab, Af , A+) and modify it according to

S 7→ Sf.o. = S[(dx, dθ, dλ+) 7→ (Ab, Af , A+)] +

∫

Σ

(
x̃dAb + θ̃dAf +

√
α λ̃+dA+

)
(2.15)

Here, {Ab, Af , A+} are auxiliary differential 1-forms and {x̃, θ̃, λ̃+} are Lagrange multipli-

ers. The latter enforce the constraints dAb = 0, dAf = 0, and dA+ = 0 or, equivalently,

Ab = dx, Af = dθ, and A+ = dλ+. Consequently, upon integrating {x̃, θ̃, λ̃+} out, we

recover the original action (2.14).

To derive the dualised action S̃, we instead need to integrate out the differential 1-

forms {Ab, Af , A+}. Once done, the Lagrange multipliers {x̃, θ̃, λ̃+} shall be interpreted

as T-dual coordinates. In order to perform this operation, we make a simplification by

noticing that

e−B
(
AbP +AfQ+

√
αA+L+

)
eB = A′

bP +A′
fQ+

√
αA′

+L+ (2.16)

since the Abelian algebra 〈P,Q,L+〉 is invariant under conjugation by the group element

eB. Equivalently,

AbP +AfQ+
√
αA+L+ = eB

(
A′

bP +A′
fQ+

√
αA′

+L+

)
e−B . (2.17)

Thus, we may consider the field re-definition (Ab, Af , A+) 7→ (A′
b, A

′
f , A

′
+). Note that the

on-shell relations dx = Ab, dθ = Af , and dλ+ = A+ together with (2.13) imply the on-shell

relations A′
b = JP , A

′
f = JQ, and A′

+ = JL+ .

Upon substituting

Ab =
[
eB

(
A′

bP +A′
fQ+

√
αA′

+L+

)
e−B

]

P
,

Af =
[
eB

(
A′

bP +A′
fQ+

√
αA′

+L+

)
e−B

]

Q
,

A+ =
[
eB

(
A′

bP +A′
fQ+

√
αA′

+L+

)
e−B

]

L+

(2.18)

into the action (2.15) and integrating out {A′
b, A

′
f , A

′
+}, one obtains the dualised action S̃.

The main goal is to show that the action S̃ (upon certain field re-definitions) is again of

the Green-Schwarz form (2.5), however, in a coordinate system which is associated with a

different choice of the coset representative

g̃ := ex̃K+θ̃M−1S+
√
α λ̃+L−eBeF (ξ) , eB := eθ̂Q̂+ξ̂Ŝ |y|De−

√
αλ3L3Λα(y) , (2.19)
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where M := Str(QS). Note that eB in the representative (2.19) is the same as given

in (2.10). Furthermore, in the AdS5 × S5 case, F (ξ) is of the schematic form

F (ξ) ∼ −
[
ξ + ξ5

]
Q+

[
ξ3 + ξ7

]
S , (2.20)

while for AdS2 × S2 and AdS2 × S2 × S2, F (ξ) contains only the first linear term in ξ and

for AdS3 × S3 and AdS3 × S3 × S3 it consists of both linear and cubic terms. Because of

the presence of F (ξ), the current J̃ = g̃−1dg̃ arising from the representative (2.19), will, in

general, not be quadratic in the fermionic coordinates ξ. However, as we will show, upon

further complicated field re-definitions (X,Θ) → (X ′,Θ′), the dual coset element (2.19)

can be nevertheless brought to a form similar to that of (2.10), i.e.

g̃ = ex̃
′K+θ̃′M−1S+

√
α λ̃′

+L−eB
′

e−ξ′Q . (2.21)

To see the explicit result of T-dualisation, in the subsequent sections we turn to the

detailed consideration of the superstring in different backgrounds. We begin by considering

the AdS5×S5 background. This is the most involved example since, without partially gauge

fixing kappa symmetry by putting ξ = 0, we can have terms up to O(ξ8).

The results of the T-dualisation of the less supersymmetric cases AdS3×S3 and AdS2×
S2 can be then obtained upon an appropriate truncation of the AdS5×S5 supercoset sigma

model. The T-duality of superstrings in AdSd×Sd×T 10−2d in the presence of fluctuations

along T 10−2d and non-coset fermionic modes υ will also be considered.

Finally, we discuss the T-duality procedure for the superstring sigma models on AdSd×
Sd × Sd for d = 2, 3, which turns out to be also technically quite involved.

Comment on the self-duality at the quantum level. Since the duality transforma-

tions can be performed via a Gaußian path integral, they can be promoted to a duality

of the quantum sigma model. A priori, the path integral measure could change upon in-

tegrating out the auxiliary fields {A′
b, A

′
f , A

′
+}. However, this is not the case, since the

corresponding Berezinian is equal to one provided one also regularises the bosonic and

fermionic determinants in the same way (e.g. by using heat kernel methods as in [38, 52]).

Therefore, there will be no shift in the dilaton (see also section 7) and we may thus conclude

that the self-duality of the Green-Schwarz sigma models under consideration also holds at

the quantum level.

3 Self-duality of AdS5 × S5 superstrings

3.1 Supercoset action on AdS5 × S5

We begin by focusing on the AdS5 × S5 superstring sigma model. The coset superspace
PSU(2,2|4)

SO(1,4)×SO(5) solves the type IIB 10-dimensional supergravity constraints and hence, it

describes the full type IIB AdS5×S5 background parametrized by ten bosonic coordinates

(XM ) = (xm, |y|, yâ) with m,n, . . . = 0, . . . , 3 and â, b̂, . . . = 5, . . . , 9 and two 16-component

10-dimensional Majorana-Weyl spinor coordinates Θi = 1
2(1+Γ11)Θi with i, j, . . . = 1, 2 of
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the same chirality.5 In this parametrization, the AdS5 × S5 line element has the form [9]

(ds)2 =
1

|y|2
(
dxmdxnηmn + dyâdyâ + dŷdŷ

)
, (3.1)

where (yâyâ + ŷŷ) = |y|2. For simplicity, we have set the radii of AdS5 and S5 to one.

The AdS5 × S5 background is supported by the self-dual 5-form flux F5 with the

non-zero components

F01234 = −F56789 = 4 , (3.2a)

or, equivalently,

F5 = 4(1 + ∗)VolAdS5 = 4 (1 + ∗) e0 ∧ · · · ∧ e4 . (3.2b)

and by the dilaton field that for simplicity we choose to be zero.

Lie superalgebra psu(2, 2|4) and Cartan forms. The general form of the superisom-

etry algebra for a symmetric space supergravity solution was determined in [19]. Inserting

the form of the fluxes for the AdS5 × S5 background given above we obtain the following

form of the psu(2, 2|4) Lie superalgebra

[MAB,MCD] = ηACMBD − ηADMBC − ηBCMAD + ηBDMAC ,

[PA, PB] = −1

2
RAB

CDMCD ,

[MAB, PC ] = ηACPB − ηBCPA , [MAB,Qαi] = −1

2
(QΓAB)αi ,

[PA,Qαi] = −1

2
(QεΓ01234ΓA)αi ,

{Qαi,Qβj} = iδij(Γ
A)αβ PA − i

2
εij(Γ

AΓ01234ΓB)αβ MAB ,

(3.3)

where εij = −εji (ε12 = 1), (MAB) = (Mab,Mâb̂) with a, b, . . . = 0, . . . , 4 and â, b̂, . . . =

5, . . . , 9 generate the SO(4, 1)×SO(5) rotations, (PA) = (Pa, Pâ) generate AdS5×S5 trans-

lations, Rab
cd = 2δc[a δ

d
b] and Râb̂

ĉd̂ = −2δĉ[â δ
d̂
b̂]
are, respectively, AdS5 and S5 curvatures,

and Qαi are the supercharges. The corresponding Maurer-Cartan form

J(X,Θ) =
1

2
ΩABMAB + EAPA + EαiQαi (3.4)

is made of the superconnection ΩAB(X,Θ) and the supervielbeins EA(X,Θ), Eαi(X,Θ)

that satisfy the type IIB supergravity constraints of [41].

To obtain the psu(2, 2|4) Lie superalgebra in the superconformal form (2.7) and (2.8),

we define new bosonic generators as follows (a = m, 4 with m = 0, . . . , 3):

D := P4 , Pm := Pm +Mm4 , Km := −Pm +Mm4 ,

Mmn , Râ := Pâ , Râb̂ := −Mâb̂ .
(3.5)

5See appendix A for conventions on (16× 16) gamma matrices used in type IIB superspace.
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The non-vanishing commutators of these generators are

[Pm,Kn] = −2ηmnD + 2Mmn , [D,Pm] = Pm , [D,Km] = −Km ,

[Pm,Mnp] = −ηmnPp + ηmpPn , [Km,Mnp] = −ηmnKp + ηmpKn ,

[Mmn,Mpq] = ηmpMnq − ηmqMnp − ηnpMmq + ηnqMmp ,

[Râ, Rb̂] = −Râb̂ , [Râb̂, Rĉd̂] = −δâĉRb̂d̂ + δâd̂Rb̂ĉ + δb̂ĉRâd̂ − δb̂d̂Râĉ ,

[Râ, Rb̂ĉ] = δâb̂Rĉ − δâĉRb̂ .

(3.6)

The new independent fermionic generators are defined by setting

Q := − 1√
2
(Q1−iQ2)P+ , Q̂ := − 1√

2
(Q1+iQ2)P− ,

S :=
1√
2
(Q1+iQ2)P+ , Ŝ :=

1√
2
(Q1−iQ2)P− ,

(3.7)

where we have introduced the projectors acting on the indices α of the supercharge Qαi

P± :=
1

2
(1± iΓ0123) . (3.8)

The commutators involving these supercharges are

[D,Qα] =
1

2
Qα , [D,Sα] = −1

2
Sα ,

[Km, Qα] = (ŜΓm4)α , [Pm, Sα] = (Q̂Γm4)α ,

[Mmn, Sα] = −1

2
(SΓmn)α , [Mmn, Qα] = −1

2
(QΓmn)α , [Râ, Sα] =

1

2
(SΓâ4)α

[Râ, Qα] = −1

2
(QΓâ4)α , [Râb̂, Sα] =

1

2
(SΓâb̂)α , [Râb̂, Qα] =

1

2
(QΓâb̂)α ,

(3.9a)

and the same with (Q,S) ↔ (Q̂, Ŝ). We also have

{Q̂α, Qβ} = i(Γm
P+)αβ Pm , {Ŝα, Sβ} = −i(Γm

P+)αβ Km , (3.9b)

{Sα, Qβ} = −i(Γ4
P+)αβ D − i(Γâ

P+)αβ Râ −
i

2
(ΓmnΓ4P+)αβ Mmn − i

2
(Γâb̂Γ4

P+)αβ Râb̂ ,

{Ŝα, Q̂β} = −i(Γ4
P−)αβ D − i(Γâ

P−)αβ Râ −
i

2
(ΓmnΓ4P−)αβ Mmn − i

2
(Γâb̂Γ4

P−)αβ Râb̂ .

Finally, the non-vanishing components of the invariant form on psu(2, 2|4) that is

compatible with the above choice of the basis is

Str(KnPm) = −2ηmn , Str(DD) = 1 , Str(SαQβ) = 2i(Γ4
P+)αβ . (3.10)

Currents and supercoset action. In the parametrization we have chosen, the explicit

form of the coset representative (2.10) is

g := ex
mPm+θαQαeBeξ

αSα , eB := eθ̂
αQ̂α+ξ̂αŜα |y|DeyâRâ/|y| , (3.11)

where, as a consequence of the definitions (3.7), the spinorial variables satisfy the projection

relations P+θ = θ,P+ξ = ξ,P−θ̂ = θ̂ and P−ξ̂ = ξ̂.
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Following the general procedure described in section 2, we can derive the explicit form

of the psu(2, 2|4) currents (2.13). Concretely, using the (anti-)commutation relations (3.6)

and (3.9), we obtain the components of the current (2.11) which do not depend on ξα,

JPm =
[
e−B(dxnPn + dθQ)eB

]

Pm
, JQα =

[
e−B(dxnPn + dθQ)eB

]

Qα
,

JŜβ
=

[
e−BdeB

]

Ŝβ
,

(3.12a)

the currents which depend on ξα linearly (the label (0) indicates, as before, the current

components which do not depend on ξ)

JKm = −i(Γmξ)α JŜα
, JD = J

(0)
D − i(Γ4ξ)αJQα , JRâ

= J
(0)
Râ

− i(Γâξ)αJQα ,

JQ̂ = J
(0)

Q̂
+ (Γm4ξ)

αJPm ,

JMmn = J
(0)
Mmn

− i

2
(ξΓmnΓ4)α JQα , JR

âb̂
= J

(0)
R

âb̂
− i

2
(ξΓâb̂Γ4)α JQα ,

(3.12b)

and the current JS which has a quadratic dependence on ξα

JSα = dξα − 1

2
ξαJ

(0)
D − 1

2
(Γmnξ)

αJ
(0)
Mmn

+
1

2
(Γâ4ξ)

αJ
(0)
Râ

+
1

2
(Γâb̂ξ)

αJ
(0)
R

âb̂
+ Sα

βJQβ

=: J
(1)
Sα

+ Sα
βJQβ

, (3.12c)

where we have defined

Sα
β :=

i

4
ξα(ξΓ4)β +

i

4
(Γ4Γâξ)

α(ξΓâ)β +
i

8
(Γmnξ)

α(ξΓmnΓ4)β − i

8
(Γâb̂ξ)

α(ξΓâb̂Γ4)β .

(3.12d)

Note that ST = −Γ4SΓ4.

Comparing the Maurer-Cartan current (3.4) with the corresponding coset expres-

sion (2.12) and exploiting the definition of the superconformal generators (3.5), (3.7) in

terms of the 10-dimensional ones, we can read off the relation between the 10-dimensional

geometric objects and the components of the supercoset current J . Explicitly, we find

Em = JPm − JKm , E4 = JD , Eâ = JRâ
,

Ωmn = 2JMmn , Ωm4 = JPm + JKm , Ωâb̂ = −2JR
âb̂

(3.13a)

and

E1 =
1√
2
(JS + JŜ − JQ − JQ̂) , E2 =

i√
2
(JS − JŜ + JQ − JQ̂) (3.13b)

Note that E1 = J(1) and E2 = J(3), i.e. they have Z4-grading 1 and 3, respectively.

In terms of the currents (3.12a)–(3.12c), the Lagrangians (2.1) and (2.14) for the

PSU(2, 2|4) supercoset sigma model take the following form

L =
1

2
∗EA ∧ EBηAB − iE1 ∧ Γ01234E2

=
1

2
∗(JPm − JKm) ∧ (JPn − JKn)ηmn +

1

2
∗JD ∧ JD +

1

2
∗JRâ

∧ JRâ
−

− i

2
JS ∧ Γ4JS − i

2
JŜ ∧ Γ4JŜ +

i

2
JQ ∧ Γ4JQ +

i

2
JQ̂ ∧ Γ4JQ̂ ,

(3.14)
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where we used (3.13b) and the projection properties of the generators (3.7). The explicit

expression for the Neveu-Schwarz-Neveu-Schwarz 2-form B2 = −iE1 ∧ Γ01234E2 has been

determined from the type IIB supergravity constraints corresponding to the particular

background (3.2b).

3.2 T-duality transformations

In order to T-dualise along xm and θα, we carry out the procedure described in section 2.

Upon introducing the auxiliary 1-form fields A′m and A′α (2.16) together with the dual

variables x̃m and θ̃α, the Lagrangian takes the form

L = L1 + L2 + L3 (3.15a)

where

L1 :=
1

2
∗A′

m ∧A′
nη

mn − 1

2
A′m ∧A′nMmn +A′m ∧ Jm , (3.15b)

L2 :=
i

2
A′α ∧A′βNαβ − i

2
∗A′α ∧A′β(NL)αβ +A′α ∧ Jα , (3.15c)

L3 :=
1

2
∗JKm ∧ JKnηmn +

1

2
∗J (0)

D ∧ J
(0)
D +

1

2
∗J (0)

Râ
∧ J

(0)
Râ

−

− i

2
J
(1)
S ∧ Γ4J

(1)
S − i

2
JŜ ∧ Γ4JŜ +

i

2
J
(0)

Q̂
∧ Γ4J

(0)

Q̂
. (3.15d)

with

Jm := −dx̃n
[
eBPme−B

]

Pn
− dθ̃α

[
eBPme−B

]

Qα
+ iJ

(0)

Q̂
Γmξ + ∗JKm , (3.15e)

Jα := −dx̃m
[
eBQαe

−B
]

Pm
+ dθ̃β

[
eBQαe

−B
]

Qβ
−

− i∗J (0)
D (Γ4ξ)α − i ∗ J (0)

Râ
(Γâξ)α − i(J

(1)
S Γ4S)α (3.15f)

and

MAB := iξΓABΓ4ξ , (3.15g)

Nαβ :=
(
Γ4(1 + S2)

)

αβ
, (NL)αβ := i(Γ4ξ)α(Γ

4ξ)β + i(Γâξ)α(Γâξ)β . (3.15h)

Next, after some algebra, the equations of motion for the auxiliary fields A′m and A′α that

follow from the Lagrangian (3.15a) are given by

A′m = ∗J n[(1−M2)−1]n
m + J n[M(1−M2)−1]n

m ,

A′α = i[(1− L2)−1N−1J ]α − i[L(1− L2)−1N−1 ∗ J ]α .
(3.16)

Upon plugging these back into the Lagrangian (3.15a), we obtain the Lagrangian of the

dualised model

L̃ = L̃1 + L̃2 + L3 (3.17a)

with

L̃1 :=
1

2
∗Jm ∧ J n[(η −M2)−1]mn +

1

2
Jm ∧ J n[M(1−M2)−1]mn , (3.17b)

L̃2 :=
i

2
J ∧ (N −NL2)−1J +

i

2
∗J ∧ L(N −NL2)−1J . (3.17c)
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and L3 being the same as in (3.15d), since it is a function of currents that are not involved

in the dualisation process.

We now notice that L̃1 can be cast in the following simpler form

L̃1 =
1

2

(

1− 1

4
Mâb̂Mâb̂

)−1
(
∗Jm ∧ J nηmn + Jm ∧ J nMmn

)
. (3.18)

To arrive at (3.18) one should use the projection properties of ξ and the Fierz identity

(Γmξ)α(ξΓm)β = −1

4
(P−Γâb̂Γ4)αβ(ξΓ

âb̂Γ4ξ) , (3.19)

to show that

M2
mn = M2

nm = Mm
lMlm =

1

4
ηmnMâb̂Mâb̂ . (3.20)

To cast (3.17a) in a form similar to the original Lagrangian, we first notice that, using

the invariant form (3.10), we can identify the quantities appearing in (3.15e), (3.15f) as

follows

dx̃n
[
eBPme−B

]

Pn
+ dθ̃α

[
eBPme−B

]

Qα
=

= Str

{

− 1

2
dx̃neBPme−BKn +

i

2
dθ̃αe

BPme−B(Γ4S)α
}

=
[
e−B(dx̃nKn − idθ̃Γ4S)eB

]

Km
= J̃

(0)
Km

,

iJ
(0)

Q̂
Γmξ = J̃

(1)
Pm

,

dx̃m
[
eBQαe

−B
]

Pm
− dθ̃β

[
eBQαe

−B
]

Qβ
=

= Str

{

− 1

2
dx̃neBQαe

−BKn − i

2
dθ̃βe

BQαe
−B(Γ4S)β

}

= −iΓ4
αβ

[
e−B(dx̃nKn − idθ̃Γ4S)eB

]

Sβ
= −i(Γ4J̃

(0)
S )α .

(3.21)

As a consequence, the quantities (3.15e), (3.15f) appearing in the dualised Lagrangian

take the form

Jm = J̃
(1)
Pm

− J̃
(0)
Km

+ ∗JKm ,

Jα = i(Γ4J̃
(0)
S )α − iJ

(1)
Sβ

Γ4
βγSγ

α − i∗J (0)
D (Γ4ξ)α − i∗J (0)

Râ
(Γâξ)α .

(3.22)

The expressions (3.21) can be interpreted as Maurer-Cartan forms coming from a different

(dual) choice of the coset representative, whose appropriate form turns out to be

J̃ = g̃−1dg̃ , g̃ := ex̃
nKn−iθ̃Γ4SeBe−(ξQ+SαSα

βξ
β)(1− 1

4
M

âb̂
Mâb̂)−1

, (3.23)

where the factor (1 − 1
4Mâb̂Mâb̂)−1 appearing in the last exponent is the same as the

scaling factor in (3.18).

Let us now show that upon a complicated change of variables, the dual coset ele-

ment (3.23) can be brought to a form similar to the original coset element (3.11), that

is, with the last exponent to the right being e−ξ′Q only. This is achieved by writing the
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following chain of equalities where we use the Baker-Campbell-Hausdorff formula and the

psu(2, 2|4) superalgebra (3.6) and (3.9),

g̃ := ex̃
nKn−iθ̃Γ4SeBe−(ξQ+SαSα

βξ
β)(1− 1

4
M

âb̂
Mâb̂)−1

= ex̃
nKn−iθ̃Γ4SeBe−

i
2
D(ξΓ4Sξ+O(ξ8))− i

2
Râ ξΓâSξe−SαSα

βξ
β+O(ξ7)e−ξ′QeH , (3.24)

where ξ′ = ξ + O(ξ5, ξ7) and H = − i
4MmnξΓ

mn4Sξ − i
4Râb̂ξΓ

âb̂4Sξ takes values in the

stability subalgebra so(1, 3) ⊕ so(5). The last exponent in (3.24) can be removed by a

corresponding local gauge transformation of the supercoset element, so we have

g̃ ≃ ex̃
nKn−iθ̃Γ4SeBe−

i
2
D(ξΓ4Sξ+O(ξ8))− i

2
Râ(ξΓ

âSξ)e−SαSα
βξ

β+O(ξ7)e−ξ′Q

= ex̃
nKn−iθ̃Γ4SeB

′

e−SαSα
βξ

β+O(ξ7)e−ξ′Q

= ex̃
nKn−iθ̃Γ4S

(

eB
′

e−SαSα
βξ

β+O(ξ7)e−B′
)

eB
′

e−ξ′Q

= ex̃
nKn−iθ̃Γ4S ef

n(y,θ̂,ξ̂,ξ)Kn−ifα(y,θ̂,ξ̂,ξ)(Γ4S)αeB
′

e−ξ′Q

= ex̃
′nKn−iθ̃′Γ4S eB

′

e−ξ′Q , (3.25)

where eB
′

= eB e−
i
2
D(ξΓ4Sξ+O(ξ8))− i

2
Râ(ξΓ

âSξ), x̃′n = x̃n+fn(y, θ̂, ξ̂, ξ), θ̃′α = θ̃α+fα(y, θ̂, ξ̂, ξ)

and fn and fα are certain functions of the coordinates yâ of S5, the radial direction |y| of
AdS5 and the Graßmann-odd coordinates θ̂, ξ̂, and ξ.

The choices (3.23) and (3.25) of the dual coset element are associated with the Z4-

automorphism
Pm ↔ Km , D → −D , Râ → −Râ ,

S → −iQ , Ŝ → −iQ̂ , Q → −iS , Q̂ → −iŜ
(3.26)

of the psu(2, 2|4) Lie superalgebra (3.6) and (3.9) together with field re-definitions that can

be read off by comparing (3.11) with (3.23) and (3.25). Instead of mapping the Lie algebra

generators as above one can use the induced transformation on the currents

JMmn ↔ JMmn , JR
âb̂

↔ JR
âb̂
, JPm ↔ JKm , JD ↔ −JD , JRâ

↔ −JRâ
,

JQ → −iJS , JS → −iJQ , JQ̂ → −iJŜ , JŜ → −iJQ̂ .
(3.27)

The choice (3.23) of the dual element g̃, implies that the ξ-independent components

J̃
(0)

Q̂
, J̃

(0)

Ŝ
, J̃

(0)
D , J̃

(0)
Râ

, J̃
(0)
R

âb̂
and J̃

(0)
Mmn

of the currents are the same as the ones without tilde,

whereas the full expressions for the dual currents J̃Pm , J̃Km , J̃Ŝ , and J̃Q̂ are

J̃Pm = J̃
(1)
Pm

(

1− 1

4
Mâb̂Mâb̂

)− 1
2

, (3.28a)

J̃Km = (J̃
(0)
Km

− JKl
Ml

m)

(

1− 1

4
Mâb̂Mâb̂

)− 1
2

, (3.28b)

J̃Ŝ = J̃
(0)

Ŝ
+ J̃Km(Γ4Γmξ) +

1

2
JKnMnm(Γ4Γmξ)

(

1 +
1

16
Mâb̂Mâb̂

)

, (3.28c)

J̃Q̂ = J̃
(0)

Q̂
+

1

2
J̃
(1)
Pm

(Γ4Γnξ)Mnm

(

1 +
3

16
Mâb̂Mâb̂

)

. (3.28d)
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Likewise, the dual currents J̃Ra = (J̃D, J̃Râ
), J̃Q, and J̃S read

J̃Ra = J̃
(0)
Ra

− i(J̃
(0)
S Γ4 − J

(1)
S Γ4S)(N −NL2)−1Γaξ +

i

2
J
(0)
Rb

ξΓaL(N −NL2)−1Γbξ−

− 1

2
(J̃

(0)
S + SJ (1)

S )Γbξ(ξΓ
bLΓ4Γaξ) +

1

8
J
(0)
Rc

ξΓbLΓ4Γaξ(ξΓbLΓ
4Γcξ) , (3.28e)

J̃Q =
[
N2(1− L2)

]− 1
2 (J̃

(1)
Q − SJ̃ (0)

S ) , J̃
(1)
Q = −J

(1)
S − J

(0)
Ra

(Γ4Γaξ) , (3.28f)

J̃S =
[
N2(1− L2)

]− 1
2
[
J̃
(0)
S − SJ̃ (1)

Q + (2S − Γ4NL)J
(1)
S

]
. (3.28g)

Next, upon substituting (3.28a) and (3.28b) into (3.22), we get the following expression

for Jm

Jm = (J̃Pm − J̃Km)

(

1− 1

4
Mâb̂Mâb̂

) 1
2

+ ∗JKm − JKnMn
m . (3.29)

Also, by using (3.28), we find the relations

− i

2
J̃ŜΓ

4J̃Ŝ +
i

2
J̃
(0)

Ŝ
Γ4J̃

(0)

Ŝ
= J̃

(0)
Km

JKnηmn +
1

2
J̃Km J̃KnMmn − 1

2
JKmJKnMmn (3.30a)

and
1

2
J̃Pm J̃PnMmn =

i

2
J̃Q̂Γ

4J̃Q̂ − i

2
J̃
(0)

Q̂
Γ4J̃

(0)

Q̂
. (3.30b)

Furthermore, upon combing (3.29) and (3.30) with the Lagrangians L̃1 and L3 defined

in (3.15d) and (3.18), we find the following form for L̃1 + L3

L̃1 + L3 =
1

2
∗(J̃Pm − J̃Km) ∧ (J̃Pn − J̃Kn)ηmn − i

2
J̃Ŝ ∧ Γ4J̃Ŝ +

i

2
J̃Q̂ ∧ Γ4J̃Q̂+

+
1

2
∗J (0)

D ∧ J
(0)
D +

1

2
∗J (0)

Râ
∧ J

(0)
Râ

− i

2
J
(1)
S ∧ Γ4J

(1)
S −

− J̃Km ∧ J̃PnMmn − J̃
(1)
Pm

∧ JKnηmn .

(3.31)

In addition, with help of (3.28e), the Lagrangian L̃2 as given in (3.17c) becomes

L̃2 =
1

2
∗J̃Ra ∧ J̃Ra −

1

2
∗J (0)

Ra
∧ J

(0)
Ra

−

− i

2

(
J̃
(0)
S + SJ (1)

S

)
∧ (N −NL2)−1

(
J̃
(0)
S + SJ (1)

S

)

+ iJ
(0)
Ra

∧
(
J̃
(0)
S + SJ (1)

S

)
Γ4L(N −NL2)−1Γaξ+

+
i

2
J
(0)
Ra

∧ J
(0)
Rb

ξΓa(N −NL2)−1Γbξ .

(3.32)

Finally, summing up (3.31) with (3.32) and using (3.28f) and (3.28g), we obtain

L̃ = L̃1 + L̃2 + L3 = Lg̃ + L′ + L′′ , (3.33a)

where

Lg̃ :=
1

2
∗(J̃Pm − J̃Km) ∧ (J̃Pn − J̃Kn)ηmn +

1

2
∗J̃D ∧ J̃D +

1

2
∗J̃Râ

∧ J̃Râ

− i

2
J̃S ∧ Γ4J̃S − i

2
J̃Ŝ ∧ Γ4J̃Ŝ +

i

2
J̃Q ∧ Γ4J̃Q +

i

2
J̃Q̂ ∧ Γ4J̃Q̂

(3.33b)
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is constructed in terms of the PSU(2,2|4)
SO(1,4)×SO(5) currents built from the dual coset element (3.23)

while L′ and L′′ are given by

L′ := iJ
(1)
S ∧ (N −NL2)−1N−1Γ4J̃

(1)
Q − iJ

(1)
S ∧ Γ4S(N −NL2)−1SJ̃ (1)

Q +

+ JKm ∧ J̃
(1)
Pn

ηmn

(

1 +
1

4
Mâb̂Mâb̂

) (3.33c)

and
L′′ := iJ̃

(0)
S ∧ (N −NL2)−1(4N−1Γ4S − S − L)J

(1)
S −

− iJ
(0)
Ra

∧ J̃
(0)
S (N −NL2)−1N−1Γ4(2S − Γ4NL)Γ4Γaξ−

− J̃
(0)
Km

∧ J̃
(1)
Pn

Mmn

(

1 +
1

4
Mâb̂Mâb̂

)

.

(3.33d)

We note that (3.33b) has exactly the same form as the initial Lagrangian (3.14). Therefore,

the action of the superstring on AdS5×S5 is self-dual provided that L′+L′′ is a total deriva-
tive. One can indeed show that this is true by performing quite involved computations,

using Fierz identities and the Maurer-Cartan equation projected on the SO(1, 3) × SO(5)

generators

(dJ − J ∧ J)|R
âb̂

= (dJ − J ∧ J)|Mmn = 0 ,

(dJ̃ − J̃ ∧ J̃)|R
âb̂

= (dJ̃ − J̃ ∧ J̃)|Mmn = 0 .
(3.34)

The results are

L′ = −i d

[

J
(1)
S Γ4ξ

(

1 +
1

4
Mâb̂Mâb̂

)]

(3.35a)

and

L′′ = −1

2
d
[

J̃
(1)
Mmn

Mmn

(
1 +

1

4
Mâb̂Mâb̂

)]

, (3.35b)

where the matrices Mmn and Mâb̂ have been defined in (3.15g).

Altogether,
∫
Lg =

∫
Lg̃ and we have thus proved the self-duality of the AdS5 × S5

superstring action under the worldsheet duality transformation on (xm, θα) coordinates,

without gauge fixing kappa symmetry. The worldsheet T-duality transforms the superstring

sigma model action (3.14) constructed with the use of the supercoset representative (3.11)

into the action constructed using the supercoset element (3.23).

The duality makes use of the automorphism (3.26) of the psu(2, 2|4) Lie superalgebra,

which in particular exchanges supercharges Q and S. When dualising the gauge-fixed

action, one is indeed forced to change the kappa symmetry gauge when mapping the original

lagrangian to the dual one [9, 10].

4 Self-duality of AdS3 × S3 × T 4 superstrings

The AdS3 × S3 × T 4 solutions of type IIB supergravity preserve 16 supersymmetries

which generate the superisometries forming the PSU(1, 1|2)×PSU(1, 1|2) supergroup (see

e.g. [53]). The AdS3 × S3 curvatures are taken to be

Rab
AdS3

= −ea ∧ eb , Râb̂

S3
= eâ ∧ eb̂ , (4.1)
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where ea = ea(x) for a, b, . . . = 0, 1, 4 and eâ = eâ(y) for â, b̂, . . . = 5, 6, 7 are the vielbeins

of (unit radius) AdS3 and S3, respectively.6 One such background is supported by constant

Ramond-Ramond 5-form flux

F5 =
1

3
(εcbae

a ∧ eb ∧ ec + εĉb̂âe
â ∧ eb̂ ∧ eĉ) ∧ (dϕ2 ∧ dϕ3 + dϕ8 ∧ dϕ9) , (4.2)

where dϕa′ (a′, b′, . . . = 2, 3, 8, 9) are the flat vielbeins along T 4. Note the change in the

form of the F5-flux (4.2) as compared with its value (3.2) in the AdS5 × S5 solution. This

difference results in changing the geometry of D = 10 space-time and breaking half of the

32 supersymmetries.

Since only half of the maximal supersymmetry is preserved, the fermionic modes of

the string in these backgrounds split into 16 fermions ϑ which are associated with the

preserved supersymmetries and 16 fermions υ associated with the broken ones. Explicitly,

the splitting is realized by using the additional projectors 1
2(1± Γ2389) as follows

ϑi =
1

2
(1− Γ2389)Θi , υi =

1

2
(1 + Γ2389)Θi . (4.3)

Like in the AdS5 × S5 case, the fermions ϑ can be regarded as Graßmann-odd directions

of the supercoset space PSU(1,1|2)×PSU(1,1|2)
SO(1,2)×SU(2) which contains AdS3 × S3 as the bosonic sub-

space. The T 4 directions and the non-supercoset fermions υ extend this supercoset to a

full solution to the 10-dimensional type IIB supergravity constraints.

For certain classical string solutions in AdS3 × S3 × T 4 one can use kappa symmetry

to gauge fix to zero all the non-supercoset fermions υ. In this gauge, modulo the Virasoro

constraints, the oscillations of the string along T 4 decouple from the PSU(1,1|2)×PSU(1,1|2)
SO(1,2)×SU(2)

modes (see e.g. [13] for details). Consequently, the superstring action reduces to its super-

coset part, which can be obtained as a truncation of the AdS5 × S5 action, once we select

the PSU(1, 1|2)× PSU(1, 1|2) subgroup of PSU(2, 2|4) and reduce to it.

To this end, we first identify the 10-dimensional indices 2, 3, 8, and 9 as associated

with the T 4 directions (ϕa′) = (ϕI , ϕI′) (I, J, . . . = 2, 3; I ′, J ′, . . . = 8, 9). Then, we remove

from the algebra all the bosonic generators with the indices m = 2, 3 and â = 8, 9, and

halve the number of fermionic generators by acting on the original 32 generators defined

in (3.3) with the additional projector introduced in (4.3)

Qi =
1

2
Qi(1− Γ2389) , i = 1, 2 . (4.4)

Consequently, the generators (Q, Q̂, S, Ŝ) defined in (3.7) are subject to the same projection.

The algebra psu(1, 1|2) ⊕ psu(1, 1|2) is then given by (3.6)–(3.9b) with m,n, . . . = 0, 1,

â, b̂, . . . = 5, 6, 7 and the projectors P± replaced by 1
2P±(1− Γ2389).

From a geometrical point of view, this truncation corresponds to obtaining the AdS3×
S3 × T 4 background from AdS5 × S5 by formally compactifying two directions of the 4-

dimensional Minkowski boundary of AdS5 and two directions of S5 onto T 4 ∼= T 2 × T 2, as

well as deforming the value of the F5 flux as in (4.2).

6This particular choice of the tangent space indices associated with AdS3 × S3 × T 4 is related to the

way we obtain these solutions by truncation of the psu(2, 2|4) superalgebra to psu(1, 1|2) ⊕ psu(1, 1|2), as

we will see shortly.
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Self-duality of the supercoset model. Given that the worldsheet sigma model on
PSU(1,1|2)×PSU(1,1|2)

SO(1,2)×SU(2) can be described as a truncation of the AdS5 × S5 supercoset one,

we can use the results of the previous section to easily show that it is self-dual under

T-dualisation of the bosonic coordinates along the 2-dimensional Minkowski boundary

of AdS3 plus four fermionic directions associated with a commuting subalgebra of the

PSU(1, 1|2)× PSU(1, 1|2) isometries.

In fact, the PSU(1,1|2)×PSU(1,1|2)
SO(1,2)×SU(2) supercoset sigma model Lagrangian has the same form

as (3.14) with the currents constructed with the coset element having a form similar

to (3.11). Proceeding exactly as in section 2, the T-dualised Lagrangian turns out to be

equal (modulo a total derivative) to the AdS3 × S3 sigma model Lagrangian constructed

in terms of the supercoset element

J̃ = g̃−1dg̃ , g̃ := ex̃
nKn−iθ̃Γ4SeBe−(ξQ+SαSα

βξ
β) , (4.5)

where Sα
β was defined in (3.12d). Since in this case at most ξ4 powers can appear, the

factor (1− 1
4Mâb̂Mâb̂)−1 which was present in the dual supercoset element of the AdS5×S5

case does not enter the expression for g̃.

As in the AdS5 × S5 case, the dual element (4.5) can be brought to a form similar

to the initial coset element (3.11), i.e. with the last factor to the right being simply e−ξQ.

Specifically, the following chain of equalities hold7

g̃ := ex̃
nKn−iθ̃Γ4SeBe−(ξQ+SαSα

βξ
β)

= ex̃
nKn−iθ̃Γ4SeBe−

i
2
DξΓ4Sξ e−SαSα

βξ
β

e−ξQ

= ex̃
nKn−iθ̃Γ4SeB

′

e−SαSα
βξ

β

e−ξQ

= ex̃
nKn−iθ̃Γ4S

(

eB
′

e−SαSα
βξ

β

e−B′
)

eB
′

e−ξQ

= ex̃
nKn−iθ̃Γ4S ef

n(y,θ̂,ξ̂,ξ)Kn−ifα(y,θ̂,ξ̂,ξ)(Γ4S)αeB
′

e−ξQ

= ex̃
′nKn−iθ̃′Γ4S eB

′

e−ξQ , (4.6)

where eB
′

= eB e−
i
2
DξΓ4Sξ, x̃′n = x̃n + fn(y, θ̂, ξ̂, ξ), θ̃′α = θ̃α + fα(y, θ̂, ξ̂, ξ) and fn and fα

are certain functions of the coordinates yâ of S3, the radial direction |y| of AdS3 and the

Graßmann-odd coordinates θ̂, ξ̂, and ξ.

We have thus shown that in the kappa symmetry gauge in which the sixteen non-

supercoset fermions υ are set to zero the AdS3 × S3 × T 4 superstring action is self-dual

under the combined fermionic and bosonic T-duality. However, this gauge is not always

admissible, for instance in the case when the classical string moves entirely in AdS3×S3 [35],

so it is important to understand how T-dualisation works in different gauges or without

fixing kappa symmetry. To this end we should know the structure of the AdS3 × S3 × T 4

superstring Lagrangian in the presence of the fermionic modes υ. To all orders in υ this

dependence is rather complicated, so in what follows we will restrict only to the quadratic

7Note that in contrast to (3.24) no stability group elements eH appear and hence no compensating gauge

transformation is needed due to the symmetry properties of the gamma-matrices in this case. For the same

reason, no terms of the form eRâ
ξΓâ

Sξ appear.
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order in υ. In particular, we will see that the presence of the fermions υ requires that the

T-dualisation is also performed along two of the torus directions.

Non-supercoset fermions. To derive the explicit form of the Green-Schwarz super-

string Lagrangian (2.1) in the AdS3 × S3 × T 4 background, we need expressions for the

supervielbeins EA(X,ϑ, υ) and the Neveu-Schwarz-Neveu-Schwarz 2-form B2(X,ϑ, υ) as se-

ries in powers of υi, which can be determined in the same way as the Θ-expansion derived

in [41] (see for example [19]). To quadratic order in υ one finds

EA = EA(X,ϑ)− iEΓAυ − i

2
DυΓAυ , (4.7)

and8

B2 = Bcoset
2 (x, y, ϑ)− iEA ∧ EΓAσ

3υ − 1

2
EΓAυ ∧ EΓAσ

3υ − i

2
EA ∧ DυΓAσ

3υ , (4.8)

where Eαi(x, y, ϑ) = 1
2(1− Γ2389)αβE

βi(x, y, ϑ), Ea(x, y, ϑ), and Eâ(x, y, ϑ) are the super-

vielbeins constructed in terms of the PSU(1,1|2)×PSU(1,1|2)
SO(1,2)×SU(2) supercoset currents, as in (3.13b),

while Ea′ = dϕa′ is the flat vielbein along T 4. The Pauli matrix σ3
ij contracts the indices

i, j = 1, 2 of the spinors. Moreover, the Neveu-Schwarz-Neveu-Schwarz gauge potential

Bcoset
2 has again the form as in (3.14), and for the background under consideration the

covariant derivative D is given by

Dυ = ∇υ− i

16 · 5!E
AFB1···B5Γ

B1···B5ΓAσ
2υ = ∇υ− i

4
EA(1− Γ2389)Γ01234ΓAσ

2υ , (4.9)

where ∇ := d − 1
4Ω

ABΓAB and ΩAB(x, y, ϑ) is the spin connection on PSU(1,1|2)×PSU(1,1|2)
SO(1,2)×SU(2)

defined in terms of the currents as in (3.13a).

Upon substituting the expressions (4.7) and (4.8) into the string action (2.1) and using

the projector properties (4.3) of ϑ and υ, we find

L = Lcoset +
1

2
∗dϕa′ ∧ dϕa′ − i∗dϕa′ ∧ EΓa′υ − idϕa′ ∧ EΓa′σ

3υ − 1

2
∗EΓa′υ ∧ EΓa′υ−

− 1

2
EΓa′υ ∧ EΓa′σ

3υ − i

2
∗EA ∧ DυΓAυ − i

2
EA ∧ DυΓAσ

3υ .

(4.10)

Here, Lcoset has the same form as (2.14) (with γ = Γ4) and is similar to (3.14). In the

gauge in which υ are non-zero, the above Lagrangian contains a lot of υ-dependent terms

which contribute to the T-dualisation along the supercoset directions (xm, θ).

8The general expression for Bcoset
2 is

Bcoset
2 = −

i

4
EKσ3E

where K is 8 times the inverse of the matrix that appears in /F of (7.3) (dropping the projector). For type

IIA σ3 is replaced by Γ11. See [19].
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Self-duality up to second order in the non-supercoset fermions. Since we have

not used kappa symmetry to get rid of non-supersymmetric fermions, we are still free to use

it to simplify the dualisation procedure. We find convenient to impose the gauge ξ = 0 on

fermions in the coset representative (3.11). Then, in view of (3.12), the current components

JKm and JS vanish.

We begin by focusing on the part of the Lagrangian which is linear in υ. Expressing the

10-dimensional geometric objects in terms of the coset currents (as done in (3.13b), (3.14)),

replacing Ea′ = dϕa′ and defining υ± = 1√
2
(υ1 ± iυ2), the Lagrangian at the linear order

in υ reads

L = Lcoset +
1

2
∗dϕa′ ∧ dϕa′ + i∗dϕa′ ∧ JQ̂Γa′υ

+ + idϕa′ ∧ JQ̂Γa′υ
−−

− i∗dϕa′ ∧ (JŜ − JQ)Γa′υ
− − idϕa′ ∧ (JŜ − JQ)Γa′υ

+ .
(4.11)

If we apply the general dualisation procedure described in section 2, this action gets mapped

into its dual counterpart constructed with the use of the dual coset representative (4.5) at

ξ = 0, provided that we use the Z4-automorphism similar to (3.27), supplement the duality

along xm and θ with an extra T-transformation along the T 2 isometries parametrized by

the coordinates ϕI (I = 2, 3) and make the following field re-definitions (which are complex

in the case of the fermions)9

ϕI′ → −ϕI′ , P+v
± → iP+v

± , P−v
± → iP−v

∓ , (4.12)

where P± are given in (3.8).

The technical reason requiring the T-dualisation of ϕI is the following. The gamma

matrices Γ2 and Γ3 appearing in terms like JΓIυ of (4.11) do not commute with the

projectors P± which define the supercoset currents in accordance with (3.7), namely

P+JQ = JQ , P−JQ̂,Ŝ = JQ̂,Ŝ , P±Γ
I = ΓI

P∓ . (4.13)

As a result, the corresponding terms do not map to themselves upon dualisation along the

supercoset directions. This gets corrected by the further dualisation of the T 2 coordinates

ϕI . Note that these T 2 directions are exactly the ‘descendants’ of the Minkowski boundary

of AdS5 which we T-dualised in the AdS5 × S5 case. On the other hand, if we were to

choose the gauge in which all the non-supercoset fermions are put to zero (υ = 0) we

would not directly see the need to T-dualise half of the torus directions, since in this gauge

the T 4 sector almost decouples from the supercoset sigma model (the two sectors are only

related via coupling to the intrinsic worldsheet metric, or, equivalently, via the Virasoro

constraints [13]). The need to T-dualise half of the T 4 directions is also in agreement with

the results of [36] on the T-self-duality of the AdS3 ×S3 × T 4 backgrounds (see section 7).

We then proceed by considering the part of the Lagrangian which is quadratic in υ.

From (4.10), again expressing the 10-dimensional geometric objects in terms of the super-

9The overall sign in these re-definitions is only fixed once we consider terms of the form dϕ∧υdυ, which

arise for example in the AdS2 × S2 × T 6 case considered in the next section.

– 24 –



J
H
E
P
1
2
(
2
0
1
5
)
1
0
4

coset currents, we have

L(2) =
1

2
∗(JŜ−JQ) ∧W−−(JŜ−JQ)+

1

2
∗JQ̂ ∧W++JQ̂−∗(JŜ−JQ) ∧W−+JQ̂−

− 1

2
(JŜ − JQ) ∧W+−(JŜ − JQ) +

1

2
JQ̂ ∧W+−JQ̂+

+
1

2
(JŜ − JQ) ∧ (W++ −W−−)JQ̂ − i

2
∗EA ∧∇υ+ΓAυ

−−

− i

2
∗EA ∧∇υ−ΓAυ

+ − i

2
EA ∧∇υ+ΓAυ

+ − i

2
EA ∧∇υ−ΓAυ

−−

− 1

8
∗EA ∧ EB (υ+ + υ−)ΓB(1− Γ2389)Γ01234ΓA(υ

+ − υ−)+

+
1

8
EA ∧ EB (υ+ + υ−)ΓB(1− Γ2389)Γ01234ΓA(υ

+ − υ−)

(4.14a)

where

W±± := (ΓAυ±) (υ±ΓA) , W±∓ := (ΓAυ±) (υ∓ΓA) . (4.14b)

Upon a somewhat lengthy calculation, one can prove that this expression maps into

itself when we dualise along x, θ, ϕ2, and ϕ3, and use the mapping (4.12).

This proves the self-duality of the type IIB AdS3 × S3 × T 4 superstring sigma model

with F5-flux under a T-duality transformation that involves two coordinates xm of the

Minkowski boundary of AdS3, four fermionic directions θ and two torus directions ϕI .

To conclude we have checked that the Green-Schwarz string action is T-self-dual also

in the case in which the AdS3 × S3 × T 4 background is supported not by the F5-flux (4.2)

but by the Ramond-Ramond 3-form flux

F3 =
1

3
(εcbae

a ∧ eb ∧ ec + εĉb̂âe
â ∧ eb̂ ∧ eĉ) . (4.15)

In this case, the fermionic vielbeins of the supercoset split as follows

E1 =
1√
2
(JS + JŜ − JQ − JQ̂) , E2 =

i√
2
Γ23(JS − JŜ + JQ − JQ̂) . (4.16)

This is consistent with the fact that the two backgrounds are related by toroidal T-dualities.

Moreover, by T-dualising an odd number of toroidal directions of the type IIB background,

one gets superstring sigma models on type IIA AdS3×S3×T 4 backgrounds with an F4-flux,

which are also invariant under the combined fermionic and bosonic T-dualities.

5 Self-duality of AdS2 × S2 × T 6 superstrings

AdS2 × S2 × T 6 backgrounds are solutions of type IIA and type IIB supergravity related

by T-duality [54–59]. They preserve only 1/4, that is, 8 of 32 supersymmetries in ten

dimensions that generate the PSU(1, 1|2) isometries. As above, we set the radii of AdS2
and S2 to one, so their curvatures are

Rab
AdS2 = −ea ∧ eb , Râb̂

S2 = eâ ∧ eb̂ . (5.1)
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The complete Green-Schwarz AdS2×S2×T 6 superstring action is not a PSU(1,1|2)
SO(1,1)×U(1) super-

coset sigma model, since, in addition to four bosonic and eight fermionic supercoset modes

it also contains non-trivially coupled bosonic modes associated with the T 6 directions and

24 fermionic modes associated with broken supersymmetries [15]. Note that in this case 16

independent kappa symmetry transformations are not enough to put the 24 non-supercoset

fermions to zero. The theory reduces to the PSU(1,1|2)
SO(1,1)×U(1) supercoset sigma model plus the

decoupled T 6-sector if we put these string fermionic modes to zero by hand.

We will consider T-dualisation both in type IIA and type IIB backgrounds. While

self-duality of type IIB solutions easily follow from self-duality of the master AdS5 × S5

model as before, the type IIA case requires a separated treatment.

5.1 Type IIB backgrounds

One of the examples of a type IIB superstring in AdS2 × S2 × T 6 can be obtained by a

formal ‘compactification’ to T 2 of two spatial coordinates of the AdS3×S3×T 4 background,

the coordinate x1 of the AdS3 Minkowski boundary and the coordinate y7 of S3. This

background is supported by the following Ramond-Ramond 5-form flux

F5 =
1

2
(1 + ∗)εabea ∧ eb ∧ Re(Vol3) , (5.2)

where a, b = 0, 4 and â, b̂ = 5, 6 are now the AdS2 × S2 indices and Vol3 = d(ϕ1 + iϕ7) ∧
d(ϕ2 + iϕ8) ∧ d(ϕ3 − iϕ9) is the holomorphic 3-form on T 6.

To split the 32 fermionic modes (4.3) into 8 supercoset and 24 non-supercoset ones we

use the additional projectors 1
2(1± Γ1278) and write

ϑi =
1

4
(1 + Γ1278)(1− Γ2389)Θi = P4Θ , υi = (1− P4)Θ

i , (5.3)

where P4 is a projector of rank 4 and (1− P4) is its complementary of rank 12.

The psu(1, 1|2) superalgebra can be obtained by a truncation of the psu(1, 1|2) ⊕
psu(1, 1|2) algebra, exploiting a procedure similar to the one that gives psu(1, 1|2) ⊕
psu(1, 1|2) as a sub-superalgebra of psu(2, 2|4). We select the AdS3 direction associated

with the index m = 1 and the S3 direction associated with â = 7 as those to be compacti-

fied on an extra T 2. Then we remove from the psu(1, 1|2)⊕ psu(1, 1|2) superalgebra all the

bosonic generators carrying the indices m = 1 and â = 7 and halve the number of fermionic

generators by projecting the fermionic psu(1, 1|2) ⊕ psu(1, 1|2) generators with the addi-

tional projector 1
2(1 + Γ1278). We are then left with eight supercharges Q = (Q, Q̂, S, Ŝ)

associated with ϑ, obeying the projection property

Q = QP4 , (5.4)

with P4 given in (5.3). The algebra turns out to have the same form as (3.6)–(3.9b) where

we set m,n, . . . = 0 (η00 = −1), â, b̂, . . . = 5, 6 and project the supercharges with the

P4 projector. For the reader’s convenience, we give the explicit form of the algebra in

appendix B.
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Verification of self-duality and dual representative. The action for the type IIB

superstring in AdS2 × S2 × T 6 with Ramond-Ramond flux given in (5.2) has exactly the

same form as (4.10) in which the fermionic fields are now assumed to be projected as

in (5.3), Lcoset is still given by (3.14), while the covariant derivative D takes the form

Dυ := dυ +
1

2
(JP + JK)Γ0Γ4υ + JR56Γ

56υ − i

2
EAP4Γ

01234ΓAσ
2υ . (5.5)

Because of the same structure, the proof of the self-duality of the PSU(1,1|2)
SO(1,1)×U(1) supercoset

part of the AdS2 × S2 × T 6 action is exactly the same as that of the AdS5 × S5 and

AdS3 × S3 actions. Since now ξ is a two-component Graßmann-odd spinor, the super-

coset element (3.23) which is the building block of the dual AdS2 × S2 supercoset action

simplifies to

g̃ := ex̃
0K−iθ̃Γ4SeBe−ξQ . (5.6)

Similarly, the analysis of the T-dualisation of the type IIB AdS2 × S2 × T 6 action in the

presence of the non-supercoset fermions proceeds in the same way as for the AdS3×S3×T 4

action (4.10) (again in the gauge ξ = 0). At the first order in υ, the AdS2 × S2 × T 6

Lagrangian has the form (4.11), in which ϕa′ (a′ = 1, 2, 3, 7, 8, 9) parametrize T 6. Together

with the supercoset sector, it is not hard to see that this part of the string action transforms

into itself under combined T-duality of the time direction x0, two fermionic directions θ

and three torus directions ϕI (I = 1, 2, 3), upon the re-definition (4.12). Then, one can

check that the self-duality also persists when the second order terms in υ are taken into

account in the type IIB AdS2 × S2 × T 6 superstring action.

5.2 Type IIA backgrounds

For completeness, we will now consider examples of strings in type IIA AdS2 × S2 × T 6

backgrounds.

Background with F2- and F4-flux. Let us start with the background which is sup-

ported by the following Ramond-Ramond 2-form and 4-form fluxes (see [15, 16] for more

details, modulo signs)

F2 =
1

2
εabe

b ∧ ea , F4 =
1

2
εâb̂e

b̂ ∧ eâ ∧ J2 , (5.7)

where as above a, b = 0, 4, â, b̂ = 5, 6 and a′, b′ = 1, 2, 3, 7, 8, 9 are the AdS2, S
2 and T 6

indices, respectively, and J2 =
1
2dϕ

b′ ∧dϕa′Ja′b′ is the Kähler form on T 6. For our purposes

it is convenient to choose a basis in T 6 in which10

Ja′b′Γ
a′b′ = 2(Γ17 + Γ28 − Γ39) . (5.8)

The type IIA AdS2×S2×T 6 superstring action is obtained by substituting into the generic

form of the Green-Schwarz action (2.1) the worldsheet pullbacks of the supervielbeins

EA(X,Θ) and the Neveu-Schwarz-Neveu-Schwarz 2-form B2(X,Θ) that describe the type

10See appendix A for the realization of 10-dimensional (32× 32)-matrices ΓA used in this section.
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IIA AdS2 × S2 × T 6 background. As in the type IIB cases, to find an explicit form

of EA(X,Θ) and B2(X,Θ) we split the 32-component Majorana spinor Θα̂ into an 8-

component spinor ϑ corresponding to eight supersymmetries preserved by the AdS2×S2×
T 6 background and parametrizing the Graßmann-odd directions of the coset PSU(1,1|2)

SO(1,1)×U(1) ,

and a 24-component spinor υ corresponding to the broken supersymmetries as follows

ϑ = P8Θ , υ = (1− P8)Θ = P24Θ (5.9a)

where

P8 :=
1

8
(2− iJa′b′Γ

a′b′γ(7)) with γ(7) = iΓ123789 (5.9b)

is the rank-8 projection matrix.

The fermionic 32-component supervielbeins E α̂ split accordingly as follows

E8(X,ϑ, υ) = P8E , E24(X,ϑ, υ) = P24E . (5.10)

If we set υ = 0 in (5.10), the supervielbeins E24 vanish, while the 8-component E8|υ=0 =

E(x, y, ϑ) describe, together with the bosonic supervielbeins Ea|υ=0 = Ea(x, y, ϑ), the ge-

ometry of the supercoset PSU(1,1|2)
SO(1,1)×U(1) . Finally, at υ = 0 the vielbeins Ea′ along the T 6

directions reduce to the differentials of the T 6-coordinates Ea′ |υ=0 = Ea′ = dϕa′ . As a

result, when the non-supersymmetric fermionic modes υ are set to zero the T 6 sector com-

pletely decouples and the Green-Schwarz action reduces to the PSU(1,1|2)
SO(1,1)×U(1) sigma model.

We begin by discussing the T-dualisation of the supercoset action (υ = 0). As a

consequence of the particular definition of the PSU(1, 1|2) generators given in appendix C,

the PSU(1, 1|2) currents are related to the supervielbeins Ea, Eα̂ and the components of

the spin connection Ωab as

AdS2 : JP =
1

2
(E0 +Ω04) , JK = −1

2
(E0 − Ω04) , JD = E4 ,

S2 : JRâ
= Eâ , JR56 = −1

2
Ω56 , (â = 5, 6) ,

JQ = − 1√
2
P+(E

1 − iΓ123E2) , JQ̂ = − 1√
2
P−(E

1 + iΓ123E2) ,

JS =
1√
2
P+(E

1 + iΓ123E2) , JŜ =
1√
2
P−(E

1 − iΓ123E2) .

(5.11a)

Here the fermionic vielbeins Ei with (i = 1, 2) are Majorana-Weyl spinors with opposite

chiralities

E1 :=
1

2
(1 + Γ11)E , E2 :=

1

2
(1− Γ11)E (5.11b)

and P± are the projectors given in (3.8).

Note that each of the fermionic currents has two independent spinorial components

only, and upon inverting the fermionic part in (5.11a), we get

E1 =
1√
2
(JS + JŜ − JQ − JQ̂) , E2 =

i√
2
Γ123(JQ − JQ̂ + JS − JŜ) . (5.12)

Since the identification of the PSU(1, 1|2) currents as given in appendix C corresponds

to the form of the psu(1, 1|2) superalgebra in the type IIB case, eqs. (B.1a) and (B.1b),
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the AdS2 × S2 supercoset Lagrangian Lcoset has the form (2.14) with γ = Γ4 (similar to

that in the type IIB cases (3.14)). Therefore, as in the other AdSd × Sd cases, the proof

of the T-self-duality of the PSU(1, 1|2) supercoset model is carried out using the generic

procedure described in section 2 with the dual coset element (2.19) being of the form (5.6).

We now turn to the complete superstring action (υ 6= 0). In order to find out how the

T 6 sector couples to the supercoset sector via υ, one should know the explicit dependence

of EA, E α̂ and B2 on υ. For the case under consideration the expression of EA and E α̂ up

to the quadratic order in υ was derived in [16] and the explicit form of B2 can be easily

computed following [41]. We thus find that the expressions coincide with (4.7) and (4.8)

with the matrix σ3 in (4.8) substituted by Γ11 and the covariant differential of υ given by

Dυ = ∇υ +
1

8
EA

(
1

2
FBCΓ

BCΓ11 +
1

4!
FBCDEΓ

BCDE

)

ΓAυ

= ∇υ − 1

2
Ea′P8Γ

0Γ4Γ11Γa′υ .

(5.13)

Moreover, we have

Bcoset
2 (x, y, ϑ) =

i

2
EΓ0Γ4P8E . (5.14)

Upon substituting the expressions for the supervielbeins into the action (2.1), we get the

following Lagrangian for the type IIA AdS2 × S2 × T 6 superstring to the second order in

the non-supercoset fermionic modes υ

L = Lcoset +
1

2
∗dϕa′ ∧ dϕa′ − i∗dϕa′ ∧ EΓa′υ − idϕa′ ∧ EΓa′Γ

11υ − 1

2
∗E ∧ Γa′υ EΓa′υ

− 1

2
E ∧ Γa′υ EΓa′Γ

11υ − i

2
∗EA ∧ DυΓAυ − i

2
EA ∧ DυΓAΓ

11υ .

(5.15)

Remarkably, this expression has the same form of the Lagrangian (4.10) for the AdS3 ×
S3 × T 4 and type IIB AdS2 × S2 × T 6 cases, with σ3 → Γ11. Therefore, the T-dualisation

of the part of the action which includes the fermions υ is carried out in a way similar to

those cases. In particular, the projectors (3.8) commute in a different way with the two

sets of the gamma matrices along T 6, namely P±Γ1,2,3 = Γ1,2,3
P∓ and P±Γ7,8,9 = Γ7,8,9

P±,
and for the action to be mapped to itself, the combined bosonic and fermionic T-duality

has to include the T-dualisation of three torus directions ϕI (I = 1, 2, 3).

In conclusion, the type IIA AdS2 × S2 × T 6 background supported by 2-form and

4-form flux (5.7) is self-dual under a suitable combination of bosonic and fermionic T-

transformations. This is consistent with the fact that this background is related to the

previous type IIB one by a bosonic T-duality transformation along torus directions.

We would like to point out that the choice of the relevant Z4-automorphism of the

psu(1, 1|2) superalgebra (see appendix C) associated with the appropriate splitting (5.12) of

the supercoset currents is crucial for the proof of the self-duality of the string actions in the

presence of the non-supercoset fermions υ. A different (inappropriate) choice of Z4-grading

would make the proof of the self-duality of the complete superstring actions in AdS2×S2×
T 6 much more complicated if at all possible. For instance, if the projectors P± were to

commute in the same way with all the T 6 gamma matrices one would encounter serious

problems with the proper T-dualisation of the non-supercoset part of the string action.
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F4-flux background. Finally, let us mention the type IIA AdS2 × S2 × T 6 background

which can be obtained by T-dualisation along ϕ1 of the type IIB background with the

F5-flux (5.2). This type IIA background is supported by the F4-flux

F4 =
1

2
εabe

bea ∧ (dϕ3 ∧ dϕ2 − dϕ8 ∧ dϕ9) +
1

2
εâb̂e

b̂eâ ∧ (dϕ9 ∧ dϕ2 + dϕ8 ∧ dϕ3) . (5.16)

In this background, the covariant differential (5.13) of the fermionic modes υ and the

supercoset part Bcoset
2 of the Neveu-Schwarz-Neveu-Schwarz form take the following form

Dυ = ∇υ − 1

2
Ea′P8Γ

0234Γa′υ , Bcoset
2 (x, y, ϑ) = − i

2
EΓ0234Γ11P8E (5.17)

while the supercoset parts of the fermionic supervielbeins split into the currents JQ,Q̂,S,Ŝ

as follows

E1 =
1

2
(1 + Γ11)E =

1√
2
(JS + JŜ − JQ − JQ̂) ,

E2 =
1

2
(1− Γ11)E =

i√
2
Γ1(JQ − JQ̂ + JS − JŜ).

(5.18)

With these definitions, the proof of the invariance of the string action in this background

under the combined bosonic and fermionic T-dualities proceeds exactly as in the previous

cases.

6 Self-duality of AdSd × Sd × Sd × T 10−3d superstrings

In this section, we will extend the previous discussion to the cases of superstrings on

AdSd×Sd×Sd×T 10−3d (d = 2, 3). As their AdSd×Sd×T 10−2d counterparts, these back-

grounds preserve 1/4 and 1/2 of the 10-dimensional supersymmetry and can be supported

by either Neveu-Schwarz-Neveu-Schwarz or Ramond-Ramond fluxes [58, 60–63]. Here we

will consider the latter ones. For instance, a type IIB AdS3 × S3 × S3 × S1 background

can be supported by the following F3 flux

F3 =
1

3

(

εcbae
a ∧ eb ∧ ec +

RAdS

R+
εĉb̂âe

â ∧ eb̂ ∧ eĉ +
RAdS

R−
εc′b′a′e

a′ ∧ eb
′ ∧ ec

′

)

, (6.1)

where â and a′ are, respectively the tangent space indices of the two three-spheres and R±
are their radii.

Upon the T-dualization of the above background along the S1 one gets the type IIA

AdS3 × S3 × S3 × S1 with the F4-flux

F4 = dϕ9 ∧ 1

3

(

εcbae
a ∧ eb ∧ ec +

RAdS

R+
εĉb̂âe

â ∧ eb̂ ∧ eĉ +
RAdS

R−
εc′b′a′e

a′ ∧ eb
′ ∧ ec

′

)

. (6.2)

Because of the technical complexity, in these cases we will put the ‘non-supersymmetric’

fermionic modes of the string to zero (υ = 0) by fixing a kappa symmetry gauge in the

d = 3 case and ‘by hand’ in the d = 2 case. Then the T 10−3d-sector decouples (modulo

the Virasoro constraints) and we may concentrate on the AdSd×Sd×Sd sectors described
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by supercoset sigma models with the isometries governed by the exceptional Lie super-

groups D(2, 1;α) (for d = 2) and D(2, 1;α)×D(2, 1;α) (for d = 3). In particular, we shall

show that they are also T-self-dual under combined bosonic and fermionic T-dualities, pro-

vided that T-dualisation involves one of the spheres Sd, the latter causing some additional

technical difficulties.

6.1 Self-duality for AdS2 × S2 × S2

Supercoset structure. The sigma model on AdS2 ×S2 ×S2 is based on the supercoset

D(2, 1;α)

SO(1, 1)× SO(2)× SO(2)
. (6.3)

To construct the corresponding action and analyse its T-duality properties, let us discuss

the Lie superalgebra d(2, 1;α) of D(2, 1;α). For general properties of the exceptional Lie

superalgebra d(2, 1;α) see e.g. [43, 64]. For the 10-dimensional supergravity solutions under

consideration, the values of the parameter α are restricted to the interval [0, 1].11 They

determine the relation between the radii of AdS2 × S2
+ × S2

−,

α =
R2

AdS

R2
−

and 1− α =
R2

AdS

R2
+

. (6.4)

In order to avoid confusion between the parameter α and the spinor index α, in what

follows we will set α := cos2(τ) := c2 and 1− α := sin2(τ) := s2, respectively.

Lie superalgebra d(2, 1; c2). The maximal Graßmann-even subalgebra of the Lie su-

peralgebra d(2, 1; c2) is sl(2,R)⊕ su(2)⊕ su(2), and we set sl(2,R) := 〈P,K,D〉, su(2) :=
〈La〉, and su(2) := 〈Rα

β〉, respectively, for a, b, . . . = 1, 2, 3 and α, β, . . . = 1, 2. The

corresponding commutation relations are12

[D,P ] = P , [D,K] = −K , [P,K] = 2D ,

[L+, L−] = −2iL3 , [L3, L±] = ±iL± , L± := iL1 ± L2 ,

[Rα
β , R

γ
δ] = i(δγβR

α
δ − δαδR

γ
β) .

(6.5a)

Furthermore, d(2, 1; c2) contains eight fermionic generators which we denote by Qα, Q̂α, Sα,

and Ŝα, respectively. Letting σ1,2,3
αβ be the Pauli matrices,13 the remaining non-vanishing

11For superbackgrounds whose isometries are governed by d(2, 1;α) with other values of α see e.g. [65, 66].
12One could also start from the 10-dimensional form of the algebra analogous to (3.3) for the psu(2, 2|4)

case. This form follows directly from the general construction of the symmetric space superisometry algebras

of [19] upon inserting the form of the fluxes.
13We lower and raise Greek indices using ǫαβ = iσ2

αβ and ǫαβ = iσ2αβ with ǫαγǫγβ = δαβ , so that

e.g. σ1α
β := iσ2αγσ1

γβ = −iσ1αγσ2
γβ .
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(anti-)commutation relations of d(2, 1; c2) are given by

{Qα, Q̂β} = −σ2
αβP , {Sα, Ŝβ} = −σ2

αβK ,

{Qα, Ŝβ} = −c2σ2
αβL+ , {Q̂α, Sβ} = c2σ2

αβL− ,

{Qα, Sβ} = −σ2
αβ(D+ic2L3)−is2σ2

αγR
γ
β ,

{Q̂α, Ŝβ} = σ2
αβ(D − ic2L3) + is2σ2

αγR
γ
β ,

[P, Sα] = −Q̂α , [P, Ŝα] = −Qα , [K,Qα] = −Ŝα , [K, Q̂α] = −Sα ,

[D,Qα] =
1

2
Qα , [D, Q̂α] =

1

2
Q̂α , [D,Sα] = −1

2
Sα , [D, Ŝα] = −1

2
Ŝα ,

[L3, Qα] =
i

2
Qα , [L3, Q̂α] = − i

2
Q̂α , [L3, Sα] = − i

2
Sα , [L3, Ŝα] =

i

2
Ŝα ,

[L+, Sα] = Ŝα , [L−, Ŝα] = −Sα , [L−, Qα] = Q̂α , [L+, Q̂α] = −Qα ,

[Rα
β , Tγ ] = −i(δαγTβ − 1

2
δαβTγ) , for Tα ∈ {Qα, Q̂α, Sα, Ŝα} .

(6.5b)

The bosonic generators P , K, D, and La are skew-Hermitian while (R1
1)

† = R2
2 and

(R1
2)

† = −R2
1. The fermionic generators enjoy the reality conditions Q†

1 = Q̂2, Q
†
2 = −Q̂1

and S†
1 = −Ŝ2, S†

2 = Ŝ1. It is straightforward to check that the superalgebra (6.5) is

invariant under these reality conditions. Notice also that in the limit c2 → 0, we recover

the superalgebra psu(1, 1|2) discussed in section 5.1 (modulo some obvious re-definitions)

since in that limit the generators L± and L3 decouple.

Furthermore, the non-vanishing components of the invariant form of d(2, 1; c2) that is

compatible with the above choice of the basis are

Str(PK) = 2 , Str(DD) = 1 ,

Str(L+L−) = − 2

c2
, Str(L3L3) =

1

c2
,

Str(Rα
βR

γ
δ) =

2

s2

(

δαδδ
γ
β − 1

2
δαβδ

γ
δ

)

,

Str(QαSβ) = −2σ2
αβ , Str(Q̂αŜβ) = 2σ2

αβ .

(6.6)

Z4-grading and order-4 automorphism. In order to formulate the supercoset action

based on (6.3), we need to fix a Z4-grading of the superalgebra d(2, 1; c2)⊗C ∼=
⊕3

m=0 g(m).

In view of (2.9) we choose the following decomposition

g(0) :=
〈
P +K,L+ + L−, σ

1
γ[αR

γ
β]

〉
,

g(1) :=
〈
Qα − σ1β

αSβ , Q̂α − σ1β
αŜβ

〉
,

g(2) :=
〈
P −K,D,L+ − L−, L3, σ

1
γ(αR

γ
β)

〉
,

g(3) :=
〈
Qα + σ1β

αSβ , Q̂α + σ1β
αŜβ

〉
,

(6.7a)

where brackets (respectively, parentheses) indicate normalised anti-symmetrisation (re-

spectively, symmetrisation) of the enclosed indices. Notice that we have indeed g(0)
∼=

so(1, 1) ⊕ so(2) ⊕ so(2). The order-4 automorphism Ω : d(2, 1; c2) → d(2, 1; c2) associated
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with this Z4-grading is given explicitly by

Ω(P ) = K , Ω(K) = P , Ω(D) = −D ,

Ω(L3) = −L3 , Ω(L±) = L∓ , Ω(Rα
β) = σ1αγσ1

βδR
δ
γ ,

Ω(Qα) = −iσ1β
αSβ , Ω(Q̂α) = −iσ1β

αŜβ ,

Ω(Sα) = −iσ1β
αQβ , Ω(Ŝα) = −iσ1β

αQ̂β .

(6.8)

Furthermore,

Str
[
(P ±K)(P ±K)

]
= ±4 , Str(DD) = 1 ,

Str
[
(L+ ± L−)(L+ ± L−)

]
= ∓ 4

c2
, Str(L3L3) =

1

c2
,

Str
[
(σ1

µ[αR
µ
β])(σ

1
ν[γR

ν
δ])

]
= − 1

s2
σ2
αβσ

2
γδ ,

Str
[
(σ1

µ(αR
µ
β))(σ

1
ν(γR

ν
δ))

]
= − 1

s2
(σ1

αβσ
1
γδ − σ1

αγσ
1
βδ − σ1

αδσ
1
γβ) ,

Str
[
(Qα ± σ1 γ

αSγ)(Qβ ∓ σ1 δ
βSδ)

]
= ∓4iσ1

αβ ,

Str
[
(Q̂α ± σ1 γ

αŜγ)(Q̂β ∓ σ1 δ
βŜδ)

]
= ±4iσ1

αβ

(6.9)

which follow from (6.6).

Coset representative and associated current. Next, we need to choose a coset rep-

resentative g for the supercoset space (6.3). In view of (6.5b), the generators P , Qα, and

L+ are in involution14 and, consequently, are associated with the directions along which we

will perform T-dualisation. Following our general discussion in section 2, an appropriate

form of the coset representative is15

g := exP+θαQα+λ+L+ eB eξ
αSα ,

eB := eθ̂
αQ̂α+ξ̂αŜα |y|D e−λ3L3 e−ρβαR

α
β .

(6.10)

Here, we assume that both λ+ and λ3 are complex. This is merely a technical assumption

which will facilitate the T-duality transformations below. Hence, we are essentially deal-

ing with the complexification SL(2,C)/C∗ of the coset SO(3)/SO(2) ∼= SU(2)/U(1) ∼= S2,

and from the point of view of fermionic T-duality, such a complexification is rather nat-

ural (see [9] for a similar case in AdS5 × S5). Note that the resulting line element on

SL(2,C)/C∗ is

(ds)2 =
1

4c2
[
(dλ3)

2 + e2iλ3(dλ+)
2
]
. (6.11)

14Note that the maximal Abelian subalgebra of d(2, 1; c2) has two bosonic and two fermionic generators.
15To obtain the coset representative for AdS2×S2×T 2 from the representative (6.10) in the limit c → 0,

one first needs to re-scale the coordinates λ+ → cλ+, λ3 → cλ3, and ραβ → sραβ and then perform

the limit. In this limit, the second sphere S2, whose metric becomes flat, decouples from the AdS2 × S2

supercoset and re-compactifies into T 2 which is part of T 6 of the backgrounds discussed in section 5.
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Upon performing the change of coordinates (λ+, λ3) 7→ (ϕ, ϑ),

λ+ =
2 tan(ϑ2 ) sin(ϕ)

1 + 2i tan(ϑ2 ) cos(ϕ)− tan2(ϑ2 )
,

e−iλ3 =
1 + tan2(ϑ2 )

1 + 2i tan(ϑ2 ) cos(ϕ)− tan2(ϑ2 )

(6.12)

for ϕ, ϑ ∈ C, we find the line element

(ds)2 =
1

4c2
[
(dϑ)2 + sin2(ϑ) (dϕ)2

]
, (6.13)

which, upon considering the real slice ϕ∗ = ϕ and ϑ∗ = ϑ, becomes the standard line

element on the two-sphere S2.

The Maurer-Cartan form J = g−1dg corresponding to the coset representative (6.10)

is of the form

J = e−ξαSαJ (0)eξ
αSα + dξαSα

= J (0) − ξα
[
Sα, J

(0)
]
+

i

4
ξ2σ2αβ

{
Sα,

[
Sβ , J

(0)
]}

+ dξαSα ,
(6.14)

where, as before, J (0) does not depend on the fermionic coordinate ξα, and we have set

ξ2 := iσ2
αβξ

αξβ . The explicit form of the components of the current J is given in the

appendix D.

Using the Z4-grading (6.7a), the coset current J decomposes according to J = J(0) +

J(1) + J(2) + J(3) with

J(0) =
1

2
(JP + JK)(P +K) +

1

2
(JL+ + JL−

)(L+ + L−)− JRα
β
σ1αγσ1

δ[γR
δ
β] ,

J(1) =
1

2
(JQα − σ1α

βJSβ
)(Qα − σ1β

αSβ)
1

2
(JQ̂α

− σ1α
βJŜβ

)(Q̂α − σ1β
αŜβ) ,

J(2) =
1

2
(JP − JK)(P −K) + JDD +

1

2
(JL+ − JL−

)(L+ − L−) + JL3L3−

− JRα
β
σ1αγσ1

δ(γR
δ
β) ,

J(3) =
1

2
(JQα + σ1α

βJSβ
)(Qα + σ1β

αSβ) +
1

2
(JQ̂α

+ σ1α
βJŜβ

)(Q̂α + σ1β
αŜβ) .

(6.15)

Supercoset action. Upon using the Z4-grading (6.7a) together with the invariant

form (6.6) and the currents (6.15), the sigma model action (2.14) becomes

S = −T

2

∫

Σ

{

− ∗(JP − JK) ∧ (JP − JK) + ∗JD ∧ JD +

+
1

c2
∗ (JL+ − JL−

) ∧ (JL+ − JL−
) +

1

c2
∗JL3 ∧ JL3 +

+
1

s2
(∗JRα

β
∧ JRβ

α
− σ1αγσ1

βδ∗JRα
β
∧ JRγ

δ
)−

− iσ1
αβ

(
JQα ∧ JQβ

+ JSα ∧ JSβ
− JQ̂α

∧ JQ̂β
− JŜα

∧ JŜβ

)
}

.

(6.16)

Note that as in the ‘non-exceptional’ cases (see (3.14)), the matrix (−σ1) can be identified

with the matrix Γ4
P along the AdS2 radial direction with P being the projector which

singles out eight unbroken supersymmetries of the background under consideration.
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T-dualisation. Now, performing the T-dualisation of the action (6.16) following the

general procedure described in section 2, upon some technically involved algebra, a field

re-definition and using the Maurer-Cartan equations one can check that the resulting dual

action has the same form as the initial one but with the currents (see appendix D) con-

structed with the different coset element

g̃ := ex̃K−iσ2αβ θ̃αSβ+λ̃+L− eB eσ
1β

αξαQβ , (6.17)

where, eB is the same as in (6.10). Therefore, the supercoset sigma model on AdS2×S2×S2

is self-dual under the combined T-dualities along x, θα, and λ+.

In the limit c2 → 0, upon an appropriate re-scaling of the JL-currents, the action

reduces to the PSU(1,1|2)
SO(1,1)×U(1) supercoset sigma model considered in section 5.1. In this limit,

the dualised sphere S2 gets ‘decompactified’ into a T 2 torus which completely decouples

from the AdS2 × S2 and fermionic sector.

6.2 Self-duality for AdS3 × S3 × S3

Considering the subsector of the AdS3×S3×S3×S1 theory in which the string moves only

in AdS3 × S3 × S3 while its non-supersymmetric fermionic modes are gauge fixed to zero

and the S1-fluctuations decouple from the rest (modulo the Virasoro constraints), the T-

dualisation process is almost identical to the just-presented discussion in the AdS2×S2×S2

case, though the explicit calculations are technically more involved. Therefore, we refrain

from giving any details here and instead, we just outline the basic steps and refer to

section 7 for a supergravity treatment of this case.

The supercoset sigma model on AdS3 × S3 × S3 is based on the supercoset

D(2, 1; c2)×D(2, 1; c2)

SO(1, 2)× SO(3)× SO(3)
. (6.18)

The Lie superalgebra d(2, 1; c2)⊕ d(2, 1; c2) (whose 10-dimensional form analogous to (3.3)

can be found in [17]) has {Pm, D,Km, L±
a , R

± i
j} for m = 0, 1, a = 1, 2, 3, and i, j = 1, 2

as its bosonic generators and {Qiα, Siα, Q̂iα, Ŝiα} for α = 1, 2 as its fermionic generators,

respectively. Here, the L±
a and R± i

j are the generators of so(3) ⊕ so(3) ⊕ so(3) ⊕ so(3).

Furthermore, the generators {Pm, Qiα, L
± := iL±

1 +L±
2 } are in involution16 so that the coset

representative (2.10) will have the left factor of the form ex
mPm+θiαQiα+λ+L++λ−L−

.17 The

coordinates xm parametrize the 2-dimensional Minkowski boundary of AdS3. Furthermore,

as in the AdS2 ×S2 ×S2 case, we shall work with the complexification SO(4,C)/SO(3,C)

of SO(4)/SO(3) ∼= [SU(2)×SU(2)]/SU(2) ∼= SU(2) ∼= S3 and consequently, the coordinates

λ± are assumed to be complex. The resulting line element on SO(4,C)/SO(3,C) will be

of the form

(ds)2 =
1

4c2
[
(dλ3)

2 + e2iλ3(dλ+)
2 + e2iλ3(dλ−)

2
]
. (6.19)

16Note that the maximal Abelian subalgebra of d(2, 1; c2)⊕d(2, 1; c2) has four bosonic and four fermionic

generators.
17See also our general discussion given in section 2.
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Upon choosing an appropriate Z4-grading for (6.18), T-duality is then performed along

the bosonic directions xm and λ± and the fermionic directions θiα following the same

steps as in the previous subsection. The T-self-duality of the supercoset sigma model on

AdS3 × S3 × S3 then follows. We have explicitly checked this up to the second order in

the four-component fermions ξiα, like in the AdS2 × S2 × S2 case. We believe that the

invariance holds to the highest (4th-order) in ξiα. This is supported by the fact that at

α = 0, the model reduces to the AdS3×S3 supercoset sigma model times the torus sector,

which have proved to be duality invariant. In the next section, we will also give additional

evidence for the T-self-duality of the complete AdS3 × S3 × S3 × S1 theory by proving the

invariance under the combined T-duality of its supergravity background.

7 Combined bosonic-fermionic T-duality of the Ramond-Ramond

AdSd × Sd × M10−2d backgrounds

In this final section, we shall prove (without alluding to the superstring sigma models)

the invariance under the combined bosonic and fermionic T-duality of the AdSd × Sd ×
M10−2d superbackgrounds with Ramond-Ramond fluxes by applying the T-duality rules

directly to the corresponding supergravity component fields. We will thus extend earlier

results of [9, 22–24, 36] to the whole class of the Ramond-Ramond AdSd × Sd × M10−2d

superbackgrounds.

7.1 Rules for fermionic T-duality

Killing spinors. The T-dualisation of the component supergravity fields along the

bosonic directions is carried out following the conventional rules [37–39].18 The gener-

alization of these rules to fermionic T-duality was given in [9]. Specifically, the fermionic

T-duality acts on the dilaton Φ(X) and the Ramond-Ramond p-forms but leaves the metric

and the Neveu-Schwarz-Neveu-Schwarz 2-form invariant. The directions along which we

dualise are specified by the (Graßmann-even) Killing spinors, denoted by Ξµ(X) in the

following (with µ labelling their number), that generate the Abelian superisometries. This

implies that the Killing spinors ought to satisfy the additional condition

ΞµΓAΞν = 0 for all A, µ, ν with A = 0, 1, . . . , 9 . (7.1)

This condition has non-trivial solutions if the Killing spinors are complex, thus manifesting

the fact that they are associated with complex Graßmann-odd directions in superspace.

The Killing spinor conditions themselves have the following form

∂MΞ− 1

4
ΩAB
M (X)ΓABΞ = −1

8
/FEA

M (X)ΓAΞ ,

1

16
ΓA /FΓAΞ = 0

(7.2)

18For the generalization of the T-dualisation rules to the whole superspace supergravity see [67].
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where ΩAB
M (X) and EA

M (X) are the spin connection and the bosonic vielbeins of the 10-

dimensional background, and /F denotes the contribution of the Ramond-Ramond fluxes

/F =

{

eΦ
(
1
2F

(2)
ABΓ

ABΓ11 +
1
4!F

(4)
ABCDΓ

ABCD
)

type IIA

− eΦ

2 (1 + Γ11)
(
iF

(1)
A ΓAσ2 + 1

3!F
(3)
ABCΓ

ABCσ1 + i
2·5!F

(5)
A···EΓ

A···Eσ2
)

type IIB
(7.3)

Note that the equations in (7.2) are obtained by requiring that the supersymmetry trans-

formations of the gravitino and the dilatino vanish and are determined by the geometry

of the background and the values of the Ramond-Ramond fluxes. The requirement of the

integrability of the first equation determines a projector P8(d−1) singling out the 8(d − 1)

fermionic isometries of the backgrounds of interest, as we discussed from the superalgebra

perspective in the previous sections. The second equation in (7.2) is then identically sat-

isfied. Incidentally, in the backgrounds having non-zero F5-flux only, the second equation

in (7.2) is actually identically zero because of gamma matrix identities.

Fermionic T-duality rules. Upon solving for the Killing spinor equations (7.2), one

can derive from19

∂MCµν =

{

EA
M Ξ̄µΓAΓ

11Ξν type IIA

EA
M Ξ̄µΓAσ

3Ξν type IIB
(7.4)

the matrix C = (Cµν(X)) which is formed by the components of the Neveu-Schwarz-Neveu-

Schwarz 2-form B2 along the Abelian fermionic isometries, that is,

dθµ ∧ dθνBµν(X,Θ)|Θ=0 := dθµ ∧ dθνCµν(X) . (7.5)

Knowing the matrix Cµν , one obtains the shift of the dilaton under the fermionic T-duality

∆Φ = Φ′ − Φ =
1

2
log(det C) (7.6)

and of the Ramond-Ramond fields, which in our conventions is

∆F = /F
′ − /F = 8Ξµ(C−1)µνΞνΓ , (7.7)

where Γ is a certain product of gamma-matrices which has been used to split the fermionic

E(1,2) currents into four pieces corresponding to the splitting of the superalgebra generators

Q into Q, Q̂, S, and Ŝ, respectively. In particular, for the backgrounds with only F5-flux,

we have Γ = 1. For the AdSd × Sd × M10−2d (with d = 2, 3) backgrounds with F3-flux

(see (4.15) and (6.1)), we have Γ = −Γ23. This can be read off (4.16). For backgrounds with

both F2- and F4-fluxes, as in (5.7) and (5.12), we have Γ = Γ11Γ123, while for backgrounds

with F4-flux only, as in (5.16) and (5.18), we have Γ = Γ1.

19Equations (7.4) determine the components HMµν of the field strength H3 = dB2 of the Neveu-Schwarz-

Neveu-Schwarz 2-form for the superbackgrounds under consideration.
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Explicit form of the Killing spinors. As explained in [9], a direct way to get a form of

the Killing spinors, associated with the anti-commuting fermionic isometries along which

one performs the fermionic T-duality of the supergravity backgrounds, is to read them

off from the corresponding components of the fermionic currents JQ (2.13) associated with

the generators Q of the superisometry algebra (2.7)–(2.8b). Concretely, the Killing spinors,

which by construction satisfy the defining relations (7.1) and (7.2), are the components of

the matrix Jα
β(|y|, yâ, λ3) in

JQα |Θ=0 = dθµJµ
α(|y|, y, λ3) = dθµe−BQµe

B|Qα,θ̂=ξ̂=0

!
= dθµΞµ

α , (7.8)

where eB was defined in (2.10), (3.11), and (6.10).

The Killing spinor condition, which is a particular form of (7.2), is obtained by simple

differentiation of (7.8)

dΞµ +
[
e−BdeB,Ξµ

]
|Θ=0 = 0 ,

e−BdeB|Θ=0 = Ωâb̂(y/|y|)Râb̂ + JD(|y|)D + JL3(λ3)L3 .
(7.9)

Note that the index µ should be regarded as an external one, labelling the number of the

Killing spinors.

In view of the structure of the coset element eB(|y|,y,λ3) and the commutation relations

[D,Q] = 1
2Q, [Râ, Q] = − s2

2 QΓâΓ
4
P, and [L3, Q] = i

2Q, we have the following generic form

of the Killing spinors in question20

Ξµ
α = Jµ

α(|y|, y, λ3) = |y|− 1
2 e

i
2
cλ3Oµ

α(yâ/|y|) , (7.10)

where Oµ
α(yâ/|y|) := (esPΓâΓ4 yâ/(2|y|))µα is a Spin(d+ 1)-matrix associated with the coset

Sd ∼= SO(d + 1)/SO(d) and P := P+P8(d−1) is the projector matrix which singles out the

2(d− 1) anti-commuting isometries Q = QP for each case of AdSd × Sd ×M10−2d, as was

described in the previous sections (see (3.8) for the form of P+). By definition, we have

OTΓ4O = Γ4P , (7.11)

The structure of the matrix Cµν , see (7.5), is immediately read from the form of the WZ-

term of the Green-Schwarz superstring action (2.14), which in our conventions has the

generic form

Bµν |Θ=0 = iJµ
γΓ4

γδJν
δ(|y|, y, λ3)

!
= Cµν . (7.12)

Using (7.10) and (7.11), we find that

Cµν = i|y|−1eicλ3(Γ4
P)µν (7.13a)

and its inverse is

C−1µν = −i|y|e−icλ3(PΓ4)µν . (7.13b)

20To have a smooth limit from AdSd×Sd×Sd×T 10−3d to AdSd×Sd×T 10−2d at c → 0, we have rescaled

the coordinates λ± and λ3 of the second sphere as explained in footnote 15.
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From (7.13a) we can read off the shift (7.6) of the dilaton

∆Φ =
1

2
log(det C) = −(d− 1) log |y|+ i(d− 1)cλ3 (7.14)

and from (7.13b) we read off the change (7.7) in the Ramond-Ramond fluxes upon the

fermionic T-duality for all the considered cases

∆F = 8JµC−1µνJνΓ = −8iPΓ4Γ = −(1 + iΓ0123) /F . (7.15)

Explicit form of the Ramond-Ramond fluxes. For completeness, let us give more

details on the form of the Ramond-Ramond fluxes characterized by (7.15) in some of the

exceptional AdSd × Sd × Sd × T 10−3d cases:

(i) For AdS3 × S3 × S3 × S1, we can consider the type IIB theory with an F3-flux (6.1)

as e.g. in [68],

/F 3 = 2
(
Γ014 +

√
αΓ823 +

√
1− αΓ567

)
= 4P16Γ

014 . (7.16)

In this case, Γ = −Γ23 as in the corresponding non-exceptional α = 0 case. Alterna-

tively, we can T-dualise this background along the S1-coordinate ϕ9 to get the IIA

background with only F4-flux (6.2) as written in [18], and use the same P16 with

Γ = Γ239.

(ii) For AdS2×S2×S2×T 4 with F4-flux, we can write the corresponding projector of rank

8 as a product of two rank-16 projectors, P8 = P1P2, as in [18]. Re-numbering the F4-

components of [18] such that 0, . . . , 3 are the directions along which we dualise (with

2, 3, 8, 9 the T 4 directions, one sphere being parametrised by x7 = λ3 and x1 = λ+,

and the other sphere directions labeled by 5, 6) this reads

/F 4 = 4P1P2Γ
04 92 ,

P1 :=
1

2
(1 + Γ9238) , P2 :=

1

2
(1 +

√
αΓ04 71 23 +

√
1− αΓ04 56 98)

(7.17)

and Γ = Γ239.

In all the cases under consideration, the shifts (7.14) and (7.15) are undone by the

corresponding bosonic T-dualities, as we shall show next for the considered examples of

the AdSd × Sd ×M10−2d backgrounds.

7.2 Compensating bosonic T-duality

General case. The complete Buscher rules for bosonic T-duality are part of the O(D,D)

symmetry of generalised geometry [69]. However, for the cases of interest here the antisym-

metric Neveu-Schwarz-Neveu-Schwarz B-field vanishes and the metric is diagonal, which

simplifies the rules greatly. Letting I be the set of directions along which we dualise, the

new metric has the components

G′
tt =

1

Gtt
, t ∈ I (7.18)
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and remains unchanged in all other directions. The shift in the dilaton is given by (minus

half the log of) the determinant of this block, that is,

∆Φ = −1

2
log detGMN = −1

2

∑

t∈I
logGtt . (7.19)

Allowing the slight abuse of notation that t refers to flat directions here, we can write the

change in the Ramond-Ramond forms simply as

/F
′′
=

(
∏

t∈I
ct Γ

t

)

/F
′
, ct :=

{

−i for t = 0

1 else,
(7.20)

where /F
′
is the result of the fermionic T-duality (see (7.7)).

This change was written in terms of the potentials in [70] (where the need to include

factors eΦ if the dilaton is non-trivial was also noted) and in [71] in terms of the field

strengths (whose formulæ simplify here because we still assume the B-field vanishes and

the metric is diagonal). Time-like T-duality always leads to imaginary forms [72]. The

overall sign is not physical, and clearly depends on the order in which we perform the

dualities.

Now let us apply this to the backgrounds of our interest. The T-dualisation was

performed along the directions labeled by t ∈ {0, . . . , 3}. So the T-dualised Ramond-

Ramond fluxes (7.20) take the form

/F
′′
= −iΓ0123 /F

′
. (7.21)

Substituting into the above equation /F
′
= /F + ∆F with the shift ∆F produced by the

fermionic T-duality as in (7.15), we see that the combined bosonic-fermionc T-duality

leaves the Ramond-Ramond fluxes intact, i.e. /F
′′
= /F .

AdSd metric. Let us now consider the T-dualisation of the background metric and the

dilaton. With our choice of the coset element and corresponding AdSd × Sd metric, as

in (3.1), the effect of the dualising along all d− 1 boundary directions of AdSd on the line

element on AdSd is

(ds)2 =
−(dx0)2 +

∑d−2
i=1 dxidxi +

∑d+1
r=1 dy

rdyr

|y|2

→ |y|2
[

− (dx0)2 +
∑d−2

i=1 dx
idxi

]

+

∑d+1
r=1 dy

rdyr

|y|2 (7.22a)

and the dilaton shift is

∆AdSΦ = (d− 1) log|y| . (7.22b)

We can return the metric to its original form by defining y′r = yr/|y| which sends

|y| =
√
∑d+1

r=1 y
ryr → 1

|y| . Dualising along some torus directions has no effect on the

metric or the dilaton.
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Sd metric. In the exceptional cases AdSd×Sd×Sd×T 10−3d of section 6, we also dualise

along some directions of one of the spheres: λ+ for d = 2, and λ± for d = 3. The effect on

the line element on Sd (see (6.11), (6.13), and (6.19)), rescaled as in footnote 15, is

(ds)2 =
1

4

[

(dλ3)
2 + e2icλ3(dλ+)

2 + e2icλ3(dλ−)
2

︸ ︷︷ ︸

only for d=3

]

→ 1

4

[

(dλ3)
2 + e−2icλ3(dλ+)

2 + e−2icλ3(dλ−)
2

︸ ︷︷ ︸

only for d=3

]

(7.23a)

and we recover the original metric by defining λ′
3 = −λ3. The effect on the dilaton is

∆SΦ = −i(d− 1)cλ3 + (d− 1) log 2 . (7.23b)

Together ∆AdSΦ+∆SΦ cancels the fermionic duality’s shift in the dilaton, (7.14), mod-

ulo the constant term which can be ignored, since its only contribution is as an overall factor

multiplying the action in the path integral and hence will not affect the classical supergrav-

ity argument. In summary, we have thus shown that the AdSd×Sd×M10−2d backgrounds

with (d = 2, 3, 5) are invariant under the combined fermionic-bosonic T-duality.

8 Conclusions and outlook

In this paper, we have proved the self-duality of the supercoset sigma models describing

strings in AdSd×Sd backgrounds (d = 2, 3, 5) and in an AdSd×Sd×Sd (d = 2, 3) under a

combined T-duality along Abelian bosonic and fermionic isometries of these backgrounds

without gauge-fixing kappa symmetry of the sigma model actions.

When d = 2 and d = 3, the corresponding sigma models describe only subsectors of the

complete superstring theories in AdSd×Sd×M10−2d backgrounds which also include 8(5−d)

non-supercoset fermionic modes associated with the 10-dimensional supersymmetries that

are broken in these backgrounds. In the d = 3 case, the 16 non-supercoset fermions can

be put to zero by gauge fixing kappa symmetry, though this gauge is not admissible for all

classical string configurations. For instance, this gauge is not admissible if the string moves

entirely in AdS3×S3. In the d = 2 case, there are not enough kappa symmetries to remove

all the 24 non-supercoset fermions. So one should prove the invariance of the AdSd ×Sd ×
M10−2d superstring actions under the bosonic and fermionic T-dualities in the presence of

the non-supercoset fermions υ. We have shown that for the type IIB AdSd × Sd × T 10−2d

backgrounds supported by F5- or F3-fluxes the actions remain invariant (to the second order

in υ) in the gauge ξ = 0 for coset fermions but without imposing any kappa symmetry

gauge on υ. The presence of the υ-fermions in the string actions requires to perform the T-

dualisation not only along (anti-)commuting bosonic and fermionic isometries of AdSd×Sd

but also along half of the torus directions. This provides evidence for the invariance of the

complete type IIB superstring actions on AdSd ×Sd × T 10−2d under the combined bosonic

and fermionic T-duality. We have also demonstrated that the T-duality invariance naturally

persists also in the type IIA AdSd × Sd × T 10−2d backgrounds, which are T-dual to their

type IIB counterparts. The proof of the self-duality requires the appropriate choice of the
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Z4-grading of the generators of the superisometry algebra (descending from the structure

of 10-dimensional supergravity constraints, see e.g. [15, 18]) which ‘feels’ the presence of

the non-supercoset sector, i.e. the torus directions and the fermionic directions along which

the supersymmetry is broken.

In this respect, let us note that there is a hybrid formulation of the AdSd×Sd×M10−2d

superstrings for d = 2, 3 [47] in which the AdSd × Sd supercoset sector is completely

decoupled from the M10−2d sector and the non-supercoset fermions get replaced with the

Ramond-Neveu-Schwarz spinning string variables. The supercoset sectors of the hybrid

sigma models differ from the kappa symmetric Green-Schwarz supercoset models considered

here. The former are similar to the structure of the pure spinor action for the AdS5 × S5

superstring which has proved to be invariant under the T-duality [9]. We thus expect that

also the hybrid models of the AdSd × Sd ×M10−2d superstrings will be self-dual, but their

complete equivalence to the Green-Schwarz superstrings is yet to be proved (see e.g. [73]

and references therein).

Having acquired an experience of working with contributions of the non-coset fermionic

modes of the string, it would be of interest to see whether and how the presence of these

modes determine the combined bosonic-fermionic T-dualisation of the AdS4 ×CP 3 back-

ground and corresponding string sigma model. In particular, whether the T-dualisation of

complexified CP 3 directions is required.

It would also be of interest to address an important problem of the combined fermionic

and bosonic T-duality of AdSd × Sd × M10−2d backgrounds for d = 2, 3 in the presence

of Neveu-Schwarz-Neveu-Schwarz flux, as well as to find a manifestation of this T-duality

on the CFT sides of the correspondences for the Ramond-Ramond (and Neveu-Schwarz-

Neveu-Schwarz) d = 2, 3 backgrounds.

We hope to address these issues in future work.
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A Clifford algebra in ten dimensions

In this section we briefly list our conventions on gamma matrices, both for the type IIA

and type IIB superspace.

Type IIA superspace. Let Θ be a 32-component Majorana spinor in 10-dimensional

type IIA superstring theory. The Clifford algebra is defined as

{ΓA,ΓB} = 2ηAB , (A.1)

where (ηAB) = diag(−1, 1, . . . , 1).

We use the realization of the 10-dimensional (32×32) gamma matrices ΓA for A,B, . . .=

0, . . . , 9 and Γ11 = −Γ0 · · ·Γ9 in which ΓA are real and CΓA are symmetric (with C being

a charge conjugation matrix used to lower (or raise) the spinor indices):

CΓAC−1 = −(ΓA)T . (A.2)

For our purposes it is convenient to choose a realization in which the AdS2 × S2 × T 6

structure becomes manifest. The re-distribution of the 10-dimensional indices A = (a, a′)
among the AdS2 × S2 directions (a = 0, 4, 5, 6) and T 6 directions (a′ = 1, 2, 3, 7, 8, 9) has

been chosen in accordance with the type IIB notation of section 5.1.

Type IIB superspace. In this case the 10-dimensional fermionic coordinates Θαi, i =

1, 2, are Majorana-Weyl spinors whose indices α, β, . . . take 16 values. The (16 × 16)-

matrices ΓA
αβ and ΓAαβ obey the Clifford algebra (A.1) and share the following symmetry

properties

ΓA
αγΓ

B γβ + ΓB
αγΓ

Aγβ = 2δβα ηAB ,

ΓA
αβ = ΓA

βα , ΓAαβ = ΓAβα , ΓABCDE
αβ = ΓABCDE

βα , Γαβ
ABCDE = Γβα

ABCDE ,

ΓABC
αβ = −ΓABC

βα , ΓABC αβ = −ΓABC βα ,

(ΓABC)αβ =
1

7!
εABCD1···D7Γαβ

D1···D7
, (ΓABC)αβ = − 1

7!
εABCD1···D7(ΓD1···D7)αβ .

(A.3)

B The psu(1, 1|2) algebra for type IIB AdS2 × S2 × T 6 background

As explained in the text, in this case the psu(1, 1|2) algebra can be obtained as a truncation

of the psu(1, 1|2)⊕psu(1, 1|2) one, or directly as a truncation of the psu(2, 2|4) algebra. Its
explicit form can then be read from eqs. (3.6)–(3.9b) where we set m,n, . . . = 0 (η00 = −1),
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â, b̂, . . . = 5, 6 and project the supercharges with the P4 projector (see (5.4), (5.3)). For the

reader’s convenience we list here the resulting non-vanishing commutators (P ≡ P0 and

K ≡ K0)

[D,P ] = P , [D,K] = −K , [P,K] = 2D ,

[Râ, Rb̂] = −εâb̂R56 , [R56, Râ] = −εâb̂Rb̂ ,

[D,Qα] =
1

2
Qα , [D,Sα] = −1

2
Sα , [K,Qα] = (ŜΓ04)α , [P, Sα] = (Q̂Γ04)α ,

[Râ, Sα] =
1

2
(SΓâ4)α , [Râ, Qα] = −1

2
(QΓâ4)α ,

[R56, Sα] =
1

2
(SΓ56)α , [R56, Qα] =

1

2
(QΓ56)α ,

(B.1a)

and the same for (Q,S) ↔ (Q̂, Ŝ). Furthermore,

{Q̂α, Qβ} = i(Γ0
P+P4)αβ P , {Ŝα, Sβ} = −i(Γ0

P+P4)αβ K ,

{Sα, Qβ} = −i(Γ4
P+P4)αβ D − i(Γâ

P+P4)αβ Râ − i(Γ56Γ4
P+P4)αβ R56 ,

{Ŝα, Q̂β} = −i(Γ4
P−P4)αβ D − i(Γâ

P−P4)αβ Râ − i(Γ56Γ4
P−P4)αβ R56 ,

(B.1b)

where P± have been defined in (3.8).

C The psu(1, 1|2) algebra for type IIA AdS2 × S2 × T 6 background

To perform the worldsheet T-duality of the type IIA AdS2 ×S2 supercoset sigma model it

is convenient to choose the psu(1, 1|2) Lie superalgebra in the form similar to that of the

type IIB case (B.1a)–(B.1b), where the indices 0, 4 label the AdS2 tangent space directions

and â, b̂, . . . = 5, 6 label those of S2.

We consider the derivation of the form (B.1a)–(B.1b) of the psu(1, 1|2) Lie superalgebra
from its 10-dimensional type IIA counterpart used in [15] to construct the superstring action

in type IIA AdS2 × S2 × T 6 background with F2- and F4-flux.

The bosonic so(2, 1) ⊕ so(3) subalgebra is generated by translations (Pa) = (Pa, Pâ)

and so(1, 1)⊕ so(2) rotations (Mab) = (Mab,Mâb̂) in AdS2 × S2

[Pa, Pb] = −1

2
Rab

cdMcd , [Mab, Pc] = ηacPb − ηbcPa , [Mab,Mcd] = 0 , (C.1)

where

(Rab
cd) = (Rab

cd, Râb̂
ĉd̂) =

(
2δc[aδ

d
b],−2δĉ[âδ

d̂
b̂]

)
(C.2)

is the AdS2 × S2 curvature of unit radius. The fermionic part of psu(1, 1|2) is generated

by eight Graßmann-odd operators Q = P8Q associated with eight fermionic degrees of

freedom ϑ = P8Θ of the string (see (5.9a)). They satisfy the following (anti-)commutation

relations

[Pa,Q] =
1

2
QΓ04ΓaΓ

11 , [Mab,Q] = −1

2
QΓab ,

{Q,Q} = 2iCΓaP8 Pa−
i

2
CΓab Γ04Γ11P8Rab

cdMcd .

(C.3)
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Now let us make the form of the algebra (C.3) closer to that of the AdS5 × S5 case (3.3).

To this end let us split Q onto the chiral and anti-chiral parts

Q1 =
1

2
Q(1 + Γ11) , Q2 =

1

2
Q(1− Γ11) . (C.4)

For these generators the (anti-)commutation relations are

[Pa,Qi] =
1

2
εijQjΓ04Γa , [Mab,Qi] = −1

2
QiΓab ,

{Q1,Q1} = iCΓa(1 + Γ11)P8 Pa , {Q2,Q2} = iCΓa(1− Γ11)P8 Pa ,

{Q1,Q2} = iC(1− Γ11)P8M04−iCΓ0456(1− Γ11)P8M56 .

(C.5)

We now convert the anti-chiral spinor Q2 into chiral one by multiplying it with Γ123 (note

that Γ123 commutes with the projector (5.9b) with Ja′b′ defined as in (5.8))

Q̃2 ≡ 1√
2
Q2Γ123 =

1

2
Q̃2(1 + Γ11) . (C.6)

For these generators (with Q̃1 = 1√
2
Q1) the algebra takes the form similar to (3.3)

[Pa, Q̃i] =
1

2
εijQ̃jΓ01234Γa , [Mab, Q̃i] = −1

2
Q̃iΓab ,

{Q̃i, Q̃j} = iδij CΓaP̃4 Pa −
i

2
εij CΓaΓ01234ΓbP̃4Mab−

i

2
εij CΓâΓ01234Γb̂P4Mâb̂ ,

(C.7)

where we have defined the projector

P̃4 :=
1

2
(1 + Γ11)P8 (C.8)

which reduces the number of the components of the initial 32-component supercharge down

to four. It is similar to the type IIB projector (5.3).

Now we can relate the generators of (C.1), (C.3) to those in (B.1a), (B.1b). We start

with the AdS2 generators Pa and Mab (a = 0, 4). From (C.1), (C.2), we deduce their

commutation relations

[P0, P4] = −M04 , [P0,M04] = P4 , [P4,M04] = P0 . (C.9)

Therefore, we can identify the above generators with those in (B.1a)–(B.1b) as follows

P0 =
1

2
(P −K) , P4 = D , M04 =

1

2
(P +K) . (C.10)

In the SO(3) sector we have

[P5, P6] = M56 , [P5,M56] = −P6 , [P6,M56] = P5 . (C.11)

Thus,

P5 = R5 , P6 = R6 , M56 = −R56 . (C.12)
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Finally, in the fermionic sector we have

Q = − 1√
2
(Q̃1 − iQ̃2)P+ , Q̂ = − 1√

2
(Q̃1 + iQ̃2)P− ,

S =
1√
2
(Q̃1 + iQ̃2)P+ , Ŝ =

1√
2
(Q̃1 − iQ̃2)P− ,

(C.13)

where we have defined

P± :=
1

2
(1± iΓ0123) . (C.14)

With this definition the corresponding currents have the form (5.11a). Accordingly, the

resulting supercoset part of the type IIA AdS2 × S2 × T 6 superstring action with the F2-

and F4-flux has exactly the same form as its type IIB counterpart.

D D(2, 1;α) supercoset currents

Due to the structure (6.5) of the superalgebra d(2, 1; c2) and the chosen coset element (6.10),

the coset currents J (0) and J have the following components (see (2.13)):

J
(0)
P =

[
e−B

(
dxP + dθαQα + dλ+L+

)
eB

]

P
, J

(0)
K = 0 , J

(0)
D =

[
e−BdeB

]

D
,

J
(0)
L+

=
[
e−B

(
dxP + dθαQα + dλ+L+

)
eB

]

L+
, J

(0)
L−

= 0 , J
(0)
L3

=
[
e−BdeB

]

L3
,

J
(0)
Rα

β
=

[
e−BdeB

]

Rα
β
,

J
(0)
Qα

=
[
e−B

(
dxP + dθαQα + dλ+L+

)
eB

]

Qα
, J

(0)

Q̂α
=

[
e−BdeB

]

Q̂α
,

J
(0)
Sα

= 0 , J
(0)

Ŝα
=

[
e−BdeB

]

Ŝα

(D.1a)

and

JP = J
(0)
P , JQα = J

(0)
Qα

, JL+ = J
(0)
L+

,

JD = J
(0)
D + σ2

αβJ
(0)
Qα

ξβ , JL3 = J
(0)
L3

+ ic2σ2
αβJ

(0)
Qα

ξβ ,

JRα
β
= J

(0)
Rα

β
− is2σ2

αγJ
(0)
Qγ

ξβ − i

2
s2σ2

γδδ
α
βJ

(0)
Qγ

ξδ ,

JQ̂α
= J

(0)

Q̂α
− J

(0)
P ξα , JŜα

= J
(0)

Ŝα
+ J

(0)
L+

ξα ,

JK = −σ2
αβJ

(0)

Ŝα
ξβ +

i

2
J
(0)
L+

ξ2 , JL−
= −c2σ2

αβJ
(0)

Q̂α
ξβ − i

2
c2J

(0)
P ξ2 ,

JSα = −1

2
J
(0)
D ξα − i

2
J
(0)
L3

ξα − iJ
(0)

Rβ
α
ξβ + dξα − i

2
s2J

(0)
Qα

ξ2 .

(D.1b)

In these expressions, we have made all the ξ-dependence explicit.

Dual currents. The Maurer-Cartan form J̃ = g̃−1dg̃ constructed from the dual coset

representative (6.17) is of the form

J̃ = e−σ1β
αξαQβ J̃ (0)eσ

1β
αξαQβ + σ1β

αdξ
αQβ

= J̃ (0) − σ1β
αξ

α
[
Sβ , J̃

(0)
]
− i

4
ξ2σ2αβ

{
Sα,

[
Sβ , J̃

(0)
]}

+ σ1β
αdξ

αQβ ,
(D.2)
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where, as before, J̃ (0) does not depend on the fermonic coordinate ξα, and we have set

ξ2 := iσ2
αβξ

αξβ . A calculation similar to the one that led to (D.1) yields

J̃
(0)
P = 0 , J̃

(0)
K =

[
e−B

(
dx̃K − iσ2αβdθ̃αSβ + dλ̃+L−

)
eB

]

K
, J̃

(0)
D =

[
e−BdeB

]

D
,

J̃
(0)
L+

= 0 , J̃
(0)
L−

=
[
e−B

(
dx̃K − iσ2αβdθ̃αSβ + dλ̃+L−

)
eB

]

L−
, J̃

(0)
L3

=
[
e−BdeB

]

L3
,

J̃
(0)
Rα

β
=

[
e−BdeB

]

Rα
β
,

J̃
(0)
Qα

= 0 , J̃
(0)

Q̂α
=

[
e−BdeB

]

Q̂α
,

J̃
(0)
Sα

=
[
e−B

(
dx̃K − iσ2αβdθ̃αSβ + dλ̃+L−

)
eB

]

Sα
, J̃

(0)

Ŝα
=

[
e−BdeB

]

Ŝα

(D.3a)

and

J̃K = J̃
(0)
K , J̃Sα = J̃

(0)
Sα

, J̃L−
= J̃

(0)
L−

,

J̃D = J̃
(0)
D − iσ1

αβJ̃
(0)
Sα

ξβ , J̃L3 = J̃
(0)
L3

+ c2σ1
αβ J̃

(0)
Sα

ξβ ,

J̃Rα
β
= J̃

(0)
Rα

β
+ s2

(

σ1
αγ J̃

(0)
Sβ

− 1

2
δβασ

1
γδJ̃

(0)
Sδ

)

ξγ ,

J̃Q̂α
= J̃

(0)

Q̂α
+ σ1α

β J̃
(0)
L−

ξβ , J̃Ŝα
= J̃

(0)

Ŝα
− σ1α

β J̃
(0)
K ξβ ,

J̃P = −iσ1
αβJ̃

(0)

Q̂α
ξβ − i

2
J̃
(0)
L−

ξ2 , J̃L+ = −ic2σ1
αβJ̃

(0)

Ŝα
ξβ +

i

2
c2J̃

(0)
K ξ2 ,

J̃Qα = σ1α
β

(
1

2
J̃
(0)
D ξβ +

i

2
J̃
(0)

L̃3
ξβ + dξβ

)

− iσ1β
γ J̃

(0)

Rβ
α
ξγ +

i

2
s2J̃

(0)
Sα

ξ2 .

(D.3b)

As before, in these expressions, we have made all the ξ-dependence explicit. Note that

J̃
(0)

Q̂α
= J

(0)

Q̂α
, J̃

(0)

Ŝα
= J

(0)

Ŝα
, J̃

(0)
D = J

(0)
D , J̃

(0)
L3

= J
(0)
L3

, and J̃
(0)

Rβ
α
= J

(0)

Rβ
α
, respectively.
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[57] M.J. Duff, H. Lü and C.N. Pope, AdS5 × S5 untwisted, Nucl. Phys. B 532 (1998) 181

[hep-th/9803061] [INSPIRE].

[58] H.J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, anti-de Sitter space-times

and dual superconformal theories, Nucl. Phys. B 533 (1998) 127 [hep-th/9803231]

[INSPIRE].

[59] J. Lee and S. Lee, Mass spectrum of D = 11 supergravity on AdS2 × S2 × T 7,

Nucl. Phys. B 563 (1999) 125 [hep-th/9906105] [INSPIRE].

[60] P.M. Cowdall and P.K. Townsend, Gauged supergravity vacua from intersecting branes,

Phys. Lett. B 429 (1998) 281 [Erratum ibid. B 434 (1998) 458] [hep-th/9801165] [INSPIRE].

[61] J.P. Gauntlett, R.C. Myers and P.K. Townsend, Supersymmetry of rotating branes,

Phys. Rev. D 59 (1998) 025001 [hep-th/9809065] [INSPIRE].

[62] J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2-D N = 4

superconformal symmetry, Adv. Theor. Math. Phys. 3 (1999) 577 [hep-th/9904073]

[INSPIRE].

[63] S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The Search for a holographic dual to

AdS3 × S3 × S3 × S1, Adv. Theor. Math. Phys. 9 (2005) 435 [hep-th/0403090] [INSPIRE].

[64] E. Ivanov, S. Sidorov and F. Toppan, Superconformal mechanics in SU(2|1) superspace,
Phys. Rev. D 91 (2015) 085032 [arXiv:1501.05622] [INSPIRE].

– 50 –

http://dx.doi.org/10.1016/S0550-3213(99)00462-9
http://arxiv.org/abs/hep-th/9906013
http://inspirehep.net/search?p=find+EPRINT+hep-th/9906013
http://dx.doi.org/10.1016/S0550-3213(99)00683-5
http://arxiv.org/abs/hep-th/9907200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9907200
http://dx.doi.org/10.1088/1126-6708/2008/09/129
http://arxiv.org/abs/0806.4940
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.4940
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.015
http://arxiv.org/abs/0806.4948
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.4948
http://dx.doi.org/10.1007/JHEP05(2010)002
http://arxiv.org/abs/1003.0465
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.0465
http://dx.doi.org/10.1007/JHEP03(2011)117
http://arxiv.org/abs/1101.0400
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0400
http://dx.doi.org/10.1016/0550-3213(93)90514-P
http://arxiv.org/abs/hep-th/9210015
http://inspirehep.net/search?p=find+EPRINT+hep-th/9210015
http://dx.doi.org/10.1088/1126-6708/1998/06/004
http://arxiv.org/abs/hep-th/9801206
http://inspirehep.net/search?p=find+EPRINT+hep-th/9801206
http://dx.doi.org/10.1016/0550-3213(96)00328-8
http://arxiv.org/abs/hep-th/9604035
http://inspirehep.net/search?p=find+EPRINT+hep-th/9604035
http://dx.doi.org/10.1016/0550-3213(96)00338-0
http://arxiv.org/abs/hep-th/9604166
http://inspirehep.net/search?p=find+EPRINT+hep-th/9604166
http://dx.doi.org/10.1016/0550-3213(96)00423-3
http://arxiv.org/abs/hep-th/9604179
http://inspirehep.net/search?p=find+EPRINT+hep-th/9604179
http://dx.doi.org/10.1016/S0550-3213(98)00464-7
http://arxiv.org/abs/hep-th/9803061
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803061
http://dx.doi.org/10.1016/S0550-3213(98)00512-4
http://arxiv.org/abs/hep-th/9803231
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803231
http://dx.doi.org/10.1016/S0550-3213(99)00598-2
http://arxiv.org/abs/hep-th/9906105
http://inspirehep.net/search?p=find+EPRINT+hep-th/9906105
http://dx.doi.org/10.1016/S0370-2693(98)00445-6
http://arxiv.org/abs/hep-th/9801165
http://inspirehep.net/search?p=find+EPRINT+hep-th/9801165
http://dx.doi.org/10.1103/PhysRevD.59.025001
http://arxiv.org/abs/hep-th/9809065
http://inspirehep.net/search?p=find+EPRINT+hep-th/9809065
http://arxiv.org/abs/hep-th/9904073
http://inspirehep.net/search?p=find+EPRINT+hep-th/9904073
http://dx.doi.org/10.4310/ATMP.2005.v9.n3.a3
http://arxiv.org/abs/hep-th/0403090
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403090
http://dx.doi.org/10.1103/PhysRevD.91.085032
http://arxiv.org/abs/1501.05622
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.05622


J
H
E
P
1
2
(
2
0
1
5
)
1
0
4

[65] I.A. Bandos, E. Ivanov, J. Lukierski and D. Sorokin, On the superconformal flatness of AdS

superspaces, JHEP 06 (2002) 040 [hep-th/0205104] [INSPIRE].

[66] D. Butter, G. Inverso and I. Lodato, Rigid 4D N = 2 supersymmetric backgrounds and

actions, JHEP 09 (2015) 088 [arXiv:1505.03500] [INSPIRE].

[67] I.A. Bandos and B. Julia, Superfield T duality rules, JHEP 08 (2003) 032 [hep-th/0303075]

[INSPIRE].

[68] V. Forini, V.G.M. Puletti and O. Ohlsson Sax, The generalized cusp in AdS4 ×CP 3 and

more one-loop results from semiclassical strings, J. Phys. A 46 (2013) 115402

[arXiv:1204.3302] [INSPIRE].
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