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Abstract 

 

Failure to regulate cellular proliferation is one of the hallmarks of cancer.  The 

development of pre-B cells is demarcated by alternating stages of quiescence, in 

which immunoglobulin receptors are sequentially rearranged, and clonal expansion, 

in which signals from the assembled pre-B cell receptor lead to proliferation.  Ikaros 

(encoded by Ikzf1 in mice) is a transcription factor that regulates gene expression in 

cycling B cell progenitors to enforce proliferative arrest.  In humans IKZF1 mutations 

are prevalent in subsets of haematological malignancies and result in inappropriate 

proliferation, therefore the regulation of the cell cycle by Ikaros may be fundamental 

to its tumour suppressor function.  The study of Ikaros-mediated cell cycle arrest in 

pre-B cells is complicated by the role of Ikaros in the regulation of genes involved in 

pre-B cell differentiation.  I used 3T3 fibroblasts as a reductionist model to study the 

regulation of the cell cycle by Ikaros independently of pre-B cell receptor signalling.  

Using this model I performed an RNAi screen to discover novel regulators that 

cooperate with Ikaros to arrest the cell cycle.  Amongst a number of candidates I 

identified the scaffolding protein SSeCKS (Akap12) as necessary for Ikaros-mediated 

proliferative arrest.  Overexpression of Ikaros and SSeCKS synergistically arrested the 

cell cycle and silenced the expression of the proto-oncogene Myc.  Utilising 

fibroblasts in which Ikaros and SSeCKS could be inducibly expressed I performed 

RNAseq to profile the global gene expression of cells that had undergone Ikaros and 

SSeCKS-mediated cell cycle arrest.  Ikaros and SSeCKS together regulated the 

expression of hundreds of genes to coordinate proliferative arrest.  The insights 

gained from these analyses may be applied to pre-B cells to deepen our 

understanding of the role of Ikaros in the regulation of proliferation in normal 

development and in the leukaemic state.   
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Chapter 1  

Introduction 

 

1.1 Ikaros family members in haematopoiesis, cell cycle regulation and 

leukaemia 

 

Ikaros proteins are essential for multiple stages of haematopoietic development.  

Gain and loss of function studies have elucidated the role of Ikaros in processes 

pertinent to lymphocyte development, cell cycle regulation and the suppression of 

carcinogenesis.  Here I give an account of Ikaros function in the development of B 

cell progenitors, in which the regulation of the cell cycle is inextricably linked to 

differentiation and the suppression of malignancy.  Understanding the necessary 

function of Ikaros in such fundamental processes may deepen our understanding of 

the role of these proteins in the suppression of the leukaemic state.   

 

1.1.1 The function of Ikaros in early lymphocyte progenitors 

 

Haematopoiesis is a hierarchical process involving a gradual restriction of 

developmental potential in the production of the lineage-committed cells of the 

haematopoietic system (figure 1.1) (Busslinger, 2004; Cedar and Bergman, 2011).  All 

the cells of the blood system are generated from a multipotent and self-renewing 

population of haematopoietic stem cells (HSC) in the bone marrow of adults, and the 

fetal liver of developing embryos (Busslinger, 2004).  HSCs give rise to multipotent 

precursors (MPP) that retain broad developmental potential but lack self-renewing 

properties (Morrison and Weissman, 1994).  Commitment to the B cell lineage 

begins as MPPs differentiate into lymphoid-primed multipotent progenitors (LMPP) 

that possess a combined myeloid and lymphoid potential, but are unable to commit 

to the erythroid or megakaryocyte lineages (Adolfsson et al., 2005).  LMPPs 
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differentiate into common lymphoid progenitors (CLPs) that can further commit to 

the B cell lineage, or give rise to T lymphocytes and natural killer cells (NK) 

(Busslinger, 2004).  Each stage of development is characterised by a series of gene 

regulatory networks governed by transcription factors that function in a hierarchical 

and combinatorial manner to specify cell fate (Singh et al., 2005).  These 

transcription factors promote lineage-specific gene expression programs and repress 

lineage inappropriate expression to generate the mature cells of the haematopoietic 

system.   

 

 

 

 

 

 

 

Genetic ablation studies have elucidated the transcriptional networks that direct the 

progression of lymphoid progenitors to the B cell lineage.  These include the 

transcription factors PU.1, E2A, EBF1, Pax5 and Ikaros (Busslinger, 2004; Mandel and 

Grosschedl, 2010, Singh et al., 2005).  Ikaros (encoded by Ikzf1) is the founding 

member of a family of zinc finger transcription factors that are required for 

lymphocyte development.  Other members of the family include Aiolos (Ikzf3) and 

Helios (Ikzf2), two proteins that exhibit high sequence homology to Ikaros.  The 

expression of these related factors is primarily restricted to lymphoid lineages, and 

Figure 1.1 – Haematopoietic lineage restriction. Schematic outlining the orderly 
restriction in cell fate from a self-renewing haematopoietic stem cell to the earliest 
specified B cell precursor.  HSC = Haematopoietic stem cell, MPP = Multipotent 
precursor, LMPP = Lymphoid-primed multipotent progenitor, CLP = Common lymphoid 
progenitor. 
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they are believed to directly associate and interact with Ikaros (Morgan et al., 1997; 

Hahm et al., 1998).  Two additional family members, Eos (Ikzf4) and Pegasus (Ikzf5), 

were subsequently discovered.  These are more broadly expressed and can be 

detected in non-haematopoietic tissues such as brain, heart and skeletal muscle 

(Honma et al., 1999; Perdomo et al., 2000).   

 

Full length Ikaros protein (Ik-1) contains two separate domains of zinc fingers that 

mediate its transcriptional function (figure 1.2).  The N-terminal domain consists of 4 

zinc fingers that are required for DNA binding at target genes (Hahm et al., 1994).  

The C-terminal domain contains 2 zinc fingers that can form homodimers, as well as 

heterodimers with other Ikaros family members (Sun et al., 1996).  Dimerisation of 

Ikaros proteins is required for high affinity interactions with DNA (Sun et al., 1996).  

Alternative splicing can generate multiple Ikaros isoforms that differ in the 

composition of zinc fingers, cellular localisation and transcriptional activity (Molnar 

and Georgopoulos, 1994; Hahm et al., 1994; Molnar et al., 1996).  Isoforms that lack 

the N-terminal zinc fingers are unable to bind to DNA but can still dimerise with 

other family members, thereby exerting a dominant negative effect by preventing 

the transcriptional function of full length isoforms (Sun et al., 1996).   DNA binding-

deficient dominant negative isoforms are overexpressed in B cell acute 

lymphoblastic leukaemia (B-ALL), illustrating the requirement for appropriate Ikaros 

function in B cell development (Nakase et al., 2000). 

 

 

 

Figure 1.2 – Ikaros zinc finger isoforms. Diagram showing the full length (519 amino 
acid) Ikaros protein (Ik-1) that contains 4 N-terminal zinc fingers that mediate DNA 
binding and 2 C-terminal zinc fingers required for dimerisation.  Multiple isoforms differ 
in the composition of zinc finger domains.  The dominant negative (DN) Ik-6 isoform 
lacks the zinc fingers required for DNA binding but retains the C-terminal zinc fingers.    
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The role of Ikaros in the regulation of transcription was first uncovered by DNAse I 

footprinting and gel shift analysis of the promoter of the lymphocyte specific gene 

Dntt.  Ikaros bound to an element in the promoter of Dntt and negatively regulated 

its transcription (Lo et al., 1991; Trinh et al., 2001).  A further role for Ikaros in 

lymphocyte development was highlighted by the activation of the T cell 

differentiation antigen CD3 delta (Georgopoulos et al., 1992).  The essential 

requirement for Ikaros function in developing lymphocytes was illustrated by Ikaros-

deficient mouse models, in which the zinc finger domains were selectively deleted.  

Deletion of the exon encoding the C-terminal zinc fingers resulted in an Ikaros-null 

mouse (Wang et al., 1996).  These mutant proteins are destabilised and are deficient 

in dimerisation and transcriptional activity (Wang et al., 1996).  Ikaros-null mice 

displayed a complete absence of foetal and adult derived B and NK cells, and a lack 

of foetally derived T cells.  Adult T cells developed postnatally, but were skewed 

towards the CD4+ lineage.  These cells underwent clonal expansion and 

hyperproliferated in response to TCR engagement, indicating a role for Ikaros in the 

regulation of proliferation (Wang et al., 1996).  A more severe phenotype was 

observed in mice that contained a mutation in the DNA binding domain of Ikaros 

(Georgopoulos et al., 1994).  Mice homozygous for this dominant negative mutation 

exhibited a complete block in lymphocyte development and their earliest precursors, 

suggesting a function for Ikaros prior to lymphocyte specification (Georgopoulos et 

al., 1994).  The more severe effect of the dominant negative mutation highlighted 

the requirement for dimerisation with other isoforms or family members for 

appropriate Ikaros function in lymphocyte development.  T cells from mice 

heterozygous for the dominant negative mutation displayed augmented 

proliferation and developed leukaemia and lymphoma with high penetrance, 

coinciding with the loss of the wild type Ikaros allele (Winandy et al., 1995).  The 

hyperproliferative T cell phenotype in Ikaros deficient mice was analysed further.  

These cells proliferated as a result of lower TCR activation thresholds (Avitahl et al., 

1999).  The reduced expression of Ikaros protein in Ikzf1+/- null and dominant 

negative T cells correlated with the progression to S phase in these cells (Avitahl et 

al., 1999).  Ikaros was found to colocalise with sites of active DNA replication and 
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was important in the fidelity of chromosome propagation as Ikaros-deficient T cells 

displayed increased chromosomal aberrations compared to wild type (Avitahl et al., 

1999).  These studies provided the first evidence that Ikaros was required for the 

attenuation of proliferation and suppression of malignancy in developing 

lymphocytes. 

 

Studies in Ikaros-null mice have revealed a requirement for Ikaros function at the 

very earliest stages of haematopoietic development.  These mice showed decreased 

numbers of HSCs and did not express the receptor tyrosine kinase Flt3 

(Nichogiannopoulou et al., 1999).  Flt3 is required for the formation of common 

lymphocyte progenitors (CLP) and subsequent lymphocyte development 

(Mackarehtschian et al., 1995; Sitnicka et al., 2002).  A detailed study further 

investigated Ikaros function in early haematopoiesis through the use of a GFP 

reporter under control of the Ikzf1 regulatory elements (Yoshida et al., 2006).  GFP 

expression could be detected in early lineage restricted precursors corresponding to 

lymphoid-primed multipotent progenitors (LMPP).  Ikaros-null GFP+ LMPPs were 

defective in the formation of CLPs and subsequent B cell development (Yoshida et 

al., 2006).  This study was extended by transcriptional analysis of GFP+ Ikaros-null 

LMPPs.  Ikaros was required to downregulate stem cell gene expression signatures in 

these cells and promote the priming and maintenance of lymphoid specific gene 

expression (Ng et al., 2009).  These genes included the B cell heavy chain Igh-6 and 

the interleukin 7 receptor Il-7r.  Signalling through the IL-7 cytokine receptor is 

essential for the commitment to the pre-pro-B cell stage and subsequent 

proliferation and survival of B cell progenitors (Miller et al., 2002; Clark et al., 2014).  

This illustrates the requirement for Ikaros in the commitment to the B and T cell 

lineages and helps explain the absence of B cells observed in Ikaros-null mice.      
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1.1.2 The regulation of the cell cycle by Ikaros in B cell precursors 

 

Specification and commitment to the B cell lineage begins in IL-7R expressing 

progenitors and involves the expression of key transcription factors (Busslinger, 

2004).  PU.1 and E2A are required to regulate the expression of EBF in B cell 

restricted progenitors (Busslinger, 2004; Singh et al., 2005).  EBF expression is also 

dependent on activation by STAT5, a signalling molecule downstream of the IL-7 

receptor (Kikuchi et al., 2005).   EBF and E2A in turn regulate the expression of Pax5, 

a gene essential for B cell lineage commitment (Busslinger, 2004).  Pax5 suppresses 

lineage inappropriate gene expression and upregulates genes encoding the antigen 

receptor and its downstream signalling molecules (Busslinger, 2004; Singh et al., 

2005).     

 

B cell development is characterised by distinct stages of proliferation and 

quiescence, in which antigen receptor loci are sequentially rearranged and 

expressed (Reth et al., 1987).  Genomic rearrangements are mediated by the 

synergistic activity of the recombination-activating genes Rag1 and Rag2 (Oettinger 

et al., 1990).  The expression and activity of Rag1 and Rag2 is strictly controlled and 

limited to G0 and G1 phases of the cell cycle.  Enforced Rag2 activity in other cell 

cycle stages results in aberrant recombination and increased genomic instability 

(Zhang et al., 2011).  This is presumably because DNA repair by non-homologous end 

joining (NHEJ) is preferentially used to repair Rag-mediated double strand breaks in 

G0/G1 stage.  In later cell cycle stages repair by homologous recombination (HR) is 

more active.  Enforced Rag2 activity in later cell cycle stages may increase the risk of 

translocations due to the abarrent activation of the HR repair pathway (Zhang et al., 

2011).  For these reasons, sequential rounds of rearrangements and proliferation in 

B cell progenitors must be highly orchestrated to prevent genomic instability and 

leukaemogenesis (figure 1.3). 

 

Pre-pro-B cells (Hardy fraction A, FrA) display germline configuration of the 
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immunoglobulin loci and are the earliest committed cells to the B lineage (Hardy et 

al., 1991; Herzog et al., 2009).  Somatic recombination of the diversity (DH) and 

joining (JH) segments of the immunoglobulin heavy chain (IgH) occurs as cells 

transition into the pro-B cell stage (FrB/C).  Further recombination of the variable 

(VH) segments to DJH occurs at the late pro-B cell stage.  Productive IgH 

rearrangement results in the expression of the pre-B cell receptor (pre-BCR) that 

consists of IgH and the surrogate light chain components λ5 (Igll1) and Vpre-BI (Vpre-

b1), associated with the signalling subunits Igα and Igβ (Nishimoto et al., 1991; 

Herzog et al., 2009).  Signalling through this receptor results in a burst of 

proliferation to clonally expand cells with successful rearrangements in the large 

cycling pre-B cell stage (FrC’) (Hess et al., 2001).  Signalling through the pre-BCR acts 

as a cell autonomous proliferation switch that limits its own replication (Hendricks 

and Middendorp, 2004).  Thus pre-BCR signalling is terminated by the 

downregulation of the surrogate light chain components in a feedback loop 

(Thompson et al., 2007).  The cells drop out of cycle and begin rearrangement of the 

immunoglobulin light chain (IgL) genes in the small resting pre-B cell stage (FrD) 

(Busslinger, 2004).  The rearranged light chains associate with IgH to form the B cell 

receptor that is expressed on immature B cells (FrE) (Hardy et al., 1991; Herzog et 

al., 2009).   

 

 

 

 

Figure 1.3 – Pre-B cell development.  Schematic displaying the discrete stages of pre-B 
cell development from the earliest specified progenitor (pre-pro-B) to the immature B 
cell.  Recombination of the heavy chain (H) and light chain (k) occurs in sequential stages 
of quiescence, punctuated by proliferative bursts.  Ikaros contributes to cell cycle exit at 
the transition to the resting pre-B cell stage (FrD). This stage is characterised by 
proliferative arrest, quiescent metabolic reprogramming and rearrangement of the 
immunoglobulin k loci.  The production of a functional B cell receptor marks the 
transition to the immature B cell stage and exit from the bone marrow.        
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Aiolos-null mice illustrated the requirement for Ikaros family members in B cell 

development.  These mice had an increased population of pre-B cells, indicating a 

partial block in the differentiation of pre-B precursors (Wang et al., 1998).  

Peripheral B cells displayed augmented proliferation in response to BCR 

engagement, reminiscent of the hyperproliferative phenotype observed in Ikaros-

null T cells (Wang et al., 1998; Avitahl et al., 1999).  Aiolos-null mice eventually 

developed B cell lymphomas, illustrating the essential requirement for Ikaros family 

members to suppress inappropriate proliferation and malignancy (Wang et al., 

1998).  The requirement for Ikaros function in B cell development was illustrated by 

a mouse model that contained a β-galactosidase reporter inserted into the Ikzf1 

coding sequence.  Low levels of Ikaros protein expression persisted, enabling some 

B cells to develop postnatally (Kirstetter et al., 2002).  These mice displayed a partial 

block in development at the pro-B or large cycling pre-B cell stage and peripheral B 

cells proliferated in response to lower thresholds of BCR signalling (Kirstetter et al., 

2002).  These observations suggest that Ikaros and Aiolos are required for 

appropriate B cell development and negatively regulate proliferation in response to 

B cell receptor signalling.  

 

Studies investigating the rearrangement and expression of IgH in pro-B cells 

uncovered a direct role for Ikaros in B cell differentiation.  Complementing EBF 

expression in Ikzf1-/- haematopoietic progenitors was sufficient to partially rescue 

the complete block in B cell development in Ikaros-null mice (Reynauld et al., 2008).  

Small numbers of B cells were discovered that were developmentally blocked at the 

pro-B cell stage (FrB/C) and defective in IgH recombination.  Reconstitution of Ikaros 

into these cells directly upregulated the expression of Rag1 and Rag2 and induced 

the rearrangement of VH-DJH genes (Reynauld et al., 2008).  Foxo1 is required for 

appropriate VH-DJH recombination by ensuring the correct splicing of Ikzf1 mRNA, as 

aberrant transcripts were detected in Foxo1-deficient cells (Alkhatib, 2012).  Foxo1 

activity is repressed by pro-proliferative IL-7 signalling through the 

phosphatidylinositol-3-OH kinase (PI3K) and protein kinase B (PKB/AKT) pathway 
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(Ochiai et al., 2012).  Thus there is balance between proliferation and cell cycle 

withdrawal in B cell development that Ikaros can influence to promote 

differentiation. 

 

Signalling through the assembled pre-BCR and IL-7 receptors results in a burst of 

proliferation in the large cycling pre-B cell stage (FrC’) (Clark et al., 2014).  IL-7 

promotes the survival and proliferation of pre-B cells through the activation of AKT 

and upregulation of the proto-oncogene Myc (Corfe and Paige, 2012; Morrow et al., 

1992).  IL-7 can also promote G1/S progression by upregulating the expression of 

Ccnd2 through the downstream transcription factor STAT5 (Goetz et al., 2004).  

Upon pre-BCR activation, the immunoreceptor tyrosine-based activation motifs 

(ITAMS) of the intracellular portion of Igα and Igβ are phosphorylated and recruit the 

Src kinase Syk (Herzog et al., 2009).  Syk can phosphorylate the mitogen-activated 

protein kinase (Mapk) ERK, which upregulates the expression of Myc through the 

downstream activator Elk1 (Yasuda et al., 2008).  Myc is required for the 

proliferation of large cycling pre-B cells (FrC’) as Myc reconstitution restored 

proliferation in ERK1/2 deficient cells (Yasuda et al., 2008). 

 

Proliferating FrC’ cells must drop out of cycle and rearrange the light chain loci at the 

small resting pre-B cell stage (FrD).  This depends on the termination of pre-BCR and 

IL-7 signalling (Clark et al., 2004).  Activated Syk phosphorylates multiple residues on 

the scaffolding protein SLP65 (Herzog et al., 2009).  SLP65 (Blnk) is a molecular 

scaffold that exerts a tumour suppressor effect by binding and facilitating 

interactions between downstream signalling molecules.  Scaffolding proteins are 

believed to be important for the regulation of immune cell signalling cascades by 

integrating multiple inputs to influence complex downstream effects.  These include 

setting thresholds for proliferation, setting graded and oscillatory signalling 

responses, and regulating the spatiotemporal localisation of signalling (Shaw and 

Filbert, 2009; Thomlinson et al., 2000).  Pre-B cells in Slp65-/- mice display enhanced 

proliferation and a high incidence of pre-B cell lymphoma (Flemming et al., 2003).  

Signalling downstream of SLP65 via the transcriptional activators IRF4 and IRF8 
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sharply upregulates the expression of Aiolos (Ikzf3) at the transition to the small 

resting pre-B cell stage (FrD) (Ma et al., 2008; Thompson et al., 2007).  Ikaros and 

Aiolos bind directly to the promoter of the surrogate light chain Igll1 (Lo et al., 1991; 

Sabbattini et al., 2001) and downregulate its expression in competition with the 

transcriptional activator EBF (Thompson et al., 2007).  This feedback loop terminates 

pre-BCR signalling at the small resting pre-B cell stage.   

 

The cessation of pre-BCR signalling alone is not sufficient for light chain 

recombination as cell cycle arrest is required for Rag activity (Zhang et al., 2011).  

The upregulation of Ikzf3 by IRF4/8 contributes to cell cycle arrest, as reconstitution 

of Ikaros or Aiolos in IRF4/8 null pre-B cells was sufficient to induce G1 arrest (Ma et 

al., 2008).  Gene expression analysis was performed on IRF4/8 null pre-B cells 

reconstituted with Ikaros or Aiolos.  Ikaros and Aiolos repressed the expression of 

Myc by directly binding to its promoter and arrested the cells in G1 (Ma et al., 2010).  

Myc downregulation was essential for cell cycle withdrawal, as enforced Myc 

expression prevented Aiolos-mediated cell cycle arrest (Ma et al., 2010).  Following 

Myc depletion, the cells downregulated cyclin D3 and upregulated the cell cycle 

inhibitor Cdkn1b (hereon referred to as p27 protein or Cdkn1b gene).  The induction 

of p27 was also necessary for G1 arrest as the growth antagonising function of Ikaros 

and Aiolos was attenuated slightly in p27 deficient pre-B cells (Ma et al., 2010).   

 

The regulation of gene expression by Ikaros was further explored by microarray 

analysis of Ikzf1 overexpression in an IL-7 transgenic lymphoma cell line 

developmentally blocked at the FrC’ stage (B3 cells, Ferreiros-Vidal et al., 2013).  In 

these experiments Ikaros activity was conditionally induced and gene expression 

analysis was performed at time points prior to, and after Ikaros-mediated cell cycle 

arrest.  This was combined with ChIP-Seq analysis to correlate differential gene 

expression with direct regulation by Ikaros binding.  Ikaros overexpression induced 

gene expression changes resembling the differentiation of cycling (FrC’) to resting 

(FrD) pre-B cells in vivo (Ferreiros-Vidal et al., 2013).  Ikaros downregulated the 

expression of Myc, Cdk6, Ccnd2/3 and E2F amongst others, and upregulated the cell 
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cycle inhibitors Cdkn1a (p21), Cdkn1b (p27) and Cdkn2a (p16).  In addition to cell 

cycle genes, Ikaros regulated the expression of developmentally restricted genes 

involved in pre-BCR signalling such as Blnk (Slp65) Rag1/2, Syk, Igll1, Foxo1 and 

components of the PI3K pathway including Akt (Ferreiros-Vidal et al., 2013).  Thus 

Ikaros can directly control the expression of cell cycle genes (based on ChIP-seq and 

microarray data) to enforce proliferative arrest and regulate the expression of key 

genes downstream of the pre-BCR to promote differentiation.  Other genes involved 

in DNA replication, ribosome biogenesis and metabolism were also downregulated, 

illustrating the ability of Ikaros to regulate many essential pathways to enforce 

quiescence at the small resting pre-B cell stage (FrD) (Ferreiros-Vidal et al., 2013).    

 

Cell cycle arrest and differentiation depend on the attenuation of pro-proliferative 

signals from the IL-7 receptor (Ochiai et al., 2012).  Conditional inactivation of Ikzf1 

in early B cell progenitors resulted in a complete block at the large cycling pre-B cell 

stage, illustrating the requirement for Ikaros function in the transition to the small 

resting pre-B cell stage (Heizmann et al., 2013).  Reconstitution of Ikaros into these 

cells overcame the differentiation block and rescued B cell development.  Ikaros 

synergistically cooperated with IL-7 withdrawal to repress Myc mRNA expression, 

enforce cell cycle arrest, downregulate the pre-BCR and recombine immunoglobulin 

light chain loci (Heizmann et al., 2013).  Microarray analysis demonstrated that 

Ikaros antagonised the expression of genes reliant on IL-7 signalling and introduced a 

more differentiated gene expression profile.  Thus Ikaros enhanced pre-B cell 

differentiation by attenuating IL-7 signalling (Heizmann et al., 2013).  An additional 

mouse model was created in which the DNA binding zinc fingers of Ikaros were 

conditionally deleted in pro-B cells, creating a dominant negative protein (Joshi et 

al., 2014).  The cells were developmentally blocked at the large cycling pre-B cell 

stage and exhibited increased integrin-dependent binding to stromal cells, which 

supported survival and proliferation through the secretion of growth factors such as 

IL-7 and SCF.  These hyperproliferative cells subsequently displayed high leukaemic 

potential (Joshi et al., 2014).  This study indicates that Ikaros is not only required to 

antagonise IL-7 dependent gene expression, but is also required to downregulate the 
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expression of integrins, allowing the cells to physically dissociate from IL-7 secreting 

stroma (Joshi et al., 2014).  Ikaros can regulate the proliferation and differentiation 

of pre-B cells by integrating and regulating multiple signalling pathways downstream 

of IL-7, integrin and focal adhesion receptors, growth factor receptors and the pre-B 

cell receptor.  This delicate balance between growth and differentiation is lost upon 

Ikaros deletion, tipping the balance towards proliferation and leukaemogenesis.         

 

1.1.3 Mechanisms of transcriptional regulation by Ikaros 

 

Ikaros was identified as a transcription factor that could bind and negatively regulate 

the expression of the lymphocyte specific genes Dntt and Igll1 (Lo et al., 1991; Trinh 

et al., 2001; Sabbattini et al., 2001).  Ikaros can also activate the lymphocyte specific 

gene CD3 delta (Georgopoulos et al., 1992) and transactivate or repress reporter 

plasmids (Molnar and Georgopoulos, 1994; Koipally et al., 1999; Trinh et al., 2001).  

Subsequent genome wide expression profiling studies have identified many 

hundreds of target genes involved in pre-B cell development, adhesion, metabolism, 

signal transduction, cell cycle and DNA replication (Ferreiros-Vidal et al., 2013; 

Heizmann et al., 2013; Joshi et al., 2014; Schwickert et al., 2014).  Therefore Ikaros 

regulates many diverse pathways that are widely expressed outside of the 

haematopoietic system.  The combined effect of this regulation is to reconfigure the 

phenotype of proliferating B cell progenitors towards quiescence.   

 

To gain an insight in the mechanisms of transcriptional regulation by Ikaros, the Dntt 

locus was studied further (Trinh et al., 2001).  The binding site for Ikaros overlapped 

with the transcriptional activator Elf-1.  Gel shift assays suggested that Ikaros and Elf-

1 bound competitively at the promoter of Dntt, and reporter constructs confirmed 

that Ikaros was required to downregulate the expression of Dntt by excluding Elf-1 

(Trinh et al., 2001).  Downregulation of Dntt coincided with increased chromatin 

compaction at this locus, suggesting epigenetic mechanisms of repression (Trinh et 

al., 2001).  A similar competitive binding mechanism was observed at the promoter 
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of Igll1, where Ikaros competes with EBF to downregulate this gene at the transition 

from large cycling (FrC’) to small resting (FrD) pre-B cells (Thompson et al 2007).   

In addition to competitive binding, Ikaros can regulate transcription through 

associations with chromatin modifying complexes.  A major fraction of Ikaros and 

Aiolos proteins localise with the Mi-2β nucleosome remodelling and deacetylase 

complex (Mi-2β/NuRD) in the nucleus of T cells (Kim et al., 1999).  This complex 

contains dual ATPase-dependent chromatin remodelling and histone deacetylation 

activity, and can activate or repress the transcription of target genes (Dege and 

Hagman, 2014).  In double negative thymocytes Ikaros represses the transcription of 

CD4 by binding to a silencer element (Naito et al., 2007).  In double positive 

thymocytes CD4 is expressed by the combined binding of Mi-2β and Ikaros, 

suggesting an antagonistic regulation in the expression of lineage appropriate genes 

(Naito et al., 2007).  A genome wide study of Ikaros and Mi-2β DNA binding in double 

positive thymocytes indicated that Ikaros recruited this complex to active genes 

involved in thymocyte development (Zhang et al., 2012).  Though Mi-2β/NuRD is 

primarily a repressive complex, Ikaros prevented its histone deacetylation activity at 

sites of permissive chromatin.  Loss of Ikaros DNA binding reduced the expression of 

these lymphoid specific target genes due to increased deacetylation and chromatin 

remodelling at these loci.  The Mi-2β/NuRD complex was subsequently redistributed 

to transcriptionally poised non-Ikaros target genes involved in proliferation and 

metabolism, activating their expression (Zhang et al., 2012).  This provides a 

potential mechanism for leukaemogenesis in the absence of Ikaros function.  Ikaros 

can also bind to the transcriptional corepressors Sin3 and CtBP (Koipally et al., 1999; 

Koipally and Georgopoulos, 2000) and the Brg1-SWI/SNF chromatin remodelling 

complex (Kim et al., 1999).  Ikaros exists in a complex consisting of Mi-2β/NuRD and 

SWI/SNF (PYR complex) that regulates the β-globin locus in erythroid cells (O’Neill et 

al., 2000).  Thus Ikaros is believed to activate and repress transcription based on its 

association with these chromatin-modifying complexes.    

 

Interestingly, experiments combining immunofluorescence and fluorescence in situ 

hybridisation (Immuno-FISH) showed that Ikaros complexes form foci at 



Chapter 1  

27 

 

pericentromeric heterochromatin that are rich in gamma-satellite sequences and 

heterochromatin-1 (HP1) binding (Brown et al., 1997).  Ikaros clusters colocalised 

with genes that are developmentally silenced in lymphocytes (Brown et al., 1997).  In 

resting lymphocytes these silent genes are not associated with centromeric foci, but 

upon stimulation they are dynamically repositioned towards Ikaros clusters (Brown 

et al., 1999).  Both Igll1 and Dntt displayed this dynamic repositioning in B and T cells 

respectively.  This led to the hypothesis that Ikaros associates with developmentally 

silenced genes at heterochromatin regions to ensure hereditary silencing following 

cell division (Brown et al., 1999).  Ikaros is targeted to pericentromeric regions 

through direct DNA binding, as dominant negative isoforms that are compromised in 

DNA binding do not form these clusters (Cobb et al., 2000).  Ikaros proteins form 

dimers and higher order multimers through contacts mediated by the C-terminal zinc 

fingers.  This facilitates DNA binding to centromeric heterochromatin and the 

recruitment of target genes to these silencing regions (Cobb et al., 2000; Trinh et al., 

2001).   

 

It is of great interest that Ikaros is able to form clusters when ectopically expressed 

in 3T3 fibroblasts, indicating that binding to centromeric heterochromatin is not a 

lymphocyte specific phenomenon (Cobb et al., 2000).  Ectopic expression of Ikaros in 

these cells is sufficient to induce G1 arrest (Gomez Del-Arco et al., 2004).  Ikaros is 

hypophosphorylated and active in G1 phase, but is subsequently phosphorylated at 

the G1/S transition by casein kinase 2 (CK2) (Gomez Del-Arco et al., 2004).  This 

phosphorylation restricts the ability of Ikaros to form centromeric clusters, bind 

target genes and regulate the cell cycle (Gomez Del-Arco et al., 2004; Gurel et al., 

2008).  Conversely, dephosphorylation by protein phosphatase 1 (PP1) restores 

Ikaros activity (Popescu et al., 2009).  Syk colocalises with Ikaros in the nucleus of B 

cells and phosphorylates Ikaros on serine residues (Uckun et al., 2012).  In contrast 

to CK2, Syk phosphorylation augments sequence specific binding of Ikaros.  Analysis 

by immunofluorescence demonstrated that IKAROS is unable to form centromeric 

foci in Syk-/- primary B cell ALL samples (Uckun et al., 2012).  Thus, in addition to 

upregulating the expression of Aiolos via the Slp65 scaffold, Syk can 
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postranslationally modify Ikaros to enhance its function.  IKAROS can negatively 

regulate the expression of cell cycle genes in a human pre-B leukaemic cell line to 

arrest proliferation (Song et al., 2015).  Pharmacological inhibition of CK2 promoted 

IKAROS mediated gene regulation in these cells.  Remarkably, CK2 inhibition could 

restore IKAROS binding and the repression of IKAROS target genes involved in cell 

cycle progression in primary B-ALL leukaemia cells, and reduce the leukaemic 

potential of these cells in human-mouse xenograft models (Song et al., 2015).  The 

phosphorylation of IKAROS by CK2 in human ALL cells is cell cycle specific, as 

observed in mice (Li et al., 2012).  Phosphorylation occurs at the transition into S 

phase, thereby linking the inactivation of IKAROS to cell cycle progression (Li et al., 

2012).  Thus the regulation of the cell cycle is inextricably linked to IKAROS function 

and is essential to suppress leukaemia.  Together these studies indicate that in 

addition to the regulation of the cell cycle by Ikaros, the cell cycle can also 

dynamically regulate the localisation and function of Ikaros.  The complex interplay 

underlining these interactions remains to be fully elucidated and has implications for 

developmental processes and malignancy.        

 

1.1.4 Ikaros as a tumour suppressor 

 

Ikaros is a transcription factor that is involved in diverse cellular processes such as 

proliferation, metabolism, adhesion and epigenetic regulation of developmental 

gene expression.  It is therefore not surprising that it is a tumour suppressor and 

perturbations to Ikaros function can result in leukaemia.  The first evidence of its 

tumour suppressor function was that mice homozygous for a dominant negative 

Ikaros mutation develop T cell leukaemia and lymphoma (Winandy et al., 1995).  

Evidence of a bona-fide tumour suppressive function in mice came from the 

observation that the reintroduction of Ikzf1 into an Ikaros-null T leukaemia cell line 

arrested its proliferation (Kathrein et al., 2005).  Ikaros upregulated the cell cycle 

inhibitor p27, initiated a T cell differentiation program and enforced G1/G0 arrest in 

these cells (Kathrein et al., 2005).  Ikaros-null mice fail to produce any cells belonging 
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to the B cell lineage (Georgopoulos et al., 1994), but conditional mutagenesis 

generates highly proliferative cells that are developmentally blocked at the large 

cycling pre-B cell stage (Joshi et al., 2014).  Recipient mice that are transplanted with 

these cells develop aggressive leukaemias with 100% mortality (Joshi et al., 2014). 

 

In a landmark paper IKAROS was identified as the defining oncogenic lesion in 

Philadelphia positive B-progenitor acute lymphoblastic leukaemia (ALL) (Mullighan et 

al., 2008).  Philadelphia chromosome is a reciprocal translocation between 

chromosome 9 and 22 that generates the BCR-ABL fusion gene.  This encodes a 

constitutively active tyrosine kinase that activates a number of signalling pathways 

that promote survival and proliferation including RAS/ERK, PI3K, JAK/STAT and SRC 

(Salesse and Verfaillie et al., 2002).  Remarkably, IKZF1 is deleted in over 80% of BCR-

ABL positive ALL due to aberrant Rag-induced recombination (Mullighan et al., 

2008).  These deletions generate haploinsufficiency, dominant negative isoforms and 

IKAROS-null mutations (Mullighan et al., 2008).  IKZF1 copy number alterations are 

prevalent in high risk B cell progenitor ALL and correlate with poor outcome with 

increased risk of relapse (Mullighan et al., 2009).  Transcriptional profiling of these 

cells revealed an upregulation in the HSC gene expression signature and 

downregulation of B lineage genes (Mullighan et al., 2009).  BCR-ABL induces 

aberrant splicing of IKZF1 mRNA resulting in an overexpression of the dominant 

negative IK6 isoform in ALL patients (Nakase et al., 2000; Klein et al., 2006).  

Treatment with a BCR-ABL inhibitor reduced the expression of the truncated IK6 

isoform and knockdown of IK6 by RNA interference (RNAi) partially restored lineage 

commitment to these cells (Klein et al., 2006).  Interestingly, different DNA binding 

zinc fingers in the N-terminal domain of Ikaros are involved in the regulation of 

different subsets of genes.  Zinc fingers 2 and 3 bind to the canonical GGGAA Ikaros 

consensus sequence, whilst zinc fingers 1 and 4 confer sequence specificity and 

mediate binding to distinct genomic sites (Schjerven et al., 2013).  Selective deletion 

of zinc finger 4 in mice (Ikzf1ΔF4/ΔF4) upregulated genes involved in adhesion, cell 

communication and signal transduction in double positive thymocytes and resulted 

in the development of aggressive lymphomas (Schjerven et al., 2013).  Ikzf1ΔF4/ΔF4 B 
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cell progenitors cooperated with BCR-ABL to induce proliferation and malignancy in 

recipient mice.  This suggested that zinc finger 4 was selectively required for the 

tumour suppressor function of Ikaros (Schjerven et al., 2013).         

 

The molecular interactions between IKAROS and BCR-ABL were investigated in 

Philadelphia positive B-ALL cells (Trageser et al., 2009).  A majority of BCR-ABL 

positive ALL cells lack productive IgH VH-DJH rearrangements and are dysfunctional in 

pre-BCR signalling, indicating that the pre-BCR is a tumour suppressor that promotes 

B cell differentiation (Trageser et al., 2009).  Reconstitution of pre-BCR signalling 

attenuated proliferation, but expression of the dominant negative IKZF1 isoform IK6 

prevented G1 arrest.  Reconstitution of IKZF1 reduced growth and redirected the 

oncogenic kinase activity of BCR-ABL away from pro-proliferative SRC kinases 

towards the SLP65 tumour suppressor (Trageser et al., 2009).  Tyrosine 

phosphorylated SLP65 is able to scaffold and inactivate aberrant JAK3 signalling, 

resulting in the induction of Cdkn1b (p27) and cell cycle arrest (Nakayama et al., 

2009).  Thus IKAROS functions as a tumour suppressor downstream of the pre-BCR 

by promoting cell cycle arrest and differentiation.  Understanding the role of Ikaros 

in the regulation of the cell cycle may therefore be key to understanding its role in 

the prevention of malignancy.          
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1.2 Regulation of the cell cycle 

 

The cell cycle is a highly orchestrated series of events involving sequential 

duplication and segregation of the genome (figure 1.4).  It can be broadly 

characterised into the stages of mitosis, in which the chromosomes are segregated 

into two daughter cells, and interphase, in which the cells grow in size and replicate 

their DNA (Schafer, 1998).  Interphase can be further divided into gap phases and 

DNA synthesis (S phase).  Quiescent cells remain in the non-proliferative G0 phase 

until stimulated by mitogenic signals (Coller, 2007).  Entry into the cell cycle through 

the first gap phase (G1) is marked by an increase in cell growth and protein synthesis 

in preparation for DNA replication (Lee and Finkel, 2013).  For the cell to progress to 

S phase it must pass through the G1/S checkpoint (Schafer, 1998).  Failure to pass 

this checkpoint due to nutrient withdrawal or DNA damage results in G1 arrest.  

Removal of serum or nutrients in early G1 phase was demonstrated to induce a 

quiescent state in certain cell lines (Pardee, 1974).  Blocking DNA synthesis with 

hydroxyurea and then plating cells in low serum did not affect subsequent DNA 

replication.  This indicated an all or nothing restriction point in G1 phase that marks 

the transition to mitogen independence and commitment to cell cycle progression 

(Pardee, 1974).  Following DNA replication the cells enter G2 phase and prepare for 

cell division.  Progression into mitosis depends on passage though the G2/M 

checkpoint (Schafer, 1998).  Mitosis gives rise to two daughter cells that can 

permanently exit the cell cycle through terminal differentiation, enter into the 

quiescent G0 phase or continue to proliferate by entering again into G1 phase 

(Schafer, 1998). 
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Progression through the cell cycle is controlled by successive waves of cyclin-

dependent kinase (Cdk) activity, which are dependent on binding to their cyclin 

partners (Schafer, 1998).  Cyclins display a tightly regulated oscillatory expression 

profile that is determined by transcriptional regulation and degradation (Evans et al., 

1983; Schafer, 1998).  Progression through G1 phase is primarily driven by the action 

of Cdk4/6 bound to D type cyclins and cyclin E-Cdk2 complexes.  G2/M progression is 

driven by cyclins A and B bound to Cdk2 and Cdk1 respectively (Schafer, 1998).  The 

activity of cyclin-Cdk complexes can in turn be negatively regulated through the 

action of cell cycle inhibitors of the Cip/Kip and Ink4a/Arf families (Sherr and 

Roberts, 1999).  The decision to proliferate or remain quiescent depends on a 

balance of competing inputs including mitogenic signals, energy sensing, metabolic 

competence and cytoskeletal remodelling (Coller, 2007; Lee and Finkel, 2013).  As 

cancer is manifested through a misregulation of growth and proliferation, the 

Figure 1.4 – The cell cycle.  Following mitotic division the daughter cells enter into G1.  
Signals such as the availability of nutrients can influence the decision to continue to 
proliferate through the cell cycle or exit to a quiescent G0 state.  Passage through the 
restriction point marks the serum-independent progression into S phase.  The newly 
replicated chromosomes are subsequently segregated into two daughter cells in mitosis.   



Chapter 1  

33 

 

regulation of the cell cycle is intimately linked to the suppression of malignancy 

(Hanahan and Weinberg, 2000).  The oncogenic activities of proteins such as Myc 

promote aberrant proliferation and pose a risk to genomic integrity (Bretones et al., 

2015).  Tumour suppressors such as Ikaros oppose this activity and promote 

quiescence and differentiation (Ma et al., 2010; Kathrein et al., 2005).  These 

competing interests must be finely balanced to ensure normal development.  Here I 

give an overview of the regulation of the mammalian cell cycle.  As the activity of 

Ikaros primarily arrests cells in G1 phase, I will focus on the regulatory mechanisms 

that govern progression past the G1/S checkpoint.   

 

1.2.1 The G1/S checkpoint 

 

Pioneering studies in yeast identified the cell cycle as a sequence of highly 

orchestrated events requiring the temporal expression of genes involved in the 

progression through checkpoints (Hartwell et al., 1974).  Progression through the 

G1/S checkpoint depends on the activity of Cdc28 (Cdc2), a protein kinase that is 

activated by its association with cyclin binding partners (Hartwell et al., 1974; Nurse 

and Bisset, 1981; Reed et al., 1985; Evans et al., 1983; Sudbery et al., 1980).  An 

analogous system of regulation is conserved in mammals, in which specialised Cdks 

control progression through different cell cycle checkpoints.  Progression through 

the G1/S checkpoint in mammals depends on the activity of the interphase cyclin-

dependent kinases Cdk4, Cdk6 and Cdk2 (Schafer, 1998).  Mitogenic stimulation in 

early G1 phase induces the expression of D-type cyclins that bind to and activate the 

activity of Cdk4 and Cdk6 complexes (Matsushime et al., 1992; Meyerson and 

Harlow, 1994).  The D-type cyclins were originally identified in macrophages 

stimulated with colony-stimulation factor CSF1 (Matsushime et al., 1991).  CSF1 

induces an acute and transient activation of immediate-early genes such as c-Fos and 

c-Myc (Orlofsky and Stanley, 1987).  This is followed by the cyclical upregulation of 

the three D-type isoforms cyclin D1, D2 and D3 in early/mid G1, before their 

degradation at the onset of S phase (Matsushime et al., 1991).  In this capacity D-
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type cyclins act as growth factor sensors whose transcription depends on mitogenic 

stimuli.  Removal of mitogenic stimuli quickly results in their nuclear export and 

proteasomal degradation (Sherr and Roberts, 1999).   

 

The importance of D-type cyclins in G1 progression was illustrated by experiments in 

rodent fibroblasts.  Overexpression of cyclin D1 and cyclin D2 shortened the G1 

interval and rendered the cells less dependent on serum stimulation for proliferation 

(Quelle et al., 1993).  Inhibition of cyclin D1 by injecting the cells with an anti-cyclin 

D1 monoclonal antibody shortly after serum stimulation prevented entry into S 

phase, suggesting that D-type cyclins perform a rate limiting function during G1/S 

progression (Quelle et al., 1993).  Inhibition of cyclin D1 near the S phase boundary 

had no anti-proliferative effect, placing D-type cyclins early in the temporal 

sequence of events, at the boundary of the serum-dependent restriction point 

(Quelle et al., 1993).  Genetic ablation studies have highlighted potential tissue-

specific functions for D-type cyclins and Cdks.  Cyclin D triple knockout mice are 

embryonic lethal and show marked haematopoietic defects, suggesting D-type 

cyclins are required for the proliferation and expansion of HSCs (Kozar et al., 2004).  

Surprisingly, mouse embryonic fibroblasts derived from cyclin D deficient mice were 

able to proliferate, but required increased mitogenic stimulation to enter the cell 

cycle (Kozar et al., 2004).  Similar phenotypes were observed in Cdk4/6 knockout 

mice, suggesting that cyclin D-Cdk complexes are required for haematopoiesis 

(Malumbres et al., 2004).  A unique role for cyclin D3 was identified in the 

development of pre-B cells.  In these cells cyclin D1 is not detectable, but there is a 

substantial reduction in both cyclin D2 and D3 as the cells enter the resting pre-B cell 

stage (Cooper et al., 2006).  Cyclin D3-/- cells were blocked at the pro-B cell stage and 

were unable to enter into the large cycling pre-B cell stage (FrC’) (Cooper et al., 

2006).  Cyclin D3 protein expression is stabilised downstream of pre-BCR and 

cytokine signalling pathways, which need to be terminated to proceed to the small 

resting pre-B cell stage (FrD) (Cooper et al., 2006).        

 

Binding of cyclin D to Cdk4/6 forms a catalytic complex that can phosphorylate the 
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retinoblastoma tumour suppressor RB.  This is contingent upon phosphorylation of 

the cyclin-Cdk complex by the Cdk-activating kinase (CAK), which increases the 

catalytic activity of the complex (Desai et al., 1992).  Catalytically active cyclin D-

Cdk4/6 complexes can subsequently phosphorylate RB, partially facilitated by the 

ability of cyclin D to bind to pRB directly (Kato et al., 1993; Matsushime et al., 1994).  

RB undergoes cell cycle-dependent phosphorylation and dephosphorylation, 

controlling the decision to proliferate or remain quiescent.  RB is 

hypophosphorylated in G1 but is hyperphosphorylated and inactivated as the cells 

transition into S phase (Ludlow et al., 1990).  Only the hypophosphorylated form of 

RB is able to associate with the E2F1 transcription factor to inhibit its activity 

(Chellappan et al., 1991; Hiebert et al., 1992).  Phosphorylation of RB by cyclin-Cdk 

complexes allows the dissociation of E2F1 from RB inhibition and activation of its 

transcriptional program (Dyson, 1998).  E2F1 overexpression is sufficient to induce 

early entry into S phase and overcome proliferative arrest as a result of serum 

starvation (Johnson et al., 1993; Shan and Lee, 1994).  E2F activates the transcription 

of Cdk2 and cyclin E, which form a complex in late G1 phase before the onset of DNA 

synthesis (Koff et al., 1992; Botz et al., 1996).  The phosphatase cdc25A removes an 

inhibitory phosphate group on Cdk2, shortening G1/S transition by activating the 

cyclin E-Cdk2 complex (Blomberg and Hoffman, 1999).  The cyclin E-Cdk2 complex 

can in turn fully phosphorylate RB to further facilitate E2F-dependent transcription 

of genes required for DNA replication (Dyson, 1998).  

 

Two families of cyclin-dependent kinase inhibitors regulate the sequence of events 

governing G1/S transition.  The INK4 family consists of p15, p16, p18 and p19 that 

specifically bind and inhibit the G1 Cdks.  INK4 proteins bind to uncomplexed Cdks 

and allosterically inhibit the binding of cyclins, thereby preventing complex 

formation (Pavletich, 1999).  As cells reach replicative senescence defined by the 

Hayflick limit, the expression of p16 dramatically increases.  This in turn inhibits Cdk4 

and Cdk6 and prevents cell cycle progression (Alcorta et al., 1996).  INK4 proteins 

form stable complexes with Cdks that are unaffected by the expression level of 

cyclins (Schafer, 1998).  The Cip/Kip family of inhibitors include p21, p27 and p53.  
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This family displays a broader specificity than INK4 and can bind to most Cdks that 

are already in complex with cyclins (Sherr and Roberts, 1999).  Unlike INK4, the 

inhibitory action of Cip/Kip can be outcompeted by increasing the concentration of 

cyclins in the cell (Schafer, 1998).  DNA damage blocks cell cycle progression and 

must be repaired before DNA replication and mitosis.  DNA damage is sensed by p53, 

which induces the expression of p21 to inhibit cyclin-Cdk complexes (Pavletich, 

1999).  P27 was first identified as a cyclin E-Cdk2 inhibitor that is active in growth 

arrested cells (Polyak et al., 1994).  P27 overexpression was sufficient to arrest cells 

by binding to cyclin E-Cdk2 complexes, which inhibited the activation of E2F (Polyak 

et al., 1994).  Cyclin D-Cdk4 complexes sequester p27 protein in proliferating cells, 

thereby preventing its inhibition of cyclin E-Cdk2 (Polyak et al., 1994).  Binding of p21 

and p27 helps to stabilise cyclin D-Cdk4 complexes, resulting in enhanced 

sequestration (Sherr and Roberts, 1999).  The loss of proliferative signalling depletes 

the levels of cyclin D in the cell, facilitating the redistribution of p21 and p27 to cyclin 

E-Cdk2 complexes (Sherr and Roberts, 1999).  This results in the termination of 

proliferation and an accumulation of cells in G0/G1 phase.         

 

1.2.2 Myc and the regulation of the cell cycle 

 

Myc is an proto-oncogenic transcription factor that controls many cellular processes 

relevant to malignancy including metabolism, DNA replication, cell cycle, 

angiogenesis, apoptosis, transcription and translation (Dang, 2012).  c-Myc was first 

discovered as the cellular homologue of the avian myelocytomatosis virus oncogene 

v-Myc (Vennstrom et al., 1982).  Aberrant expression of MYC by gene amplification, 

overexpression, chromosomal translocation or retroviral insertion can lead to 

inappropriate proliferation and cooperate with other oncogenic lesions to promote 

the development of cancer (Meyer and Penn, 2008).  The oncogenic activity of MYC 

was confirmed by the discovery of a balanced chromosomal translocation that places 

Myc expression under the control of the IgH locus in Burkitts lymphoma (Dalla-

Favera et al., 1982).  Transgenic mice that bear the Myc gene coupled to the IgH 
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enhancer (Eμ) exhibit a partial block in pre-B cell development at the large cycling 

pre-B cell stage (Langdon et al., 1986).  These highly proliferative cells inevitably 

form leukaemias and lymphomas, suggesting that Myc downregulation is essential 

for the differentiation of B cells and the prevention of malignancy (Langdon et al., 

1986).  The transforming property of Myc in other cell types was demonstrated by its 

ability to cooperate with Ras to promote the tumourigenic conversion of primary rat 

fibroblasts (Land et al., 1983).  This work was further explored using an inducible 

Myc protein fused to the oestrogen hormone binding domain (Myc-ER).  Induction of 

Myc-ER caused a reversible transformation of rat fibroblasts, contingent on the 

presence of the ER ligand oestradiol (Eilers et al., 1989).    

 

The expression of Myc is tightly controlled downstream of growth factor receptors, 

and its expression is correlated with proliferation (Shichiri et al., 1993).  Myc 

expression is low in quiescent cells, but is sharply upregulated in response to growth 

factors.  Mitogenic signalling through the Ras/Raf/Mek/Erk cascade elevates the 

expression of Myc (Kerkhoff et al., 1998).  Myc is also upregulated downstream of 

other signalling pathways including Wnt, Jak/Stat, Bcr-Abl, Src, Akt and integrins 

(Bretones et al., 2015; Benaud and Dickson, 2001).  Antiproliferative signalling due to 

conditions such as serum starvation or contact inhibition results in a sharp reduction 

in Myc mRNA levels, which exhibit a short half-life of around 20 minutes (Dean et al., 

1986).  The half-life of Myc protein is similarly short, and Myc is subject to post-

translational modifications that influence its stability.  Phosphorylation of serine 62 

by ERK in the N-terminal domain of Myc stabilises the protein in early G1 phase, but 

subsequent phosphorylation at threonine 62 by GSK-3 promotes its ubiquitination 

and proteasomal degradation (Sears et al., 2000).  Thus the level of Myc expression 

is tightly controlled to facilitate growth and proliferation, and must be attenuated to 

promote quiescence.  

 

Myc transcriptional activity rests on its C-terminal basic helix-loop-helix-leucine 

zipper (bHLHZip) DNA interaction domain (Baudino and Cleveland, 2001).  Myc alone 

is unable to transactivate or repress transcription, and must dimerise with other 
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bHLHZip family members.  Myc heterodimerises with Max, and this association is 

required for Myc transcriptional activity and its ability to promote cellular 

transformation (Blackwood and Eisenman, 1991; Baudino and Cleveland, 2001).  In 

contrast to Myc, the expression of Max is maintained at a constant level throughout 

the cell cycle and is unaffected by serum or confluence (Berberich et al., 1992).  Max 

can also bind to Mad, which promotes an opposing transcriptional profile to Myc-

Max heterodimers (Ayer et al., 1993; Blackwood and Eisenman, 1991).  Thus a model 

was proposed that Myc competes with other repressive proteins to bind to Max 

(Blackwood and Eisenman, 1991).  As Myc expression is serum responsive, the 

increase in Myc protein in preparation for cell cycle progression would result in the 

preferential formation of Myc-Max heterodimers and a proliferative transcriptional 

program (Blackwood and Eisenman, 1991).   

 

Myc-Max heterodimers bind to the E box sequence, a frequently occurring motif in 

the genome (Meyer and Penn, 2008).  Indeed Myc can bind to thousands of genes, 

occupying up to 15% of all promoters (Dang, 2012; Zeller et al., 2006).  There are 

multiple ways in which can regulate transcription.  Myc can activate transcription 

through its association with TRRAP, a coactivator that recruits histone 

acetyltransferase complexes to chromatin (Meyer and Penn, 2008).  Myc also 

associates with INI1, a component of the SWI/SNF chromatin remodelling complex 

(Meyer and Penn, 2008).  Loss of Myc results in a global change in chromatin status 

towards an inactive state, characterised by hypoacetylation (Knoepfler et al., 2006).  

Furthermore, Myc is also able to recruit pTEFb to promoter-proximal paused RNA 

polymerase II (Pol II), which phosphorylates Pol II and facilitates transcriptional 

elongation (Rahl et al., 2010).  Through these actions Myc was proposed to act as a 

universal amplifier of active genes (Nie et al., 2012).  In addition to activation, Myc 

can transcriptionally repress genes, particularly cell cycle regulators (Yang et al., 

2001; Coller et al., 2000).  For example Myc is able to bind to the transcriptional 

activator Miz-1 and prevent the recruitment of p300 to the p15 locus (Gartel and 

Shchors, 2003).  Myc can also repress gene expression by activating the microRNA 

cluster miRNA 17-92, which negatively regulates the expression of cell cycle 
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inhibitors (Dang, 2012; Bretones et al., 2015).  

 

The importance of Myc in cell cycle progression was illustrated by experiments in 

which conditional Myc-ER activation was able to facilitate re-entry into the cell cycle 

in serum starved, confluent fibroblasts (Eilers et al., 1991).  Myc is also able to 

regulate genes independently of serum, which are primarily involved in metabolic 

processes necessary for cell growth in anticipation of DNA synthesis and mitosis 

(Schlosser et al., 2005; Perna et al., 2012).  Knockdown of MYC using RNA 

interference results in a strong arrest at the G1/S checkpoint in normal cells and 

arrests tumour cell proliferation in multiple cell cycle stages (Wang et al., 2008).  

Myc is able to directly activate the transcription of genes required for the 

progression through the G1 checkpoint including cyclin D2, cyclin D3, cyclin E, Cdk4, 

Cdk6 and multiple members of the E2F family (Bretones et al., 2015).  In addition to 

directly upregulating the expression of cyclin E, Myc can indirectly regulate its 

expression through the upregulation of E2F (Bretones et al., 2015).  Myc can also 

promote the activity of Cdks by increasing the activity of CAK phosphorylation 

required for Cdk activation.  This is achieved through enhanced protein translation of 

the CAK subunits (Cowling and Cole, 2007).  Furthermore, Myc can recruit CAK to 

transcription start sites, where it phosphorylates Pol II to promote transcriptional 

initiation (Cowling and Cole, 2007).   

 

Myc is able to regulate the expression of p21 through association with Miz-1, turning 

Miz-1 into a repressive complex (Peukert et al., 1997).  Myc also upregulates the 

expression of AP4, a transcription factor that directly represses p21 expression (Jung 

et al., 2008).  Myc regulates the expression and activity of p27 through a number of 

mechanisms including transcriptional repression, microRNA regulation, protein 

sequestration and protein degradation (Bretones et al., 2015).  Myc can upregulate 

the expression of G1 cyclins, facilitating the sequestration of p27 in cyclin D-Cdk4/6 

complexes and enabling free cyclin E-Cdk2 complexes to phosphorylate RB and 

promote S phase progression (Perez-Roger et al., 1999).  Myc also upregulates the 

expression of members of the SCFSKP2 complex that ubiquitinate p27, resulting in 
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proteasomal degradation (Bretones et al., 2015).  As a result of this regulation, the 

growth antagonising effects of p27 are overridden by elevated Myc expression 

(Vlach et al., 1996).  In conclusion, Myc is able to promote cell cycle progression 

through positive and negative regulation of key cell cycle components.  Deregulated 

MYC expression is involved in the genesis of many cancers, highlighting the 

importance of regulating this proto-oncogene to maintain normal development.      

 

1.2.3 Scaffolding proteins in the regulation of the cell cycle 

 

Scaffolding proteins play integral roles in the regulation of signalling cascades by 

organising the vast array of intracellular signalling molecules into discrete subsets of 

proteins, promoting an efficient flow of information through intracellular networks 

at the correct point in space and time (Good et al., 2011).  Scaffolding proteins form 

hubs downstream of kinase, GTPase, immune receptor, and cell-cell signalling 

cascades (Good et al., 2011; Shaw and Filbert, 2009).  They facilitate protein-protein 

interactions by physically tethering interacting components of a network together 

and ensure the correct compartmentalisation of signalling molecules.  The molecular 

circuits formed by these interactions can be simple and linear, but can also promote 

branching signals to multiple outputs and create feedback loops, forming positive 

and negative gradations of signalling (Shaw and Filbert, 2009).  In addition to 

regulating components of a pathway, scaffold proteins themselves are subject to 

regulation, and this influences downstream signalling.  An example of this can be 

observed by the phosphorylation of Blnk/Slp65 in response to pre-BCR signalling.  

Slp65 is phosphorylated by Syk, and this recruits SH2 domain containing effector 

molecules that mediate pre-BCR signalling and proliferative arrest (Fu et al., 1998).  

A similar mechanism of regulation is observed for LAT and SLP76, scaffolding 

proteins that lie downstream of the T cell receptor (TCR) (Zhang et al., 1998).       

 

A-kinase anchoring proteins (AKAPs) are scaffolding proteins that contain a short 

peptide motif that can bind to the regulatory subunit of protein kinase A (PKA).  
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Outside of this domain the proteins are highly variable and are able to bind to a 

range of receptors, ion channels, phosphatases and GTPases (Han et al., 2015).  This 

diversity in family members ensures specificity in response to signalling inputs.  

Akap12 (SSeCKS) negatively regulates the G1/S transition by ERK-dependent 

downregulation of Ccnd1 (cyclin D1) (Lin et al., 2000).  SSeCKS likely inhibits ERK 

activation by scaffolding Src in lipid rafts away from focal adhesion kinase (FAK) 

complexes (Su et al., 2013).  In addition to transcriptional repression of Ccnd1, 

SSeCKS can directly bind cyclin D1 protein and sequester it in the cytoplasm (Lin et 

al., 2000).  Posttranslational modifications can additionally regulate the activity of 

SSeCKS.  Phosphorylation by protein kinase C (PKC) has been shown to negatively 

regulate the ability of SSeCKS to interact with cyclin D (Lin and Gelman, 2002).  This 

example shows how extracellular signals can be relayed through integrin clusters to 

the nucleus to influence cell cycle progression.  The decision to proliferate depends 

on multiple signals that must be integrated to regulate the expression and activity of 

the cell cycle machinery.  Scaffolding proteins form nodes in these networks by 

bringing together and influencing these signals, altering the balancing between 

proliferation and quiescence.       
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1.3 RNA interference  

 

High throughput technologies can provide a wealth of data concerning the normal 

functioning of the cell and the mutations that give rise to cancer.  Whole genome 

sequencing of tumours using techniques such as RNA-seq offer a deep insight into 

the differential expression of genes involved in the development of cancer (Lizardi et 

al., 2011).  It can be somewhat difficult to detect the causal drivers of the 

progression to cancer, and important candidates can be overlooked in the data.  RNA 

interference (RNAi) offers the ability to perform unbiased genome wide loss of 

function screens to identify genes with a direct casual role in the phenotype studied.  

RNAi screens have been deployed to identify tumour suppressors that prevent the 

aberrant proliferation and survival of transformed cells, and genes that are required 

for the maintenance of cancer viability (Schlabach et al., 2008; Silva et al., 2008; 

Berns et al., 2004; Westbrook et al., 2005).  RNAi is therefore an important 

technology that can deepen our understanding of cellular processes to aid in the 

prevention and treatment of cancer (Bernards et al., 2006; Lizardi et al., 2011).           

 

RNAi is a regulatory mechanism present in most eukaryotic cells that utilises double 

stranded RNA (dsRNA) molecules to direct homology dependent degradation of 

target mRNA.  The first reported discovery of the RNAi phenomenon was in plants, in 

which an enzyme involved in violet colouration was overexpressed (Napoli et al., 

1990).  Overexpression of a transgene encoding the chalcone synthase (CHS) enzyme 

resulted in white colouration and a drastic reduction in the mRNA level of the 

endogenous and introduced CHS gene.  This was termed ‘co-suppression’ and was an 

early example of post-transcriptional regulation involving dsRNA (Napoli et al., 

1990).  Similar results were observed in fungi, in which the introduction of 

exogenous sequences silenced or ‘quelled’ the expression of endogenous genes 

(Romano and Macino, 1992).  The effect of double stranded RNA interference was 

conclusively shown in C. elegans by injecting sense and antisense transcripts against 

a variety of target genes (Fire et al., 1998).  The researchers found that dsRNA 
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transcripts were orders of magnitude more efficient at gene silencing than single 

stranded templates alone.  They found that just a few dsRNA molecules per cell were 

sufficient to elicit a null phenotype, arguing against a stoichiometric silencing and 

hinting at a possible catalytic mechanism.  Targeting promoter regions or introns did 

not result in efficient silencing, suggesting a post-transcriptional degradation of 

mRNA (Fire et al., 1998).      

 

A potential catalytic mechanism was further explored by introducing long dsRNA 

molecules targeting cyclin E mRNA in cultured Drosophila cells (Hammond et al., 

2000).  Introduction of these molecules degraded endogenous cyclin E transcripts 

and arrested the cell cycle.  They discovered that transcripts were degraded by a 

sequence specific nuclease termed the RNA-induced silencing complex (RISC).  

Fractionation of the RISC complex co-purified with 25 nucleotide (nt) fragments with 

homology to the dsRNA molecule.  This suggested that the original dsRNA was 

converted into small intermediates that acted as guides to facilitate cleavage of the 

target transcript (Hammond et al., 2000).  The cleavage of longer dsRNA molecules 

into small interfering RNA (siRNA) is carried out by the RNase III ribonuclease Dicer.  

RNAi knockdown of Dicer itself prevented silencing of other genes, proving that this 

enzyme was essential in the production of siRNA that mediate mRNA silencing 

(Bernstein et al., 2001).  Dicer is a component of the RISC complex alongside TRBP 

and Argonaute 2 (Sen and Blau, 2006).  Dicer-cleaved siRNA duplexes are loaded into 

the RISC complex and Argonaute 2 cleaves the ‘passenger strand’ (Matranga et al., 

2005).  The remaining antisense guide strand subsequently directs Argonaute 

cleavage of complementary mRNA transcripts (Liu et al., 2004).  Thus dsRNA can 

direct sequence-specific catalytic cleavage of mRNA (Figure 1.5).  Transfection of 

siRNA into an array of mammalian cells was shown to elicit gene silencing, 

demonstrating that the RNAi pathway is conserved across species (Elbashir et al., 

2001).  This opened up new avenues of loss-of-function research. 
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Whilst providing potent knockdown of gene targets, transient transfection with small 

chemically synthesised siRNA is ineffectual at studying the long term effects of gene 

depletion.  RNAi was advanced by modelling interfering dsRNA on the endogenous 

microRNA system of post-transcriptional regulation (Paddison et al., 2002).  Such 

short hairpin (sh)RNA molecules consist of a stem-loop-stem structure that potently 

target mRNA knockdown in a similar manner to siRNA (Figure 1.6).  shRNA constructs 

can be virally inserted into the genome and transcribed from a RNA III polymerase 

promoter, facilitating stable and heritable gene silencing (Paddison et al., 2002).  

Following transcription the shRNA duplexes are exported out of the nucleus by 

exportin 5 and the loop is cleaved by Dicer (Rao et al., 2009).  The siRNA is then 

incorporated into the RISC complex for target specific degradation. 

Figure 1.5 – The RNAi pathway. Figure outlining the mechanism of RNA interference.  
Long dsRNA templates and shRNA hairpins are processed by dicer into siRNA.  siRNA are 
integrated into the RISC complex and mediate homology-dependent cleavage of target 
mRNA by Argonaute. Figure modified from Rutz and Scheffold, 2004.   
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Synthetic siRNAs are cost effective and efficient at gene silencing and are generally 

used in single well assays.  When coupled with live cell imaging, they are effective at 

studying complex cell phenotypes in a high content manner.  In one such 

experiment, Hela cells were plated on top of arrays spotted with siRNA molecules 

and screened for mitotic defects (Neumann et al., 2006).  Stably integrated viral 

vector based shRNA libraries are preferred when the phenotype of interest is 

optimally observed over a long time period, and when the target cells are hard to 

transfect.  Pools of cells can be transduced with the viral packaged shRNA library, 

reducing the time and complexity of single well-based assays (Bernard et al., 2006; 

Mohr et al., 2014).  Each shRNA in the library contains a unique molecular identifier 

known as a barcode.  This means that cells containing different shRNA can be grown 

in the same plate in a competitive barcode screen.  A selective pressure is applied for 

the duration of the experiment (growth arrest in response to drug treatment or 

overexpression of a gene for example) and the enrichment of shRNA in the 

experimental samples is compared to a control treatment (Bernard et al., 2006; Sims 

et al., 2011).  Potential candidates are then identified by their barcodes and 

subjected to validation experiments.  A positive selection screen aims to identify 

Figure 1.6 – shRNA hairpin design. The integrated shRNA cassette is transcribed from an 
RNApol III promoter.  Sense and antisense sequences are separated by a loop region which 
facilitates folding into a stem-loop hairpin structure. Taken from O’Keefe, 2013.  
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candidates that can overcome a negative selection pressure to become enriched 

within a population.  This is particularly useful for discovering tumour suppressors 

that suppress inappropriate growth (Berns et al., 2004; Westbrook et al., 2005).  

Negative selection screens aim to identify depleted candidates that are depleted 

from the population due to a loss of viability (Schlabach et al., 2008; Silva et al., 

2008).  Both approaches are useful for asking different questions relating to cancer 

cell biology.      

 

As technology has evolved, so has the design and output of shRNA screens.  An early 

example of a positive selection screen was performed in human fibroblasts, with the 

aim to identify shRNA that bypass p53-induced proliferation arrest (Berns et al., 

2004).  The experimenters isolated colonies of cells that proliferated over the time 

course and PCR amplified the barcodes.  The barcodes were cloned into 

intermediate vectors and transformed into bacteria, before colonies were harvested 

for sequencing.  Several interesting candidates were detected that contributed to 

the upregulation of p21 in response to p53 induction.  Nonetheless the experimental 

procedure was long and laborious, and difficult to perform on a large scale.  To scale 

up the experiment, the PCR amplified barcodes were labelled with fluorescent dyes 

and hybridised to microarrays (Berns et al., 2004).  Similar approaches were 

undertaken to study genes involved in anchorage-independent growth in cellular 

transformation (Westbrook et al., 2005; Kolfschoten et al., 2005).  Since the advent 

of next generation sequencing methods, the ease and scale of genome-wide RNAi 

screening has greatly increased.  In these screens the entire transduced pool of cells 

is harvested for genomic DNA and the barcodes are PCR amplified before deep 

sequencing (Bassik et al., 2009).  The sequencing data is then bioinformatically 

analysed to identify significantly enriched or depleted candidates relative to a 

control treatment (Sims et al., 2011).  Such protocols offer a feasible method for the 

investigator to probe the phenotypic consequences of the loss of function of 

thousands of genes simultaneously, without the requirement for high-throughput 

technologies.  
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1.3.1 Aims of the thesis 
 
Ikaros is able to regulate the cell cycle, and may exert its tumour suppressor function 

by antagonising aberrant proliferation.  It is therefore important to understand the 

mechanisms of this regulation.  Although much light has been shone on this area by 

genome wide transcriptional studies, RNAi offers a direct way to antagonise the 

function of thousands of genes in an unbiased, systematic fashion to identify genes 

that are directly required for the cessation of proliferation in response to Ikaros 

activity.  I therefore planned to perform a pooled, positive selection shRNA screen to 

identify novel regulators that contribute to Ikaros-mediated cell cycle arrest.  In this 

screen a population of cells were transduced with an shRNA library and selected for 

one week in the presence or absence of Ikaros-enforced arrest, prior to next 

generation sequencing.  shRNA that facilitated escape from cell cycle arrest were 

able to proliferate over the time course and become enriched within the population.  

These shRNA were therefore enriched within the sequencing data, allowing us to 

identify the genes that are required to cooperate with Ikaros to enforce proliferative 

arrest.  In this manner I am able to identify genes that directly contribute to the 

regulation of the cell cycle by Ikaros.   

 

 

 

Figure 1.7 – Experimental outline. A pool of fibroblasts were transduced with an shRNA library 
and split into ‘Ikaros arrested’ and ‘control’ conditions.  Control cells proliferated normally and 
should contain an equal distribution of shRNA in the population.  Ikzf1 expressing cells were 
arrested for the duration of the experiment.  Certain shRNA will override Ikaros-mediated arrest 
and selectively proliferate over the time course, becoming enriched within the population. This 
enrichment can be detected after deep sequencing. T=time. 
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Chapter 2 

Materials and Methods 

 

2.1 Materials 

2.1.1 Antibodies 

 

Ikaros Rabbit polyclonal to Ikaros obtained from the laboratory of Professor 

Stephen Smale.  Used for western blot at 1:20,000 dilution, 15μl used 

per IP for ChIP.  Used for immunofluorescence (IF) at 1:1000 dilution. 

H3 Rabbit polyclonal to histone 3 (ab1791, Abcam).  Used for western 

blot at 1:20,000 dilution. 

Tubulin Mouse monoclonal to tubulin (T9026, Sigma).  Used for western blot 

at 1:10,000 dilution. 

Myc Rabbit polyclonal to c-Myc (sc-764, Santa Cruz).  Used for western 

blot at 1:1000 dilution.   

SSeCKS Mouse monoclonal to Akap12/SSeCKS (ab49849, Abcam).  Used for 

western blot at 1:20,000 dilution, 5μg used per IP for pulldown. 

Cyclin D1 Rabbit monoclonal to cyclin D1 (ab40754, Abcam).  Used for western 

blot at 1:5000 dilution.  Used for IF at 1:200 dilution. 

Cyclin D2 Mouse monoclonal to cyclin D2 (ab3085, Abcam).  Used for western 

blot at 1:200 dilution. 

Cyclin D3  Rabbit monoclonal to cyclin D3 (ab52598, Abcam).  Used for western 

blot at 1:5000 dilution. 

IgG Normal rabbit IgG (sc-2027, Santa Cruz).  Used as a negative control in 

ChIP, 2μg per IP. 
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IgG Normal mouse IgG (sc-2025, Santa Cruz).  Used as a negative control 

for pulldowns, 2.5μg used per IP. 

 

2.1.2 Cell lines 

 

NIH 3T3 Commercially available mouse embryonic fibroblast (MEF) cell line. 

B3 Pre-B cell line resembling cells at the large cycling pre-BI (FrC’) stage.  

Originally derived in our laboratory from an IL-7 transgenic mouse 

lymphoma (Fisher et al., 1995). 

HEK293t Commercially available human endothelial kidney cell line.  Used for 

viral packagaing. 

S24 Tetracycline regulated SSeCKS overexpressing NIH 3T3 cells (Lin et al., 

1997).  A kind gift from Professor Irwin Gelman. 

 

2.1.3 Primer and adaptor sequences 

 

Table 1 Primers for gene expression 

Primer Sequence 5'-3' 
SSeCKS mature transcript Forward  ACGGACCAAAGCTAACCGAG 

 Reverse CAATGAGCAACTCACGTCTTAGG 
SSeCKS primary transcript Forward  CGTGTAGCGCCTTTGAAGAG 

 Reverse TCAACAACTGTGGAACTGGC 
Myc mature transcript Forward  GCCCAAATCCTGTACCTCGTCC 

 Reverse CTCTTCTCCACAGACACCACATCA 
Myc primary transcript Forward  GCTGCTGTCCTCCGAGTCCT 

 Reverse CGCTTCCTACCCTGCTGTGA 
Ubc Forward  AGGAGGCTGATGAAGGAGCTTGA 

 Reverse TGGTTTGAATGGATACTCTGCTGGA 
Itga5 Forward  TCCCACATCTATTGGAGCCC 

 Reverse GTAGGGGAGGGAACGTTTGA 
Itgb1 Forward  TCAGAGCTGGCCTTCTCAC 
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 Reverse CAGTTGTCACGGCACTCTTG 
Ccnd2 Forward  GATCCGAACGAGACCAAGAA 

 Reverse CCCTCTGGCTCACTTCTCAG 
Cdk6 Forward  GCCCAAGTTCAGTTCTCAGC 

 Reverse CGTCTCTGTGTGTGGGAATG 
Cdkn1a Forward  CCTGGTGATGTCCGACCTG 

 Reverse CCATGAGCGCATCGCAATC 
Cdkn1b Forward  GCAGTGTCCAGGGATGAGGAA 

 Reverse AGTGCCAGCGTTCGGGGAAC 
Igll1 Forward  GGACTTGAGGGTCAATGAAGCTC 

 Reverse GTGGGATGATCTGGAACAGGAG 
Hk2 Forward  TGATCGCCTGCTTATTCACGG 

 Reverse AACCGCCTAGAAATCTCCAGA 
Ldha Forward  CATTGTCAAGTACAGTCCACACT 

 Reverse TTCCAATTACTCGGTTTTTGGGA 
Hoxa1 Forward  AGAAACCCTCCCAAAACAGG 

 Reverse TTGTTGAAGTGGAACTCCTTCTC 
 

Table 2 Primers for ChIP analysis 

Primer  Sequence 5'-3' 
SSeCKS Forward AGTGGCTTTCCTACTCTCGC 

 Reverse ATTCTCAGTCCGGGTGTGTT 
Igll1-12 Forward AGTCCGAGAACAGCCTGGGT 

 Reverse AGTTGTGCTGCCCACAGAGG 
Igll1-18 Forward CTGGGATCCTTCTGCATCTACTTCAG 

 Reverse GAGGATGTGAAGAGTCTGGCCAT 
Myc-1 Forward GCCCAAATCCTGTACCTCGTCC 

 Reverse CTCTTCTCCACAGACACCACATCA 
Myc-4 Forward AAGCTTTTCGGGCGTTTTT 

 Reverse CACTCCAGAGCTGCCTTCTT 
 

Table 3 Primers for shRNA amplification and sequencing  

Primer  Sequence 5’-3’ 
HTS Forward TTCTCTGGCAAGCAAAAGACGGCATA 

 Reverse TGCCATTTGTCTCGAGGTCGAGAA 
Gex Forward CAAGCAGAAGACGGCATACGAGA 

 Reverse AATGATACGGCGACCACCGAGA 
GexSeqN Forward ACAGTCCGAAACCCCAAACGCACGAA 
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Table 4 Primers for barcode PCR 

Primer Sequence 5'-3' 
shIkzf1-B ATCAGTACTGCATGTGACTG 
shIkzf1-D ATGTGTTGTGACACGTGTGT 

shRag1 ATGTGTTGACGTTGGTTGGT 
 

Table 5 Primers for cloning 

Primer  Sequence 5'-3' 
Tag-BFP Forward TGCTCTAGACGCCACCATGAGCGAGCTG 

 Reverse CGCGGATCCATTAAGCTTGTGCCCCAG 
SSeCKS Forward AATCTCGAGCGCCACCATGGGTGCAGGCAGTTCCAC 

 Reverse CCGGAATTCTTAGGATTCTGTCAGGTCTC 
 

Table 6 shRNA design 

Primer  Sequence 5'-3' (target sequence in red) 
shIkzf1-A Forward TAGAAGACGCACCGGCGGCCTTATCTATCTAACTAAGTTAATATTCATAGC

TTGGTTAGGTAGATAAGGCCGTTTTTTTTCGCCGTCTTCGT 
 Reverse ACGAAGACGGCGAAAAAAAACGGCCTTATCTACCTAACCAAGCTATGAAT

ATTAACTTAGTTAGATAGATAAGGCCGCCGGTGCGTCTTCTA 
shIkzf1-B Forward TAGAAGACGCACCGGCCGTTGGTAAGTCTCATAAATGTTAATATTCATAGC

ATTTGTGAGGCTTACCAACGGTTTTTTTTCGCCGTCTTCGT 
 Reverse ACGAAGACGGCGAAAAAAAACCGTTGGTAAGCCTCACAAATGCTATGAAT

ATTAACATTTATGAGACTTACCAACGGCCGGTGCGTCTTCTA 
shIkzf1-C Forward TAGAAGACGCACCGGGCCCTATGATAGTGCCAATTAGTTAATATTCATAGC

TAGTTGGCACTGTCATAGGGCTTTTTTTTCGCCGTCTTCGT 
 Reverse ACGAAGACGGCGAAAAAAAAGCCCTATGACAGTGCCAACTAGCTATGAAT

ATTAACTAATTGGCACTATCATAGGGCCCGGTGCGTCTTCTA 
shIkzf1-D Forward TAGAAGACGCACCGGCGCCAAATGTAAGAGCTTTATGTTAATATTCATAGC

ATAGAGCTCTTACGTTTGGCGTTTTTTTTCGCCGTCTTCGT 
 Reverse ACGAAGACGGCGAAAAAAAACGCCAAACGTAAGAGCTCTATGCTATGAAT

ATTAACATAAAGCTCTTACATTTGGCGCCGGTGCGTCTTCTA 
shSSeCKS-B Forward TAGAAGACGCACCGGGCCAGTGTTAAAGAAAGTGTTGTTAATATTCATAG

CAACACTTTCTTTGACACTGGCTTTTTTTTCGCCGTCTTCGT 
 Reverse ACGAAGACGGCGAAAAAAAAGCCAGTGTCAAAGAAAGTGTTGCTATGAA

TATTAACAACACTTTCTTTAACACTGGCCCGGTGCGTCTTCTA 
shSSeCKS-C Forward TAGAAGACGCACCGGGCAGAGTCCATCCTAATAATAGTTAATATTCATAGC

TATTATTGGGATGGACTCTGCTTTTTTTTCGCCGTCTTCGT 
 Reverse ACGAAGACGGCGAAAAAAAAGCAGAGTCCATCCCAATAATAGCTATGAAT

ATTAACTATTATTAGGATGGACTCTGCCCGGTGCGTCTTCTA 
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Table 7 Illumina adaptor sequences 

Adapter Sequence 5'-3' 
AR002 CGATGT 
AR004 TGACCA 
AR005 ACAGTG 
AR006 GCCAAT 
AR007 CAGATC 
AR012 CTTGTA 
AR013 AGTCAA 
AR014 AGTTCC 
AR001 ATCACG 
AR003 TTAGGC 
AR008 ACTTGA 
AR009 GATCAG 

 

2.2 Methods 

2.2.1 Cell culture 

 

NIH3T3, S24 and HEK293t cells were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM, Invitrogen) supplemented with 10% (v/v) foetal calf serum (FCS) (Biosera), 

2mM L-glutamine, antibiotics (100U/ml Penicillin and 100μg/ml Streptomycin) and 

50μM β-mercaptoethanol (Gibco, Invitrogen).  The media of S24 cells was 

additionally supplemented with 1μg/ml doxycycline (Sigma-Aldrich) to suppress the 

transactivation of the SSeCKS transgene.  Cells were passaged every two days to 

maintain the population at less than 80% confluence.  NIH3T3 and S24 cells were 

detached using 0.05% trypsin-EDTA (Invitrogen).   

 

B3 cells were cultured in suspension with Iscove’s Modified Dulbecco’s Medium 

(IMDM, Invitrogen) supplemented with 10% (v/v) foetal calf serum (FCS) and 

antibiotics (100U/ml Penicillin and 100μg/ml Streptomycin).  The cells were 

passaged every two days to maintain the culture concentration between 0.5-3x106 
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cells/ml.  Primary pre-B cells were cultured in IMDM supplemented with 10% (v/v) 

foetal calf serum (FCS), 2mM L-glutamine, antibiotics (100U/ml Penicillin and 

100μg/ml Streptomycin), 50μM β-mercaptoethanol and 5ng/ml IL-7 (R&D systems).  

The cells were cultured in 6 well plates coated with irradiated ST2 fibroblasts as 

feeder cells.  The cells were passaged every two days to maintain the culture 

concentration between 0.5-2x106 cells/ml.       

 

All cells were maintained at 37°C in a humidified chamber with 5% (v/v) O2.  Frozen 

stocks were generated by resuspending 1x106 cells in 1ml of FCS containing 10% 

(v/v) DMSO (Sigma) followed by cooling in a Mr Frosty freezing container (Thermo 

Scientific) at -80°C.  After 24 hours, the cells were transferred to liquid nitrogen 

containers for long term storage.   

 

2.2.2 Viral packaging and transduction 

2.2.2.1 Retroviral packaging and transduction 

 

To generate fibroblast and pre-B cell lines expressing the inducible Ikaros-ERt2-GFP 

construct, or MSCV-Ikzf1-GFP construct, retrovirus was generated by transfecting 

HEK293t cells using the calcium phosphate method.  4μg of the Ikaros expression 

vectors were suspended with 4μg of the pCL-Eco ecotropic packaging vector 

(Addgene) in 500μl of a 0.4M CaCL2 solution.  DNA precipitates were formed by the 

dropwise addition of 500μl 2X HEBS buffer (280nM NaCl, 10mM KCl, 1.5mM 

Na2HPO4.H2O, 12mM glucose, 50mM HEPES free acid, pH 7.05 in distilled water).  

1ml of the DNA precipitate was added to 50% confluent HEK293t cells grown in 

10cm3 culture dishes with 9ml of medium and the cells were incubated at 37°C.  

Fresh medium was fed to the cells 12 and 24 hours post-transfection.  3.5ml of viral 

supernatant was collected at 36, 48 and 60 hours post-transfection, pooled and 

purified through a 0.22μM filter.  
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Fibroblasts were transduced by plating 0.5x106 cells per 10cm2 dish in 5ml of viral 

supernatant supplemented with 4μg polybrene and 10mM HEPES pH 7.6 (Sigma) per 

ml, and incubated for 8-12 hours at 37°C, then replaced by fresh media.  Pre-B cells 

were transduced by suspending 2x106 cells in 4ml of viral supernatant supplemented 

with 4μg polybrene and 10mM HEPES pH 7.6, in a single well of a 6-well plate.  The 

plates were centrifuged at 37°C for 90 minutes at 900g, then incubated for 3 hours 

at 37°C.  The viral supernatant was then replaced by fresh media.      

 

2.2.2.2 Lentiviral packaging and titration 

 

I used lentiviral particles to introduce shRNA vectors into my cells.  Lentivirus was 

generated by transfecting HEK293t cells using the lipofectamine2000 reagent 

(Invitrogen).  23μl of an amphotropic packaging plasmid mix (0.5μg/μl psPax2 and 

pCMV-VSV-G in a 4:1 ratio v/v) (Addgene) was mixed with 2.3μl (1μg/μl) of the 

pRSI9-shRNA expression vector (Cellecta) in 1ml of Opti-MEM media (Invitrogen).  

This 1ml suspension was mixed with 1ml of Opti-MEM media containing 35μl 

lipofectamine 2000, and incubated at room temperature for 15 minutes.  2ml of 

DNA/lipofectamine complexes were added to 90% confluent HEK293t cells grown in 

10cm3 culture dishes with 10ml of DMEM medium without antibiotics, and 

incubated at 37°C.  Fresh medium was fed to the cells 12 and 24 hours post-

transfection, and lentiviral supernatant was collected 48 hours post-transfection and 

purified through a 0.22μM filter.  Stocks of the M1 lentiviral library (Cellecta, 

decipherproject.org) were aliquoted into 1ml screw cap tubes (Starlab), snap frozen 

in liquid nitrogen and stored at -80°C.      

 

Viral stocks were titrated by plating 0.1x106 NIH3t3 cells in 6 well dishes with 4ml 

media supplemented with 4μg polybrene and 10mM HEPES pH 7.6.  Individual wells 

were infected with 100μl, 33μl, 10μl, 3μl and 0μl of viral stocks and incubated for 8-

12 hours at 37°C before changing to fresh medium.  72 hours post-infection, the 

percentage of transduced cells expressing red or blue fluorescent protein (RFP or 
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BFP) was observed by flow cytometry.  The multiplicity of infection (MOI) was 

calculated from the percentage of transduced cells using the graph in figure 2.1 

(taken from the Decipher project user manual, Cellecta).  

 

 
 

 

 

The lentiviral titre, expressed as transduction units per ml (TU/ml), was calculated 

using the following formula: 

 

TU= (number of transduced cells (0.1x106)) * (MOI)/(ml of viral stock used for 

transduction) 

 

Once the titre is known, the amount of virus stock required to infect target cells at a 

particular MOI can be calculated by using the following rearranged formula: 

 

Volume of viral stock required = total number of cells * (MOI/(TU/ml)) 

 

Figure 2.1 – Lentiviral titer chart. The multiplicity of infection can be determined by 
interpolating the % infected cells to the standard curve.  Taken from the Decipher 
project user manual (decipherproject.net). 
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2.2.2.3 Cell sorting 

 

Once infected with retroviral or lentiviral constructs, the cells were incubated for 72 

hours for the maximal expression of fluorescence.  10x106 cells were pelleted and 

suspended in 1ml phosphate buffered saline (PBS-/-) supplemented with 5% (v/v) 

FCS, and passed through a cell strainer cap into 12x75mm polypropylene tubes.  

Samples were submitted on ice to the medical research council (MRC) flow 

cytometry facility, and the cells were sorted on the BD FACSAriaIII based on the 

expression of green, blue or red fluorescence.      

 

2.2.3 Cloning 

2.2.3.1 Generating shIkzf1 and shSSeCKS lentiviral vectors 

 

To generate shRNA constructs targeting Ikzf1 or SSeCKS, I cloned shRNA templates 

into the pRS-I9-RFP lentiviral expression vector.  The full hairpin structure containing 

the targeting sequence of each shRNA (table 6) was obtained from an open access 

database (Cellecta, decipherproject.org).  2.5μM of the forward and reverse shRNA 

oligos were diluted in H2O and annealed by heating to 95°C for 30 seconds, before 

being cooled to room temperature.  The pRS-I9-RFP vector was digested with BpiI 

(Thermo Scientific) and purified using the QIAquick gel extraction kit (Qiagen).  

0.2μM of each annealed shRNA oligo pair was ligated into 10ng of the BpiI digested 

gel purified pRS-I9-RFP vector using 1μl (40U) of T4 DNA ligase (NEB) for 2 hours at 

room temperature.   

 

2.2.3.2 Generating blue fluorescent protein (BFP) expressing lentiviral vectors 

 

To generate shRNA vectors that express blue fluorescent protein (BFP) instead of red 

fluorescent protein (RFP), I amplified the coding sequence of BFP from the tagBFP 

vector (Evrogen) using high fidelity phusion polymerase (Thermo scientific).  The 
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tagBFP forward primer (table 5) used for amplification contained sequences 

complementary to the 5’ end of the BFP coding sequence and included the start 

codon, a kozac consensus sequence and a XbaI restriction site.  The reverse primer 

contained a BamHI cut site.  The amplified BFP sequence was ligated into the gel 

purified pRS-I9-shIkaros and pRS-I9-empty lentiviral vectors cut with XbaI-BamHI.   

 

2.2.3.3 Cloning an SSeCKS overexpression vector 

 

A full length cDNA clone of SSeCKS was purchased from Source BioScience and PCR 

amplified using high fidelity phusion polymerase.  The SSeCKS forward primer (table 

5) contained sequences complementary to the 5’ end of the cDNA clone, a kozac 

consensus sequence and an XhoI restriction site.  The reverse primer contained an 

EcoRI restriction site.  The amplified sequence was ligated into the gel purified 

MSCV-IRES-GFP retroviral vector cut with XhoI-EcoRI. 

 

2.2.3.4 Bacteria transformation and plasmid DNA isolation 

 

Following ligation, 5μl of the ligation construct was mixed with 20μl of 5x KCM buffer 

(0.5M KCL, 0.15M CaCl2, 0.25M MgCl2) and made to a total of 100μl with H2O.  This 

was mixed with 100μl DH5α competent bacteria and incubated on ice for 20 

minutes, followed by 10 minutes at room temperature.  500μl lysogeny broth (LB) 

was added and the mixture was incubated for 1 hour at 37°C before plating on LB 

plates supplemented with 100μg/ml ampicillin (Sigma) overnight at 37°C.  Individual 

colonies were picked and grown in 2ml of LB supplemented with ampicillin and 

plasmid isolation was performed using the QIAprep spin miniprep kit (Qiagen), or the 

LB cultures were expanded into 200ml and plasmid isolation was performed using 

the maxiprep kit (Qiagen).  Successful cloning was determined by appropriate 

restriction digestion and DNA sequencing at the MRC genomics facility. 
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2.2.4 Cellular proliferation assays 

2.2.4.1 Propidium iodide (PI) staining 

 

0.5x106 cells were washed once with PBS and resuspended in 300ul PBS 

supplemented with 50μg/ml propidium iodide (Sigma), 10μg/ml RNase A (Life 

technologies) and 0.05% v/v NP40 (Calbiochem, Merck Millipore) for 30 minutes on 

ice.  The cell cycle profile was obtained using the BD LSRII flow cytometer.  Live cells 

were gated based on forward scatter (FSC) and side scatter (SSC) profiles, and 

doublets were discriminated using FSC-W/FSC-A gating.  PI fluorescence was 

obtained by excitation with the yellow green laser, and emission was detected at 

610/20nm.  Cell cycle histograms and analysis was performed using FlowJo software. 

   

2.2.4.2 Multicolour enrichment assay 

 

Ikaros-ERt2-GFP expressing fibroblasts were infected with lentiviral particles 

containing the M1 (RFP+) shRNA library and an empty pRSI9 shRNA vector expressing 

BFP (shEmpty-BFP) or a BFP+ shRNA vector targeting Ikaros (shIkzf1-BFP).  The cells 

were infected at a MOI of 0.5 so that each cell would contain on average a single 

shRNA.  Cells successfully transduced with lentivirus were selected for by 

maintaining the cells in 2μg/ml puromycin for 3 days.   Cells containing the shRNA 

library-RFP were plated at a density of 0.5x106 in a 10cm2 dish along with 0.05x106 

cells containing either the shEmpty-BFP or shIkzf1-BFP vector (10:1 ratio) in media 

supplemented with 0.5μM 4-hydroxytamoxifen (4-OHT, Sigma-Aldrich) and 1.5μg/ml 

puromycin.  Flow cytometric analysis was performed at day 0, day 3 and day 5.  

Alive, GFP positive cells were gated (Emission 525/50nm), and the percentage of 

cells that were RFP+ (610/20nm) or BFP+ (450/50nm) was recorded and plotted. 
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2.2.4.3 Crystal violet staining 

 

0.1x106 Ikaros-ERt2 expressing fibroblasts were plated in single wells of a 6 well 

plate and grown for up to 7 days in media supplemented with 0.5μM 4-OHT.  At each 

time point the media was aspirated and the cells washed once with PBS.  The cells 

were fixed by incubating with 1ml of 0.5% glutaraldehyde (Sigma-Aldrich) for 15 

minutes.  The glutaraldehyde was removed and the cells were stained by the 

addition of 1ml 0.2% crystal violet solution (Sigma-Aldrich) for 20 minutes.  The 

solution was subsequently removed and the plates were washed with distilled water 

to remove excess dye and left to dry.  The plates were then scanned using the 

EPSON 2400 photo scanner.  To quantify the intensity of the staining, 1ml of 1% SDS 

was added to each well and the plates were incubated on a rocker (Stuart, Bibby 

Scientific) until the dye was fully resuspended.  50μl of this SDS-crystal violet solution 

was aliquoted in duplicate into a round bottomed 96 well plate (Thermo Scientific) 

and the intensity of the staining was analysed using a plate reader (Spectra max) by 

measuring the absorbance at 570nm.          

 

2.2.5 Positive selection shRNA screen 

2.2.5.1 shRNA screening 

 

The M1 shRNA library (Cellecta) was packaged into lentiviral particles and titrated as 

outlined in 2.2.2.  Retroviral particles containing MSCV-Ikzf1-GFP or MSCV-Empty-

GFP constructs were generated by the calcium phosphate method.  Wild type 3T3 

fibroblasts were co-infected with the RFP positive lentiviral library and GFP positive 

retroviral constructs.  The lentivirus was infected at a multiplicity of infection of 0.5 

to ensure a low probability of multiple integrations per cell.  At least 200 cells were 

infected on average with each shRNA to maintain the diversity of the library.  As 

there are 27,500 hairpins in the population, this meant that at least 5.5x106 cells 

were infected with the shRNA library.  This ≥200 fold representation was maintained 

throughout the experimental period. 
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72 hours post infection, GFP/RFP double positive cells were sorted on the BD 

FACSAriaIII flow cytometer and plated at a density of 1x106 cells per 15cm2 

gelatinised dish in a 50/50 mix of fresh and conditioned fibroblast media.  The day 0 

control population was snap frozen by dipping the pelleted cells in a 15ml falcon 

tube in liquid nitrogen immediately after sorting, followed by storage at -80°C.   The 

remaining cells were grown for 7 days at 37°C in a humidified chamber with 5% O2.  

Control cells were kept in a logarithmic growth phase throughout the experiment to 

maintain the shRNA library diversity.  At least 27x106 cells were kept in culture after 

splitting to maintain 1000 fold representation of each shRNA in the control 

population.  At day 7, control and Ikzf1 expressing cell populations were pelleted and 

snap frozen before DNA extraction.  All screens were performed in three 

independent biological replicates. 

 

2.2.5.2 shRNA Library preparation 

 

Genomic DNA was obtained from each sample by phenol chloroform extraction.  The 

pelleted samples were thawed and suspended in 1ml lysis buffer per 5-10x106 cells 

(10mM NaCl, 10mM Tris pH7.5, 10mM EDTA, 0.5% (v/v) Sarcosyl) supplemented 

with 200μg/ml proteinase K and incubated at 55°C overnight with agitation.  One 

volume of phenol (Sigma-Aldrich) was added to each sample and vortexed, before 

spinning at 15,000RCF for 5 minutes.  The aqueous phase was transferred to new 

1.5ml tubes before the addition of an equal volume of phenol/chloroform/isoamyl 

alcohol (25:24:1), followed by vortex and spin.  The aqueous phase was transferred 

and mixed with an equal volume of chloroform, vortexed and spun for 5 minutes.  2 

volumes of ice cold 100% EtOH were added to each sample with 0.1 volume of 3M 

NaOAc and the samples were incubated at -80°C for 30 minutes to precipitate DNA. 

The samples were spun at 15,000 RCF for 20 minutes at 4°C to pellet DNA.  The 

pelleted DNA samples were washed once with 70% EtOH and resuspended in H2O to 

an optimal concentration of 5μg/μl. 
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Amplification of the shRNA barcodes was performed by nested PCR in 4 parallel 

reactions per condition (Control and Ikaros), each using 50μg genomic DNA as a 

template (200μg gDNA in total per sample).  This meant that on average each shRNA 

was represented 1000 fold at the start of the amplification stage.  A sample 

containing no gDNA was included as a negative control.  The PCRs were performed in 

2 stages using a nested set of primers (table 3).  In the first stage, 50μg of gDNA was 

mixed with 3μl of the forward and reverse HTS primers (10μM), 2μl of dNTP mix 

(10mM each), 10μl of 10x Titanium Taq buffer and 1μl of 50x Titanium Taq 

polymerase (Takara) and topped up to a volume of 100μl with H2O.  This was run 

with the following program: an initial denaturation step of 94°C for 3 minutes, and 

16 cycles of 94°C for 30 seconds, annealing at 55°C for 10 seconds and elongation at 

72°C for 20 seconds, followed by one cycle of 68°C for 2 minutes.  All 4 parallel 

reactions were pooled into one tube and 2μl of each amplified first round product 

were used as the template in 3 parallel second round PCR reactions with 5μl of 

forward and reverse Gex primers (10μM each), 10μl of 10x Titanium Taq buffer and 

1μl of 50x Titanium Taq polymerase (Takara) and topped up to a volume of 100μl 

with H2O.  This was run with the same program as before with 14 cycles of 

amplification, and all 3 parallel reactions were pooled for each sample.  The Gex 

primers contained sequences complementary to the immobilised primers on the 

Illumina flow cell, negating the requirement for adaptor ligation.  The expected 

amplification band size of 106bp was checked by running on a 3% agarose gel 

followed by purification using the QIAquick gel purification kit (Qiagen).   

 

2.2.5.3 shRNA library validation and sequencing 

 

A validation was performed on the amplified barcode libraries prior to sequencing to 

test if the screen was successful.  10ng of each sample was run in a qPCR reaction 

(according to 2.2.10.2) using the forward Gex primer and reverse primers specific to 

positive and negative control barcode sequences (table 4).  The relative enrichment 

of barcodes was determined by comparing the ∆C(t) of Ikaros samples to control 
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samples for the positive and negative control barcodes.   

 

The samples were quantified using the Qubit high sensitivity dsDNA assay (Life 

Technologies) and loaded in separate lanes of the Illumina HiSeq platform in a single 

read run using the custom GexSeqN primer (table 3).  Following sequencing, the 

samples were aligned to the reference shRNA barcode library and assigned gene 

ID's.  The differential expression of each shRNA was calculated using the DeSeq 

method. 

 

2.2.6 Immunofluorescence (IF) 

 

0.25x106 Ikaros-ERt2 expressing fibroblasts were cultured in 6 well dishes on top of 

sterile coverslips and induced with 0.5μM 4-OHT, or an equal volume of EtOH for 24 

hours.  The media was subsequently aspirated and the wells washed with 3ml PBS, 

then incubated with 1ml 4% paraformaldehyde (PFA, Sigma-Aldrich) in PBS for 10 

minutes at room temperature before aspiration.  Fixed samples were permeabilised 

with 1ml 0.1% Triton X-100 solution for 10 minutes at room temperature.  Samples 

were subsequently incubated in blocking solution (5% bovine serum albumin (BSA), 

0.05% Triton (Sigma-Aldrich)) for 1 hour at room temperature, followed by 

incubation with primary antibody in blocking solution at the appropriate dilution 

(displayed in 2.1.1) in a humidified chamber for 2 hours at room temperature.  

Coverslips were washed 3 times with PBS and incubated with the secondary 

antibodies coupled with appropriate fluorophores (Molecular Probes) diluted in 

blocking buffer for 1 hour at room temperature in a dark humidified chamber.  Slides 

were subsequently washed 3 times with PBS and mounted in Vectorshield (Vector 

Laboratories) with DAPI (0.1μg/ml).  Samples were visualised using a TCS SP5 Leica 

laser scanning confocal microscope.  Microscope settings and laser power were kept 

constant among samples.  Images were processed using Leica confocal software and 

ImageJ. 
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2.2.7 Western blot 

2.2.7.1 Sample preparation 

 

Whole cell extracts were obtained by pelleting 1x106 cells and resuspending in 50μl 

PBS supplemented with 1x protease inhibitor cocktail (Roche) and 50μl of 2x sample 

buffer (100mM Tris (pH 6.8), 20% glycerol, 2% SDS).  Samples were denatured by 

incubating at 95°C for 5 minutes.  Protein concentration was measured using the 

Pierce BCA protein assay kit (Thermo Scientific) according to the manufacturer’s 

instructions.  Following quantification, 10% v/v β–mercaptoethanol and 0.002% 

bromophenol blue were added to protein samples and stored at -20°C.  

 

2.2.7.2 SDS-PAGE 

 

Depending on the protein of interest, between 5-20μg of protein were loaded 

alongside 10μl of Benchmark pre-stained protein ladder (Invitrogen) on a SDS-

polyacrylamide gel (4% stacking gel [4% acrylamide, 125mM Tris-HCL (pH 6.8), 0.1% 

SDS, 0.067% ammonium persulphate (APS) and 0.12% N,N,N’,N’-

tetramethylethylenediamine (TEMED)] 10% resolving gel [10% acrylamide, 390mM 

Tris-HCL (pH8.8), 0.1%SDS, 0.05% APS, 0.1% TEMED]).  For large proteins such as 

SSeCKS, 4-15% precast polyacrylamide gels (Bio-Rad) were used.  Proteins were 

separated by running the gel in running buffer (25mM Tris base, 192mM glycine, 

0.1% SDS) for 60-90 minutes at 25mA per gel, using the Bio-Rad minigel system. 

 

2.2.7.3 Transfer and detection 

 

Resolved gels were blotted onto a Protan nitrocellulose transfer membrane 

(Schleicher & Schuell Bioscience) using the trans-blot semi-dry transfer apparatus 

(BioRad) in transfer buffer (48mM Tris base, 39mM glycine, 0.037% SDS and 20% 

methanol) for 90 minutes at 140mA/gel.  Alternatively for large proteins, a wet 
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transfer was performed for 1 hour at 350mA/250V in wet transfer buffer (25mM 

Tris, 192mM glycine, 0.037% SDS and 5% methanol).  For fluorescent western blot, 

immobilon-FL PVDF membranes (Merck Millipore) were pre-soaked in methanol 

prior to transfer.  Following transfer, the membrane was incubated for 30 minutes in 

blocking buffer (5% fat free milk powder (Marvel) in 1x TBS supplemented with 0.1% 

tween-20 (TBST)) followed by incubation with the primary antibody diluted in 

blocking buffer at the appropriate dilution (outlined in 2.1.1) for 1 hour at room 

temperature or overnight at 4°C with agitation.  The membranes were then washed 

three times for 10 minutes in 1x TBST at room temperature before incubation with 

horseradish peroxidase coupled secondary antibodies (anti-mouse and anti-rabbit 

purchased from Amersham and used at 1:5000 dilution in blocking buffer) for 45 

minutes at room temperature.  Following washes of the secondary antibody, 

detection was performed using the Luminata Crescendo Western HRP substrate 

(Millipore) following the manufacturer’s instructions with Kodak X-Omat 

photographic films.  Alternatively, secondary fluorescent antibodies (Invitrogen) 

were diluted at 1:10,000 in blocking buffer and incubated with the membranes for 

45 minutes at room temperature away from light.  The appropriate fluorophores 

were detected using the LI-COR Odyssey CLx imaging system.     

 

2.2.8 Ikaros chromatin immunoprecipitation (ChIP) 

2.2.8.1 Chromatin sample preparation  

 

All buffers were supplemented with freshly prepared 1x protease inhibitor cocktail.  

1x108 Ikaros-ERt2 expressing fibroblasts were harvested after treatment for 24 hours 

with 0.5μM 4-OHT, resuspended in 35ml PBS-/- containing 1mM Disuccinimidyl 

glutarate (DSG, Thermo Scientific) and incubated for 30 minutes at room 

temperature on a rotating platform.  The cells were washed with PBS and 

resuspended in 35ml PBS containing 1% fix solution (50mM Tris-HCL pH 8.0, 0.5mM 

EGTA pH 8.0, 100mM NaCL, 1% formaldehyde final) and incubated for 10 minutes at 

room temperature on a rotating platform.  The fixation was quenched by the 



Chapter 2  

 

65 

 

addition of glycine (Sigma-Aldrich) to a final concentration of 140mM, followed by a 

5 minute incubation at room temperature.  The cells were pelleted at 1800RCF for 5 

minutes at 4°C, washed twice with ice-cold PBS and lysed by the addition of 1ml Lysis 

buffer (5mM PIPES pH 8.0, 85mM KCL, 0.5% NP-40) for 20 minutes on ice.  The cell 

lysis solution was spun at 900RCF for 10 minutes at 4°C and the supernatant 

aspirated before the addition of 500μl nuclear lysis buffer (50mM Tris-HCL pH8.1, 

10mM EDTA pH8.0, 0.5% SDS) for 10 minutes on ice.  The samples were sonicated 

for 20 minutes at 4°C with 30 seconds on, 30 seconds off using a Bioruptor sonicator 

(Diagenode).  Debris was removed by spinning the samples at 2500RCF for 20 

minutes at 4°C, and the supernatant was ran on a 1% agarose gel to check the size of 

the chromatin fragments (optimal between 500-1000bp).  The chromatin was 

quantified by nanodrop measurement and the samples were diluted in standard 

RIPA buffer (10mM Tris-HCL pH7.5, 1mM EDTA pH8.0, 0.5mM EGTA pH8.0, 1% Triton 

X-100, 0.1% SDS, 0.1% Na Deoxycholate, 140mM NaCl) to 200ng/μl and stored at -

20°C. 

 

2.2.8.2 Chromatin immunoprecipitation 

 

50μl of A Dynabeads (Life Technologies) per IP were washed twice with cold 

standard RIPA buffer on a magnetic stand and incubated with 15μl of the Ikaros 

antibody or 2μg normal rabbit IgG (santa Cruz) for 3 hours at 4°C on a rotating 

platform.  The beads were washed twice with cold RIPA buffer and 100μg of 

chromatin was added, topped up to a final volume of 500μl in RIPA buffer, and 

incubated overnight at 4°C on an orbital shaker.  Unbound chromatin and non-

specific binding were washed away sequentially with standard RIPA buffer, high salt 

RIPA buffer (10mM Tris-HCL pH7.5, 1mM EDTA pH8.0, 0.5mM EGTA pH8.0, 1% Triton 

X-100, 0.1% SDS, 0.1% Na Deoxycholate, 500mM NaCl), LiCL RIPA buffer (10mM Tris-

HCL pH7.5, 1mM EDTA pH8.0, 0.5mM EGTA pH8.0, 1% Triton X-100, 0.1% SDS, 0.1% 

Na Deoxycholate, 250mM LiCL) and TE buffer (10mM Tris-HCL, 1mM EDTA, pH7.5).  

The samples were reverse crosslinked by incubating in 300μl elution buffer (20mM 
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Tris-HCL pH7.5, 5mM EDTA pH 8.0, 50mM NaCL, 1%SDS, 50μg/ml proteinase K, 

100μg/ml RNase A) at 68°C overnight with agitation.  DNA was extracted by the 

phenol chloroform method and suspended in 100μl h2O.  2μl of ChIP DNA was used 

per qPCR reaction using primers outlined in 4. 

 

2.2.9 Protein pulldown 

2.2.9.1 Preparation of lysates 

 

Ikaros-ERt2 expressing B3 cells were plated and treated with 0.5μM 4-OHT or an 

equivalent volume of EtOH for 24 hours.  Around 100x106 cells were pelleted for 

each condition and washed with ice cold PBS supplemented with 1x complete EDTA-

free protease inhibitor (CEF) before suspension in 5ml of lysis buffer (150mM NaCl, 

2mM MgCl2, 25mM Tris pH7.5, 10% glycerol, 1% Triton X-100, 0.5mM DTT, 1X CEF 

protease inhibitor).  The samples were homogenised with 15 strokes of the large 

clearance Dounce homogeniser (Sigma-Aldrich) and incubated in a 15ml falcon tube 

on a roller for 30 minutes at 4°C.  The samples were transferred to Lo-bind 

microcentrifuge tubes (Sigma-Aldrich) and spun at 15,000RCF for 20 minutes at 4°C 

before transferring the supernatant to fresh tubes for storage at -80°C.   

 

2.2.9.2 Immunoprecipitation 

 

For each IP, 40μl of protein G Dynabeads were washed with 1ml PBS supplemented 

with 0.1% Triton X-100 on a magnetic rack.  The beads were blocked by the addition 

of 800μl PBS + 0.1% Triton and 200μl of non animal protein (NAP) block (G 

Biosciences) and incubated for 5 minutes on a rotating wheel at room temperature.  

The supernatant was discarded and antibody coupling was accomplished by 

resuspending the beads in 28μl PBS (+0.1% Triton +1x protease inhibitor) with 3μl 

NAP and 5μg of anti-SSeCKS antibody, followed by 3 hours of incubation on a 

rotating wheel at 4°C.  2.5μg of normal mouse IgG was used as a negative control.  
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The beads were washed on ice three times with 1ml cold PBS (+0.1% Triton +1x 

protease inhibitor) and incubated with 500μl of pre-prepared cell lysates plus 1x 

protease inhibitor for 4 hours at 4°C on a rotating platform.  The beads were then 

washed three times on ice with cold lysis buffer before elution by the addition of 

50μl 0.2M glycine pH2.3 for 10 minutes with agitation in two sequential elution 

steps (100μl total eluate).  The eluted samples were then mixed with two volumes of 

2x western sample buffer and boiled at 95°C for 5 minutes, subjected to SDS-PAGE 

then blotted for cyclin D.  

 

2.2.10 Real-time Quantitative PCR (RT-qPCR) 

2.2.10.1 RNA extraction and reverse transcription 

 

RNA extraction was performed using the QIAshredder and RNeasy mini kits (Qiagen), 

residual DNA was eliminated using 2U turboDNase (Ambion) according to the 

manufacturer’s instructions and RNA was quantified by nanodrop.  Reverse 

transcription was performed using the Superscript III first strand synthesis mix 

(Invitrogen).  500ng of total RNA was combined with 1μl of 10mM dNTP mix, 1μl of 

250ng/μl random primers and topped up to 13μl with sterile RNase free H2O before 

incubation in a thermal cycler at 65°C for 5 minutes.  Following incubation, 4μl of 5x 

first strand buffer, 1 μl of 0.1M DTT, 1μl RNaseOUT and 1μl of 200U/μl Superscript III 

reverse transcriptase was added to the mixture to a final volume of 20μl.  The 

reaction mixture was incubated at 25°C for 5 minutes, 50°C for 60 minutes and 70°C 

for 15 minutes.  The cDNA was diluted 1:5 with sterile H2O to a final concentration of 

5ng/μl and stored at -20°C. 

 

2.2.10.2 RT-qPCR 

 

Primers were designed using the primer3 design tool (http://primer3.ut.ee) using 

sequences obtained from the UCSC genome browser.  The primers were tested using 

http://primer3.ut.ee/


Chapter 2  

 

68 

 

2 fold serial dilutions of genomic DNA and those that displayed linear fits of the C(t) 

versus logarithm of the genomic DNA concentration (R2>0.99), and amplification 

efficiencies in the range of 1.8-2 were selected.  

 

PCR reactions were made by mixing 2μl of cDNA (10ng total) with 2X SYBR Green 

qPCR master mix (Qiagen) and 0.3mM primers to a total volume of 12μl.  This 

reaction was carried out using an Opticon or CFX96 real time qPCR machine using 

the following program: an initial denaturation step at 95°C for 15 minutes, 40 cycles 

of denaturation at 94°C for 15 seconds, annealing at 60°C for 30 seconds, elongation 

at 72°C for 30 seconds at which point the fluorescence was read at 72°C, 75°C, 78°C 

and 83°C.  The melting curve was determined from 70°C to 90°C at 0.2°C intervals.  A 

reaction without DNA was included as a control and each measurement was 

performed in triplicate.  The quantification of amplified sequences was determined 

using the ∆C(t) method.  ∆C(t) corresponds to the number of amplification cycles 

after which fluorescence of PCR products can be detected above background.  

Assuming an amplification efficiency close to 2, the relative abundance of a gene of 

interest (C(t)1) compared to a control (C(t)2) can be calculated at 2-∆C(t)1/2-∆C(t)2.  Ubc 

was generally used as an internal housekeeping control for data normalisation.     

 

2.2.11 RNA-seq 

2.2.11.1 Library preparation 

 

0.5x106 S24 fibroblasts expressing the Ikaros-ERt2 construct were plated in 10cm2 

dishes and induced for 24 hours with a combination of 1μg/ml doxycycline and 

0.5μM 4-OHT, or an equal volume of EtOH as the vehicle control.  Total RNA was 

extracted using the QIAshredder and RNeasy mini kits (Qiagen), residual DNA was 

eliminated using 2U turboDNase (Ambion) according to the manufacturer’s 

instructions and RNA was quantified by nanodrop.  RNA quality was assessed by 

Bioanalyser (Agilent) using the total RNA nano chip.  All samples displayed RNA 

integrity numbers (RIN) of over 9.5, indicating good quality RNA with low 
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degradation.  qPCR analysis was performed on each sample prior to library 

preparation looking at target gene expression (i.e Myc) to check that the induction 

worked as expected.  Intronic primers designed against non expressed genes in 

fibroblasts (i.e Igll1) were used as a negative control to ensure there was no genomic 

DNA contamination in the samples.   

 

RNA libraries were prepared using the Truseq stranded total RNA prep kit (Illumina), 

using ribozero ribosomal RNA (rRNA) depletion.  500ng of total RNA was loaded for 

each sample in a hardshell 96 well plate (Biorad) and incubated with biotinylated 

rRNA oligos at 68°C for 5 minutes.  Depletion of rRNA was achieved by the addition 

of rRNA binding magnetic beads followed by incubation on a magnetic stand and 

transfer of the ribosomal depleted RNA supernatant to a new plate.  The ribosomal 

depleted RNA was cleaned by binding to RNAclean XP beads (Agencourt) and 

washed with 70% EtOH on a magnetic stand, following elution of purified RNA.   

 

The purified RNA was fragmented and primed for first strand cDNA synthesis by the 

addition of the Elute, Prime, Fragment Mix and incubated at 94°C for 8 minutes.  

First strand cDNA synthesis was carried out using random primers and SuperScript II 

reverse transcriptase using the following program: 25°C for 10 minutes, 42°C for 15 

minutes, 70°C for 15 minutes.  Immediately following first strand synthesis, the RNA 

strand was degraded with RNA H and the second cDNA strand was synthesised by 

the addition of the Second Strand Marking Master Mix followed by incubation for 1 

hour at 16°C.  The subsequent double stranded cDNA was cleaned by binding to 

RNAclean XP beads and sequentially washed with two rounds of 80% EtOH on a 

magnetic stand, followed by elution.   

 

The blunt double stranded cDNA was adenylated with the addition of a single 'A' 

nucleotide that is complementary to the single 'T' nucleotide on the adaptor 

sequences.  A-tailing mix was added to each cDNA sample and incubated at 37°C for 

30 minutes, followed by 70°C for 5 minutes.  Adaptors specific for the Illumina 
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sequencing platform (table 7) were subsequently ligated to the cDNA fragments by 

mixing the ligation mix and adaptor indexes from RNA adaptor tubes with the cDNA 

samples and incubating at 30°C for 10 minutes.  The adapted cDNA fragments were 

cleaned by binding to RNAclean XP beads followed by 2 sequential rounds of 2X 80% 

EtOH washes before elution.  The adapted sequences were then enriched by PCR 

amplification using the following program: initial denaturation at 98°C for 30 

seconds followed by 15 cycles of 98°C for 10 seconds, 60°C for 30 seconds, 72°C for 

30 seconds and 72°C for 5 minutes.  This was followed by a final round of cleaning 

using RNAclean XP beads with 80% EtOH washes.   

 

2.2.11.2 Library validation and sequencing 

 

The purity of the cDNA libraries was assessed by Bioanalyser, using a high sensitivity 

DNA chip.  All samples were fragmented in approximately 300bp fragments.  The 

concentration of the samples was measured using the Qubit high sensitivity dsDNA 

assay (Life Technologies) and each sample was diluted to 15ng/μl.  qPCR analysis was 

performed on each sample prior to sequencing looking at target gene expression to 

ensure correct library preparation.  5μl of each sample was pooled into a single well 

and delivered to the MRC genomics facility for cluster generation and paired end 

100bp sequencing in 2 lanes of the Hi-Seq sequencing platform.  Following 

sequencing, each sample was demultiplexed and aligned to the reference mouse 

genome, and the differential expression of each gene was calculated using the EdgeR 

package.    
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Chapter 3  

A model system to study the regulation of the cell cycle by 

Ikaros 

 

3.1 Introduction 

 

IKZF1 is the defining oncogenic lesion in Philadelphia chromosome positive B-

progenitor acute lymphoblastic leukaemia (ALL) (Mullighan et al., 2008).  In mice the 

expression of dominant negative Ikaros isoforms result in lymphoproliferation and 

the development of leukaemias and lymphoma (Winandy et al., 1995).  Evidence 

linking Ikaros to the regulation of proliferation was observed in studies that showed 

cell cycle withdrawal in murine thymocytes and pre-B cells in response to Ikzf1 

overexpression (Kathrein et al., 2005; Ma et al., 2008).  Ikaros can directly 

antagonise the regulation of genes involved in proliferation, exemplified by its direct 

repression of the oncogene Myc and induction of the cell cycle inhibitor Cdkn1b (Ma 

et al., 2010).  These reports of Ikaros-induced cell cycle arrest in lymphocytes have 

been complemented with genome-wide expression profiling studies utilising models 

of Ikzf1 overexpression (Ferreiros-Vidal et al., 2013) and conditional inactivation 

(Schjerven et al., 2013, Joshi et al., 2014), further elucidating the gene expression 

program induced by Ikaros.  In pre-B cells proliferative arrest is required to allow 

Rag-dependent rearrangement of immunoglobulin light chain loci to proceed (Zhang 

et al., 2011), thereby linking B cell differentiation with cell cycle dynamics.   

 

Interestingly the ectopic expression of Ikzf1 results in G1 arrest in fibroblasts, as well 

as in lymphocytes (Gomez Del-Arco et al., 2004).  This provides an opportunity to 

investigate Ikaros function in a reductionist model system.  The rationale for this 

approach is as follows.  Fibroblasts do not endogenously express Ikzf1, so the 

regulation of the cell cycle can be studied upon the introduction of Ikaros into these 

cells.  Furthermore, fibroblasts do not express components of the pre-B cell receptor 
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or its downstream signalling molecules, allowing the investigation of Ikaros function 

in the regulation of the cell cycle independently of its role in B cell differentiation.  

RNAi can be used to systematically screen thousands of genes in a parallel fashion to 

identify factors that are directly required for cell cycle arrest.  I therefore planned to 

perform a positive selection RNAi screen to identify shRNA that override Ikaros-

induced proliferative arrest in the fibroblast model system.  Before embarking on the 

screen I wished to characterise this model system by comparing and contrasting the 

Ikaros-induced gene expression changes and cell cycle profiles in pre-B cells and 

fibroblasts.    

 

3.2 An inducible system of Ikaros activity 

 

To interrogate Ikaros function I took advantage of a fusion construct that consists of 

HA-tagged Ikaros fused with a modified form of the oestrogen receptor hormone 

binding domain, driven by MSCV long terminal repeats (Ikaros-ERt2) (Figure 3.1A).  

This construct contains an internal ribosome entry site (IRES) that allows for 

translation of green fluorescent protein (GFP) and Ikaros-ERt2 from the same 

transcript.  This enables me to sort cells with different levels of Ikaros expression by 

flow cytometry based on GFP fluorescence.  Cells expressing this construct grow 

normally, as the Ikaros-ERt2 protein is sequestered in the cytoplasm with heat shock 

proteins until the addition of the ERt2 ligand 4-hydroxytamoxifen (4-OHT).  Binding 

of 4-OHT to the ERt2 domain releases the Ikaros-ERt2 protein from cytoplasmic heat 

shock proteins.  This allows the Ikaros nuclear localisation signal (NLS) to direct the 

translocation of Ikaros-ERt2 into the nucleus, where it can bind to DNA and regulate 

the expression of Ikaros target genes (Figure 3.1B).  
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I demonstrated this sytem visually by performing immunofluorescence staining and 

confocal microscopy using an anti-Ikaros antibody in Ikaros-ERt2 expressing 

fibroblasts.  Figure 3.1C shows that 4-OHT treatment induced Ikaros translocation 

into the nucleus to overlap DAPI staining, whereas Ikaros was excluded from the 

nucelus in cells treated with the vehicle control ethanol (EtOH) and exhibited 

predominantly cytoplasmic staining.  The advantage of using this construct is that 

cells expressing Ikaros-ERt2 continue to proliferate until Ikaros translocation is 

induced by the addition of 4-OHT.  This allows precise temporal control over the 

timing of Ikaros induction. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – An inducible system of Ikaros activity. (A) Schematic depicting the Ikaros-ERt2 
construct. (B) Addition of the ligand 4-OHT directs nuclear translocation of the Ikaros-ERt2 
protein. (Blue dots) (C) Immunofluorescence (IF) images obtained by confocal microscopy 
depicting Ikaros-ERt2 expressing fibroblasts treated with EtOH (top panels) or 4-OHT (bottom 
panels) for 24 hours.  Treatment with 4-OHT resulted in a predominantly nuclear staining as 
Ikaros (green) colocalised with DAPI staining (blue).   
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3.3 Ikaros regulates the cell cycle in pre-B cells and fibroblasts 

 

I proceeded to use the inducible Ikaros-ERt2 construct to characterise the regulation 

of the cell cycle by Ikaros in pre-B cells and fibroblasts.  For this purpose I used the 

pre-B cell line B3, which is derived from an IL-7 transgenic lymphoma and is 

developmentally blocked at a stage resembling large cycling pre-B cells (FrC’) (Fisher 

et al., 1995).  I transduced B3 cells with the Ikaros-ERt2 construct, or a dominant 

negative form of Ikaros (DN-Ikaros-ERt2) that contains a substitution of an 

asparagine to alanine at amino acid position 159 in one of the N-terminal zinc fingers 

critical for DNA binding (Cobb et al., 2000).  This mutant is unable to bind DNA but 

can still dimerise with members of the Ikaros family through its C-terminal zinc 

fingers.  This prevents DNA binding of its dimerisation partner in a dominant 

negative fashion.    

 

It has previously been shown that B3 cells withdraw from the cell cycle after 16 

hours of 4-OHT treatment, and are arrested in G1 after 24 hours of treatment 

(Ferreiros-Vidal et al., 2013).  I used staining with the DNA intercalating dye 

propidium iodide (PI) coupled with flow cytometry to analyse the DNA content of B3 

cells after 24 hours treatment with EtOH or 4-OHT (figure 3.2).  The induction of 

Ikaros nuclear translocation by 4-OHT treatment resulted in a reduction in the 

fraction of cells in S and G2/M phase of the cell cycle and an accumulation of >80% 

of cells in G1 phase, compared to <50% of cells in G1 phase in the EtOH treated 

control cells (figure 3.2A, top panel).  Induction of the Ikaros 159A mutant isoform 

had no discernible impact on the cell cycle profile, indicating that DNA binding by 

Ikaros is required to impose cell cycle arrest (figure 3.2A, bottom panel).  
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I performed quantitative polymerase chain reaction (qPCR) analysis to investigate 

Ikaros-induced gene expression changes using RNA extracted from cells treated for 6 

hours, 16 hours and 24 hours with EtOH or 4-OHT (figure 3.3).  These represent time 

points that are prior to cell cycle arrest, undergoing arrest, and stably arrested.  In 

accordance with previous reports (Ferreiros-Vidal et al., 2013, Ma et al., 2010, 

Kathrein et al., 2005) and the cell cycle profiles shown in figure 3.2, Ikaros instigated 

an anti-proliferative gene expression program.   

Figure 3.2 Ikaros induces cell cycle withdrawal in pre-B 
cells (A) Cell cycle profiles of pre-B cells stained with 
propidium iodide (PI) after 24 hours of treatment with 4-
OHT (blue) or EtOH (red).  The induction of Ikaros nuclear 
translocation by 4-OHT treatment (top panel) resulted in 
cell cycle arrest whereas induction of a dominant 
negative isoform did not (bottom panel). (B) 
Quantification of cell cycle stages in each condition; black 
for G1, grey for S, white for G2/M. 
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Figure 3.3 Ikaros induction directs B3 cell gene expression towards a quiescence-like state.  
qPCR analysis was performed on RNA extracted from B3 cells collected at 6, 16 and 24 hours 
after treatment with 4-OHT (white bars) or EtOH (black bars).  Ikaros target genes are grouped in 
order of their function encompassing the cell cycle, B cell development, adhesion and 
metabolism.  The graphs display mean gene expression changes induced by Ikaros (Mean+SE; 
N=3, student T test: * p<0.05 **p<0.01 *** p<0.001) 
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Figure 3.3 displays the expression of Ikaros target genes grouped in the distinct yet 

interlinked processes of cell cycle, adhesion and metabolism.  The downregulation of 

the surrogate light chain component Igll1 was included as the prototypic positive 

control for successful Ikaros induction (Thompson et al., 2007).  Focusing on the 

genes involved in G1-S progression, the induction of Ikaros nuclear translocation 

resulted in the repression of pro-proliferative genes such as Myc, Ccnd2 (cyclin D2) 

and Cdk6 and the upregulation of the cell cycle inhibitors Cdkn1a/b (p21/p27).  

These gene expression changes occurred early on as significant changes could be 

detected after 6 hours of 4-OHT treatment, preceding cell cycle arrest.  The data 

observed in figure 3.3 does not seem to correlate with the cell cycle profiles shown 

in figure 3.2, as the gene expression changes appear to lessen at 24 hours, when cell 

cycle arrest is strongest.  These target genes have previously been shown to be 

strongly differentially expressed up to 48 hours after Ikaros induction (Ferreiros-

Vidal et al., 2013).  One explanation for this discrepancy is that the two analyses 

were performed on different batches of cells.  It is likely that the weak gene 

expression changes are the result of low Ikaros expression in these cells due to poor 

transduction efficiency.   

 

It has recently been shown that Ikaros is required to downregulate components of 

the integrin signalling pathway (Joshi et al., 2014).  Conditional inactivation of Ikaros 

in pre-B cells resulted in augmented stromal-dependent proliferation and survival 

(Joshi et al., 2014).  I investigated the expression of two previously identified Ikaros 

regulated genes, Itga5 and Itgb1, which encode the α5β1 integrin receptor (Joshi et 

al., 2014).  The induction of Ikaros translocation resulted in a sharp reduction in 

transcript of one half of this receptor (Itga5).  As metabolic output is important in 

sustaining cellular growth and proliferation (Dang et al., 2009), I investigated the 

expression of two metabolic genes that encode enzymes involved in the glycolysis 

and fermentation pathways.  Ldha converts pyruvate to lactate, and Hk2 

phosphorylates glucose in a rate-limiting step committing glucose to the glycolytic 

pathway.  Work performed by my colleague Dr. Ferreiros-Vidal indicates that Ikaros 
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directs a metabolic reprogramming of B3 cells away from a ‘cancer like’ state 

exhibiting aerobic glycolysis and lactate production to a ‘resting like’ oxidative 

metabolism (a reversal of the Warburg effect).  As shown in figure 3.3, both Hk2 and 

Ldha were repressed after Ikaros induction.  

 

I went on to investigate the effect of introducing the Ikaros-ERt2 construct into 

fibroblasts.  The cell cycle profile of Ikaros-ERt2 expressing 3T3 fibroblasts was 

similar to that of B3 cells, as >80% of cells accumulated in G1 phase after 24 hours of 

4-OHT treatment (figure 3.4 A,B).  A system of persistent cell cycle arrest over long 

time periods (>24 hours) is required to perform a positive selection RNAi screen in 

fibroblasts.  This will maximise the signal-to-noise ratio and enrich for shRNA that 

allow cells to escape from Ikaros-enforced cell cycle arrest.  To test the effect of 

Ikaros induction over long time periods, I plated Ikaros-ERt2 expressing fibroblasts at 

equal density and supplemented the media with EtOH or 4-OHT for up to one week.  

I then stained with crystal violet to visualise colony density by the intensity of the 

staining.  There was a stark contrast in the intensity of staining between 4-OHT and 

EtOH treated cells after 7 days of treatment, illustrating the antiproliferative effect 

of Ikaros in these cells (figure 3.4C).  At later time points however (day 6 and over) 

Ikaros-mediated cell cycle repression began to lift as colonies could be detected in 

the 4-OHT treated samples (figure 3.4C).  If Ikaros-arrested cells stochastically re-

enter the cell cycle at late time points the background noise in the shRNA screen will 

increase.  Subsequent experiments were performed within a 7 day time window to 

minimise this confounding effect. 
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I investigated the gene expression changes induced by Ikaros in 3T3 fibroblasts 

before (6 hours) and after (24 hours) cell cycle arrest (figure 3.5A).  The patterns of 

gene expression were broadly consistent with those observed in pre-B cells.  Myc 

appears to be a central target of Ikaros in the regulation of the cell cycle, exemplified 

here by the notably sharp and persistent depletion of Myc transcript following the 

induction of Ikaros nuclear translocation.  Consistent with this observation, the 

repression of Ldha and Hk2 was particularly strong following Ikaros induction.  Myc 

promotes many components of the glycolytic pathway, and directly upregulates the 

expression of these two genes (reviewed in Dang et al., 2009).  The observed 

repression of Myc expression in fibroblasts appears to be stronger than that 

observed in B3 cells (figure 3.3).  This likely reflects a higher ‘dosage’ of the Ikaros 

transgene in fibroblasts than in B3 cells, due to higher transduction efficiency. 

 

Figure 3.4 Ikaros induces cell cycle withdrawal in fibroblasts.   
(A) PI profiles and (B) quantification of the cell cycle phase of 
Ikaros-ERt2 expressing 3T3 cells following 24 hours of treatment 
with 4-OHT (blue) or EtOH (red). (C) A colony formation assay 
was performed by plating an equal number of these cells and 
treating with 4-OHT (left) or EtOH (right) for up to 7 days.  The 
plates were fixed and stained with crystal violet to demonstrate 
the difference in confluency between the two conditions. 
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One observation that ran contrary to expectation was the apparent downregulation 

of the cell cycle inhibitor Cdkn1a upon the induction of Ikaros translocation and G1 

arrest in fibroblasts (figure 3.5A).  This is at odds with the regulation of this gene in 

pre-B cells (figure 3.3), but was consistently observed using different primer sets and 

in different fibroblast lines.   

 

To corroborate the gene expression data I investigated the Ikaros-induced changes in 

protein expression of Myc, and the two predominant isoforms of cyclin D expressed 

in fibroblasts.  Western blot analysis confirmed that both Myc and cyclin D2 were 

downregulated at the protein level (figure 3.5B), and confocal images of IF stained 

fibroblasts demonstrated that cyclin D1 protein was undetectable in the nucleus 

after 24 hours of 4-OHT treatment (figure 3.5C).  In conclusion, my results 

demonstrate that Ikaros induces some key gene expression changes relating to the 

cell cycle in pre-B cells and fibroblasts.  This translates into an arrest of the cell cycle 

in G1/G0 phase.                  
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Figure 3.5 Ikaros-induced gene expression and protein changes in fibroblasts. (A) qPCR analysis 
was performed on RNA extracted from Ikaros-ERt2 expressing 3T3 cells collected at 6 and 24 
hours after treatment with 4-OHT (white bars) or EtOH (black bars).  Gene expression changes 
were normalised to Ubc expression. (Mean+SE; N=3, student T test: * p<0.05 **p<0.01 *** 
p<0.001). (B) Protein extracts from Ikaros-ERt2 expressing fibroblasts treated for 24 hours with 
EtOH (left column (-)) or 4-OHT (right column (+)) were analysed for Myc (top panel) and cyclin 
D2 expression (Middle panel). An anti-tubulin antibody was included as a loading control (bottom 
panel).  (C) Confocal images of IF stained fibroblasts treated with EtOH (top) or 4-OHT (bottom) 
for 24 hours.  Nuclear staining by DAPI is shown in blue and cyclin D1 was visualised by 
incubating with an anti-cyclin D1 primary antibody and a fluorescent secondary antibody (green).   
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3.4 Enforced Myc expression overrides Ikaros-induced cell cycle arrest 

 

Myc appears to be a focal point in the regulation of the cell cycle by Ikaros.  As Myc 

downregulation appeared to precede cell cycle arrest, I wanted to test if this arrest 

could still occur in the presence of sustained Myc expression.  Ikaros directly 

represses the transcription of Myc (Ma et al., 2010), so I made use of an inducible 

form of Myc (Myc-ERt2) encoded from a MSCV vector.  Ikaros is unable to repress 

this construct, ensuring that Myc expression is maintained in Ikaros expressing cells.  

3T3 cells expressing Ikaros-ERt2, Myc-ERt2 or both were treated for 24 hours with 

EtOH or 4-OHT and the cell cycle profiles were analysed by PI staining and flow 

cytometry.  Ikaros induction by 4-OHT treatment resulted in an accumulation of cells 

in G1 phase as expected.  The induction of Myc nuclear translocation stimulated cells 

to proliferate, as an increased proportion of cells were in S and G2/M compared to 

EtOH treated control cells (figure 3.6A,B).  When Ikaros and Myc were induced 

together the cells were unable to arrest and there was a slight increase in cells in S 

phase.  This is in accordance with similar results in pre-B cells showing that Myc 

overexpression antagonised the growth inhibitory effect of the Ikaros family 

member Aiolos (Ma et al., 2010).  Thus Myc downregulation appears to be a 

prerequisite for Ikaros-induced cell cycle withdrawal.   

 

I performed qPCR analysis on these cells to investigate Ikaros-Myc antagonism at the 

level of gene expression.  As expected from the cell cycle profile, Myc induction 

increased the expression of Ccnd2 at 24 hours and decreased the expression of the 

cell cycle inhibitor Cdkn1b (p27) (figure 3.6C).  The latter gene is particularly 

interesting as Ikaros and Myc appear to have direct and opposing effects on p27 

expression.  Ikaros upregulated the expression of Cdkn1b and Myc repressed its 

transcription.  There was no mean change in the expression of Cdkn1b when Ikaros 

and Myc were induced together.  The converse situation to Cdkn1b can be observed 

in Hk2 expression, which is repressed by Ikaros and upregulated by Myc.  The 

induction of Ikaros and Myc together resulted in an intermediate gene expression 



Chapter 3  

 

83 

 

profile in between that of Ikaros or Myc induction alone.  These cells displayed a 

higher expression of Hk2 than when Ikaros was induced alone and a lower 

expression than when Myc was induced alone.  Interestingly there appeared to be a 

synergistic regulation of Itga5 expression.  The induction of Ikaros and Myc together 

resulted in a more enhanced repression of this gene than either condition alone.  

Hence there appears to be a more nuanced system of gene regulation than a simple 

dichotomy of Ikaros-Myc antagonism. 
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3.5 Knockdown of Ikzf1 expression restored proliferation 

 

As Ikaros is able to induce cell cycle arrest in fibroblasts, it stood to reason that 

knockdown of Ikzf1 would restore proliferation to Ikaros-arrested cells.  Following 

this logic, shRNA targeting Ikzf1 would serve as an ideal positive control readout of 

Figure 3.6 Enforced Myc expression overrides 
Ikaros-induced cell cycle arrest in fibroblasts (A) 
PI profiles after 24 hours of treatment with 4-
OHT (blue) or EtOH (red).  3T3 Fibroblasts were 
transduced with constructs encoding Ikaros-ERt2 
(top), Myc-ERt2 (bottom), or a combination of 
Ikaros-ERt2 and Myc-ERt2 (middle). (B) 
Quantification of cell cycle phase in each 
condition (C) Gene expression profiles of these 
cells after 24 hours of treatment with EtOH or 4-
OHT. Mean+SE; N=3, student T test: * p<0.05 
**p<0.01 *** p<0.001    
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cellular proliferation in the planned shRNA screen.  This is because cells containing 

this shRNA should escape growth arrest and become enriched within the population.   

To test this hypothesis I cloned 4 individual shRNA targeting different regions of the 

Ikzf1 coding sequence into lentiviral vectors (referred to as shIkzf1 A,B,C and D 

respectively), and transduced these into Ikaros-ERt2 expressing 3T3 cells.  I then 

assessed the level of knockdown by conventional (figure 3.7A) and fluorescent 

(figure 3.7B) western blot using an anti-Ikaros antibody.  All four shRNA depleted 

Ikaros protein to some extent relative to control non-shRNA transfected (Ikaros-

ERt2) or empty shRNA vector transfected cells.  In accordance with the reduction in 

Ikaros protein, Ikzf1 knockdown (by shIkzf1-D) reversed the repression of Myc and 

restored its mRNA expression to a level comparable to the EtOH treated control 

(figure 3.7C).  This was reflected in a partial restoration of Myc and cyclin D2 protein 

expression in these cells (figure 3.7D).   

 

I visualised the effect of Ikzf1 knockdown on proliferation by plating the cells at 

equal density and cultured them for up to one week in media supplemented with 4-

OHT, before staining with crystal violet (figure 3.7E).  As expected, cells that 

expressed the Ikaros-ERt2 construct showed a marked disparity in the intensity of 

staining compared with cells that expressed an empty MSCV vector.  Cells that 

expressed Ikaros-ERt2 and an empty shRNA vector did not proliferate over the time 

course.  Knockdown of Ikzf1 by two independent shRNA (shIkzf1-B and –D) restored 

proliferation, as observed by the increased intensity of crystal violet staining that 

was comparable to the empty MSCV vector control.  In conclusion, Ikzf1 knockdown 

restored proliferation to Ikaros-arrested fibroblasts.  This shows that shRNA 

targeting Ikzf1 are a valid positive control for use in the shRNA screen.      
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Figure 3.7 Ikaros knockdown restored proliferation. (A) Western blot from 3T3 whole cell lysates 
showing Ikaros protein expression.  An anti-histone H3 antibody was included as a loading control 
(bottom panel).  (B) Relative protein expression after Ikzf1 knockdown using a fluorescent secondary 
antibody.  Fluorescent values were normalised to H3 then plotted relative to non-shRNA transfected 
Ikaros-ERt2 samples. (C) Relative Myc mRNA expression before and after Ikzf1 knockdown with 
shIkzf1-D, normalised to the housekeeping gene Ubc. (D) Western blot showing Myc and cyclin D2 
protein expression with and without Ikaros induction (4-OHT +/-) or knockdown of Ikzf1 (shIkzf1 +/-
).  Tubulin was included as a loading control. (E) Colony formation assay of 3T3 cells that were plated 
at equal density and treated for up to 7 days with 4-OHT, before staining with crystal violet. 
Mean+SE; N=3, student T test: * p<0.05 **p<0.01 *** p<0.001       
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3.6 A proof of principle positive enrichment shRNA screen 

 

To test the effects of Ikzf1 knockdown in a situation more analogous to the shRNA 

screen, I carried out a proof of principle experiment by enriching shRNA targeting 

Ikzf1 in a pooled population of mixed shRNA.  In this experiment Ikaros-ERt2 

expressing 3T3 cells were infected with an shRNA targeting Ikzf1 (shIkzf1-D), or a 

control empty shRNA vector (shControl).  These were plated alongside Ikaros-ERt2 

expressing 3T3 cells infected with a mixed library of shRNA targeting approximately 

5000 genes (library obtained from decipherproject.net, discussed further in chapter 

4.2).  To make shIkzf1 and shControl transduced cells detectable in this pooled 

population, I cloned blue fluorescent protein (BFP) into these vectors, replacing the 

red fluorescent protein (RFP) that was present originally.  Thus cells that contained 

shControl or shIkzf1 expressing vectors could be easily distinguished from cells that 

contained the shRNA library by the detection of blue or red fluorescence in the flow 

cytometer.  Such multicolour enrichment assays have been demonstrated before to 

be effective in characterising the effect of shRNA on cellular proliferation (Zuber et 

al., 2011). 

 

A pure population of cells that displayed red fluorescence were plated at a 9:1 ratio 

alongside blue fluorescent cells that either expressed shIkzf1-D or the shControl 

vector.  The enrichment of blue fluorescence relative to red fluorescence was 

monitored over a 5 day time course, in which the nuclear translocation of the Ikaros-

ERt2 construct was induced with 4-OHT treatment (figure 3.8A).  As knockdown of 

Ikzf1 provides a proliferative advantage (figure 3.7E) it was expected that cells 

expressing the shIkzf1-D vector could outcompete other cells and become enriched 

within the population over time.  Indeed it was observed in figure 3.8B (right panel) 

that shIkzf1-D expressing cells were enriched, as BFP fluorescent cells increased from 

10% of the total population to >40% by day 5.  In contrast, the empty shControl 

vector did not confer a competitive advantage, as the proportion of these BFP 

fluorescent cells remained at <10% of the total population throughout the time 
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course (left panel).  It might be possible to repeat this experiment using lower ratios 

than 9:1 to better reflect the shRNA library diversity, however it is unclear at this 

stage if an enrichment could be detected if the positive control shRNA was diluted to 

a final proportion of less than 10%.  Based on the data presented in figure 3.8 

however, Ikzf1 knockdown provides a competitive advantage that can be detected 

by an enrichment of this shRNA in a mixed population.  This validated the theory that 

we can enrich for shRNA that override Ikaros-induced cell cycle arrest, and provided 

a proof of principle demonstration that the shRNA screen is feasible.   

 
Figure 3.8 Ikaros knockdown in fibroblasts provides a competitive advantage in a mixed shRNA 
background.  (A) Schematic depicting the experimental outline of the competition assay.  (B) Flow 
cytometry plots displaying blue fluorescence on the x axis versus red fluorescence on the y axis.  
Alive, single GFP (Ikaros-ERt2) positive cells were gated and the proportion of cells displaying red 
(shRNA library) or blue (shIkzf1) fluorescence was recorded at day 0, day 3 and day 5 after 4-OHT 
treatment.  An empty shRNA vector that expressed BFP was included as a negative control 
(shControl).  (C) The percentage of red versus blue fluorescent cells was plotted for shControl and 
shIkzf1 samples.  Knockdown of Ikzf1, but not the control, provided a competitive growth 
advantage over the time course. (Mean+SE; N=3, student T test: *** p<0.001) 

 



Chapter 3  

 

89 

 

3.7 Discussion 

 

3.7.1 Ikaros directs cells towards a quiescence-like state  
 

Ikaros contributes to the transition of large cycling pre-B cells (FrC’) to small resting 

pre-B cells (FrD) (Ferreiros-Vidal et al., 2013).  This not only involves directing the 

appropriate expression of B cell lineage genes such as the recombinases Rag1/2 

(required for VDJ recombination of immunoglobulin loci), but also a wholescale 

rewiring of gene expression towards a quiescent state that encompasses 

metabolism, cell cycle and adhesion (Ferreiros-Vidal et al., 2013; Ma et al., 2010; 

Reynaud et al., 2008; Joshi et al., 2014).  Here I demonstrated that some of the key 

gene expression changes observed in pre-B cells related to cell cycle regulation also 

occur in fibroblasts, a cell type that does not endogenously express Ikaros proteins.  

Ectopic introduction of an inducible Ikaros-ERt2 construct into fibroblasts resulted in 

an accumulation of cells in G1 and a sustained withdrawal from the cell cycle (figure 

3.4).  Consistent with this observation, previously identified Ikaros target genes 

relevant to the cell cycle such as Myc and Ccnd2 were repressed at the mRNA and 

protein level following Ikaros induction.  I chose the 6-hour time point to investigate 

mRNA expression as this precedes cell cycle arrest, yet shows many significant 

changes in gene expression (Ferreiros-Vidal et al., 2013).  One observation that was 

difficult to reconcile was the apparent downregulation of Cdkn1a mRNA expression 

in fibroblasts.  Cdkn1a encodes the cell cycle inhibitor p21, and I would expect its 

expression to increase in G1 arrested cells.  Indeed, its expression is increased as a 

result of Ikaros induction in B3 cells (figure 3.3).  The most likely explanation is that 

this downregulation is not reflected in the protein concentration within these cells.  

For example, p21 protein could be stabilised by post-translational modifications.  

Phosphorylation by protein kinase C (PKC) and PKB can regulate the stability of p21 

to promote or decrease the half-life of this protein (reviewed in Jung et al., 2010).  If 

the observation is true however and p21 is decreased in these cells then it is possible 

that Ikaros can regulate the cell cycle independently of p21.  Evidence supporting 
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this can be seen in the literature, as reports show that Ikaros does not significantly 

regulate Cdkn1a expression in IRF4/8 deficient pre-B cells (Ma et al., 2010) or 

thymocytes (Kathrein et al., 2005).  This is in contrast to B3 cells in which Cdkn1a is 

regulated by Ikaros (Ferreiros-Vidal et al., 2013).  This highlights possible cell type 

specificity in the regulation of gene expression by Ikaros, though more work needs to 

be done to fully elucidate this picture. 

 

As cells withdraw from proliferation in response to Ikaros induction, there is 

decreased anabolic demand and fewer requirements for cellular ATP levels to be 

replenished at high rates.  Therefore the cells switch from reliance on aerobic 

glycolysis towards oxidative phosphorylation.  The reliance on glycolysis to meet the 

metabolic demand of highly proliferative cells has particular relevance to cancer 

(reviewed in Vander Heiden et al., 2009).  Work performed by my colleague has 

demonstrated that Ikaros rewires the metabolism of B3 cells towards a resting, 

quiescent state.  This is demonstrated by a decrease in the extracellular acidification 

rate, a readout of lactate secretion (Ferreiros-Vidal, manuscript in preparation).  I 

have demonstrated here that Ikaros induction results in the repression of two key 

enzymes in the glycolytic and fermentation pathways in fibroblasts, Hk2 and Ldha.  It 

would be interesting to see if this results in a shift away from utilisation of the 

glycolysis pathway in fibroblasts, as observed in B3 cells.   

 

It has been previously demonstrated that Ikaros is required to downregulate the 

expression of adhesion related molecules in pre-B cells (Joshi et al., 2014).  

Conditional inactivation of Ikaros DNA binding activity arrests pre-B cell 

differentiation at the large cycling stage (FrC’), in which cells are dependent on 

stromal contact for survival and proliferation.  Cells that express DNA binding-

deficient Ikaros exhibit increased expression of integrins and enhanced integrin and 

focal adhesion kinase (FAK) signaling and remodelling of the actin cytoskeleton (Joshi 

et al., 2014).  Integrins link spatial signals from the extracellular environment to 

signalling pathways involved in G1-S progression (reviewed in Moreno-Layseca and 
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Streuli, 2014).  During pre-B cell differentiation, downregulation of adhesion to the 

stromal niche may allow migration away from IL-7 secreting cells.  Cessation of IL-7 

signalling is required for cell cycle withdrawal, light chain rearrangement and 

quiescent metabolic reprogramming, and Ikaros can directly antagonise IL-7 

regulation of many genes involved in these pathways (Heizmann et al., 2013).  Thus 

Ikaros appears to function at a nexus linking cell cycle, adhesion and metabolism to B 

cell development.  As shown in figure 3.5, the regulation of Itga5 is also preserved in 

fibroblasts.  The consequences of this downregulation are at this point unclear.  It is 

likely that a complex network of growth factors and adhesion molecules link the 

context of the extracellular environment to intracellular cytoskeletal and signalling 

dynamics, influencing the decision to spread and proliferate.  Ikaros may be able to 

exert some influence onto these decisions. 

 

Whilst it is premature to draw broad conclusions based on gene expression data 

from a handful of target genes, there are hints that Ikaros can promote a 

quiescence-like gene expression program in pre-B cells and fibroblasts.  It would be 

useful to investigate these changes at a genome-wide level using an approach such 

as RNAseq, to definitively compare and contrast the effects of Ikaros in diverse cell 

types.    

 

3.7.2 Ikaros and Myc – an antagonistic relationship? 
 

In the results presented here I have provided a brief glimpse into the complex 

interplay underlying the relationship between Myc and Ikaros.  Myc transcription is 

repressed early after Ikaros induction, and many genes are overlapping targets of 

regulation by Ikaros and Myc.  It is therefore important to understand which genes 

are direct Ikaros targets and which genes are differentially expressed as a 

consequence of Myc downregulation.  I attempted to address this question by co-

expressing Ikaros and Myc in the same cells (figure 3.6).  When Myc expression was 

maintained, Ikaros was no longer able to arrest the cell cycle, and parts of the gene 
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expression program instilled by Ikaros was reversed.  Ikaros and Myc appear to have 

direct antagonistic functions in relationship to cell cycle progression and 

metabolism, as Myc promotes a proliferative and anabolic state.  The 

downregulation of Myc may be an obligate function of Ikaros in its role as a tumour 

suppressor.  At first glance these results may appear discouraging, given that I aim to 

identify novel regulators of Ikaros-induced cell cycle arrest.  However this does not 

preclude other mechanisms that Ikaros may exploit to bring about cell cycle arrest.  

Ikaros may induce a factor that transcriptionally co-represses Myc for example, or 

induce a factor that functions after Myc depletion to maintain a stable arrest.  Or 

Ikaros may alter the balance of post translational modifications towards Myc 

protein, such as the phosphorylation of Ser 62 and Thr 58 residues that regulate Myc 

stability and degradation (Sears et al., 2000).     

 

Overexpression of Ikaros and Myc may appear to be a somewhat crude approach, as 

it does not take into account the relative expression of each protein for example, 

which may impact on the regulation of target gene expression.  It is still informative 

however, and provides interesting glimpses into the relationship between Ikaros and 

Myc.  One interesting example was the apparent synergy involved in the repression 

of Itga5, demonstrating that the relationship is not entirely mutually antagonistic.  

Myc has been shown to repress a variety of adhesion molecules, and it is believed 

that this enables anchorage independent growth (Dang et al., 1999).  It is perhaps 

surprising that Ikaros and Myc should share a common function in this area.  This 

repression is most likely context specific, as in the pre-B cell niche, and adhesion 

pathways may be co-opted in different contexts to achieve disparate goals 

(differentiation versus malignancy).  

 

To shine more light on the relationship between Ikaros and Myc, Dr Ferreiros-Vidal 

has undertaken a genome-wide approach, comparing nascent RNAseq profiles of B3 

cells expressing inducible Ikaros and Myc constructs.  Early results segregated genes 

according to Ikaros or Myc regulation; Ikaros regulated genes tended to be involved 
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in B cell differentiation, whilst Myc regulated genes were involved in anabolic 

processes such as ribosome biogenesis.  This approach will be useful to dissect the 

role that Ikaros and Myc play in the balance between differentiation and 

proliferation and facilitate the identification of overlapping gene targets that are 

synergistically or antagonistically regulated by these two factors. 

 

3.7.3 A proof of principle shRNA screen 
 
 

It was important to demonstrate the robustness of my experimental system and its 

suitability to perform an RNAi screen.  Pooled shRNA screening protocols are lengthy 

and require considerable optimisation to produce robust, replicable results (Sims et 

al., 2011).  In a system such as mine, that compares two different treatments (4-OHT 

vs EtOH) on a pool of transfected cells, it is of particular importance that control 

treated cells grow logarithmically throughout the experiment and ‘experimentally’ 

treated cells show little or no growth.  This helps reduce the background noise that 

will inevitably introduce stochasticity into the sequencing data.  Here I demonstrated 

that 4-OHT treated cells displayed a growth defect compared to control, and 

knockdown of Ikzf1 restored proliferation to these cells (figure 3.7).  Importantly, 

cells in which Ikzf1 was knocked down (demarcated by blue fluorescence) could 

outcompete cells transduced with a pooled shRNA library plated in the same dish 

(figure 3.8).  This demonstrated the efficacy of this approach, and showed that 

shRNA targeting Ikzf1 are a good positive readout for the shRNA screen.   

 

Several caveats to this system must be borne in mind.  Whilst it is true that shRNA 

targeting Ikzf1 could be enriched in a pooled competitive screen, it stands to 

question whether the degree of this enrichment is sufficient to be significantly 

detected above background noise.  Whilst having many positive features, the 

inducible system may not provide a robust arrest over the length of the whole 

experiment.  At long times points (>6 days) Ikaros-ERt2 induced cells began to lose 

growth arrest (figure 3.4C).  It is unlikely that these cells have lost the Ikaros-ERt2 
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transgene, as GFP expression persists even after several weeks of culture (data not 

shown).  It may be possible that the Ikaros protein is degraded, or is no longer 

binding appropriately in the nucleus.  This could be tested by observing Ikaros 

binding at pericentromeric foci by immunofluorescence and confocal microscopy 

(Brown et al., 1997).  Another potential problem with the inducible system is the 

negative effect on cell viability that may arise due to extended treatment with 4-

OHT.  There are potential alternatives to the inducible system that may be used, 

such as direct overexpression of Ikaros protein lacking the ERt2 domain.  Despite 

these caveats, the successful enrichment of positive control shRNA observed in 

figure 3.8 encouraged us to proceed with a trial run of the screen using the inducible 

system.   
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Chapter 4  

A genetic screen identifies SSeCKS as a positive regulator of Ikaros-

induced cell cycle arrest 

 

4.1 Introduction 

 

Advances in gene silencing technology and next generation sequencing (NGS) have made 

large-scale loss of function screenings feasible and cost effective.  Pooled screening 

methods have been developed for high throughput RNA interference (RNAi) assays that 

hugely scale up the power of the experiment whilst avoiding the time consuming aspects of 

single well screens.  Coupled with massively parallel NGS, these technologies offer a quick 

and cost effective method of generating large quantities of data required to interrogate 

genome-wide screens (Sims et al., 2011; Mohr et al., 2014). 

 

Pooled RNAi can be used in positive or negative selection assays to study diverse biological 

processes.  Negative selection assays screen for depleted hits and are ideal for discovering 

essential genes required for cell viability (Zuber et al., 2011).  Positive selection assays 

screen for enriched hits and are well suited for discovering knockdown targets that are able 

to bypass proliferative arrest.  For example, positive selection screens have been applied to 

discover genes that are essential for p53-induced arrest in response to DNA damage and 

replicative senescence (Berns et al., 2004; Burrows et al., 2010).  In general, stably 

transfected short hairpin RNAs (shRNAs) are preferred over transiently transfected small 

interfering RNA (siRNA) molecules as the former facilitate knockdown over longer time 

periods, extending the window for the enrichment of positive hits over background noise 

(Sharma and Rao, 2009). 
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To investigate the mechanisms by which Ikaros negatively regulates cell cycle progression I 

performed a pooled shRNA positive selection screen in the fibroblast model system outlined 

in chapter 3.  In this screen, 3T3 cells were transduced with an shRNA library and split into 

control and Ikaros-arrested groups, and the relative distribution of shRNA within these 

populations after one week of selection was assessed by NGS.  I was interested in enriching 

for shRNA that bypass Ikaros-induced proliferative arrest to identify novel targets that 

cooperate with Ikaros to regulate the cell cycle.  Here I report the first preliminary screens 

performed in fibroblasts using the inducible Ikaros-ERt2 system.  An unfavourable signal-to-

noise ratio was observed in positive control shRNA, emphasising the requirement for 

experimental optimisation.  An improved experimental protocol was implemented that 

utilised an Ikzf1 overexpression vector lacking the ERt2 domain.  In the following chapter, 

the delivery and outcome of these screens is discussed.   

 

The bioinformatic analyses in this chapter were performed by Gopu Dharmalingam.   

 

4.2 A positive selection RNAi screen in fibroblasts 

 

I used a pooled shRNA library obtained from the open source decipher project to screen for 

regulators of Ikaros-induced cell cycle arrest in fibroblasts (Decipherproject.net).  This library 

consisted of 27,500 hairpins targeting approximately 5000 genes.  The library was chosen 

because many of the target genes encoded intracellular signalling molecules relevant to 

proliferation and cancer.  For the screen I used 3T3 fibroblasts expressing an inducible 

Ikaros-ERt2 construct, heterogeneously transduced at a population level using retrovirus.  

This approach does not take into account the integration site of individual transgenes, 

unlike a clonal population.  However, equal levels of Ikaros expression can be obtained by 

sorting the cells by flow cytometry, as measured by GFP fluorescence.  A pool of Ikaros-ERt2 

expressing fibroblasts were transduced with the lentivirally packaged shRNA library at a 

multiplicity of infection (MOI) of 0.5 (Figure 4.1A).  The low MOI ensured that there were 

≤1 shRNA integrations per cell, reducing the likelihood of combinatorial phenotypes.  Library 
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diversity was maintained by infecting 5.5x106 cells, which ensures that each shRNA was 

represented by at least 200 clones in the population.  As the shRNA plasmid expresses red 

fluorescent protein (RFP), successful transduction could be observed by the presence of a 

GFP/RFP double positive population by flow cytometric analysis.  A pure double positive 

population was obtained through puromycin selection, and the population was split into 

EtOH (control), and 4-OHT (Ikaros) treated samples.  A time point of 7 days growth selection 

was chosen based on the preliminary results observed in figure 3.7.  Following one week of 

treatment with EtOH or 4-OHT the cells were harvested for genomic DNA (gDNA) before 

PCR amplification.  Each shRNA in the library contained a unique 20nt barcode region 

downstream of the shRNA hairpin sequence that acted as a molecular identifier (figure 

4.1B).  This barcode region was PCR amplified in a nested reaction with primer sets that 

contained complementary regions to the immobilised primers of the Illumina HiSeq flow cell 

(figure 4.1B, primer sets f1-r1 and f2r2).  

 
Figure 4.1 – shRNA screen using the inducible Ikaros construct.  (A) Diagram displaying the 
experimental system. (B) Schematic outlining the amplification of the unique 20nt barcode region of 
each shRNA. The backbone of the PRS-I9 plasmid is displayed which contained the shRNA hairpin 
driven from a U6 promoter, a downstream barcode region and a RFP cassette driven by the UbiC 
promoter.  The nested primer pairs used to amplify the barcode region are shown. F1-R1 refer to the 
forward and reverse HTS primers and F2-R2 correspond to the Gex primers outlined in table 3. 
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To test if the screen was successful, qPCR analysis was performed on the PCR amplified 

barcode library prior to NGS.  As I showed previously, Ikzf1 knockdown reversed the cell 

cycle arrest observed after 4-OHT treatment of Ikaros-ERt2 expressing fibroblasts (figure 3.7 

and figure 3.8).  These cells escaped Ikaros-mediated growth arrest and proliferated.  

Therefore I expected that barcodes corresponding to shRNA targeting Ikzf1 would be highly 

enriched within the 4-OHT treated PCR amplified barcode library.  Ikzf1 barcodes in the 

EtOH treated samples should not be enriched, as there was no growth arrest in these cells.  

To detect this enrichment I performed qPCR analysis on EtOH and 4-OHT treated barcode 

libraries with primers that specifically amplified the barcode corresponding to shIkzf1-D.  A 

negative control primer was included that amplified the barcode corresponding to an shRNA 

targeting Rag1.  This gene is not expressed in fibroblasts so this shRNA was expected to be 

neutral.  Figure 4.2A shows the log2 fold enrichment of barcodes corresponding to shRNA 

targeting Ikzf1 and Rag1 in 4-OHT treated samples relative to EtOH treated controls.  As 

expected, the barcode corresponding to the negative control shRNA targeting Rag1 was not 

enriched.  The positive control barcode corresponding to the shRNA targeting Ikzf1 showed 

an average log2 fold enrichment of around 2.7 over the two biological replicates, confirming 

that this knockdown conferred a proliferative advantage that bypassed Ikaros-mediated 

growth arrest. 
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Having confirmed that one of the shRNA targeting Ikzf1 was enriched, the amplified libraries 

of EtOH and 4-OHT treated samples were run in separate lanes of the Illumina Hi-Seq flow 

cell.  After NGS the sequenced barcode reads were assigned gene identifications by 

alignment to the annotated shRNA library using shAlign.  shAlign is a script specifically 

designed for aligning short barcode reads to a reference library, reducing the likelihood of 

misalignment that can occur when a whole genome reference is used (Sims et al., 2011).  

Following alignment, the number of reads for each barcode was normalised to the total 

number of sequencing reads to generate Reads Per Million (RPM), and the enrichment of 4-

OHT treated samples relative to EtOH treated control samples was calculated to yield the 

Log2 fold change for each shRNA.  I checked the enrichment of the four shRNA targeting 

Ikzf1 contained in the library to verify that the screen worked as expected over the two 

replicates (figure 4.2B).  The most highly enriched barcode corresponded to shIkzf1-D, which 

displayed an average log2 fold enrichment of 2.3.  Two other shRNA targeting Ikzf1 (shIkzf1-

Figure 4.2 – Ikaros barcode enrichment in the amplified shRNA libraries. (A) qPCR analysis 
displaying the log2 fold enrichment of barcodes corresponding to shRNA targeting Rag1 (left) 
and Ikzf1 (right) in 4-OHT treated cells relative to EtOH treated cells, prior to NGS. (B) qPCR 
analysis displaying the log2 fold enrichment of barcodes corresponding to 4 independent shRNA 
targeting Ikzf1 in 4-OHT treated cells relative to EtOH treated controls after NGS. 
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A & shIkzf1-B) were less enriched, and displayed an average log2 fold enrichment of 0.9 and 

1.3 respectively.  The remaining shRNA (shIkzf1-C) was not enriched over the two 

experiments.  The lack of enrichment of shIkzf1-C correlates with the poor knockdown of 

Ikaros protein by this shRNA observed in figure 3.7A.  Only one of the positive control shRNA 

targeting Ikzf1 (shIkzf1-D) was featured in the top 100 genes ranked according to log2 fold 

change between EtOH and 4-OHT treated samples.  The relatively low enrichment of 

positive control shRNA was a concern, as it decreases the signal-to-noise ratio and makes it 

harder to detect true positive hits over background variation.       

 

In order to conduct a successful screen I tried to maximise the enrichment of positive 

controls over background noise and to eliminate as much experimental variation as 

possible.  Cellular stress may increase experimental error as it could inhibit proliferation and 

skew the representation of the shRNA library.  The use of 4-OHT and puromycin may 

contribute to stress as some cells did not appear healthy after extended use of these drugs.  

Cellular stress was confirmed by gene ontology (GO) term analysis with the DAVID 

functional annotation tool (Huang et al., 2009) (https://david.ncifcrf.gov/) using the list of 

enriched shRNA (defined as displaying a log2 fold enrichment of ≥1 in 4-OHT treated 

samples relative to EtOH treated samples).  This analysis enriched for terms such as 

‘Regulation of programmed cell death’ and ‘Regulation of apoptosis’ (supplementary figure 

S.1).  To circumvent the use of 4-OHT and puromycin we redesigned the experimental 

system, taking advantage of a MSCV-Ikzf1 overexpression construct that does not encode 

the ERt2 domain.  This construct expresses full length Ikaros protein (Ikaros-1) that does not 

rely on 4-OHT treatment for nuclear translocation.  The advantage of using this construct is 

that it provides a stronger and more persistent arrest of the cell cycle compared to the ERt2 

system, with less background caused by cells escaping Ikaros-mediated arrest over the 7 day 

time course (data not shown).  I decided to use flow cytometry to sort for Ikaros-

GFP/shRNA-RFP double positive cells to eliminate the requirement for puromycin selection.  

I found that sorted cells attached more quickly and displayed a healthier morphology when 

plated on dishes coated in 0.1% gelatin.  The use of medium conditioned by logarithmically 

growing fibroblasts also seemed to enhance the healthy morphology of Ikaros transfected 

https://david.ncifcrf.gov/
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3T3 cells.  I therefore investigated whether these changes to the experimental system would 

enhance the quality of the screen by increasing the signal-to-noise ratio and decrease 

variability.  

 

Figure 4.3A outlines the new experimental system.  Wild type 3T3 cells were co-infected 

with the MSCV-Ikzf1-GFP construct and the shRNA library that expresses RFP.  Cells were 

infected with an empty MSCV-GFP plasmid as a control.  The cells were sorted by flow 

cytometry upon detection of a GFP/RFP double positive population 72 hours later.  Figure 

4.3B shows that roughly 40% of the cells in the Ikaros and control conditions were GFP/RFP 

positive, corresponding to a MOI of 0.5.  Control and Ikzf1 expressing cells were separately 

plated on gelatinised dishes and cultured in conditioned media for 7 days before barcode 

library preparation.  A day 0 time point was collected from control cells infected with the 

shRNA library and sorted by flow cytometry as an additional control.  This was included 

because it gave a snapshot of the diversity of the shRNA library before the cells were 

cultured over the 7 day time course.  Control cells were expected to grow logarithmically 

over the time course, but certain shRNA targeting genes essential for survival or cell cycle 

progression would be detrimental, resulting in a depletion of these shRNA from the control 

population.  Such shRNA are likely be less detrimental to growth arrested cells so would not 

be depleted from the Ikzf1 expressing population.  These shRNA would therefore appear to 

be significantly enriched in Ikzf1 expressing cells relative to control cells.  By including this 

control we can normalise the diversity of the shRNA library in day 7 samples to day 0 and 

rule out such false positives.  All 3 conditions (day 0 control, day 7 control and day 7 Ikaros) 

were carried out in 3 separate biological replicates. 
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Following barcode library preparation the enrichment of two positive control shRNA 

(shIkzf1-B and -D) was checked by performing qPCR with primers that amplify these 

barcodes (figure 4.4A).  The negative control barcode corresponding to shRag1 was not 

enriched in Ikzf1 versus control expressing cells, but the two barcodes corresponding to 

shRNA targeting Ikzf1 were highly enriched.  The barcode corresponding to shIkzf1-D 

Figure 4.3 – A new experimental scheme using an Ikzf1 overexpression construct. (A) Schematic 
outlining the changes made to the experimental system, designed to obtain higher enrichment of 
positive control shRNA. (B) Flow cytometry plots showing the proportion of cells infected with the 
shRNA library (RFP, y axis) and the Ikzf1 (left) or empty control (right) expressing MSCV vectors (GFP, 
x axis). A double positive population comprising around 40% of the total was subsequently sorted.  
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displayed a mean log2 fold change of 4 over the three replicates, more than double the 

enrichment that was observed using the ERt2 system (figure 4.2A).  After NGS the 

enrichment of the 4 positive control shRNA in Ikzf1 expressing samples relative to control 

was observed (figure 4.4B).  All barcodes targeting Ikzf1, besides shIkzf1-C, were highly 

enriched in the three replicates and displayed log2 fold change values that were more than 

double those observed using the ERt2 system (figure 4.2B).  The reproducibility of the 

screens was investigated by comparing the log RPM of each barcode between replicates in a 

pairwise comparison (figure 4.4C).  All replicates displayed high pearson correlation values 

of >0.7 indicating that the screen was robust across replicates (Sims et al., 2011).  Taken 

together, these results indicate that the MSCV-Ikzf1 overexpression system generated a 

favourable signal-to-noise ratio and improved the quality of the screen.         
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Figure 4.4 – Ikaros barcodes are highly enriched in the new experimental scheme. (A) qPCR analysis 
displaying the log2 fold enrichment of barcodes corresponding to shRNA targeting Rag1 (left) and 2 
independent shRNA targeting Ikzf1 (right) in Ikzf1 expressing cells relative to control. (B) qPCR 
analysis showing the log2 fold enrichment of barcodes corresponding to 4 independent shRNA 
targeting Ikzf1 in Ikzf1 expressing cells relative to control. (C) (top right) Plots showing the pairwise 
comparison of the log RPM of barcode reads in each replicate from control (left) and Ikzf1 (right) 
expressing samples. (Bottom left) Boxes displaying the Pearson correlation values associated with 
each replicate comparison.  
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4.3 Identification of significantly enriched hits 

 

A multi-step analysis pipeline was implemented to identify significantly enriched hits from 

the pool of aligned sequences (figure 4.5).  Each shRNA was assigned a value based on its 

differential expression between day 7 Ikzf1 and control expressing pools using Deseq, a 

statistical package optimised for differential expression analysis for RNA-seq, ChIP-Seq and 

barcode counts (Anders and Huber, 2010).  This method has previously been applied to an in 

vivo pooled shRNA screen in mice to identify regulators of oncogenic growth (Beronja et al., 

2013).  Following Deseq analysis the enriched and depleted hits were ranked by significance 

according to their adjusted p values and non-significant hits (p=>0.05) were eliminated from 

downstream analysis.  I was primarily interested in enriched hits that escaped Ikaros-

mediated growth arrest.  I therefore segregated significantly depleted hits (shRNA 

displaying ≤0 log2 fold change) from enriched hits (shRNA displaying ≥0 log2 fold change).  

These steps yielded 875 enriched hits from a starting total of 27,000 indicating that around 

3% of shRNAs were enriched.    

 

Figure 4.5 – An analysis pipeline to identify significantly enriched hits. Schematic showing the process 
used to obtain day 0 corrected enriched hits.    
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Next, day 7 control samples were normalised to day 0 control samples to eliminate false 

positive hits.  Those shRNA that showed significant enrichment or depletion between day 7 

control and day 0 control samples were excluded.  This resulted in a final total of 435 ‘day 0 

corrected’ enriched hits (around 1.6% of total).  The importance of the day 0 control is 

illustrated by looking at the example of shRNA targeting the genes Ikzf1, SSeCKS and Gnb2l1.  

These 3 hits were identified as significantly enriched in Ikzf1 expressing samples relative to 

control samples at day 7 (figure 4.6A).  When control day 7 samples were normalised to 

control day 0, shRNA targeting Ikzf1 and SSeCKS were not significantly enriched or depleted 

(figure 4.6B, grey dots).  Gnb2l1 however was significantly depleted from control day 7 

samples, indicating that this hit was a false positive.  Another example is the large 

enrichment of hits targeting proteasome subunits.  As protein degradation is an essential 

and ubiquitous process the proteasome is a ‘frequent hitter’ in RNAi screens, largely due to 

indirect effects on the phenotypic readout studied (Mohr et al., 2014; Schmidt et al., 2013).  

A total of 35 enriched hits were identified that targeted different subunits of the 

proteasome in Ikaros day 7 versus control day 7 samples.  This was reduced to 6 hits in the 

day 0 control corrected results.  Although it is very difficult to eliminate all false positive 

results, these steps should increase the robustness of the screen and make it easier to 

identify truly enriched hits.        
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4.4 Analysis of the day 0 corrected hits  

 

The top 10 day 0 corrected hits are displayed in figure 4.7, ranked in significance according 

to their adjusted p values.  Three separate shRNA targeting Ikzf1 appear in the top 4 most 

highly enriched hits (figure 4.7, red font), validating the experimental approach.  The 3rd 

most enriched target, SSeCKS, was extremely significant and displayed a large log2 fold 

change in Ikzf1 expressing samples relative to control (log2 fold change of 2.4).  This gene 

was particularly interesting as it has been characterised as a negative regulator of G1/S 

progression in fibroblasts (Lin et al., 2000) and its expression is downregulated in an array of 

human cancers (Gelman, 2010).  Additionally, SSeCKS was identified as an Ikaros bound 

target gene in B3 cells that was upregulated in response to Ikzf1 overexpression (Ferreiros-

Vidal et al., 2013).  The 5th most enriched target, Gli2, is a transcription factor that mediates 

Sonic hedgehog (Shh) signalling.  Hits against the related protein Gli1 appear in both the 

significantly enriched and depleted datasets, hinting that shRNA targeting this pathway may 

Figure 4.6 – Differentially expressed hits. Plots displaying the log average counts of each shRNA (x 
axis) versus the log2 fold change of each hit (y axis) in Ikaros day 7 versus control day 7 (left) and 
control day 7 versus control day 0 (right) samples.  Red dots signify significantly enriched or depleted 
hits (p= ≤0.05).  Three shRNA targeting Ikzf1, SSeCKS and Gnb2l1 are illustrated.  
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be false positives.  The proteasome subunit Psmd4 appears in the top 10 enriched hits, but 

is likely to be a false positive hit as discussed previously.  Zbtb32, a member of the bric-a-

brac zinc finger family of transcription factors, is essential for thymocyte development and 

promotes T cell proliferation by negatively regulating the expression of Cdkn1a (p21) (Iguchi 

et al., 2015).  Smarce1 encodes a component of the SWI/SNF ATP-dependent chromatin 

remodelling complex that utilises ATP hydrolysis to restructure nucleosome octamers at 

target loci, facilitating gene activation or repression (Muchardt and Yaniv, 2001).  Another 

component of the SWI/SNF complex, Smarca4 (BRG1), also appears in the list of enriched 

shRNA hits.  SWI/SNF complexes have been shown to negatively regulate proliferation by 

controlling the expression of genes required for progression past the G1 checkpoint 

(Muchardt and Yaniv, 2001; Ruijtenberg and van den Heuvel, 2015).  Interestingly, Ikaros 

associates with BRG1 and they colocalise in the nucleus of resting T cells (Kim et al., 1999).  

This raises the possibility that epigenetic regulation directed by Ikaros is required for the 

attenuation of proliferation.  

 

 

 

 

 

 

 

 

 

 

It is interesting to note that the majority of the top 10 hits were found to be bound by Ikaros 

based on ChIP-seq analysis in the pre-B cell line B3 (Ferreiros-Vidal et al., 2013).  We cannot 

Rank Gene symbol 
Log2 fold change (Ikaros 
day 7 vs Control day 7) 

Adjusted p 
value 

Ikaros bound 
in B3 cells? 

1 Ikzf1 3.383259604 6.04E-43  
2 Ikzf1 2.729368303 2.03E-20  
3 SSeCKS 2.435507843 1.07E-18  
4 Ikzf1 2.218751357 9.40E-11  
5 Gli2 1.349663417 2.10E-07  
6 B4galnt1 1.383578536 8.90E-07  
7 Zbtb32 1.458810347 5.28E-06  
8 Psmd4 1.44113792 6.53E-06  
9 Smarce1 1.425878921 1.11E-05  

10 Cfh 1.187717679 2.98E-05  

Figure 4.7 – Top 10 significantly enriched candidates. The ranked list of the most significantly 
enriched shRNA alongside the associated log2 fold change (Ikaros day 7 relative to control day 7) 
and adjusted p values.  The Ikaros binding status of each gene in B3 cells is displayed as bound 
(green), or not bound (red), based on ChIP-Seq data from Ferreiros-Vidal et al., 2013. 
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extrapolate binding data from pre-B cells to fibroblasts directly without performing ChIP 

experiments in fibroblasts.  We may however use this data as a rough guide to characterise 

the nature of these hits regarding the regulation of these genes by Ikaros.  I therefore 

curated the list of significantly enriched and depleted hits with the Ikaros binding data 

obtained from B3 cells (figure 4.8).  The first trend I observed was that there were many 

more hits that were enriched (435) than depleted (166).  This was as expected because I 

performed a positive selection screen that should enrich for shRNA that enable proliferation 

over the time course of the experiment.  The second trend I observed is that enriched hits 

were more likely to be targets of Ikaros binding in B3 cells than depleted hits.  Figure 4.8B 

shows that around 45% of the total enriched hits corresponded to genes that were bound 

by Ikaros in B3 cells (green segment).  The proportion of Ikaros-bound hits dropped to 32% 

in the depleted dataset (figure 4.8B).  This trend was exacerbated when I focused on the top 

10% of hits from the enriched and depleted datasets.  From these highly significant 

candidates, 60% of the enriched hits corresponded to Ikaros-bound genes in B3 cells 

compared to only 19% of depleted hits.  This suggests that the enriched hits were more 

likely to correspond to genuine targets of regulation by Ikaros in B3 cells, with the caveat 

that I am comparing hits observed in fibroblasts with binding data obtained from pre-B cells.  

It would have been informative to conduct a ChIP-seq experiment in fibroblasts to confirm 

this binding, given more time.              
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Figure 4.8 – Ikaros binding status of significant hits. (A) Diagram displaying the number of 
enriched hits that are bound (green) or not bound (red) by Ikaros in B3 cells and the number of 
depleted hits that are bound (pale green) and not bound (pale red) by Ikaros (not to scale). (B,C) 
The proportion of the total enriched and depleted hits that are bound (green) and not bound (red) 
by Ikaros. (D,E) The proportion of the top 10% of enriched and depleted hits that are bound (green) 
and not bound (red) by Ikaros. 
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I performed GO term analysis to understand the nature of the enriched hits.  I began 

searching with the gene symbols of all enriched hits that I defined as bound by Ikaros in B3 

cells.  The most significant term returned from this analysis was ‘Regulation of the cell 

cycle’, which is expected from a proliferation screen (supplementary figure S.2A).  The next 

most significant terms related to cell death and apoptosis, returning terms such as 

‘regulation of apoptosis’, ‘regulation of programmed cell death’ and ‘regulation of cell 

death’.  Thus it appears that cellular stress still had an influence on the outcome of the 

screening process, despite the adjustments to the experimental protocol outlined in 4.2.  It 

is likely that Ikzf1 overexpression itself is a cause of this stress, as Ikaros has been implicated 

in the regulation of apoptosis (Pulte et al., 2006; Rebollo et al., 2001).  Therefore Ikaros-

induced cell death in my screen may be an inescapable side effect of its tumour suppressive 

function.   

 

I next looked at the enriched hits that were not bound by Ikaros in B3 cells (supplementary 

figure S.2B).  The most significant term returned was ‘cell-cell signalling’ which raises the 

interesting possibility of intercellular signalling in the regulation of proliferation by Ikaros.  

No significant terms were returned when queried with the list of depleted hits from the 

screen (supplementary figure S.3).   

 

To determine which pathways were enriched in the screen, I performed Kegg analysis on all 

the enriched hits using DAVID.  The most significant term returned was ‘pathways in cancer’ 

(supplementary figure S.4A).  When queried with hits that were Ikaros bound in B3 cells, the 

top term returned was ‘cell cycle’, though this did not reach the significance threshold 

(supplementary figure S.4B).    

 

4.5 SSeCKS knockdown overrides Ikaros-induced cell cycle arrest 

 

In lieu of a high throughput secondary screen (discussed further in 4.6.2), I decided to 

embark on a candidate based approach to detect positive hits.  I focused on SSeCKS, due to 

its high significance and large log2 fold enrichment that was comparable to the positive 
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control shRNA targeting Ikzf1 (figure 4.7).  SSeCKS is a scaffolding protein that has been 

shown to negatively regulate progression past the G1/S checkpoint in fibroblasts by directly 

sequestering cyclin D1 in the cytoplasm (Lin et al., 2000).  As mentioned previously, Ikaros 

binds to the promoter of SSeCKS in B3 cells to upregulate its transcription as the cells 

transition from the cycling (FrC’) to resting (FrD) pre-B stage (Ferreiros-Vidal et al., 2013).  

This raises the possibility that SSeCKS may be required for Ikaros-induced growth arrest at 

this key stage in pre-B cell development.   

 

To understand more about the regulation of this gene in lymphocyte development I decided 

to mine the public collection of microarray datasets made available by the immunological 

genome project (Heng et al., 2008) (Immgen.org).  Figure 4.9 shows the expression of 

SSeCKS in a number of key immune cell populations obtained from this database.  The 

expression of SSeCKS is greatly increased in B cell precursors compared to other cell types.  

Furthermore the expression of SSeCKS is increased 3-fold as the cells transition from the 

cycling to resting pre-B cell stage (FrC’ to FrD, labelled with arrows).  In addition to pre-B 

cells, the expression of SSeCKS also appeared to be relatively high in the resting population 

of small double positive (DP) thymocytes.  Based on this overview, I focused on the 

expression of SSeCKS in developing pre-B cell and thymocyte populations (figure 4.9B).  In 

general the expression of SSeCKS gradually increased throughout differentiation in both 

populations and spiked as the cells entered the small resting pre-B and DP thymocyte 

stages, coinciding with withdrawal from the cell cycle.   
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Figure 4.9 – SSeCKS expression in haematopoietic cells. (A) The expression of SSeCKS (horizontal bars) 
displayed in an array of immune cells. (B) SSeCKS expression in developing pre-B and thymocyte 
populations.  The proliferative state of each developmental stage is illustrated by green (cycling) and 
red (resting) bars.  The arrow indicates the orderly progression of cellular differentiation.  The x axis 
displays microarray expression values obtained from Immgen.org.  
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As SSeCKS is an Ikaros target gene, I overlaid the expression of SSeCKS throughout different 

stages of pre-B cell development with that of Ikzf1 and the Ikaros family member Aiolos 

(Ikzf3) (figure 4.10).  In general the expression of SSeCKS (green) correlated with the 

upregulation of Ikzf1 (orange) and Ikzf3 transcripts (yellow) in these cells.  The expression of 

SSeCKS peaked at the pro-B and resting pre-B cell stages which are characterised by cell 

cycle withdrawal required for antigen receptor rearrangement (Clark et al., 2014).  

Conversely the expression of SSeCKS was suppressed in the highly proliferative cycling pre-B 

cell stage (FrC’).  This is expected, as the expression of SSeCKS is suppressed in highly 

proliferative cells that overexpress Src or Myc (Lin et al., 1995).  Thus it appears that the 

expression of SSeCKS is anticorrelated with cell cycle progression in B cell precursors.  It is 

interesting to note that the expression of Ikaros and Aiolos alone is insufficient for cell cycle 

withdrawal, as high expression of both transcripts can be observed at the cycling pre-B cell 

stage.  Signalling through the pre-BCR and IL-7 receptors at this stage strongly induces the 

expression of positive regulators of the cell cycle such as Myc.  As I demonstrated in figure 

3.6, the enforced expression of Myc is sufficient to override Ikaros-mediated cell cycle 

arrest.  It is possible that a threshold of Ikaros and Aiolos expression is required to terminate 

pre-BCR signaling and antagonise the proliferation promoting properties of IL-7 signalling.  

Once this threshold is passed the cells can downregulate Myc, begin to arrest proliferation 

and differentiate into the resting pre-B cell stage.  

 
 

Figure 4.10 – Ikaros and SSeCKS mRNA expression 
in pre-B cell development. Graph showing the 
expression of SSeCKS (green), Ikzf1 (red) and Ikzf3 
(yellow) in sequential stages of pre-B cell 
development.  Expression data was obtained from 
immgen.org.  CLP = Common lymphoid progenitor. 
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From this preliminary data it seemed that SSeCKS was a promising candidate to pursue.  

Before going further I wanted to show that SSeCKS was necessary for Ikaros-mediated cell 

cycle arrest.  To this end, I cloned two shRNA targeting different exons of SSeCKS (shSSeCKS-

B and –C) and introduced them into 3T3 fibroblasts expressing the inducible Ikaros-ERt2 

construct.  Both shRNAs resulted in a reduction in SSeCKS protein expression compared to 

the empty vector control, with shSSeCKS-B displaying the strongest knockdown (figure 

4.11A).  I tested the effect of this knockdown on cellular proliferation by growing the cells 

for up to one week in the presence of 4-OHT before staining with crystal violet (figure 

4.11B).  Knockdown of SSeCKS using either shRNA resulted in enhanced proliferation over 

the time course as measured by the increased intensity of staining.  Importantly, the extent 

of the knockdown appeared to have an effect on the proliferation rate as cells transfected 

with shSSeCKS-B displayed more intense staining at day 7.  From this we can conclude that 

SSeCKS is required for Ikaros-mediated cell cycle arrest in fibroblasts. 

 

 
 

Figure 4.11 – SSeCKS knockdown 
overrides Ikaros-induced cell cycle 
arrest. (A) Western blot analysis of 
SSeCKS protein expression in 3T3 cells 
expressing Ikaros-ERt2 treated with 4-
OHT (+) or EtOH (-) for 48 hours. (B) 
Colony formation assay of Ikaros-ERt2 
expressing 3T3 cells treated with 4-
OHT for up to 7 days before staining 
with crystal violet.  The cells contain an 
empty shRNA vector (left column) or 
one of two shRNA targeting SSeCKS 
(shSSeCKS-C and shSSeCKS-B, right 
columns). 
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4.6 Discussion 

 

4.6.1 Strategies for positive selection RNAi screening 
 

In this study I outlined a positive selection shRNA screen designed to discover novel 

regulators of Ikaros-mediated cell cycle arrest.  I opted for a pooled screening approach 

(barcode screening) in a fibroblast system in which cell cycle withdrawal was enforced by 

ectopic Ikzf1 expression.  Pooled screening offers the advantage of scale, allowing the 

interrogation of thousands of genes that may contribute towards a phenotype of interest at 

a relatively low cost.  This is in contrast to array based screening that would require high 

throughput equipment to acquire the same depth of coverage (Campeau and Gobeil, 2011).  

One major consideration with pool based screening is the requirement to isolate or select 

the phenotype of interest above background noise.  Therefore it is essential to maximise the 

signal-to-noise ratio to ensure the detection of robust and reproducible results. 

 

Here I described a preliminary screen in fibroblasts using the inducible Ikaros-ERt2 system.  

The Ikaros-ERt2 system has been employed previously to characterise the Ikaros-regulated 

gene expression program in B3 cells (Ferreiros-Vidal et al., 2013).  The advantage of using 

this system is that Ikaros activity can be precisely timed by the addition of the ERt2 ligand 4-

OHT, allowing the interrogation of Ikaros regulated genes at early time points after 

induction (Ferreiros-Vidal et al., 2013).  At later time points this system is not ideal as cells 

begin to escape Ikaros-mediated repression after 5-6 days in culture (figure 3.4).  

Furthermore this system requires extensive 4-OHT treatment over the time course of the 

experiment, potentially stressing the cells and biasing the results of the screen.  One 

example of this is the enrichment of multiple shRNA targeting ATP binding cassette (ABC) 

transporters, which are known to bind and transport 4-OHT (Iusuf et al., 2011).  The 

resultant background noise of the experiment prevented robust detection of positive 

control shRNA targeting Ikzf1 (figure 4.2B).  I therefore implemented a new optimised 

protocol using an Ikzf1 overexpression vector that lacked the ERt2 domain.  The 

disadvantage of using this construct is that I lose precise control over the timing of Ikaros 
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nuclear translocation.  This does not impact my screen because I am selecting for shRNA 

escapees over a long time period that are unaffected by the precise timing of Ikaros 

induction.  This potential disadvantage is also outweighed by the stronger and more 

persistent arrest in response to the introduction of the MSCV-Ikzf1 construct into the cells.  

The change in experimental approach was vindicated by the greatly improved enrichment of 

positive control shRNA targeting Ikzf1, with 3 out of 4 appearing in the top 4 most highly 

enriched hits (figure 4.7).         

 

I implemented an analysis pipeline designed to detect significantly enriched hits and 

eliminate false positives.  Following this analysis I identified a total of 435 ‘day 0 corrected’ 

hits, of which SSeCKS was the most highly enriched.  SSeCKS has previously been shown to 

arrest fibroblasts at the G1/S transition and is involved in the suppression of malignancy in 

an array of cell types (Gelman, 2010).  It is also a direct transcriptional target of Ikaros in 

pre-B cells and is upregulated in response to Ikzf1 overexpression (Ferreiros-Vidal et al., 

2013).  Mining of microarray data in B cell precursors revealed that the gene expression 

pattern of SSeCKS correlated with Ikzf1 and Ikzf3 expression, culminating in a large 

upregulation in expression at the transition into the resting pre-B cell stage (FrD) and exit 

the cell cycle (figure 4.9&4.10).  Knockdown of SSeCKS resulted in an increase in 

proliferation of Ikaros-arrested fibroblasts.  Thus it appears that SSeCKS may be a novel 

regulator of Ikaros growth arrest.   

 

In order to roughly characterise the nature of the remaining hits I assigned each hit as 

‘bound by Ikaros’ or ‘not bound by Ikaros’ based on Chip-seq data obtained from B3 cells 

(Ferreiros-Vidal et al., 2013).  My rational was that genes bound by Ikaros in B3 cells were 

likely to be potential targets of regulation by Ikaros in fibroblasts, and thus likely to be 

involved in Ikaros-induced cell cycle arrest.  Evidence for this idea comes from the 

observation that the most enriched hits were more likely to be bound by Ikaros in B3 cells 

than not bound (figure 4.8D).  However the majority of hits are not bound by Ikaros in B3 

cells (figure 4.8A) meaning that this strategy is not sufficient on its own to identify hits 

involved in the regulation of Ikaros-induced cell cycle arrest.  It is possible that many of the 
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hits that escape Ikaros-mediated cell cycle arrest may not be regulated by Ikaros directly.  It 

is likely that many layers of regulation converge to enforce the quiescent phenotype, with 

many of these regulators acting downstream of Ikaros in a knock on effect.  Therefore it is 

too simplistic and restrictive to focus on direct targets of Ikaros regulation only.  In addition 

to transcriptional regulation, other ways to identify hits would be to look at differential 

expression during pre-B cell development, mine the literature for relevant functions 

pertaining to proliferation, cell cycle and malignancy, and to look for possible co-localisation 

and interactions between Ikaros and the potential hits.  Some potentially promising 

candidates have been identified in this fashion.  As discussed earlier, components of the 

SWI/SNF chromatin remodelling complex have been identified in this screen.  This complex 

has previously been linked to G1 progression and physically associates with Ikaros in 

lymphocytes (Kim et al., 1999; Ruijtenberg and van den Heuvel, 2015).  Another enriched 

hit, Tob2, is part of a family of anti-proliferative proteins that regulate G1/S progression.  

Overexpression of Tob2 in 3T3 cells results in withdrawal from the cell cycle at the G1/S 

checkpoint (Ikematsu et al., 1999).  Ikaros can bind to the promoter of Tob2 in B3 cells 

(Ferreiros-Vidal et al., 2013) and its expression is slightly increased at the transition into the 

resting pre-B cell stage (FrD) (Immgen.org).  Despite ruling out many hits targeting the 

proteasome through the day 0 normalisation, 6 significantly enriched hits still remain.  It is 

possible that the proteasome is indirectly required for Ikaros-mediated arrest by degrading 

positive regulators of the cell cycle.  Ubiquitin-mediated proteasomal degradation by 

ubiquitin ligase complexes such as SCF can control the level of cell cycle regulators, ensuring 

unidirectionality of the cell cycle (Basserman et al., 2014).  Cul1, a member of the SCF 

ubiquitin ligase complex alongside SKP, is also enriched in my screen.  There are potentially 

many more candidates that may be revealed with a detailed secondary screen. 

 

4.6.2 Secondary screening 
 

It is important to conduct a rigorous secondary screening process to verify potentially 

promising hits.  There are several potential ways in which these screens can be performed 

(Mohr et al., 2014).  One approach is to repeat the positive selection screen in another cell 
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type, preferably in cells in which Ikaros is endogenously expressed such as B3 cells.  This 

approach is hampered by the apparent resistance of the B3 cell line to lentiviral infection, 

making it difficult to transduce the lentiviral library at an appropriate MOI (data not shown).  

A potential alternative to the B3 cell line would be to repeat the screen in wild type or 

Abelson virus-transformed primary pre-B cells that overexpress the MSCV-Ikzf1 construct.  

The main advantage of this type of screen is that it would be conducted in a physiologically 

relevant context related to pre-B cell development.  Hits that overlap between these 

different cell types would be promising targets for further investigation.   

 

A candidate-based approach may be employed to validate the results in fibroblasts by 

individually targeting potential hits based on the published literature.  The disadvantage to 

this approach is that it is time consuming and requires the extensive design and cloning of 

individual shRNA against many potential targets.  Potential candidates may also be missed if 

they have not been characterised as cell cycle regulators.  Alternatively an unbiased pooled 

shRNA screen may be employed with a custom library targeting the 435 previously 

identified hits.  Another approach is to conduct a single well array-based screen utilising 

siRNA targeting these hits.  This could be coupled with live cell imaging throughout the time 

course to visualise cellular proliferation in a high-throughput manner (Flaberg et al., 2011).  

For the sake of simplicity and to reduce off target ‘passenger’ hits, I conducted the RNAi 

screen at a low MOI to ensure that on average each cell contained a single shRNA.  This 

approach may miss potential redundancies or synergistic effects between two or more 

genes that contribute to the proliferative phenotype (Mohr et al., 2014).  To investigate this 

possibility, I could repeat the screen again in fibroblasts with a higher MOI to ensure that 

each cell contains two or more shRNA. 
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Chapter 5 

Ikaros and SSeCKS regulate the cell cycle 

 

5.1 Introduction 

 

As described in chapter 4, an shRNA screen identified the scaffolding protein SSeCKS as a 

factor that contributes to the regulation of the cell cycle by Ikaros.  The expression of 

AKAP12/GRAVIN, the human homologue of SSeCKS, is downregulated in an array of solid 

and haematological tumours (reviewed in Gelman, 2010).  In myeloid malignancies AKAP12 

is epigenetically silenced by promoter methylation (Flotho et al., 2007).  SSeCKS is believed 

to act as a tumour suppressor by attenuating proliferation and metastasis (Gelman, 2012).  

In murine fibroblasts SSeCKS is able to scaffold cyclin D1 and sequester it in the cytoplasm, 

thereby preventing cyclin D1 nuclear translocation and G1/S progression (Lin et al., 2000; 

Lin and Gelman, 2002).  SSeCKS can also downregulate Ccnd1 expression through the 

attenuation of serum-induced ERK2 activation (Lin et al., 2000).  SSeCKS null MEFs exhibit 

elevated basal and serum-induced ERK activation, serum-induced proliferation rates and 

demonstrate an enhanced susceptibility to transformation by Ras and Src oncogenes 

(Akakura et al., 2010).  In addition to cyclins, SSeCKS can interact with a number of signalling 

molecules such as protein kinase (PK) A, PKC, Calmodulin, Actin and Src (Gelman, 2012; 

Akakura and Gelman, 2012).  SSeCKS is thought to regulate the activity and spatiotemporal 

localisation of these molecules to influence the cell cycle, cytoskeleton, adhesion and 

migration (Gelman, 2010).  Though SSeCKS localisation is predominantly cytoplasmic, it is 

able to regulate downstream gene expression changes through its interaction with these 

signalling molecules to promote cell cycle withdrawal (Liu et al., 2006).    

 

The expression of SSeCKS is regulated by Ikaros in pre-B cells (Ferreiros-Vidal et al., 2013) 

and correlates with cell cycle withdrawal at the small resting pre-B cell stage (frD) 

(Immgen.org, figure 4.9).  This suggests a potential role for SSeCKS in the regulation of B cell 

development by cooperating with Ikaros to enforce G1 arrest at the resting pre-B cell stage.  
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I therefore wanted to further explore the regulation of the cell cycle by SSeCKS.  This 

chapter investigates the transcriptional regulation of SSeCKS by Ikaros in pre-B cells and 

fibroblasts, and begins to explore the potential mechanisms of Ikaros and SSeCKS-mediated 

cell cycle arrest.  I utilised a fibroblast cell line that contained a doxycycline-inducible SSeCKS 

construct to study the regulation of the cell cycle by SSeCKS.  I performed RNAseq on cells 

that were induced to arrest by Ikaros or SSeCKS.  This enabled me to characterise genes that 

were specifically regulated by Ikaros, SSeCKS, or both.  The insights gained from this analysis 

may be applied to pre-B cells to deepen our understanding of the role of Ikaros and SSeCKS 

in the regulation of the cell cycle and B cell development.     

 

The bioinformatic analyses in this chapter were performed by Gopu Dharmalingam. 

 

5.2 SSeCKs is transcriptionally regulated by Ikaros in pre-B cells and 

fibroblasts 

 

Having demonstrated that knockdown of SSeCKS can override Ikaros-induced cell cycle 

arrest in fibroblasts, I began to explore whether SSeCKS is a transcriptional target of Ikaros.  

My hypothesis was that Ikaros induces the upregulation of SSeCKS expression, and that 

SSeCKS cooperates with Ikaros to enforce cell cycle arrest.  Knockdown of SSeCKS would 

prevent this upregulation, thereby permitting the cells to proliferate. 

 

I began by confirming that Ikaros can transcriptionally regulate SSeCKS expression in B3 

cells.  Microarray analysis in B3 cells has shown that there is a small upregulation in SSeCKS 

mRNA expression following 6 hours of Ikaros induction, with a larger increase seen at 48 

hours post induction (Ferreiros-Vidal et al., 2013).  I performed qPCR analysis using cDNA 

prepared from B3 cells in which Ikaros-ERt2 was induced for 6, 16 and 24 hours (figure 

5.1A).  In agreement with the microarray analysis both primary and mature SSeCKS 

transcripts were upregulated after 6 hours of Ikaros-ERt2 induction.  This upregulation 

persisted at later time points and the largest increase was observed at 24 hours post-
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induction, suggesting that SSeCKS mRNA expression correlated with cell cycle withdrawal in 

these cells.  Next I looked at SSeCKS protein expression in these cells.  The induction of 

Ikaros-ERt2 by 4-OHT treatment resulted in a noticeable increase in SSeCKS protein 

expression by 16 hours and a further increase at the 24 hour time point (figure 5.1B).  

SSeCKS protein has been shown previously to migrate as a doublet in western blots (Streb et 

al., 2004).  The top band corresponds to the alpha protein isoform and the bottom band 

corresponds to the beta and gamma isoforms.  The alpha and beta isoforms of SSeCKS are 

ubiquitously expressed, but the gamma isoform is restricted to the testes (Camus et al., 

2001).  Figure 5.1B shows that both the upper and lower bands increased in intensity, 

meaning that there was an elevated expression of the alpha and beta isoforms of SSeCKS 

following Ikaros induction.      

 

 

 

Figure 5.1 – Ikaros upregulates SSeCKS expression in pre-B cells. (A) qPCR analysis of SSeCKS 
expression in Ikaros-ERt2 expressing B3 cells treated with EtOH (Black bars) or 4-OHT (White 
bars) for 6, 16 and 24 hours (Mean+SE; N=3, student T test: * p<0.05 **p<0.01 *** p<0.001). 
(B) Western blot showing SSeCKS protein expression in B3 cells treated with EtOH (-) or 4-
OHT (+). An anti-histone 3 antibody was included as a loading control.    
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Having confirmed that Ikaros transcriptionally regulated the expression of SSeCKS in B3 cells, 

I went on to investigate if this regulation was preserved in fibroblasts.  Figure 5.2A confirms 

that SSeCKS mRNA expression was significantly upregulated after 24 hours of Ikaros-ERt2 

induction in 3T3 cells, though the extent of this upregulation was less than in B3 cells (figure 

5.1A).  This upregulation was Ikaros dependent, as shRNA knockdown of Ikzf1 abrogated the 

increase in SSeCKS mRNA expression (figure 5.2B).  In accordance with the upregulated 

transcript, SSeCKS protein expression was increased after 24 hours of Ikaros induction 

(figure 5.2C).   In contrast to B3 cells there was no discernible increase in SSeCKS transcript 

at the 6 hour time point, suggesting slower kinetics of induction in fibroblasts.  There was 

also no increase in SSeCKS protein at this time point (data not shown).  It would be useful to 

investigate a series of time points to more thoroughly track the kinetics of SSeCKS mRNA 

and protein induction in fibroblasts. 

 

As discussed in chapter 3, Ikaros and Myc often display mutual antagonism in the regulation 

of gene expression.  I therefore decided to investigate the regulation of SSeCKS transcription 

by these two factors.  Figure 5.2D shows that SSeCKS transcription in fibroblasts was 

repressed after 24 hours of Myc-ERt2 induction by 4-OHT treatment.  Induction of Ikaros 

and Myc together resulted in no significant changes in SSeCKS expression suggesting that 

Myc is able to override Ikaros-induced SSeCKS upregulation.  This is consistent with the 

repression of SSeCKS transcription reported in Myc-transformed 3T3 fibroblasts (Lin et al., 

1995).             
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It is unclear at this time if Ikaros and Myc are directly competing at the promoter of SSeCKS 

to control its expression.  Genome wide mapping of Myc binding in mouse 3T9 fibroblasts by 

ChIP-seq failed to identify peaks around the SSeCKS promoter (defined as +/- 1000bp from 

the TSS) (Perna et al., 2012).  Similarly, supershift electrophoretic mobility assays (EMSA) 

performed with a c-Myc antibody failed to detect Myc binding at the alpha promoter of 

SSeCKS (Bu and Gelman, 2007).  This suggests that SSeCKS repression may be a downstream 

effect of Myc activity.   

 

Figure 5.2 – Ikaros regulates the expression of SSeCKS in fibroblasts. (A) qPCR analysis of the 
expression of the mature transcript of SSeCKS in 3T3 cells expressing Ikaros-ERt2, treated with EtOH 
(black bars) or 4-OHT (white bars) for 6 and 24 hours. (B) qPCR analysis of SSeCKS expression in 3T3 
cells after 24 hours of EtOH or 4-OHT treatment in the presence of an shRNA targeting Ikzf1 (shIkzf1-
D). (C) Western blot analysis of SSeCKS protein expression in 3T3 cells after treatment with EtOH (-) or 
4-OHT (+) for 24 hours.  Tubulin was used as a loading control. (D) qPCR analysis of SSeCKS expression 
after 24 hours of EtOH or 4-OHT treatment, in 3T3 cells expressing Ikaros-ERt2, Myc-ERt2, or a 
combination of the two. (Mean+SE; N=3, student T test: * p<0.05 **p<0.01 *** p<0.001)       
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Genome wide mapping of Ikaros binding in B3 cells by ChIP-seq revealed several peaks in 

around the promoter of SSeCKS (figure 5.3A) implying that SSeCKS is a direct transcriptional 

target of Ikaros (figure 5.3A) (Ferreiros-Vidal et al., 2013).  This binding occurs upstream of 

exon1a, corresponding to the promoter of the alpha isoform of SSeCKS (Bu and Gelman, 

2007).  To verify that Ikaros binds directly to the SSeCKS promoter in fibroblasts, I performed 

chromatin immunoprecipitation followed by qPCR (ChIP-qPCR) using Ikaros-ERt2 expressing 

3T3 cells treated for 24 hours with 4-OHT.  I enriched for Ikaros-bound chromatin fragments 

by immunoprecipitating with an Ikaros specific antibody, or an anti-IgG antibody as a 

control.  For the qPCR I used forward and reverse primers that amplified a previously 

identified Ikaros peak at the promoter of SSeCKS in B3 cells (figure 5.3A – marked F1 and 

R1).  Figure 5.3B shows the relative enrichment of Ikaros-bound chromatin fragments over 

1% of input.  There was a significant increase in chromatin enrichment at the SSeCKS 

promoter when the pulldown was performed using the Ikaros antibody versus IgG control.  

This enrichment was comparable to several positive control regions around the promoters 

of the Ikaros regulated genes, Myc and Igll1.  A negative control was included at a region 

downstream of Igll1, which is not bound by Ikaros in B3 cells.  In conclusion, Ikaros binds 

directly to the promoter of SSeCKS to regulate its expression in pre-B cells and fibroblasts.  
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Figure 5.3 – Ikaros binds to the promoter of SSeCKS in pre-B cells and fibroblasts. (A) Ikaros chip-seq 
tracks in B3 cells around the promoter of SSeCKS (Akap12).  Ikaros peaks were detected at the 
promoter of SSeCKS when Ikaros-ERt2 expressing cells were treated with 4-OHT (top track), but not in 
empty vector transfected cells (Input, bottom track).  The scales for each track were set to the same 
value for comparison. F1 and R1 refer to the approximate primer positions (not to scale) used to verify 
Ikaros binding in fibroblasts.  (B) qPCR analysis on chromatin immunoprecipitated using a control 
(black) or anti-Ikaros antibody (white) in Ikaros-ERt2 expressing 3T3 cells treated for 24 hours with 4-
OHT.  The relative enrichment of these fragments over 1% of input chromatin was plotted. Primers 
used to amplify positive and negative control regions are labelled accordingly. Standard deviation 
around the mean; N=2, student T test: * p<0.05     
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5.3 No observed binding between SSeCKS and cyclin D 

 

In the previous analyses I demonstrated that SSeCKS is an Ikaros-regulated gene in pre-B 

cells and fibroblasts.  The expression of SSeCKS appeared to correlate with cell cycle 

withdrawal, suggesting a role for SSeCKS in the regulation of the cell cycle by Ikaros.  I 

therefore began to explore the potential mechanisms of cell cycle regulation by SSeCKS.  

SSeCKS overexpression in fibroblasts results in the transcriptional repression of Ccnd1 and 

sequestration of cyclin D1 protein in the cytoplasm (Lin et al., 2000).  Direct binding of cyclin 

D1 to SSeCKS in these cells was shown by pulldown assay (Lin and Gelman, 2002).  I 

hypothesised that the Ikaros-induced upregulation of SSeCKS protein would facilitate the 

sequestration of cyclin D in the cytoplasm.  This may prevent cyclin D-Cdk4/6 complex 

formation and account for cell cycle arrest in G1/G0.  As Ikzf1 expression is primarily 

restricted to haematopoietic lineages, I wished to investigate this hypothesis in pre-B cells.  

To this end I treated B3 cells that expressed the Ikaros-ERt2 construct for 24 hours with 

EtOH or 4-OHT.  I prepared lysates from these cells and immunoprecipitated (IP) with an 

anti-SSeCKS antibody or control IgG antibody.  To detect SSeCKS pulldown I performed a 

western blot on the immunoprecipitated protein (figure 5.4A).  SSeCKS protein was enriched 

after pulldown with an anti-SSeCKS antibody compared with input and was absent from the 

IP using the control antibody.  Cyclin D1 is not expressed at an appreciable level in B3 cells 

(as confirmed by western blot, supplementary figure S.5), so I checked the presence of the 

two other cyclin D isoforms.  Both cyclin D2 and cyclin D3 were detected in the input 

samples (figure 5.4A) but neither protein was detected after immunoprecipitation.  It is 

unclear at this time if this negative result means that SSeCKS does not associate with cyclin 

D2/3 in pre-B cells, or if there were technical issues with the immunoprecipitation.   

 

Given the previous result, I tried to observe possible SSeCKS-cyclin D association in an 

indirect way.  In collaboration with Dr. Ziwei Liang, we investigated the cellular localisation 

of cyclin D3 by fractionation followed by western blot.  B3 cells expressing Ikaros-ERt2 were 

treated for 6 hours with EtOH or 4-OHT and separated into cytoplasmic and nuclear 

fractions.  If SSeCKS sequesters cyclins, we would expect to observe cyclin D protein in the 
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cytoplasmic fraction.  Figure 5.4B shows that cyclin D3 protein was exclusively localised in 

the nucleus and was not detectable in the cytoplasmic fractions.  This localisation was 

unaffected by Ikaros induction by 4-OHT treatment.  Similar results were obtained using an 

anti-cyclin D2 antibody (data not shown).  These results do not exclude a possible 

association between SSeCKS and cyclin D in pre-B cells, but at this time I do not observe any 

direct binding between SSeCKS and cyclin D proteins. 

 

 
 

 

5.4 SSeCKS overexpression in fibroblasts results in G1 arrest 

 

As the expression of SSeCKS appeared to correlate with cell cycle withdrawal (figure 5.1 and 

5.2) I wanted to test whether SSeCKS was sufficient to induce cell cycle arrest independently 

of Ikaros.  To this end I attempted to overexpress SSeCKS in fibroblasts and pre-B cells.  I 

Figure 5.4 – No observed binding between 
cyclin D and SSeCKS. (A) Western blot 
analysis on lysates acquired from B3 cells 
expressing Ikaros-ERt2 treated for 24 hours 
with EtOH (-) or 4-OHT (+). The lysates were 
immunoprecipitated with an anti-SSeCKS 
antibody, or anti-IgG as a negative control. 
Input samples were loaded at 10% of the IP 
volume as a positive control.  Antibodies for 
SSeCKS, cyclin D3 and cyclin D2 were used 
to detect the presence of these proteins 
after IP. (B) B3 cells expressing Ikaros-ERt2 
were treated for 6 hours with EtOH or 4-
OHT and fractionated into cytoplasmic or 
nuclear fractions. An anti-cyclin D3 antibody 
was used to detect its cellular localisation.  
Successful fractionation was tested by 
control experiments performed by Dr. Ziwei 
Liang. Tubulin was used as a cytoplasmic 
control and histone H3 was included as a 
nuclear control (data not shown). 
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cloned SSeCKS cDNA into an MSCV-GFP vector and generated retrovirus to infect the target 

cells.  No GFP expression was detected by flow cytometry in B3 cells or 3T3 fibroblasts (data 

not shown).  The open reading frame of SSeCKS is over 5kb long, and this relatively large 

insert may be approaching the upper packaging limit of retroviral particles (Coffin et al., 

1997).  Direct transfection of the MSCV plasmid by electroporation and chemical methods 

also failed to overexpress SSeCKS in these cells. 

 

Having failed at directly overexpressing SSeCKS, I attempted to induce its expression by 

indirect means.  The promoter of the beta isoform of SSeCKS contains a retinoic acid 

response element (RARE), and treatment of vascular smooth muscle cells with the retinoid 

all-trans retinoic acid (atRA) results in a moderate induction of SSeCKS mRNA and protein 

(Streb et al., 2011).  Interestingly atRA treatment has been shown to accelerate pre-B cell 

differentiation and progression to the resting pre-B cell stage (Chen et al., 2008).  I therefore 

treated pre-B cells with atRA or the vehicle control DMSO, and investigated SSeCKS 

induction by qPCR and the atRA-induced cell cycle profiles by PI staining and flow 

cytometry.  B3 cells appeared unresponsive to atRA treatment (data not shown), so I used 

primary pre-B cells for the analysis.  Treatment of primary pre-B cells with atRA for 24 hours 

resulted in a small but significant increase in primary SSeCKS transcript (figure 5.5A).  The 

atRA target genes Myc and Hoxa1 were included as positive controls for successful atRA 

induction.  PI staining showed an accumulation of cells in G1 phase after 48 hours of atRA 

treatment that was comparable to Ikaros-ERt2 induction by 4-OHT (supplementary figure 

S.6).  Thus retinoic acid treatment appeared to upregulate SSeCKS expression and promote 

cell cycle withdrawal in pre-B cells, though it was difficult to disentangle SSeCKS-specific 

effects from the pleiotropic effects of atRA treatment.   

 

I required a stronger system of overexpression to investigate SSeCKS-specific regulation of 

the cell cycle.  I obtained a 3T3 fibroblast cell line that expresses a tetracycline-regulated 

SSeCKS overexpression construct (‘S24’ cells, a kind gift from Professor Irwin Gelman) (Lin et 

al., 2000).  In this system SSeCKS cDNA lies downstream of the tetracycline response 

element (TRE).  These cells were generated by transgene insertion and clonal selection, and 
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the expression cassette does not replace the endogenous SSeCKS gene.  In the presence of 

the tetracycline analogue doxycycline (+Dox) the tetracycline transactivator protein (tTA) is 

unable to bind to the TRE, thereby preventing SSeCKS transactivation.  Removal of 

doxycycline (-Dox) facilitates tTA binding to the TRE and transcription of SSeCKS cDNA 

(figure 5.5B).  The removal of doxycycline results in the overexpression of SSeCKS and 

arrests fibroblasts in G1 phase (Lin et al., 2000).  

 

 

 

 

 

 

 

I investigated the effect of SSeCKS overexpression on the cell cycle by plating S24 cells in the 

presence or absence of doxycycline for 24 and 48 hours.  Removal of doxycycline for 48 

hours resulted in a large upregulation of SSeCKS protein (figure 5.6A).  At 24 hours post-

doxycycline removal there was a noticeable withdrawal from proliferation, as >70% of cells 

Figure 5.5 – Alternative methods of inducing SSeCKS overexpression. (A) qPCR analysis of 
primary pre-B cells treated for 24 hours with atRA (white bars) or the vehicle control DMSO 
(black bars).  The primary transcripts of SSeCKS and Myc were measured along with the mature 
transcript of the positive control gene Hoxa1 (Mean+SE; N=3, student T test: * p<0.05 **p<0.01). 
(B) Schematic outline of the TET-off system of SSeCKS overexpression in S24 fibroblasts. In the 
presence of doxycycline (top) tTA is unable to transactivate SSeCKS transcription.  Removal of 
doxycycline (bottom) results in tTA dependent SSeCKS transcription. tTA =  tetracycline 
transactivator protein. TRE = tetracycline response element.  
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accumulated in G1 phase (figure 5.6B,C).  By 48 hours >80% of cells had accumulated in G1 

phase.  I visualised the arrest over longer time periods by plating S24 cells in the presence or 

absence of doxycycline for up to 6 days before staining with crystal violet (figure 5.6D top 

panel).  There was a marked difference in the intensity of the staining between the two 

conditions, indicating that SSeCKS overexpression enforced a sustained withdrawal from the 

cell cycle.  I next attempted to reverse this arrest by shRNA mediated knockdown of SSeCKS.  

shRNA knockdown depleted SSeCKS protein in the presence and absence of doxycycline 

(figure 5.6E, lanes 2 and 4).  However the knockdown failed to completely reverse the 

proliferative defect observed upon doxycycline withdrawal, as there was still a difference in 

the intensity of crystal violet staining between the +Dox and –Dox conditions (figure 5.6D, 

bottom panel).  The failure to fully rescue the cell cycle arrest may be because the 

knockdown was not efficient enough to fully deplete SSeCKS protein.  An argument against 

this is that protein levels were comparable between control (S24+/+ +Dox) and knockdown 

(S24shSSeCKS –Dox) conditions (figure 5.E, lanes 1 and 4 respectively).  There was a difference 

in confluence between these two conditions despite each displaying a similar level of 

SSeCKS protein (figure 5.6D).  An alternative explanation is that post-translational 

modifications of the SSeCKS protein in conjunction with an elevation in SSeCKS protein 

expression may play an important role in the regulation of the cell cycle.       
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Figure 5.6 – SSeCKS overexpression induces G1 arrest in fibroblasts. (A) Western blot showing SSeCKS 
protein expression in S24 cells grown for 48 hours in the presence (+) or absence (-) of doxycycline (Dox). 
Histone 3 was used as a loading control. (B) PI staining of S24 cells grown in the presence (red lines) or 
absence (blue lines) of doxycycline for 24 and 48 hours. (C) Quantification of the cell cycle phases 
outlined in (B). (D) Colony formation assay of S24 cells grown for up to 6 days in the presence (+) or 
absence (-) of doxycycline, before staining with crystal violet. The top panel displays the confluency of 
wild type S24 cells, the bottom panel displays cells transfected with an shRNA targeting SSeCKS. (E) 
Western blot showing SSeCKS protein expression in S24 cells grown for 48 hours in the presence (+) or 
absence (-) of doxycycline (bottom panel) in wild type (-) or shSSeCKS (+) transduced cells (top panel).     
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Having demonstrated that SSeCKS regulated the cell cycle, I proceeded to investigate the 

gene expression changes induced by SSeCKS overexpression.  S24 cells were plated for 24 

hours in the presence or absence of doxycycline and mRNA expression was measured by 

qPCR (figure 5.7A).  SSeCKS overexpression instigated gene expression changes that were 

reminiscent of Ikaros overexpression.  The transcription of Myc was significantly repressed 

following SSeCKS induction by doxycycline removal.  The metabolic genes Hk2 and Ldha 

were also significantly repressed, consistent with the downregulation of Myc.  Interestingly 

SSeCKS overexpression upregulated the integrins Itga5 and Itgb1.  This is in contrast to the 

downregulation of these genes observed upon Ikaros induction in fibroblasts (figure 3.5A).  

The increase in integrin expression is consistent with SSeCKS-induced integrin β1 clustering 

observed in prostate cancer cells (Su et al., 2013).  SSeCKS expression results in enhanced 

adhesion in these cells and is hypothesised to be important in the suppression of metastasis 

(Su et al., 2013).   

 

I next looked at the protein levels of several cell cycle regulators following SSeCKS 

overexpression (figure 5.7B).  In accordance with the reduction in Myc transcript, SSeCKS 

overexpression resulted in the depletion of Myc protein from these cells.  Unexpectedly 

there appeared to be an increase in the amount of cyclin D2 protein expressed following 

doxycycline withdrawal.  This is contrary to the reduction of cyclin D2 we would expect to 

observe in cells that are withdrawing from the cell cycle.  A possible explanation for this 

result may be that SSeCKS is directly binding cyclin D2 and sequestering it in the cytoplasm.  

This may have the effect of stabilising cyclin D2 protein but preventing its nuclear 

localisation. 

 

These results show that SSeCKS overexpression is sufficient to induce cell cycle withdrawal 

in fibroblasts independently of Ikaros.  SSeCKS induces a similar, yet distinct gene expression 

signature to that of Ikaros.  Interestingly SSeCKS and Ikaros both regulate the expression of 

Myc, further implicating this gene as a predominant target in the regulation of the cell cycle 

by Ikaros.            
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5.5 Ikaros and SSeCKS synergistically arrest the cell cycle 

 

The previous results indicate that both Ikaros and SSeCKS can enforce G1 arrest partly 

through the repression of Myc.  I was interested whether Ikaros and SSeCKS could 

synergistically arrest the cell cycle by converging at the level of Myc regulation.  To this end I 

transduced S24 cells with the inducible Ikaros-ERt2 construct and treated with a 

combination of doxycycline and 4-OHT.  The control treatment of doxycycline plus EtOH 

(+Dox +EtOH) would result in no overexpression of SSeCKS or Ikaros nuclear translocation, 

and consequently the cells would display wild type proliferation.  Treatment with 

doxycycline plus 4-OHT (+Dox +4-OHT) would induce Ikaros translocation but not SSeCKS 

Figure 5.7 – SSeCKS mediates the repression of Myc and 
its effector genes. (A) qPCR analysis of S24 cells treated 
for 24 hours with (+Dox, black bars) or without 
doxycycline (-Dox, white bars) (Mean+SE; N=3, student T 
test: * p<0.05 **p<0.01 *** p<0.001). (B) Western blot 
using whole cell lysates obtained from S24 cells treated 
with (+) or without (-) doxycycline for 48 hours.  The 
expression of SSeCKS (top), Myc (mid) and cyclin D2 
(bottom) was tested.  An anti-Tubulin antibody was used 
as a loading control. 
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expression.  Treatment without doxycycline plus EtOH (-Dox +EtOH) would induce SSeCKS 

overexpression only.  Treatment without doxycycline plus 4-OHT (-Dox +4-OHT) would both 

induce Ikaros translocation and SSeCKS overexpression in the same cells (figure 5.8A).  I 

hypothesised that Ikaros and SSeCKS overexpression together would result in a greater 

arrest of the cell cycle than either condition alone.  S24 cells expressing the inducible Ikaros-

ERt2 construct were treated with the 4 conditions for 24 hours and the cell cycle profiles 

were determined by PI staining and flow cytometry (figure 5.8B,C).  Control treated cells 

(+Dox +EtOH) proliferated normally as 60% of cells exhibited DNA content indicative of G1 

phase.  The induction of Ikaros or SSeCKS alone resulted in cell cycle arrest, as 75% and 70% 

of cells were in G1 phase respectively.  When Ikaros and SSeCKS were induced together 

there was an even greater arrest, as >80% of cells were in G1 phase.  This was significantly 

different from either condition alone.  In conclusion Ikaros and SSeCKS can cooperate to 

synergistically arrest the fibroblast cell cycle.       
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I examined the gene expression changes that occurred after treatment with the 4 conditions 

for 24 hours (figure 5.9A).  Ikaros (+Dox +4-OHT, blue bars) upregulated the expression of 

SSeCKS and the cell cycle inhibitor Cdkn1b, and repressed the transcription of Myc, Hk2 and 

Ldha.  SSeCKS (-Dox +EtOH, green bars) repressed primary and mature Myc transcripts, 

though to a lesser extent than Ikaros.  SSeCKS had no effect on Cdkn1b expression, 

indicating that this is an Ikaros-specific target gene.  SSeCKS appeared to downregulate Cdk6 

expression independently of Ikaros.  Thus it seems that Ikaros and SSeCKS have distinct and 

overlapping target genes that are coordinated to regulate G1 arrest.  Looking at metabolic 

gene expression, the extent of Hk2 and Ldha repression by SSeCKS correlated with the 

reduction in Myc transcript (around 50% reduction in all cases).  This suggested that SSeCKS 

regulates the expression of these two genes through Myc.  SSeCKS did not significantly 

upregulate the expression of Itga5.  This is in contrast to the significant upregulation of 

Itga5 observed in figure 5.7A.  A possible explanation for this discrepancy may be that the 

Ikaros-ERt2 system is slightly ‘leaky’, meaning some Ikaros nuclear translocation may occur 

in the absence of 4-OHT.  If this is the case then Ikaros could antagonise the SSeCKS-induced 

upregulation of Itga5.  I can test this hypothesis by visualising Ikaros localisation in these 

cells by immunofluorescence under the 4 treatment conditions.   

 

Unexpectedly I observed no upregulation in SSeCKS transcript following the removal of 

Doxycyline, despite a large and significant upregulation in SSeCKS protein (seen in figure 

5.6A).  It is possible that the primer set used to detect SSeCKS expression is complementary 

to the endogenous transcript present in these cells, and not the overexpressed transgene.  It 

is unlikely that I am detecting specific isoforms of SSeCKS as the primers anneal to the 3’ of 

the transcript, which is present in all isoforms.  It may be necessary to design primers that 

specifically anneal to the overexpressed transgene to rectify this issue. 

 

Figure 5.8 – Ikaros and SSeCKS cooperate to enforce G1 arrest. (A) Schematic outlining the 4 treatment 
conditions.  Withdrawal of doxycycline induces SSeCKS expression and addition of 4-OHT induces 
Ikaros-ERt2 translocation into the nucleus. (B) Flow cytometry plots of cells stained with PI after 24 
hours of each treatment condition. The cell cycle profiles of control (black), Ikaros (blue), SSeCKS 
(green) and Ikaros + SSeCKS (red) treatments are displayed.  (C) Quantification of the cell cycle profiles 
displayed in (B) from 3 technical replicates. (Mean+SE; N=3, student T test: **p<0.01 *** p<0.001) 
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I next looked at the effect of Ikaros and SSeCKS induction together (Figure 5.9A -Dox +4-

OHT, red bars).  The combined effect of Ikaros and SSeCKS resulted in a highly significant 

repression of Myc transcript that was consistent with the synergistic cell cycle arrest 

observed in figure 5.8B.  Myc transcription was significantly more repressed by this 

combined treatment than by Ikaros or SSeCKS alone.  Thus Ikaros and SSeCKS both regulate 

the cell cycle and converge at the level of Myc transcription.  Looking at other cell cycle 

genes, Ikaros and SSeCKS together downregulated the expression of Ccnd2 to a small extent.  

There was no observed synergy in the expression of Cdkn1b or Cdk6, indicating that these 

genes were independently regulated by Ikaros and SSeCKS respectively.  There was a small 

synergy observed in the expression of Hk2 and Ldha as these genes were slightly more 

downregulated by Ikaros and SSeCKS together than either condition alone, possibly 

reflecting the level of Myc expression under these conditions.  This did not reach statistical 

significance however.  There also appeared to be no significant changes in integrin 

expression when Ikaros and SSeCKS were induced together, potentially reflecting the 

opposing transcriptional regulation that Ikaros and SSeCKS exert on these genes.  

 

I performed western blot analysis on S24 cells to investigate the protein expression of 

SSeCKS, Myc and cyclin D2 after treatment with the 4 conditions for 24 hours (figure 5.9B).  

Ikaros induction (+Dox +4-OHT, lane 2) resulted in a small upregulation in SSeCKS protein 

expression and a large reduction in the level of Myc and cyclin D2 compared with the 

control treatment (+Dox +EtOH, lane 1).  SSeCKS induction (-Dox +EtOH, lane 3) also 

depleted Myc protein, though not to the same extent as Ikaros.  This reflected the gene 

expression pattern observed in figure 5.9A.  When SSeCKS and Ikaros were induced together 

(-Dox +4-OHT, lane 4) there was a synergistic depletion of both Myc and cyclin D2 protein, 

rendering both bands barely detectable.  This corroborates the gene expression data and 

confirms that both Ikzf1 and SSeCKS regulate the expression of Myc, providing a common 

mechanism that both genes can exploit to regulate the progression past the G1 checkpoint.          
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Figure 5.9 – Dissection of Ikaros and SSeCKS mediated gene expression changes. (A) qPCR analysis of 
S24 cells grown for 24 hours in the presence of control (+Dox +EtOH, black), Ikaros (+Dox +4-OHT, 
blue), SSeCKS (-Dox +EtOH, green) and Ikaros + SSeCKS (-Dox +4-OHT, red) treatments. Values were 
normalised to the housekeeping gene Ubc. (Mean+SE; N=3, student T test: * p<0.05 **p<0.01 *** 
p<0.001). (B) Western blot of S24 cells grown for 24 hours in the presence (+) or absence (-) of 
doxycycline (top panel) and treatment with EtOH (-) or 4-OHT (+) (bottom panel).  The expression of 
SSeCKS, Myc and cyclin D2 was tested. An anti-tubulin antibody was used as a loading control. 
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5.6 Enforced Myc expression overrides SSeCKS-mediated cell cycle arrest 

 

In the previous experiments I identified Myc as an important nexus in the regulation of the 

cell cycle by Ikaros and SSeCKS and demonstrated that enforced Myc expression was 

sufficient to override Ikaros-mediated cell cycle arrest (figure 3.6A).  As SSeCKS appeared to 

regulate the cell cycle through Myc, I reasoned that enforced Myc expression would 

similarly override SSeCKS-mediated cell cycle arrest.  To test this idea I infected S24 cells 

with an inducible Myc-ERt2 construct and treated them with a combination of doxycycline 

and 4-OHT.  I then stained the cells with PI and checked the cell cycle profile by flow 

cytometry (figure 5.10A,B).  Myc-ERt2 nuclear translocation increased the proportion of 

cells in S phase and decreased the proportion of cells in G1 as expected (+Dox +4-OHT, blue 

line).  SSeCKS overexpression (-Dox +EtOH) resulted in an increase in the proportion of cells 

undergoing G1 arrest.  When Myc-ERt2 and SSeCKS were induced together (-Dox +4-OHT) an 

increased proportion of cells were in S phase.  This confirmed that enforced Myc expression 

was sufficient to override SSeCKS-mediated cell cycle arrest. 

 

I went on to investigate the gene expression changes in these cells (figure 5.10C).  The 

induction of Myc-ERt2 translocation (+Dox +4-OHT, blue bars) repressed the transcription of 

SSeCKS and endogenous Myc.  This latter finding is expected as Myc negatively 

autoregulates its own expression (Penn et al., 1990).  Myc-ERt2 induction upregulated the 

expression of Ccnd2 and the metabolic genes Hk2 and Ldha.  SSeCKS overexpression (-Dox 

+EtOH, green bar) was sufficient to repress the transcription of endogenous Myc.  However 

SSeCKS overexpression was unable to reverse the upregulation of Ccnd2, Hk2 and Ldha in 

the presence of enforced Myc expression, as there was no change in the expression of these 

genes when SSeCKS and Myc were induced in the same cells (-Dox +4-OHT, red bars).  In 

conclusion, enforced Myc expression was sufficient to induce hyperproliferation and a 

corresponding increase in metabolic gene expression.  SSeCKS was unable to enforce 

proliferative arrest when Myc expression was sustained in these cells.      
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Figure 5.10 – Myc overrides SSeCKS-mediated cell cycle arrest. (A) PI profiles of S24 cells grown for 24 
hours in the presence of control (+Dox +4-OHT, black), Myc (+Dox +4-OHT, blue), SSeCKS (-Dox +EtOH, 
green) and Myc + SSeCKS (-Dox +4-OHT, red) treatments. (B) Quantification of the cell cycle profiles 
displayed in (A). (C) qPCR analysis of S24 cells grown for 24 hours in the presence of control (black), 
Myc (blue), SSeCKS (green) and Myc + SSeCKS (red) treatments. Values were normalised to the 
housekeeping gene Ubc. (Mean+SE; N=3, student T test: * p<0.05 **p<0.01 *** p<0.001).  
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5.7 Global gene expression profiling of cells overexpressing Ikzf1 and SSeCKS 

      

In figure 5.9A I began to explore the relationship between Ikaros and SSeCKS in the 

regulation of the cell cycle.  Looking at a small subset of genes by qPCR I made a number of 

interesting observations.  Some genes, such as Myc, were cooperatively regulated by Ikaros 

and SSeCKS.  Other genes were independently regulated by either Ikaros or SSeCKS alone 

(Cdkn1b and Cdk6 respectively).  Antagonism may also exist between Ikaros and SSeCKS in 

the regulation of integrin-mediated adhesion.  It would be interesting to observe the 

direction (up or down regulation) and extent of gene expression that is regulated by Ikaros 

and SSeCKS.  It would also be interesting to examine the nature of these regulated genes; 

whether Ikaros and SSeCKS always cooperatively regulate the expression of cell cycle genes 

but oppose each other in the regulation of adhesion molecules for example.   

 

To obtain a global view of Ikaros and SSeCKS-mediated gene expression changes I 

performed RNAseq analysis on S24 cells expressing the inducible Ikaros-ERt2 construct.  I 

treated the cells for 24 hours with a combination of doxycycline and 4-OHT before 

extracting RNA and performing NGS library preparation.  Three independent biological 

replicates were performed with the 4 combinatorial treatments of doxycycline and 4-OHT 

outlined in figure 5.9A.  These samples were pooled and run in 2 lanes of the Illumina HiSeq 

flow cell.  Sufficient read counts were generated so that each sample was represented by a 

sequencing depth of >38x106 reads, of which >90% mapped to the mouse genome.  The 

RNA library preparation of one biological replicate was performed separately from the other 

two replicates and was subject to batch correction.  Principal component analysis (PCA) of 

the 3 replicates is displayed in figure 5.11.  The analysis shows tight clusters of data with 

little variance between biological replicates.  The first principal component (PC1) accounts 

for the highest proportion of variance in the data (61%) and separates the groups based on 

the induction of Ikaros nuclear translocation by 4-OHT treatment.  The second principal 

component (PC2) accounts for 20% of the variance and separates the groups based on 

SSeCKS upregulation in response to the withdrawal of doxycycline.   
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Following alignment, the differential expression of genes from each condition relative to the 

control treatment was calculated using the EdgeR package.  To characterise the nature of 

the differentially expressed genes I segregated the most highly up- and downregulated 

genes for each treatment.  I defined the top upregulated genes as having a false discovery 

rate of ≤0.01 and a log2 fold change of ≥1.  I defined the top downregulated genes as having 

a false discovery rate of ≤0.01 and a log2 fold change of ≤-1.  I discovered that this stringent 

threshold was lowering the number of differentially expressed genes in the ‘SSeCKS’ (-Dox, 

EtOH) sample, so I relaxed the log2 fold change criteria for this treatment only to +/-0.5 for 

up and downregulated genes respectively.  I then plotted the overlap of up- and 

downregulated genes separately for each treatment using the Venny online tool 

(bioinfogp.cnb.csic.es/tools/venny).   

Figure 5.11- Principal component analysis. PCA plot describing the distribution of variance across 
the data.  Biological replicates from ‘Control’ (+Dox +EtOH, black) ‘SSeCKS’ (-Dox +EtOH, red), 
‘Ikaros’ (+Dox +4-OHT, yellow) and ‘Ikaros + SSeCKS’ (-Dox +4-OHT, green) conditions cluster 
separately.  
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Figure 5.12 shows the overlap between the top significantly upregulated genes for each 

treatment relative to control.  The boxes display the top GO terms associated with each 

gene set with example genes shown in italics.  The gene sets lacked statistical power so the 

GO terms were not significant (n.s).  There were 445 genes that overlapped between all 

three conditions (‘Ikaros’, ‘SSeCKS’ and ‘Ikaros + SSeCKS’) that were associated with the GO 

terms ‘regulation of GTPase signal transduction’ and ‘GTPase activity’.  One of these 

upregulated genes was ScaI (suppressor of cancer cell invasion), a nuclear cofactor for MAL 

(megakaryocytic acute leukaemia) and serum response factor (SRF).  This complex acts in a 

pathway downstream of Rho GTPase-mediated actin remodelling (Brandt et al., 2009).  The 

expression of ScaI is downregulated in an array of cancers and the depletion of ScaI in a 

breast cancer cell line increased invasiveness, coinciding with an increase in the expression 

of the integrin Itgb1 (Brandt et al., 2009).  Therefore ScaI upregulation may contribute to 

Figure 5.12 – Top upregulated genes. Venn diagram displaying the overlap of genes significantly 
upregulated between ‘Ikaros’ (+Dox +4-OHT, blue), ‘SSeCKS’ (-Dox +EtOH, yellow) and ‘Ikaros + SSeCKS’ 
(-Dox +4-OHT, green) conditions relative to control.  The numbers in each segment indicate the number 
of genes overlapping each condition.  The boxes indicate the GO terms associated with each gene set. 
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Ikaros-mediated integrin repression.  Interestingly ScaI is reported to associate with the 

SWI/SNF chromatin remodelling complex, and this association may be required for ScaI-

mediated regulation of gene expression (Kressner et al., 2013).  

 

Two guanine nucleotide exchange factors (GEFs) that activate members of the Rho GTPase 

family were upregulated in the overlapping ‘SSeCKS’ and ‘Ikaros + SSeCKS’ gene sets.  This 

further implies that actin dynamics and motility are regulated in response to Ikaros and 

SSeCKS induction.  This upregulation was a surprising observation, as SSeCKS has previously 

been shown to suppress chemotaxis in fibroblasts by antagonising Cdc42 GTPase function at 

leading edge filopodia (Ko et al., 2014).  Cdkn2d, which encodes the cyclin-dependent kinase 

inhibitor p19, also appeared in this list.  This gene was previously identified as an SSeCKS 

regulated gene by microarray analysis in S24 cells (Liu et al., 2006).  

 

Upregulated genes in the ‘Ikaros + SSeCKS’ condition displayed GO terms involved in the 

regulation of transcription.  The histone H3K4 methyltransferase Mll3 was upregulated in 

this gene set.  Haploinsufficiency of Mll3 can cooperate with other oncogenic events to 

promote acute myeloid leukaemia in mice (Chen et al., 2014) and Mll3 expression is 

upregulated at the transition from the large cycling (FrC’) to resting (FrD) pre-B cell stage 

(Immgen.org).  This potentially outlines a role for this chromatin modifier in pre-B cell 

development.  There was a small but not significant increase in the expression of Mll3 in B3 

cells 48 hours after the introduction of Ikaros (Ferreiros-Vidal et al., 2013).  Of note, the 

integrin Itga5 was included in the list of significantly upregulated genes in the ‘SSeCKS’ only 

condition.  This is consistent with the upregulation of this gene observed by qPCR in figure 

5.7. 

 

The GO terms associated with ‘Ikaros’ upregulated genes included the regulation of cell 

proliferation and metabolic processes.  Of particular interest was the upregulated gene 

Btg1.  B cell translocation gene (Btg1) is a member of an anti-proliferative family of proteins 

that includes Tob2, a gene I identified as a potential mediator of Ikaros growth arrest in the 

previous shRNA screen.  BTG1 was identified as a translocation partner of MYC in chronic 
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lymphocytic leukaemia (Rimokh et al., 1991).  BTG1 expression is reportedly downregulated 

in breast cancer cell lines and is deleted in 9% of B-cell precursor ALL patients (Zhu et al., 

2013; Waanders et al., 2012).  The expression of Btg1 is highest in quiescent lymphocytes 

and is downregulated upon mitogenic stimulation and S phase entry (Rouault et al., 1992).  

The expression of Btg1 is anti-correlated with Myc, and BTG1 overexpression was sufficient 

to induce cell cycle arrest in 3T3 fibroblasts and breast cancer cell lines (Rouault et al., 1992, 

Zhu et al., 2013).  I checked the expression of Btg1 in B cell progenitors using the Immgen 

database.  There was a large and striking increase in Btg1 expression at the transition from 

the large cycling (FrC’) to resting (FrD) pre-B cell stage (figure 5.13).  ChIP-seq data 

confirmed that Ikaros binds to the promoter of Btg1 in B3 cells and Btg1 expression was 

significantly upregulated 48 hours after the introduction of Ikaros into these cells (Ferreiros-

Vidal et al., 2013).  Further investigation of this gene may be warranted to better 

understand its role in the regulation of the cell cycle in pre-B cell development.      

   

 

 

 

Figure 5.14 shows the overlap between the significantly downregulated genes for each 

condition relative to control.  The GO terms associated with gene sets overlapping the 

‘Ikaros’ and ‘Ikaros + SSeCKS’ conditions related to adhesion and migration.  The integrin 

Itgae was found in this dataset, consistent with the suppression of integrin expression and 

signalling by Ikaros in pre-B cells (Joshi et al., 2014).  Genes downregulated in the ‘SSeCKS’ 

and ‘Ikaros + SSeCKS’ conditions displayed highly significant GO terms associated with cell 

cycle regulation, division and transcriptional regulation.  The mitogen activated protein 

kinase Mapk7 (ERK5) was downregulated upon SSeCKS overexpression.  The ERK5 signalling 

Figure 5.13 – Btg1 expression in pre-B cell development. Graph showing the expression of Btg1 
in different stages of pre-B cell development based on microarray data available from 
immgen.org.  The cycling (frC’) and resting (FrD) pre-B cell stages are highlighted by arrows. 
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cascade can upregulate the expression of Ccnd1 (Mulloy et al., 2003).  Consistent with this 

observation, Ccnd1 was also included in the ‘SSeCKS’ and ‘Ikaros + SSeCKS’ downregulated 

datasets.  Thus SSeCKS may be able to control the expression of Ccnd1 via multiple ERK 

pathways and regulate the subcellular localisation of cyclin D1 protein by direct binding (Lin 

et al., 2000).   

 

The cyclin-dependent kinases Cdk4, Cdk6 and Cdk2 were all significantly repressed in the 

‘SSeCKS’ and ‘Ikaros + SSeCKS’ datasets, consistent with the cell cycle arrest observed in 

Ikaros and SSeCKS overexpressing cells.  There appeared to be a downregulation of multiple 

members of the E2F family of transcription factors.  E2f2 and E2f3 encode pro-proliferative 

transcriptional activators, required for progression into S phase.  E2f4, E2f7 and E2f8 encode 

repressive members of the E2F family that antagonise E2F1 target gene transcription and 

cell cycle progression (DeGregori and Johnson, 2006).  A global downregulation of E2f genes 

was also observed in B3 cells in response to Ikaros induction (Ferreiros-Vidal et al., 2013).  It 

would be interesting to see whether this transcriptional profile is represented in the protein 

expression of these family members.  Western blot analysis of Ikaros-arrested murine 

leukaemic T cells failed to observe down regulation of E2F1 protein (Kathrein et al., 2005), 

though there may be differences detected in other members of the E2F family.    

   

 



Chapter 5  

 

147 

 

 

 

 

 

There were 651 repressed genes that overlapped between all 3 conditions.  These were 

associated with the GO terms ‘Chromatin & nucleosome assembly’ and ‘ribosome 

biogenesis’.  The genes downregulated in this dataset included Myc, and the metabolic 

genes Hk2 and Ldha that were previously identified as Ikaros and SSeCKS regulated genes by 

qPCR (figure 5.9A).  There was a striking downregulation of many histones in this dataset.  

This is likely because the majority of histones are transcribed during S phase and the cells in 

this experiment are arrested in G1 (Gunjan et al., 2005).  The ribosome biogenesis GO term 

is likely explained by the strong repression of Myc transcription by Ikaros and SSeCKS.  Myc 

is a regulator of multiple steps in the biogenesis of ribosomes and can globally influence 

protein translation in the cell (Riggelen et al., 2010).     

Figure 5.14 – Top downregulated genes. Venn diagram displaying the overlap of genes 
significantly downregulated between ‘Ikaros’ (+Dox +4-OHT, blue), ‘SSeCKS’ (-Dox +EtOH, yellow) 
and ‘Ikaros + SSeCKS’ (-Dox +4-OHT, green) conditions relative to control.  The numbers in each 
segment indicate the number of genes overlapping each condition.  The boxes indicate the GO 
terms associated with each gene set. 
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One gene that stood out as particularly interesting was the transcription factor AP4 (Tfap4).  

Tfap4 was strongly repressed by both Ikaros and SSeCKS displaying a log2 fold repression of 

-3 and -2.5 respectively.  AP4 is a pro-proliferative transcription factor that is directly 

upregulated by Myc in an array of different cell types (Jung and Hermeking, 2009).  AP4 

directly represses the transcription of Cdkn1a, and knockdown of Tfap4 in MCF-7 breast 

cancer cells partially ablated Myc-mediated S phase progression (Jung et al., 2008).  Ectopic 

expression of AP4 in these cells was sufficient to override p53-mediated cell cycle arrest in 

response to DNA damage (Jung et al., 2008).  Furthermore, ectopic expression of AP4 in the 

U-937 myelomonoblastic cell line prevented cell cycle withdrawal and differentiation in 

response to TPA treatment (Jung et al., 2008).  Serum deprived AP4-deficient MEFs display 

delayed entry into the cell cycle and defective Cdk2 induction when stimulated by serum 

(Jackstadt and Hermeking, 2014).  Ectopic Myc expression failed to rescue this phenotype, 

suggesting that AP4 was required for Myc-mediated cell cycle progression in response to 

serum stimulation (Jackstadt and Hermeking, 2014).  Reintroduction of AP4 into Tfap4 

knockout MEFs directly upregulated Cdk2 expression and enhanced DNA synthesis 

(Jackstadt and Hermeking, 2014).  This observation is consistent with my RNA-seq analysis 

showing that both Tfap4 and Cdk2 were repressed in G1 arrested S24 fibroblasts in 

response to the induction of Ikaros and SSeCKS.   

 

In lymphocytes Tfap4 expression is highest in proliferating double-negative (DN) thymocytes 

and lowest in resting double-positive (DP) cells (Egawa and Littman, 2011).  During 

thymocyte development, AP4 is required to silence CD4 expression in DN and CD8+ T cells 

(Egawa and Littman, 2011).  AP4 is required for the maintenance of CD8+ T cell proliferation 

in response to antigen stimulation and the maintenance of the metabolic gene program 

instilled by Myc (Chou et al., 2014).  This shows that AP4 can maintain expansion even after 

the depletion of Myc.  In pre-B cells there is a large decrease in Tfap4 expression at the 

transition from the large cycling (FrC’) to resting (FrD) pre-B cells stages (figure 5.15).  The 

promoter of Tfap4 is bound by Ikaros in B3 cells, and microarray data shows that the 

expression of Tfap4 was significantly downregulated after 6 hours of Ikaros induction in 

these cells (Ferreiros-Vidal et al., 2013).  Therefore Tfap4 may be an important regulatory 
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target of Ikaros that must be repressed to terminate the pro-proliferative Myc 

transcriptional program required for pre-B cell differentiation. 

  

 
 

 

 

5.8 Ikaros and SSeCKS synergistically regulate gene expression 

 

I next investigated possible synergistic interactions in the regulation of gene expression by 

Ikaros and SSeCKS.  I first segregated genes that were significantly up or downregulated 

(FDR ≤0.01).  I defined up and downregulated genes as displaying a log2 fold change 

(log2FC) of ≥0 and ≤0 respectively in both the ‘Ikaros’ and ‘Ikaros + SSeCKS’ conditions 

relative to control.  To detect synergistic upregulation I selected for genes that displayed a 

sum log2 fold change of ≥0.5 when I subtracted the log2 fold change of ‘Ikaros’ upregulated 

genes from ‘Ikaros + SSeCKS’ regulated genes.  This is displayed in the following formula:  

 

Synergistically upregulated genes = Log2FC≥0.5 (log2FC ‘Ikaros + SSeCKS’ vs control) – 

(log2FC ‘Ikaros vs control’).   

 

These genes were upregulated to a greater extent when ‘Ikaros and SSeCKS’ were induced 

together than when ‘Ikaros’ was induced alone, resulting in a sum positive log2 fold change.  

This filter yielded 723 genes that were synergistically upregulated by Ikaros and SSeCKS.   

Figure 5.15 – Tfap4 expression in pre-B cell development. Graph showing the expression of 
Tfap4 in different stages of pre-B cell development based on microarray data available from 
immgen.org.  The cycling and resting pre-B cell stages are highlighted by arrows. 
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The significant GO terms associated with this gene set were enriched for GTPase signalling 

and the regulation of Ras signal transduction (figure 5.16).  Included in this set was ScaI, an 

inhibitor of serum response factor (SRF) gene regulation.  SRF is positively regulated by the 

Ras/Raf/Mek/ERK and Rho GTPase pathways in response to serum (Juliano, 2009).  Rho-

stimulated actin stress fibre polymerisation facilitates the nuclear translocation of MAL and 

the activation of SRF transcriptional activity (Juliano, 2009).  SCAI associates with the 

MAL/SRF complex and inhibits the activation of gene expression by this complex, including 

the target gene Itgb1 (Brandt et al., 2009; Juliano, 2009).  Figure 5.17 displays the 

sequencing tracks mapped to the ScaI gene under each condition.  There was a moderate 

increase in ScaI transcript abundance in the ‘Ikaros’ and ‘SSeCKS’ conditions.  ScaI transcript 

was further increased in the ‘Ikaros + SSeCKS’ condition, suggesting a synergistic 

upregulation of this gene. 

 

Interestingly Btg1 was not included in the list of synergistically upregulated genes.  On 

further inspection it appeared that Ikaros and SSeCKS were exerting opposing effects on the 

transcription of this gene.  Btg1 was significantly upregulated by Ikaros but repressed by 

SSeCKS.  When Ikaros and SSeCKS were induced together there was no significant change in 

Btg1 expression.  The consequence of this antagonism is unknown at this time.     

Figure 5.16 – Go terms associated with genes that were synergistically upregulated by Ikaros and 
SSeCKS.  The GO terms associated with synergistically upregulated genes are listed, alongside the 
associated Benjamini Hochberg adjusted significance values (right column).  The terms were 
generated by querying the DAVID functional annotation bioinformatic tool 
(https://david.ncifcrf.gov/) with the list of 723 synergistically upregulated genes. 

https://david.ncifcrf.gov/
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I followed the same logic to detect synergistically repressed genes using the following 

formula:   

 

Synergistically repressed genes = Log2FC≤ -0.5 (log2FC ‘Ikaros + SSeCKS’ vs control) – (log2FC 

‘Ikaros vs control’).   

 

These genes were more repressed when ‘Ikaros and SSeCKS’ were induced together than 

Figure 5.17 – ScaI is synergistically upregulated by Ikaros and SSeCKS. Figure displaying the sequence 
reads mapped to the ScaI gene in the UCSC genome browser (https://genome.ucsc.edu/). The peaks 
display the density of reads mapping to each exon of the ScaI gene in each of the 4 experimental 
conditions.  Larger peaks indicate an increased expression.  The scale on the Y axis is set to the same 
value to aid in the comparison between the conditions.  The Refseq gene transcript is illustrated below 
the custom tracks (exons are indicated by blue shaded boxes) and the 5’-3’ orientation of transcription 
is illustrated by the arrow. 

https://genome.ucsc.edu/


Chapter 5  

 

152 

 

when ‘Ikaros’ was induced alone, resulting in a sum negative log2 fold change.  This filter 

yielded 1108 genes that were synergistically repressed by Ikaros and SSeCKS.   

 

 

The GO terms associated with this gene set were extremely significant and related to the 

cell cycle and cell division (figure 5.18).  Importantly this set of genes included Myc, 

validating the synergistic downregulation of this gene I observed by qPCR and western blot 

in figure 5.9.  The log2 fold change in Myc expression relative to control was -2.6 in the 

‘Ikaros’ condition and -4.1 in the ‘Ikaros + SSeCKS’ condition.  Tfap4 was also synergistically 

repressed, displaying a log2 fold change of -3 in the ‘Ikaros’ dataset and -5.6 in the ‘Ikaros + 

SSeCKS’ set.  Consistent with the repression of Tfap4 expression, Cdk2 and Cdk4 were also 

synergistically downregulated.  The metabolic genes Hk2 and Ldha do not appear in the list 

of synergistically repressed genes.  This is consistent with qPCR analysis showing that there 

was no synergistic repression of these genes by Ikaros and SSeCKS (figure 5.9).  The RNA-Seq 

tracks for the downregulated genes Myc and Tfap4 are shown in figure 5.19.  There is a 

progressive and striking decrease in the reads mapping to these loci upon the introduction 

of SSeCKS and Ikaros into the cells.  The repression is most strongly observed in the ‘Ikaros + 

SSeCKS’ condition, where the peaks are barely detectable compared to the control 

Figure 5.18 – Go terms associated with genes synergistically downregulated by Ikaros and SSeCKS.  
The GO terms associated with synergistically repressed genes are listed, alongside the associated 
Benjamini Hochberg adjusted significance values (right column).  The terms were generated by 
querying the DAVID functional annotation bioinformatic tool with the list of 1108 synergistically 
downregulated genes. 
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condition.  In conclusion, Ikaros and SSeCKS cooperate to silence the expression of Myc in 

fibroblasts, and synergistically regulate the differential expression of hundreds of genes 

involved in processes such as cell cycle, adhesion and migration. 

 
Figure 5.19 – Synergistic downregulation of Myc and Tfap4. Figure displaying the sequence reads mapped 
to the Myc (A) and Tfap4 (B) genes in the UCSC genome browser. The peaks display the density of reads 
mapping to each exon of the genes under the 4 treatment conditions.  Smaller peaks indicate a reduced 
expression.  The scales on the Y axis of each gene are set to the same value to aid in the comparison 
between conditions.  The Refseq gene transcripts are illustrated below the custom tracks (exons are 
indicated by blue shaded boxes) and the 5’-3’ orientation of transcription is illustrated by the arrows. 
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5.9 Discussion 

 

5.9.1 Transcriptional regulation of SSeCKS 
 

SSeCKS is a putative tumour suppressor whose expression appears to be inversely 

correlated with cellular proliferation and transformation.  SSeCKS was first characterised as 

a repressed gene in Src transformed 3T3 fibroblasts (Lin et al., 1995).  SSeCKS expression is 

upregulated in contact inhibited fibroblasts and suppressed in serum-induced S phase 

progression (Nelson and Gelman, 1997).  Distinct promoters induce the expression of two 

widely expressed SSeCKS protein isoforms, alpha and beta, that differ in the N-terminal 

myristoylation domain (Streb et al., 2004).  The alpha promoter is found at the 5’ position of 

exon 1 and the beta promoter is 5’ of exon 3 (Streb et al., 2004).  The expression of these 

isoforms can be induced by dexamethasone and retinoic acid respectively, which facilitate 

cell cycle withdrawal in glioma and vascular smooth muscle cells (Liu et al., 2009; Streb et 

al., 2011).  Hypoxia in human vascular endothelial cells can induce AKAP12/GRAVIN 

expression in a HIF-dependent mechanism (Weissmuller et al., 2014).  AKAP12 is believed to 

prevent angiogenesis in these cells (Weissmuller et al., 2014).  Thus multiple stimuli can 

induce or suppress SSeCKS expression in a wide range of cell types influencing the balance 

between proliferation and quiescence.    

 

Here I showed that Ikaros could bind directly to the promoter of SSeCKS to increase its 

transcription in pre-B cells and fibroblasts.  Based on the location of the Ikaros peaks 

upstream of the first coding exon (figure 5.3A), it is likely that Ikaros binds to the alpha 

promoter of SSeCKS.  The upregulation in transcription induced by Ikaros led to increased 

SSeCKS protein expression that correlated with cell cycle withdraw at 16 and 24 hours post 

4-OHT treatment (figure 5.1 B).  Ikaros appeared to induce both the alpha and beta isoforms 

of SSeCKS, as determined by the intensities of the upper and lower bands by western blot 

(figure 5.1b).  The alpha isoform of SSeCKS encodes the N-terminal myristoylation motif that 

is lacking in the beta isoform.  Myristoylation may facilitate the subcellular localisation of 

SSeCKS to the plasma membrane and endoplasmic reticulum derived vesicles (Streb et al., 
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2004).  It has been previously shown that the chromatin structure of the alpha promoter can 

influence the transcriptional state of the beta isoform.  Sp1/Sp3 transcription factors can 

recruit the histone deacetylase 1 (HDAC1) complex to a GC-box in the alpha promoter of 

SSeCKS, repressing the expression of both SSeCKS isoforms in Src transformed 3T3 cells (Bu 

and Gelman, 2007).  Treatment of these cells with the HDAC inhibitor TSA fully restored 

beta-SSeCKS expression, though histone acetylation was only increased at the alpha 

promoter (Bu and Gelman, 2007).  Ikaros may similarly increase the expression of both 

isoforms of SSeCKS by altering the chromatin environment at the alpha promoter to a 

context more permissive for transcription.  In support of this idea, Ikaros is able to suppress 

position effect variegation of a CD8 transgene in mouse thymocytes by binding to upstream 

regulatory elements (Harker et al., 2002).    

 

The upregulation of SSeCKS by Ikaros appears to coincide with the repression of Myc 

transcription.  Furthermore, I showed that enforced Myc expression was sufficient to 

prevent the upregulation of SSeCKS by Ikaros, and override both Ikaros and SSeCKS-induced 

cell cycle arrest.  Thus it seems that Myc depletion is a prerequisite for the induction of 

SSeCKS transcription and cell cycle withdrawal.  Consistent with these findings is the 

observation that SSeCKS transcription is repressed in Myc transformed fibroblasts (Lin et al., 

1995).  The requirement for Myc depletion appears at odds with the apparent lack of Myc 

binding at the SSeCKS promoter.  The alpha promoter of SSeCKS contains an E-box sequence 

that is bound by USF1 and is required for Src-mediated repression of SSeCKS transcription 

(Bu and Gelman, 2007).  Myc can also bind to E-box sequences, but gel shift assays failed to 

detect Myc binding at this site (Bu and Gelman, 2007).  The repression of SSeCKS may 

therefore be a downstream consequence of Myc transcriptional activity, rather than a direct 

effect of Myc binding.   

 

The expression of AKAP12 is downregulated in a number of myeloid malignancies as a result 

of aberrant promoter hypermethylation (Boultwood et al., 2004; Flotho et al., 2007).  

Treatment of Kasumi-1 acute myeloid leukaemia cells with DNA methyltransferase and 

histone deacetylase inhibitors can reverse this methylation and restore AKAP12 expression 
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(Flotho et al., 2007).  It would be interesting to test the cell cycle profile of Kasumi-1 cells 

with and without AKAP12 expression, and see if Ikaros can arrest proliferation in the 

absence of AKAP12. 

 

5.9.2 Mechanisms of SSeCKS-mediated cell cycle arrest 
 
 
In fibroblasts SSeCKS has been shown to induce proliferative arrest by directly sequestering 

cyclin D1 in the cytoplasm (Lin et al., 2000; Lin and Gelman, 2002).  I attempted to detect an 

association between SSeCKS and cyclin D proteins in pre-B cells following the upregulation 

of SSeCKS protein by Ikaros (figure 5.4A).  No cyclin D2 or cyclin D3 protein was detected 

after immunoprecipitation with an anti-SSeCKS antibody.  The cause of this negative result is 

unknown.  One explanation may be that the interaction between SSeCKS and cyclins is weak 

and that optimisation of the lysis buffer may yield a positive result.  Another potential issue 

is the fact that Ikaros downregulates cyclin D protein expression, thereby reducing the pool 

that can be sequestered by SSeCKS (figure 3.5B&C).  To circumvent the weak interaction by 

pulldown, and depletion of cyclin D protein by Ikaros, I attempted to visualise cytoplasmic 

cyclin D localisation by cellular fractionation before cell cycle arrest (figure 5.4B).  Cyclin D3 

was undetected in the cytoplasm in the control condition, and this was unaffected by the 

induction of Ikaros.  Another explanation for these negative results may be that SSeCKS-

cyclin interactions are cell type specific, and that SSeCKS does not associate with cyclins in 

pre-B cells.  I performed a pulldown in 3T3 fibroblasts using an anti-SSeCKS antibody to test 

this hypothesis.  No cyclin D1 protein was detected after immunoprecipitation however 

(data not shown).       

 

It is possible that the extent of SSeCKS protein upregulation by Ikaros is not sufficiently large 

to detect an association between cyclin D and SSeCKS.  Previous studies outlining 

interactions between SSeCKS and cyclin D1 have utilised S24 cells that highly overexpress 

SSeCKS (Lin et al., 2000; Lin and Gelman, 2002).  Repeating the pulldown experiment in S24 

cells may yield a positive result.  Evidence supporting this idea came from the surprising 
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result that SSeCKS overexpression in S24 cells resulted in an increase in cyclin D2 protein 

(figure 5.7B).  This is possibly due to the stabilisation of cyclin D2 by its association with 

SSeCKS.  There are reports that posttranslational modifications are also important in the 

regulation of SSeCKS function.  Serine phosphorylation by protein kinase C (PKC) 

antagonises the binding between SSeCKS and cyclin D1 and facilitates cyclin D1 nuclear 

translocation (Lin et al., 2000).  SSeCKS is phosphorylated on serine residues during serum 

induced G1/S progression (Nelson and Gelman, 1997) and is hyperphosphorylated and 

degraded in Ras transformed rat fibroblasts (Lin et al., 1996).  PKC phosphorylation also 

regulates the subcellular localisation of SSeCKS, potentially influencing downstream 

signalling (Lin et al., 1996; Lin et al., 2000).  This raises the possibility that posttranslational 

modifications may play an important role in the regulation of the cell cycle by SSeCKS. 

 

It has been previously shown that Ikaros can inhibit pre-B cell proliferation through the 

transcriptional regulation of Myc (Ma et al., 2010).  In the data presented here I have 

demonstrated that Ikaros can bind to the promoter of SSeCKS to upregulate its expression, 

and that SSeCKS overexpression was sufficient to induce cell cycle withdrawal.  I have 

outlined a novel function for SSeCKS by cooperating with Ikaros to silence the expression of 

Myc in fibroblasts.  The evidence for the synergistic regulation of Myc by Ikaros and SSeCKS 

comes from the observation that the overexpression of these two factors together resulted 

in a more severe depletion of Myc mRNA and protein than either factor alone, and caused 

an enhanced arrest of the cell cycle.  From the RNAseq data it appears that Max, the binding 

partner of Myc, is also downregulated by Ikaros but only by a small log2 fold change of -

0.37.  Therefore Myc itself, rather than its binding partner is the main target of repression in 

response to Ikaros overexpression.  

 

The analysis of synergistically downregulated genes by RNA-seq unearthed a shared target 

of Ikaros and SSeCKS that related to Myc function.  The transcription factor AP4 is required 

for the maintenance of the Myc gene expression program in activated CD8+ T cells (Chou et 

al., 2014).  ChIP-Seq analysis revealed that more than 50% of AP4 and Myc peaks 

overlapped in these cells (Chou et al., 2014).  AP4 was required for the upregulation of 
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glycolytic enzymes needed to sustain a prolonged metabolically active and proliferative 

state upon T cell activation (Chou et al., 2014).  This suggests that AP4 may be partially 

required for the metabolic reprogramming controlled by Myc in activated lymphocytes 

(Wang et al., 2011; Karmaus and Chi, 2014).  Evidence in our lab suggests that Ikaros 

reprograms cellular metabolism to a quiescent state.  This is partially mediated through the 

repression of Myc transcription (Ferreiros-Vidal, personal communication).  The repression 

of Tfap4 by Ikaros may contribute to the long-term maintenance of this quiescent state.   

 

The observed downregulation of Tfap4 may be due to direct transcriptional repression by 

Ikaros, by a reduction in the Tfap4 positive regulator Myc, or both.  As sustained Myc 

expression is sufficient to override Ikaros-mediated cell cycle arrest (figure 3.6), it would be 

interesting to test the contribution of AP4 to cell cycle progression.  Enforcing Tfap4 

expression using an overexpression vector could test this idea.  I could induce Ikaros-ERt2 

nuclear translocation in the presence and absence of enforced Tfap4 expression and look at 

the resultant cell cycle profiles.  It is possible that the downregulation of Tfap4 is required 

for differentiation to the small resting pre-B cell stage.  Interestingly AP4 can bind to two 

sites in the promoter of Ikzf3 (Aiolos).  Mutation of these sites reduced luciferase reporter 

construct activity (Ghadiri et al., 2007).  This raises the intriguing possibility that AP4 can 

contribute to the upregulation of Ikaros family members, which in turn regulate Tfap4 and 

Myc expression in a negative feedback loop.  Thus Tfap4 may offer another layer of 

regulation in the interplay between Ikaros and Myc in relation to metabolism, cell cycle and 

differentiation.   

 

Given the observation that the enforced expression of Myc can override the transcriptional 

upregulation of SSeCKS and antagonise cell cycle arrest, we can begin to understand the 

temporal order of events that occur as the cells prepare to exit the cell cycle in response to 

Ikaros activity.  The direct repression of Myc expression by Ikaros is an early event in cell 

cycle withdrawal, occurring less than two hours after the induction of Ikaros activity by 4-

OHT treatment (Ferreiros-Vidal et al., 2013).  Following the depletion of Myc, Ikaros can 

upregulate the expression of SSeCKS.  In turn SSeCKS reinforces cell cycle arrest by 
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cooperating with Ikaros to deplete Myc mRNA and protein in a feedback loop.  In this 

model, the removal of SSeCKS would result in a less efficient (or less sustained) repression 

of Myc and allow the cells to slowly re-enter the cell cycle and proliferate.  I could test this 

model by tracking the kinetics of Myc reexpression in SSeCKS knockdown fibroblasts in a 

time course experiment following the induction of Ikaros-ERt2 activity by 4-OHT. 

 

The mechanism by which SSeCKS represses the transcription of Myc is unclear at this time.  

SSeCKS is unable to enforce transcriptional changes directly, and must indirectly influence 

nuclear signalling through its scaffolding functions.  Integrin binding to the extracellular 

matrix can upregulate Myc expression through the Src/Mek/Erk pathway (Benaud and 

Dickson, 2001).  The expression of Myc is also upregulated in Rho transformed cells 

(Berenjeno et al., 2007).  SSeCKS can inhibit the activity of RhoA in Src transformed 

fibroblasts (Gelman and Gao, 2006).  SSeCKS can also scaffold Src away from focal adhesion 

complexes, preventing adherence-induced ERK activation (Su et al., 2013).  These may 

provide possible explanations for the repression of Myc transcription in response to SSeCKS 

overexpression.   
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Chapter 6  

Discussion 
 

In this report I have given an account of the regulation of the cell cycle by Ikaros.  

Ikaros coordinates the expression of hundreds of genes in multiple pathways 

encompassing the cell cycle, metabolism and integrin-mediated adhesion to enforce 

proliferative arrest and a quiescence-like state in cycling pre-B cells and fibroblasts.  

Ikaros is a tumour suppressor in mice and humans that is able to antagonise the 

hyperproliferative phenotype of cancer cells (Kathrein et al., 2005; Trageser et al., 

2009; Ferreiros-Vidal et al., 2013; Song et al., 2015).  Dysregulated intracellular 

signalling networks, reprogrammed energy metabolism and aberrant proliferation 

are hallmarks of cancer (Hanahan and Weinberg, 2000; Hanahan and Weinberg, 

2011).  Genomic instability results in the deletion of IKZF1 in over 80% of Ph+ 

patients and correlates with poor prognosis (Mullighan et al., 2008; Mullighan et al., 

2009).  The tumour suppressive function of Ikaros may be linked to its role in cell 

cycle regulation so it is important to investigate this further.     

 

I showed that Ikaros is able to repress the expression of Myc in fibroblasts, which is a 

key Ikaros target gene in pre-B cells (Ma et al., 2010; Ferreiros-Vidal et al., 2013).  I 

demonstrated that enforced Myc expression was sufficient to override Ikaros-

mediated cell cycle arrest.  This indicates that Myc is a major focal point in the 

regulation of the cell cycle by Ikaros and that Myc downregulation is required for 

proliferative arrest.  This result was consistent with the ability of Myc to override 

Aiolos-mediated arrest in pre-B cells (Ma et al., 2010).  Insensitivity to growth-

arresting signals is a phenotype commonly observed in Myc transformed cells.  DNA 

damage stabilises the tumour suppressor p53, which arrests cells in G1 by 

upregulating the cell cycle inhibitor p21.  Sustained Myc expression is able to induce 

inappropriate S phase progression in the presence of DNA damage by upregulating 

cyclin expression and promoting the hyperphosphorylation of RB (Sheen and 

Dickson, 2002).  Activation of an inducible MycER construct in early G1 is sufficient to 
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override the growth inhibitory signalling of TGF-beta (Alexandrow et al., 1995).  The 

expression of Myc is tightly regulated and is induced by mitogenic signalling (Waters 

et al., 1991).  Myc overexpression mimics pro-proliferative signalling and commits 

cells to inappropriate division by bypassing the serum-dependent restriction point in 

G1 phase (Eilers et al., 1991).  In lymphocyte development, the silencing of Myc by 

Ikaros and Aiolos contributes to proliferative arrest in large cycling pre-B cells (Ma et 

al., 2010).  Cell cycle arrest is required for the fidelity of immunoglobulin receptor 

rearrangement by Rag proteins (Zhang et al., 2011).  Failure to arrest may result in a 

developmental block at a stage of virtually unlimited proliferative potential with a 

high degree of genomic instability.  Thus the regulation of the cell cycle by Ikaros, 

mediated partly through the repression of Myc transcription, is essential for the 

orderly differentiation of B cell precursors.  This may go some way to explaining the 

high incidence of IKZF1 deletions observed in leukaemia.  

 

Although much progress has been made in elucidating the role of Ikaros in the 

regulation of the cell cycle, our understanding remains incomplete.  Ikaros is able to 

bind key cell cycle regulatory genes to directly control their expression (Ferreiros-

Vidal et al., 2013).  It is unclear if Ikaros acts alone to regulate cell cycle gene 

expression.  Perhaps Ikaros requires cofactors and epigenetic remodelers, or it 

competes for binding with other transcription factors.  The decision to remain 

quiescent or proliferate is a balance between a range of multiple competing signals 

that must be coordinated and integrated to ensure an appropriate and coherent 

response.  It is of great interest to understand how Ikaros is able to coordinate these 

signals to enforce proliferative arrest.  I performed a large-scale shRNA screen to find 

factors that are required for Ikaros-mediated cell cycle arrest in fibroblasts.  Amongst 

some interesting candidates I identified the scaffolding protein SSeCKS.  I 

demonstrated that SSeCKS is a direct transcriptional target of Ikaros in pre-B cells 

and fibroblasts and that knockdown of SSeCKS by RNAi was sufficient to alleviate 

Ikaros-enforced proliferative arrest.  SSeCKS is not a transcription factor so cannot 

directly regulate the cell cycle machinery.  Instead it acts as a molecular scaffold to 
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physically tether signalling molecules together in time and space.  Scaffolding 

proteins are involved in diverse cellular processes and can positively or negatively 

regulate signalling pathways (Good et al., 2011; Shaw and Filbert, 2009).  Scaffolds 

can facilitate cross talk between molecules, potentially integrating multiple signals to 

produce a desired outcome (proliferation or quiescence for example).  Despite 

lacking intrinsic enzymatic activity, scaffolds regulate the activity of other molecules 

to influence the relay of information from the membrane to the nucleus (Good et al., 

2011).  Depletion of these proteins can cause a dysregulation of intracellular 

signalling and result in inappropriate proliferation.  Thus the study of scaffolding 

proteins may have relevance to our understanding of the processes underlying 

quiescence and malignancy.  One example of a scaffolding protein with an important 

role in the regulation of the cell cycle is BRCA1.  Following exposure to ionising 

radiation, the DNA damage sensor ATM phosphorylates the BRCA1 tumour 

suppressor.  BRCA1 can then serve as a scaffold by binding to p53 and facilitating its 

phosphorylation by ATM (Fabbro et al., 2004).  siRNA knockdown of BRCA1 prevents 

p53-dependent upregulation of p21, resulting in inappropriate cell cycle progression 

(Fabbro et al., 2004).  Talin is an example of another scaffolding protein that links 

integrin adhesion complexes to cell cycle progression.  Talin depletion results in the 

failure to tether FAK to adhesion complexes and compromises integrin-mediated 

proliferation (Wang et al., 2011).  SSeCKS scaffolds Src away from FAK complexes in 

lipid rafts, disengaging Src and FAK complexes from activation of the ERK pathway 

(Su et al., 2013).  This presumably accounts for the depletion of Ccnd1 observed 

upon SSeCKS expression in fibroblasts (Lin et al., 2000).  These examples illustrate 

the essential requirement for scaffolding proteins in the regulation of cellular 

proliferation and quiescence. 

 

When considering the role of Ikaros in proliferative arrest it may be useful to 

differentiate between quiescence, a reversible non-proliferative state of cells that 

have exited the cell cycle, and G1 checkpoint arrest.  Although quiescent cells have 

the same 2n DNA content as G1 cells, they do not immediately re-enter the cell cycle 
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upon mitogenic stimulation.  This was demonstrated by recording the time it took 

for each division in 3T3 fibroblasts following a period of serum starvation (Zetterberg 

and Larsson, 1985).  Cells in early G1 (less than 3 hours after mitosis) required an 

additional 8 hours to progress through G1 phase following the re-addition of serum 

than cells in late G1.  This time lag was attributed to a reversible exit of the cell cycle 

to the G0 state (Zetterberg and Larsson, 1985).  Quiescence is not a passive state 

characterised by an absence of proliferation, instead it is actively maintained and 

transcriptionally distinct from proliferating G1 cells (Coller et al., 2006).  The Rb-E2F 

pathway is suggested to act as a bistable switch governing the quiescence-

proliferation transition (Yao et al., 2008).  A minimal module governing this 

transition consists of a mutual inhibition loop between Rb and E2F and a 

feedforward input from Myc (Yao, 2014).  This module converts graded and transient 

serum signalling into a binary all-or-nothing commitment to the cell cycle (Yao, 

2014).  The RNAseq data I obtained showed that Ikaros and SSeCKS could control the 

expression of Myc and E2f members that comprise this module.  They can also 

downregulate the expression of cyclins and cyclin-dependent kinases that function 

as positive inputs into the E2F switch (Yao, 2014).   

 

The delayed entry into the cell cycle displayed by quiescent cells is explained in part 

by the requirement to reform pre-replication complexes (pre-RC) at origins of 

replication (Coller, 2007).  Origins are licensed for replication in G1 phase by the 

sequential assembly of CDC6 and CDT1 to the origin recognition complex (ORC), 

followed by loading of the replicative helicase MCM2-7 (Coller, 2007).  Members of 

the pre-RC are downregulated in quiescent cells and are no longer bound to 

chromatin (Kingsbury et al., 2005).  Following serum stimulation the formation of the 

pre-RC precedes cell cycle entry and the reacquisition of proliferative capacity 

(Kingsbury et al., 2005).  Cdc6, Cdt1, Mcm2-5 and Mcm7 all appear in the list of 

genes synergistically downregulated by Ikaros and SSeCKS in the RNAseq data, 

suggesting that Ikaros can antagonise DNA synthesis.  Ikaros also colocalises with the 

replication machinery at sites of late replicating heterochromatin in activated T cells 
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(Avitahl et al., 1999).  In this capacity Ikaros may regulate the accessibility of DNA to 

the replication machinery.  These observations suggest the idea that Ikaros does not 

simply ‘slow down’ G1 progression through checkpoint arrest but instead induces a 

‘deeper’ G0 state of quiescence that increases the threshold required to re-enter 

proliferation (Yao, 2014).  This idea could be explored further by looking at the 

chromatin bound fraction of pre-RC members in pre-B cells and fibroblasts following 

Ikaros and SSeCKS induced cell cycle arrest.                       

 

In the data presented here I have shown that SSeCKS can negatively regulate cell 

cycle progression by repressing the expression of Myc.  This provides an additional 

mechanism for the repression of Myc by Ikaros.  Ikaros can upregulate the 

expression of SSeCKS to synergistically silence the expression of Myc.  A potential 

model for the regulation of the cell cycle in pre-B cells is outlined in figure 6.1.  This 

hypothetical model is based partly on the experimental data I have provided and 

inferences gleaned from the literature.  My data shows that in addition to Myc, 

Ikaros and SSeCKS can synergistically regulate the expression of hundreds of other 

genes to enforce a quiescence-like state.  Whilst the downregulation of Myc is 

important, it is unlikely to be the only requirement for cell cycle withdrawal.  AP4 

(Tfap4) is required to maintain the clonal expansion of activated lymphocytes after 

the initial transient peak in Myc expression has subsided (Chou et al., 2014).  By 

RNAseq analysis I showed that Tfap4 is also synergistically repressed by Ikaros and 

SSeCKS.  It is likely that Ikaros can regulate many parallel pathways through Myc-

dependent and independent mechanisms.  Removal of Ikaros or SSeCKS may result 

in a loss of growth suppression and cause aberrant proliferation (figure 6.1B).  In the 

context of pre-B cell development this could cause a block in differentiation at the 

large cycling pre-B cell stage.  It is therefore important to study the role of SSeCKS in 

the development of pre-B cells to better understand the nature of Ikaros as a 

suppressor of leukaemia.   
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6.1 Reflections and future directions 

 

I performed an RNAi screen to probe Ikaros function in the regulation of the cell 

cycle.  Advances in RNAi technology and next generation sequencing placed the 

possibility of performing large-scale loss of function screening within reach of the 

individual researcher.  The pooled format of the screen allowed the simultaneous 

interrogation of thousands of genes that may contribute towards cell cycle arrest.  

By comparing the relative enrichment of each shRNA it was possible to identify 

genes that were required to cooperate with Ikaros to enforce cell cycle arrest.  More 

recent technological advancements in genome editing technology have opened up 

new avenues of research by performing loss of function screens using clustered, 

regularly interspaced, short palindromic repeats coupled with Cas9 nuclease 

(CRISPR-Cas9).  In this system a single-guide RNA (sgRNA) directs Cas9 double strand 

cleavage at homologous target loci.  Indel mutations can arise from non-homologous 

end joining (NHEJ) repair of the double strand breaks.  An array of sgRNA libraries 

have been developed that can systematically screen thousands of genes in positive 

Figure 6.1 - A balance between pro- and anti-proliferative signals determines the decision 
to cycle or remain quiescent.  (A) As the cells enter into the resting pre-B cell stage (FrD) 
pre-BCR signalling upregulates the expression of Ikaros family members which in turn 
downregulate pre-BCR signalling in a feedback loop.  Ikaros is able to repress the expression 
of Myc and cyclin-dependent kinases and upregulate the expression of Cdkn1b and SSeCKS.  
SSeCKS cooperates with Ikaros to synergistically arrest the cell cycle.  SSeCKS can 
potentially scaffold cyclin D in the cytoplasm and silence the expression of Myc through 
unknown mechanisms (dotted arrow).  SSeCKS may disengage the activation of ERK by 
scaffolding Src away from adhesion junctions.  Decreased ERK activity may partially 
compromise signalling downstream of cytokine, growth factor and integrin receptors (gray 
arrows), resulting in the depletion of Myc and entrance into a quiescent state. (B) Ikzf1 
deletions could alter the balance in favour of proliferation.  The induction of negative 
regulators of the cell cycle could be compromised and pro-proliferative signals could be 
enhanced (Illustrated by thicker arrows). The dysregulation of Myc could promote 
inappropriate cell cycle progression, increasing the likelihood of further genomic instability 
and leukaemogenesis. Ikzf1=Ikaros, Ikzf3=Aiolos, Cdkn1b=p27, ECM= extracellular matrix.   
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and negative selection loss of function screens (Sander and Joung, 2014).  Such 

screens have been employed to enrich for factors that confer resistance to etoposide 

treatment in human leukaemic cell lines (Wang et al., 2014) and resistance to a BRAF 

protein kinase inhibitor in melanoma (Shalem et al., 2014).  One advantage of 

CRISPR-Cas9 over RNAi is that it can result in gene knockout, as opposed to partial 

gene knockdown.  This can ensure a complete loss of gene function.  CRISPR-Cas9 

can also be targeted to elements across the genome such as promoters, enhancers 

and introns.  In other developments, catalytically inactive Cas9 can be fused to 

repressive chromatin modifying domains to silence gene transcription without 

deleting the gene (Gilbert et al., 2013).  Modifications to the sgRNA structure can 

facilitate the recruitment of an RNA binding protein, which in turn is fused to the 

transcription activation domains of different mammalian transcription factors 

(Konermann et al., 2015).  This can allow a systematic gain of function screen by 

activating the expression of a library of genes and non-coding RNAs (Konermann et 

al., 2015).  The creation of Cas9 transgenic mice has also opened up the possibility of 

performing in vivo sgRNA screens (Platt et al., 2014).  CRISPR-Cas9 does suffer from a 

similar potential for off-target effects as RNAi (Fu et al., 2013).  Mismatches outside 

of the essential ‘seed region’ of the sgRNA can lead to off-target activity (Jiang et al., 

2013).  Modified Cas9 ‘nickases’ have been developed that produce single strand 

nicks and can substantially reduce off target effects (Ran et al., 2013).  This is 

because double strand breaks require simultaneous cleavage by two closely spaced 

Cas9 enzymes.  Individual off target nicks are efficiently repaired by base excision 

repair (Ran et al., 2013).  The ease and versatility of CRISPR-Cas9 technology means 

that it is becoming the tool of choice for performing genetic screens.  For these 

reasons I would likely use this technology to perform future loss of function screens. 

 

The analyses I have presented here have shone some light onto the complex 

mechanisms governing Ikaros-enforced cell cycle arrest.  There are some areas 

however that could be given further consideration.  The most obvious limitation of 

my study is that most of the experiments were performed in a reductionist system in 
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which Ikaros is not endogenously expressed.  Ikaros regulates SSeCKS in pre-B cells 

and its expression is increased at the transition to the resting pre-B cell stage (FrD) 

(Immgen.org).  This suggests that SSeCKS cooperates with Ikaros to enforce cell cycle 

arrest at this stage of pre-B cell development.  In future work, I would like to 

demonstrate that SSeCKS is necessary and sufficient for Ikaros-mediated cell cycle 

arrest in pre-B cells.  Non-adherent cell types are not suited to colony formation 

assays so I could detect proliferation rates more directly by PI staining or EdU 

incorporation.  I could deplete SSeCKS in these cells using shRNA knockdown or 

CRISPR-Cas9 deletion to show the necessity of SSeCKS function in cell cycle arrest.  

To show that SSeCKS is sufficient to induce cell cycle arrest in pre-B cells I could use 

an SSeCKS overexpression construct similar to the TET regulated system in S24 cells.  

I could also potentially use the modified transactivating Cas9 to induce SSeCKS 

expression in pre-B cells (Konermann et al., 2015).  I would like to dissect the 

possible pathways that SSeCKS can use to enforce cell cycle arrest.  SSeCKS may 

downregulate Myc expression through the attenuation of serum-induced ERK 

activation (Lin et al., 2000).  This could be tested by performing western blot with an 

antibody that recognizes active phosphorylated ERK using lysates obtained from cells 

arrested by Ikaros or SSeCKS.  The use of MEK inhibitors could simulate SSeCKS 

overexpression by downregulating the expression of Myc and preventing entry into S 

phase (Cheng et al., 1999; Marampon et al., 2006).  I showed that enforced 

expression of Myc was sufficient to override the cell cycle arrest induced by either 

Ikaros or SSeCKS.  It would be interesting to test whether the combined action of 

Ikaros and SSeCKS together is sufficient to induce cell cycle arrest in the presence of 

enforced Myc expression.  This could be achieved by transducing S24 cells with the 

inducible Myc-ERt2 and Ikaros-ERt2 expression constructs followed by cell cycle 

analysis.  Focusing on the shRNA data, it would be useful to conduct a secondary 

screen in a manner outlined in 4.6.2 to identify further candidates required for 

Ikaros-induced cell cycle arrest.  Finally a more nuanced analysis of the RNAseq data 

could be implemented.  It would be interesting to compare the lists of differentially 

expressed genes in Ikaros and SSeCKS arrested cells with other publicly available 
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datasets analysing the transition from quiescence to proliferation in fibroblasts and 

haematopoetic cells.  It may be possible to deduce an Ikaros and SSeCKS signature in 

the gene expression data that regulates this transition.     
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Figure S.1 GO terms for enriched hits from the ERt2 system.  

Figure S.2 GO terms for enriched hits using the MSCV-Ikzf1 expression system.  The DAVID tool 
was queried using the top enriched hits that were bound by Ikaros (A) or not bound by Ikaros (B).  
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Figure S.3 GO terms for depleted hits using the MSCV-Ikzf1 expression system.   
 

Figure S.4 Kegg pathway terms for Ikaros bound hits   
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Figure S.5 Western blot for cyclin D1 
expression in 3T3 cells and B3 cells 
 

Figure S.6 PI profiles of primary pre-B cells treated for 48 hours with EtOH, 4-OHT, DMSO or ATRA. 
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