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Amines vs. N-Oxides as Organocatalysts for Acylation, 

Sulfonylation and Silylation of Alcohols: 1-Methylimidazole-N-

oxide as an Efficient Catalyst for Silylation of Tertiary Alcohols 

James I. Murray and Alan C. Spivey*[a] 

Abstract: A comparison of the relative catalytic efficiencies of Lewis-

basic amines vs. N-oxides for the acylation, sulfonylation and 

silylation of primary, secondary and tertiary alcohols is reported. 

Whilst the amines are generally superior to the N-oxides for acylation, 

the N-oxides are superior for sulfonylation and silylation. In particular, 

1-methyl-imidazole-N-oxide (NMI-O) is found to be a highly efficient 

catalyst for sulfonylation and silylation reactions. To the best of our 

knowledge, NMI-O is the first amine or N-oxide Lewis basic 

organocatalyst capable of promoting the efficient silylation of tert-

alcohols in high yield with low catalyst loading under mild reaction 

conditions. 

The development of Lewis basic organocatalysts for the acylation, 

sulfonylation and silylation of alcohols has received much 

attention from the synthetic organic community over the past 

decade.[1] A particular focus has been the development of chiral 

catalysts based on N-heterocycles, phosphines, N-heterocyclic 

carbenes and alcohols.[2-9] Whilst these catalysts have been 

primarily evaluated on their ability to impart enantioselectivity, the 

intrinsic Lewis basicity of their cores strongly impacts on their 

catalytic efficiency. Data relating to the efficiency of these 

catalophores[10] is generally inferred from the performance of the 

appropriate small molecule unsubstituted achiral Lewis bases.[11-

13] Although some comparative studies have been reported for 

specific reaction types, e.g. for acylation[14-17] and for silylation[18] 

to the best of our knowledge, a comparative study of the relative 

abilities of the most commonly used N-heterocycles to catalyse 

acylation, sulfonylation and silylation of alcohols has not been 

reported. We considered that comparative data of this type would 

be valuable to allow selection of the optimal Lewis base for a 

given transformation and might also provide insight into preferred 

structural features for particular types of transformations. 

We have recently reported the use of pyridine-N-oxide[19] 

and particularly 2-aryl-4-dimethylaminopyridine-N-oxide 

derivatives[20] as highly efficient Lewis base catalysts for the 

phosphorylation of alcohols by phosphoryl chlorides to give the 

corresponding phosphates. We expected that pyridine-N-oxide 

and other N-oxides would also act as efficient catalysts for the 

formation of carboxylic esters, sulfonic esters and silyl ethers from 

alcohols and the appropriate acyl-, sulfonyl- and silyl chlorides,[21] 

and sought to benchmark their activity against the most commonly 

used Lewis-basic amine catalysts (Figure 1).  

 

Figure 1. Amines and N-oxides evaluated as catalysts in this study. 

Herein, we report the results of a systematic comparison of 

the performance of five amines (1–5) and three N-oxides (6–8) as 

catalysts for the acylation, sulfonylation and silylation of primary 

alcohol 9a, sec-alcohol 9b and tert-alcohol 9c using acyl chloride 

10 (Table 1), sulfonyl chloride 12 (Table 2) and silyl chloride 14 

(Table 3), respectively. 

The study reveals for the first time, that 1-methyl-imidazole-

N-oxide (NMI-O, 8) is a highly efficient catalyst for the 

sulfonylation and silylation of alcohols, including tert-alcohols. 

NMI-O has been prepared previously during an investigation into 

the use of its salts as components of ionic liquids, but in that work 

it was prepared via an 8 step synthesis from glyoxal.[22] By 

contrast, we prepared NMI-O (8) directly from glyoxal in 48% 

overall yield (Scheme 1).[22-25][22–25] 

 

Scheme 1. Synthesis of 1-methyl-imidazole-N-oxide (NMI-O, 8) from glyoxal. 

Our initial studies focused on evaluating the efficiency of 

catalysts 1-8 (5 mol%) in the acylation of alcohols 9a-9c using 

hydrocinnamyl chloride (10) as the electrophile and 

pentamethylpiperidine (PMP) as a non-nucleophilic stoichiometric 

base in chloroform (0.1 M) at RT for 30 min (Table 1). 
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Table 1. Acylation of alcohols 9a-c with acyl chloride 10. 

 

Entry Catalyst[a] 

 Yield (%)[b]  

11a[c] 11b[d] 11c[c],[e] 

1 None (No base) 51 (15) 10 (0) 0 (0) 

2 1 83 30 0 

3 2 83 20 0 

4 3 92 27 0 

5 4 84 55 0 

6 5 54 13 0 

7 6 73 13 0 

8 7 67 29 0 

9 8 49 14 0 

[a] These remained unaltered at the end of the reactions as evidenced by 1H 

NMR of the crude reaction mixtures after quenching into MeOD-d4. [b] 

Determined by 1H NMR of crude reaction mixtures after quenching. [c] Using 

1,3,5-trimethoxybenzene as internal standard. [d] Using 1,3,5-mesitylene as 

internal standard. [e] No reaction occurred even after 24 h, alcohol 9c recovered 

quantitatively. PMP = 1,2,2,6,6-pentamethylpiperidine. 

 

General base catalysis by the stoichiometric PMP accounted for 

10% conversion for the acylation of sec-alcohol 9b, and this along 

with some uncatalysed reaction accounted for 51% conversion of 

primary alcohol 9a under the conditions used (Entry 1). 1,4-

Diazabicyclo[2.2.2]octane (DABCO, 1), pyridine (2), 4-

dimethylamino pyridine (4-DMAP, 3), NMI (4) and 4-DMAP-N-

oxide (7) were all catalytically active for both substrates (Entries 

2-5 and 8). Interestingly, whilst 4-dimethylaminopyridine (4-DMAP, 

3) proved the most efficient catalyst in the acylation of primary 

alcohol 9a (92% conversion, Entry 4), N-methylimidazole (NMI, 4) 

was the most effective catalyst in the acylation of sec-alcohol 9b 

(55% conversion, Entry 5). Pyridine-N-oxide (6) was catalytically 

active only for primary alcohol 9a (Entry 8), and NMI-O (8) and 

Okamoto’s isothiourea 5 were essentially catalytically inactive 

(Entries 9 and 6). Acylation of tert-alcohol 9c was not achieved by 

any catalyst under the conditions described; no conversion was 

observed after 24 h in all cases and starting alcohol 9c was 

recovered quantitatively. 

Sulfonyl chloride 12 was then utilized as the electrophile for 

evaluation of the same eight catalysts in the sulfonylation of 

alcohol 9a under conditions otherwise identical to those used for 

acylation. However, complete conversion to sulfonate ester 13a 

(>99%) was observed for all catalysts, demonstrating that 

sulfonylation is significantly faster than acylation under these 

conditions. To allow evaluation of catalyst activity, subsequent 

sulfonylation reactions with alcohols 9a-c were therefore 

conducted at lower concentration (0.05 M) and lower catalyst 

loading (2.5 mol%, Table 2). 

Table 2. Sulfonylation of alcohols 9a-c using sulfonyl chloride 12. 

 

Entry Catalyst[a] 

 Yield (%)[b]  

13a 13b 13c 

1 None (No base) 61 (0) 56 (0) 0[c] (0[d]) 

2 1 73 80 0[c] 

3 2 68 63 0[c] 

4 3 89 >99 0[c] 

5 4 75 65 0[c] 

6 5 90 77 0[c] 

7 6 75 62 0[c] 

8 7 84 87 0[c] 

9 8 97 93 0[c] 

[a] These remained unaltered at the end of the reactions as evidenced by 
1H NMR of the crude reaction mixtures after quenching into MeOD-d4. [b] 

Determined by 1H NMR of crude reaction mixture after quenching and using 

1,3,5-trimethoxybenzene as internal standard. [c] <10% alcohol 9c was 

recovered in these reactions; a complex mixture of the derived chloride, 

indane and alkenes was formed, see SI for details. [d] No reaction occurred, 

alcohol 9c recovered quantitatively. PMP = 1,2,2,6,6-pentamethylpiperidine. 

Under these sulfonylation conditions, general base catalysis 

by the stoichiometric PMP accounted for 56% and 61% 

conversion for the reactions of sec-alcohol 9b and primary alcohol 

9a, respectively (Entry 1). Broadly speaking, N-oxides 6-8 

provided slightly superior rate enhancements relative to amines 

1-5. NMI-O (8, Entry 9) proved the most efficient catalyst for the 

sulfonylation of primary alcohol 9a and highly effective for the 

sulfonylation of sec-alcohol 9b (although it was outperformed by 

4-DMAP, Entry 4). Interestingly, both general base promoted (i.e. 

in absence of catalysts, entry 1), and Lewis base promoted (i.e. 

in the presence of the catalysts, entries 2-9) sulfonylations of sec-

alcohol 9b were found to occur at comparable rates to those of 

primary alcohol 9a. This is in contrast to the analogous acylation 

process, for which the primary alcohol was significantly more 

reactive than the secondary alcohol (cf. Table 1) indicating that 

the steric environment of the alcohol nucleophile plays a lesser 

role in these sulfonylation reactions as compared to the acylation 

reactions. Consistent with this trend, although the product of 

sulfonylation of tert-alcohol 9c (i.e. compound 13c) could not be 

isolated using any of the conditions evaluated, its transient 

formation in all the reactions was manifested by the poor recovery 

of alcohol 9c (<10%) and the formation of a complex mixture of 

secondary products including: (3-chloro-3-methylbutyl)benzene, 
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1,1-dimethyl-2,3-dihydro-1H-indene, (3-methylbut-3-en-1-

yl)benzene and (3-methylbut-2-en-1-yl)benzene (see SI for 

details). Sulfonyl esters of tert-alcohols are known to be highly 

labile and prone to elimination,[26] but the notably low levels of 

alcohol recovery under our conditions suggest that probably one 

or more of the secondary products in these reactions reacts 

further to consume additional starting alcohol 9c. 

 Silyl chloride 14 was then utilized as the electrophile for 

evaluation of the array of catalysts in the silylation of alcohols 9a-

c. These reactions proved to be the most rapid of those studied 

and so although the conditions employed were identical to those 

used for sulfonylation, these reactions were quenched after just 5 

min for the primary and secondary alcohols (cf. 30 min for 

sulfonylation) and after 4 h for the tertiary alcohol substrate (Table 

3). 

Table 3. Silylation of alcohols 9a-c using silyl chloride 14. 

 

Entry Catalyst[a] 

 Yield (%)[b]  

15a[c] 15b[d] 15c[c],[e] 

1 None (No base) 53 (0) 32 (0) 0 (0) 

2 1 53 51 29 

3 2 60 42 35 

4 3 >99 75 34 

5 4 66 53 30 

6 5 >99 74 32 

7 6 83 56 40 

8 7 75 73 38 

9 8 >99 >99 72 

[a] These remained unaltered at the end of the reactions as evidenced by 1H 

NMR of the crude reaction mixtures after quenching into MeOD-d4. [b] 

Determined by 1H NMR of crude reaction mixtures after quenching. [c] Using 

1,3,5-trimethoxybenzene as internal standard. [d] Using 1,3,5-mesitylene as 

internal standard. [e] Reaction time increased to 4 h. PMP = 1,2,2,6,6-

pentamethylpiperidine. 

Silylation of all three alcohol substrates, including tert-alcohol 9c, 

was achieved. Whilst primary alcohol 9a could be silylated 

quantitatively using 4-DMAP, Okamoto’s isothiourea 5 and NMI-

O (8) (entries 4, 6 and 9), clearly the most efficient catalyst for 

both the sec-alcohol 9b and the tert-alcohol 9c was NMI-O (8, 

entry 9). Indeed, although 4-DMAP (3) was generally more 

efficient than 4-DMAP-N-oxide (7), both pyridine-N-oxide (6) and 

NMI-O (8) were more effective than their parent heterocycles 2 

and 4 in these processes (cf. entries 3-5 vs. 7-9). The 

performance of NMI-O (8), particularly as an efficient catalyst for 

the silylation of tert-alcohol 9c is striking and noteworthy, giving 

72% conversion after 4 h. 

The preparation of silyl ethers of tert-alcohols has attracted 

significant levels of attention since the synthetic potential of silyl 

protecting groups (PGs) was first recognised in the 1970s.[27] The 

introduction of even the minimally bulky trimethylsilyl (TMS) group 

onto tert-alcohols is non-trivial and often inefficient using TMS-Cl 

under standard Lewis base promoted conditions, e.g. TMS-Cl (1.2 

eq.), imidazole (2.5 eq.) in DMF.[28] Consequently, alternative 

reagents and conditions have been developed for preparation of 

TMS ethers of tert-alcohols,[29-34] of which the use of (TMS)2NH 

(0.8 eq.), iodine (1 mol%) in DMF[35] is amongst the most mild and 

economic. 

For the formation of silyl ethers of tert-alcohols with more 

bulky silyl PGs such as triethylsilyl (TES)[36] and tert-

butyldimethylsilyl (TBS)[28] ethers, which are synthetically more 

useful than TMS ethers due to their improved stability towards 

acids and bases,[37-39] silyl triflate and silyl perchlorate reagents 

are generally relied upon [e.g. TBS-OTf (1.5 eq.), 2,6-lutidine (2 

eq.) in CH2Cl2[40] or TBS-OClO3 (1.5 eq.), pyridine (2 eq.) in 

CH3CN[41]]. However, these silylating reagents are significantly 

more hydrolytically unstable and expensive than the 

corresponding silyl chlorides. Interestingly, the reactions of both 

TBS-OTf and TBS-OClO3 have recently been shown to be 

insensitive to Lewis base catalysis.[42] The only efficient processes 

for preparing silyl ethers of tert-alcohols with bulky silyl PGs using 

silyl chlorides that we are aware of are one developed by 

Nishiguchi using Mg as a promoter [TES-Cl (3 eq.), Mg (3 eq.) in 

DMF at RT][43] and one developed by Verkade using 

proazaphosphatrane 18 as a Lewis base catalyst [TBS-Cl (1.1 

eq.), 18 (20 mol%) in DMF at 80 °C].[44] Although the Verkade 

catalyst 18 is commercially available, it is expensive and reacts 

with oxygen and with water to give the oxide and hydroxide 

respectively.[45] As far as we are aware, no amine or N-oxide 

Lewis base has previously been reported to efficiently catalyse 

the formation of bulky silyl ethers from tert-alcohols (Scheme 

2).[18] 

 

Scheme 2. Previous methods for silylation of tert-alcohols with TES-Cl or TBS-

Cl. 

To highlight the utility of NMI-O (8) as an unusually efficient 

organocatalyst for this type of transformation, we therefore 

decided to examine its use as a catalyst for the preparation of 

sterically hindered silyl ethers of various tert-alcohols. 

Unfortunately, no synthetically useful yields could be obtained 

with TBDMS-Cl or tri-iso-propylsilyl chloride (TIPS-Cl), however, 

TES-Cl provided the desired tertiary TES-ethers in excellent 

yields whilst maintaining a low catalyst loading (2.5 mol%) at 40 
oC in CHCl3 (Table 4). 
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Table 4. Silylation of tert-alcohols 16a-e with TES-Cl catalysed by NMI-O (8) 

and comparison with the above reported previous methods. 

 

Entry Product   Yield (%)[a] 

Previous 

Conditions 

(Yield/%) 

1 

 

17a 92 

A (85)[43]  

B (86, TBS)[44]  

2 
 

17b 95 B (80, TBS)[44]  

3 

 

17c 97 NA 

4 
 

17d 87 B (12, TBS)[44]  

5 

 

17e 98 NA 

 

To the best of our knowledge, this is the first example of effective 

amine or N-oxide Lewis-base catalyzed silylation of tert-alcohols 

with a silyl chloride other than TMS-Cl[18] and provides an 

organocatalytic alternative to current methodology using mild 

reaction conditions and low catalyst loading whilst producing 

yields comparable to those previously reported.[43,44] 

 In conclusion, we have directly compared a series of five 

commonly used Lewis-basic amines (1-5) and three N-oxides (6-

8) as catalysts for the acylation, sulfonylation and silylation of 

primary, secondary and tertiary alcohol derivatives 9a-c. Whilst 

the amine catalysts are generally more efficient in the acylation 

processes, the N-oxides are generally more effective catalysts in 

the analogous sulfonylation and silylation reactions. In particular, 

1-methyl-imidazole-N-oxide (NMI-O) has been shown to be a 

highly efficient catalyst for the sulfonylation and silylation of 

alcohols and, importantly, the first effective non-phosphorus 

based Lewis-basic catalyst for the silylation of tert-alcohols with 

TES-Cl. Further investigations into the catalytic capabilities of 

NMI-O and its derivatives are ongoing in our laboratory. 

Experimental Section 

General procedure for synthesis of TES ethers of tert-alcohols: To a 

solution of the alcohol component (1.75 mmol), 1-methyl-imidazole-N-

oxide (8, 4.3 mg, 2.5 mol%) in CHCl3 (8.75 mL, 0.2 M) was added PMP 

(0.63 mL, 3.50 mmol) followed by TES-Cl (0.367 mL, 2.19 mmol). The 

reaction mixture was then heated to 40 °C for 8 h before the addition of 

MeOH (1 mL) to quench the reaction. The resulting solution was conc. in 

vacuo and the residue purified by flash chromatography to afford product 

(87-98%).  
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