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This paper reports new analytical formulas for the longitudinal slip lengths for simple
shear over a superhydrophobic surface, or bubble mattress, comprising a periodic array
of unidirectional circular menisci, or bubbles, protruding into, or out of, the fluid. The
accuracy of the formulas is tested against results from full numerical simulations; they
are found to give small relative errors even at large no-shear fractions. In the dilute limit
the formulas reduce to an earlier result by the author [Phys. Fluids, 22, 121703, (2011)].
They also extend analytical results of Sbragaglia & Prosperetti [Phys Fluids, 19, 043603,
(2007)] beyond a small protrusion angle limit.
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1. Introduction

Superhydrophobic surfaces are typically no-slip surfaces endowed with additional mi-
crostructural features such as grooves, posts or holes and they can significantly reduce
fluid drag in microchannels (Rothstein 2010). In many cases, in the Cassie state the
microstructural surface features are occupied by pockets of gas rather than being liquid-
filled (as in the Wenzel state). The spanning gas-liquid interfaces, or menisci, which can
protrude into or out of the fluid are then often close to being shear-free and allow slip.
The drag reduction characteristics of such a surface has strong dependence on the ge-
ometrical properties of these gas-liquid interfaces (Steinberger et al. 2007) and it is an
important matter to be able to quantify them. For shear flows with shear rate γ̇ over
such a surface occupying the plane y = 0 the velocity field far from the plane of the
surface takes the form

u = γ̇(y + λ)x̂, (1.1)

where x̂ is the flow direction. The constant λ is the effective slip length and is a measure
of the frictional properties of the surface: it is the fictional distance below the surface at
which the shear flow would extrapolate to zero.

In applications an important class of superhydrophobic surfaces comprises those with
a periodic array of grooves aligned with the principal flow direction. Figure 1 shows a
schematic of such a surface in the Cassie state when a periodic array of parallel circular
menisci of width 2c and period 2l, each having protrusion angle θ, span unidirectional
grooves aligned along a z-axis, say, with no-slip regions in between. Also shown is the
period window −l < x < l with the meniscus lying in the subinterval −c < x < c.
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Figure 1. Longitudinal shear flow over a surface comprising a unidirectional periodic array,
with period 2l, of angle-θ protruding menisci of width 2c with intermediate no-slip zones.

An important geometrical characteristic of such a “bubble mattress” is the no-shear
fraction c/l. When no-shear conditions are imposed on the menisci a complete analytical
characterization of the effective slip properties of such surfaces is known in the dilute
limit of small no-shear fraction. Davis & Lauga (2009) derived an explicit formula for
transverse slip length over such a surface; Crowdy (2010) derived the corresponding
longitudinal slip length result. These results are valuable together because, for small no-
shear fractions and zero capillary number, the slip length for a linear shear in general
direction over the surface is a linear combination of these results.

In other analytical work, Sbragaglia & Prosperetti (2007) used a boundary perturba-
tion analysis to investigate small interface curvature/protrusion effects on the effective
slip length in a pressure-driven flow in channels. Their analysis is valid for any no shear
fraction, but it is limited to small protrusion angles of the menisci (close to flat). Nu-
merical calculations of the slip lengths associated with such bubble mattresses have been
performed by Ng & Wang (2011) and Teo & Khoo (2010).

The present paper extends the author’s earlier result (Crowdy 2010) beyond the dilute
limit and produces formulas for the longitudinal slip length over these unidirectional
surfaces that are accurate over a much larger range of no-shear fractions. Crowdy (2010)
derived the longitudinal slip length λ0 in the dilute limit as

λ0
c

= cδα(θ), α(θ) =
3π2 − 4πθ + 2θ2

6(π − θ)2
, δ ≡ π

2l
. (1.2)

The first of two new results of the present paper is to derive the more accurate formula:

λ1
c

=
cδα(θ)[

1− (cδ)2α(θ)

3

] , (1.3)

where we use λ1 to denote the improved result. We also write down the associated flow
field. For no-shear fractions as high as c/l = 0.75 (1.3) gives agreement with maximum
relative errors (across protrusion angles) of 6%−7% compared to the numerical results of
Teo & Khoo (2010). Clearly (1.3) reduces to (1.2) to leading order in cδ (or, equivalently,
to leading order in the no-shear fraction c/l). We have not presented (1.3) as an expansion
in powers of c/l because the functional form (1.3) arises naturally in our analysis and it
turns out to give more accurate results than a truncated formal expansion.

The second result is to derive an even higher order approximation, denoted by λ2,
reported later in (4.13). It is not as simple to write down as (1.3), but it is nonetheless
explicit and reduces the maximum relative errors in the slip length to as little as 1%−2%
for no-shear fraction c/l = 0.75; even for a no-shear fraction as high as c/l = 0.9, it is still
accurate to within a maximum relative error of 8% − 9% (see Figure 3). Moreover, an
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approximation of the higher-order formula (4.13) (which ignores certain terms in (4.13)
that are sixth order in the no-shear fraction) is the more concise, and only slightly less
accurate, expression

λ2
c
≈

cδα(θ)

[
1 +

(cδ)4β(θ)

15

]
[
1− (cδ)2α(θ)

3
− (cδ)4β(θ)

15

] , (1.4)

with

β(θ) =
1

360(π − θ)4
(32θ4 − 128πθ3 + 212π2θ2 − 168π3θ + 45π4). (1.5)

This formula gives the required slip length with maximum relative error 2% for no-shear
fractions in the range c/l ∈ [0, 0.75] and 12% for c/l = 0.9.

Formulas (1.3), (4.13) and (1.4) are the main results of this paper. They are valid
without restriction on the protrusion angle θ. We show that they extend an analytical
result of Sbragaglia & Prosperetti (2007) beyond the small protrusion angle limit. The
formulas can, in principle, be derived using the usual formalisms of matched asymp-
totic expansions but we derive them using our own mathematical approach which is of
theoretical interest in itself.

2. The dilute limit

Crowdy (2010) has previously derived the formula (1.2) for the longitudinal slip length
relevant in the dilute limit c/l→ 0; it is natural to think of fixing c = 1, say, and taking
l → ∞. Those prior results can be summarized as follows. With z = x + iy we consider
a complex potential hs(z), analytic in the fluid region, such that

w(x, y) = γ̇Im[hs(z)]. (2.1)

The imposed far-field condition shear requires that w(x, y) ∼ γ̇y, hence

hs(z) ∼ z +O(1/z), as z →∞. (2.2)

To satisfy the no-slip condition on the wall we need

Im[hs(z)] = 0, on y = 0, x /∈ [−c, c], (2.3)

while the no-stress condition on the meniscus requires that

Re[hs(z)] = 0, on the meniscus, (2.4)

which follows from the condition ∂w/∂n = 0 on use of the Cauchy-Riemann equations.
To solve this problem Crowdy (2010) employed conformal mapping techniques. With

β = π − θ the conformal mapping transplanting the upper-half of the unit disc in a
parametric complex ζ-plane to the fluid region, and its inverse mapping function, are

z(ζ) = c

[
(1− ζ)2β/π + (1 + ζ)2β/π

(1− ζ)2β/π − (1 + ζ)2β/π

]
, ζ(z) =

(z/c− 1)π/2β − (z/c+ 1)π/2β

(z/c− 1)π/2β + (z/c+ 1)π/2β
. (2.5)

Having derived these, Crowdy (2010) uses them to establish that

hs(z) = −2πc

β

[
((z/c)2 − 1)π/2β

(z/c− 1)π/β − (z/c+ 1)π/β

]
∼ z +

∆1

z
+

∆3

z3
+ . . . , as |z| → ∞,

(2.6)
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where

a =
π

2(π − θ)
, ∆1 = −c

2

3
(2a2 + 1), ∆3 = −2c4

45
(−7a4 + 5a2 + 2). (2.7)

Actually, only ∆1 is needed to derive (1.2) based on a simple superposition argument.

Since his focus was to find the slip length Crowdy (2010) did not report the corre-
sponding dilute-limit complex potential, but it will be useful for what follows. It turns
out to be

h0(z) = hs(z)−
∆1

z
− λ0 cot(δz), −λ0

δ
= ∆1. (2.8)

We now explain this result because it helps to understand our derivations of the higher-
order approximations. If h(z) denotes the exact solution to the periodic problem then
h(z) must be analytic in the period window D shown in Figure 1 and satisfy the quasi-
periodicity condition

h(z + 2l) = h(z) + 2l (2.9)

in order that the velocity w = γ̇Im[h(z)] is periodic; the quasi-periodicity here is induced
by the far-field z behaviour. Similarly, h0(z) is required to be analytic in D. This is true
of h0(z) given in (2.8) since hs(z) is analytic there – it is analytic, by construction, every-
where in the upper half plane and above the meniscus – while the apparent singularity
of h0(z) at z = 0, which is inside the period window if θ < 0, is in any case removable by
the choice of λ0. Moreover, the cotangent function has a periodic array of singularities
along the real axis but the two closest to the one at z = 0 are in the two period windows
neighbouring D and not inside D itself.

The first term added to hs(z) in (2.8) serves the purpose of removing the O(1/z)
behaviour of hs(z) as z →∞ so that, as z →∞,

h0(z) ∼ z + iλ0 +O(1/z3), (2.10)

where we have used the fact that cot(δz) → −i as y → +∞ and the known far-field
asymptotics (2.6) of hs(z). This means that, on the edges of the period window where
|z| > l, the function h0(z) satisfies

h0(z + 2l) = h0(z) + 2l +O(δ3) (2.11)

which is a good approximation to the quasi-periodicity condition (2.9) if δ is small. It is
easily checked that h0(z) is real when z is real since this is true of hs(z) implying that
h0(z) satisfies the no-slip condition on the wall. Also, provided δ is small, then on the
meniscus

Re[h0(z)] = Re

[
hs(z)−

∆1

z
− λ0 cot(δz)

]
∼ Re

[
−∆1

z
− λ0

{
1

δz
− δz

3
+ . . .

}]
= Re

[
λ0δz

3
+ . . .

]
= O(λ0cδ) = O(c2δ2).

(2.12)

Thus h0(z) also satisfies the meniscus boundary condition correct to O(c2δ2). In this
way we have verified that h0(z) is the approximation to the required complex potential
provided that δ is small.
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3. An improved slip length formula

To produce an improved formula for the slip length, accurate at even larger no-shear
fractions, it is natural to seek a higher order approximation in δc. Consider the modified
complex potential

h1(z) = hs(z) +
λ1
δ

1

z
− λ1 cot(δz) +

λ1δ

3
[hs(z)− z] , (3.1)

with λ1 now chosen to satisfy

∆1 +
λ1
δ

+
λ1δ∆1

3
= 0. (3.2)

With this choice the 1/z term in the the far-field expansion of the three non-cot terms

hs(z), +
λ1
δ

1

z
, +

λ1δ

3
[hs(z)− z] (3.3)

of h1(z) vanishes. This ensures that, as z →∞,

h1(z) ∼ z + iλ1 +O(1/z3), (3.4)

where we have again used the fact that cot(δz) → −i as y → +∞ and the known far-
field asymptotics (2.6) of hs(z). Hence h1(z) has the correct far-field behaviour with slip
length λ1. On the edges of the period window where |z| > l, we still have

h1(z + 2l) = h1(z) + 2l +O(δ3) (3.5)

which is a good approximation to the required quasi-periodicity (2.9) if δ is small. The
apparent singularity of the function (3.1) at z = 0 is again removable while the nearest
other singularities of the cotangent function are in the neighbouring period windows as
before. It is therefore confirmed that h1(z) is analytic in D. When z is real, which is true
on the no-slip wall, so is h1(z) confirming that the no-slip condition is satisfied there.
Finally, on expansion of the cotangent for small δ, notice that on the meniscus,

Re[h1(z)] = Re

[
hs(z) +

λ1
δ

1

z
− λ1 cot(δz) +

λ1δ

3
[hs(z)− z]

]
∼ Re

[
+
λ1
δ

1

z
− λ1

{
1

δz
− δz

3
+O(c3δ3)

}
− λ1δz

3

]
= O(λ1c

3δ3) = O(c4δ4),

(3.6)

where we have used (2.4) twice as well as the Laurent expansion of cot(δz) about z = 0.
Hence, (3.1) satisfies the boundary conditions on the meniscus, the no-slip wall and the
edges of the period window correct to O(c3δ3). The quantity λ1 as given by (3.2) is now
the required slip length at this order of approximation and produces the result (1.3). Teo
& Khoo (2010) report the slip lengths λTK , say, with the renormalizations

λTK =
λ1
2/l

=
λ1

(4δ/π)
, (3.7)

where we have taken c = 1. Figure 2 shows λTK , as a function of protrusion angle θ,
for c/l = 0.1, 0.25, 0.5, 0.75 and 0.9 together with corresponding data points from Teo &
Khoo (2010) which serve as our benchmark solution. The maximum relative error of this
approximation for c/l = 0.75 is between 6%− 7% and for c/l = 0.9 is around 25%.
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4. Higher order analysis

The analysis of the previous section is readily extended to even higher order. We
introduce h̃s(z) as the complex potential for a single protruding bubble with all the same
boundary conditions as for hs(z) but now satisfying the modified far-field condition

h̃s(z) ∼ z3 +O(1/z), as z →∞. (4.1)

This far-field flow is no longer a simple shear. By the same conformal mapping arguments
(Crowdy 2010) used to find hs(z) it can be shown that

h̃s(z) = −a3c3
[

1

ζ3
− ζ3

]
+c2(1−a2)

[
1

ζ
− ζ
]
∼ z3+

∆̃1

z
+

∆̃3

z3
+ . . . , as |z| → ∞, (4.2)

where we have used (2.5) and

∆̃1 = −2c4

15
(−7a4 + 5a2 + 2),

∆̃3 = − c6

3780
(4855a6 + 945a5 − 5817a4 + 6615a3 − 6090a2 + 3780a− 508).

(4.3)

Now consider the new complex potential, constructed using hs(z) and h̃s(z), given by

h2(z) = hs(z) +
λ2
δ

1

z
+
µ2

δ3
1

z3
− λ2 cot(δz)− µ2 cot(δz)cosec2(δz)

+

[
1

3
λ2δ +

1

15
µ2δ

]
(hs(z)− z) +

[
1

45
λ2δ

3 +
20

945
µ2δ

3

]
(h̃s(z)− z3),

(4.4)

where the real parameters λ2 and µ2 are chosen to satisfy

∆1 +
λ2
δ

+

[
1

3
λ2δ +

1

15
µ2δ

]
∆1 +

[
1

45
λ2δ

3 +
20

945
µ2δ

3

]
∆̃1 = 0,

∆3 +
µ2

δ3
+

[
1

3
λ2δ +

1

15
µ2δ

]
∆3 +

[
1

45
λ2δ

3 +
20

945
µ2δ

3

]
∆̃3 = 0.

(4.5)

We claim that h2(z) is the required higher order solution. To see this, the expansions

cot z =
1

z
− z

3
− z3

45
− 2

945
z5 + . . . , cot(z)cosec2(z) =

1

z3
− z

15
− 20

945
z3 + . . . , (4.6)

reveal that the third-order singularity of h2(z) at z = 0 is removable. Furthermore,

h2(z)→ z + iλ2 +O(1/z5), (4.7)

where we have used the facts that cot(δz) → −i and cot(δz)cosec2(δz) decays exponen-
tially as y → +∞, as well as the far-field forms (2.6) and (4.2) of hs(z) and h̃s(z). Then
on the edges of the period window where |z| > l,

h2(z + 2l) = h2(z) + 2l +O(δ5) (4.8)

so that h2(z) satisfies the required quasi-periodicity condition there (now to higher order
than before). λ2 is the required slip length. For z on the no-slip wall h2(z) is real implying
that the no-slip condition is satisfied there. On expanding (4.4) for small δ, and on use
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of (4.5),

Re[h2(z)] = Re

[
λ2
δ

1

z
+
µ2

δ3
1

z3
− λ2

[
1

δz
− δz

3
− δ3z3

45
+O(δ5c5)

]
− µ2

[
1

δ3z3
− δz

15
− 20

945
δ3z3 +O(δ5c5)

]
−
[

1

3
λ2δ +

1

15
µ2δ

]
z −

[
1

45
λ2δ

3 +
20

945
µ2δ

3

]
z3
]

= O(λ1c
5δ5),

(4.9)

where we have used the Laurent expansions (4.6) and the facts that

Re[hs(z)] = Re[h̃s(z)] = 0, on the meniscus. (4.10)

Hence the meniscus boundary condition is satisfied correct to O(c6δ6). The solution of
the 2-by-2 system (4.5) gives the required slip length λ2. In matrix form it is(

a11 a12
a21 a22

)(
λ2
µ2

)
=

(
−∆1δ
−∆3δ

3

)
, (4.11)

where

a11 = 1 +
∆1δ

2

3
+

∆̃1δ
4

45
, a12 =

∆1δ
2

15
+

20∆̃1δ
4

945
,

a21 =
∆3δ

4

3
+

∆̃3δ
6

45
, a22 = 1 +

∆3δ
4

15
+

20∆̃3δ
6

945
.

(4.12)

In view of (2.7) and (4.3) all matrix elements are known as explicit functions of a and c,
consequently an explicit formula for the slip length λ2 is

λ2 =
∆3δ

3a12 −∆1δa22
a11a22 − a12a21

. (4.13)

The normalized slip length (3.7) – but now with λ1 replaced by λ2 as given by (4.13)
– is plotted in Figure 3, as a function of θ for c/l = 0.1, 0.25, 0.5, 0.75 and 0.9. It gives
markedly better agreement with the numerical solution at c/l = 0.9 than that shown in
Figure 2. The maximum relative error of this approximation for c/l = 0.75 is between
1%− 2% and for c/l = 0.9 is between 8%− 9%.

Our analysis leads naturally to formula (4.13) but if we use the second equation in
(4.5) to approximate

µ2 ≈ −∆3δ
3 (4.14)

then, on substitution of this into the first equation in (4.5), we find the approximation

λ2 ≈ −
δ∆1

(
1− δ4∆3

15

)
1 +

∆1δ
2

3
+
δ4∆3

15

. (4.15)

On eliminating a in favour of θ, it can be shown that

∆1 = − c2

6(π − θ)2
(2θ2 − 4πθ + 3π2),

∆3 = − c4

360(π − θ)4
(32θ4 − 128πθ3 + 212π2θ2 − 168π3θ + 45π4).

(4.16)

(4.15) is now equivalent to (1.4) reported earlier. The maximum relative error of this
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Figure 2. Normalized slip length (3.7) as a function of protrusion angle θ for
c/l = 0.1, 0.25, 0.5, 0.75 and 0.9. Crosses show numerical data from Teo & Khoo (2010).
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Figure 3. Normalized slip length, now based on the approximation λ2 in (4.13), as a function
of θ for c/l = 0.1, 0.25, 0.5, 0.75 and 0.9. Crosses show numerical data from Teo & Khoo (2010).

approximation is not quite as good as for formula (4.13), but is still impressive: at c/l =
0.75 the maximum relative error is around 2% (about the same as for (4.13)) and for
c/l = 0.9 it is around 12% (slightly worse). The surprisingly wide range of no-shear
fractions for which these formulas give good accuracy arguably obviates the need for
higher-order approximations, but these are easily derivable in principle.

5. Verification against previous results

When formally expanded in powers of the no-shear fraction our formulas cross-check
with other known results. First, Philip (1972) has shown that for a flat meniscus with
θ = 0, c = 1 and at any no-shear fraction,

λ =
2l

π
log sec

[ π
2l

]
= −1

δ
log cos δ ≈ δ

[
1

2
+
δ2

12
+
δ4

45
+ . . .

]
, δ ≡ π

2l
. (5.1)

But for θ = 0 we find α(0) = 1/2 and β(0) = 1/8 and it can be verified that (1.4) agrees
with (5.1) to this order of expansion in δ.
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By taking their microchannel width to infinity, Sbragaglia & Prosperetti (2007) per-
formed an analytical study for small protrusion angles θ in a semi-infinite domain. The
expansion of (4.15) for small δ is

λ2
c

= δcα(θ)

[
1 +

c2δ2α(θ)

3
+ δ4c4

(
2β(θ)

15
+
α(θ)2

9

)
+ . . .

]
. (5.2)

A Taylor expansion of α(θ) and β(θ) to linear order in the protrusion angle θ gives

α(θ) =
1

2
+

θ

3π
+ . . . , β(θ) =

1

8
+

θ

30π
+ . . . . (5.3)

On substitution of (5.3) into (5.2), we find

λ2
c

= δc

[
1

2
+
δ2c2

12
+
δ4c4

45
+ . . .

]
+ δc

(
θ

π

)[
1

3
+
c2δ2

9
+

24

675
c4δ4 + . . .

]
+ . . . (5.4)

The first term agrees with (5.1), valid for θ = 0, once we set c = 1. On setting δ = πξ/2c
the normalized leading order correction due to the meniscus curvature is

cθξ

2

[
1

3
+
ξ2π2

36
+
ξ4π4

450

]
= − c2

2R

[
ξ

3
+
ξ3π2

36
+
ξ4π4c4

450

]
, (5.5)

where, for small meniscus deflection downwards into the grooves, θ ≈ sin θ = −c/R. We
thus retrieve the result in equations (45)–(47) of Sbragaglia & Prosperetti (2007) who
derived it using quite different techniques. In summary, various series expansions of our
formulas (1.3) and (4.13), or (1.4), give results that are consistent with other studies.
Note, however, that we continue to present (1.3) and (1.4) in the unexpanded form arising
naturally from our analysis.

6. A reciprocity result

In view of their convenient explicit forms we expect the slip length formulas (1.3) and
(1.4), and the associated complex potentials (3.1) and (4.4), will be useful in a variety of
studies of superhydrophobic surfaces where, for example, additional physical effects are
included (such as heat transfer, Marangoni or thermocapillary effects, or the influence
of an enclosed gas phase). We end by showing how to combine the new formulas with a
useful reciprocity result based on one of Green’s identities.

Let w2(z) = Im[γ̇h2(z)], with associated slip length λ2. Suppose ŵ is the solution of
the same problem of shear flow over the bubble mattress with all the same boundary
conditions imposed on w2(z) except on the meniscus where we now require

∂ŵ

∂n
= A(z, z), (6.1)

whereA(z, z) is some specified function (derived, say, from inclusion of additional physical

effects). Let the slip length for this modified problem be λ̂. By Green’s identity, the
harmonicity of w2 and ŵ, and the divergence theorem, we deduce that

0 =

∫
D

[
w2∇2ŵ − ŵ∇2w2

]
dA =

∮
∂D

w2
∂ŵ

∂n
ds−

∮
∂D

ŵ
∂w2

∂n
ds, (6.2)

where ∂D is the boundary of D. On the edges of the period window for which |z| > l,

w2 = γ̇(y + λ2) +O(δ5),
∂w2

∂n
ds = ±∂w2

∂x
dy, (6.3)
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where we have used (4.7). Hence the contributions to the right hand side of (6.2) from
the side edges are small (for small δ) while the no-slip portions of the surface do not
contribute at all. We then arrive at the approximation

λ̂ ≈ λ2 −
1

2l

∫
meniscus

A(z, z) Im[h2(z)]ds, (6.4)

where we have integrated around ∂D in an anticlockwise direction and used the far-
field conditions. By virtue of the results of this paper the right hand side of (6.4) is

an integral expression for the required slip length λ̂ accurate to the same order in the
no-shear fraction as the solution h2(z) and λ2 used to obtain it.

7. Discussion

An asymptotic analysis similar to that presented here is, in principle, possible to gen-
eralize the dilute approximation to the transverse slip length over this class of surfaces
found by Davis & Lauga (2009); the biharmonic nature of the field equations there ren-
der the technical details more challenging. But complementary results in this direction
would provide a fuller analytical description of the so-called slip tensor (Asmolov & Vino-
gradova 2012; Bazant & Vinogradova 2008) for these surfaces thereby generalizing the
fairly complete analytical description in the dilute limit already available on combining
the analytical formulas of Davis & Lauga (2009) and Crowdy (2010).

The study here has imposed idealized shear-free boundary conditions at the liquid-gas
interfaces and ignores additional dissipation associated with an enclosed gas. Incorpo-
rating dissipation in the gas subphase is a topic of much recent research: Schönecker &
Hardt (2013) and Schönecker et al. (2014) have proposed a semianalytical method which
approximates the liquid-gas interface as a constant shear-stress boundary (leading to a
non-uniform local slip length); Nizkaya et al. (2014) have put forward a general “gas
cushion model” based on an operator method. Those authors have executed detailed
studies of their models in the case of unidirectional (one-dimensional) surfaces with flat
interfaces. Our results here – especially coupled with the reciprocity result of §6 – might
well be useful in extending those investigations to the important case of curved menisci.

Acknowledgments: This work is supported by EPSRC Fellowship EP/K019430/1, a
Royal Society Wolfson Research Merit Award and EPSRC Grant EP/K041134/1. The
author is grateful to the authors of Teo & Khoo (2010) for providing comparison data.

REFERENCES

Asmolov, E. S. & Vinogradova, O. I. 2012 Effective slip boundary conditions for arbitrary
one-dimensional surfaces. J. Fluid Mech. 706, 108–117.

Bazant, M. Z. & Vinogradova, O. I. 2008 Tensorial hydrodynamic slip. J. Fluid Mech. 613,
125–134.

Crowdy, D. G. 2010 Slip length for longitudinal shear flow over a dilute periodic mattress of
protruding bubbles. Phys. Fluids 22, 121703.

Davis, A.M.J. & Lauga, E. 2009 Geometric transition in friction for flow over a bubble mat-
tress. Phys. Fluids 21, 011701.

Ng, C-O & Wang, C.Y. 2011 Effective slip for Stokes flow over a surface patterned with two-
or three-dimensional protrusions. Fluid Dyn Research 43, 065504.

Nizkaya, T. V., Asmolov, E. S. & Vinogradova, O. I. 2014 Gas cushion model and hydro-
dynamic boundary conditions for superhydrophobic textures. Phys. Rev. E. 90, 043017.

Philip, J.R. 1972 Flows satisfying mixed no-slip and no-shear conditions. J. Appl. Math. Phys.
(ZAMP) 23, 353–372.



Analytical formulas for longitudinal slip lengths 11

Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Ann. Rev. Fluid Mech. 42, 89–109.
Sbragaglia, M. & Prosperetti, A. 2007 A note on the effective slip properties for microchan-

nel flows with ultrahydrophobic surfaces. Phys. Fluids 19, 043603.
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