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A numerical method is presented to estimate the influence of a nearby substrate on the polarization energy and outer sphere
reorganization energy (λo) for intermolecular hole transfer for a series of dye molecules. The calculation considers the net charge
distribution of the oxidised molecule (determined from quantum chemical calculation of the highest occupied molecular orbital
of the neutral molecule within the frozen orbital approximation) encapsulated within a conformal cavity, by the molecules total
electron density. An analytical point charge approximation was used at longer range. The molecular cavity was either surrounded
by a single polarizable continuum, or, to simulate a nearby substrate, embedded at different positions relative to the interface
between two semi-infinite slabs with different dielectric constants. The calculated λo values in the single dielectric medium were
linearly related to the outer-sphere reorganisation energy calculated from DFT with a polarizable continuum model, validating
the approach. In the two phase system, variations in λo was sensitive to the position of the substrate relative to the molecule and
differences in the Pekar factor (1/εo−1/εr) for the media. For dye molecules in ACN positioned touching a TiO2 substrate λo
was typically about 20 % lower than in pure ACN depending on the molecular configuration. Our approach can be adapted to
systems of more than two media.

1 Introduction

We have been investigating intermolecular charge transfer in
π-conjugated systems. The phenomenon is of interest for
many research fields, in particular organic electronics where
device efficiency is directly correlated to the conduction of
charges through molecular layers. In this work, our model
is one in which the charge is entirely localised on a single
molecule. This is the fully localised polaron limit with strong
electron-phonon coupling, or equivalently, reorganisation en-
ergy. In this case, we expect Marcus’s theory to provide an ac-
curate semi-empirical model for the process of non-adiabatic
charge transfer. Within Marcus’s formalism, the rate of ther-
mally activated charge transfer depends (exponentially) on the
reorganisation energy.1,2 Hence, determining the latter can as-
sist the design of materials with improved transport properties.
The total reorganisation energy of charge transfer, λtot , is an
estimation of the energy required to adjust the system to a new
charge distribution. In the non adiabatic picture of a charge
transfer event, the redistribution of charge disrupts the geom-
etry of the molecules occupied by the polaron, but also the
medium around them.1–3 These two contributions to the re-
organization energy are intuitively quite different. The former
(within the polaron) is a quantum mechanical effect due the in-
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teraction of the charge density with the effective potential orig-
inating from the molecule’s nuclei. The latter (outside the po-
laron) is mainly electrostatic in nature,4 the localised polaron
charge density acting on the polarizable surroundings. Fol-
lowing Marcus, these two components are labelled the inner-
(λi) (molecular configuration) and outer- (λo) (medium re-
sponse) sphere reorganisation energies. Linear dielectric re-
sponse of the medium surrounding the polaron is traditionally
used to describe polarization effect at the macroscopic scale.
Consequently, λo can be considered as the change in polar-
ization energy of the molecules upon charge transfer. Within
this formalism, the outer-sphere reorganisation energy will de-
pend directly on the polarity of the solvent.5,6 In one of his
early papers, Marcus used classical electrostatics to express
λo as a function of the Pekar factor, difference between the
inverse static and optical dielectric constant of the medium
(ε−1

op − ε−1
r ).1,4,7 This is a means to account for the slow (in-

ertial with εr) and fast (electronic with εop) response of the
medium to the charge transfer. Marcus’ expression assumes
that the surrounding medium is isotropic. However many
charge transfer reactions occurs at interfaces, in mixed phase
systems, where the charge donor/acceptor are surrounded by a
phase with relative permittivity εr1 but are in close proximity
to another phase with permittivity εr2 (εr1 6= εr2). How can we
quantify the outer-sphere reorganisation energy in these more
complex systems?

This question is relevant to many fields such as organic
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and hybrid electronics (e.g. polymer solar cells or OLEDs)
where heterojunctions are formed between materials (and
phases) of varying dielectric properties. Many catalytic sys-
tems also involve interfaces; often between a metal oxide
substrate and a liquid electrolyte as in Dye Sensitized Solar
Cells (DSSC),8,9 molecular wiring in batteries.10,11 and solar
fuel photo-electrodes12,13 A specific example of the question
arises when considering charge transfer reactions between dye
molecules14–18 in DSSCs. In these widely studied devices a
monolayer of dye molecules is anchored to a film of porous
semiconducting nanoparticles (typically TiO2). An electrolyte
or doped hole transporting material then fills, at least partially,
the void between the sensitised titania nanoparticles. The dye
molecules are thus surrounded by one dielectric medium but
are attached to another medium with different dielectric prop-
erties.

In these cases the outer-sphere reorganisation energy of in-
termolecular charge transfer is difficult to quantify accurately.
Extensions to Marcus’s formula were proposed but analytical
solutions are restricted to systems with simple geometries.7,19

Ideally, one would perform molecular dynamic simulations
of the charge donor, acceptor and surrounding media. How-
ever statistically relevant calculations based on MD are com-
putationally prohibitive4 and force fields cannot, to this date,
provide a satisfactory atomistic description of the interactions
between mixed phase systems.20 Density Functional Theory
(DFT) calculations of the charge donor/acceptor coupled with
a continuum model for the surroundings is an attractive al-
ternative. Small inhomogeneities in the medium can be ac-
counted for using dielectric mixing theory21 and recent devel-
opment of the Polarizable Continuum Model (PCM) allows
anisotropic media to be implemented (i.e. εr is a tensor).22,23

Nevertheless, this is not suitable to characterise sharp or planar
interfaces which is our concern here. Numerical solutions to
Poisson Boltzmann equations subject to a variety of conditions
were proposed to estimate the electrostatic free energy of sol-
vation (polarization energy) of arbitrary molecules.4,19,24 But
the procedure is computationally expensive because these non
linear partial differential equations must be solved self con-
sistently for the potential.25 Furthermore, the variety of func-
tional forms for the charge distribution from which the poten-
tial is derived adds another level of complexity.4,7,19,26,27 Al-
though the use of boundary element methods28 allow to treat
charge donor and acceptor of arbitrary shapes,29,30 in practice,
one is restricted by the computational cost. To avoid solving
Poisson Boltzmann equations, functionals of the free energy
of solvation are being developed, where the problem can be
rephrased as a search of stationary points. However, the sta-
tionary solutions are not a global minimum of the functional
which is the current bottleneck of this technique as it prevents
us to use the common numerical speeding schemes.25,31,32

Here, we propose a very simple numerical estimation of the

outer-sphere reorganization energy of hole transfer between
dye molecules as in DSSC. We calculate λo as the difference
in polarization energy of oxidised molecules in a slow (in-
ertial) and fast (electronic) responding medium. We demon-
strate a linear relationship between our outer-sphere reorgani-
zation energy calculated from electrostatics (λo,ε ) in a single
phase medium and the reorganisation energy of hole transfer
as calculated with DFT-PCM in a previous work (λo,PCM).6

The approach presented here allows us to test the influence of
the presence of a substrate near the dye molecules. In partic-
ular, it allows us to test the assumption we made previously
that, in DSSC, the TiO2 substrate does not influence the reor-
ganisation energy of hole transfer in polar media.6 We con-
fine our focus to the reorganisation energy of hole transfer be-
tween similar molecules in the vicinity of a substrate but the
approach could be adapted to consider the transfer of charge
between a molecule and the substrate (electrochemical charge
transfer).

2 Methodology

In this section, we present our method to numerically estimate
the polarization energy of an oxidised molecule in various me-
dia. We use it as a means to calculate the outer-sphere reorga-
nization energy of hole transfer between molecules, defined as
the difference in polarization energy. We also provide a brief
description of the DFT-PCM (Density Functional Theory cou-
pled with Polarizable Continum Model) calculation of the re-
organisation energy of intermolecular hole transfer, which we
are going to use to validate our results. Finally, we present the
dielectric properties of the series of dye molecules and media
studied in this work.

2.1 Polarization energy

We consider the hole transfer from a positively charged dye
to a neutral dye. The energy cost of such a charge transfer
is partly due to the work necessary to rearrange the medium
which was in equilibrium with the charged molecule. Con-
sequently, the electrostatic contribution to the reorganisation
energy (outer-sphere component) of hole transfer is related to
the energy stored in the medium surrounding the dye when
positively charged. Our approach is thus to first calculate the
energy stored in the dielectric medium surrounding an oxi-
dised dye.

In vacuum, the energy stored around a charged molecule,
W0, is given by:

W0 =
1
2

∫
~D0.~E0 d3r =

1
2

∫
ε0~E0.~E0 d3r, (1)

where ~E0 is the electric field vector originating from the
charge distribution of the cation dye, ~D0 the displacement field
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in vacuum, ε0 the permittivity of free space and the volume
integral is over all space. Now, if we consider a dielectric
medium with permittivity ε , the corresponding energy stored
in the medium surrounding the dye, W , is given by:

W =
1
2

∫
~D.~E d3r =

1
2

∫
ε~E.~E d3r, (2)

where ~E and ~D are the electric and displacement fields due
to the molecular charge distribution in the medium of permit-
tivity ε , respectively. The difference between the energy in
the dielectric and the vacuum is defined as the polarization
energy, ∆W , which accounts for the electrostatic effects of ac-
commodating the molecular charge distribution in the dielec-
tric medium. From Equations 1 and 2 we can write:

∆W =W0−W =
1
2

∫ (
ε0 ~E0.~E0 − ε ~E.~E

)
d3r. (3)

Since the electric field in the dielectric (~E) can be expressed
as a function of the electric field in vacuum (~E0) through the
relative permittivity of the medium with respect to the vac-
uum, εr,

~E =
~E0

εr
, (4)

where ε = εrε0, Equation 3 can be rewritten as:

∆W =
ε0

2

(
1− 1

εr

)∫
E2

0 d3r, (5)

with E0 the magnitude of the electric field in vacuum. If
we consider a spherical cavity enclosing the molecule of net
charge Q, we can make use of the point charge approximation
to express the electric field, which makes the volume integral
tractable. In this case, the free energy of solvation becomes
(details of the calculation in Appendix):

∆W =

(
1− 1

εr

)
Q2

8πε0a
, (6)

where a is the radius of the spherical cavity. However, this
is only valid at sufficient distance from the molecule. At short
range, the point charge approximation breaks down, especially
for molecules whose shape are complex and whose charge
density can be arbitrarily distributed within the molecular cav-
ity. Consequently, we define the polarization energy as the
sum of the long and short range polarization energy. The for-
mer is defined by Equation 6. For the latter, we discretise the
space in a series of voxels corresponding to either the molecu-
lar cavity or the medium around it. The voxels characterising
the medium near the molecular cavity are labelled j and as-
signed with two values: E0 j, magnitude of the electric field
in vacuum due to the molecular charge distribution and εr j,

relative permittivity of the medium. Using the superposition
principle we then write:

∆W = ∑
n

(
1− 1

εrn

)
Q2

8πε0R
Gn︸ ︷︷ ︸

Long Range (LR)

+
ε0

2 ∑
j

(
1− 1

εr j

)
E2

0 j (∆r)3

︸ ︷︷ ︸
Short Range (SR)

(7)
where n is the number of phases, εrn the relative permit-

tivity of phase n and Gn a geometric factor accounting for
the contribution of each phase (we provide Gn in Appendix
for all the cases treated in this paper). We have ∑n Gn = 1
so that when there is a single surrounding medium (n = 1),
G1 = 1 and the first summand in Equation 7 simplifies into
Equation 6. (∆r)3 is the voxel volume and Q is the net charge
of the molecule. A sphere of radius R, centred on the center of
mass of the molecule, defines the boundary between the short
and long range regions. As a result, the electric field is only
explicitly calculated in the voxels outside the molecular cav-
ity but enclosed within the sphere of radius R. R is set to be
5 times the maximum molecular radius, which offers a good
compromise between accuracy and computational cost. E0 j is
calculated from the real (DFT) charge distribution within the
molecular cavity. In our discretised space, the voxels in which
the charge of the molecule are labelled i and are assigned with
a partial charge, Qi. Summing the partial charges of all the
voxels within the molecular cavity gives the net charge of the
molecule (+1 here). Then, the electric field outside the molec-
ular cavity can be calculated according to:

~E0 j = ∑
i

~E0i j =
1

4πε0
∑

i

Qi

r2
i j
~rn, (8)

where ~E0i j is the electric field in voxel j due to the partial
charge in voxel i. ri j is the distance between the voxels i and
j and ~rn is the direction of the contribution.

Figure 1 gives an illustration of the different regions con-
sidered in our calculation. Every voxel characterises either
the molecule or the surrounding medium. The molecular vox-
els can be neutral (in white) or charged with Qi (in green).
The surrounding medium voxels are assigned with a relative
permittivity (εr). In the figure, we show the case where the
molecule is immersed into a medium with a given relative
permittivity εr1 (in orange) but in close proximity to another
medium with relative permittivity εr2 (in blue). This example
is key to assessing the influence of metal oxide surfaces on the
reorganization energy of dyes, as in DSSCs.

To define a realistic cavity and charge distribution of an ar-
bitrary dye molecule, we use the output of DFT calculations,
as detailed below. Note that the DFT calculations were per-
formed on neutral molecules within the frozen orbital approx-
imation. We assume that the absence of one electron in the
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Fig. 1 Schematic indicating a. an empty array of voxels (white), b.
the molecular cavity (white voxels) surrounded by the solvent
dielectric (orange voxels) and the substrate (light blue voxels). c.
The extent of the HOMO within the molecular cavity (green voxels).
d. The extended lattice for iterative calculation of the polarization
energy. The region beyond the sphere of radius R is treated with a
point charge approximation. The error in the radius due to the
extended charge within the cavity as assumed in our calculations is
also shown.

Highest Occupied Molecular Orbital (HOMO) does not affect
its spatial extent (restricted DFT formalism). We can then
compute the charge density of the oxidised molecule at low
computational cost, considering half the population of elec-
trons in the HOMO of the neutral molecule.

Molecular cavity To define a cavity whose shape ren-
ders the true shape of any given molecule, we make use of
the quantum chemical calculation software package Gaus-
sian 09.33 We extract the total electron density of a neutral
molecule in a single phase dielectric from DFT calculations
coupled with the PCM. In practice, we make use of the cube-
gen facility to store the total electron density in an array of
voxels spanning the molecule of interest. We define a thresh-
old electron density of 0.0055 electrons Å−3, as used else-
where.34 With this value, more than 99.6% of the total charge
is typically enclosed in the cavity for the molecules examined
here (see the Appendix). The voxels for which the electron
density is less than this threshold are considered to be outside
the molecule and will thus be part of the surrounding medium
in our calculation.

Charge distribution In a positively charged molecule, the
net distribution of charge is given by the electron density
which defines the HOMO. Using the frozen orbital approx-
imation, the HOMO of the positively charged and neutral
molecule are identically localised. Therefore, we used the

same approach as for the molecular cavity but stored the elec-
tron density relative to one electron (to model the cationic dye
with a net charge of +1) of the HOMO of the neutral molecule,
as opposed to the total electron density. The threshold elec-
tron density in this case was chosen by finding the minimum
threshold which ensured that all charged voxels fitted within
the molecular cavity (see the Appendix). To compensate for
the charge not included after the cutoff, the charge distribution
was renormalised. The remaining voxels within the molecular
cavity were considered neutral, e.g. Qi = 0 (in white in Figure
1).

In summary, once the electric field in vacuum has been cal-
culated for a given molecule, Equation 7 can be used to find
the polarization energy in a variety of surrounding media. In
particular, we can find the energy solely due to the electronic
polarization of the medium (fast response) using the optical di-
electric constant of the respective media in place of the relative
permittivity. It follows that we can estimate the outer-sphere
reorganization energy of hole exchange, λo,ε , using

λo,ε =∆W (εr)−∆W (εop)

=∑
n

[
1

εop,n
− 1

εr,n

]
︸ ︷︷ ︸

ε
−1
eff,n

(
Q2

8πε0R
Gn +CnW SR

0

)
(9)

where ε
−1
eff,n is the Pekar factor, W SR

0 is the short range vac-
uum polarization energy corresponding to the volume integral
of the electric field originating from the molecular charge dis-
tribution in a vacuum within radius R. Cn is the fraction of
W0 contained within the medium with permittivity εr,n (with
∑n Cn = 1).

To check the validity of our calculations, we compared this
estimation of the outer-sphere reorganization energy of inter-
molecular hole transfer in a single dielectric medium with
values of outer-sphere reorganization energy computed from
Density Functional Theory coupled with Polarizable Con-
tinum Model (DFT-PCM), λo,PCM .

2.2 Outer-sphere reorganisation energy from quantum
chemical calculations (DFT-PCM)

As extensively described in a previous work,6, the reorgani-
zation energy of hole exchange derived from DFT is defined
as the energy difference between non-equilibrium and equi-
librium states, for both hole donor and acceptor molecules
with respect to the solvent reaction field. This easily acces-
sible method, which uses the PCM23 in Gaussian09,33 incor-
porates the effects of the surrounding electrolyte (solvent and
ions). The output of these calculations is the total reorgani-
zation energy, λtot , from which the inner-sphere contribution
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(λi, due to the rearrangement of the dyes upon charge trans-
fer) needs to be subtracted to get the outer-sphere component,
λo,PCM . λi is calculated from DFT calculations in vacuum to
discriminate any solvation effects.

2.3 Characteristics of the dye molecules and media

The structures of the molecules examined in this study
are shown in Figure 2. Benzene was included as a
well-studied model molecule. The others are commonly
used as sensitizers in DSSCs and have demonstrated ef-
ficient hole transfer between them.35 We report results
for two indolene dyes, D131 and D149, four ruthe-
nium dyes N1 (cis- bis(isocyanato) bis(2,2’-bipyridyl- 4,4’-
dicarboxylato) ruthenium(II)), N3 (cis- bis(isothiocyanato)
bis(2,2’-bipyridyl- 4,4’-dicarboxylato) ruthenium(II)), N820
(cis- bis(isothiocyanato) (2,2’-bipyridyl- 4,4’-dicarboxylato)
(4,4’-di-methyl-2’-bipyridyl) ruthenium(II)) and PcRuA2 as
well as the zinc phtalocyanine TT1. Figure 2 also shows the
voxelated shapes of the molecular cavities and the charge dis-
tribution derived from the DFT optimized structures as de-
scribed above.

The relative permittivities and optical dielectric constants
of the different media surrounding the molecules are shown in
Table 1. A number of molecular configurations relative to the
substrate were explicitly examined as will be shown in Section
3.

Table 1 Relative permittivities and optical dielectric constant of the
media surrounding the molecules.

Material Relative Optical Effective
permittivity dielectric dielectric

εr εop εeff
TiO2 (anatase) 86 6.83 7.42
ZnO 8.5 4.01 7.59
SiO2 3.8 2.13 4.85
water 80.4 1.78 1.82
acetonitrile 36.7 1.81 1.90
dichloroethane 10.1 2.10 2.65
tetrachloroethene 2.27 2.23 126.55

3 Results and discussion

This section is organised as follows. First, we offer a vali-
dation of our calculations of the outer-sphere reorganization
energy of hole transfer, λo,ε by comparing results in a single
phased medium with calculations of the outer-sphere reorgani-
sation energy of hole transfer from DFT-PCM (λo,PCM). Then,
we briefly discuss the influence of the shape of the molecular
cavity and spread of the charge distribution on ∆W which is
proportional to λo,ε . Finally, we look at the effect of adding

Fig. 2 Chemical structure and shapes of the molecules examined in
this work. The first column gives the common name of each
molecule as well as the voxel side length. The second column gives
the chemical structure while the third illustrates the corresponding
cavity shape of the molecules. The last column shows the HOMO
cavity shape configured next to a substrate. NB: only one of the
doubly degenerated HOMO of benzene is depicted here.

a substrate whose relative permittivity differs from the main
solvent.
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3.1 Validation

Three tests, in line below, were performed to assess the
numerical calculation of the polarization energy of charged
molecules, hence the outer-sphere reorganization energy of
hole transfer.

Numerical accuracy. To test the accuracy of the method,
we calculated the polarization energy of a proton in acetoni-
trile (Equation 7). We chose a proton to be able to use the
point charge approximation over the whole space and compare
our results with the analytical value determined from Equa-
tion 6. In this case, the charge was assumed to be isotrop-
ically distributed within the molecular cavity, obtained from
DFT calculations (0.0055 electrons/Å as explained in Section
2 which gave a cavity radius of a = 1.51 Å). Our numerical
results yields ∆W = 4.02 eV. In these calculations the space
was disctretized into an array of 30× 30× 30 voxels of side
length 0.1064 Å. Using the radius corresponding to the vox-
elized space, Equation 6 gave ∆W = 4.017 eV. Therefore, the
numerical and analytical values agreed within 1%.

Comparison with the DFT-PCM calculatd outer-sphere
reorganisation energy of intermolecular hole transfer.
Next, we calculate λo,ε for molecules of more complicated
shape where the point charge approximation can only be used
at sufficient distance from the charge distribution (Equation
9). We compare our values for dyes in acetonitrile with the
corresponding outer-sphere reorganization energies calculated
from DFT, as illustrated in Figure 3.

Fig. 3 Comparison of the outer-sphere reorganization energy
calculated here in acetonitrile and the outer-sphere reorganisation
energy calculated as in reference6.

We observe a linear relationship between the two quan-
tities over the relatively wide range of molecules examined
(λo,ε = mλo,PCM + c). Note that both the gradient, m, and

the intercept, c, are dependent on the threshold of the electron
density used to define the spread of the charge distribution (see
Section 2). Here, we used threshold values from 0.002 to 0.04
Å−3 (see the Appendix), which corresponds to the case where
the boundary of the HOMO fits within the molecular cavity
enclosing 99.6% of the total charge. In this case, an almost
one-to-one relationship is observed (m = 0.91±0.05), with a
zero intercept, c = 0.09±0.10. This validates our calculation
of the outer-sphere reorganization energy from electrostatics.

There are a number of reasons why the absolute values
might differ slightly. For example, as explained above, the net
charge enclosed within the molecular cavity does not perfectly
add to 1. These marginal errors are also expected to occur in
the DFT calculations of the neutral dye (the net charge will
not perfectly add to 0) which will affect λo,PCM . However, in
this work we assume that the net charge enclosed within the
neutral molecular cavity is exactly zero and thus will not con-
tribute to the polarization energy (nor to λo,ε ). This explains
the small offset at the origin (0.09 eV). The small underes-
timation of the reorganization energy (m = 0.91) most likely
originate from the use of the frozen orbital approximation to
define the molecular cavity. DFT calculations are performed
on the oxidised molecules whose geometry may slightly dif-
fer from their neutral counterpart. However, we note that the
difference is within the traditionally accepted error margin.6

In conclusion, a realistic relationship between ∆W and λo is
captured when the thresholds are set so that more than 99.6%
of the net charge is enclosed within the cavity.

Effect of the geometry reequilibration of the dyes when
varying the surrounding medium. In our calculations of ∆W
(hence λo,ε ), the geometry of the molecule and corresponding
spread of the charge distribution is held fixed. In reality, the
geometry of the molecule varies according to its dielectric en-
vironment. This effect is accounted for in quantum chemical
calculations when coupling DFT with the PCM for each in-
dividual solvent but it is not easily transferable to the mixed
phase systems. To examine the extent to which the geome-
try equilibration in different dielectrics influences the calcu-
lated polarization energy, we compared values of ∆W calcu-
lated from the DFT optimized geometry in vacuum and in the
solvent (single phase). A plot of the ratio of ∆W from the
vacuum geometry with respect to ∆W from the solvent ge-
ometry is provided in the Appendix. For the majority of the
molecules examined here, the difference in the geometry of
the molecule results in less than ±1% change in ∆W . How-
ever, some molecules exhibit a higher deviation. More specif-
ically, D149 has a lower value of ∆W for the geometry in vac-
uum while N820 and N3 gave higher values. Overall, for all
molecules and all solvents the maximum deviation was less
than ±7%. Thus, even under the most extreme hypothetical
circumstances, such as when the molecule is at the interface
between two media, the difference in ∆W due to the molecular
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geometry is expected to be considerably less than 7% (since
this was the error when the dye was optimized for one of the
dielectric phases only).

3.2 Influence of the molecular shape on the outer-sphere
reorganization energy of intermolecular hole trans-
fer

Here, we consider the effect of the molecular shape and spread
of the charge distribution on the outer-sphere reorganization
energy of intermolecular hole transfer. From Figure 3, we ob-
serve that λo,ε is largely dependent on the size of the molecule.
The smallest molecule, benzene, has the highest λo,ε values
while the largest molecule, PcRuA2, has the smallest. This
is consistent with Marcus’s expression of the outer-sphere re-
organization energy of intermolecular charge transfer, which
is derived as being inversly proportional to the radius of the
(spherical) molecular cavity.1,4 However, we also note that the
ruthenium bipyridyl dyes N820, N3 and N1 all have higher
λo,ε values than the organic dye D131 and the phthalocyanine
dye TT1, both of which are similar or smaller in size (see Fig-
ure 2). This observation can be rationalized by looking at the
spread of the charge distribution within the molecular cavity
(comparing the two last columns in Figure 2). In particular, we
can see that the charge distribution for D131 and TT1 fills the
molecular cavity relatively evenly which is not the case for the
ruthenium dyes where the charge is more strongly localized on
the NCS ligands. As a result, a relatively small fraction of the
molecular cavity enclose most of the charge in the ruthenium
dyes which logically yields to a higher λo,ε . In conclusion,
our method accurately captures the fact that the magnitude of
the outer-sphere reorganization energy of intermolecular hole
transfer depends on the spread of the charge distribution rather
than the actual size of the molecule.

3.3 Influence of the presence of substrates on the outer-
sphere reorganization energy of intermolecular hole
transfer

In this section, we investigate the effect of the presence of a
metal oxide substrate in close proximity to the charged dye
molecule. The substrate is treated as a dielectric medium
whose relative permittivity differs from the original solvent.
The details of the calculation of the long-range polarization
energy in these cases is provided in Appendix. Several com-
binations of solvent-substrate were analysed, where the dye is
completely, or partly, immersed in one, or the other, medium.
As an example, λo,ε calculated for the dye molecule D131 is
presented in Figure 4 as a function of the media configuration.
The different dielectric medium configurations are indicated
schematically by diagrams on the x-axis (see Table 1 for the
effective dielectric constant of the solvent and substrate used).

Fig. 4 Outer-sphere reorganization energy of hole transfer between
two dyes D131 in differing dielectric environments. The different
solvent configurations are indicated by the ”sunrise diagrams”
depicted on the x-axis. From left to right: the molecule (white) is
surrounded only by the substrate (blue). The molecule sits just
below the substrate surface. The centre of the cavity is in the plane
of the surface. The molecule rests on the surface. The centre of the
molecule is 20Å away from the surface. The molecule is surrounded
only by the solvent (orange).

The results show that both substrate and solvent can influ-
ence the outer-sphere reorganization energy of hole exchange
between dye molecules. As expected, configurations in which
the molecule is surrounded by, or is close to, a low effec-
tive dielectric constant material (εeff = (1/εop− 1/εr)

−1) re-
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sult in relatively lower λo,ε . In contrast, configurations where
the molecule is surrounded by, or is close to, a high effec-
tive dielectric constant medium result in high λo,ε . For exam-
ple, the reorganization energy of D131 is negligible in tetra-
chloroethene but 0.6 eV in acetonitrile. Also unsurprisingly,
we observe that changes in the elevation of the molecule rela-
tive to a substrate have the largest effect on λo,ε when the frac-
tional difference between the solvent and substrate effective
dielectric constant is greatest. Interestingly, for combinations
of the solvents and substrates used in electronic devices such
as DSSC, the reorganisation energy decreases as the molecule
is situated closer to the surface. For example, with the com-
bination of acetonitrile and TiO2, λo,ε is decreased by about
20% when the molecule sits at the surface. This result implies
that, although the metal oxide is not electronically active in the
reaction of charge transfer between dye molecules, its contri-
bution to the overall reorganization energy is not negligible.

Within the scope of this model, we can predict the reorga-
nization energy for any combination of dielectric materials in
which the molecule can be positioned using only the calcu-
lation of λo,ε12, reorganization energy for a given configura-
tion of two dielectrics with effective constants εeff,1 and εeff,2.
From Equation 9, we can see that the contribution to λo,ε of
each medium will vary linearly with ε

−1
eff , so that we can write:

λo,ε12 =W0

[
B1

εeff,1
− B2

εeff,2

]
(10)

where the constants B1 and B2 are the fraction of the
vacuum polarization energy corresponding to each dielectric
medium:

B1 =
1

W0

(
W SR

0 C1 +W LR
0 G1

)
B2 =

1
W0

(
W SR

0 C2 +W LR
0 G2

)
. (11)

The factors C1 and C2 only depends on the spread of the
charge distribution of the molecule under study, and G1 and
G2 depend only on the radius of the long range cavity, R, and
the distance of the centre of the molecule from the substrate, x
(see the Appendix). Consequently, we can change εeff,1 and/or
εeff,2 freely and calculate λo,ε12 from Equation 10 without hav-
ing to recalculate C1 and C2. We give B1 and B2 for the series
of dye molecules studied in Figure 2, positionned so as the
boundary of the molecular cavity touches the substrate. It is
interesting to compare the values of B1 and B2 in Table 3 to the
analytical approximation expected from a spherical molecular
cavity resting on a substrate (x = R, see the Appendix). In this
case, B1 = 0.25 (and B2 = 0.75). For the majority of molecules
B1 (the substrate contribution) is calculated to be larger than
this value except for N820 and TT1. Note that the variations
are likely to depend on the molecular orientations chosen. The

examples values of λo,ε12 calculated for the molecules on TiO2
(medium 1) in ACN (medium 2) indicated the reorganization
energy is reduced by around 20% for all the molecules com-
pared with λo,ε in pure ACN.

Table 2 Fraction of vacuum polarization energy enclosed by each
dielectric medium (B1 and B2) for the different molecules
considered in this study positioned to touch the substrate (see Figure
2. These values can be combined with the total vacuum polarization
energy, W0, using Equation 10 to calculate the outer-sphere
reorganization energy for any given dielectric media. An example is
given for molecules on TiO2 in ACN (λo,ε12) and we provide the
ratio with respect to the reorganization energy in pure acetonitrile.

Molecule B1 B2 W0 / eV λo,ε12 / eV Ratio
(substrate) (solvent) ACN/TiO2

benzene 0.323 0.677 1.806 0.721 0.76
D131 0.272 0.728 1.157 0.485 0.80
D149 0.305 0.695 1.083 0.440 0.77
N1 0.277 0.723 1.300 0.542 0.79
N3 0.259 0.741 1.306 0.554 0.81
N820 0.142 0.858 1.320 0.620 0.89
TT1 0.202 0.798 1.055 0.471 0.85
PcRuA2 0.308 0.692 1.118 0.453 0.77

To further illustrate the influence of the presence of a nearby
substrate on the reorganization energy of hole exchange be-
tween dye molecules, we present in Figure 5 a colormap show-
ing the magnitude of λo,ε12 for D131 as a function of a contin-
uous range of εeff,1 (substrate) and εeff,2 (solvent).

From Figure 5 we can see that the nature of the substrate
does not influence the outer-sphere reorganization energy of
hole exchange for solvents with relatively low effective dielec-
tric constant. Conversely, for the most polar solvents, there is a
range over which λo,ε can be reduced compared with the com-
bination TiO2/acetonitrile, commonly used in DSSC. There-
fore, this efficient calculation of the reorganization energy of
oxidized dye molecules can help the design of experimental
systems.

Although our presented work focus on a two phases system,
as in DSSC, we can easily extend our calculation scheme to
any number of phases. In particular, if one could consider de-
scribing the dye sensitized titania surfaces with a three phases
model: substrate (phase 1), dye monolayer (phase 2) and sol-
vent (phase 3). This would require the measurement of the
optical and relative dielectric constants of the dye monolayer
which is outside the scope of this paper.

4 Conclusions

We have developed a numerical method to estimate the outer
sphere reorganization energy of molecules in heterogeneous
dielectric environments. The vacuum polarization energy in
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Fig. 5 Outer-sphere reorganization energy of hole exchange
between D131 over a continuous range of the difference between the
inverse optical and static dielectric constants for the solvent and
substrate. The magnitude of the reorganization energy is given by
the color code whose key is on the right hand side.

each medium due to charge localised within a molecular cavity
was calculated over a short range where the spatial charge dis-
tributions were determined using standard DFT calculations.
For numerical efficiency a cut-off radius was defined beyond
which a point charge approximation is used to give the long
range contributions to the vacuum energy for each dielectric
medium. The model was validated by comparing calculations
for a single dielectric medium with DFT calculations incorpo-
rating a polarizable continuum model. The results indicated
that λo,ε for molecules in one medium can be sensitive to the
presence of another dielectric material particularly when the
Pekar factor (1/εo − 1/εr) for each medium is significantly
different. For media with high relative permittivities, vari-
ation in the optical dielectric constant dominates the differ-
ences in the relative contributions from each phase. For the
case of molecules in ACN touching a TiO2 substrate, λo,ε is
reduced by around 20% relative to the value calculated for sol-
vent alone for most of the dye molecules examined. Using the
Marcus rate equation formalism this would lead to a modest
increase in rates of intermolecular charge transfer. The method
we have presented could easily be extended to other classes of
molecules and situations.
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6 Appendix

6.1 Analytical integrals for the Long Range (LR) polar-
ization energy (point charge approximation)

6.1.1 Volume integral for the derivation of Equation 6
The square magnitude of the electric field in vacuum outside
a sphere enclosing the charge Q is:

E2
0 =

Q2

(4πε0)2r4 ,

where r is the radial distance from the origin of the sphere.
Therefore the volume integral in Equation 5 becomes:∫

E2
0 d3r =

∫ 2π

0
dΦ

∫
π/2

−π/2
sin(θ)dθ

∫
∞

R
dr

Q2

(4πε0)2r4 r2

= 2π×2× Q2

16π2ε2
0

[
−1

r

]∞

R

=
Q2

4πε2
0 R

which yields to Equation 6 when multiplied with the prefactor.
Similarly, we can derive the expressions of ∆W using the point
charge approximation when two different media are present.
Figures 6.1.1 depicts the two configurations considered.

Fig. 6 Schematic of the sphere of radius R marking the boundary
from which we use the point charge approximation in the
calculation of the polarization energy. Left: the sphere is entirely
embedded within one phase (phase 2 in blue here). Right: the sphere
cuts the interface between the two phases.

To ease the notation we define the following constants:

α =
(εr1−1)Q2

8πε0εr1R
and β =

(εr2−1)Q2

8πε0εr2R
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where εr1 and εr2 are the relative permittivities of phase 1 (in
orange in Figure ) and phase 2 (in blue in Figure ) respectively.
We make use of polar coordinates (Φ,θ andr) and the range
over which these coordinates vary depends on each case.

6.1.2 Case 1: x > R r(θ) = x
cos(θ)

∆W LR = ∑
n

(εrn−1)Q2

8πε0εrnR
Gn

∆W LR = αG1︸︷︷︸
∆W LR

1

+βG2′︸︷︷︸
∆W LR

2′

+βG2′′︸ ︷︷ ︸
∆W LR

2′′

∆W LR
1 =

ε0(εr1−1)
2εr1

∫ 2π

0
dΦ

∫
π/2

0
dθ

∫
∞

x/cos(θ)
dr
[
E2

0 r2sin(θ)
]

∆W LR
1 =

αR
4x

→ G1 =
R
4x

∆W LR
2′ =

ε0(εr2−1)
2εr2

∫ 2π

0
dΦ

∫
π/2

0
dθ

∫ x/cos(θ)

R
dr
[
E2

0 r2sin(θ)
]

∆W LR
2′ = β

(
1
2
− R

4x

)
→ G2′ =

1
2
− R

4x

∆W LR
2′′ =

ε0(εr2−1)
2εr2

∫ 2π

0
dΦ

∫
π

π/2
dθ

∫
∞

R
dr
[
E2

0 r2sin(θ)
]

∆W LR
2′′ =

β

2
→ G2′′ =

1
2

6.1.3 Case 2: 0 < x < R r(θ) = x
cos(θ) cos(θ0) =

x
R

∆W LR = ∑
n

(εrn−1)Q2

8πε0εrnR
Gn

∆W LR = αG1′︸ ︷︷ ︸
∆W LR

1′

+αG1′′︸ ︷︷ ︸
∆W LR

1′′

+βG2′︸︷︷︸
∆W LR

2′

+βG2′′︸ ︷︷ ︸
∆W LR

2′′

∆W LR
1′ =

ε0(εr1−1)
2εr1

∫ 2π

0
dΦ

∫
θ0

0
dθ

∫
∞

R
dr
[
E2

0 r2sin(θ)
]

∆W LR
1′ =

α

2
(1− cos(θ0)) → G1′ =

1
2
− x

2R

∆W LR
1′′ =

ε0(εr1−1)
2εr1

∫ 2π

0
dΦ

∫
π/2

θ0

dθ

∫
∞

x/cos(θ)
dr
[
E2

0 r2sin(θ)
]

∆W LR
1′′ =

αR
8x

(1+ cos(2θ0)) → G1′′ =
x

4R

∆W LR
2′ =

ε0(εr2−1)
2εr2

∫ 2π

0
dΦ

∫
π/2

θ0

dθ

∫ x/cos(θ)

R
dr
[
E2

0 r2sin(θ)
]

∆W LR
2′ =

βR
2

(
cos(θ0)

R
− cos(2θ0)+1

4x

)
→ G2′ =

x
4R

∆W LR
2′′ =

ε0(εr2−1)
2εr2

∫ 2π

0
dΦ

∫
π

π/2
dθ

∫
∞

R
dr
[
E2

0 r2sin(θ)
]

∆W LR
2′′ =

β

2
→ G2′′ =

1
2

6.2 Probability density thresholds

Table 3 gives the amount of charge enclosed within the molec-
ular cavity and describing the HOMO for various electron den-
sity threshold. Note that the total sum of electron probability
over all space in the Gaussian09 output files typically yields a
number 30-40% lower than the actual number of electrons in
the molecule. This is due to some core electrons being ignored
by the self-consistent field calculation and minor truncations
of the probability content towards the edge of the lattice. Since
the electrons in the core orbitals should only contribute small
amounts to the total electron probability density at the edge
of the molecule this was not considered important for defin-
ing the cavity boundary. The trends observed in this work did
not change when the calculations in acetonitrile were repeated
for different probability density thresholds (0.001 electron/ Å3

and 0.008 electron/Å3) for all the molecules.

Table 3 Probability density thresholds required to enclose 99.6% of
a charged molecule’s electrons and the minimum probability density
threshold of the HOMO required to enclose the charged region
within the molecule cavity.

Cavity density HOMO density
Molecule threshold electron/Å3 threshold electron/Å3

(% of total electrons) (% of total charge)
benzene 0.074 (99.6%) 0.0256 (97.3%)
D131 0.064 (99.6%) 0.0066 (94.9%)
D149 0.050 (99.6%) 0.0061 (96.9%)
N1 0.112 (99.6%) 0.0074 (94.8%)
N3 0.080 (99.6%) 0.0089 (94.8%)
N820 0.059 (99.6%) 0.0059 (95.6%)
TT1 0.072 (99.6%) 0.0066 (94.2%)
PcRuA2 0.034 (99.6%) 0.0020 (95.8%)

6.3 Influence of the dye geometry optimisation in solvent
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