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Abstract

Hilbert’s 13th problem asked whether every continuous multivariate function can be written

as superposition of continuous functions of 2 variables. Kolmogorov and Arnold show that

every continuous multivariate function can be represented as superposition of continuous

univariate functions and addition in a universal form and thus solved the problem posi-

tively. In Kolmogorov’s representation, only one univariate function (the outer function)

depends on and all the other univariate functions (inner functions) are independent of the

multivariate function to be represented. This greatly inspired research on representation

and superposition of functions using Kolmogorov’s superposition theorem (KST).

However, the numeric applications and theoretic development of KST is considerably

limited due to the lack of smoothness of the univariate functions in the representation.

Therefore, we investigate the properties of the outer and inner functions in detail. We show

that the outer function for a given multivariate function is not unique, does not preserve the

positivity of the multivariate function and has a largely degraded modulus of continuity.

The structure of the set of inner functions only depends on the number of variables of the

multivariate function. We show that inner functions constructed in Kolmogorov’s represen-

tation for continuous functions of a fixed number of variables can be reused by extension

or projection to represent continuous functions of a different number of variables.

After an investigation of the functions in KST, we combine KST with Fourier trans-

form and write a formula regarding the change of the outer functions under different inner

functions for a given multivariate function. KST is also applied to estimate the optimal

cost between measures in high dimension by the optimal cost between measures in low

dimension. Furthermore, we apply KST to image encryption and show that the maximal

error can be obtained in the encryption schemes we suggested.
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Chapter 1

An overview of Kolmogorov

superposition theorem

1.1 Hilbert’s 13th problem and its positive and negative answers

In 1900, Hilbert [21] posted a list of 23 problems which he considered important to the

development of mathematics in the 20th century. The 13th problem in Hilbert’s problem

list is as follows: “ The equation of the seventh degree f 7 + xf 4 + yf 2 + zf + 1 = 0

is not solvable with the help of any continuous functions of only two arguments.” As is

known, the solution of an algebraic equation xn + an−1x
n−1 + · · · + a0 = 0 of degree

n ≤ 4 is given by a formula involving only algebraic operations, i.e., addition, subtraction,

multiplication, division and radicals (fractional power). For n > 4, it can be reduced to

the form yn + bn−4y
n−4 + · · · + b1y + 1 = 0 by means of Tschirnhaus transformations

[63], which uses only algebraic operations. It follows that the solution of an algebraic

equation of degree n ≤ 6 can be represented by superposition of continuous functions of

2 variable and for n ≥ 7, the solution can be represented by superposition of continuous

functions of n − 4 variables. In particular, the solution of an algebraic equation of degree

7 is a superposition of continuous functions of 3 variables and a further reduction seems

impossible.

Hilbert’s problem list has attracted enormous researchers and stimulated various solu-

tions. Some of the problems on the list have not been solved completely so far. Studies on
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Hilbert’s 13th problem bloomed around 1960s. Using a technique on functional trees by

Kronrod [31], Kolmogorov [28] claimed that every continuous function can be represented

as a superposition of continuous functions of 3 variables. Then Arnold [2], Kolmogorov’s

student, proved that any continuous function of 3 variables can be represented as a super-

position of continuous functions of 2 variable in 1957. Kolmogorov and Arnold’s results

together show that any continuous multivariate function can be represented as a superpo-

sition of continuous functions of 2 variables and thus Hilbert’s conjecture was incorrect at

least for continuous functions. Shortly after this, Kolmogorov [29] found a new construc-

tion, avoiding functional trees, and improved the proof significantly, which formed the

Kolmogorov superposition theorem (KST): every continuous function f of n variable can

be represented as a superposition of continuous functions of one variable and the additive

operation:

f(x1, ..., xn) =
2n∑
q=0

gq

(
n∑
p=1

ψpq(xp)

)
, (1.1.1)

where gq and ψpq are continuous univariate functions on R and ψpq’s are independent of f .

On the other direction, the irrepresentability of multivariate functions by superposition

of univariate functions and additive operation was studied at the same time. Hilbert’s 13th

problem were understood in different ways and it was not sure if it was continuous function

class which Hilbert was concerned about. For example, the problem can be understood as

to solving algebraic equation of degree 7 by superposition of smooth or analytic functions

of two variables. In this sense, Hilbert’s conjecture could be right, as there are analytic

functions of 3 variables which cannot be represented by finite superposition of analytic

functions of 2 variables [66]. In fact, the number of partial derivatives up to order p for a

function of 3 variables is proportional to p3, whereas the number of partial derivatives up

to order p of functions of two variables is proportional to p2. Hence a function of 3 variable

f that can be represented by superposition of functions of two variables has to satisfy some

algebraic partial differential equation. That is,

P (f,
∂f

∂x1

,
∂f

∂x2

,
∂f

∂x3

, ...,
∂p1+p2+p3f

∂xp11 ∂x
p2
2 ∂x

p3
3

) = 0,

where P is a polynomial with constant coefficients in the function f and its partial deriva-
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tives up to order p. Therefore there are “more” functions of 3 variables than superposition

of functions of 2 variables [66].

Generally, it is showed by Vitushkin [69] that if the complexity of a function is mea-

sured by the ratio of the number of variables to the order of smoothness, then almost every

function of a given complexity, except for a first-category set of functions, cannot be rep-

resented as a superposition of functions of lower complexities. This reveals the inevitable

decrease in smoothness of functions as the number of variables of functions decreases in

superposition.

Vitushkin’s proof [65] used the concept of variations of sets designed by himself. A

simpler proof, using ε-capacity, is given by Kolmogorov and Tihomirov [60]. For more

specific examples of irrepresentability by superpositions of functions from certain classes

see [44] [67] [69] and references therein.

1.2 The motivation and structure of the thesis

In the thesis, we focus on the positive answer to Hilbert’s 13th problem: Kolmogorov

superposition theorem. We study topics around Kolmogorov superposition theorem in both

theoretical and applied aspects.

Techniques and methods generalising concepts and results from lower dimensions to

higher dimensions have been explored both in theoretical and practical research. In gen-

eral, mathematical problems in high dimensions are generally more difficult than those

in low dimensions. For example, the optimal transport maps between measures in high

dimensional spaces are generally not easily obtained, while they are explicitly solved for

measures on the real line. Another example is typical partial differential equations (PDEs)

describing physical processes involving time and space. When the dimension of spaces

involved increases, more complicated techniques and methods are needed to tackle the so-

lutions to the PDEs. In view of Kolmogorov’s result, superpositions of functions of one

variable and the additive operation exhaust the set of all multivariate functions. One may

say that there are essentially no continuous functions of multiple variables except the addi-

tive function, f(x, y) = x+ y, and thus no high-dimensional problems at all. This intuitive

prospect looks over optimistic, as we will see later in the thesis. Nevertheless, the evident
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advantage of KST in representation still motivates us to explore its possible applications to

problems in high dimensions.

Next we introduce the structure of the thesis with more detailed motivation in each

chapter. In the remaining part of Chapter 1, researches closely related to Kolmogorov

superposition theorem from the publication of KST in 1957 till now are briefly reviewed.

Specifically, we examine the improvements and generalisations of KST, its topological

implications, its numerical implementations, approximative versions of KST (particularly

neural network), and applications of Kolmogorov’s theorem in image processing and other

fields.

In chapter 2, we introduce the background knowledge needed in chapters that follow,

such as the main types of proofs of KST, especially the constructive proofs. We also intro-

duce general concepts and theorems from optimal transport theory which will be used in

Chapter 6, such as cost functions, the optimal cost between two probability measures and

the dual problem of optimal transport problems. The Wasserstein distance induced from

optimal transport problem is also introduced, which is used to estimate the difference be-

tween multivariate functions obtained from superposition of different inner functions with

a shared outer function.

It is notable that the inner functions ψpq in KST are independent of the functions to be

represented and thus KST allows a universal representation for all multivariate continuous

functions. In other words, KST separates the topological structure of the domain In from

the value information of the multivariate function in its representation. This requires strong

point-separability properties [59] of the inner functions, which impairs their smoothness

significantly. As mentioned in section 1.1, Vitushkin’s negative results [66] also leads to

this conclusion. Moreover, the special structure of the inner functions also has “bad” effects

on the smoothness of the outer function. Since the inner functions are independent of any

multivariate function f , information of f is totally stored in its outer function g. Naturally,

one expects smoother g for smoother f ; however, the domain In is mapped by the inner

functions to the real line in a highly “non-linear” way such that the neighbourhoods of In

are no longer preserved in the real line (see figure 7.1). This implies potentially that the

analytic properties of f are not well preserved in g in Kolmogorov’s representation.

In Chapter 3, we investigate the set of inner functions in Kolmogorov’s representation
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formula. Originally, the inner functions are constructed for continuous functions defined

on In with a fixed dimension n ≥ 2. We show that if the inner functions are constructed to

separate a sequence of 2n+ 1 families of little cubes which covers In at least n+ 1 times,

then it is possible to extend the inner functions in dimension n to dimension m > n or

project the inner functions in dimension m to dimension n. In this way, the inner functions

can be reused in different dimensions.

In Chapter 4, we investigate the problem how the analytic properties of f are preserved

in the univariate function g. For a given family of inner functions in (1.1.1), we show that

the outer function g for a given f is not unique and g does not preserve the positivity for

f ≥ 0. The modulus of continuity of f is drastically lost in g. In particular, we gave a

sharp lower bound for the modulus of continuity of g with respect to that of f in Sprecher’s

constructive proof of KST [7].

In KST, the outer function of a continuous function of several variables depends not

only on the multivariate function, but also on the inner functions ψpq chosen in the repre-

sentation. In Chapter 5, we try to understand the change of outer functions under different

inner functions for a given multivariate function using the techniques from Fourier trans-

form. As shown in (1.1.1), the inner functions are served as the argument of the outer

functions g. Fourier transform can separate the argument y of a function g(y) from g by

moving y to the exponent of Fourier basis eiyt, that is, formally,

g

(
n∑
p=1

ψpq(xp)

)
=

∫
R
ĝ(t)e2πi(

∑n
p=1 ψpq(xp))t.

Despite the undesirable performance of KST in preserving analytic properties, KST in-

deed provides a way to reduce the dimensionality of functions. Probability measures with

continuous density functions in n dimension can be transformed to probability measures

in one dimension using KST. Thus the transport problems in n dimension can be studied

in its equivalent problem formulated in one dimension. In chapter 6, we estimate the opti-

mal transport cost in n dimension with certain cost functions by the corresponding optimal

cost in one dimension. Similarly, the Wasserstein distance between two probability mea-

sures in n dimension can also be bounded by the Wasserstein distance of their equivalent
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counterparts in one dimension.

The main disadvantage of KST, its high non-linearity, can be turned into an advantage

from a different point of view. In fact, the highly “non-linear” dependence of g on f

inspires us to apply KST in encryption. Suppose we have some data to be transmitted and

the data is considered as values of a multivariate function f on a discrete set. First, choose

a family of inner functions and encode f as its outer function g, then transmit g publicly.

The chosen inner functions are served as secret keys. The authorised users with secret keys

can reconstruct f from the public data g. It is hard to crack f directly from g, since they are

connected in a highly non-linear way. Different versions of KST, such as Lorentz’s (1.3.1)

and Sprecher’s (1.3.2) versions, give different types of keys. It is difficult to construct a key

even knowing the type of the correct keys because the construction of the keys are complex

due to their high non-linearity. Some experiments and simulations of image coding have

been conducted very recently by Leni et. al [34] [33] [35], which we will give more details

in section 1.6. In Chapter 7, we estimate the error of reconstructing f from g with wrong

keys measured in Lp-norm and Wasserstein distance. It is showed that the error can be

maximised in some cases. For example, a greyscale picture can be wrongly restored as any

random picture between a purely black and purely white picture. Therefore, the encryption

based on KST generally guarantees a high-level security.

1.3 Improvements of Kolmogorov superposition theorem

There have been many comments and refinements of Kolmogorov superposition theorem

and its proof. Fridman [15] shows that the inner functions ψpq in (1.1.1) can be chosen to

satisfy a Lipschitz condition∗. This turns out to be the best possible smooth property for

the inner functions ψpq in the sense that if ψpq in (1.1.1) is replaced by some continuously

differentiable functions, then there are even analytic functions which cannot be represented

by formula (1.1.1) [66]. To simplify the form of representation (1.1.1), Lorentz [40] re-

placed the (2n+ 1)n inner functions ψpq by 2n+ 1 functions φq multiplied by n constants

∗ We say a real or complex-valued function f on n-dimensional Euclidean space satisfies a Lipschitz
condition, or Lipschitz continuous, iff there is a real constants C > 0 such that |f(x)− f(y)| ≤ C|x− y| for
all x, y in the domain of f .
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λp. He also showed that the dependence of outer function gq on q can be removed by a shift

of their arguments. Thus the number of both inner and outer functions are reduced. More

precisely, Lorentz [40] in 1966 showed the existence of continuous and monotonously in-

creasing functions φq such that for any f ∈ C(In) with I := [0, 1], there exists a continuous

function g such that

f(x1, ..., xn) =
2n∑
q=0

g

(
n∑
p=1

λpφq(xp)

)
, (1.3.1)

where λp > 0, p = 1, ..., n are rationally independent †.

Sprecher [48] made a further simplification of the inner functions by replacing φq in

(1.3.1) with one single function ψ and proper shifts in its argument. He [48] proved that

there exist positive numbers a, b, λp, λpq, p = 1, ..., n, q = 0, ..., 2n, and a real, monotonic

increasing functionψ : I → I satisfying a Hölder condition ‡ with exponent log 2/ log(2n+

2), such that for any given f ∈ C(In) and all (x1, ..., xn) ∈ In,

f(x1, ..., xn) =
2n∑
q=0

g

(
n∑
p=1

λpψ(xp + aq) + bq

)
, (1.3.2)

or

f(x1, ..., xn) =
2n∑
q=0

g

(
n∑
p=1

λpqψ(xp + aq)

)
(1.3.3)

holds with some continuous function g. Note that the values a and the functions g can differ

in the two representations. Moreover, Sprecher [50] also showed that the inner functions in

(1.3.2) and (1.3.3) can be Lipschitz continuous. In fact, following the insight by Fridman

[15] and Kahane [24], any tuple of (φ0, ..., φ2n) in (1.3.1) with φq continuous and increasing

can be re-parametrized to satisfy a Lipschitz condition [26].

Hedberg [20] and Kahane [24] gave a proof of KST totally different from Kolmogorov’s.

Using the category theory, they show that λ1, ..., λn can be chosen such that the represen-

†λ1, ..., λn are rationally independent, if for any rational numbers t1, ..., tn with
∑n
p=1 tpλp = 0 it follows

that t1 = · · · = tn = 0.

‡A real or complex-valued function f on n-dimensional Euclidean space satisfies a Hölder condition
with exponent α, or is Hölder continuous, iff there are real constants C > 0 and 0 < α ≤ 1, such that
|f(x)− f(y)| ≤ C|x− y|α for all x, y in the domain of f .
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tation in (1.3.1) holds for all tuples (φ0, ..., φ2n) with φq continuous and increasing , except

for a subset of first category. The first category here is with respect to the metric space Φn

with the ordinary maximum metric, where Φ ⊆ C(I) denotes the metric subspace of C(I)

of all increasing functions φ : I → I . Using their idea, Doss [12] showed that the inner

sum
∑n

p=1 ψpq(xp) in formula (1.1.1) can be replaced by a product of univariate functions:∏n
p=1 φpq(xp).

1.4 Extensions and generalisations of KST

We now introduce some generalisations and extensions of Kolmogorov superposition the-

orem which provide a deeper understanding of superposition of functions. Ostrand [43] in

1965 showed that KST holds on compact metric spaces.

Theorem 1.4.1 (Ostrand [43]). Let X1, ..., Xl be compact metric spaces with Xp having

dimension dp. Let X = X1 × · · · × Xl and n =
∑l

p=1 dp. Then there are continuous

functions ψpq : Xp → I , for p = 1, ..., l and q = 0, ..., 2n, such that each f ∈ C(X) is

representable in the form

f(x1, ..., xl) =
2n+1∑
q=1

gq

(
l∑

p=1

ψpq(xp)

)
, (1.4.1)

where the functions gq are real and continuous.

Doss [13] and Demko [10] in 1977 generalised KST to Rn for unbounded and bounded

continuous functions, respectively. Feng [14] in 2010 generalised KST to locally com-

pact and finite dimensional separable metric spaces (or equivalently, spaces homeomorphic

to a closed subspace of Euclidean space). He gave a full characterisation of spaces that

admitting the superposition formula (1.4.1).

Theorem 1.4.2 (Feng [14]). X is a locally compact, finite dimensional§ separable metric

space, if and only if for every m,n ∈ N, there is an r ∈ N and ψpq ∈ C(X,Rn), for

§Dimension here refers to topological dimension, which is also called Lebesgue covering dimension. A
topological space X has Lebesgue covering dimension n if and only if n is the smallest natural number such
that for every open cover ofX , there exists a refinement of the open cover such that any point inX is covered
by at most n + 1 sets of the refinement. If a space does not have Lebesgue covering dimension n for any
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q = 1, ..., r and p = 1, ...,m, such that every f ∈ C(Xm,Rn) can be written as

f(x1, ..., xm) =
r∑
q=1

gq

(
m∑
p=1

ψpq(xp)

)
, (1.4.2)

for some gq ∈ C(Rn,Rn).

In particular, for n = 1, Feng [14] states Kolmogorov’s representation formula for

C(R):

Theorem 1.4.3 (KST for C(R) [14]). Fix m ∈ N. There exists ψpq ∈ C(R), for q =

0, ..., 2m and p = 1, ...,m, such that for any function f ∈ C(R), there can be found

functions g0, ..., g2m in C(R) such that:

f(x) =
2m∑
q=0

gq ◦ ξq(x), where ξq(x1, ..., xm) = ψ1q(x1) + · · ·+ ψmq(xm).

Further, one can arrange it so that the co-ordinate functions, g0, ..., g2m, are all identical

(say to g), and that ψpq (and hence ξq) are Lipschitz (with Lipschitz constant 1).

Representations of functions from other function classes are also investigated in the lit-

erature. For example, the representability of bounded functions or even arbitrary functions

are studied in the series of paper of Sternfeld [57] [59][58] and Ismailov [23] respectively.

It turns out that the representability depends on the structure of the inner functions with

respect to the domain, which has geometrical interpretations (see [27] [62]).

1.5 Cardinality of basic families of a space and its dimension

Kolmogorov superposition theorem implies more topological properties of the spaces in

question, in particular the dimension of the space. We first introduce the concept of basic

family of a space.

LetX be a metric space. A family of continuous functions, {ξq : X → R|q = 1, ...,m},
is said to be basic for X iff each f ∈ C(X) can be written as f =

∑m
q=1 gq ◦ ξq, for some

n ∈ N, it is said to be infinite dimensional. An open cover {U ′i}i∈S′ of X is a refinement of another open
cover {Ui}i∈S of X iff U ′i ⊂ Uj for some j ∈ S depending on i holds for all i ∈ S′.
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g1, ..., gm ∈ C(R). Thus {
∑n

p=1 ψpq(xp)}2n
q=0 in (1.1.1) is a basic family for In. The

cardinality of basic family relies on the topological structure of the space X . Doss [11]

shows that the cardinality of basic family for In in (1.1.1), 2n+ 1, cannot be reduced when

n = 2 and ψpq is monotonously increasing. Sternfeld [58] and Levin [36], with a shorter

proof, show that for n ≥ 2, the dimension of a compact metric space X is no greater than

n if and only if the cardinality of the basic family for X is less or equal to 2n + 1. Feng

[14] generalised this characterisation to locally compact, separable and metrizable spaces.

Using the duality between function spaces and measure spaces, Sternfeld [59] charac-

terised the basic family by its property in separating points in the topological space X . For

example, {ξ1, ..., ξm} is a basic family for X if and only if it is a uniformly measure sep-

arating family; that is, there exists some 0 < λ ≤ 1 such that for every measure µ in the

dual space C(X)∗ of C(X), ||µ ◦ ξ−1
q ||TV ≥ λ||µ||TV holds for some 1 ≤ q ≤ m, where

(C(X)∗, || · ||TV ) is actually the space of Borel measures on X with total variation norm.

We will use this observation to show that the outer function g in Kolmogorov superposition

theorem is not unique in Chapter 4.

1.6 Numerical implementation of KST and its application to neural

network

From a practical viewpoint, those basic families which are superposition of univariate func-

tions are of our interests.

Let X1, ..., Xl be locally compact and separable metric spaces with Xp having dimen-

sion dp, p=1,...,l. Let X = X1 × · · · × Xl and n =
∑l

p=1 dp. We call a basic family

{ξ1, ...ξm} for X , m ≥ 2n + 1, a Kolmogorov basis for X or K-basis for X as abbrevia-

tion, iff for every 1 ≤ q ≤ m, ξq : X → R can be written as a sum of continuous univariate

functions, that is, there exist continuous ψpq : Xp → R, for p = 1, ..., l such that

ξq(x1, ..., xl) =
l∑

p=1

ψpq(xp). (1.6.1)

In practice, we consider the special case when X1 = · · · = Xn = I and X = In, which
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is also the most investigated case of Kolmogorov superposition theorem.

As a matter of fact, most of the proofs of KST are not “implementable” in the sense

that the construction is an infinite process. Sprecher contributes a series of papers [53]

[52][51][54] concerning the computability and numeric implementation of KST for C(In),

where the functions in the K-basis are simplified as translations of a single function ψ.

Sprecher’s construction had minor mistake which was noticed and corrected by Köppen

[30] in 2003 without proof. Braun [7] in 2009 implemented the details of the construc-

tive proof and verified Köppen’s result, whence a totally constructive proof of KST was

presented. Despite the constructive version of KST, the application of KST in real compu-

tation as an exact representation is impossible, because the outer function is computed by

an infinite number of iterations and the construction of functions in K-bases is also a limit

process. Approximative versions of KST are investigated in a series of literatures, such as

[6] [22] [32] and so on, where smoother and simpler functions are used to approximate the

inner functions or the outer functions or both of them.

KST has applications in various fields, such as non-linear control circuit and system

theory, statistical pattern recognition, image and multidimensional signal processing, neu-

ral network and so on, see [33] [35] [3], etc.

The application of Kolmogorov superposition theorem to neural network has been

mostly discussed since Hecht-Nielsen [19] explained KST as a feedforward neural net-

work in 1987. Briefly speaking, a neural network is a structure to perform computations by

a network of interconnected neurons. A neuron produces an output from a certain number

of inputs through an activation function. The outputs of some neurons can be sent as inputs

to some other neurons. Hecht-Nielsen states that any continuous function f : In → R can

be represented as a neural network with one hidden layer with inputs (x1, ..., xn) and activa-

tion function ψ (the K-basis), and a single output layer with activation function g (the outer

function) that produces the output f(x1, ..., xn). Although the highly non-smoothness of the

inner functions proposed doubts on the realisation of Hencht-Nielsen’s network, Kurkova

[32] noticed that instead of exact representation, Hecht-Nielsen’s network can be realised

in an approximate way by increasing the number of inner functions and approximating

both the inner functions and outer functions with sequences of smooth functions. There are

various approximation schemes [41] [25] [42] for Hecht-Nielsen’s network, for example
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perceptron type network [41] and projection pursuit algorithm [16]. Particularly, Igelnik

and Parikh [22] in 2003 proposed an algorithm of the neural network using spline func-

tions to approximate both the inner function ψ and outer function g. They show that any

continuously differentiable function f can be approximated with any given accuracy and

the approximation order (the number of net parameters needed for a given approximation

error) in their algorithm is better than general approximation schemes for Hencht-Nielsen’s

network.

In signal processing, most of techniques are applied in 1 dimension or 2 dimension

and cannot be easily extended to higher dimensions. Therefore, KST can also be used in

image processing in higher dimensions: instead of applying operations directly to signals

in high dimensions, such as signal compression, approximative versions of KST allow

one to apply the operations to an equivalent representation of the signal in one dimension.

Using Igelnik’s spline network [22] combined with wavelet transform, Leni, Fougerolle

and Truchetet conducted simulations on image reconstruction [34], compression [33] and

transmission [35] and produced improved results in image processing. Moreover, they [35]

also designed a progressive transmission of secured images by encoding the image as a

univariate function with changing K-bases in different resolutions.
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Chapter 2

Preliminaries

We introduce two main subjects: the general ideas in the proofs of KST as well as ba-

sic concepts and problems in optimal transport theory, which we think are necessary to

understand the contents of the thesis.

2.1 Notations

First we introduce some notations and definitions used through this thesis.

N := {1, 2, ...}, N0 = {0, 1, 2, ...}.
R is the set of real numbers, R+ is the set of non-negative real numbers, and Q is the set of

rational numbers.

I := [0, 1] is the unit interval. In, n ∈ N, is the Cartesian product of I .

C(A): the set of all continuous functions defined on a set A ⊂ Rn, n ∈ N.

Cp(A), p ≥ 1: the set of of functions with continuous p-th partial derivative functions on

A.

C0(R) := {f ∈ C(R) : limx→∞ f(x) = 0}.
Cc(R) := {f ∈ C(R) with compact support}.
f [A] := {f(x) : x ∈ A} is the image of A under the map f , if f : A → B is a function

defined on set A ⊂ Rn, n ∈ N with values in set B ⊂ Rm, m ∈ N.

P (X) : the set of probability measures on a Polish space X .

(X , ‖ · ‖∞) is a normed function space and ‖ · ‖∞ is the maximum norm of functions in X .
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A permutation σ of {a1, a2, ..., an} is a bijective map on {a1, a2, ..., an}.
σ := (a1, a2, ..., an) denotes a cyclic permutation of {a1, a2, ..., an} defined by

σ : {a1, a2, ..., an} 7→ {a1, a2, ..., an}

σ(ai) = ai+1, i = 1, ..., n− 1

σ(an) = a1.

Next we introduce three definitions: Kolmogorov basis, Kolmogorov map with respect

to a Kolmogorov basis and superposition operator with respect to a family of continuous

functions.

Definition 2.1.1 (Kolmogorov basis and Kolmogorov map with respect to Kolmogorov

basis). Let X1, ..., Xl be locally compact and separable metric spaces with Xp having di-

mension dp. Let X = X1 × · · · ×Xl and n =
∑l

p=1 dp. If there exist continuous functions

ψpq : Xp → R, p = 1, ..., l, q = 1, ...,m, such that every f ∈ C(X) can be represented as

f(x1, ..., xl) =
m∑
q=1

g

(
l∑

p=1

ψpq(xp)

)

with some g ∈ C(R). Then we call the family ξ := {ξ1, ..., ξm} defined by

ξq(x1, ..., xl) :=
l∑

p=1

ψpq(xp), q = 1, ...,m (2.1.1)

a Kolmogorov basis or K-basis for C(X).

For a given K-basis ξ := {ξ1, ..., ξm} for C(X), if K : C(X)→ C(R) is a well-defined

linear operator such that for all f ∈ C(X), f =
∑m

q=1(Kf) ◦ ξq. Then we call K a

Kolmogorov map or K-map with respect to the K-basis ξ.

For example, in the constructive proofs of KST [29] [40] [7], a unique outer function g

is constructed for any given f ∈ C(In) and thus a Kolmogorov map is well defined.

On the other hand, we can define the superposition operator with respect to a given

family of functions, particularly with respect to a K-basis.



Chapter 2. Preliminaries 23

Definition 2.1.2 (Superposition operator). Let m ∈ N and X be a locally compact, finite

dimensional separable metric space and ξ := {ξ1, ..., ξm} with continuous functions ξq :

X → R , q = 1, ...,m , then we call the linear operator Sξ : C(R)→ C(X) defined by

Sξ(g)(x) :=
m∑
q=1

g (ξq(x)) .

the superposition operator with respect to ξ or the superposition operator when there’s no

confusion.

2.2 Proofs of KST

There are two main types of proofs of Kolmogorov’s superposition theorem: the proofs

using category theory and the constructive proofs.

Kahane [24] and Hedberg [20] around 1970 used the Baire category theorem to show

the existence of the inner functions ψpq in the superposition formula (1.3.1). Despite their

proofs were not constructive, they showed more than KST, i.e., λ1, ..., λn in (1.3.1) can be

chosen such that all tuples (φ1, ..., φ2n+1) with φq continuous and increasing make the KST

formula hold, except for a subset of first category∗.

Based on Kahane’s idea [24], Sternfeld [58] in 1979 used a general duality argument in

functional analysis and proved KST and Ostrand’s [43] generalisation of KST in compact

metric spaces. Let X be a compact, separable metric space and ξ := {ξ1, ...ξm} be a family

of continuous functions defined on X . ξ is a Kolmogorov basis on X if the superposition

operator Sξ with respect to ξ is surjective, which is equivalent to that its dual operator

S∗ξ : C(X)∗ → C(R)∗

µ→
m∑
q=1

µ ◦ ξ−1
q .

is isomprphism into, i.e., S∗ξ is injective and its inverse, mapping range of S∗ onto C(X)∗,

∗The first category here is with respect to the metric space Φn, the corresponding metric product space of
Φ with the ordinary maximum metric, where Φ ⊆ C(I) denote the metric subspace of C(I) of all increasing
functions φ : I → I .
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is bounded (see Appendix). Note that C(X)∗ is equivalent to the space of Borel measures

with bounded total variations on X . Then S∗ξ is isomorphism into iff {ξ1, ..., ξm} uniformly

separates the Borel measures on X†. Sprecher then showed by Baire category theorem the

existence of families of functions {ξ1, ..., ξm} that uniformly separate Borel measures on

X and thus proved KST.

The other type of proofs, given by Kolmogorov [29] Lorentz [40], Sprecher [48] and

others, is constructive. The constructive proofs consist of two parts: the construction of the

independent inner functions and the iterative approximation of the outer function. First,

divide the unit cube In into disjoint sub-cubes and then shift the sub-cubes along some

vectors a certain amount of times such that every point in In is covered several times by the

union of all the shifted families of sub-cubes. The inner functions are constructed such that

the images of all disjoint sub-cubes from all families are mapped into disjoint intervals on

the real line. Second, approximate the multivariate function f on these squares by defining

proper outer function gr on the disjoint intervals iteratively at each step r. The infinite

series of functions gr converges to the outer function g for f .

We illustrate the general routine of the constructive proofs in more details with Sprecher

and Braun’s construction.

Theorem 2.2.1 (Sprecher-Köppen-Braun’s constructive version of KST [48][30] [7]). Let

n ≥ 2,m ≥ 2n and γ ≥ m + 2 be given integers and let x = (x1, ..., xn). There

exists strictly increasing and continuous function ψ : I → R such that for any arbitrary

continuous function f : In → R

f(x) =
m∑
q=0

gq ◦ ξq(x), with ξq(x) =
n∑
p=1

λpψ(xp + qa),

and gq : R → R continuous, where a := [γ(γ − 1)]−1, λ1 = 1, λp =
∑∞

r=1 γ
−(p−1)β(r) for

p > 1 and β(r) = (nr − 1)/(n− 1).

The detailed construction of ψ in Theorem 2.2.1 will be discussed in Chapter 4. We

†ξ := {ξ1, ..., ξm} is said to uniformly separate Borel measures on X , iff there exists some 0 < λ ≤ 1
such that for every Borel measure µ in the dual space C(X)∗ of C(X), ||µ ◦ ξ−1q ||TV ≥ λ||µ||TV holds for
some 1 ≤ q ≤ m, where ‖ · ‖TV is the total variation of a measure.
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assume that ψ is constructed for now. Write the numbers between 0 and 1 in digits with

base γ. For each integer k ∈ N, let Dk be the set of numbers with k digits:

Dk = Dk(γ) =

{
dk ∈ Q : dk =

k∑
r=1

irγ
−r, ir ∈ {0, ..., γ − 1}

}
.

Let

δk :=
γ − 2

(γ − 1)γk
.

Then for all dk ∈ Dk, the pairwise disjoint intervals

E0
k(dk) := [dk, dk + δk]

are mapped by ψ into disjoint image intervals (see Corollary 3.6 in [7]). Furthermore, by

the definition of λp’s the pairwise disjoint cubes

S0
k(dk) :=

n∏
p=1

E0
k(dk,p)

in In are mapped by ξ0 =
∑n

p=1 λpψ(xp) in Theorem 2.2.1 into disjoint intervals contained

in Y0 := ξ0[I] (see Lemma 3.7 in [7]).

Now shift the family of intervals of E0
k(dk) by q

γ−1
γk. For q = 0, ...,m, let

Eq
k(dk) := [dk −

q

γ − 1
γk, dk −

q

γ − 1
γk + δk],

and

Sqk(dk) :=
n∏
p=1

Eq
k(dk,p).

Pairwise disjoint cubes Sqk(dk) are mapped by ξq into disjoint intervals contained in

Yq := ξq[I
n]. For each fixed rank k ∈ N and every point x ∈ I , there are at least m values

of q’s such that x is covered by some q-interval Eq
k(dk) and thus every x ∈ In is covered

by at least m+ 1− n of q-cubes Sqk(dk).

Let ‖ · ‖∞ denote the usual maximum norm of functions and f ∈ C(In) be given. Let

θ and ε be fixed real numbers such that 0 < m−n+1
m+1

ε + 2n
m+1

≤ θ < 1, which implies
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ε < 1− n
m−n+1

. We construct iteratively gr at step r and Kf will be the sum of the infinite

series g :=
∑∞

r=1 gr.

Starting with f0 ≡ f , for r = 1, 2, ..., iterate the following step: given the function

fr−1, determine an integer kr such that for any two points x,x′ ∈ In with |x− x′| ≤ γ−kr ,

it holds that

|fr−1(x)− fr−1(x′)| ≤ ε‖fr−1‖∞.

On each interval ξq[S
q
kr

(dkr)], take gr to be constant 1
m+1

f(dkr). We can extend gr

linearly into the gaps between ξq[S
q
kr

(dkr)] and obtain in this way a continuous function on

Yq for all q such that ‖gr‖∞ ≤ 1
m+1
‖fr−1‖∞. Let fr(x) := f(x)−

∑m
q=0

∑r
j=1 gj ◦ ξq(x).

This completes step r.

Let x be an arbitrary point of In. For at least m+ 1− n values of q, x ∈ Sqkr(dkr,q) for

some dkr,q’s at every step r. For these q,

g ◦ ξq(x) =
1

m+ 1
fr−1(dkr,q)

and thus ∣∣∣∣ 1

m+ 1
fr−1(x)− g ◦ ξq(x)

∣∣∣∣ ≤ ε

m+ 1
‖fr−1‖∞.

For the remaining values of q’s of which x is not contained in the cubes Sqkr(dk), gr ◦ ξq(x)

is less that 1
m+1
‖fr−1‖∞ in absolute value. Thus it follows that

|fr(x)| =

∣∣∣∣∣fr−1(x)−
m∑
q=0

gr ◦ ξq(x)

∣∣∣∣∣ ≤
(
m− n+ 1

m+ 1
ε+

2n

m+ 1

)
‖fr−1‖∞ ≤ θ‖fr−1‖∞.

Inductively,

‖gr‖∞ ≤
1

m+ 1
‖fr−1‖∞ ≤

1

m+ 1
θr−1‖f‖∞

and

‖fr‖∞ =

∥∥∥∥∥f(x)−
m∑
q=0

r∑
j=1

gj ◦ ξq(x)

∥∥∥∥∥
∞

≤ θr‖f‖∞.

Therefore
∑∞

r=1 gr converges uniformly and let g be its sum, then Kf = g.
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2.3 Optimal transport theory

One of the main topics of optimal transport is the optimal cost of transference plans. We

first introduce the mathematical formulation of the problem.

Let µ, ν be two probability measures defined on some measure spaces X, Y respec-

tively. A cost function c(x, y) is a measurable map form X × Y to R∪ {+∞}. P (X × Y )

is the set of probability measures on X × Y . The set of all transference plans

Π(µ, ν) := {π ∈ P (X × Y ); π(A× Y ) = µ(A), π(X ×B) = ν(B),

∀ measurable A ⊂ X,B ⊂ Y.}

is nonempty, since the tensor product µ⊗ ν lies in Π(µ, ν).

I[π] :=

∫
X×Y

c(x, y)dπ(x, y), π ∈ Π(µ, ν)

is called the total transportation cost associated to π. The optimal transport problem is to

minimize the transportation cost I[π] for all π ∈ Π(µ, ν).

Tc(µ, ν) = inf
π∈Π(µ,ν)

I[π]

is called the optimal transportation cost between µ and ν. The optimal π’s, if they exist,

will be called the optimal transference plans. For quadratic cost function c(x, y) = |x−y|2

on Rn, the structure of optimal transference plan is simple and elegant. Here are some

results on optimal transference plans.

Theorem 2.3.1 (Optimal transportation theorem for quadratic cost. Theorem 2.12 in [64]).

Let µ, ν be probability measures on Rn, with finite second order moments, i.e.,∫
Rn
|x|2dµ(x) +

∫
Rn
|y|2dν(y) <∞.

We consider the transportation problem associated with a quadratic cost function c(x, y) =

|x− y|2. Then,

(i) (Knott-Smith optimality criterion) π ∈ Π(µ, ν) is optimal if and only if there exists a
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convex lower semi-continuous function φ such that

Supp(π) ⊂ Graph(∂φ)

or equivalently:

for dπ-almost all (x, y), y ∈ ∂φ(x).

Moreover, in that case, the pair (φ, φ∗) with φ∗(y) := supx∈Rn(x · y − φ(x)) has to

be a minimizer in the problem

inf

{∫
Rn
φdµ+

∫
Rn
ψdν : ∀(x, y), x · y ≤ φ(x) + ψ(y)

}
.

(ii) (Brenier’s theorem) If µ does not give mass to small sets (sets with Lebesgue measure

0), then there is a unique optimal π, which is

dπ(x, y) = dµ(x)δ[y = ∇φ(x)],

or equivalently, π = (Id×∇φ)#µ, where∇φ is the unique(i.e., uniquely determined

dµ-almost everywhere) gradient of a convex function which pushes µ forward to

ν : ∇φ#µ = ν. Moreover,

Supp(ν) = ∇φ(Supp(µ)).

(iii) As a corollary, under the assumption of (ii), ∇φ is the unique solution to the trans-

portation problem:∫
Rn
|x−∇φ(x)|2dµ(x) = inf

T#µ=ν

∫
Rn
|x− T (x)|2dµ(x)

or equivalently, ∫
Rn
x · ∇φ(x)dµ(x) = inf

T#µ=ν

∫
Rn
x · T (x)dµ(x).
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In the case of real line, R, the solution to the optimal transportation problem can be ex-

pressed in terms of cumulative distribution functions. The cumulative distribution function

of µ ∈ P (R) is F (x) :=
∫ x
−∞ dµ = µ[(−∞, x]]. One can define the generalised inverse of

F on [0, 1] by

F−1(t) = inf{x ∈ R : F (x) > t}.

Theorem 2.3.2 (Optimal transportation theorem for a quadratic cost on R. Theorem 2.18

in [64]). Let µ, ν be probability measures on R, with respective cumulative distribution

functions F and G. Let π be the probability measure on R2 with joint two-dimensional

cumulative distribution function

H(x, y) = min(F (x), G(y)).

Then, π belongs to Π(µ, ν), and is optimal in the transference plans between µ and ν

for the quadratic cost function c(x, y) = |x − y|2. Moreover, the value of the optimal

transportation cost is

T2(µ, ν) =

∫ 1

0

|F−1(t)−G−1(t)|2dt.

2.3.1 Duality

The optimal transport problem can be studied in its equivalent dual problem.

Theorem 2.3.3 (Kantorovich duality. Theorem 1.3 in [64]). Let X, Y be Polish spaces, let

µ ∈ P (X) and ν ∈ P (Y ), and let c : X × Y → R+ ∪ {∞} be a lower semi-continuous

cost function.

Whenever π ∈ Π(µ, ν) and (φ, ψ) ∈ L1(dµ)× L1(dν), define

I[π] =

∫
X×Y

c(x, y)dπ(x, y), J(φ, ψ) =

∫
X

φdµ+

∫
Y

ψdν.

Define Φc to be the set of all measurable functions (φ, ψ) ∈ L1(dµ)× L1(dν) satisfying

φ(x) + ψ(y) ≤ c(x, y)
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for all dµ-almost all x ∈ X and dν-almost all y ∈ Y .

Then

inf
π∈Π(µ,ν)

I[π] = sup
Φc

J(φ, ψ). (2.3.1)

Moreover, the infimum in the left-hand side of (2.3.1) is attained. Furthermore, it does

not change the value of the supremum in the right-hand side of (2.3.1) if one restricts the

definition of Φc to those functions (φ, ψ) which are bounded and continuous.

When the cost function is a metric: c(x, y) = d(x, y) on X = Y , then there is more

structure in Kantorovich duality principle. Note that this distance need not be the distance

defining the topology of the space.

Theorem 2.3.4 (Kantorovich-Rubinstein theorem. Theorem 1.14 in [64]). Let X = Y be

a Polish space and d be a lower semi-continuous metric onX . Let Td be the cost of optimal

transportation for the cost function c(x, y) = d(x, y),

Td(µ, ν) := inf
π∈Π(µ,ν)

∫
X×Y

d(x, y)dπ(x, y).

Let Lip(X) denote the space of all Lipschitz functions on X , and

||φ||Lip := sup
x6=y

|φ(x)− φ(y)|
d(x, y)

.

Then

Td(µ, ν) = sup

{∫
X

φd(µ− ν); φ ∈ L1(d|µ− ν|), ||φ||Lip ≤ 1

}
.

Moreover, it does not change the value of the supremum above to impose the additional

condition that φ be bounded.

2.3.2 Wasserstein distances

When the cost function between two mass points is measured in their distance, the optimal

transport cost between two probability measures defines a metric on the paces of probability

measures.
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Let X be a Polish space. Consider the cost function c(x, y) = d(x, y)p, for 0 ≤ p <∞
and d(x, y)0 := 1x 6=y. Use the abbreviation Tp(µ, ν) = Tdp(µ, ν). Denote by Pp(X) the set

of probability measures with finite moment of order p, namely

Pp(X) :=

{
µ ∈ P (X) :

∫
X

d(x0, x)pdµ(x) <∞, for some and thus any x0 ∈ X
}
.

If d is bounded, then Pp(X) coincides with the set P (X).

Theorem 2.3.5 (Wasserstein distances. Theorem 7.3 in [64]). (i) For all p ∈ [1,∞),Wp :=

T 1/p
p defines a metric on Pp(X).

(ii) For all p ∈ [0, 1), Wp = Tp defines a metric on Pp(X).

Wasserstein distance has wide applications in shape recognition [17] and image pro-

cessing [47].
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Chapter 3

Kolmogorov basis

In this Chapter, we investigate the set of Kolmogorov bases and formulate a sufficient

condition for a family of continuous functions to be a Kolmogorov basis. Generally, the

construction of a K-basis depends on the dimension n of the domain In. Let m > n ≥ 2

be natural numbers. In general, a K-basis on Im cannot be generated by adding some new

functions to a K-basis on In and a K-basis on In cannot be obtained by subtracting some

functions from a K-basis on Im. Similar construction process of K-bases is repeated for

every different n ≥ 2. Here we show that under certain conditions, a K-basis on In can be

extended to a K-basis on Im and a K-basis on Im can be reduced to a K-basis on In.

3.1 Kahane’s set of K-basis

Let Φ ⊆ C(I) denote the metric subspace of C(I), endowed with the ordinary maximum

metric, of all increasing functions φ : I → I . Φn is the metric product space of Φ. As

mentioned in Section 1.3, the set of continuously increasing functions (φ0, ..., φ2n) ∈ Φ2n+1

which can form a Kolmogorov basis is of second category.

Theorem 3.1.1 (Kahane [24], Hedberg [20]). Let λp > 0 with
∑n

p=1 λp ≤ 1 be rationally

independent numbers. The set K ⊂ Φ2n+1 for all such tuples (φ0, ..., φ2n) ∈ Φ2n+1 which
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has the property that for any f ∈ C(In) there is some g ∈ C(R) satisfying

f(x1, ..., xn) =
2n∑
q=0

g

(
n∑
p=1

λpφq(xp)

)

is of second Baire category ∗.

To investigate paths between K-bases {ξq :=
∑n

p=1 λpφq}2n
q=0 with (φ0, ..., φ2n) from

Kahane’s set, we first fix the functions (φ0, ..., φ2n) and change the parameter λp’s. It turns

out that the set of parameter λp’s are dense but not connected. Second, we find that the all

K-bases in Kahane’s set can be generated by any K-basis in the set.

Proposition 3.1.2. The set of parameters,

Λ := {(λ1, ..., λn) : λ1, ..., λn > 0, rationally independent and
n∑
p=1

λp ≤ 1}

is dense in the set {(λ1, ..., λn) : λ1, ..., λn > 0, with
∑n

p=1 λp ≤ 1}. Λ is not connected

and thus not simply connected.

Any (φ0, ..., φ2n) ∈ Φ2n+1 generates all other elements in Φ2n+1. Precisely, for any

(φ̃0, ..., φ̃2n) ∈ Φ2n+1, there exist homeomorphisms Lq : φq[I]→ φ̃q[I] such that

φ̃q(xp) = Lq ◦ φq(xp), ∀q.

Remark 3.1.3. Proposition 3.1.2 implies that one cannot build a continuous path between

Kahane’s K-bases by continuously changing only the parameter λp’s.

Let

Λn := {(λ1, ..., λn) : λ1, ..., λn rationally independent }.

When n = 2,

Λ2 = {(λ1, λ2) : λ1 ∈ Q, λ2 /∈ Q} ∪ {(λ1, λ2) : λ1 /∈ Q, λ2 /∈ λ1Q}.

∗A set K is said to be of second category if it is not included in a countable union of nowhere dense sets.
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Generally,

Λn = {(λ1, ..., λn) : λ1 ∈ R, λ2 /∈ λ1Q, λ3 /∈ λ1Q + λ2Q, ..., λn /∈ λ1Q + · · ·+ λn−1Q}.

Proof of Proposition 3.1.2. Given any n rationally independent numbers λ0
1, ..., λ

0
n ∈ I , the

set {(λ1, ..., λn) : λp ∈ I ∩ λ0
pQ, p = 1, ..., n, with

∑n
p=1 λp ≤ 1} ∈ Λ is dense and thus

Λ is dense in {(λ1, ..., λn) : λ1, ..., λn > 0, with
∑n

p=1 λp ≤ 1}.
Let

A := {(λ1, ..., λn) ∈ Λ : λ1 < λ2} and B := {(λ1, ..., λn) ∈ Λ : λ1 > λ2},

then A and B are open in the relative topology induced on the Λ. Λ = A ∪ B. Therefore,

Λ is not connected.

For any (φ0, ..., φ2n), (φ̃0, ..., φ̃2n) ∈ Φ2n+1, letLq = φ̃q◦φ−1
q , then φ̃q(xp) = Lq◦φq(xp)

for all q.

Moreover, given two K-basis (φ0, ..., φ2n) ∈ Φ2n+1, (φ̃0, ..., φ̃2n) ∈ Φ2n+1, consider the

matrix of homeomorphism L of size (2n+ 1)× (2n+ 1) from Φ2n+1 to Φ2n+1 such that
φ̃0

φ̃1

...

φ̃2n

 =


L00 L01 · · · L0,2n

L10 L11 · · · L1,2n

...
... . . . ...

L2n,0 L2n,1 · · · L2n,2n




φ0

φ1

...

φ2n

 , (3.1.1)

that is,

φ̃q =
2n∑
q′=0

Lq,q′ ◦ φq′ , ∀q.

The matrix L between given two K-basis (φ0, ..., φ2n), (φ̃0, ..., φ̃2n) ∈ Φ2n+1 is not unique.
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For example, L can be 
φ̃0 ◦ φ−1

0 0 · · · 0

0 φ̃1 ◦ φ−1
1 · · · 0

...
... . . . ...

0 0 · · · φ̃2n ◦ φ−1
2n


or

L = (aijφ̃i ◦ φ−1
j )(2n+1)×(2n+1),

where (aij)(2n+1)×(2n+1) is an arbitrary stochastic matrix (see the definition in Appendix).

On the other hand, for any (φ0, ..., φ2n) in Kahane’s set and matrix of homeomorphisms

L, if L ◦ (φ0, ..., φ2n)T separates a Kolmogorov cover (see next subsection 3.2 for detailed

definition), then it forms a K-basis in Kahane’s set. As some simple examples, if L is the

elementary matrix obtained by changing two rows of the identity matrix or by multiplying

a positive numbers to any row of the identity matrix, then L◦(φ0, ..., φ2n)T generates a new

K-basis.

3.2 Projection and extension of K-bases among dimensions

As a special case, Sprecher [51] constructed a universal function φ such that φ can be used

to form a K-basis for all dimension n ≥ 2.

Theorem 3.2.1 (Sprecher [51]). Let {λk} be a sequence of positive rationally independent

numbers. There exists a continuous monotonically increasing function φ : [0, 1 + 1
5!

] →
[0, 1 + 1

5!
] having the following property: For every real-valued continuous function f :

In → R with n ≥ 2 there are continuous functions gq such that

f(x1, ..., xn) =
2n∑
q=0

gq

(
n∑
p=1

λpφ(xp + qan)

)
, (3.2.1)

for a suitable constant an.

One can separate the domains of definition of the 2n + 1 outer functions gq in (3.2.1)

by adding a suitable constant to the argument ξq ≡
∑n

p=1 λpφ(xp + qan), and thus replace
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the gq’s with a single g. This was observed first by Lorentz [39] and remarked in Sprecher

[51].

In general, the univariate functions φq constructed in a K-basis for a given dimen-

sion n cannot be reused in another dimension m 6= n. In fact, for a given dimension

n ≥ 2, the minimal number of K-basis for C(In) is 2n + 1 [57], which clearly de-

pends on n. The construction of the functions (φ0, ..., φ2n) in the corresponding K-basis

ξq(x1, ..., xn) =
∑n

p=1 λpφq(xp) also depends on n. To investigate the conditions under

which φq’s constructed for dimension n can be reused in another dimension m 6= n, we

first examine the properties needed for {ξq}2n
q=0 to be a Kolmogorov basis in dimension

n ≥ 2.

3.2.1 Kolmogorov cover

Definition 3.2.2. Let n ≥ 2 and Dn
k be the Cartesian product of Dk, where Dk ⊂ N is a

finite set. We call a sequence of 2n+ 1 q-families of disjoint closed sets

{Skq,i : i ∈ Dn
k , q = 0, ..., 2n}k∈N

Kolmogorov cover of In, iff

(i) Diameter of Skqi goes to 0 with k →∞,

(ii) For any fixed k ∈ N, the family of cubes {Skqi : i ∈ Dn
k ; q = 0, ..., 2n} covers In at

least n+ 1 times.

We say that a family of continuous functions {ξ0, ..., ξ2n} with ξq : In → R separates a

Kolmogorov cover {Skqi}k∈N iff for any fixed k ∈ N, the image of cubes

{Skqi, i ∈ Dn
k , q = 0, ..., 2n}

under {ξ0, ..., ξ2n} are all mutually disjoint.

As the routine of the constructive proofs of KST, one first sets up a Kolmogorov cover,

then constructs a family of functions that separates a Kolmogorov cover and this family of

functions is naturally a Kolmogorov basis (see section 2.2).
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Lemma 3.2.3. Let n ≥ 2 be a natural number. For q = 0, ..., 2n, let ξq : In → R be

continuous. If {ξq}2n
q=0 separates a Kolmogorov cover for In, then {ξq}2n

q=0 is a Kolmogoorv

basis on In.

Moreover, let λ1, ..., λn > 0 and rationally independent, and φq : I → R continuous

and strictly increasing. If ξ := {
∑n

p=1 λpφq}2n
q=0 separates a Kolmogorov cover, then ξ

belongs to Kahane’s set of K-basis, e.g., Lorentz’s K-basis.

Let Dk ⊂ N be a finite set. Suppose that there exists a sequence of 2n + 1 families of

disjoint sub-intervals

{Ikq,i ⊂ I : i ∈ Dk, q = 0, ..., 2n}k∈N

such that for any x ∈ I , x is not covered by q-intervals Ikq,i for at most one of q ∈ {0, ..., 2n}.
One can generate a Kolmogorov cover of In by the Cartesian products of Ikq,i:

Skq,i =
n∏
p=1

Ikq,ip , i := (i1, ..., in) ∈ Dn
k . (3.2.2)

Since for any x ∈ In there exists at most n of q’s such that x is not covered by q-cubes

Skq,i, it means that x is covered by at least the other n+1 q-cubes. Therefore, {Skq,i} defined

as in (3.2.2) is indeed a Kolmogorov cover for In.

A Kolmogorov cover constructed as in (3.2.2) is called a Kolmogorov cover of Carte-

sian type. For example, the Kolmogorov covers constructed by Kolmogorov [29], Lorentz[40]

and Sprecher [48] are all of Cartesian type.

Lemma 3.2.4. If Let m > n ≥ 2 be natural numbers and

{Skq,i(m) :=
m∏
p=1

Ikq,ip : i ∈ Dm
k , q = 0, ..., 2m}k∈N

be a Kolmogorov cover of Cartesian type for Im, then

{Skq,i(n) :=
n∏
p=1

Ikq,ip : i ∈ Dn
k , q = 0, ..., 2n}k∈N

is a Kolmogorov cover of Cartesian type for In.
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Proof. By the property of Ikq,i, q = 0, ..., 2n, for any x ∈ In, there exists at most n of q’s

such that x is not covered by q-cubes Skq,i(n), then x is covered by at least the remaining

n+ 1 q-cubes. Therefore, {Skq,i :=
∏n

p=1 I
k
q,ip : i ∈ Dn

k , q = 0, ..., 2n}k∈N is a Kolmogorov

cover of Cartesian type for In.

On the other hand, a Kolmogorov cover of Cartesian type in a low dimension cannot

always be extended to high dimension by adding more shifted families of the sub-cubes.

We take Lorentz’s [40] construction of Kolmogorov cover in dimension 2 for example.

Example 3.2.5. (1) For k ∈ N, i = 0, ..., 10k−1 and q = 0, ..., 4, let

Ik0i = [i · 10−k+1 + 10−k, i · 10−k+1 + 9 · 10−k]

and

Ikqi = Ik0i − 2q · 10−k.

Replace by I ∩ Ikqi those intervals Ikqi that are not entirely contained in I . Then any x ∈ I
is not contained by at most one q-interval. Therefore

Skq,i(2) := Ikqi1 × I
k
qi2

with i = (i1, i2) ∈ {0, ..., 10k−1}2

is a Kolmogorov cover of Cartesian type for I2. However, Skq,i(2) cannot be extended to a

Kolmogorov cover to dimension 3. If we allow q = 5, 6, then Ik5i = Ik0i − 10 · 10−k = Ik0,i−1

and Ik6i = Ik0i − 12 · 10−k = Ik1,i−1, which are repetitions of q-intervals for q = 0, 1

respectively.

(2) If we let

Ik0i = [i · 14−k+1 + 14−k, i · 14−k+1 + 13 · 14−k], k ∈ N, i = 0, ..., 14k−1

and

Ikqi = Ik0i − 2q · 14−k, q = 0, ..., 4.
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Again replace by I ∩ Ikqi those intervals Ikqi that are not entirely contained in I . Then

Skq,i(2) := Ikqi1 × I
k
qi2

with i = (i1, i2) ∈ {0, ..., 14k−1}2

is a Kolmogorov cover of Cartesian type for I2.

Moreover, adding Ikqi := Ik0i − 2q · 14−k, q = 5, 6 to {Ikqi, q = 0, ..., 4},

Skq,i(3) = Ikqi1 × I
k
qi2
× Ikqi3 with i = (i1, i2, i3) ∈ {0, ...14k−1}3

is a Kolmogorov cover of Cartesian type for I3 extended from {Skq,i(2)}.
(3) More general, let m > n ≥ 2 and for k ∈ N ,i = 0, ..., (4m+ 2)k−1,

Ik0i = [i · (4m+ 2)−k+1 + (4m+ 2)−k, i · (4m+ 2)−k+1 + (4m+ 1) · (4m+ 2)−k]

and

Ikqi = Ik0i − 2q · (4m+ 2)−k, q = 0, ..., 2n.

In a similar way, the Kolmogorov cover for dimension n,

Skq,i(n) :=
n∏
p=1

Ikqip with i = (i1, ..., in) ∈ {0, ...(4m+ 2)k−1}n, q = 0, ..., 2n

can be extend to a Kolmogorov cover for I l, n < l ≤ m by adding 2(l − n) new q-shifts of

Ikqi.

3.2.2 Projection and extension of K-basis

From the projection property of Kolmogorov cover of Cartesian type in Lemma 3.2.4, the

projection of K-basis from high dimensions to low dimensions follows:

Theorem 3.2.6 (K-basis projection theorem). Let m > n ≥ 2 be natural numbers and

{Skq,i(m) :=
m∏
p=1

Ikq,ip , i ∈ D
m
k , q = 0, ..., 2m}k∈N
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be a Kolmogorov cover of Cartesian type for Im. Let λ1, ..., λm > 0 be rationally inde-

pendent numbers, and φq : I → I , q = 0, ..., 2m, be monotonously increasing, continuous

functions such that {
∑m

p=1 λpφq(xp) : q = 0, ..., 2m} forms a K-basis on Im that sepa-

rates {Skq,i(m)}. Then {
∑n

p=1 λpφq(xp) : q = 0, ..., 2n} also forms a K-basis on In that

separates

{Skq,i(n) :=
n∏
p=1

Ikq,ip , i ∈ D
n
k , q = 0, ..., 2n}k∈N. (3.2.3)

Proof. For any k ∈ N, q = 0, ..., 2n and i ∈ Dn
k , since the image of Skq,i(n) under∑n

p=1 λpφq(xp) after a shift
∑m

p=n+1 λpφq(0) is contained in the image of Skq,i(n)×(Ikq,0)m−n

under
∑m

p=1 λpφq(xp), the disjointness of the images of Skq,i(n)× (Ikq,0)m−n implies the dis-

jointness of the images of Skq,i(n) after the shift
∑m

p=n+1 λpφq(0), and thus the disjointness

of the images of Skq,i(n).

More precisely, for any fixed k ∈ N, (i1, ..., in) ∈ Dn
k , and any cubes

Skq,i(n) =
∏n

p=1 I
k
q,ip , let

Skq,i(m) =
n∏
p=1

Ikq,ip ×
m∏

p=n+1

Ikq,0,

then
n∑
p=1

λpφq[I
k
q,ip ] +

m∑
p=n+1

λpφq(0) ⊂
m∑
p=1

λpφq[I
k
q,ip ],

where in+1 = · · · = im = 0 and the plus “+” in the left hand side means a shift of the set∑n
p=1 λpφq[I

k
q,ip ] by the constant

∑m
p=n+1 λpφq(0).

Therefore, {
∑n

p=1 λpφq(xp) : q = 0, ..., 2n} separates the new Kolmogorov cover

(3.2.3) and thus forms a Kolmogorov basis.

The extension of K-basis requires more on the K-basis. Let

{Skq,i(n) :=
n∏
p=1

Ikq,ip : i ∈ Dn
k , q = 0, ..., 2n}k∈N

be a Kolmogorov cover of Cartesian type for In. {
∑n

p=1 λpφq(xp) : q = 0, ..., 2n} is a

K-basis on In that separates {Skq,i(n)}. For any fixed k ∈ N and q = 0, ..., 2n, write

Ikq,i := [αkqi, β
k
qi], i ∈ Dk.
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Define for i ∈ Dk, 0 ≤ q ≤ 2n and k ∈ N,

εkqi :=
1

2
(φq(β

k
qi)− φq(αkqi)), and εk := max

i∈Dk
0≤q≤2n

{εkqi}. (3.2.4)

Theorem 3.2.7 (K-basis extension theorem). Let m > n ≥ 2 be natural numbers and

{Skq,i(n) :=
∏n

p=1 I
k
q,ip : i ∈ Dn

k , q = 0, ..., 2n}k∈N be a Kolmogorov cover of Cartesian

type for In. Let λ1, ..., λn > 0 be rationally independent numbers, and φq : I → I , q =

0, ..., 2n, be monotonously increasing, continuous functions such that {
∑n

p=1 λpφq(xp) :

q = 0, ..., 2n} forms a K-basis on In that separates {Skq,i(n)}. Suppose that {Ikqi, i ∈
Dk, q = 2n + 1, ..., 2m} can be added to {Ikqi, i ∈ Dk, q = 0, ..., 2n} such that every point

x ∈ I is not covered by at most one of the 2m+ 1 q-intervals Ikqi.

Let εkqi, εk be as in (3.2.4). If there exists λn+1, ..., λm > 0 such that λ1, ..., λm are

rationally independent with
∑m

p=1 λp ≤ 1 and

min
0≤q,q′≤2n∑m
p=1 |ip−i

′
p|6=0

{∣∣∣∣∣
m∑
p=1

λp

[
(φq(α

k
q,ip) + εkq,ip)− (φq′(α

k
q′,i′p

) + εkq′,i′p)
]∣∣∣∣∣
}
> 2εk (3.2.5)

holds for infinitely many k ∈ N, then we can add continuous functions φq : I → I, q =

2n + 1, ...,m, monotonously increasing such that {
∑m

p=1 λpφq(xp) : q = 0, ..., 2m} also

forms a K-basis on Im that separates

{Skq,i(m) :=
m∏
p=1

Ikq,ip ; i ∈ D
m
k ; q = 0, ..., 2m}k∈N.

We first show the idea of the proof of Theorem 3.2.7 by the extension of Lorentz’s

K-basis from dimension 2 to dimension 3.

Example 3.2.8. In Lorentz’s K-basis in dimension 2, suppose the Kolmogorov cover for I2

is

{Skq,i(2) = Ikqi1 × I
k
qi2

: i = (i1, i2) ∈ D2
k := {0, ..., 14k−1}2, q = 0, ..., 4}k∈N.
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As shown in Example 3.2.5 (2), it can be extended to a K-cover in dimension 3:

{Skq,i(3) = Ikqi1 × I
k
qi2
× Ikqi3 : i = (i1, i2, i3) ∈ D3

k, q = 0, ..., 6}k∈N. (3.2.6)

We first show that under some assumption on the structure of φq’s, the family of func-

tions {λ1φq(x1) + λ2φq(x2) + λ3φq(x2), q = 0, ..., 4} separates the cubes

{Skq,i(3) : i ∈ D3
k, q = 0, ..., 4}

for any k ∈ N.

Denote the endpoint of intervals by Ikq,i := [αkqi, β
k
qi]. From Theorem 1 in Chapter 11,

[40], φq, q = 0, ..., 4, are defined iteratively on the set of endpoints of Ikqi at step k ∈ N and

then extended continuously to the whole interval I .

Suppose for all l < k, {φq(αlqi), φq(βlqi) : i ∈ Dk, q = 0, ..., 4} have been defined. At

step k, first let φq be a constant on intervals Ikq,i = [αkqi, β
k
qi], i.e., φq(αkqi) = φq(β

l
qi) := φkqi

such that φkqi, i ∈ Dk, q = 0, ..., 4 are rational and distinct and φq’s are monotonously

increasing on the defined set. Since λ1, λ2 are rationally independent, the values

λ1φ
k
qi + λ2φ

k
qj, q = 0, ..., 4, i, j ∈ Dk (3.2.7)

are distinct. Choose δk2 > 0 so small that the 2δk2 -neighbourhood of the points (3.2.7) are

disjoint and contained in [φq(0), φq(1)]. This allows one to amend the values on φq on

the endpoints αkqi, β
k
qi to make it strictly increasing. For each Ikq,i, select φq(αkqi), φq(β

k
qi) in

the δk2 -neighbourhood of φkqi such that φq(αkqi) < φkqi < φq(β
k
qi). Then the images of any

squares {Skq,i(2), q = 0, ..., 4} for i = (i, j):

[λ1φq(α
k
qi) + λ2φq(α

k
qj), λ1φq(β

k
qi) + λ2φq(β

k
qj)]

are contained in the 2δk2 -neighbourhood of λ1φ
k
qi + λ2φ

k
qj and thus disjoint.

For any fixed λ3 > 0 such that λ1, λ2, λ3 are rationally independent with λ1 +λ2 +λ3 <

2, the points

λ1φ
k
qi + λ2φ

k
qj + λ3φ

k
ql, q = 0, ..., 4, i, j, l ∈ Dk (3.2.8)
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are distinct.

Now we assume that δk2 chosen before is so small that the (λ1+λ2+λ3)δk2 -neighbourhoods

of point (3.2.8) are disjoint. That is, condition (3.2.5) is satisfied with εk = 2δk2 .

The image of cube Skq,i(3) with i = (i, j, l) under λ1φq(x1) + λ2φq(x2) + λ3φq(x3), q =

0, ..., 4:

[λ1φq(α
k
qi) + λ2φq(α

k
qj) + λ3φq(α

k
ql), λ1φq(β

k
qi) + λ2φq(β

k
qj) + λ3φq(β

k
ql)]

is contained in the (λ1 + λ2 + λ3)δk2 -neighbourhood of and thus the 2δk2 -neighbourhood

of λ1φ
k
qi + λ2φ

k
qj + λ3φ

k
ql. Thus, the images of cubes {Skq,i(3), i ∈ D3

k, q = 0, ..., 4} under

λ1φq(x1) + λ2φq(x2) + λ3φq(x3) are disjoint.

Second, we need to construct φq : I → R, q = 5, 6, continuous and monotonously

increasing such that {λ1φq(x1) + λ2φq(x2) + λ3φq(x2), q = 5, 6} separates the cubes

{Skq,i(3) : i ∈ D3
k, q = 5, 6}.

Since for q = 0, ..., 4, 0 ≤ φq(0) < φq(1) < 1, one can define 0 ≤ φq(0) < φq(1) <

1, q = 5, 6, in such a way that {φq(0), φq(1) : q = 5, 6} are rational and distinct and

(∪q=5,6[φq(0), φq(1)]) ∩ (∪0≤q≤4[φq(0), φq(1)]) = ∅. (3.2.9)

Applying Lemma 1 in Chapter 11 of [40], there exist strictly increasing, continuous

functions φq : I → I, q = 5, 6, such that for each fixed rank k ∈ N, the intervals

∆k
q,i(3) =

[
3∑
p=1

λpφq(α
k
q,ip),

3∑
p=1

λpφq(β
k
q,ip)

]
, q = 5, 6, i ∈ D2

k

are all disjoint.

For q = 0, ..., 6, φq is strictly increasing on I . Then by (3.2.9), φq[I] = [φq(0), φq(1)], q =

5, 6 are disjoint from ∪0≤q≤4φq[I]. Therefore, ∆k
q,i(3), q = 5, 6 are also disjoint from

∆k
q,i(3), q = 0, ..., 4.

In summary, we find λ3 and construct φ5, φ6 such that

{λ1φq(x1) + λ2φq(x2) + λ3φq(x2), q = 0, ..., 6}
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separates the Kolmogorov cover (3.2.6) and thus is a Kolmogorov basis in dimension 3.

Now we show the extension of K-basis in general case.

Proof of Theorem 3.2.7. If {Ikqi, i ∈ Dk, q = 2n + 1, ..., 2m} can be added to {Ikqi, i ∈
Dk, q = 0, ..., 2n} such that every point x ∈ I is not covered by at most one of the 2m+ 1

q-intervals Ikqi, then the family of cubes

{Skq,i(m) :=
m∏
p=1

Ikq,ip : i ∈ Dm
k , q = 0, ..., 2m}k∈N

forms a Kolmogorov cover of Cartesian type for Im.

Suppose there exists λn+1, ..., λm > 0 such that λ1, ..., λm are rationally independent

with
∑m

p=1 λp ≤ 1 and condition (3.2.5) is satisfied. The image of Skq,i(m) =
∏m

p=1 I
k
q,ip is

ξq[S
k
q,i(m)] =

[
m∑
p=1

λpφq(α
k
q,ip),

m∑
p=1

λpφq(β
k
q,ip)

]
, q = 0, ..., 2n.

For any two cubes Skq,i(m) =
∏m

p=1 I
k
q,ip and Skq′,i′(m) =

∏m
p=1 I

k
q′,i′p

, condition (3.2.5)

implies the distance between the middle points of intervals ξq[Skq,i(m)] and ξq′ [Skq′,i′(m)] is

greater than sum of the half lengths of the two intervals. Therefore, the image intervals

ξq[S
k
q,i(m)] and ξq′ [Skq′,i′(m)] are disjoint.

For q = 2n + 1, ..., 2m, φq can be constructed as in Lorentz’ version of KST such

that the image of {Skq,i(m), q = 2n + 1, ..., 2m} are mutually disjoint under the map of

{
∑m

p=1 λpφq(xp), q = 2n + 1, ..., 2m} and also disjoint with the images of {Skq,i(m), q =

0, ..., 2n}.
More precisely, by Lemma 1 Chapter 11 [40], there exists 2(m−n) strictly increasing,

continuous functions φq : I → I , q = 2n + 1, ..., 2m, such that for each fixed rank k ∈ N,

the intervals

∆k
q,i =

[
m∑
p=1

λpφq(α
k
q,ip),

m∑
p=1

λpφq(β
k
q,ip)

]
, q = 2n+ 1, ..., 2m, i ∈ Dm

k

are all disjoint.
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In fact, at step k ∈ N, φq’s are first defined as rational constants on the intervals Ikqi :=

[αkqi, β
k
qi], i.e.,

φq(α
k
qi) := φq(α

k
qi) := φkqi.

φkqi, q = 2n + 1, ...2m, can be so chosen that they are distinct from each other and also

disjoint from φq[I
k
qi], i ∈ Dk, q = 0, ...2n. Since λp’s are rationally independent, the values

m∑
p=1

λpφ
k
q,ip , q = 0, ..., 2m, (i1, ..., im) ∈ Dm

k (3.2.10)

are distinct. Choose δk so small that the 2δk-neighbourhoods of the points (3.2.10) are

mutually disjoint and disjoint from
∑m

p=1 λpφq[I
k
q,ip ], (i1, ..., ip) ∈ D

n
k , q = 0, ...2n. Then

amend the values of φq at the end points αkqi, β
k
qi to make φq strictly increasing. Select

φq(α
k
qi), φq(β

k
qi) in the δk-neighbourhood of φkq,i in such a way that

φq(α
k
qi) < φkq,i < φq(β

k
qi), q = 2n+ 1, ..., 2m.

If βkqi = 1, then the inequality should be φq(αkqi) < φkq,i = φq(β
k
qi). Similarly, if αkqi =

0, then define φq(αkqi) = φkq,i < φq(β
k
qi). Then the images of the cubes, ∆k

q,i with i =

(i1, ..., im), are contained in the 2δk-neighbourhoods of the point
∑m

p=1 λpφ
k
q,ip and thus are

mutually disjoint.

Therefore, we show that the extended family of functions,

{
m∑
p=1

λpφq(xp) : q = 0, ..., 2m},

forms a K-basis on Im that separates

{Skq,i(m) :=
m∏
p=1

Ikq,ip ; i ∈ D
m
k ; q = 0, ..., 2m}k∈N.
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Chapter 4

Kolmogorov map

In this chapter, we investigate how the properties of f are preserved in its outer function g

under given K-bases. We show that for a given K-basis, the outer function g for a given f is

generally not unique and g does not preserve the positivity of f . Taking Sprecher’s K-basis

as a particular case, we also show that the modulus of continuity of f is significantly lost

in its outer function g.

4.1 Shape-preserving properties of Kolmogorov maps

The universal presentation formula in KST is not obtained without a price. Fridman’s result

[15] with Vitushkin’s counterexample [66] gives a sharp upper bound for the smoothness

of the inner functions; that is, the inner functions ψpq in (1.1.1) can be at most Lipschitz

continuous. If we consider the set of superposition of continuous univariate functions with

continuously differentiable inner functions, then the set is nowhere dense shown by the

following statement of Vitushkin and Khenkin:

Theorem 4.1.1 (Vitushkin and Khenkin [69]). For any continuous functions pm(x, y) and

continuously differentiable functions qm(x, y), m = 1, ..., N and any region D ⊂ R2, the

set of superposition of the form

N∑
m=1

pm(x, y)fm(qm(x, y)),
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where fm are arbitrary continuous functions, is nowhere dense in the space of all continu-

ous functions in D with uniform convergence.

Moreover, Vitushkin’s [68] and Kolmogorov’s result [60] also gives a general upper

bound for the smoothness of all functions involved in representing functions of given

smoothness in superposition. For example, for the superposition of continuously differ-

entiable functions, we have

Theorem 4.1.2 (Vitushkin [68] and Kolmogorov [60]). Let Λn
pα be the set of all continuous

functions of n variables that have uniformly bounded continuous partial derivatives of

orders ≤ p, and additionally those of order p have moduli of continuity not exceeding

Mhα with some constant M > 0.

Let χ0 > 0 be given and L be the union of all classes Λn
pα with χ := (p + α)/n > χ0

and p + α ≥ 1. Then not all functions of a class Λn0
p0α0

with χ0 = (p0 + α0)/n0 can be

represented as superposition of functions of L.

Roughly speaking, not all functions of a given “complexity” can be represented as

superposition of functions with less “complexity”.

Back to the superposition in KST, from many graphs simulated in the numerical im-

plementation of KST, we can see that g is highly oscillating. For example, Figure 6.2 and

6.3 in Bryant [8]. This motivates us to have a close examination of the outer function g:

given a K-basis, what is the best possibility of g for a given f? If g is not unique in the

presentation formula, can we then choose relatively better ones from all available g’s?

4.1.1 Non-uniqueness of outer functions

Let X be a compact separable metric space. Let Sξ be the superposition operator with

respect to a K-basis {ξ0, ..., ξm} on X . For a given f ∈ C(X), there are generally more

than one g ∈ C(R) such that

Sξg :=
m∑
q=0

g ◦ ξq = f.

Theorem 4.1.3 (Non-uniqueness of outer functions). LetX be a compact separable metric

space. Suppose {ξq : X → R| q = 0, ..., 2n} is a K-basis such that Y := ∪2n
q=0Yq :=
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∪2n
q=0ξq[X] is not connected in R, then the superposition operator S with respect to {ξq} is

not injective.

Remark 4.1.4. For Sprecher’s [7] K-basis {ξq : In → R| q = 0, ..., 2n}, the image of In

under ξq are mutually disjoint, i.e., Yq ∩ Yq′ = ∅ for any q 6= q′. Thus Y = ∪2n
q=0Yq is not

connected.

In fact, for any K-basis {ξq}2n
q=0 on In with Y := ∪2n

q=0ξq[I
n], we can choose a real

constant a0 such that Ỹ0 := ξ0[In]− a0 is disjoint with ∪2n
q=1ξq[I

n]. Let ξ̃0 := ξ0 − a0, then

ξ̃0[In] = Ỹ0 and {ξ̃0, ξ1, ..., ξ2n} is also a K-basis on In. Since {ξq}2n
q=0 is a K-basis on In,

for any given f ∈ C(In), there exists a g ∈ C(Y ) such that f =
∑2n

q=0 g ◦ ξq. Define

g̃(y) = g(y) for y ∈ ∪2n
q=1ξq[I

n], g̃(y) = g(y− aq) for y ∈ Ỹ0 and extend g̃ linearly into the

gap between Ỹ0 and ∪2n
q=1ξq[I

n]. Then f = g̃ ◦ ξ̃0 +
∑2n

q=1 g̃ ◦ ξq. Hence {ξ̃0, ξ1, ..., ξ2n} is

a K-basis on In with Ỹ0 ∪ Y1 ∪ · · · ∪ Y2n not connected.

Proof of Theorem 4.1.3. To show the corresponding superposition operator S : C(Y ) →
C(X) is not injective, by duality of adjoint operators (see Appendix), it is equivalent to

show that the range of its adjoint operator

S∗ : C(In)∗ 7−→ C(Y )∗

µ 7−→
2n∑
q=0

µ ◦ ξ−1
q

is not dense in C(Y )∗, where C(X)∗ and C(Y )∗ are the dual spaces of C(X) and C(Y )

respectively. We identify C(X)∗ and C(Y )∗ with the spaces of regular Borel measures

with the total variation norm on X and Y respectively. Since Y is not connected, then Y

must contain at least two disjoint intervals. Without loss of generality, assume that Y0 ∪ Y1

is disjoint with ∪2n
q=2Yq.

Let ν be any Borel measure supported in Y0 ∪ Y1 with ν(Y ) 6= 0. We show that there

does not exist any µ ∈ C(X)∗ such that S∗(µ) = ν. Assume that there exists some
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µ ∈ C(X)∗ such that S∗(µ) = ν. Since (Y0 ∪ Y1) ∩ (∪2n
q=2Yq) = ∅,

0 = ν(∪2n
q=2Yq) = S∗(µ)(∪2n

q=2Yq)

=
2n∑
q=0

µ ◦ ξ−1
q (∪2n

q=2Yq) =
2n∑
q=2

µ ◦ ξ−1
q (Yq) = (2n− 1)µ(X). (4.1.1)

On the other hand,

ν(Y ) = ν(Y0 ∪ Y1) = S∗(µ)(Y0 ∪ Y1)

=
2n∑
q=0

µ ◦ ξ−1
q (Y0 ∪ Y1) = µ ◦ ξ−1

0 (Y0) + µ ◦ ξ−1
1 (Y1) = 2µ(X) (4.1.2)

By (4.1.1) and (4.1.2), 0 = µ(X) = 1
2
ν(Y ) 6= 0, which is a contradiction. Hence the set

of all ν ∈ C(Y )∗ supported in Y0∪Y1 with ν(Y ) 6= 0 , which is an open set, is not included

in the range of S∗. Therefore, the range of S∗ is not dense and thus S is not injective.

Actually, the non-uniqueness of outer functions does not essentially depends on the

disjointness of the images Yq, as we will see in Remark 4.2.6 for the outer functions with

respect to Sprecher’s K-basis (1.3.2). We think that the outer functions are not unique for

any K-basis, which we leave as an open problem.

The non-uniqueness of outer functions does not contradict with the definition of Kol-

mogorov maps, because for every continuous multivariate function, one can restrict its

outer function to be chosen in a definite way. For example, in the proofs of Kolmogorov

[29], Lorentz [40] and Sprecher [48], for a given continuous function f of several variables,

a unique outer function g is constructed for f in a specific way described by the authors.

Moreover, for the Kolmogorov maps in their proofs, we have

Proposition 4.1.5. The Kolmogorov map with respect to a K-basis defined in the construc-

tive proofs of KST (see section 2.2)

K : C(In) −→ C(R)

f −→ Kf
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are bounded and continuous with respect to the maximum norms. That is, there exists a

constant c > 0 such that ‖Kf‖∞ ≤ c‖f‖∞.

4.1.2 Non-positivity-preserving of K-maps

In an attempt to study Markov semigroups in high dimensions defined by the corresponding

semigroups in one dimension through KST, we checked the positivity preserving property

of K-maps. It turns out that K-maps do not preserve the positivity, the prove of which is

simple but gives some insights about the distribution of the values of g.

Theorem 4.1.6 (Non-positivity-preserving of K-maps). Let X be a connected compact

metric space and K be a K-map with respect to K-basis {ξq : X → R| q = 0, ..., 2n}, then

K does neither preserve positivity nor strict positivity; that is, Kf ≥ 0 does not follow

from f ≥ 0, for some f ∈ C(X), and Kf > 0 does not follow from f > 0, for some

f ∈ C(X).

Proof of Theorem 4.1.6. Assume that K preserves positivity, i.e. for any f ≥ 0, we have

Kf ≥ 0. Since f(x) =
∑2n

q=0(Kf)(ξq(x)),

(Kf)(ξq(x)) = 0 ∀q, whenever f(x) = 0. (4.1.3)

For q = 0, ..., 2n, choose any continuous curve Cq connecting the maximum and mini-

mum points of ξq on X , then define

f0(x) =

{
0, if x ∈ ∪2n

q=0Cq,

distance(x,∪2n
q=0Cq), otherwise.

Then f0 ∈ C(In). Thus by (4.1.3)

(Kf0)(ξq(x)) = 0, for x ∈ ∪2n
q=0Cq.

By continuity of ξq, it maps connected set X and Cq to closed intervals ξq[X] and ξq[Cq]

respectively. Since ξq[Cq] contains the maximal and minimal points of ξq[X] and ξq[Cq] ⊆
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ξq[X], ξq[X] = ξq[Cq] for all q. That is

(Kf0)(y) ≡ 0, ∀y ∈ ∪2n
q=0ξq[I

n],

which implies f0(x) :=
∑2n

q=0((Kf0)(ξq(x)) ≡ 0. This is a contradiction. Therefore,

K-map does not preserve positivity.

Again assume K is strictly positivity preserving. For any 0 ≤ f ∈ C(X), there exists

a sequence of fn > 0 converging to f as n → ∞ in the uniform norm. By assumption,

Kfn > 0. Using the continuity of K, we have

Kf = lim
n→∞

Kfn ≥ 0.

This means K is positivity preserving, which is a contradiction. Therefore K does not

preserve strict positivity .

4.2 Moduli of continuity of outer functions

Next we investigate the analytical properties of the outer functions, such as differentiability

and moduli of continuity. Superposition of Sprecher’s K-basis with a differentiable outer

function g results in a singular (with partial derivatives 0 almost everywhere) or constant

multivariate function. Therefore, it is reasonable to study the modulus of continuity of

outer functions instead of their differentiability.

4.2.1 Analytic properties of Kf

First we mention the Sprecher’s version of KST:

Theorem 4.2.1 (Sprecher-Köppen-Braun’s constructive version of KST [53][30][7]). Let

n ≥ 2,m ≥ 2n and γ ≥ m+2 be given integers and let x = (x1, ..., xn) ∈ In. There exists

continuous and monotonously increasing function ψ : R → R such that for any arbitrary



4.2 Moduli of continuity of outer functions 52

continuous function f : In → R,

f(x) =
m∑
q=0

gq ◦ ξq(x), with ξq(x) =
n∑
p=1

λqψ(xp + qa),

hold for some continuous functions gq : R → R, where a := [γ(γ − 1)]−1, λ1 = 1, λp =∑∞
r=1 γ

−(p−1)β(r) for p > 1 and β(r) = (nr − 1)/(n− 1).

In order to substitute gq with one g, we modify ξq to be

ξq(x) =
n∑
p=1

λqψ(xp + qa) + bq, (4.2.1)

where b >
∑n

p=1 λp is a constant. Thus the images of In under ξq’s are pairwise disjoint

and g can be defined separately on each Yq := ξq[I
n]. In [6], ξq is modified to ξq(x) =∑n

p=1 αqψ(xp+qa)+∆q, although ∆q defined there is actually not a constant as the author

stated and it tended to 0 as the iterative step r goes to infinity (see Section 2.2).

ψ(x) constructed by Sprecher [53] in 1997 is neither continuous nor monotonously

increasing. This was noticed by Köppen [30] in 2002 and corrected without proof. Braun

[7] in 2009 proved that the modified ψ(x) by Köppen is indeed continuous and strictly

monotonously increasing on I . Moreover, the corrected ψ satisfies a Hölder condition with

exponent logγ 2 by Theorem 1 in [48]. With a minor modification of Theorem 1 in [49], one

can show that ψ′(x) = 0 for all x ∈ I excluding a set with 0 Lebesgue measure. Therefore,

we have

Theorem 4.2.2. Let ξ := {ξ0, ..., ξm} be Sprecher’s K-basis in (4.2.1), and Y := ∪mq=0Yq :=

∪mq=0ξq[I
n]. Under the superposition operator S with respect to ξ, we have:

(i) If g ∈ C(Y ) is Hölder continuous with exponent α, 0 < α ≤ 1, then Sg is Hölder

continuous with exponent α logγ 2.

(ii) If g is almost everywhere differentiable with bounded derivatives, then Sg is almost

everywhere differentiable with partial derivatives 0.

In particular, for all p ≥ 1 and g ∈ Cp(Y ), Sg is almost everywhere differentiable

with all partial derivatives 0.
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Proof of Theorem 4.2.2. Given Sprecher’s K-basis ξq(x) =
∑n

p=1 λqψ(xp + qa) + bq, q =

0, ...,m.

1. Assume g is Hölder continuous of exponent α, 0 < α < 1. Since ξq is Hölder

continuous of exponent logγ 2 for each q, g ◦ ξq is Hölder continuous of exponent α logγ 2.

Hence Sg :=
∑m

q=0 g ◦ ξq is Hölder continuous of exponent α logγ 2.

2. Assume g is almost everywhere differentiable with bounded derivative, then by chain

rule and the singularity of ψ,

∂g ◦ ξq
∂xp

=
∂g ◦ ξq
∂ξq

· λpdψ(xp + aq)

dxp
=
∂g ◦ ξq
∂ξq

· 0 = 0

almost everywhere and hence also ∂(Sg)/∂xp = 0 almost everywhere.

Next, we illustrate the moduli of continuity of the outer functions with respect to

Sprecher’s K-basis.

Theorem 4.2.3. Let ωf (δ), 0 < δ < 1 be the modulus of continuity of f ∈ C(In). Under

the Kolmogorov map K with respect to Sprecher’s K-basis with γ > m + 2, the modulus

of continuity of g := Kf , ωg(δ), can be at most ωf (γ(logγ−1 δn+1 + 1)−ρ
−1

)), where ρ :=

logγ n < 1, i.e.,

ωg(δ) ≥ O(ωf (γ(logγ−1 δ(n−1) + 1)−ρ
−1

)).

For example, if ωf (δ) = δ and δ = γ−k for k > 2, ωg(δ) = ωg(γ
−k) ≥ O(γ((n+1)k+

1)−ρ
−1

). With Theorem 4.2.3, one can obtain the following corollaries by investigating the

moduli of continuity of different function classes.

Corollary 4.2.4. Under the K-map with respect to Sprecher’s K-basis with γ > m+ 2,

(i) There exists differentiable f ∈ C(In) such that Kf is not differentiable.

(ii) For all p ≥ 1, there exists f ∈ Cp(In), such that Kf is not differentiable.

(iii) For all 0 < α ≤ 1, there exists f ∈ C(In) Hölder continuous of exponent α such

that Kf is not Hölder continuous of any exponent.
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4.2.2 Proof of the modulus of continuity of Kf

To prove Theorem 4.2.3, we introduce the construction of inner function ψ in [7] [30].

Sprecher-Köppen’s K-basis is first defined on a dense set D := ∪k∈NDk, where

Dk = Dk(γ) =

{
dk ∈ Q : dk =

k∑
r=1

irγ
−r, ir ∈ {0, ..., γ − 1}

}
,

by

ψk(dk) =


dk for k = 1,

ψk−1(dk − ik
γk

) + ik
γβ(k)

for k > 1 and ik < γ − 1,
1
2

(
ψk−1(dk − ik

γk
) + ψk−1(dk + 1

γk
) + ik

γβ(k)

)
for k > 1 and ik = γ − 1,

(4.2.2)

where β(k) := nk−1
n−1

. Then extend ψ continuously to all x ∈ I . Every x ∈ I has a

representation

x =
∞∑
r=1

irγ
−r = lim

k→∞

k∑
r=1

irγ
−r = lim

k→∞
dk.

For such an x, define

ψ(x) := lim
k→∞

ψk(dk) = lim
k→∞

ψk(
k∑
r=1

irγ
−r).

ψ thus defined is continuous and monotonously increasing on I [7]. See Figure 4.1.

Assume γ > m + 2, i.e. γ −m− 2 > 0. For all k ∈ N and dk ∈ Dk, recall in section

2.2 that the q-intervals are defined as:

Eq
k(dk) := [dk −

q

γ − 1
γk, dk −

q

γ − 1
γk + δk], q = 0, ...,m.

Let

Ek(dk) := ∩mq=0E
q
k(dk) =

[
dk, dk +

γ −m− 2

γ − 1
γ−k
]
,

and

Sk(dk) := Ek(dk,1)× · · · × Ek(dk,n)
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Figure 4.1: Image of ψ with n = 2 and γ = 10. The left graph is ψ3 and the right is ψ4.
Similar graphs can be found in Braun [7].

with dk := (dk,1 · · · dk,n).

For any given increasing sequence of natural numbers {kr}∞r=1, define

F := {x ∈ I|∃ sequence {dkr}∞r=1 such that x ∈ ∩∞r=1Ekr(dkr)} ,

and

F n = {x ∈ In|∃ sequence of vectors {dkr}∞r=1 such that x ∈ ∩∞r=1Skr(dkr)} .

We claim the following lemma.

Lemma 4.2.5. For any given increasing sequence {kr}∞r=1 of natural numbers, F is a

Cantor set, that is, the Lebesgue measure of F , m(F), is 0 and F contains uncountably

many points. Hence F n ⊂ In is also a Cantor set.

Moreover, for any given f ∈ C(In), let {kr}∞r=1 be the integers determined at iterative

steps r in the construction of the outer function g for f (see Section 2.2), then

g ◦ ξq(x) =
1

m+ 1
f(x),

for all x ∈ F n and all 0 ≤ q ≤ m.

Remark 4.2.6. (i) Let {kr}∞r=1 be an increasing sequence of natural numbers. For any

given x ∈ F , suppose x ∈ ∩∞r=1Ekr(dkr) for some {dkr}∞r=1. Then {Ekr(dkr)}∞r=1
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forms a sequence of nested intervals with diminishing diameter and thus

x = ∩∞r=1Ekr(dkr).

Moreover, from the definition of F , dkr , dkr + γ−m−2
γ−1

γ−kr ∈ F for all r. Actually,

For any k ∈ N and any dk ∈ Dk, let kr = k + r − 1 and dkr = dk for r ∈ N,

then dk ∈ ∩∞r=1Ekr(dkr) and thus dk ∈ F . For any k ∈ N, and dk + γ−m−2
γ−1

γ−k with

dk ∈ Dk, let kr = k+ r− 1, dk1 = dk and dkr = dk + (γ −m− 2)
∑r−1

l=1 γ
−(k+l) for

r ≥ 2. Then dk + γ−m−2
γ−1

γ−k ∈ ∩∞r=1Ekr(dkr) and thus dk + γ−m−2
γ−1

γ−k ∈ F .

(ii) From the construction process in [7] and [53], the outer function g for f ∈ C(In)

depends on the choice of {kr}∞r=1.

For any given f ∈ C(In), observe that at step r = 1, for all dk1 ∈ (Dk1)n and all q,

g1 ◦ ξq(dk1) =
1

m+ 1
f(dk1) and f(dk1)−

m∑
q=0

g1 ◦ ξq(dk1) = 0.

Then the residue at dk1 , f2(dk1), equals 0 and so g2 ◦ ξq(dk1) = 1
m+1

f2(dk1) = 0.

Inductively, gr(dk1) = 0 for all r > 1. Hence

g ◦ ξq(dk1) :=
∞∑
r=1

gr(dk1) = g1(dk1) =
1

m+ 1
f(dk1).

Now assume that g does not depend on the choice of k1, then

g ◦ ξq(x) =
1

m+ 1
f(x) (4.2.3)

for any x ∈
(
∪∞k=k1

Dk
)n, which is a dense set of In. Since f and g ◦ ξq is continuous,

(4.2.3) holds for all x ∈ In, which is not true. For example, there exists x1 6= x2 but

ξq(x1) = ξq(x2) for some q. Choose a f ∈ C(In) with f(x1) = f(x2). If (4.2.3)

holds for all x ∈ In, then

1

m+ 1
f(x1) = g ◦ ξq(x1) = g ◦ ξq(x2) =

1

m+ 1
f(x2),
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which is a contradiction. Therefore, Kf depends on the choice of k1 at least, for

every f except constant function.

For a given f ∈ C(In), there are different outer functions g depending on choices of

kr. Thereom 4.2.3 shows that all these outer functions g constructed with different kr lose

their modulus of continuity from f drastically.

Proof of Theorem 4.2.3. We investigate the modulus of continuity of g(u) when u ∈ ∪mq=0ξq[F
n].

For any x ∈ F n, there exists a sequence of numbers {dkr}∞r=1 and the corresponding

nested closed cubes {Skr(dkr)}∞r=1 such that

x = ∩∞r=1Skr(dkr).

Then these dkr ,dkr + γ−m−2
γ−1

γ−krv ∈ F n, where v := (1, ..., 1) is an n dimensional vector.

Write x := (x1, ..., xn) and xr := (xr,1, ..., xr,n) ∈ In, r ∈ N.

Case 1. If xp /∈ ∪∞k=1Dk for all 1 ≤ p ≤ n, let yr = dkr . There exists a subsequence of

yr, xr := yir such that

x1 − xr,1 := x1 − yir,1 := x1 − dkir ,1 ≥ γ−(kir+1).

Notice that

0 < xp − xr,p ≤
γ −m− 2

γ − 1
γ−kir , 1 ≤ p ≤ n.

Then

γ−(kir+1) ≤ |x− xr| ≤
√
n
γ −m− 2

γ − 1
γ−kir ,

and by the definition of ξq(x) :=
∑n

p=1 λpψ(xp + aq) + bq,

λ1γ
−β(kir+1) ≤ ξq(x)− ξq(xr) ≤

(
n∑
p=1

λ2
p

)1/2

(γ −m− 2)

 ∞∑
l=kir+1

γ−β(l)

 . (4.2.4)

Case 2. Else if there exists some P ⊆ {1, ..., n} and some k ∈ N such that xp ∈ Dk for

all p ∈ P . For these p ∈ P , let xr,p = dkr + γ−m−2
γ−1

γ−kr . For p /∈ P , let xr,p = xp. Define
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xr := (xr,1, ..., xr,n), then xr ∈ F n. For all r with kr ≥ k,

|x− xr| =
√
|P |γ −m− 2

γ − 1
γ−kr ,

where |P | denotes the cardinality of set P and thus

ξq(xr)− ξq(x) =

(∑
p∈P

λ2
p

)1/2

(γ −m− 2)

(
∞∑

l=kr+1

γ−β(l)

)
. (4.2.5)

In both cases, it holds that

|x− xr| = O(γ−jr) and |ξq(x)− ξq(xr)| = O(γ−β(jr+1)),

for some some increasing sequence of natural numbers {jr}r∈N.

By Lemma 4.2.5, since x,xr ∈ F n,

|g ◦ ξq(xr)− g ◦ ξq(x)| = 1

m+ 1
|f(xr)− f(x)|. (4.2.6)

Therefore, if |f(xr)− f(x)| = O(ωf (|xr − x|)) = O(ωf (γ
−jr)), then

ωg(γ
−β(jr+1)) ≥ O(|g ◦ ξq(xr)− g ◦ ξq(x)|) = O(ωf (γ

−jr)).

Note that β(k) := (nk−1)/(n−1). When δ = γ−β(k+1), γ−k = γ(logγ−1 δ(n−1) +1)−ρ
−1

),

where ρ := logγ n. Hence,

ωg(δ) ≥ O(ωf (γ(logγ−1 δ(n−1) + 1)−ρ
−1

)).

Proof of Lemma 4.2.5. For any given increasing sequence {kr}∞r=1 of natural numbers, we

show m(F ) = 0 by computing the length of all gaps contained in ∩r−1
l=1Ekl(dkl) for some

{dkl}r−1
l=1 at each step r, the sum of which amounts to 1.

For r ∈ N, denote by ar the total length of intervals Ekr such that Ekr ⊆ ∩r−1
l=1Ekl(dkl)

for some {dkl}r−1
l=1 . Denote by br the total length of gaps between Ekr and contained in
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∩r−1
l=1Ekl(dkl). The number of Ekr contained in each Ekr−1 depends only on kr+1 − kr. We

denote it by Nkr+1−kr and

Nkr+1−kr =
γ −m− 2

γ − 1
(γkr−kr−1 − 1) + 1, r ≥ 2.

r=1, the length of Ek1(dk1) is γ−m−2
γ−1

γ−k1 and the number of Ek1 intervals is γk1 . Then

a1 =
γ −m− 2

γ − 1
γ−k1 · γk1 =

γ −m− 2

γ − 1
,

and

b1 = 1− a1 =
m+ 1

γ − 1
.

r = 2, the length of Ek2 is γ−m−2
γ−1

γ−k2 . Hence

a2 =
γ −m− 2

γ − 1
γ−k2 ·Nk2−k1γ

k1 ,

b2 = a1 − a2 =
γ −m− 2

γ − 1
(1−Nk2−k1γ

−(k2−k1)).

At step r ≥ 3, the length of Ekr is γ−m−2
γ−1

γ−kr . Then

ar =
γ −m− 2

γ − 1
γ−kr ·Nkr−kr−1Nkr−1−kr−2 · · ·Nk2−k1γ

k1 ,

br = ar−1 − ar > 0

=
γ −m− 2

γ − 1
·Nkr−1−kr−2Nkr−2−kr−3 · · ·Nk2−k1γ

−(kr−1−k1)(1−Nkr−kr−1γ
−(kr−kr−1)).

Notice that ar → 0 as r →∞, then

∞∑
r=1

br = b1 +
∞∑
r=2

(ar−1 − ar) = 1.

That is m(F c) = 1 and thus the Lebesgue measure of F is 0.

Next, we show that F is not countable by establishing a surjective map T from F onto

I . From the definition of F , x =
∑∞

i=1 ciγ
−i ∈ F iff for all r ∈ N,
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(i) 0 ≤ ckr+1 ≤ γ −m− 2.

(ii) If there exists lr such that kr < lr < kr+1 and clr > γ − m − 2, then there exists

some kr < r < lr such that cr < γ −m− 2.

Define

T : F → I

T

(
∞∑
i=1

ciγ
−i

)
=

k1∑
i=1

ciγ
−i +

∞∑
r=1

kr+1∑
i=kr+2

ciγ
−(i−r).

Since 0 ≤ ci ≤ γ − 1 for all i, the infinite series above convergent absolutely. In fact, ex-

press x = 0.c1c2...ck1 ...ck2 ... in base γ, then T (x) = 0.c1c2...ck1ck1+2...ck2ck2+2..., obtained

by removing the kr + 1-th digits from x.

T defined above is a surjective but not injective. First, notice that for all x =
∑∞

i=1 ciγ
−i

with ckr+1 < γ − m − 2 for all r ∈ N, they belong to F and their images T (x) =

0.c1c2...ck1ck1+2...ck2ck2+2... cover all points in I . Thus it is surjective. Second, let x =∑k1
i=1 ciγ

−i + (γ − m − 2)γ−(kr+1) + (γ − m − 2)γ−(kr+2) and x′ =
∑k1

i=1 ciγ
−i + 0 ·

γ−(kr+1) + (γ−m− 2)γ−(kr+2), then x 6= x′, x, x′ ∈ F and T (x) = T (x′) =
∑k1

i=1 ciγ
−i +

(γ −m− 2)γ−(kr+2), so T is not injective.

F is a subset of I . By Schröder-Bernstein theorem (see appendix), cardinality of F

equals the cardinality of I and thus F is a uncountable.

Finally, for any given f ∈ C(In), let {kr}∞r=1 be the integers determined at iterative

steps r in the construction of the outer function g for f (see Section 2.2).

For any x = ∩∞r=1Skr(dkr) ∈ F n,

g ◦ ξq(x) =
∞∑
r=1

gr ◦ ξq(dkr) =
1

m+ 1

∞∑
r=1

fr(dkr)

holds for all 0 ≤ q ≤ m.

Since
∑m

q=0 g ◦ ξq(x) = f(x),

g ◦ ξq(x) =
1

m+ 1
f(x), ∀ 0 ≤ q ≤ m.
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Chapter 5

Kolmogorov-Fourier transform

In KST, a continuous function of several variables has different outer functions correspond-

ing to different Kolmogorov bases used in the representations. In this chapter, we inves-

tigate the change of outer functions using Fourier transform. For any given continuous

function of several variables f and two different K-bases ξ and η, let gξ and gη be the corre-

sponding outer functions of f . We obtain a formula to transform gξ to gη. We also combine

Kolmogorov bases in n dimension with bases of function spaces defined on 1 dimensional

domain R and thus obtain new bases for function spaces defined on n dimensional domain

In.

5.1 Kolmogorov-Fourier transform

5.1.1 Kolmogorov-Fourier kernel

In KST, f is represented by sums of compositions of an f -dependent outer function g and

an independent K-basis ξq’s. It would help us to understand the dependence of g on f

by separating the independent K-basis from the argument of g. Fourier transform is one

technique to serve the purpose.

In the following we investigate the combined operator of inverse Fourier transform and
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Kolmogorov map. We denote the Fourier transform of a function g by Fg or ĝ:

Fg(t) = ĝ(t) :=

∫
R
g(x)e−2πitxdx

whenever the integral converges in Lebesgue sense.

Definition 5.1.1 (Kolmogorov-Fourier transform). For a given K-basis ξ := {ξq}2n
q=0 on In,

let kξ(x, t) := 1
2n+1

∑2n
q=0 e

2πiξq(x)t. Define the Kolmogorov-Fourier (K-F) transform with

respect to K-basis ξ,

KFξ : L1(R)→ C(In)

ĝ(t)→ KFξ(ĝ)(x) :=

∫
R
kξ(x, t)ĝ(t)dt.

We also write KF (ĝ) when there is no confusion about the underlying K-basis.

Note that the kernel kξ(x, t) is uniformly continuous in (x, t) ∈ In×R and |kξ(x, t)| ≤
1. We describe some properties of K-F transform.

(i) If g ∈ C(Y ) is real and ĝ ∈ L1(R) then KFĝ is a real function, since

KF (ĝ) =

∫
R
ĝ(t)k(x, t)dt =

∫
R
ĝ(t)k(x,−t)dt

=

∫
R
ĝ(−t)k(x,−t)dt =

∫
R
ĝ(t)k(x, t)dt = KF (ĝ).

(ii) If ĝ ∈ L1(R), then KFĝ is uniformly continuous.

In fact, by the uniform continuity of kξ(x, t) with respect to x, for any ε > 0 and any

x,x′ ∈ In within |x−x′| < δ, there exists a δ > 0 such that |kξ(x, t)−kξ(x′, t)| < ε.

Therefore, for |x− x′| < δ,

|KF (x)−KF (x′)| =
∣∣∣∣∫

R
[kξ(x, t)− kξ(x′, t)]ĝ(t)dt

∣∣∣∣ < ε‖ĝ‖1.

(iii) KF is a bounded linear operator from L1(R) into L∞(In) and thus into Lp(In) with

1 ≤ p ≤ ∞, since |kξ(x, t)| ≤ 1.
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The classical Fourier transform can be extended to Lp, 1 ≤ p ≤ 2. First we mention

the Fourier transform on L2.

Theorem 5.1.2 (Plancherel Theorem [56]). The Fourier transform F : L1(R)→ C0(R) is

an unitary on L2(R); that is, F maps onto L2(R) and ‖ĝ‖2 = ‖g‖2. Furthermore,

ĝ(ξ) = lim
R→∞

∫
|x|<R

g(x)e−2πix·ξdx

and

g(x) = lim
R→∞

∫
|x|<R

ĝ(ξ)e2πix·ξdx,

where the limits are in L2.

Then F can be defined on L1(R) +L2(R) := {g = g1 + g2 : g1 ∈ L1(R), g2 ∈ L2(R)}
by F(g1 + g2) = Fg1 + Fg2. If g′1 + g′2 = g1 + g2 with g′1 ∈ L1(R), g′2 ∈ L2(R),

then g′1 − g1 = g2 − g′2 ∈ L1(R) ∩ L2(R). The definition of F coincides with that on

L1(R) ∩ L2(R) and thus ĝ′1 − ĝ1 = ĝ2 − ĝ′2. That is, ĝ1 + ĝ2 = ĝ′1 + ĝ′2. Hence, F is

well-defined on L1(R) + L2(R). Since Lp(R) ⊆ L1(R) + L2(R), 1 ≤ p ≤ 2, F is well

defined for all g ∈ Lp(R), 1 ≤ p ≤ 2.

Moreover, applying Riesz-Thorin interpolation theorem (see Appendix), we have the

following Hausdorff-Young inequality.

Theorem 5.1.3 (Hausdorff-Young Inequality, Corollary 1.20 in [70]). If g ∈ Lp(R), 1 ≤
p ≤ 2, then ĝ ∈ Lp′(R) and

‖ĝ‖p′ ≤ ‖g‖p,

where 1/p+ 1/p′ = 1.

Furthermore, F can be defined as a linear functional acting on tempered distributions.

The extension of classical Fourier transform from L1(R) to L2(R) depends on its nice

properties on convolution and multiplication of functions as a consequence of the simplic-

ity of the exponential kernel e−ixt. If g1, g2 ∈ L1(R), then F(f1 ∗ f2) = (Ff1)(Ff2)

(see Theorem 1.4 in [56]). However, in the case of K-F transform, the kernel k(x, t) :=

1
2n+1

∑2n
q=0 e

2πiξq(x)t. ξq(x) is not linear in x, and the sum over q in k(x, t) also makes the
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relation between convolution and multiplication more complicated. For example, KF (ĝ1 ∗
ĝ2) = Kf(ĝ1)KF (ĝ2) no longer holds in K-F transform.

We introduce a new norm on L1(R) for K-F transform. Let ξ := {ξq}2n
q=0 be a K-basis

on In and

Aξ(t, s) :=

∫
In
kξ(x, t)kξ(x, s)dx :=

1

(2n+ 1)2

2n∑
q,q′=0

∫
In
e2πi(ξq(x)t−ξq′ (x)s)dx. (5.1.1)

Proposition 5.1.4. For any ĝ1, ĝ2 ∈ L1(R), let Aξ(t, s) be as in (5.1.1), define

< ĝ1, ĝ2 >ξ:=

∫
R2

ĝ1(t)Aξ(t, s)ĝ2(s)dtds.

The sesquilinear operator < ·, · >ξ defines a semi norm on L1(R) by

‖ĝ‖ξ :=< ĝ, ĝ >
1/2
ξ .

Proof of Proposition 5.1.4. By Fubini’s theorem (see Appendix), since for any ĝ1, ĝ2 ∈
L1(R), ∫

R2

∫
In
|ĝ1(t)kξ(x, t)ĝ2(s)kξ(x, s)|dxdtds ≤ ‖ĝ1‖1‖ĝ2‖1,

we have ∫
In
KFĝ1(x)KFĝ2(x)dx

:=

∫
In

(∫
R
kξ(x, t)ĝ1(t)dt

)(∫
R
kξ(x, s)ĝ2(s)ds

)
dx

=

∫
R2

ĝ1(t)

(∫
In
kξ(x, t)kξ(x, s)dx

)
ĝ2(s)dtds

= < ĝ1, ĝ2 >ξ .

Thus ‖ĝ‖ξ = ‖KFĝ‖2 ≥ 0.

By Hölder inequality (see Appendix),

< ĝ1, ĝ2 >ξ =

∫
In
KFĝ1(x)KFĝ2(x)dx

≤ ‖KFĝ1‖2‖KFĝ2‖2 = ‖ĝ1‖ξ‖ĝ2‖ξ.
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Then

< ĝ1 + ĝ2, ĝ1 + ĝ2 >ξ

= < ĝ1, ĝ1 >ξ + < ĝ2, ĝ2 >ξ + < ĝ1, ĝ2 >ξ + < ĝ2, ĝ1 >ξ .

≤ ‖ĝ1‖2
ξ + 2‖ĝ1‖ξ‖ĝ2‖ξ + ‖ĝ2‖2

ξ .

Therefore

‖ĝ1 + ĝ2‖ξ ≤ ‖ĝ1‖ξ + ‖ĝ2‖ξ. (5.1.2)

Finally, for any complex number a, ‖aĝ‖ξ = ‖ ˆ(ag)‖ξ = |a| · ‖ĝ‖ξ.
Therefore, ‖ · ‖ξ is a semi norm on L1(R).

5.1.2 Change of K-bases

Given two different K-bases ξ := {ξq}2n
q=0 and η := {ηq}2n

q=0 on In, let Y := ∪2n
q=0(ξq[I

n] ∪
ηq[I

n]). Let kξ(x, t) and kη(x, t) be the kernels of K-F transform corresponding to ξ and η

respectively. By KST, for kξ(x, t), let bt = Kη(kξ(·, t)), then bt ∈ C(Y ) and

kξ(x, t) =
1

2n+ 1

2n∑
q=0

bt(ηq(x)), ∀x ∈ In. (5.1.3)

bt(u) is defined on u ∈ Y . We make an extension of bt(u), still denoted by bt(u), such

that bt(u) is supported on a bounded open interval Ỹ ⊃ Y and bt(u) ∈ C(R). There

are many such extensions and suppose that we can pick one of them such that b̂t(s) :=∫
Ỹ
bt(u)e−2πisudu ∈ L1(R). Since both bt, b̂t ∈ L1(R), by Corollary 1.21 in [56] (see

Appendix), we have

bt(u) =

∫
R
b̂t(s)e

2πiusds

for almost all u ∈ R in Lebesgue sense. Hence,

kξ(x, t) =

∫
R
b̂t(s)kη(x, s)ds, (5.1.4)
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for almost all x ∈ In in Lebesgue sense and thus all x ∈ (0, 1)n since both sides of (5.1.4)

are continuous functions on (0, 1)n.

Because |kξ(x, t)| ≤ 1, by Proposition 4.1.5, |bt| ≤ c‖kξ(x, t)‖∞ ≤ c for some constant

c > 0. Since b̂t(s) :=
∫
Ỹ
bt(r)e

−2πisrdr with Ỹ as a bounded open interval, b̂t(s) is

continuous and bounded in both t and s. Then we can define the outer function transform

operator, which transforms the outer function gξ under K-basis ξ to the outer function gη
under η for a given multivariate function f :

B : L1(R)→ L∞(R)

ĝ(t)→ Bĝ(s) :=

∫
R
b̂t(s)ĝ(t)dt.

B is a bounded operator by the boundedness of b̂t(s) with respect to t.

Theorem 5.1.5. Let ξ := {ξq}2n
q=0 and η := {ηq}2n

q=0 be K-bases on In such that ξq, ηq are

strictly increasing with respect to xp, p = 1, ..., n. Let Y := ∪2n
q=0(ξq[I

n]∪ηq[In]) and bt(s)

be as in (5.1.3). For f ∈ C(In), there exists gξ ∈ C(Y ) such that f = Sξgξ. Suppose that

ĝξ ∈ L1(R) and b̂t(s) ∈ L1(R, ds) with ‖b̂t‖1 uniformly bounded in t ∈ R. Then

f(x) = KFξ(ĝξ)(x) = KFη(Bĝξ)(x), ∀x ∈ (0, 1)n.

Proof of Theorem 5.1.5. Since ‖b̂t‖1 uniformly bounded in t ∈ R, there exists a c > 0 such

that ∫
R
|b̂t(s)|ds ≤ c.

Hence ∫
R

(∫
R
|ĝξ(t)b̂t(s)kη(x, s)|ds

)
dt ≤ c

∫
R
|ĝξ(t)|dt,
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By (5.1.4) and then Fubini-Tonelli theorem (see Appendix), we have:

KF (ĝξ)(x) :=

∫
R
ĝξ(t)kξ(x, t)dt

=

∫
R
ĝξ(t)

(∫
R
b̂t(s)kη(x, s)ds

)
dt

=

∫
R

(∫
R
b̂t(s)ĝξ(t)dt

)
kη(x, s)ds

=:

∫
R
B(ĝξ)(s)kη(x, s)ds

=: KFη(Bĝξ)(x)

By Corollary 1.21 in [56], for almost all uq ∈ Yq, q = 0, ..., 2n,

gξ(uq) =

∫
R
ĝξ(t)e

2πiuqtdt. (5.1.5)

Notice that the left hand side of (5.1.5), g(uq), is continuous in the interior of Yq, and the

right hand side is continuous on R. Therefore (5.1.5) holds for all uq in the interior of Yq.

For uq = ξq(x), since ξq is strictly increasing in xp, p = 1, ..., n, ξq[(0, 1)n] is included in

the interior of Yq for q = 0, ..., 2n. Thus,

1

2n+ 1

(
2n∑
q=0

gξ(ξq(x))

)
=

∫
R
ĝξ(t)

1

2n+ 1

(
2n∑
q=0

e2πiξq(x)t

)
dt

holds for all x ∈ (0, 1)n. That is,

f(x) = KFξ(ĝξ)(x) = KFη(Bĝξ)(x), ∀x ∈ (0, 1)n.
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5.2 KST combined with Fourier basis and wavelet basis

5.2.1 Kolmogorov-Fourier basis

Let {ξq}2n
q=0 be a K-basis on In such that ∪2n

q=0ξq[I
n] ⊆ I . For any f ∈ C(In), the domain

of its outer functions g will be the unit interval I . Extend g periodically to R by

g(u) := g(u−m), for m ≤ u < m+ 1, m ∈ Z.

Thus we can consider the Fourier series of g(u):

∑
m∈Z

cm(g)e2πimu, with cm(g) :=

∫ 1

0

g(u)e−2πimudu.

Definition 5.2.1 (Kolmogorov-Fourier series). For g ∈ C(I), its Kolmogorov-Fourier se-

ries (K-F series) with respect to a K-basis {ξq}2n
q=0 is defined as

1

2n+ 1

(∑
m∈Z

cm(g)
2n∑
q=0

e2πiξq(x)m

)
.

Let Sξ(g) := 1
2n+1

(∑2n
q=0 g ◦ ξq

)
, then by the convergence of Fourier series of g, we

have the convergence of K-F series of g.

Proposition 5.2.2. Let g ∈ C(I).

(i) Dini test: By Theorem 6.8 [71], if g is Holder continuous with exponent 0 < α ≤ 1

on I , then its K-F series converges uniformly to Sξ(g) on In.

(ii) Dirichlet-Jordan test: By Theorem 8.6 [71], if g is of bounded variation on I , then

its K-F series converges everywhere to Sξ(g) on In.

5.2.2 KST with wavelet basis

In [34], Leni, Dougerolle and Truchetet design an image compression scheme using KST

and wavelet decomposition. Consider a grey-scale image as a function of two variables:
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the horizontal and vertical coordinates of a pixel. The value of the function is the grey

level of each pixel, which changes between white, f = 0, and black, f = 1. They first de-

compose the image into four sub-images using wavelet transform. One sub-image contains

low frequencies and the other three contain high frequencies of the original image. Then

each sub-image is represented by a univariate function through KST. Ingelnik’s [22] spline

network approximation scheme is used to implement Kolmogorov’s representation. Sub-

images of high frequencies are represented with relative high accuracy by using less pixels

of the sub-images, while the sub-image of low frequencies are represented with the high-

est accuracy by using more pixels of the original. In this way, they compress the original

image.

In this subsection, we combine wavelet basis in 1 dimension with Kolmogorov basis in

n dimension to develop a new basis in n dimension. In particular, we take Haar wavelets

as an example.

Let a0 > 1, b0 > 0 and ψ ∈ L2(R). Suppose that

ψn,m(x) = |a0|−m/2ψ(a−m0 x− nb0) (n,m) ∈ Z× Z,

is an orthonormal wavelet basis for L2(R). For a fixed g, the discrete wavelet coefficients

of g are given by

< g, ψn,m >= |a0|−m/2
∫
g(x)ψ(a−m0 x− nb0)dx

and then

g(x) =
∑

(n,m)∈Z×Z

< g, ψn,m > ψn,m(x) (5.2.1)

in L2 sense.

Given a K-basis ξ := {ξq}2n
q=0 on In. Let Y := ∪2n

q=0ξq[I
n]. By KST, for any f ∈ C(In),

there exists g ∈ C(Y ) ⊆ L2(R) such that

f =
2n∑
q=0

g ◦ ξq.
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Thus if {ek}∞k=0 is an orthonormal basis for L2(R), then {
∑2n

q=0 ek ◦ ξq}∞k=0 is possibly a

Schauder basis for proper function spaces defined on In. In particular, any f ∈ C(In)

could be approximated by finite linear combinations of {Ek :=
∑2n

q=0 ek ◦ ξq}∞k=0:

N∑
k=1

< Kξf, ek > Ek :=
N∑
k=1

< Kξf, ek >

(
2n∑
q=0

ek ◦ ξq

)
,

in proper topologies.

Example 5.2.3. Take the Haar wavelets for example [9]. The Haar function is

ψ(x) =


1 0 ≤ x < 1

2

−1 1
2
≤ x < 1

0 otherwise.

Taking a0 = 2, b0 = 1, then

ψm,n(x) = 2−m/2ψ(2−mx− n), m, n ∈ Z

constitutes an orthonormal basis for L2(R), which is called Haar wavelet basis.

We claim that for any given K-basis {ξq}2n
q=0 on Rn (see Theorem 1.4.2), if for any fixed

J1 ∈ N, the Lebesgue measure

m({x : ξq(x) ∈ [−2J1+K , 2J1+K)}) < O(2pK), q = 0, ..., 2n,

then C(Rn) can be approximated by linear combinations of

Ψj,k :=
2n∑
q=0

ψj,k ◦ ξq, j, k ∈ Z,

in Lp sense, 2 ≤ p <∞.

Since any g ∈ Lp(R), 2 ≤ p < ∞, can be approximated by a function with com-

pact support which is piecewise constant on [l2−j, (l + 1)2−j), we can restrict ourselves

to consider piecewise constant functions only. Assume g is supported on [−2J1 , 2J1 ] and
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is piecewise constant on [l2−J0 , (l + 1)2−J0), where J1, J0 can be arbitrarily large. Using

the techniques of multiresolution analysis and notations in section 1.3.3 [9], we approxi-

mate g with linear combinations of Haar wavelets. Denote the constant value g0 = g on

[l2−J0 , (l+ 1)2−J0) by g0
l . Represent g0 as two parts, g0 = g1 + δ1, where g1 is the approxi-

mation to g0 which is piecewise constant over intervals twice as large as originally; that is,

g1|[k2−J0+1,(k+1)2−J0+1) ≡ constant = g1
k := 1

2
(g0

2k + g0
2k+1). The function δ1 is a piecewise

constant with the same stepwidth as g0 and

δ1
2l = g0

2l − g1
l =

1

2
(g0

2l − g0
2l+1)

and

δ1
2l+1 = g0

2l+1 − g1
l =

1

2
(g0

2l+1 − g0
2l) = −δ1

2l.

It follows that δ1 is a linear combination of Haar wavelets:

δ1 =
2J1+J0−1−1∑
l=−2J1+J0−1

δ1
2lψ(2J0−1x− l).

We have

g = g0 = g1 +
2J1+J0−1−1∑
l=−2J1+J0−1

c−J0+1,lψ−J0+1,l,

where g1 is of the same type of g0 , but with stepwidth twice as large. We can repeat the

procedure till we have g = gJ0+J1+K +
∑J1+K

m=−J0+1

∑
l cm,lψm,l, where support of gJ0+J1+K

is [−2J1+K , 2J1+K ], and

gJ0+J1+K |[0,2J1+K) = 2−KgJ0+J1
0 ,

gJ0+J1+K |[−2J1+K ,0) = 2−KgJ0+J1
−1 ,

and gJ0+J1
0 is the average of g over [0, 2J1) and gJ0+J1

−1 is the average of g over [−2J1 , 0).
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Then

∫
Rn

∣∣∣∣∣g(ξq(x))−
J1+K∑

m=−J0+1

∑
l

cm,lψm,l(ξq(x))

∣∣∣∣∣
p

dx (5.2.2)

=

∫
Rn

∣∣gJ0+J1+K(ξq(x))
∣∣p dx

= 2−pK

(∫
{x:ξq(x)∈[0,2J1+K)}

|gJ0+J1
0 |pdx +

∫
{x:ξq(x)∈[−2J1+K ,0)}

|gJ0+J1
−1 |p

)
dx

≤ 2−pKm({x : ξq(x) ∈ [−2J1+K , 2J1+K)})(|gJ0+J1
0 |p + |gJ0+J1

−1 |p). (5.2.3)

The sum over l in (5.2.2) depends onm: l ∈ {−1, 0}, ifm ≥ J1, and l ∈ {−2J1−m, ..., 2J1−m−
1}, if m < J1.

Therefore, if the Lebesgue measure

m({x : ξq(x) ∈ [−2J1+K , 2J1+K)}) < O(2pK),

then (5.2.3) can be made arbitrarily small by taking sufficiently large K. Hence g ◦ ξq
and thus f =

∑2n
q=0 g ◦ ξq can be approximated in Lp norm to any precision by a finite

combination of Ψm,n.

In the case of C(In), let {ξq}2n
q=0 be a K-basis on In and Y := ∪2n

q=0ξq[I
n], then C(In)

can be approximated by linear combinations of Ψm,n :=
∑2n

q=0 ψm,n ◦ ξq, m,n ∈ Z in

Lp(In) for 2 ≤ p <∞, since m(In) = 1 < O(2pK).
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Chapter 6

KST and optimal transport problems

In this chapter, we introduce 1 dimensional measures induced from n ≥ 2 dimensional

measures and relate the optimal transport cost between measures in n dimension with the

corresponding optimal cost between measures in one dimension.

6.1 1 dimensional measures induced from n dimensional measures

Let µ be any Borel measure defined on the Borel sets of In and {ξq}2n
q=0 be a K-basis on In.

For q = 0, ..., 2n, let

νq := µ ◦ ξ−1
q

be the measure defined on the algebra of subsets of Yq := ξq[I
n] consisting of all sets

E ⊆ Yq such that ξ−1
q [E] is a Borel subset of In.

Let

ν :=
1

2n+ 1

2n∑
q=0

νq :=
1

2n+ 1

2n∑
q=0

µ ◦ ξ−1
q . (6.1.1)

We list some properties of νq and ν induced by a Borel measure µ on the Borel sets of In:

(i) Let ‖·‖TV denote the total variation of a measure. We have ‖νq‖TV := ‖µ◦ξ−1
q ‖TV ≤

‖µ‖TV and thus ‖ν‖TV ≤ ‖µ‖TV .

(ii) By Theorem 1.1 in [59], if Yq := ξq[I
n], 0 ≤ q ≤ 2n, are mutally disjoint, then there

is a constant 0 < c ≤ 1 depending only on the K-basis {ξq}2n
q=0, such that for any
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Borel measure µ, there is some 0 ≤ q ≤ 2n such that ‖νq‖TV ≥ c‖µ‖TV .

If g is measurable on Y := ∪2n
q=0Yq with respect to ν, then f := 1

2n+1

∑2n
q=0 g ◦ ξq is

measurable with respect to µ and

∫
In
f(x)dµ(x) :=

1

2n+ 1

∫
In

2n∑
q=0

g(ξq(x))dµ(x)

=
1

2n+ 1

∫
Yq

2n∑
q=0

g(y)dνq(y) =

∫
Y

g(y)dν(y).

For a K-basis ξq(x1, ..., xn) :=
∑n

p=1 ψpq(xp) on In, if the n-dimensional measure

µ(x1, ..., xn) = µ1(x1) · · ·µn(xn)

is a product measure with Borel measures µp on I , p = 1, ..., n, then for any bounded

νq-measurable function g,∫
Yq

g(y)dνq(y) =

∫
In
g(ξq(x1, ..., xn))dµ(x1, ..., xm)

=

∫
I

· · ·
∫
I

g(ψ1q(x1) + · · ·+ ψnq(xn))dµ1(x1) · · · dµn(xn)

=

∫
Yq

· · ·
∫
Yq

g(y1q + · · ·+ ynq)d(µ1 ◦ ψ−1
1q ) · · · d(µn ◦ ψ−1

nq ).

Thus, νq := µ ◦ ξ−1
q is a convolution of measures µp ◦ ψ−1

pq (see page 237 in [46]). Namely,

for q = 0, ..., 2n,

νq = (µ1 ◦ ψ−1
1q ) ∗ · · · ∗ d(µn ◦ ψ−1

nq ).

6.2 Two variations of KST

In this section, we introduce two varied versions of KST, which we will use in the next

section to compare the optimal transport cost between measures in high dimension and

measures in 1 dimension.

This first version of KST enables one to represent a continuous function on I2n using a

K-basis on In.
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Proposition 6.2.1. Let n ≥ 2 be natural number and {ξq}2n
q=0 be an arbitrary K-basis on

In, then for any f ∈ C(I2n), there exists a g ∈ C(R2) such that

f(x1, ..., xn, xn+1, ..., x2n) =
1

(2n+ 1)2

(
2n∑
q=0

2n∑
q′=0

g(ξq(x1, ..., xn), ξq′(xn+1, ..., x2n))

)
(6.2.1)

holds for all (x1, ..., xn, xn+1, ..., x2n) ∈ I2n.

Proof of Proposition 6.2.1. For any x ∈ I2n, write x := (x1,x2) with x1,x2 ∈ In. For

any f(x) ∈ C(I2n), f(x) := f(x1,x2) = fx2(x1) ∈ C(In). Since {ξq}2n
q=0 is a K-basis on

C(In), there exists hx2 ∈ R such that

fx2(x1) =
1

2n+ 1

(
2n∑
q=0

hx2(ξq(x1))

)
.

By Proposition 4.1.5, the Kolmogorov map with respect to {ξq}2n
q=0 is strongly continuous,

and thus hx2(ξq(x1)) = hξq(x1)(x2) ∈ C(In). Then using Kolmogorov’s representation

again,

hξq(x1)(x2) =
1

2n+ 1

(
2n∑
q′=0

gξq(x1)(ξq′(x2))

)

holds for some gξq(x1) ∈ C(In), all x1 ∈ In and q = 0, ..., 2n. Therefore,

f(x) := f(x1,x2) =
1

(2n+ 1)2

(
2n∑
q=0

2n∑
q′=0

gξq(x1)(ξq′(x2))

)

:=
1

(2n+ 1)2

(
2n∑
q=0

2n∑
q′=0

g(ξq(x1), ξq′(x2))

)
,

with g ∈ C(R2).

The second version KST tries to represent a continuous function on I2n by a redundant

K-basis on In. The number of summed items in the second version is 4n+ 1, compared to

(2n+ 1)2 in the first version.
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Proposition 6.2.2. Let n ≥ 2 be a natural number and Dk ⊂ N, k ∈ N be finite sets. Let

{Skq,i : i ∈ Dn
k , q = 0, ..., 4n}k∈N (6.2.2)

be a Kolmogorov cover of In which covers In at least 4n + 1 − n = 3n + 1 times and

{ξq}4n
q=0 be a K-basis on In which separates the Kolmogorov cover (6.2.2). Then for any

f ∈ C(I2n), there exists a g ∈ C(R2) such that for all (x1, ..., x2n) ∈ I2n,

f(x1, ..., xn, xn+1, ..., x2n) =
1

4n+ 1

(
4n∑
q=0

g(ξq(x1, ..., xn), ξq(xn+1, ..., x2n))

)
. (6.2.3)

Remark 6.2.3. In fact, if we take a Lorentz’s K-basis {ηq}4n
q=0 on I2n:

ηq(x1, ..., xn, xn+1, ..., x2n) =
n∑
p=1

λpφq(xp) +
2n∑

p=n+1

λpφq(xp),

then KST, for any f ∈ C(I2n), there is a gη ∈ C(R) such that

f(x1, ..., xn, xn+1, ..., x2n) =
1

4n+ 1

(
4n∑
q=0

gη(
n∑
p=1

λpφq(xp) +
2n∑

p=n+1

λpφq(xp))

)
.

Define g2 ∈ C(R2) by g2(y1, y2) := gη(y1 + y2), then

f(x1, ..., xn, xn+1, ..., x2n) =
1

4n+ 1

(
4n∑
q=0

g2(
n∑
p=1

λpφq(xp),
2n∑

p=n+1

λpφq(xp))

)
. (6.2.4)

If we take a redundant Lorentz’s K-basis ξq :=
∑n

p=1 λpφq(xp), q = 0, ..., 4n on In,

(6.2.3) becomes

f(x1, ..., xn, xn+1, ..., x2n) =
1

4n+ 1

(
4n∑
q=0

g(
n∑
p=1

λpφq(xp),
n∑
p=1

λpφq(xp+n))

)
. (6.2.5)

The number of summed items in (6.2.5) and (6.2.4) are both 4n+ 1, but the latter has more

parameter λp’s.
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Proof of Proposition 6.2.2. For any (x1, ..., xn) ∈ In, there are at most n of q’s such that

(x1, ..., xn) is not covered by these q-cubes Skq,i. Therefore, for any

(x1, ..., xn, xn+1, ..., x2n) ∈ I2n, there are at most 2n of q’s such that (x1, ..., xn) is not

covered by the q-cubes Skq,i × Skq,j. In other words,

{Skq,i × Skq,j : i, j ∈ Dn
k , q = 0, ..., 4n}k∈N (6.2.6)

is a Kolmogorov cover of I2n and covers I2n at least 4n+ 1− 2n = 2n+ 1 times. Notice

that {ξq(x1, ..., xn) + ξq(xn+1, ..., x2n))}4n
q=0 does not necessarily separate the Kolmogorov

cover (6.2.6) and thus not necessarily a K-basis on I2n. However, for any fixed k ∈ N, the

images of the Kolmogorov cover (6.2.6) under (ξq, ξq),

ξq[S
k
q,i]× ξq[Skq,j], (i, j) ∈ D2n

k ; q = 0, ..., 4n,

are all disjoint in R2.

Now for any given f ∈ C(I2n), we construct iteratively a g ∈ C(R2) such that (6.2.3)

holds in a similar way as Sprecher’s proof of KST [48].

For any small enough ε > 0, let θ > 0 such that

0 <
2n+ 1

4n+ 1
ε+

4n

4n+ 1
≤ θ < 1.

Let f0 := f . At step r ∈ N, choose kr ∈ N such that for any two points x,x′ ∈ I2n

contained in one cube Skq,i × Skq,j, (i, j) ∈ D2n
kr
, q = 0, ..., 4n, it holds that

|fr−1(x)− fr−1(x′)| ≤ ε‖fr−1‖∞. (6.2.7)

This can be done by the uniform continuity of fr−1 on I2n, since the diameter of Skq,i×Skq,j
goes to 0 as k goes to infinity.

Let fkrq,ij be the value of f at any point of Skq,i × Skq,j. On each square ξq[Skq,i]× ξq[Skq,j],
we take gr(y1, y2) constant and equal to fkrq,ij. We can extend gr linearly into the gaps

between the ξq[Skq,i] × ξq[S
k
q,j]’s such that ‖g‖∞ ≤ ‖fr−1‖∞. In this way, we obtain a

continuous gr. Write x = (x1,x2) ∈ I2n with x1,x2 ∈ In. Let fr(x) := fr−1(x) −
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1
4n+1

∑4n
q=0 g(ξ(x1), ξ(x2)) for all x ∈ I2n. Then replace r with r + 1 and repeat the

process.

Next we show that

‖fr‖∞ =

∥∥∥∥∥fr−1(x)− 1

4n+ 1

4n∑
q=0

gr(ξ(x1), ξ(x2))

∥∥∥∥∥
∞

≤ θ‖fr−1‖∞.

Let x = (x1,x2) be an arbitrary point in I2n. For at least 2n+ 1 values of q, denoted by q′,

x ∈ ξq′ [Skq′,i]× ξq′ [Skq′,j] for some (i, j) ∈ D2n
kr

. For these q′,

gr(x) = gr(ξq′(x1), ξq′(x2)) = fkrq′,ij

and by (6.2.7)

|fr−1(x)− gr(ξq′(x1), ξq′(x2))| ≤ ε‖fr−1‖∞.

For the remaining q’s, denoted by q′′, |gr(ξq′′(x))| ≤ ‖fr−1‖∞. Therefore,

|fr(x)|

=

∣∣∣∣∣fr−1(x)− 1

4n+ 1

4n∑
q=0

gr(ξq(x1), ξq(x2))

∣∣∣∣∣
=

1

4n+ 1

∣∣∣∣∣
4n∑
q=0

(4n+ 1)fr−1(x)−
∑
q′

gr(ξq′(x1), ξq′(x2))−
∑
q′′

gr(ξq′′(x1), ξq′′(x2))

∣∣∣∣∣
≤ 1

4n+ 1

∣∣∣∣∣2nfr−1(x) +
∑
q′

(fr−1(x)− gr(ξq′(x1), ξq′(x2)))

∣∣∣∣∣+
2n

4n+ 1
‖fr−1‖∞

≤
(

2n+ 1

4n+ 1
ε+

4n

4n+ 1

)
‖fr−1‖ ≤ θ‖fr−1‖∞.

Thus, ∣∣∣∣∣f(x)− 1

4n+ 1

r∑
l=1

4n∑
q=0

gr(ξq(x1), ξq(x2))

∣∣∣∣∣ ≤ θ‖fr−1‖∞ ≤ θr‖f‖∞

and

‖gr‖∞ ≤ ‖fr−1‖∞ ≤ θ‖fr−2‖∞ ≤ · · · ≤ θr−1‖f‖∞.
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The series
∑∞

r=1 gr converges uniformly and thus we define g :=
∑∞

r=1 gr and (6.2.3)

holds.

6.3 Optimal transport cost

For a fixed K-basis {ξq}2n
q=0 on In and two probability measures µ1, µ2 ∈ P (In), let ν1, ν2

be defined as in (6.1.1). For any given cost function c1 : R× R→ R+ , there exists a cost

function cn(x1,x2) : In × In → R+ such that the optimal transport cost between µ1, µ2

with cost function cn is greater or equal to the optimal transport cost between ν1, ν2 with

cost function c1. On the other hand, for any given cost function cn(x1,x2) : In×In → R+,

there exists a cost function c1 : R× R→ R+ such that the optimal transport cost between

µ1, µ2 with cost function cn is greater or equal to the optimal transport cost between ν1, ν2

with cost function c1.

Recall the definitions and notations in optimal transport problems introduced in section

2.3. Let µ1, µ2 ∈ P (In) and c(x1,x2) : In × In → R+ be a continuous cost function.

Denote

Π(µ1, µ2) := {π ∈ P (In × In); π(A× In) = µ1(A), π(In ×B) = µ2(B),

∀ measurable A,B ⊂ In.}

Then

Tc(µ1, µ2) = inf
π∈Π(µ1,µ2)

∫
In×In

c(x1,x2)dπ(x1,x2).

is called the optimal transport cost between µ1 and µ2.

Theorem 6.3.1. Given a K-basis {ξq}2n
q=0 on In and any two measures µ1, µ2 ∈ P (In),

define ν1, ν2 by (6.1.1). Denote by Yq := ξq[I
n], the image of In under ξq, and Y := ∪2n

q=0Yq.

For any continuous cost function c1(y1, y2) : Y 2 → R+, define

cn(x1,x2) :=
1

(2n+ 1)2

2n∑
q,q′=0

c1(ξq(x1), ξq′(x2)), ∀(x1,x2) ∈ In × In. (6.3.1)

Then the corresponding optimal transport cost in 1 dimension is less or equal to the cost in
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n dimension:

Tc1(ν1, ν2) ≤ Tcn(µ1, µ2). (6.3.2)

Moreover, given any continuous cost function cn(x1,x2) : In × In → R+, by Proposi-

tion 6.2.1, there is a continuous c̃1 ∈ C(R2) such that

cn(x1,x2) :=
1

(2n+ 1)2

2n∑
q,q′=0

c̃1(ξq(x1), ξq′(x2)).

Then for this c̃1,

Tc̃1(ν1, ν2) ≤ Tcn(µ1, µ2).

Proof of Theorem 6.3.1. Firstly, for any πn(x1,x2) ∈ Π(µ1, µ2), we have

π1(y1, y2) :=
1

(2n+ 1)2

(
2n∑

q,q′=0

πn[ξ−1
q (y1), ξ−1

q′ (y2)]

)
∈ Π(ν1, ν2). (6.3.3)

In fact, for any measurable sets C,D ∈ Y := ∪2n
q=0ξq[I

n],

π1(C, Y ) =
1

(2n+ 1)2

(
2n∑

q,q′=0

πn[ξ−1
q [C], ξ−1

q′ [Y ]]

)

=
1

(2n+ 1)2

(
2n∑

q,q′=0

πn[ξ−1
q [C], In]

)

=
1

2n+ 1

(
2n∑
q=0

µ1(ξ−1
q [C])

)
=: ν1(C).

Similarly, π1(Y,D) = ν2(D).

Secondly, ∫
In×In

cn(x1,x2)dπn(x1,x2)

=

∫
In×In

1

(2n+ 1)2

(
2n∑

q,q′=0

c1(ξq(x1), ξq′(x2))

)
dπn(x1,x2)

=

∫
Y×Y

c1(y1, y2)dπ1(y1, y2) (6.3.4)
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Combining (6.3.3) and (6.3.4), we have

inf
πn∈Π(µ1,µ2)

∫
In×In

cn(x1,x2)dπ(x1,x2) ≥ inf
π1∈Π(ν1,ν2)

∫
Y×Y

c1(y1, y2)dπ1(y1, y2).

That is,

Tcn(µ1, µ2) ≥ Tc1(ν1, ν2).

Using Kantorovich’s duality theorem 2.3.3, we can define a simpler cost function cn for

any given continuous cost function c1 such that (6.3.2) holds.

Theorem 6.3.2. Given a K-basis {ξq}2n
q=0 on In and any two measures µ1, µ2 ∈ P (In),

define ν1, ν2 by (6.1.1). Denote by Yq := ξq[I
n], the image of In under ξq, and Y :=

∪2n
q=0Yq. For any continuous cost function c1(y1, y2) : Y 2 → R+, define the cost function

cn : In × In → R+,

cn(x1,x2) :=
1

2n+ 1

2n∑
q=0

c1(ξq(x1), ξq(x2)). (6.3.5)

Then

Tc1(ν1, ν2) ≤ Tcn(µ1, µ2). (6.3.6)

Proof of Theorem 6.3.2. First note that ν1, ν2 ∈ P (Y ) and cn(x1, x2) is continuous. By

Kantorovich duality theorem 2.3.3, it is sufficient to show

sup
(g1,g2)∈Φc1

(∫
Y

g1dν1 +

∫
Y

g2dν2

)
≤ sup

(f1,f2)∈Φcn

(∫
In
f1dµ1 +

∫
In
f2dµ2

)
,

where Φc1 contains all (φ, ψ) ∈ L1(dν1)× L1(dν2) with φ(y1) + ψ(y2) ≤ c(y1, y2), for all

dν1-almost all y1 ∈ Y and dν2-almost all y2 ∈ Y . Φcn is defined similarly. One can restrict

the functions in Φc1 , Φcn to continuous and bounded functions. Thus for g1, g2 ∈ C(Y )
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with g1(y1) + g2(y2) ≤ c1(y1, y2), we have

1

2n+ 1

(
2n∑
q=0

g1(ξq(x1)) +
2n∑
q=0

g2(ξq(x2))

)

≤ 1

2n+ 1

2n∑
q=0

c1(ξq(x1), ξq(x2)) =: cn(x1,x2)

That is, (
1

2n+ 1

2n∑
q=0

g1 ◦ ξq,
1

2n+ 1

2n∑
q=0

g2 ◦ ξq

)
∈ Φcn . (6.3.7)

By the definition of ν1, ν2 and (6.3.7),

sup
(g1,g2)∈Φc1

(∫
Y

g1dν1 +

∫
Y

g2dν2

)

= sup
(g1,g2)∈Φc1

1

2n+ 1

(∫
In

2n∑
q=0

g1 ◦ ξqdµ1 +

∫
In

2n∑
q=0

g2 ◦ ξqdµ2

)

≤ sup
(f1,f2)∈Φcn

(∫
In
f1dµ1 +

∫
In
f2dµ2

)
.

That is, Tc1(ν1, ν2) ≤ Tcn(µ1, µ2).

If the cost function c1 is a distance function on Y × Y , cn defined by (6.3.5) is also

a distance function on In × In. Then one can also use Theorem 2.3.4 to show inequality

(6.3.6).

The cost function cn in (6.3.5) for a given cost function c1 is simpler than the one in

(6.3.1). We can also obtain a simpler cost functions c1 for a given cn such that (6.3.2) holds

by using the redundant version of KST.

We need to modify the definition of the 1-dimensional measures ν first. Given a redun-

dant K-basis {ξq}4n
q=0 on In and two probability measures µ1, µ2 ∈ P (In), let

ν̃i :=
1

4n+ 1

4n∑
q=0

µi ◦ ξ−1
q (6.3.8)
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be measures defined on the algebra of the subsetsE ⊆ Y such that ξ−1
q [E] is µi-measurable,

i = 1, 2.

Corollary 6.3.3. Let µ1, µ2 ∈ P (In) and {ξq}4n
q=0 be a K-basis on In. ν1, ν2 are defined as

in (6.3.8). Denote by Yq := ξq[I
n], the image of In under ξq, and Y := ∪4n

q=0Yq. For any

continuous cost function c1(y1, y2) : Y 2 → R+, define

cn(x1,x2) :=
1

4n+ 1

4n∑
q=0

c1(ξq(x1), ξq(x2)), ∀(x1,x2) ∈ In × In. (6.3.9)

Then Tc1(ν̃1, ν̃2) ≤ Tcn(µ1, µ2).

Moreover, given any continuous cost function cn(x1,x2) : In × In → R+, by Proposi-

tion 6.2.2, there is a continuous c1 such that

cn(x1,x2) :=
1

4n+ 1

4n∑
q=0

c1(ξq(x1), ξq(x2)).

Then for this c1,

Tc1(ν̃1, ν̃2) ≤ Tcn(µ1, µ2).

Apply Theorem 6.3.1 and Theorem 6.3.2, one can prove Proposition 6.3.3.
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Chapter 7

KST applied to image processing

In this chapter, we investigate an encryption scheme developed by using Kolmogorov’s

superposition theorem. We estimate the maximum error caused by decoding the original

image by using wrong K-bases. The error are measured in Lp-norm and Wasserstein dis-

tance respectively. Another modified encryption scheme using K-basis and additionally

embedding maps is also presented.

The independence of K-basis inspires us to use KST in encryption. Suppose there is

some information stored in the form of a multivariate function. For example, a piece of

video is a functions of three variables: time and two coordinate variables. Now we want

to send the information to someone else confidentially. Instead of encrypting the original

information as a multivariate function f directly, we choose a K-basis ξ and represent f by

a univariate function g through the corresponding K-map , then send g publicly and keep

ξ as secret keys. When the authorized users receive g, the original information f can be

reconstructed from g with the authorized secrete keys ξ.

A natural question is how secure is the KST cryptography described above? First, there

are infinitely many (a set of second Baire category) K-bases of the form (1.3.1). Therefore

it is impossible to crack the keys by exhausting the set of all K-bases. Second, due to the

high “non-linearity” of K-basis (see figure 4.1 and 7.1), the construction of a K-basis takes

most of the time in the numeric implementation of approximate versions of KST, while the

iteration of outer function g converges rapidly. Third, the error caused by decrypting the

message with wrong keys could be large.
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x1

x2

O 0.5

0.5

S1 S2 S3

S4 S5 S6

x

∆1 ∆3 ∆4 ∆6

∆2 ∆5

0 0.015

λ1ψ(x1) + λ2ψ(x2)

Figure 7.1: The image of q = 0 family of squares under Sprecher’s K-basis for n =
2, λ1 =

√
2/101 and λ2 =

∑∞
r=1 γ

−(2n−1). (Here we do not choose λ1 = 1 because the
distance between ∆1 and ∆4 would be much bigger than the distance between ∆1 and ∆2

and it is difficult to show them on one axis properly.) We see that under the map of the
K-basis λ1ψ(x1) + λ2ψ(x2), some neighbourhoods in I2 are not neighbourhoods on R any
more, e.g, S1 and S4.

We mentioned some algorithms to implement the approximate version of KST in sec-

tion 1.6. Now we give more details on Kolmogorov’s spline network designed by Igelnik

and Parikh [22].

Theorem 7.0.4 (Estimate of the rate of convergence of Kolmogorov Spline network to the

target function [22]). For any function f ∈ C1(In) and any natural number N , there exists

a Kolmogorov spline network defined by

f sN,W (x) =
N∑
q=1

gsq

[
n∑
p=1

λpψ
s
pq(xp, γ

pq), γq)

]

where gsq(·, γ1), ψspq(·, γpq) are cubic spline univariate functions defined on I with param-

eters γ1, γpq, and λ1, ..., λn > 0 are rationally independent numbers with
∑n

p=1 λp ≤ 1,

such that

‖f − f sN,W‖∞ = O(
1

N
).
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The number P of net parameters W := {γpq, γq, N} satisfies

P = O(N3/2).

This result compares favourably with the approximation order O(1/
√
N) for general

neural networks fN,W and class of functions C1(In) requiresO(N2) degrees of freedom to

achieve the same error. One can compare also [1] [4] [61] and the references cited therein.

Leni et al. [34] implement the idea of encrypting data using Kolmogorov network and

approximate the inner and outer functions in KST by splines. Using Igelnik’s Kolmogorov

Spline network, Leni et al. [35] conducted experiments on greyscale pictures and shows

that if the keys are incorrect, the reconstructed pictures have random gray values at every

pixel.

7.1 Error in Lp-norm

The property of being a K-basis is a topological property.

Lemma 7.1.1. Let {ξq(x)}2n
q=0 be a Kolmogorov basis on In and T be a homeomorphism

on In, then

{ξ̃q(x)}2n
q=0 := {ξq(T (x)}2n

q=0

is also a Kolmogorov basis.

For any f ∈ C(In), there exist f̃ ∈ C(In) such that f = f̃ ◦ T . For this f̃ , by KST.

there exists a g̃ continuous such that f̃(x) =
∑2n

q=0 g̃(ξq(x)). Thus,

f(x) = f̃(T (x)) =
2n∑
q=0

g̃(ξq(T (x))) =
2n∑
q=0

g̃(ξ̃q(x)).

By the definition of K-basis, {ξ̃q(x)}2n
q=0 is a K-basis.

If we decode images encoded by {ξq(x)}2n
q=0 with the wrong key {ξ̃q(x)}2n

q=0, what is the

possible error between f and f̃? We show that the error can be maximised when measured

in Lp-norm and Wasserstein distance respectively.
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Given a homeomorphism T and a probability measure µ on In, we say T admits a

measure decomposition with respect to µ, iff there exist µ-measurable sets A,B such

that

In = A ∪ T [A] ∪B, with µ(B) = 0 and A ∩ T [A] = ∅.

Theorem 7.1.2. Let {ξq(x)}2n
q=0 be a K-basis, µ be a probability measure on In that is

absolutely continuous to Lebesgue measure, and T be a homeomorphism on In. Let

{ξ̃q(x) := ξq(T (x)}2n
q=0 , then

sup
f∈C(In)
0≤f≤1

∥∥∥∥∥
2n∑
q=0

gf (ξq(x))−
2n∑
q=0

gf (ξ̃q(x))

∥∥∥∥∥
Lp(In,µ)

= 1, 1 ≤ p ≤ ∞ (7.1.1)

if and only if T admits a measure decomposition with respect to µ.

Theorem 7.1.2 implies that the function reconstructed can be just the “opposite” of the

original function in an extreme case. In general cases, all intermediate error is possible,

which explains the observation of random greyscale pictures in the reconstruction in [35].

Proof of Theorem 7.1.2. Suppose T admits a measure decomposition of In with respect to

µ:

In = A ∪ T [A] ∪B, with µ(B) = 0 and A ∩ T [A].

Then T [A] ∩ T [T [A]] = ∅, since A ∩ T [A] = ∅ and T is a bijection.

Define

f(x) =

{
1 if x ∈ A ∪B,
0 otherwise.

f defined above is a measurable function and thus theres exist a sequence of fr ∈ C(In)

such that

lim
n→∞

∫
In
|fr(x)− f(x)|dµ(x) = 0.
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Let gr := Kξfr, r ∈ N.

lim
n→∞

∫
In

∣∣∣∣∣
2n∑
q=0

gr(ξq(x))−
2n∑
q=0

gr(ξ̃q(x))

∣∣∣∣∣ dµ(x)

= lim
n→∞

∫
In
|fr(x)− fr(T (x))|dµ(x)

=

∫
In
|f(x)− f(T (x))|dµ(x)

=

∫
A

|f(x)− f(T (x))|dµ(x) +

∫
T (A)

|f(x)− f(T (x))|dµ(x)

=

∫
A

|1− 0|dµ(x) +

∫
T (A)

|0− 1|dµ(x)

=

∫
A∪T (A)

1dµ(x) = 1

Therefore, the supreme error in L1 is maximised. Similarly, the supreme error is max-

imised in Lp norm for 1 ≤ p ≤ ∞.

On the other hand, suppose (7.1.1) holds, then |f(x) − f̃(x)| = 1 almost everywhere.

That is, for mostly all x, either f(x) = 0 and f(T (x)) = 1, or f(x) = 1 and f(T (x)) = 0.

Thus define A := {x ∈ In|f(x) = 0 and f(T (x)) = 1} and B := In\(A ∪ T [A]). Then

A ∩ T [A] = ∅ and µ(A) + µ(T [A]) = µ(In). That is, T admits a measure decomposition

of In with respect to µ.

We illustrate the decomposing property of T with respect to Lebesgue measuremwhen

T is the homeomorphism that permutes the coordinates in dimension 2.

Example 7.1.3. T : I2 → I2 such that T (x1, x2) = (x2, x1). Then let A := {(x1, x2) ∈
In|x1 < x2} and B = {(x1, x2) ∈ In|x1 = x2}, then A ∩ T [A] = ∅ and µ(B) = 0. See

figure 7.2.

For dimension n ≥ 3, let σ be a permutation of {1, ..., n}, then Tσ(x1, ..., xn) :=

(xσ(1), ..., xσ(n)) is the homeomorphism on In. If ξq(x) =
∑n

p=1 λpφq(xp) is a Kolmogorov

basis on In, then by Lemma 7.1.1, ξq ◦ Tσ =
∑n

p=1 λpφq(xσ(p)) =
∑n

p=1 λσ−1(p)φq(xp) is

also a Kolmogorov basis on In. There are n! of permutations of the coordinates (x1, ..., xn)

and thus n! homeomorphisms Tσ. Not all these homeomorphisms maximise the error in
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x1

x2

O

A

T [A]

T

f(x1, x2) = 1

f(x2, x1) = 0

1

1

Figure 7.2: Measure decomposition of I2 under the homeomorphism T (x1, x2) = (x2, x1).

(7.1.1). If a permutation σ admits a cycle with even length in its cycle decomposition, then

Tσ admits a decomposition of In with respect to Lebesgue measure.

For example, if σ = (1, 2)α, where α is a permutation of {3, ..., n}. The cycle (1, 2) is

of length 2. Then let

A = {(x1, ..., xn) ∈ In|x1 > x2} and B = {(x1, ..., xn) ∈ In|x1 = x2}.

One can verify that m(B) = 0, Tσ(A) = {(x1, ..., xn) ∈ In|x1 < x2} and thus A∩T [A] =

∅ and In = A∪T [A]∪B. Else if, σ does not admits a even cycle in its decomposition, then

the maximal error cannot be obtained. For example, for σ = (1, 2, 3), by Theorem 7.1.2, to

obtain the maximal error, for almost all x := (x1, x2, x3) ∈ I3, (f(x), f ◦ Tσ(x), f ◦ Tσ ◦
Tσ(x), f ◦ Tσ ◦ Tσ ◦ Tσ(x) = (0, 1, 0, 1) or (1, 0, 1, 0). Notice that Tσ ◦ Tσ ◦ Tσ = I. Thus

f(x) = f ◦ Tσ ◦ Tσ ◦ Tσ(x) for all x ∈ I3, which is a contradiction. See Figure 7.3.

7.2 Error in Wasserstein distance

Next we show that the error between the original functions and the functions reconstructed

with wrong keys can also be maximised in Wasserstein distance.
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x1

x2

x3

T ◦3
σ [C] = C

Tσ[C]

T ◦2
σ [C]

Figure 7.3: The image of a cubicC under the permutative homeomorphism T (x1, x2, x3) =
(x2, x3, x1) goes back to itself in odd steps, i.e. 3 steps.

Recall that on a Polish space (X, d), the Wasserstein distance [64] is defined as the

optimal transport cost

Wp(µ, ν) := T 1/p
dp (µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X×X

dp(x, y)dπ(x, y)

)1/p

where d is a distance function and µ, ν are probability measures in

Pp(X) :=

{
µ ∈ P (X) :

∫
X

d(x0, x)pdµ(x) <∞, for some and thus any x0 ∈ X
}
.

Notice that when the distance d is bounded, then P (Rn) = Pp(Rn), p ≥ 1. In the following,

we assume that the distance function d is bounded.

Let {ξq}2n
q=0 be K-basis for C(Rn) (see Theorem 1.4.3). We use {ξq}2n

q=0 to encode

images f ∈ C(Rn). Suppose the wrong key is of the type ξ̃q = ξq ◦ T for q = 0, ..., 2n,

where T is an area-preserving homeomorphism on Rn. Then images decoded with the

wrong key {ξ̃q}2n
q=0 will be f̃ = f ◦ T .
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Let (Rn, d) be a Polish space and

P (Rn) :=

{
f ∈ C(Rn)|f ≥ 0 and

∫
Rn
f(x)dx = 1

}
.

If f ∈ P (Rn), then f̃(x) := f(T (x)) ∈ P (Rn).

Theorem 7.2.1. Let T be an area-preserving homeomorphism on Rn and d be a bounded

distance function on Rn. For any f ∈ P (Rn) and f̃ := f ◦ T ,

sup
f∈P (Rn)

Wp(f, f̃) = sup
x∈Rn

d(x, T (x)).

The supremum is attained when f is supported on the set {x ∈ Rn : d(x, T (x)) =

supy∈Rn d(y, T (y))}.

Proof. We first claim that: for any δx, x ∈ Rn, there exists a sequence {fl ∈ P (Rn)}l∈N
such that

lim
l→∞

Wp(fl, δx) = 0. (7.2.1)

In fact, by Theorem 7.12 in [64],

Wp(µk, µ)→ 0, as k →∞,

is equivalent to µk → µ in weak sense and {µk} satisfies the following tightness condition:

for some x0 ∈ X ,

lim
R→∞

lim sup
k→∞

∫
d(x0,x)≥R

d(x0, x)pdµk(x) = 0.

For δx, choose fl ∈ P (Rn) such that f is supported in a neighbourhood of x with radius

2−l, then fl converges to δx in weak sense and

lim
R→∞

lim sup
l→∞

∫
d(x,y)≥R

d(x, y)pfl(y)dy = 0.

Thus fl converges to δx in Wasserstein distance.

For any given x ∈ Rn, let {fl ∈ P (Rn)}l∈N such that (7.2.1) holds. Let f̃l := f̃l ◦ T ,
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then

lim
l→∞

Wp(f̃l, δT (x)) = 0.

By triangle inequality,

Wp(fl, f̃l) ≤ Wp(fl, δx) +Wp(δx, δT (x)) +Wp(f̃l, δT (x))

and

Wp(fl, f̃l) ≥ Wp(δx, δT (x))−Wp(fl, δx)−Wp(f̃l, δT (x)).

Then

lim
l→∞

Wp(fl, f̃l) = Wp(δx, δT (x)). (7.2.2)

For the homeomorphism T , there exists a sequence {xk}k∈N ⊆ Rn such that

lim
k→∞

d(xk, T (xk)) = sup
x∈Rn

d(x, T (x)),

and thus

lim
k→∞

Wp(δxk , δT (xk)) = sup
x∈Rn

d(x, T (x)).

For each xk, k ∈ N, by (7.2.2), there exists a sequence {fk,l}l∈N in P (Rn) such that

lim
l→∞

Wp(fk,l, f̃k,l) = Wp(δxk , δT (xk)),

where f̃k,l := fk,l ◦ T . Then

lim
k→∞

Wp(fk,k, f̃k,k) = lim
k→∞

Wp(δxk , δT (xk)) = sup
x∈Rn

d(x, T (x)).

Therefore,

sup
f∈P (Rn)

Wp(f, f̃) = sup
x∈Rn

d(x, T (x)).
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7.3 Encryption involving embedding

Consider the embedding of C(In) into C(Im), m ≥ n ≥ 2, by a continuous injective map

U : In ↪→ Im. For every f ∈ C(In), there exists F ∈ C(Im) such that

F (y1, ..., ym) = f(U(x1, ..., xn)), ∀(x1, ..., xn) ∈ In.

This provides another way to encode f . First, embed f as F , then encode F as an its outer

function under a K-basis in dimension m. As in the direct KST encryption method, keep

the K-basis in dimension m as secret keys and send the outer function of F publicly. Then

to obtain the original function, both the secret keys and the embedding map are needed,

which makes the coding scheme safer.

Suppose T is an embedding map from dimension n into dimension m,

U : In ↪→ Im

(x1, ..., xn) ↪→ (u1(x1, ..., xn), ..., um(x1, ..., xn)).

Given λ1, ..., λm and (φ0, ..., φ2m) such that {
∑n

p=0 λpφq(xp)}2n
q=0 and {

∑m
p=0 λpφq(xp)}2m

q=0

are K-bases on In and Im respectively. This is feasible by Theorem 3.2.6. Choose any

F ∈ C(Im) such that

F (u1(x1, ..., xn), ..., um(x1, ..., xn)) = f(x1, ..., xn), ∀(x1, ..., xn) ∈ In.

By KST, there exist gn depending on f and gm depending on the chosen F such that

f(x1, ..., xn) =
1

2n+ 1

2n∑
q=0

gn

(
n∑
p=0

λpφq(xp)

)
and

F (u1(x1, ..., xn), ..., um(x1, ..., xn))

=
1

2m+ 1

2m∑
q=0

gm

(
m∑
p=0

λpφq(tp(x1, ..., xn))

)
.
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Suppose one receives the public signal gm and decodes F (u1, ..., um) successfully with

the right key {ξq}2m
q=0. Now he or she needs to choose a right slice of hypersurface R ⊂ Im

and map the value of F onR to values of f on In = U−1[R]. If he or she chooses the wrong

embedding map Ũ with wrong hypersurface R̃ := Ũ [In]and reconstruct wrong f̃ = F ◦ Ũ ,

then

|f(x1, ..., xn)− f̃(x1, ..., xn)| = |F (U(x1, ..., xn))− F (Ũ(x1, ..., xn))|

= |F (u1, ..., um)− F (ũ1, ..., ũm)|

=
1

2m+ 1

∣∣∣∣∣
2m∑
q=0

(
gm(

m∑
p=1

λpφq(up))− gm(
m∑
p=1

λpφq(ũp))

)∣∣∣∣∣ .
The error between f and f̃ could be large. For example, for any f ∈ C(In) and

f̃ = f ◦T with any homeomorphism T on In, there is a wrong embedding map Ũ = U ◦T
such that F ◦ Ũ = f̃ . Figure 7.4 compares the original image and the reconstructed image

with the right hypersurface but wrong embedding map.

Figure 7.4: Left is the image f of a historic site of Michigan. Right is the reconstructed
image with wrong embedding map Ũ = U ◦ T with T (x1, x2) = (x1+x2

2
, e

x1−1+x2
2

).
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Chapter 8

Open problems

There are several open problems related to our research, which we would like to list here:

• K-basis {ξq}mq=0 can also be in the form of a product, that is, ξq(x1, ..., xn) =
∏n

p=1 φpq(xp)

[12]. This provided a possibility to consider KST on spaces endowed with certain

group structure. For example, Kolmogorov representation on compact Lie groups.

Suppose (G, ◦) is a compact Lie group and C(G × G) is the space of continuous

functions on G × G. For each f ∈ C(G × G,R), one can try to construct a g ∈
C(G,R) such that

f(x1, x2) =
m∑
q=0

g(φ1q(x1) ◦ φ2q(x2)) ∀(x1, x2) ∈ G×G,

with some m ∈ N and m+ 1 continuous inner functions φq : G→ G, q = 0, ...,m.

• Although Sternfeld [59] gave a necessary and sufficient condition of a family of

continuous functions {ξq}nq=0 to be a K-basis for C(In), it cannot be readily checked

if {ξq}2n
q=0 satisfies his condition, i.e., separating the Borel measures on In. In chapter

3, we only have a sufficient condition for a family of continuous functions {ξq}2n
q=0 to

be a K-basis. Namely, if {ξq}2n
q=0 separates a Kolmogorov cover, then it is a K-basis.

All the constructive proofs of KST by now are based on this property. It is an open

question whether this condition is necessary.



Chapter 8. Open problems 96

• The extension or projection of K-bases among domains of different dimensions is

proved only for special cases. The open problem is whether there is a general way to

extend or project any K-basis from one dimension to another.

• Vitushkin [68] [67] [66] presented negative results of representation of one function

classes by another function class in superposition. He only answers the question

when such a representation does not hold, but does not give any description on when

does it hold. This is still an open area.

• The non-uniqueness of the outer function in Kolmogorov’s representation is only

proved when the image of In under K-basis ξ is not a connected interval. We infer

that it also holds for any K-basis.

• The KST encryption schemes with public outer function introduced Chapter 7 can

be implemented. A quantitative description of the error between original image and

images constructed with wrong keys can be further discussed. The author and Zegar-

linski are working on this [38].

In the neural networks established using KST, the inner functions and outer functions

are approximated with smooth function. The approximate error partially depends on

the analytic property of the outer functions in KST. The moduli of outer functions

can be used to estimate the approximate error in Kolmogorov’s neural network. See

[37].
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Appendix

In the appendix, we list the concepts and theorems used in the main content of the thesis in

alphabetical order.

Concepts

Hölder continuity

Let (X, dX) and (Y, dY ) be two metric spaces. Let f : X → Y be a function. f is

said to be Hölder continuous or satisfy a Hölder condition, if there exists 0 < α ≤ 1

and c > 0 such that dY (f(x), f(x′)) ≤ c(dX(x, x′))α for all x, x′ ∈ X . The number

α is called the exponent of the Hölder condition.

Lipschitz continuity

A function that is Hölder continuous with exponent α = 1 is said to be Lipschitz

continuous or satisfy a Lipschitz condition.

Stochastic matrix

P = (pij)n×n is called a stochastic matrix iff for all 1 ≤ i, j ≤ n, 0 ≤ pij ≤ 1 and∑n
j=1 pij = 1. A stochastic matrix describes a Markov Chain Xt over a finite state

space S. pij is the probability of moving from state i to state j in one step.

Theorems

Adjoint operators (Corollary after Theorem 4.12 [46])

Suppose X and Y are Banach spaces and T : X → Y is a bounded linear operator.
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Then

(i) The range of T is dense in Y if and only if T ∗ is injective.

(ii) T is injective if and only if range of T ∗ is weak∗-dense in X∗.

(iii) The range of T is all of Y if and only if T ∗ is isomorphism into, i.e., T ∗ is

injective and its inverse, mapping range of T ∗ onto Y ∗, is bounded.

Fubini-Tonelli Theorem (Theorem 8.8 [45])

Let (X,S, µ) and (Y, T , λ) be σ-finite measure spaces, and let f be an (S × T )-

measurable function.

(i) If 0 ≤ f ≤ ∞, and if

φ(x) =

∫
Y

f(x, y)dλ(y), ψ(y) =

∫
X

f(x, y)dµ(x) x ∈ X, y ∈ Y,

then φ is S-measurable, ψ is T -measurable, and∫
X

φdµ =

∫
X×Y

fd(µ× λ) =

∫
Y

ψdλ. (.0.1)

(ii) If f is complex and if

φ∗(x) =

∫
Y

|f(x, y)|dλ(y) and
∫
X

φ∗dµ ≤ ∞,

then f ∈ L1(µ× λ).

(iii) If f ∈ L1(µ × λ), then f(x, y) ∈ L1(Y, λ(y)) for almost all x ∈ X , f(x, y) ∈
L1(X,µ(x)) for almost all y ∈ Y ; the functions φ and ψ almost everywhere are

in L1(X,µ(x)), L1(Y, λ(y)) respectively and (.0.1) holds.

Hölder inequality (Theorem 3.5 [45])

Let p and q be conjugate expoents, i.e., 1
p

+ 1
q

= 1. Let X be a measure space with

measure µ. Let f and g be measurable functions on X with range in [0,∞]. Then

∫
X

fgdµ ≤
(∫

X

fpdµ

)1/p(∫
X

gqdµ

)1/q

. (.0.2)
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When p = 2, (.0.2) is known as the Schwartz inequality.

Minkowski’s integral inequality (A.1 [55] or Inequality 202 [18])

Let (X,S, µ) and (Y, T , λ) be σ-finite measure spaces, and let f be an (S × T )-

measurable function. Let 1 ≤ p <∞, then

(∫
Y

(∫
X

|f(x, y)|dµ(x)

)p
dλ(y)

)1/p

≤
∫
X

(∫
Y

|f(x, y)|pdλ(y)

)1/p

dµ(x).

Pointwise convergence of inverse Fourier transform (Corollary 1.21 in [56])

If both f and f̂ are integrable on Rn then

f(x) =

∫
Rn
f̂(t)e2πix·tdt

for almost every x.

Riesz-Thorin Interpolation Theorem (Theorem 1.19 [70])

Let 1 ≤ p0, p1, q0, q1 ≤ ∞, and for 0 < θ < 1 define p and q by

1

p
=

1− θ
p0

+
θ

p1

,
1

q
=

1− θ
q0

+
θ

q1

.

If T is a linear operator from Lp0 + Lp1 to Lq0 + Lq1 such that

‖Tf‖q0 ≤M0‖f‖p0 for f ∈ Lp0

and

‖Tf‖q1 ≤M1‖f‖p1 for f ∈ Lp1 ,

then

‖Tf‖q ≤M1−θ
0 M θ

1‖f‖p for f ∈ Lp.

Schröder-Bernstein Theorem (Bernstein [5])

If there exist injective functions f : A −→ B and g : B −→ A between the sets A

and B, then there exists a bijective function h : A −→ B. In terms of the cardinality

of the two sets, this means that if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.
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