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“Divergent series are the invention of the devil, and it is shameful to base on them any

demonstration whatsoever.”

Niels Hendrik Abel, 1828

Abstract

We study asymptotics of forward-start option prices and the forward implied volatility smile

using the theory of sharp large deviations (and refinements). In Chapter 1 we give some intu-

ition and insight into forward volatility and provide motivation for the study of forward smile

asymptotics. We numerically analyse no-arbitrage bounds for the forward smile given calibration

to the marginal distributions using (martingale) optimal transport theory. Furthermore, we derive

several representations of forward-start option prices, analyse various measure-change symmetries

and explore asymptotics of the forward smile for small and large forward-start dates.

In Chapter 2 we derive a general closed-form expansion formula (including large-maturity and

‘diagonal’ small-maturity asymptotics) for the forward smile in a large class of models including the

Heston and Schöbel-Zhu stochastic volatility models and time-changed exponential Lévy models.

In Chapter 3 we prove that the out-of-the-money small-maturity forward smile explodes in the

Heston model and a separate model-independent analysis shows that the at-the-money small-

maturity limit is well defined for any Itô diffusion. Chapter 4 provides a full characterisation of the

large-maturity forward smile in the Heston model. Although the leading-order decay is provided

by a fairly classical large deviations behaviour, the algebraic expansion providing the higher-order

terms depends highly on the parameters, and different powers of the maturity come into play.

Classical (Itô diffusions) stochastic volatility models are not able to capture the steepness of

small-maturity (spot) implied volatility smiles. Models with jumps, exhibiting small-maturity

exploding smiles, have historically been proposed as an alternative. A recent breakthrough was

made by Gatheral, Jaisson and Rosenbaum [74], who proposed to replace the Brownian driver

of the instantaneous volatility by a short-memory fractional Brownian motion, which is able to

capture the short-maturity steepness while preserving path continuity. In Chapter 5 we suggest

a different route, randomising the Black-Scholes variance by a CEV-generated distribution, which

allows us to modulate the rate of explosion (through the CEV exponent) of the implied volatility

for small maturities. The range of rates includes behaviours similar to exponential Lévy models

and fractional stochastic volatility models. As a by-product, we make a conjecture on the small-

maturity forward smile asymptotics of stochastic volatility models, in exact agreement with the

results in Chapter 3 for Heston.
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You will be lifted up.”

David Foster Wallace

7



Contents

1 Introduction 13

1.1 No-arbitrage bounds for the forward smile given marginals . . . . . . . . . . . . . . 15

1.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.2 No-Arbitrage discretisation of the primal and dual problems . . . . . . . . . 18

1.1.2.1 Primal and dual formulation . . . . . . . . . . . . . . . . . . . . . 19

1.1.2.2 Approximation of the dual . . . . . . . . . . . . . . . . . . . . . . 21

1.1.3 Primal solution for the at-the-money case . . . . . . . . . . . . . . . . . . . 21

1.1.3.1 Structure of the transport plan . . . . . . . . . . . . . . . . . . . . 21

1.1.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.4 Numerical analysis of the no-arbitrage bounds . . . . . . . . . . . . . . . . 23

1.1.5 Numerical analysis of the transport plans . . . . . . . . . . . . . . . . . . . 24

1.2 Large deviations theory and the Laplace method . . . . . . . . . . . . . . . . . . . 28

1.3 Models and forward moment generating functions . . . . . . . . . . . . . . . . . . . 31

1.3.1 Stochastic volatility models . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3.1.1 Heston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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Notations

R∗ R \ {0}.

R∗
+ (0,∞).

N {1, 2, 3, ...}.

Ao Interior of a set A in R.

A Closure of a set A in R.

Law(Z) Law of the random variable Z.

Supp(Z) Support of the random variable Z.

N Cumulative distribution function of the standard Gaussian distribution.

BS(k,Σ2, τ) Black-Scholes price of a call option with log-strike k, volatility Σ and maturity τ .

C (k, τ) Call option price under a given model with log-strike k.

C (k, t, τ) Type-I forward-start call option price under a given model with log-strike k.

CII (k, t, τ) Type-II forward-start call option price under a given model with log-strike k.

στ (k) Spot implied volatility under a given model with log-strike k.

σt,τ (k) Type-I forward implied volatility under a given model with log-strike k.

σ̃t,τ (k) Type-II forward implied volatility under a given model with log-strike k.

P, P̄, P̃,P∗ Risk-neutral, share-price, stopped-share-price and forward measures respectively.

E, Ē, Ẽ,E∗ Expectations under the measures above respectively.

f(ε)

g(ε)
∼ 1 lim

ε→0

f(ε)

g(ε)
= 1.

g(ε) = O(f(ε)) There exists ε0, b > 0 such that |g(ε)| < bf(ε) for all ε < ε0.

g(ε) = o(f(ε)) For all b > 0 there exists ε0(b) such that |g(ε)| < bf(ε) for all ε < ε0(b).

x+ max{0, x} for x ∈ R.

sgn(p) 1 if p ≥ 0 and − 1 otherwise.

L1(R) The set of integrable functions on R.

Bb(R) The set of bounded measurable functions on R.

ℜ(z),ℑ(z) Real and imaginary part of a complex number z.

(Ff)(u) Fourier transform
∫∞
−∞ eiuxf(x)dx of a function f ∈ L1.

(F−1h)(x) Inverse Fourier transform
1

2π

∫ ∞

−∞
e−iuxh(u)du of a function h ∈ L1.

(f ∗ g)(x) Convolution of two functions
∫
R f(x− y)g(y)dy where f, g ∈ L1.

Finally, for a sequence of sets (Dε)ε>0 in R, we may, for convenience, use the notation limε↓0 Dε,

by which we mean the following (whenever both sides are equal): lim infε↓0 Dε :=
∪
ε>0

∩
s≤εDs =∩

ε>0

∪
s≤εDs =: lim supε↓0 Dε.
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Chapter 1

Introduction

In this thesis we consider an asset price process
(
St = eXt

)
t≥0

with X0 = 0, defined on a complete

filtered probability space (Ω,F , (Ft)t≥0,P) with a given risk-neutral measure P, and assume that

interest rates and dividends are zero. In the Black-Scholes-Merton (BSM) model, the dynamics of

the logarithm of the asset price are given by

dXt = −1

2
Σ2dt+ΣdWt, (1.0.1)

where Σ > 0 is the instantaneous volatility and W is a standard Brownian motion. In this model

the price of a European call option with strike ek and maturity τ > 0 is given by the famous BSM

formula [25, 124]:

BS(k,Σ2, τ) := N
(
− k

Σ
√
τ
+

Σ
√
τ

2

)
− ekN

(
− k

Σ
√
τ
− Σ

√
τ

2

)
. (1.0.2)

For a given market or model price C(τ, k) of a European call option with strike ek and matu-

rity τ we define the spot implied volatility στ (k) as the unique solution to the equation C(τ, k) =

BS(k, σ2
τ (k), τ). Implied volatility is the quoting mechanism used in option markets and serves as

a useful metric to compare options with different strikes and maturities.

For any t, τ > 0 and k ∈ R, we define a Type-I and Type-II forward-start call option with

forward-start date t, maturity τ and strike ek as a European option with the following payoffs,

Type-I:
(
eX

(t)
τ − ek

)+
, X(t)

τ := Xt+τ −Xt, (1.0.3)

Type-II:
(
eXt+τ − eXt+k

)+
, (1.0.4)

where the forward-start process X
(t)
τ is defined pathwise. In the BSM model (1.0.1) a Type-I

and Type-II forward-start option are both worth BS(k,Σ2, τ). For a given market or model price

of a Type-I (resp. Type-II) forward-start call option C(t, τ, k) (resp. CII(t, τ, k)) with strike ek,

forward-start date t and maturity τ we define the Type-I (resp. Type-II) forward implied volatility

13
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smile σt,τ (k) (resp. σ̃t,τ (k)) as the unique solution to the equation

C(t, τ, k) = BS(k, σ2
t,τ (k), τ), (1.0.5)

resp. CII(t, τ, k) = BS(k, σ̃2
t,τ (k), τ). (1.0.6)

Note that since C and CII take values in the set (0, 1) and BS(k, ·, τ) is strictly increasing from 0

to 1, there always exists a unique solution to equations (1.0.5) and (1.0.6). Both definitions of the

forward smile are generalisations of the spot implied volatility smile since they reduce to the spot

smile when t = 0.

The literature on spot implied volatility asymptotics is extensive and has drawn upon a wide

range of mathematical techniques. In particular, small-maturity asymptotics have historically re-

ceived wide attention due to earlier results from the 1980s on expansions of the heat kernel [16].

PDE methods for continuous-time diffusions [22, 83, 132], large deviations [51, 52, 62], saddle-

point methods [64], Malliavin calculus [17, 113] and differential geometry [72, 84] are among the

main methods used to tackle the small-maturity case. Extreme strike asymptotics arose with the

seminal paper by Roger Lee [116] and have been further extended by Benaim and Friz [14, 15]

and in [51, 52, 68, 79, 81]. Comparatively, large-maturity asymptotics have only been studied

in [63, 65, 95, 97, 146] using large deviations and saddlepoint methods. Fouque et al. [66] have

also successfully introduced perturbation techniques in order to study slow and fast mean-reverting

stochastic volatility models. Models with jumps (including Lévy processes), studied in the above

references for large maturities and extreme strikes, ‘explode’ in small time, in a precise sense

investigated in [3, 4, 61, 125, 127, 145].

A collection of implied volatility smiles over a time horizon (0, T ] is also known to be equivalent

to the marginal distributions of the asset price process over (0, T ]. Implied volatility asymptotics

have therefore provided a set of tools to analytically understand the marginal distributions of a

model and their relationships to market observable quantities such as volatility smiles. However

many models can calibrate to implied volatility smiles (static information) with the same degree

of precision and produce radically different prices and risk sensitivities for exotic securities. This

can usually be traced back to a complex and often non-transparent dependence on transitional

probabilities or equivalently on model-generated dynamics of the smile. The dynamics of the smile

is therefore a key model risk associated with these products and any model used for pricing and

risk management should produce realistic dynamics that are in line with trader expectations and

historical dynamics. One metric that can be used to understand the dynamics of implied volatility

smiles ([23] calls it a ‘global measure’ of the dynamics of implied volatilities) is to use the forward

smile defined above. The forward smile is also a market-defined quantity and naturally extends

the notion of the spot implied volatility smile. Forward-start options also serve as natural hedging

instruments for several exotic securities (such as Cliquets, Ratchets and Napoleons; see [71, Chapter

10]) and are therefore worth investigating.



1.1. No-arbitrage bounds for the forward smile given marginals 15

The literature on asymptotics of forward-start options and the forward smile is sparse. Glasser-

man and Wu [76] use different notions of forward volatilities to assess their predictive values in

determining future option prices and future implied volatility. Keller-Ressel [109] studies the for-

ward smile asymptotic when the forward-start date t becomes large (τ fixed) and Bompis [27]

produces an expansion for the forward smile in local volatility models with bounded diffusion co-

efficient. Finally, empirical results on the forward smile have been carried out by practitioners in

Balland [10], Bergomi [23], Bühler [36] and Gatheral [71].

This chapter lays the groundwork for the thesis: we introduce the main tools, give some in-

tuition and insight into forward volatility and provide motivation for the study of forward smile

asymptotics. In Section 1.1 we numerically analyse no-arbitrage bounds for the forward smile given

calibration to the marginal distributions at maturities t and t+τ using (martingale) optimal trans-

port theory. We try and answer questions such as is it reasonable to ‘lock-in’ (replicate) forward

volatility using European options? Section 1.2 provides a brief overview of large deviations theory,

Watson’s lemma and the Laplace method and Section 1.3 details some of the main models and their

properties that will be needed in the thesis. In Section 1.4 we look at pricing forward-start options:

this entails an analysis of measure-change symmetries and several representations of forward-start

options prices. Section 1.5 explores asymptotics of the forward smile and forward-start options for

small and large-forward start dates and in Section 1.6 we give an outline of the structure of the

thesis.

1.1 No-arbitrage bounds for the forward smile given marginals

Since the seminal paper of Hobson [89], an important literature developed on model-free super(sub)-

hedging of multi-dimensional derivative products given a set of European option hedging instru-

ments. The key observation is that the model-free super(sub)-hedging cost is closely related to the

Skorokhod Embedding problem; see the survey papers of Oblój [129] and Hobson [90].

Recently, this problem has been addressed using the (martingale) version of optimal transport

theory (see [13]). More specifically, under the assumption that European call option prices with

all possible strikes are known for a given set of maturities (i.e. the marginal distributions of the

asset price are known at these times), optimal transport yields a set of tools to study the no-

arbitrage price range of a derivative product consistent with these marginal distributions. The

primal problem endeavours to find the supremum (and infimum) of a derivative product price over

the set of joint martingale measures (transport plans). The dual problem (equivalent to the primal

problem under certain conditions) seeks to find the ‘best’ super(sub)-replicating portfolio for the

derivative security. The dual formulation has a natural financial interpretation and can be cast as

an (infinite) linear programme; numerical techniques for solving this LP have been explored in [85].
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Forward-start options (Type-I and Type-II) are some of the the simplest products amenable

to these techniques. The upper bound price for the at-the-money Type-II forward-start straddle

has been found in [92]; in particular, the support of the optimal martingale measure is a binomial

tree. But, unfortunately the optimal measure or associated super-hedging portfolio is not given

analytically. The (martingale) optimal transference plan for the lower bound price of the at-

the-money Type-II forward-start straddle has been characterised (semi-) analytically in [91]; the

transference plan (the support of which is a trinomial tree) is found by solving a set of coupled

ODE’s. In [37] the authors study the change of numeraire in these two-dimensional optimal

transport problems and show (as a corollary, under certain conditions) that the lower bound for the

Type-I at-the-money forward-start straddle is also attained by the Hobson-Klimmek transference

plan.

In this section we numerically study the no-arbitrage bounds of the Type-II forward-start strad-

dle. Section 1.1.1 formulates the linear programme for the optimal transport problem. Section 1.1.2

details our no-arbitrage discretisation of the support of the marginal distributions which results

in a consistent primal and dual problem for each discretisation and a robsut numerical result.

Section 1.1.4 computes upper and lower bounds given (i) lognormal marginal distributions and (ii)

marginal distributions generated from a Heston model (1.3.2). In the lower bound at-the-money

case we numerically solve the (coupled) ODE’s associated with the Hobson-Klimmek transference

plan (numerical implementation given in Section 1.1.3) and show that it is in striking agreement

with the LP solution of the dual problem. In Section 1.1.5 we numerically solve the primal prob-

lem and give the optimal transport plans for a range of strikes. Although, the transport plans are

known for the at-the-money case [91, 92], they are not known for other strikes. We show here that

the optimal transference plans are more subtle in these cases and appear to be a combination of

the lower and upper bound at-the-money plans. The optimal transport plan gives insight into the

key model risk for this product. Intuitively, the extremal measure exploits this risk to produce

the maximum (or minimum) value of the product. The key model risk for forward-start options

appears to be the exposure of the product to the kurtosis of the conditional distribution of the

asset price process; see Sections 1.1.3 and 1.1.5 and [91, 92].

In the examples explored in Section 1.1.4 the range of forward smiles consistent with the

marginal laws is large (even in the simple case that the marginal distributions are lognormal). Us-

ing European vanilla options to ‘lock-in’ (replicate) forward volatility or hedge forward volatility

dependent claims seems illusory. Forward-start options should be seen as fundamental building

blocks for exotic pricing and not decomposable (or approximately decomposable) into European

options. Models used for forward volatility dependent exotics should have the capability of calibra-

tion to forward-start option prices and at a minimum should produce realistic forward smiles that

are consistent with trader expectations and observable prices. The asymptotic results developed
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in this thesis allow one to study both of these points.

1.1.1 Problem formulation

Let µ and ν denote the distributions of St and St+τ for t, τ > 0; we suppose they have common

finite mean equal to 1, are supported on [0,∞), and are absolutely continuous with respect to the

Lebesgue measure. We say that the bivariate law ζ is a martingale coupling and ζ ∈ M(µ, ν) if ζ

has marginals µ and ν and
∫
y
(y−x)ζ(dx,dy) = 0 for each x ∈ R+. In order to ensure that M(µ, ν)

is non-empty we assume that µ and ν are in convex order (and we denote µ ≼ ν), namely that they

have equal means and satisfy
∫
(y − x)+µ(dy) ≤

∫
(y − x)+ν(dy) for all x ∈ R+ (See [142]). Our

objective is to find the tightest possible bounds consistent with the marginal distributions for the

Type-II forward-start straddle payoff |St+τ −KSt| with K > 0. To this end we define our primal

problem:

P(µ, ν) := inf
ζ∈M(µ,ν)

∫
|y −Kx|ζ(dx, dy), P(µ, ν) := sup

ζ∈M(µ,ν)

∫
|y −Kx|ζ(dx,dy). (1.1.1)

We now define our sets of sub and super-replicating portfolios:

Q :=
{
(ψ0, ψ1, δ) ∈ L1(µ)× L1(ν)×Bb(R) : h(x, y) ≤ |y −Kx|, for all x, y ∈ R+

}
,

Q :=
{
(ψ0, ψ1, δ) ∈ L1(µ)× L1(ν)×Bb(R) : h(x, y) ≥ |y −Kx|, for all x, y ∈ R+

}
,

where h(x, y) := ψ1(y) + ψ0(x) + δ(x)(y − x). Clearly if (ψ0, ψ1, δ) ∈ Q (∈ Q) then
∫
|y −

Kx|ζ(dx,dy) ≥ (≤)
∫
ψ0(x)µ(dx) +

∫
ψ1(y)ν(dy) by the martingale property. Our dual problem

is then defined as the supremum (infimum) over all sub (super)-replicating portfolios:∫
|y −Kx|ζ(dx, dy) ≥ sup

(ψ0,ψ1,δ)∈Q

{∫
ψ0(x)µ(dx) +

∫
ψ1(y)ν(dy)

}
=: D(µ, ν),

∫
|y −Kx|ζ(dx, dy) ≤ inf

(ψ0,ψ1,δ)∈Q

{∫
ψ0(x)µ(dx) +

∫
ψ1(y)ν(dy)

}
=: D(µ, ν).

(1.1.2)

In [13, Theorem 1 and Corollary 1.1], the authors proved (actually for a more general class of

payoff functions) that there is no duality gap, namely that P(µ, ν) = D(µ, ν) and P(µ, ν) = D(µ, ν).

However, the optimal values may not be attained in the dual problems, as proved in [13, Proposition

4.1]. In [91] and [92] the authors showed that in the at-the-money case (K = 1), with an additional

dispersion assumption on the measures µ and ν (see Assumption 1.1.5 below), the optimal values of

the dual problems (1.1.2) are actually attained. We record these results in the following theorem:

Theorem 1.1.1. The set equalities D(µ, ν) = P(µ, ν) and D(µ, ν) = P(µ, ν) hold, and the primal

optima in (1.1.1) are attained: there exist martingale measures QL and QU in M(µ, ν) such that

P(µ, ν) = EQL |St+τ−KSt| and P(µ, ν) = EQU |St+τ−KSt|. Furthermore, under Assumption 1.1.5,

the infimum and supremum in the dual problems (1.1.2) are attained when K = 1.

Our objective is to discretise the primal (1.1.1) and dual problems (1.1.2) and solve them as

linear programming problems.
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1.1.2 No-Arbitrage discretisation of the primal and dual problems

Let t > 0 be some given time horizon, St the random variable describing the stock price at time t,

and µ the law of St. Fix N ∈ N with N > 1 and suppose that we are given a set x = (x1, . . . , xN ) ∈

RN of points 0 < x1 < x2 < ... < xN in the support of µ, and a discrete distribution q with atom

qi at the point xi. We wish to find a discrete distribution p, close to q, and that matches (at

least) some moments of µ, in particular satisfying the martingale condition ⟨p, x⟩ = 1. Suppose

we want to match the first l moments of µ, for some l ≤ N . Let T : R+ → Rl+ be given by

T (x) := (x, x2, ..., xl) and define the moment vector T :=
∫
R+
T (x)µ(dx) ∈ Rl. Such a matching

condition is not necessarily consistent, however, with a given set of (European) option prices.

In order to ensure that the discrete density re-prices the given options, we add a second layer:

Borwein, Choksi and Maréchal [28] suggested to recover discrete probability distributions from

observed market prices of European call options by minimising the Kullback-Leibler divergence

to the uniform distribution (they also comment that any prior distribution can be chosen). In

particular given the law µ of St and a set of European call options Π = (Π1, . . . ,ΠM ) maturing

at t with strikes K1, . . . ,KM , we can solve the following minimisation problem:

min
{p∈[0,1]N :∥p∥1=1}

N∑
i=1

pi log
pi
qi
, subject to

(
N∑
i=1

G(xi)pi,

N∑
i=1

T (xi)pi

)
= (Π,T) . (1.1.3)

for some prior discrete distribution q, and where G(x) := ((x−K1)+, . . . , (x−KM )+) denotes the

payoff vector of the options. Note that the first component of
∑N
i=1 T (xi)pi = T is nothing else

than the martingale condition. It must be noted that if the full marginal distribution µ of St is

known, any finite subset of European options can be chosen above and the price vector can be

defined as Π :=
∫
R+
G(x)µ(dx). In particular the solution to this problem can be obtained as a

modification of the solution in [144], which itself is based on arguments by Borwein and Lewis [29,

Corollary 2.6]:

pi =
qie

⟨λ∗,(G(xi),T (xi))⟩∑N
j=1 qje

⟨λ∗,(G(xi),T (xi))⟩
, (1.1.4)

where

λ∗ := argmin
λ∈Rl+M

−⟨λ, (Π,T)⟩+ log

 N∑
j=1

qje
⟨λ,(G(xi),T (xi))⟩

 ,
and ⟨·, ·⟩ denotes the Euclidean inner product. We can now specify the following Algorithm where

in step (iii) we solve for the discrete probability vector p using (1.1.4).

Algorithm 1.1.2.

(i) Several choices are possible for the N points 0 < x1 < ... < xN ; for instance:

(a) Binomial : Let Σ denote the at-the-money lognormal volatility (for European options

maturing at t). Set δ := t/(N − 1), u := 1 +
(
eδΣ

2 − 1
)1/2

, d := 1−
(
eδΣ

2 − 1
)1/2

, and

xi := ui−1dN−i;
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(b) Gauss-Hermite: xi := ex
H
i , where xH1 , ..., x

H
N are the nodes of an N -point Gauss-Hermite

quadrature.

(ii) For the discrete distribution q, we can follow several routes:

(a) assume that µ admits a density fµ. Then, for i = 1, . . . , N , set qi := fµ(xi)/
∑N
j=1 fµ(xj);

(b) alternatively, for i = 1, ..., N , let qi := µ([xi−1, xi)) (with x0 = 0);

(iii) Compute the discretised measure p through (1.1.4).

Remark 1.1.3.

(i) As pointed out by Tanaka and Toda [144] the choice of discretisation points x1, . . . , xN in Al-

gorithm 1.1.2 is dictated by the quadrature rule used to approximate integrals
∫
R+
T (x)dfµ(x) ≈∑N

i=1 w(xi)T (xi)fµ(xi). Weights w(xi) are chosen in accordance with a given quadrature rule

(e.g. Gauss-Hermite) and in the case of Algorithm 1.1.2 the weights are chosen to be constant

w(xi) = 1/
∑N
i=1 fµ(xi) for all i = 1, . . . , N .

(ii) The discrete primal and dual LP solution using this method produces accurate and robust

results with just a few points. However, since we only match a finite number of call options

for each maturity, our discrete measures will not necessarily be in convex order (only approxi-

mately). Other authors [9] do construct discrete measure approximations that are guaranteed

to be in convex order.

1.1.2.1 Primal and dual formulation

We focus here on the primal and dual formulation for the upper bound; an analogous formulation

holds for the lower bound. We use Algorithm 1.1.2 to approximate St and St+τ by discrete random

variables S̃mt and S̃nt+τ with finite supports {x1, x2, ..., xm} and {y1, y2, ..., yn} and m,n > 1. The

atoms µi and νj at xi and yj are given following Algorithm 1.1.2, and the linear programme for

the primal problem then reads

P(µ, ν) := max
ζ

∑
i,j

ζi,j |yj −Kxi|,

subject to the constraints
∑
j ζi,j = µi,

∑
i ζi,j = νj ,

∑
j ζi,j(xi−yj) = 0 and ζi,j ≥ 0. For the dual

problem, denote the call option prices on S̃mt by C̃(t,K) := E(S̃mt −K)+ =
∑m
i=i∗(xi−K)µi, where

i∗ := inf{1 ≤ i ≤ m;xi > K} and C̃(t,K) = 0 if xm ≤ K. Define the forward finite-difference

operator for i = 1, ...,m− 1 as follows

Dψ0(xi) :=
ψ0(xi+1)− ψ0(xi)

xi+1 − xi
,

and we then have the following lemma:
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Lemma 1.1.4. The following representation holds:

ψ0(S̃
m
t ) = ψ0(x1) + Dψ0(x1)

(
S̃mt − x1

)
+
m−1∑
i=2

(Dψ0(xi)−Dψ0(xi−1))
(
S̃mt − xi

)+
. (1.1.5)

Proof. The proof is by induction. The representation clearly holds for S̃mt = x1. We now suppose

that it holds for S̃mt = xj and show that it is then true for S̃mt = xj+1, where 1 < j < m − 1.

Consider

ψ0(x1) + Dψ0(x1) (xj+1 − x1) +
m−1∑
i=2

(Dψ0(xi)−Dψ0(xi−1)) (xj+1 − xi)
+
.

Inserting the induction hypothesis into this expression yields

ψ0(xj)+Dψ0(x1) (xj+1 − xj)+
m−1∑
i=2

(Dψ0(xi)−Dψ0(xi−1))
{
(xj+1 − xi)

+ − (xj − xi)
+
}
. (1.1.6)

But we have that

m−1∑
i=2

(Dψ0(xi)−Dψ0(xi−1))
{
(xj+1 − xi)

+ − (xj − xi)
+
}

= (xj+1 − xj)

j∑
i=2

(Dψ0(xi)−Dψ0(xi−1)) = (xj+1 − xj) (Dψ0(xj)−Dψ0(x1)) ,

where the last line follows since the sum is telescoping. Inserting this into (1.1.6) yields

ψ0(xj+1) = ψ0(x1) + Dψ0(x1) (xj+1 − x1) +
m−1∑
i=2

(Dψ0(xi)−Dψ0(xi−1)) (xj+1 − xi)
+
.

With obvious notation (1.1.5) can be re-written as ψ0(S̃
m
t ) = w1+w2[S̃

m
t −x1]+

∑m−1
i=2 wi+1(S̃

m
t −

xi)
+, and using the martingale property (which is ensured by Algorithm 1.1.2) we have

E(ψ0(S̃
m
t )) = w1 + w2[1− x1] +

m−1∑
i=2

wi+1C̃(t, xi).

An analogous formulation holds for S̃nt+τ and we define call option prices on S̃nt+τ by C̃(t+ τ,K).

Let now z := (v0, w
0
1, ..., w

0
m−1, w

1
1, ..., w

1
n−1, δ(x1), ..., δ(xm))⊤ and denote the set

χ := {(x, y) : x ∈ Supp(S̃mt ), y ∈ Supp(S̃nt+τ )}.

The dual problem then reads

D(µ, ν) := min
z

{
v0 + w0

1 + w1
1 +

m−1∑
i=2

w0
i C̃(t, xi) +

n−1∑
i=2

w1
i C̃(t+ τ, yi)

}
,

subject to the constraints

v0 + w0
1x+ w1

1y +
m−1∑
i=2

w0
i (x− xi)

+ +
n−1∑
i=2

w1
i (y − yi)

+ + δ(x)(y − x) ≥ |y −Kx|, (1.1.7)
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for all (x, y) ∈ χ. The dual problem has 2m + n − 1 unknowns and both the primal and dual

are exact and consistent results for the discretisations given in Algorithm 1.1.2 (which provides

distributions converging to those of St and St+τ ). The importance of incorporating the martingale

conditions E(St) = E(St+τ ) = 1 into the discretisation is critical. This is easily seen in the following

example for the primal problem, which will also translate into an issue for the dual.

Suppose that St can take value 0.75 or 1.25 each with 50% probability and St+τ can take value

0.5 or 1.5 each with 50% probability. Note that E(St) = E(St+τ ) = 1. We consider the primal

problem. The constraints
∑
j ζi,j = µi and

∑
j ζi,j(xi − yj) = 0 fully determine the probabilities

ζ1,1 = ζ2,2 = 3/8 and ζ1,2 = ζ2,1 = 1/8. The final constraints
∑
i ζi,j = νj are only true if

ν1 = ν2 = 0.5 or E(St+τ ) = 1. Otherwise, there will be no solution to this LP. This stresses the

importance of a consistent no-arbitrage discretisation of the problem.

1.1.2.2 Approximation of the dual

We further choose our strikes to be in the region [0.3, 2] and therefore ignore all xi and yi in the

sums for which xi ̸∈ [0.3, 2] and yi ̸∈ [0.3, 2]. Finally, similar to [85] we decompose the delta

hedge over a finite dimensional basis (ei)
mb
i=1, δ(S̃

m
t ) ≈

∑mb

i=1 w
b
i ei(S̃

m
t ), where we let the ei be

a polynomial basis and mb is much smaller than m. We note that one can also use the above

algorithm with the cutting-plane method outlined in [85].

1.1.3 Primal solution for the at-the-money case

In [91] the authors derived the lower bound optimal martingale transport plan for the at-the-money

(K = 1) forward-start straddle. The following dispersion assumption on the marginal measures µ

and ν (readily satisfied in all examples presented here, see Figures 1.1 and 1.3) is fundamental for

their analysis:

Assumption 1.1.5. The marginal distributions µ and ν are such that the support of η := (µ−ν)+

is given by an interval [a, b] with 0 < a < b and the support of γ := (ν−µ)+ is given by R+ \ [a, b].

The corresponding densities will be denoted by fµ, fν , fη and fγ .

Define ∆f (z) :=
∫ z
0
fν(u)du −

∫ z
0
fµ(u)du for all z ≥ 0. Then Assumption 1.1.5 is equivalent

[37, Lemma 5.1] to ∆f having a single maximiser. Assumption 1.1.5 imposes constraints on the

tail behaviour of the difference between the two laws µ and ν, and is clearly satisfied in the Black-

Scholes case.

1.1.3.1 Structure of the transport plan

The key risk for an at-the-money forward-start straddle is that a long position is equivalent to being

short the kurtosis of the conditional distribution of the underlying asset (see for example [92]).
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Therefore to produce the lowest possible price it seems reasonable to require a transport plan

that maximises the kurtosis of the conditional distribution. This is indeed the structure of the

solution in [91]. We leave as much common mass (µ ∧ ν) in place and then map the residual mass

η on [a, b] to the tails of the distribution γ via two decreasing functions p : [a, b] → [0, a] and

q : [a, b] → [b,∞). Using the martingale condition and the fact that the mass of η equals that

of γ, [91] derives a system of coupled differential equations for (p, q):

p′(x) =
q(x)− x

q(x)− p(x)

fµ(x)− fν(x)

fµ(p(x))− fν(p(x))
, q′(x) =

x− p(x)

q(x)− p(x)

fµ(x)− fν(x)

fµ(q(x))− fν(q(x))
, (1.1.8)

with boundary conditions p(b) = 0, q(b) = b, p(a) = a and q(a) = +∞.

1.1.3.2 Implementation

The RHS of the two equations in (1.1.8) are undefined at the boundary points. An application of

L’Hôpital’s rule shows that limx↑b q
′(x) = −1 if f ′µ(b) ̸= f ′ν(b), which is a reasonable assumption

in practice, as will be illustrated in Section 1.1.4. On the other hand limx↑b p
′(x) depends on

the marginal measures µ and ν. For instance, in the lognormal example in Section 1.1.4, we

find that p′(x) = O
(
eα(log p(x))

2
)

for some α > 0 as x ↑ b and limx↑b p
′(x) = −∞ (see for

example Figure 1.1(b)). On the other hand if for example fµ(0) ̸= fν(0) or f ′µ(0) ̸= f ′ν(0) then

limx↑b p
′(x) = 0.

In order to circumvent these issues so that we can apply the Runge-Kutta method to solve these

ODEs, we introduce the following pre-processing step: fix a small δ > 0 (in our experiments we

choose δ = 0.001), integrate both sides of (1.1.8) over [b− δ, b] and then approximate the RHS by

using the rectangle rule for the integral with the unknown values p∗ := p(b− δ) and q∗ := q(b− δ).

This yields the following simultaneous equations for p∗ and q∗ which we numerically solve:

p∗ = −δ q
∗ − b+ δ

q∗ − p∗
fµ(b− δ)− fν(b− δ)

fµ(p∗)− fν(p∗)
,

q∗ = b− δ
b− δ − p∗

q∗ − p∗
fµ(b− δ)− fν(b− δ)

fµ(q∗)− fν(q∗)
.

These equations can easily be reduced into one root search: the first equation gives

q∗ =
(p∗)2 [fµ(p

∗)− fν(p
∗)] + δ(b− δ) [fµ(b− δ)− fν(b− δ)]

p∗ [fµ(p∗)− fν(p∗)] + δ [fµ(b− δ)− fν(b− δ)]
,

which in turn can be plugged into the second equation to solve for p∗. The pair (p, q) in (1.1.8)

is then solved for x ∈ [a, b − δ] using standard Runge-Kutta methods with the new boundary

conditions p(b−δ) = p∗, q(b−δ) = q∗. The at-the-money forward-start straddle price is then given

by (see [91, page 8]) ∫ b

a

2(x− p(x))(q(x)− x)

q(x)− p(x)
fη(x)dx.



1.1. No-arbitrage bounds for the forward smile given marginals 23

1.1.4 Numerical analysis of the no-arbitrage bounds

We test here the numerical methods in Sections 1.1.2 and 1.1.3 on two examples. Let N (µ,Σ2)

denote the Gaussian distribution with mean µ and variance Σ2. First we assume that log(St) ∼

N (−Σ2t/2,Σ2t) and log(St+τ ) ∼ N (−Σ2(t + τ)/2,Σ2(t + τ)) with Σ = 0.2, t = 1 and τ = 0.5.

Clearly a candidate martingale coupling is the Black-Scholes model (1.0.1) with volatility Σ and in

this case the forward volatility is constant and equal to Σ. In Figure 1.1(a) we plot the distributions

of St and St+τ and the corresponding lower bound at-the-money transport maps from Section 1.1.3.

In Figure 1.2 we plot the lower and upper bounds for the Type-II forward smile (defined in (1.0.6)).

The lower bound at-the-money case using the Hobson-Klimmek solution and the LP dual solution

are virtually identical (6.95% vs 6.98%), giving credibility to both approaches. Note that even

in this simple case the range of possible forward smiles consistent with the marginal laws is large

though.
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(a) Densities.
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Figure 1.1: In (a) circles plot the 1 year lognormal density and squares plot the 1.5 year lognormal

density. In (b) the solid line (dashed line) is the function p (q) in (1.1.8).

We next generate our marginal distributions for expiries t = 1 and t+ τ = 1.5 using the Heston

stochastic volatility model (Section 1.3.1.1) and the model parameters: v = θ = 0.07, κ = 1, ξ = 0.4

and ρ = −0.8. The (spot) implied volatility smiles and corresponding densities are displayed in

Figure 1.3. In Figure 1.4 we plot the Heston forward smile consistent with the marginals (computed

using the inverse Fourier transform representation in Lemma 1.4.7 and a simple root search to find

the Type-II forward volatility) and the lower and upper bounds for the forward smile. As in the

previous example the Hobson-Klimmek solution (7.77%) and the LP dual solution (7.80%) for the

lower-bound at-the-money case are virtually identical. In Figure 1.5(a) we plot the payoff of our

option prices in the super-hedge. We enter into positions that go long convexity for the 1.5 year

maturity and go short convexity for the 1 year maturity, which intuitively makes sense.

In both examples the range of forward smiles consistent with the marginal laws is large. Using

European options to ‘lock-in’ (replicate) forward volatility or hedge forward volatility dependent
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Figure 1.2: The circles represent the Black-Scholes forward volatility consistent with the marginals;

squares and diamonds are the lower and upper bounds found by solving the LP dual problem

(Section 1.1.2) and X is the primal solution for the lower bound at-the-money case using the

Hobson-Klimmek solution (Section 1.1.3).
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(b) Densities.

Figure 1.3: (a): Circles (squares) represent the 1 year (1.5 year) spot implied volatility. (b): circles

(squares) represents the corresponding marginal densities.

claims seems illusory. Forward-start options should be seen as fundamental building blocks for

exotic pricing and not decomposable (or approximately decomposable) into European options.

Models used for forward volatility dependent exotics should have the capability of calibration to

forward-start option prices and at a minimum should produce realistic forward smiles that are

consistent with trader expectations and observable prices. The asymptotic results developed in

this thesis allow one to study both of these points.

1.1.5 Numerical analysis of the transport plans

As mentioned in Section 1.1.3, the key risk for the at-the-money forward-start straddle is that a long

position is equivalent to being short the kurtosis of the conditional distribution. The solution in the

lower bound case (under Assumption 1.1.5) was detailed in Section 1.1.3, where—intuitively—the
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Figure 1.4: Circles represent the Heston forward volatility consistent with the marginals, squares

and diamonds the lower and upper bounds found by solving the LP problem (Section 1.1.2), and

X is the primal Hobson-Klimmek solution for the lower bound at-the-money case (Section 1.1.3).
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Figure 1.5: (a): Circles (squares) represent the payoff of our 1 year maturity (1.5 year maturity)

option prices in the superhedge as a function of x (y). (b): approximation of the delta hedge ratio

x 7→ δ(x); the strike of the forward-start option is at-the-money.

transport plan maximises the kurtosis of the conditional distribution. In the upper bound case

(see [92]) the support of the transport plan is concentrated on a binomial map with no mass being

left in place, i.e. all the mass of µ gets mapped to ν via two increasing functions R,S : R+ → R+

satisfying R(x) ≤ x ≤ S(x). Intuitively in this case the solution minimises the kurtosis of the

conditional distribution.

For out-of-the-money options the situation is more subtle. As the strike moves further away

from the money, a long option position becomes longer the kurtosis of the conditional distribution.

Intuitively one would expect the transport plan to be some combination of the lower and upper

at-the-money transport plans discussed above. In this section, using the lognormal example of

Section 1.1.4, we numerically solve for the transport plans using the LP primal formulation in

Section 1.1.2 and make qualitative conjectures concerning the structure of the transport plans.

In Figure 1.6 we numerically compute the transport maps R,S for the at-the-money upper
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Figure 1.6: The dashed and dark lines are the transport maps for the upper bound at-the-money

case and the grey line is the identity map. The horizontal axis is St and the vertical one is St+τ .
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(b) Transport Maps K = 1: Lower Bound.

Figure 1.7: (a): discretisation of the µ-measure (circles), the ν-measure (squares) and the amount

of mass that must be left in place (X’s) in the transport plan for the at-the-money (K = 1) lower

bound case. (b): transport maps for the residual mass: the axes are labelled as in Figure 1.6.

bound case. In this case no mass is left in place in the transport plan. In Figure 1.7 we numerically

compute the transport plan for the at-the-money lower bound case. The figures are in striking

agreement with Hobson-Klimmek: as much mass as possible is left in place and the residual mass

is mapped to the tails of the distribution via two decreasing functions. Note the agreement with

the transport maps in Figure 1.1(b). In this case the forward volatility is 6.92% matching the

Hobson-Klimmek analytical solution and the numerical solution of the dual.

Figures 1.8 and 1.9 illustrate the transport plan for the upper bound case and strikes K = 0.7

and K = 0.9. As the strike decreases from at-the-money, more and more mass is left in place

(starting from the left tail), and the residual mass of µ is mapped to ν via two increasing functions;

one maps the residual mass to the left tail of ν while the other maps the residual mass to the right

tail of ν. For strikes greater than at-the-money a mirror-image transport plan emerges where more

and more mass is left in place (starting from the right tail) and again the residual mass of µ is
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(b) Transport Maps K = 0.9: Upper Bound.

Figure 1.8: (a): discretisation of the measures µ (circles), ν (squares) and the amount of mass that

must be left in place (diamonds) in the transport plan for the K = 0.9 upper bound case. (b):

transport maps for the residual mass: the axes are labelled as in Figure 1.6.
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(b) Transport Maps K = 0.7: Upper Bound.

Figure 1.9: (a): discretisation of the measures µ (circles), ν (squares) and the amount of mass that

must be left in place (diamonds) in the transport plan for the K = 0.7 upper bound case. (b):

transport maps for the residual mass: the axes are labelled as in Figure 1.6.

mapped to ν via two increasing functions (for brevity we omit the plots).

Figures 1.10 and 1.11 illustrate the transport plan for the lower bound case and strikesK = 1.05

andK = 1.3. As the strike increases from at-the-money, less and less mass is left in place (removing

mass first from the right tail) and the residual mass of µ is mapped to ν via two functions: one

maps the residual mass to the left tail of ν, the other maps the residual mass to the right tail of ν.

These functions appear to be increasing for large strikes (Figure 1.11(b)), but since the transport

maps are decreasing for the at-the-money strike (Figure 1.7(b)), for strikes close to the money these

maps could be decreasing 1.10(b). For strikes lower than the money a mirror-image transport plan

emerges where less and less mass stays in place (removing mass first from the left tail) and again
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(b) Transport Maps K = 1.05: Lower Bound.

Figure 1.10: (a): discretisation of the measures µ (circles), ν (squares) and the amount of mass

that must be left in place (diamonds) in the transport plan for the K = 1.05 lower bound case.

(b): transport maps for the residual mass: the axes are labelled as in Figure 1.6.
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(b) Transport Maps K = 1.3: Lower Bound.

Figure 1.11: (a): discretisation of the measures µ (circles), ν (squares) and the amount of mass

left in place (diamonds) in the transport plan for the K = 1.3 lower bound case. (b): transport

maps for the residual mass: the axes are labelled as in Figure 1.6.

the residual mass of µ is mapped to ν via two functions (for brevity we omit the plots).

1.2 Large deviations theory and the Laplace method

We provide here a brief review of large deviations and the Gärtner-Ellis theorem. The Gärtner-

Ellis theorem is a key result in the theory of (finite-dimensional) large deviations. Extending the

results of Cràmer [45] for sequences of random variables not necessarily independent and identically

distributed (iid), it provides a large deviations framework based solely on the knowledge of the

cumulant generating function (cgf) of the sequence. For a detailed account of these, the interested



1.2. Large deviations theory and the Laplace method 29

reader should consult [48]. Let (Xn)n∈N be a sequence of random variables in R, with law µn and

cumulant generating function Λn(u) ≡ logE(euXn).

Definition 1.2.1. The sequence Xn is said to satisfy a large deviations principle with speed n

and rate function I if for each Borel mesurable set E ⊂ R,

− inf
x∈Eo

I(x) ≤ lim inf
n↑∞

1

n
logP (Xn ∈ E) ≤ lim sup

n↑∞

1

n
logP (Xn ∈ E) ≤ − inf

x∈Ē
I(x).

The rate function I : R → R ∪ {+∞}, by definition, is a lower semi-continuous, non-negative

and not identically infinite function such that the level sets {x ∈ R : I(x) ≤ α} are closed for all

α ≥ 0. It is said to be a good rate function when these level sets are compact (in R). Intuitively

the large deviations principle characterises the tail probabilities in terms of exponential upper and

lower bounds. If in addition I is continuous on Ē then the LDP simplifies to

lim
n↑∞

1

n
logP (Xn ∈ E) = − inf

x∈E
I(x).

Before stating the main theorem, we need one more concept:

Definition 1.2.2. Let Λ : R → (−∞,+∞] be a convex function, and DΛ := {u ∈ R : Λ(u) < ∞}

its effective domain. It is said to be essentially smooth if

• The interior Do
Λ is non-empty;

• Λ is differentiable throughout Do
Λ;

• Λ is steep: lim
n↑∞

|Λ′(un)| = ∞ whenever (un) is a sequence in Do
Λ converging to a boundary

point of Do
Λ.

Assume now that the limiting cumulant generating function Λ(u) := limn↑∞ n−1Λn(nu), exists

as an extended real number for all u ∈ R, and let DΛ denote its effective domain. Let Λ∗ : R → R+

denote its (dual) Fenchel-Legendre transform, via the variational formula Λ∗(x) ≡ supλ∈DΛ
{λx−

Λ(λ)}. Then the following holds:

Theorem 1.2.3 (Gärtner-Ellis theorem). If the origin lies in the interior of DΛ and if Λ is

lower semicontinuous and essentially smooth, then the sequence (Xn)n satisfies a large deviations

principle with rate function Λ∗.

The key assumptions are that the pointwise (rescaled) limit of the cgf satisfies some convexity

property and becomes steep at the boundaries of its effective domain; this in turns implies that

the rate function governing the large deviations, defined as the topological dual, is also convex.

When convexity breaks down, no general result is known, and large deviations may or may

not hold; the classical example [48, Remark (d), page 46] is that of the sequence (Zn)n∈N dis-

tributed as exponential random variables with parameter n. It is immediate to see that Λ(u) :=



1.2. Large deviations theory and the Laplace method 30

limn↑∞ n−1 logE(enuZn) = 0 if u < 1 and is infinite otherwise. This clearly violates the assump-

tions of the Gärtner-Ellis theorem; however, a simple computation reveals that the conclusion of

the latter still holds, namely that a large deviations principle exists, with speed n and rate function

Λ∗(x) := supu(ux−Λ(u)) = x if x ≥ 0, and infinity otherwise. Dembo and Zeitouni [49] and Bryc

and Dembo [35]—in the context of quadratic functionals of Gaussian processes—have proposed a

way to bypass this absence of convexity issue by making the change of measure (key tool in the

proof of the Gärtner-Ellis theorem) dependent on n. Bercu and Rouault [21] and Bercu, Coutin and

Savy [19] exploited this insight to obtain sharp large deviation estimates for the Ornstein-Uhlenbeck

process and fractional Ornstein-Uhlenbeck process respectively. More recently, O’Brien [130] and

Comman [41] have strengthened this theorem, by partially relaxing the steepness and convexity

assumptions. In a general infinite-dimensional setting, Bryc’s Theorem [34] (see also [48, Chapter

4.4]), or ‘Inverse Varadhan’s lemma’, allows for large deviations with non convex rate functions.

One of the hypotheses this theorem relies on is an exponential tightness requirement on the family

of random variables under consideration, which is not always easy to verify. However, several ex-

amples have been dug out which do not fall into this framework, such as in the setting of random

walks with interface [57], occupation measures of Markov chains [88], the on/off Weibull sojourn

process [55], or m-variate von Mises statistics [58].

From a probabilistic point of view, this thesis deals with deriving large deviation estimates in

cases where the assumptions of the Gärtner-Ellis theorem are violated: Chapters 3 and 5 provide

examples where the limiting cgfs are in fact zero on their effective domains (completely degenerate)

and Chapter 4 provides an example where the steepness assumption of the limiting cgf is violated.

In all cases, however, a large deviations principle still holds.

To finish the section we now recall some classical results in asymptotics of integrals that will

be required in the thesis. The following theorems, Watson’s lemma and the Laplace method, are

taken from [131, Theorem 3.2 and Theorem 8.1] and [82, Remark 2.1 and Equation 2.9].

Theorem 1.2.4 (Watson’s lemma). Let f : [0,∞) → R be a continuous function such that

f(y) ∼
∞∑
s=0

asy
(s+λ−µ)/µ, as y ↓ 0, (1.2.1)

where λ, µ > 0. Then the following asymptotic holds as τ tends to infinity:∫ ∞

0

e−τyf(y)dy ∼
∞∑
s=0

Γ

(
s+ λ

µ

)
as

τ (s+λ)/µ
,

provided that the integral converges throughout its range for sufficiently large τ .

Remark 1.2.5. The following is taken from [126, Exercise 2.7, Chapter 2.3]: If

f(y) =

N∑
s=0

asy
(s+λ−µ)/µ +O

(
y(N+1+λ−µ)/µ

)
,
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for some N ∈ N ∪ {0} as y tends to zero then∫ ∞

0

e−τyf(y)dy =
N∑
s=0

Γ

(
s+ λ

µ

)
as

τ (s+λ)/µ
+O

(
1

τ (N+1+λ)/µ

)
, as τ ↑ ∞.

Convergence of the integral at y = 0 for all τ is assured by (1.2.1). A sufficient condition for

convergence of the integral is that f(y) = O(ecy) for some c > 0 as y tends to infinity. Next we

state the Laplace method. Note that the result holds true if either a or b are infinite below.

Theorem 1.2.6 (Laplace method). Suppose ϕ : [a, b] → R has a unique absolute minimum at some

y0 ∈ [a, b] and is three times continuously differentiable in a neighbourhood of y0 and f : [a, b] → R

is continuously differentiable in a neighbourhood of y0. Then the following asymptotics hold as ε

tends to zero:

∫ b

a

f(y)e−ϕ(y)/εdy =



e−ϕ(y0)/εf(y0)

√
2πε

ϕ′′(y0)
(1 +O(ε)) , if a < y0 < b and ϕ′′(y0) > 0,

e−ϕ(a)/ε
f(a)

εϕ′(a)
(1 +O(ε)) , if y0 = a,

−e−ϕ(b)/ε
f(b)

εϕ′(b)
(1 +O(ε)) , if y0 = b,

provided that the integral converges absolutely for sufficiently small ε.

1.3 Models and forward moment generating functions

The forward cumulant generating function (cgf), defined as the cgf of the forward price processX
(t)
τ

(defined in (1.0.3)) will be key in the forthcoming analysis. In this section we introduce some of the

main models analysed in the thesis, derive their forward cumulant generating functions and list a

few important properties. In Section 1.3.1 we focus on stochastic volatility models—in particular

the Heston and Schöbel-Zhu models—and in Section 1.3.2 we look at time-changed exponential

Lévy models.

1.3.1 Stochastic volatility models

We will consider specific examples of the general stochastic volatility model where the log stock

price process follows,

dXt = −1

2
Vtdt+

√
VtdWt, X0 = 0,

dVt = h0(Vt)dt+ h1(Vt)dBt, V0 = v > 0,

d ⟨W,B⟩t = ρdt,

(1.3.1)

with |ρ| < 1, (Wt)t≥0 and (Bt)t≥0 are two standard Brownian motions and h0, h1 : R+ → R are

functions chosen such that SDE admits a unique strong solution and Vt ≥ 0 for all t ≥ 0, P-almost

surely. For example, h0 and h1 can be chosen to satisfy the Yamada-Watanabe conditions [106,
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Proposition 2.13, page 291]). In the next two sections we will consider the Heston and Schöbel-Zhu

models.

1.3.1.1 Heston

In the Heston model the (log) stock price process is the unique strong solution to the following

SDEs:

dXt = −1

2
Vtdt+

√
VtdWt, X0 = 0,

dVt = κ (θ − Vt) dt+ ξ
√
VtdBt, V0 = v > 0,

d ⟨W,B⟩t = ρdt,

(1.3.2)

with κ > 0, ξ > 0, θ > 0 and |ρ| < 1 and (Wt)t≥0 and (Bt)t≥0 are two standard Brownian motions.

The Feller SDE for the variance process has a unique strong solution by the Yamada-Watanabe

conditions [106, Proposition 2.13, page 291]). The X process is a stochastic integral of the V

process and is therefore well defined. The Feller condition, 2κθ ≥ ξ2, ensures that the origin is

unattainable. Otherwise the origin is regular (hence attainable) and strongly reflecting (see [107,

Chapter 15]). We do not require the Feller condition in our analysis since we work with the forward

cgf of X which is always well defined. The density of the instantaneous variance in the Heston

model is known in closed-form. Set

ζH(y) := exp

(
− 1

2βt

(
y + ve−κt

)) 1

2βt

( y

ve−κt

)µ/2−1/2

Iµ−1

(
e−κt/2

√
vy

βt

)
11y≥0, (1.3.3)

where Iη is the modified Bessel function of the first kind of order η [1, Section 9.6] and

µ := 2κθ/ξ2, βt :=
ξ2

4κ

(
1− e−κt

)
. (1.3.4)

In the Heston model the probability density function of the variance process observed at time t

then reads [103, Proposition 6.3.2.1]

P(Vt ∈ dy) = ζH(y)dy.

We recall that in the Heston model the joint cumulant generating function of the pair (Xτ , Vτ ) is

given by [46, Lemma 2.1]

logE(euXτ+wVτ ) = A(u,w, τ) +B(u,w, τ)v (1.3.5)

defined for all (u,w) such that the rhs exists and where

A(u,w, τ) :=
κθ

ξ2

(
(κ− ρξu− d (u)) τ − 2 log

(
1− γ (u,w) exp (−d (u) τ)

1− γ (u,w)

))
,

B(u,w, τ) :=
κ− ρξu− d(u)−

(
κ− ρξu+ d(u)

)
γ(u,w) exp (−d (u) τ)

ξ2(1− γ (u,w) exp (−d (u) τ))
,

d(u) :=
(
(κ− ρξu)

2
+ u (1− u) ξ2

)1/2
, γ(u,w) :=

κ− ρξu− d (u)− ξ2w

κ− ρξu+ d (u)− ξ2w
.

(1.3.6)

We end the section by deriving the forward cgf:
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Lemma 1.3.1. The Heston (1.3.2) forward cgf reads (X
(t)
τ defined in (1.0.3))

logE
(
euX

(t)
τ

)
= A(u, τ) +

B(u, τ)

1− 2βtB(u, τ)
ve−κt − 2κθ

ξ2
log (1− 2βtB(u, τ)) , (1.3.7)

defined for all u such that the rhs exists and where

A(u, τ) := A(u, 0, τ), B(u, τ) := B(u, 0, τ), γ(u) := γ(u, 0). (1.3.8)

Proof. For any t > 0, the random variable Vt in (1.3.2) is distributed as βt times a non-central chi-

square random variable with 2µ degrees of freedom and non-centrality parameter ve−κt/βt [103,

Remark 6.3.2.2]. It follows that the corresponding mgf is given by

ΛVt (u) := E
(
euVt

)
= exp

(
ve−κtu

1− 2βtu

)
(1− 2βtu)

−µ
, for all u <

1

2βt
. (1.3.9)

Using (1.3.5) and the tower property for expectations then yields the forward cgf:

logE
(
euX

(t)
τ

)
= logE

(
E
(
euX

(t)
τ |Ft

))
= A(u, τ) + log ΛVt (B(u, τ)).

1.3.1.2 Schöbel-Zhu

The Schöbel-Zhu (SZ) stochastic volatility model [138] is an extension to non-zero correlation of

the Stein & Stein [141] model in which the logarithmic spot price process (Xt)t≥0 satisfies the

following SDEs:

dXt = −1

2
σ2
t dt+ σtdWt, X0 = x0 ∈ R,

dσt = κ (θ − σt) dt+
1

2
ξdBt, σ0 =

√
v > 0,

d ⟨W,B⟩t = ρdt,

(1.3.10)

where κ, θ and ξ are strictly positive real numbers, ρ ∈ (−1, 1) and W and B are two standard

Brownian motions. The volatility process (σt)t≥0 is Gaussian and hence both SDEs are well defined.

In order to specify the forward cgf we define the following functions:

A(u, τ) := A1(u, τ) +
2κ2θ2(χ(u)− d(u))

d(u)3ξ2
A2(u, τ),

A1(u, τ) :=
1

2
(χ(u)− d(u)) τ − 1

2
log

(
1− γ(u) exp (−2d(u)τ)

1− γ(u)

)
,

A2(u, τ) := χ(u) (d(u)τ − 2) + d(u) (d(u)τ − 1) + 2e−d(u)τ
2χ(u) + d(u)2−2χ(u)2

χ(u)+d(u) e−d(u)τ

1− γ(u)e−2d(u)τ
,

B1(u, τ) :=
4κθ

ξ2
χ(u)− d(u)

d(u)

(1− exp (−d(u)τ))2

1− γ(u) exp (−2d(u)τ)
,

B2(u, τ) :=
2(χ(u)− d(u))

ξ2
1− exp (−2d(u)τ)

1− γ(u) exp (−2d(u)τ)
,
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and

M(r, p, q) :=
1

2

(
p2r2

1− 2rq
− log (1− 2rq)

)
, βt :=

ξ2

8κ

(
1− e−2κt

)
, χ(u) := κ− ρξu

2
,

d(u) :=
(
χ(u)2 + (1− u)

u

4
ξ2
)1/2

, γ(u) :=
χ(u)− d(u)

χ(u) + d(u)
, µt :=

√
ve−κt + θ

(
1− e−κt

)
.

Although we may use the same names of variables and functions as for Heston (Section 1.3.1.1),

they may have a different definition here. We shall require the following lemma, which follows

from [8, Equation 29.6].

Lemma 1.3.2. If Z ∼ N (0, 1) and (p, q) ∈ R2, then logE
(
eu(pZ+qZ2)

)
= M(u, p, q), whenever

uq < 1/2.

Lemma 1.3.3. In the Schöbel-Zhu model (1.3.10) the forward cgf reads

logE
(
euX

(t)
τ

)
= A(u, τ)+B1(u, τ)µt+B2(u, τ)µ

2
t+M

(
1,
√
βt (B1(u, τ) + 2B2(u, τ)µt) , B2(u, τ)βt

)
,

defined for all u such that the rhs exists.

Proof. Conditioning on the filtration (Ft)t≥0 and using the tower property we find

Λ(u) = logE
[
E
(
euX

(t)
τ |Ft

)]
= A(u, τ) + logE

[
exp

(
B1(u, τ)σt +B2(u, τ)σ

2
t

)]
,

where we have used the Schöbel-Zhu cgf from [105]. Since σt ∼ N (µt, βt), we obtain

Λ(u) = A(u, τ) + logE
(
eB1(u,τ)σt+B2(u,τ)σ

2
t

)
= A(u, τ) +B1(u, τ)µt +B2(u, τ)µ

2
t + logE

(
e(B1(u,τ)

√
βt+2B2(u,τ)

√
βtµt)Z+(B2(u,τ)βt)Z

2
)
,

with Z ∼ N (0, 1), and the lemma follows directly from Lemma 1.3.2.

1.3.2 Time-changed exponential Lévy models

Let N be a Lévy process with cgf given by logE
(
euNt

)
= tϕ(u) for t ≥ 0 and u ∈ Kϕ :=

{u ∈ R : |ϕ(u)| <∞}. We consider models where X := (NVt)t≥0 pathwise and the time-change is

given by Vt :=
∫ t
0
vsds with v being a strictly positive process independent of N . We shall consider

the two following examples:

dvt = κ (θ − vt) dt+ ξ
√
vtdBt, (1.3.11)

dvt = −λvtdt+ dJt, (1.3.12)

with v0 = v > 0 and κ, ξ, θ, λ > 0. Here B is a standard Brownian motion and J is a compound

Poisson subordinator with exponential jump size distribution and Lévy exponent l(u) := λδu/(α−

u) for all u < α with δ > 0 and α > 0. In (1.3.11), v is a Feller diffusion and in (1.3.12), it is a Γ-OU

process. Although we may use the same names of variables and functions as for Sections 1.3.1.1

and 1.3.1.2, they may have a different definition here. We now derive the forward cgfs when v

follows (1.3.11) and (1.3.12).
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Lemma 1.3.4. If v follows (1.3.11) then the forward cgf reads

logE
(
euX

(t)
τ

)
= A(ϕ(u), τ) +

B(ϕ(u), τ)

1− 2βtB(ϕ(u), τ)
ve−κt − 2κθ

ξ2
log (1− 2βtB(ϕ(u), τ)) , (1.3.13)

defined for all u such that the rhs exists and where

A(u, τ) :=
κθ

ξ2

(
(κ− d(u)) τ − 2 log

(
1− γ(u)e−d(u)τ

1− γ(u)

))
,

B(u, τ) :=
κ− d(u)

ξ2
1− e−d(u)τ

1− γ(u)e−d(u)τ
,

d(u) :=
(
κ2 − 2uξ2

)1/2
, γ(u) :=

κ− d(u)

κ+ d(u)
, βt :=

ξ2

4κ

(
1− e−κt

)
.

(1.3.14)

Proof. By conditioning on (Vu)t≤u≤t+τ and using the independence of the time-change and the

Lévy process we have E
(
eu(Xt+τ−Xt)

)
= E

(
eϕ(u)

∫ t+τ
t

vsds
)
. Using [44, page 476] and the tower

property we compute (A and B given in (1.3.14))

E
(
eu(Xt+τ−Xt)

)
= E

[
E
(
eϕ(u)

∫ t+τ
t

vsds|Ft
)]

= eA(ϕ(u),τ)E
(
eB(ϕ(u),τ)vt

)
, (1.3.15)

and using the mgf for v in (1.3.9) yields the forward cgf.

Lemma 1.3.5. If v follows (1.3.12) then the forward cgf reads

logE
(
euX

(t)
τ

)
= A(ϕ(u), τ) +B(ϕ(u), τ)ve−λt + δ log

(
B(ϕ(u), τ)− etλα

etλ(B(ϕ(u), τ)− α)

)
, (1.3.16)

defined for all u such that the rhs exists and where

A(u, τ) :=
λδ

αλ− u

[
uτ + α log

(
1− u

αλ

(
1− e−λτ

))]
, B(u, τ) :=

u

λ

(
1− e−λτ

)
. (1.3.17)

Proof. Equality (1.3.15) also holds here with A and B defined in (1.3.17) (see [44, page 488]). The

mgf for v in this case is given by [44, page 482]

logE (euvt) = uve−λt + δ log

(
u− αeλt

(u− α)eλt

)
, for all u < α,

and the result follows.

1.4 Pricing forward-start options

In this Section we focus on pricing forward-start options. In Section 1.4.1 we introduce various

changes of measures in order to understand the relationship between the Type-I and Type-II

forward smile. As an application we show that the Type-II Heston forward smile can be read

directly from the Type-I Heston forward smile. In the spot (t = 0) case the left wing (k < 0) of

the Heston implied volatility can be read directly from the right wing (k > 0). In the forward case

(t > 0) we show that this is no longer necessarily the case. In Section 1.4.2 we develop different

representations for forward-start option prices. Each of these representations is useful in its own

right and gives different intuition on the forward smile.
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Let us suppose first that (Xs)s≥0 has stationary increments. Then clearly E(eXt+τ−Xt −ek)+ =

E(eXτ − ek)+ and there is no term structure for the forward implied volatility in these models.

Exponential Lévy models fall into this class and this property is contrary to the forward implied

volatility surface observed in the market. Non-stationary increments is therefore necessary in order

to capture a more realistic forward volatility term structure. We record this result as a lemma:

Lemma 1.4.1. Let k ∈ R and t, τ > 0. If (Xs)s≥0 has stationary increments then σt,τ (k) = στ (k).

Suppose now that (eXs)s≥0 is a (P,Fs)−martingale and (Xs)s≥0 has independent increments.

The next lemma shows us that the Type-I forward smile will then be the same as the Type-II

forward smile.

Lemma 1.4.2. Let k ∈ R and t, τ > 0. If (eXs)t≥0 is a (P,Fs)−martingale and (Xs)s≥0 has

independent increments then σt,τ (k) = σ̃t,τ (k).

Proof. Using the independent increment assumption and the martingale property we find that

E
(
eXt+τ − ekeXt

)+
= E

(
eXt

(
eXt+τ−Xt − ek

)+)
= E

(
eXt
)
E
(
eXt+τ−Xt − ek

)+
= E

(
eXt+τ−Xt − ek

)+
.

Exponential Lévy models satisfy this property, but the independent increment property is not

a necessary condition for equality of the Type-I and II forward smile in a model. In stochastic

volatility models the independent increment assumption is not true, but when the instantaneous

correlation is zero, the Type-I and II forward smiles are equal (Proposition 1.4.4 below). Consider

for example the Heston (1.3.2) model and let us see if the joint mgf factorises in a neighbourhood

of the origin. Using the cgf in (1.3.7) we find that

E
(
eu(Xt+τ−Xt)ewXt

)
= E

(
E
(
eu(Xt+τ−Xt)|Ft

)
ewXt

)
= eA(u,τ)E

(
eVtB(u,τ)+wXt

)
,

for all (u,w) ∈ R2 such that the expectations exist and are finite. Using (1.3.5) we see that the

joint mgf factorises if and only if the following two equations are satisfied:

A(w, t)− 2κθ

ξ2
log(1− 2βtB(u, τ)) = A(w,B(u, τ), t), (1.4.1)

B(w, t) +
B(u, τ)e−κt

1− 2βtB(u, τ)
= B(w,B(u, τ), t), (1.4.2)

with all functions defined in (1.3.4), (1.3.6) and (1.3.8). It can be easily checked (numerically or

otherwise) that these equations do not hold in general (even if the correlation is null). However,

Proposition 1.4.4 below shows us that the Type-I and II forward smiles are the same when the

instantaneous correlation is null.
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1.4.1 Measure-change symmetries

In this section we will assume that the asset price process (eXs)s≥0 is a (P,Fs)-martingale. This

implies that for any a ≥ 0 the process (eXa+s−Xa)s≥0 is also a (P,Fa+s)-martingale. For any

t, τ > 0 we then define the following measures:

P̄(A) : = E
(
eXt11A

)
, for every A ∈ Ft, (1.4.3)

P̃(A) : = E
(
eXt11A

)
, for every A ∈ Ft+τ , (1.4.4)

P∗(A) : = E
(
eXt+τ−Xt11A

)
, for every A ∈ Ft+τ . (1.4.5)

We will call P̄, P̃ and P∗ the share-price measure, the stopped-share-price measure and the forward

measure respectively. We will let M denote our model when the asset price is given by (eXu)u≥0

under the risk-neutral measure P, M̄ denote our model when the asset price is given by (e−Xu)u≥0

under the share-price measure P̄, M̃ denote our model when the asset price is given by (eXu)u≥0

under the stopped-share-price measure P̃ and let M∗ denote our model when the asset price is

given by (e−Xu)u≥0 under the forward measure P∗.

In the results in this section we will use a superscript to indicate the model under which the

Type-I or II forward smile is computed. So for example, σM̃t,τ (resp. σ̃M̃t,τ ), denotes the unique

solution to the equation

Ẽ
(
eXt+τ−Xt − ek

)+
= BS(k, σM̃t,τ (k)

2, τ),

resp. Ẽ
(
eXt+τ − eXt+k

)+
= BS(k, σ̃M̃t,τ (k)

2, τ),

with BS given in (1.0.2). Note that the lhs takes values within the set (0, 1) and so a unique

solution always exists. Similar definitions hold for the other forward implied volatilities in models

M, M̄ and M∗. We now give the main result of the section.

Proposition 1.4.3. Suppose that (eXs)s≥0 is a (P,Fs)-martingale. Then for all k ∈ R,

(i) σM̃t,τ (k) = σ̃Mt,τ (k) ;

(ii) σMt,τ (−k) = σ̃M̄t,τ (k) = σM
∗

t,τ (k).

Proof. We first prove (i). We can write the value of our Type-II forward-start call option as

BS(k, σ̃Mt,τ (k)
2, τ) = E

(
eXt+τ − ek+Xt

)+
= E

(
eXt

(
eXt+τ−Xt − ek

)+)
= Ẽ

(
eXt+τ−Xt − ek

)+
= BS(k, σM̃t,τ (k)

2, τ),
(1.4.6)

and the result follows since BS(k, ·, τ) (defined in (1.0.2)) is strictly increasing in the variance

parameter for fixed τ and k. Now we prove (ii). Let k ∈ R. Then

E
(
e−k − eXt+τ−Xt

)+
= e−kĒ

(
e−Xt+τ − e−Xtek

)+
= e−kE∗ (e−Xt+τ+Xt − ek

)+
. (1.4.7)
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Using the definition of forward implied volatility and the BSM formula for a put and call option,

the first equality implies

e−kN

(
−k

σMt,τ (−k)
√
τ
+
σMt,τ (−k)

√
τ

2

)
−N

(
−k

σMt,τ (−k)
√
τ
−
σMt,τ (−k)

√
τ

2

)
= e−kĒ

(
e−Xt+τ − e−Xtek

)+
= e−kN

(
−k

σ̃M̄t,τ (k)
√
τ
+
σ̃M̄t,τ (k)

√
τ

2

)
−N

(
−k

σ̃M̄t,τ (k)
√
τ
−
σ̃M̄t,τ (k)

√
τ

2

)
.

Since the lhs and rhs are strictly increasing in the volatility parameter, we have that σMt,τ (−k) =

σ̃M̄t,τ (k). Using the second equality in (1.4.7), analogous arguments show that σMt,τ (−k) = σ̃M̄t,τ (k) =

σM
∗

t,τ (k).

In the case that t = 0 (i.e. spot implied volatility asymptotics), then the Type-I and II smiles

are the same and Proposition 1.4.3 reduces to στ (−k) = σM̄τ (k) for all k ∈ R, which was shown for

example in [116, Theorem 4.1]. The next result shows that the Type-I and II forward smiles are

the same in uncorrelated stochastic volatility models:

Proposition 1.4.4. If the instantaneous correlation is null in the general stochastic volatility

model (1.3.1) and (eXs)s≥0 is a (P,Fs)-martingale then the Type-I forward smile is the same as

the Type-II forward smile.

Proof. In view of (1.4.6) it is enough to show that for all k ∈ R,

Ẽ
(
eXt+τ−Xt − ek

)+
= E

(
eXt+τ−Xt − ek

)+
. (1.4.8)

When the correlation is null, then under the stopped-share-price measure P̃ the dynamics of (X,V )

in (1.3.1) are given by

dXu =
(
− 1

2Vu + Vu11u≤t
)
du+

√
VudWu, X0 = 0,

dVu = h0(Vu)du+ h1(Vu)dBu, V0 = v > 0,

d ⟨W,B⟩u = 0.

But, under both P̃ and P we have that

exp (Xt+τ −Xt) = exp

(
−1

2

∫ t+τ

t

Vsds+

∫ t+τ

t

√
VsdWs

)
,

and when ρ = 0 the dynamics of V are the same under both P̃ and P and so (1.4.8) holds.

In order to see some of these results in action, let us apply them to the Heston model (1.3.2).

First we define the following constants:

κ̃ := κ− ρξ, and θ̃ =
κθ

κ− ρξ
.
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We let H(v, κ, θ, ξ, ρ) be the Heston model in (1.3.2), which corresponds to the model M above.

Define a Heston model with modified parameters by H1 = H(v, κ̃, θ̃, ξ,−ρ). Let H2 denote a

Heston model that is given by H over the period [0, t) and H1 over the period [t, t + τ ]. Finally,

let H3 denote a Heston model that is given by H1 over the period [0, t] and H over the period

(t, t+ τ ]. We now have the following corollary:

Corollary 1.4.5. In Heston (1.3.2), σH3
t,τ (k) = σ̃H

t,τ (k) and σH
t,τ (−k) = σ̃H1

t,τ (k) = σH2
t,τ (k), for all

k ∈ R.

Remark 1.4.6. Note that this result applies even when κ − ρξ < 0, since even in this case

(exp(−Xs))s≥0 is a (P̄,Fs)-martingale (see (1.4.9) below and [24, Proposition 5.1]).

Proof. In Heston (eXs)s≥0 is a (P,Fs)-martingale [5, Proposition 2.5]. Straightforward computa-

tions reveal that in Heston under P̄ we have that

d(−Xu) = −1

2
Vudu+

√
VudWu, X0 = 0,

dVu = κ̃
(
θ̃ − Vu

)
du+ ξ

√
VudBu, V0 = v > 0,

d ⟨W,B⟩u = −ρdu,

(1.4.9)

which implies that H1 is the same as M̄ . The corollary then follows from Proposition 1.4.3 if we

can show that it is sufficient to use H2 and H3 in place of M∗ and M̃ respectively. In Heston we

have the following dynamics under P̃,

dXu =
(
−1

2Vu + Vu11u≤t
)
du+

√
VudWu, X0 = 0,

dVu = (κθ − κVu + ρξVu11u≤t) du+ ξ
√
VudBu, V0 = v > 0,

d ⟨W,B⟩u = ρdu,

and the following dynamics under P∗,

d(−Xu) =
(
−1

2Vu + Vu11u≤t
)
du+

√
VudWu, X0 = 0,

dVu = (κθ − κVu + ρξVu11u≥t) du+ ξ
√
VudBu, V0 = v > 0,

d ⟨W,B⟩u = −ρdu.

Due to (1.4.6) and (1.4.7) we see that the dynamics of X over [0, t] are irrelevant for pricing and

that a measure change only has an effect on pricing through a change of the variance dynamics.

The proof is concluded by noting that H2 and H3 change the variance dynamics in the same way

as M∗ and M̃ respectively.

In Heston, one can directly read the Type-II forward smile from the Type-I forward smile (and

visa-versa) after a transformation of parameters (H and H1) and provided that κ̃ > 0. Note that

if t ̸= 0 or ρ ̸= 0 then H2 is not time-homogeneous. Therefore, if one has Type-I forward smile

asymptotics for say the right wing (k > 0) in a time-homogeneous Heston model, then this is

not sufficient to determine Type-I forward smile asymptotics for the left wing (k < 0). This is in

contrast to the spot smile case (t = 0), where this feature is true for Heston spot smile asymptotics.
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1.4.2 Representations of forward-start option prices

1.4.2.1 Inverse Fourier transform representation

A closed-form formula for forward-start options in the Black-Scholes-Merton model was originally

derived in [136]. The pricing of forward-start options in the Heston model was first considered

in [93], [112] and [118]. In [112] the authors derived a formula for forward-start options in Heston

that involves two two-dimensional integrations and as such is not computationally efficient and

will not be considered in this section. For comparison the approach suggested in [93] involves a

single one-dimensional Fourier transform inversion.

The payoff of a Type-I forward-start option is a European option on the quantity eXt+τ−Xt .

As first shown in [93] if one has access to the forward characteristic function of the price process

then one can use the entire arsenal of efficient European option inverse Fourier transform methods

[40, 115, 117] to price Type-I forward-start options. Define At,τ,X := {u ∈ R : E
[
eu(Xt+τ−Xt)

]
<

∞} and set Λt,τ,X := {z ∈ C : −ℑ(z) ∈ At,τ,X}. We define the forward characteristic function

ϕt,τ : C → C of (Xt)t≥0 as

ϕt,τ (z) := E
[
eiz(Xt+τ−Xt)

]
for all z ∈ Λt,τ,X . (1.4.10)

In order to price our Type-I forward-start options we now use the European option inverse Fourier

transform representation in [115, Theorem 5.1], but with the forward characteristic function defined

in (1.4.10). Efficient pricing then boils down to finding the forward characteristic functions in

various models. We record this result as a lemma, which will be used to numerically calculate the

forward smile.

Lemma 1.4.7. Assume that 1 ∈ Aot,τ,X . Then for any α ∈ R such that α + 1 ∈ Aot,τ,X we have

the following inverse Fourier transform representation for a Type-I forward-start option:

E
(
eXt+τ−Xt − ek

)+
= ϕt,τ (−i)11{−1<α<0} +

(
ϕt,τ (−i)− ekϕt,τ (0)

)
11{α<−1} +

ϕt,τ (−i)
2

11{α=0}

+

(
ϕt,τ (−i)−

ek

2

)
11{α=−1} +

1

π

∫ +∞−iα

0−iα

ℜ
(
eizk

ϕt,τ (z − i)

iz − z2

)
dz.

Using (1.4.6) we know that a Type-II forward-start call option can be wriiten as a Type-I

forward-start call option with the last expectation calculated under the stopped-share-price mea-

sure (1.4.4). The importance of this result is that we can now use Lemma 1.4.7 for pricing, but

with the forward characteristic function calculated under the stopped-share-price measure. Us-

ing (1.4.7) our Type-II forward-start call option can also be written as a Type-I forward-start put

option on the asset price process (e−Xt)t≥0 under the share-price measure (1.4.3). If one has access

to the forward characteristic function in the share-price measure then one can use put-call parity

and a slight modification of Lemma 1.4.7 (replace Xt+τ − Xt with Xt − Xt+τ and ϕt,τ (u) with

ϕt,τ (u)) for pricing. Similar comments apply to the forward measure in (1.4.3) using (1.4.7).
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Efficient pricing of Type-I and II forward-start options is therefore reduced to finding the for-

ward characteristic function in the risk-neutral, stopped-share-price, share-price or forward mea-

sure. In the Heston model (eXs)s≥0 is a true martingale [5, Proposition 2.5] and all forward char-

acteristic functions (or forward moment generating functions) are available in closed-form. The

forward moment generating function under the risk-neutral measure was given in Lemma 1.3.1.

We give the forward cumulant generating function under the stopped-share-price measure below,

which we will need later:

Lemma 1.4.8. Under the stopped-share-price measure (1.4.4) the forward Heston cgf reads

log Ẽ
(
euX

(t)
τ

)
= A(u, τ) +

B(u, τ)

1− 2β̃tB(u, τ)
ve−κ̃t − 2κθ

ξ2
log
(
1− 2β̃tB(u, τ)

)
,

for all u such that the rhs exists, where A and B are defined in (1.3.8), β̃t :=
ξ2

4κ̃ (1 − e−κ̃t) and

κ̃ := κ− ξρ.

Proof. Under the stopped-share-price measure (1.4.4) the Heston dynamics are given by

dXu =
(
−1

2Vu + Vu11u≤t
)
du+

√
VudWu, X0 = 0,

dVu = (κθ − κVu + ρξVu11u≤t) du+ ξ
√
VudBu, V0 = v > 0,

d ⟨W,B⟩u = ρdu.

Using the tower property for expectations, it is now straightforward to compute

Ẽ
(
eu(Xt+τ−Xt)

)
= Ẽ

(
Ẽ
(
eu(Xt+τ−Xt)|Ft

))
= Ẽ

(
eA(u,τ)+B(u,τ)Vt

)
= eA(u,τ)Λ̃Vt (B(u, τ)),

where Λ̃Vt (u) = exp
(
uv exp(−κ̃t)

1−2β̃tu

)
(1− 2β̃tu)

−2κθ/ξ2 , for all u < 1/(2β̃t).

1.4.2.2 Mixing formula in stochastic volatility models

By performing a Cholesky decomposition of the covariance matrix in our general stochastic volatil-

ity model (1.3.1), we can write the forward increment as

Xt+τ −Xt = U (t)
τ − 1− ρ2

2

∫ t+τ

t

Vsds+
√
1− ρ2

∫ t+τ

t

√
VsdZs,

where

U (t)
τ := −ρ

2

2

∫ t+τ

t

Vsds+ ρ

∫ t+τ

t

√
VsdBs,

and (Bt)t≥0 and (Zt)t≥0 are two independent Brownian motions. By conditioning on the filtration

generated by B up to time t+ τ we find that (see [66, page 79] or [53, page 28])

E(eXt+τ−Xt − ek)+ = E
(
E
((

eXt+τ−Xt − ek
)+ |FB

t+τ

))
= E

(
eU

(t)
τ BS

(
k

U
(t)
τ

, τ−1(1− ρ2)

∫ t+τ

t

Vsds, τ

))
,
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with BS defined in (1.0.2). The key point here is that now only one Brownian motion path has

to be generated in order to price forward-start options. Forward-start options depend on the

joint distribution of
(
U

(t)
τ ,
∫ t+τ
t

Vsds
)
; for correlations close to zero, the forward-start option is a

non-linear payoff of the forward variance
∫ t+τ
t

Vsds.

1.4.2.3 Non-stationary representation in stochastic volatility models

In our general stochastic volatility model (1.3.1), the forward-start option price is given by

E(eXt+τ−Xt − ek)+ = E(gk,τ (Vt)),

where gk,τ ∈ C2(R+) is given by gk,τ (x) := E((eXt+τ−Xt − ek)+/Vt = x). Using the replication

formula in [39, Equation 2] we then have the representation (with V̄t := E(Vt)− v)

E
(
eXt+τ−Xt − ek

)+
= gk,τ (v) + g′k,τ (v)V̄t +

∫ v

0

g′′k,τ (q)E(q − Vt)
+dq +

∫ ∞

v

g′′k,τ (q)E(Vt − q)+dq

= E
(
eXτ − ek

)+
+ g′k,τ (v)V̄t +

∫ v

0

g′′k,τ (q)E(q − Vt)
+dq +

∫ ∞

v

g′′k,τ (q)E(Vt − q)+dq.

Note that g′k,τ (v) is simply the Vega for a standard European call option in the model (1.3.1)

with maturity τ and log-strike k and one would expect this term to be positive. In the Heston

model (1.3.2) for example, we have that V̄t = (1 − e−κt)(θ − v) and the sign of V̄ depends on

the relative values of the long-term mean reversion level θ and the initial variance v. The two

integrals and g′k,τ (v)V̄t account completely for the non-stationarity (t-dependence) of the forward

smile over the spot smile. The integrals are weighted calls and puts on the instantaneous variance

at time t. The weights represent the volatility convexity of a standard τ -maturity option in the

general stochastic volatility model (1.3.1) with log-strike k and evaluated with an initial variance

of q. Intuitively one would expect that (just as in the BSM model), the volatility convexity is

positive except for a small region around at-the-money (k = 0) where it is negative. Therefore

(at least intuitively for now) the out-of-the-money forward smile is larger than the corresponding

out-of-the-money spot smile as long as V̄ is not sufficiently negative. Similarly, the at-the-money

forward volatility is lower than the corresponding at-the-money spot volatility as long as V̄ is not

sufficiently positive.

1.4.2.4 Random initial variance representation in stochastic volatility models

Consider the forward price processX
(t)
τ := Xt+τ−Xτ in the general stochastic volatility model (1.3.1)

and fix t > 0. Then X
(t)
0 = 0 and the only statistic relevant from the dynamics (X,V ) in (1.3.1)

over [0, t] for determining X
(t)
· is the value of the variance process at the forward-start date t. We

record this result in the following lemma:
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Lemma 1.4.9. In the model (1.3.1) the forward price process X
(t)
· solves the following system of

SDEs:

dX
(t)
τ = −1

2
Y (t)
τ dτ +

√
Y

(t)
τ dWτ , X

(t)
0 = 0,

dY
(t)
τ = h0

(
Y

(t)
τ

)
dt+ h1

(
Y

(t)
τ

)
dBτ , Y

(t)
0 ∼ Law(Vt),

d ⟨W,B⟩τ = ρdτ,

(1.4.11)

where Y
(t)
0 is independent to the Brownian motions (Wτ )τ≥0 and (Bτ )τ≥0.

This lemma makes it clear that forward-start options in stochastic volatility models are Euro-

pean options on a stock price with similar dynamics to (1.3.1), but the initial variance is a random

variable sampled from the variance distribution at the forward-start date. The SDE (1.4.11) is an

example of a diffusion in a random environment. In Chapter 5 we will propose that models of the

form (1.4.11) are used to directly model the stock price. In this framework the distribution of the

initial variance is chosen to match observed steep small-maturity implied volatility smiles.

1.5 Small and large forward-start dates

In the next two subsections we will study forward smile asymptotics for fixed maturity τ > 0 as

the forward-start date t tends to zero or infinity. Results are not presented in great detail: the goal

of the section is to develop intuition on the forward smile and many of the properties discovered

will be rigorously proven in subsequent chapters.

We recall that C(τ, k) is a market or model price of a call option with maturity τ and log-strike k.

In this section we will let C(τ, k) be the value in the Heston model (1.3.2) unless otherwise stated.

We will use the notation C(τ, k; v) and στ (k, v) to make it explicit that Heston call option prices

and spot implied volatilities depend on the initial variance v. For ease of computations we define

for fixed k ∈ R and τ > 0, the function

φBS(Σ) := BS(k,Σ2, τ), (1.5.1)

and by definition we then have that C(t, τ, k) = φBS(σt,τ (k)) and C(τ, k; v) = φBS(στ (k, v)).

1.5.1 Small forward-start dates

In Lemma 1.5.1 below we first prove a tail estimate and then move onto the main result of the

section, an asymptotic expansion for the Heston forward smile for small forward-start dates.

Lemma 1.5.1. For fixed τ, L > 0 there exists δ > 0 such that the following tail estimate holds in

Heston (1.3.2) as t ↓ 0: ∫ ∞

L

C(τ, k; y)ζH(y)dy = O
(
exp

(
−δ
t

))
,

with ζH defined in (1.3.3).
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Proof. Combining Lemma 5.3.3 with ζH defined in (1.3.3) we see that

ζH(y) ≤ α0β
−µ
t yµ−1 exp

(
− 1

2βt

(√
y −

√
ve−κt/2

)2)
≤ α0β

−µ
t yµ−1 exp

(
− y

2βt

)
,

where α0 > 0 is a constant independent of y and t. Also since C(τ, k; y) ≤ 1 we obtain∫ ∞

L

C(τ, k; y)ζH(y)dy ≤
∫ ∞

L

ζH(y)dy ≤ α0β
−µ
t

∫ ∞

L

yµ−1 exp

(
− y

2βt

)
dy.

The integral in the last inequality can be solved analytically to obtain∫ ∞

L

C(τ, k; y)ζH(y)dy ≤ α02
µΓ

(
µ,

L

2βt

)
,

where Γ(a;x) ≡
∫∞
x
ya−1e−ydy is the incomplete Gamma function. Since βt (in (1.3.4)) tends to

zero as t tends to zero the asymptotic expansion [1, page 263],

Γ

(
µ,

L

2βt

)
= exp

(
− L

2βt

)(
L

βt

)µ(
21−µβt
L

+O(β2
t )

)
,

holds as t tends to zero and the result follows after using the expansion βt = ξ2t/4 + O(t2) for

small t.

The following proposition gives the asymptotics of the forward smile in Heston as the forward-

start date tends to zero. Since the asymptotic depends on the Heston spot implied volatility στ ,

results on asymptotics of the spot implied volatility can be recycled here to obtain forward smile

asymptotics.

Proposition 1.5.2. For fixed τ > 0, the following asymptotic holds in Heston (1.3.2) as t ↓ 0

(φBS defined in (1.5.1)):

σt,τ (k) = στ (k, v) +

(
∂vστ (k, v)

(
(v − θ)κ+

1

2

∂ΣΣφBS(στ (k, v))

∂ΣφBS(στ (k, v))
∂vστ (k, v)vξ

2

)
+
1

2
∂vvστ (k, v)vξ

2

)
t+O(t3/2).

(1.5.2)

Proof. The Heston forward-start call option price is given by

C(t, τ, k) = E
{
E
(
eXt+τ−Xt − ek)+/Vt

)}
=

∫ ∞

0

C(τ, k; y)ζH(y)dy, (1.5.3)

where ζH (defined in (1.3.3)) is the density of the instantaneous variance at time t. Set

CLow(t, τ, k) :=

∫ L

0

C(τ, k; y)ζH(y)dy. (1.5.4)

We break the integral in (1.5.3) into a compact part and a tail part as follows,

C(t, τ, k) = CLow(t, τ, k) +

∫ ∞

L

C(τ, k; y)ζH(y)dy = CLow(t, τ, k) +O
(
exp

(
−δ
t

))
, (1.5.5)

for some δ > 0 as t tends to zero. The final line follows from Lemma 1.5.1 and we set L > v. As

z tends to infinity we have the following asymptotic expansion for the modified Bessel function of

the first kind [1, Section 9.7.1]:

Iν(z) =
ez√
2πz

(
1− 1

2z
(ν2 − 1

4
) +O

(
1

z2

))
. (1.5.6)



1.5. Small and large forward-start dates 45

Since βt (defined in (1.3.4)) tends to zero as t tends to zero, straightforward computations yield

the following asymptotic for the density as t tends to zero (µ defined in (1.3.4)):

ζH(y) = exp

(
−
2
(√
y −

√
v
)2

ξ2t
+
κ(v − y)

ξ2

)
y

2µ−3
4 v

1−2µ
4

ξ
√
2πt

(
1 +

(
κµ

2
+
ξ2(1− 2µ)(2µ− 3)

32
√
yv

−

κ2
(
y +

√
yv + v

)
6ξ2

)
t+O(t2)

)
.

Using (1.5.4) we have the following expansion

CLow(t, τ, k) = v1/4−µ/2ξ−1(2πt)−1/2
(
I0(t) + I1(t)t+O

(
t2
) )
,

as t tends to zero and where we set

I0(t) :=

∫ L

0

C(τ, k; y)y
2µ−3

4 exp

(
−
2
(√
y −

√
v
)2

ξ2t
+
κ(v − y)

ξ2

)
dy

and

I1(t) :=

∫ L

0

C(τ, k; y)y
2µ−3

4 exp

(
−
2
(√
y −

√
v
)2

ξ2t
+
κ(v − y)

ξ2

)(
κµ

2
+
ξ2(1− 2µ)(2µ− 3)

32
√
yv

−
κ2
(
y +

√
yv + v

)
6ξ2

)
dy.

A tedious but straightforward application of the Laplace method (Theorem 1.2.6) for I0 and I1

out to order O(t) then yields the following simple expansion as t tends to zero:

CLow(t, τ, k) = C(τ, k; v) +

(
∂vC(τ, k; v)(v − θ)κ+

1

2
∂vvC(τ, k; v)vξ

2

)
t+O(t3/2). (1.5.7)

Combining this with (1.5.5) yields

C(t, τ, k) = C(τ, k; v) +

(
∂vC(τ, k; v)(v − θ)κ+

1

2
∂vvC(τ, k; v)vξ

2

)
t+O(t3/2). (1.5.8)

Using the fact that the Black-Scholes vega for a call option is strictly positive implies that (φBS

defined in (1.5.1))

σt,τ (k) = φ−1
BS

(
C(τ, k; v) +

(
∂vC(τ, k; v)(v − θ)κ+

1

2
∂vvC(τ, k; v)vξ

2

)
t+O(t3/2)

)
= στ (k, v) + ∂Σφ

−1
BS (C(τ, k; v))

(
∂vC(τ, k; v)(v − θ)κ+

1

2
∂vvC(τ, k; v)vξ

2

)
t+O(t3/2),

as t tends to zero, where in the second line we used the fact that by definition φ−1
BS (C(τ, k; v)) =

στ (k, v). The asymptotic (1.5.2) then follows after using the following manipulations

∂Σφ
−1
BS (C(τ, k; v)) =

1

∂ΣφBS

(
φ−1
BS {C(τ, k; v)}

) =
1

∂ΣφBS (στ (k, v))
,

∂vC(τ, k; v) = ∂ΣφBS (στ (k, v)) ∂vστ (k, v),

∂vvC(τ, k; v) = ∂ΣΣφBS (στ (k, v)) (∂vστ (k, v))
2
+ ∂ΣφBS (στ (k, v)) ∂vvστ (k, v),

and the definition of φBS.
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The asymptotic (1.5.8) is remarkably simple (one would not guess this from using the Laplace

method) and hints at a deeper structure. In the rest of this section we let C(t, τ, k) and C(τ, k; v)

be the forward-start option and call option price in the general stochastic volatility model (1.3.1).

We have defined C(τ, k; v) to be the price of a re-normalised (asset price is always one) call option

with fixed maturity τ and initial instantaneous variance v. Therefore an application of Itô’s lemma

yields

C(τ, k;Vt) = C(τ, k; v) +

∫ t

0

∂vC(τ, k;Vs)dVs +
1

2

∫ t

0

∂vvC(τ, k;Vs)d ⟨V, V ⟩s ,

and taking expectations we find that

E[C(τ, k;Vt)] = C(τ, k; v) + E
[∫ t

0

∂vC(τ, k;Vs)h0(Vs)ds

]
+

1

2
E
[∫ t

0

∂vvC(τ, k;Vs)d ⟨V, V ⟩s

]
.

The lhs is just our forward-start option and we get the expression

C(t, τ, k) = C(τ, k; v) + E
[∫ t

0

∂vC(τ, k;Vs)h0(Vs)ds

]
+

1

2
E
[∫ t

0

∂vvC(τ, k;Vs)h
2
1(Vs)ds

]
.

Now doing an Itô-Taylor expansion we approximate the integrands by∫ t

0

∂vC(τ, k;Vs)h0(Vs)ds = ∂vC(τ, k; v)h0(v)t+R1,∫ t

0

∂vvC(τ, k;Vs)h1(Vs)
2ds = ∂vvC(τ, k; v)h1(v)

2t+R2.

We make the assumption here that h0 and h1 are functions such that the remainders have the

property

E(R1) = E(R2) = O(t2). (1.5.9)

This implies that

E
[∫ t

0

∂vC(τ, k;Vs)h0(Vs)ds

]
= ∂vC(τ, k; v))h0(v)t+O(t2),

E
[∫ t

0

∂vvC(τ, k;Vs)h1(Vs)
2ds

]
= ∂vvC(τ, k; v)h1(v)

2t+O(t2),

which agrees exactly with (1.5.8) in the Heston case. We leave the precise study of property (1.5.9)

for future research and state the following proposition:

Proposition 1.5.3. If the model (1.3.1) satisfies (1.5.9) then for fixed τ > 0, the following asymp-

totic holds as t ↓ 0:

σt,τ (k) = στ (k, v) +

(
∂vστ (k, v)

(
h0(v) +

1

2

∂ΣΣφBS(στ (k, v))

∂ΣφBS(στ (k, v))
∂vστ (k, v)h1(v)

2

)
+
1

2
∂vvστ (k, v)vξ

2

)
t+O(t3/2),

(1.5.10)

with φBS defined in (1.5.1) and στ (k, v) is the implied volatility in the model (1.3.1).
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We can use (1.5.2) and (1.5.10) to gain intuition on the forward smile. If the model (1.3.1) has

a small-maturity limit for the spot implied volatility,

lim
τ→0

στ (k, v) ≡ σ0(k),

with 0 < σ0(k) <∞ for all k ∈ R, then straightforward computations yield

∂ΣΣφBS(στ (k, v))

∂ΣφBS(στ (k, v))
∼ k2

σ0(k)3τ
,

as τ tends to zero. This implies (intuitively) that the forward smile explodes (becomes more convex

for out-of-the-money options) as the maturity tends to zero. In Chapter 3 we will rigorously prove

this result in Heston and state a conjecture for general stochastic volatility models in Chapter 5.

1.5.2 Large forward-start dates

In view of (1.5.3) we want to understand what happens to our Heston density ζH (1.3.3) as t tends

to infinity. As z tends to zero we have the following asymptotic expansion for the modified Bessel

function of the first kind [1, Section 9.6.10]:

Iν(z) =
zν

2νΓ(ν + 1)

(
1 +

z2

2(2ν + 2)
+O(z4)

)
. (1.5.11)

This implies that the density has the following asymptotics as t tends to infinity (µ defined

in (1.3.4)),

ζH(y) =
e−y/(2β∞)yµ−1

(2β∞)µΓ(µ)
(1 +O(e−κt)),

where β∞ := ξ2/(4κ). This is obviously the stationary distribution of the variance process, a

Gamma distribution with shape parameter µ and scale parameter 2β∞. Using (1.5.3) we see that

forward-start options are given by

C(t, τ, k) =

∫ ∞

0

C(τ, k; y)
e−y/(2β∞)yµ−1

(2β∞)µΓ(µ)
dy +O(e−κt),

as t tends to infinity. The interpretation of the first term is that it is the value of a Heston call option

where the instantaneous variance is first sampled from the stationary distribution of the variance

process. This result (for affine stochastic volatility models) was obtained by Keller-Ressel [109].

1.6 Structure of thesis

We conclude the introduction with a brief overview of the structure of the thesis. In Chapter 2 we

derive a general closed-form expansion formula for forward-start options and the forward implied

volatility smile in a large class of models including the Heston and Schöbel-Zhu stochastic volatility

models and time-changed exponential Lévy models. This general result includes large-maturity
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asymptotics and so-called ‘diagonal’ small-maturity asymptotics, i.e. asymptotics for small forward

start dates and small-maturities.

In Chapter 3 we investigate the asymptotics of forward-start options and the forward implied

volatility smile in the Heston model as the maturity approaches zero. We prove that the forward

smile for out-of-the-money options explodes and compute a closed-form high-order expansion de-

tailing the rate of the explosion. In the at-the-money case a separate model-independent analysis

shows that the small-maturity limit is well defined for any Itô diffusion. Chapter 4 provides a

full characterisation of the large-maturity forward implied volatility smile in the Heston model.

Although the leading order decay is provided by a fairly classical large deviations behaviour, the

algebraic expansion providing the higher-order terms highly depends on the parameters, and dif-

ferent powers of the maturity come into play.

Classical (Itô diffusions) stochastic volatility models are not able to capture the steepness of

small-maturity implied volatility smiles. Jumps, in particular exponential Lévy and affine mod-

els, which exhibit small-maturity exploding smiles, have historically been proposed to remedy this

(see [145] for an overview). A recent breakthrough was made by Gatheral, Jaisson and Rosen-

baum [74], who proposed to replace the Brownian driver of the instantaneous volatility by a

short-memory fractional Brownian motion, which is able to capture the short-maturity steepness

while preserving path continuity. In Chapter 5 we suggest a different route, randomising the

Black-Scholes variance by a CEV-generated distribution, which allows us to modulate the rate of

explosion (through the CEV exponent) of the implied volatility for small maturities. The range

of rates includes behaviours similar to exponential Lévy models and fractional stochastic volatility

models. As a by-product, we make a conjecture on the small-maturity forward smile asymptotics

of stochastic volatility models, in exact agreement with the results in Chapter 3 for the Heston

model.

Throughout the thesis we will identify a number of cases of degenerate large deviations be-

haviour. We will discover that these cases unlock fundamental dynamical properties of the model

and we will relate them back to important empirical observations and conjectures made by prac-

titioners.



Chapter 2

A general asymptotic formula for

the forward smile

2.1 Introduction

In this chapter we consider a continuous-time stochastic process (Yε)ε>0
1 and prove—under some

assumptions on its characteristic function—an expansion for European option prices on exp(Yε) of

the form

E
(
eYεf(ε) − ekf(ε)

)+
= I(k, c, ε) + α0(k, c)e

−Λ∗(k)/ε+kf(ε)
(
c
√
ε11{c>0}

+ε3/2f(ε)11{c=0}

) [
1 + α1(k, c)ε+O

(
ε2
)]
,

as ε tends to zero, for some (explicit) functions α0, α1 and a residue term I (Theorem 2.2.4 and

Corollary 2.2.5). Here f is a positive, continuous function satisfying εf(ε) = c + O(ε) for some

c ≥ 0 as ε tends to zero, and Λ∗ is a large deviations rate function. Setting Yε ≡ X
(εt)
ετ and f(ε) ≡ 1

or Yε ≡ εX
(t)
τ/ε and f(ε) ≡ ε−1 yields ‘diagonal’ small-maturity (Corollary 2.2.6) and large-maturity

(Corollary 2.2.9) expansions of forward-start option prices (X
(t)
τ defined in (1.0.3)). These results

also apply when the forward-start date is null (t = 0), and we then recover—and improve—the

asymptotics in [60, 62, 63, 64, 65, 95]. The diagonal small-maturity re-scaling is necessary in order

to obtain non-degenerate small-maturity asymptotics.

We also translate these results into closed-form asymptotic expansions for the forward implied

volatility smile (Type-I and Type-II). In Section 2.3, we provide explicit examples for the Heston,

Schöbel-Zhu and time-changed exponential Lévy processes. Section 2.4 provides numerical evidence

supporting the practical relevance of these results and we leave the proofs of the main results to

Section 2.5.

1We remark that we do not assume that (Yε)ε>0 is continuous nor that exp(Yε) is necessarily a martingale.

49
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2.2 General Results

This section gathers the main notations of the chapter as well as the general results. The main

result is Theorem 2.2.4, which provides an asymptotic expansion—up to virtually any arbitrary

order—of option prices on a given process (Yε), as ε tends to zero. This general formulation allows

us, by suitable scaling, to obtain both small-time (Section 2.2.2.1) and large-time (Section 2.2.2.2)

expansions.

2.2.1 Notations and main theorem

2.2.1.1 Notations and preliminary results

Let (Yε) be a stochastic process with re-normalised cumulant generating function (cgf)

Λε(u) := ε logE
[
exp

(
uYε
ε

)]
, for all u ∈ Dε := {u ∈ R : |Λε(u)| <∞}. (2.2.1)

We further define D0 := limε↓0 Dε and now introduce the main assumptions of the chapter.

Assumption 2.2.1.

(i) Expansion property: For each u ∈ Do
0 the following Taylor expansion holds as ε ↓ 0 2:

Λε(u) =
2∑
i=0

Λi(u)ε
i +O(ε3); (2.2.2)

(ii) Differentiability: There exists ε0 > 0 such that the map (ε, u) 7→ Λε(u) is of class C∞ on

(0, ε0)×Do
0;

(iii) Non-degenerate interior: 0 ∈ Do
0;

(iv) Essential smoothness: Λ0 is strictly convex and essentially smooth (Def. 1.2.2) on Do
0;

(v) Tail error control: For any fixed pr ∈ Do
0\{0},

(a) ℜ (Λε (ipi + pr)) = ℜ (Λ0 (ipi + pr)) +O(ε), for any pi ∈ R;

(b) the function L : R ∋ pi 7→ ℜ (Λ0 (ipi + pr)) has a unique maximum at zero, is bounded

away from L(0) as |pi| tends to infinity and is of class C3(R);

(c) there exist ε1, p
∗
i > 0 such that for all |pi| ≥ p∗i and ε ≤ ε1 there exists M (independent

of pi and ε) such that ℜ [Λε(ipi + pr)− Λ0(ipi + pr)] ≤Mε.

Assumption 2.2.1(i) implies that the functions limε↓0 ∂
i
εΛε(u) exist on Do

0 for i = 0, 1, 2. As-

sumption 2.2.1(ii) could be relaxed to C6((0, ε0) × Do
0), but this hardly makes any difference in

practice and does, however, render some formulations awkward. If the expansion (2.2.2) holds

2The abuse of notation between Λε and Λi should not yield any confusion.
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up to some higher order n ≥ 3, one can in principle show that both forward-start option prices

and the forward implied volatility expansions below hold to order n as well. However expressions

for the coefficients of higher order are extremely cumbersome and scarcely useful in practice. As-

sumption 2.2.1(v) is a technical condition (readily satisfied by practical models) required to show

that the dependence of option prices on the tails of the characteristic function of the asset price is

exponentially small (see Lemma 2.5.3 and Appendix A for further details). We do not require this

condition to be satisfied at pr = 0 since this corresponds to an option strike at which our main

result does not hold anyway (k = Λ0,1(0) in Theorem 2.2.4 below). We note that this assumption

is not required if one is only interested in the leading-order behaviour of option prices and forward

implied volatility. Strictly speaking, we have only defined the function Λε on (part of) the real

line. It is however possible to extend it to a strip in the complex plane, and we refer the reader

to the proof of Lemma 2.5.1 for more details. Assumption 2.2.1(iv) is the key property that needs

to be checked in practical computations and can be violated by well known models under certain

parameter configurations (see Section 2.3.1.2 for an example).

Define now the function Λ∗ : R → R+ as the Fenchel-Legendre transform of Λ0:

Λ∗(k) := sup
u∈D0

{uk − Λ0(u)}, for all k ∈ R. (2.2.3)

For ease of exposition in the paper we will use the notation

Λi,l(u) := ∂luΛi(u) for l ≥ 1, i = 0, 1, 2. (2.2.4)

The following lemma gathers some immediate properties of the functions Λ∗ and Λi,l which will

be needed later.

Lemma 2.2.2. Under Assumption 2.2.1, the following properties hold:

(i) For any k ∈ R, there exists a unique u∗(k) ∈ Do
0 such that

Λ0,1(u
∗(k)) = k, (2.2.5)

Λ∗(k) = u∗(k)k − Λ0 (u
∗(k)) ; (2.2.6)

(ii) Λ∗ is strictly convex and differentiable on R;

(iii) if a ∈ Do
0 is such that Λ0(a) = 0, then Λ∗(k) > ak for all k ∈ R\{Λ0,1(a)} and Λ∗(Λ0,1(a)) =

aΛ0,1(a).

Proof.

(i) By Assumption 2.2.1(iv), Λ0,1 is a strictly increasing differentiable function from −∞ to ∞

on D0.
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(ii) By (i), ∂kΛ
∗ is the inverse of the function Λ0,1 on R. In particular ∂kΛ

∗ is strictly increasing

on R.

(iii) Since Λ0,1 is strictly increasing, Λ0,1(a) = k if and only if u∗(k) = a and then Λ∗(Λ0,1(a)) =

aΛ0,1(a) using (2.2.6). Using the definition (2.2.3) with a ∈ Do
0 and Λ0(a) = 0 gives Λ∗(k) ≥

ak. Since Λ∗ is strictly convex from (ii) it follows that Λ∗(k) > ak for all k ∈ R \ {Λ0,1(a)}.

Remark 2.2.3. The saddlepoint u∗ is not always available in closed-form, but can be computed

via a simple root-finding algorithm. Furthermore, a Taylor expansion around any point can be

computed iteratively in terms of the derivatives of Λ0. For instance, around k = 0, we can write

u∗(k) = u∗(0) +
k

Λ0,2(u∗(0))
− 1

2

Λ0,3(u
∗(0))

Λ0,2(u∗(0))3
k2 +O(k3).

A precise example can be found in the proof of Corollary 2.3.2.

The last tool we need is a (continuous) function f : R+ → R+ such that there exists c ≥ 0 for

which

f(ε)ε = c+O(ε), as ε tends to zero. (2.2.7)

This function will play the role of rescaling the strike of European options and will give us the

flexibility to deal with both small- and large-time behaviours. Finally, for any b ≥ 0 we now define

the functions Ab, Āb : R \ {Λ0,1(0),Λ0,1(b)} × R∗
+ → R by

Āb(k, ε) :=
b
√
ε11{b>0} + ε3/2f(ε)11{b=0}

u∗(k) (u∗(k)− b)
√
2πΛ0,2(u∗(k))

,

Ab(k, ε) := 1 + Υ(b, k)ε+
u∗(k)(εf(ε)− b)

(u∗(k)− b) b
11{b>0} +

εf(ε)

u∗(k)
11{b=0},

where Υ : R+ × R\{Λ0,1(0),Λ0,1(b)} → R is given by

Υ(b, k) := Λ2 −
5Λ2

0,3

24Λ3
0,2

+
4Λ1,1Λ0,3 + Λ0,4

8Λ2
0,2

−
Λ2
1,1 + Λ1,2

2Λ0,2
− Λ0,3

2 (u∗(k)− b) Λ2
0,2

− Λ0,3

2u∗(k)Λ2
0,2

− Λ1,1 (b− 2u∗(k)) + 3

u∗(k) (u∗(k)− b) Λ0,2
− b2

u∗(k)2 (u∗(k)− b)
2
Λ0,2

. (2.2.8)

For ease of notation we write Λi and Λi,l in place of Λi (u
∗(k)) and Λi,l (u

∗(k)). The domains of

definition of Ab and Āb exclude the set {Λ0,1(0),Λ0,1(b)} = {k ∈ R : u∗(k) ∈ {0, b}}. For all k in

this domain, Λ0,2(u
∗(k)) > 0 by Assumption 2.2.1(iv), so that Ab and Āb are both well defined

real-valued functions.

2.2.1.2 Main theorem and corollaries

The following theorem on asymptotics of option prices is the main result of the chapter. A quick

glimpse at the proof of Theorem 2.2.4 in Section 2.5.1 shows that this result can be extended to

any arbitrary order.
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Theorem 2.2.4. Let (Yε)ε>0 satisfy Assumption 2.2.1, and f : R+ → R+ be a function sat-

isfying (2.2.7) with constant c ∈ Do
0 ∩ R+. Then the following expansion holds for all k ∈

R\{Λ0,1(0),Λ0,1(c)} as ε ↓ 0:

e−Λ∗(k)/ε+kf(ε)+Λ1Āc(k, ε)
[
Ac(k, ε) +O

(
ε2
)]

=


E
(
eYεf(ε) − ekf(ε)

)+
, if k > Λ0,1(c),

E
(
ekf(ε) − eYεf(ε)

)+
, if k < Λ0,1(0),

−E
(
eYεf(ε) ∧ ekf(ε)

)
, if k ∈ (Λ0,1(0),Λ0,1(c)).

The expansion does not hold at the strikes {Λ0,1(0),Λ0,1(c)} (these points are not in the strip of

regularity of the Fourier transforms) and a different method needs to be used to obtain asymptotics.

This is done in the large-maturity case for the Heston model in Chapter 4. Using Put-Call parity,

the theorem can also be read as an expansion for European Call options (or for Put options) for

all strikes, except at the two points Λ0,1(0) and Λ0,1(c):

Corollary 2.2.5. Under the assumptions of Theorem 2.2.4, we have, for k ∈ R\{Λ0,1(0),Λ0,1(c)},

as ε ↓ 0:

E
(
eYεf(ε) − ekf(ε)

)+
= eΛε(f(ε)ε)/ε11{k<Λ0,1(c)} − ekf(ε)11{k<Λ0,1(0)}

+ e−Λ∗(k)/ε+kf(ε)+Λ1Āc(k, ε)
[
Ac(k, ε) +O

(
ε2
)]
.

2.2.2 Forward-start option asymptotics

We now specialise Theorem 2.2.4 to forward-start option asymptotics. For a stochastic pro-

cess (Xt)t≥0, we recall (Definition (1.0.3)), that for any t ≥ 0, we define (pathwise) the forward

price process (X
(t)
τ )τ≥0 by X

(t)
τ := Xt+τ −Xt.

2.2.2.1 Diagonal small-maturity asymptotics

We first consider asymptotics when both t and τ are small, which we term diagonal small-maturity

asymptotics. Set (Yε) := (X
(εt)
ετ ) and f ≡ 1. Then c = 0 and the following corollary follows from

Theorem 2.2.4:

Corollary 2.2.6. If (X
(εt)
ετ )ε>0 satisfies Assumption 2.2.1, then the following holds for all k ∈

R\{Λ0,1(0)}, as ε ↓ 0:

e−Λ∗(k)/ε+k+Λ1ε3/2

u∗(k)2
√
2πΛ0,2

(
1 +

(
Υ(0, k) +

1

u∗(k)

)
ε+O

(
ε2
))

=

 E
(
eX

(εt)
ετ − ek

)+
, if k > Λ0,1(0),

E
(
ek − eX

(εt)
ετ

)+
, if k < Λ0,1(0).

In the Black-Scholes model, all the quantities above can be computed explicitly and we obtain

the following lemma. Note the exact agreement here and in Lemma D.0.10 (when τ̃ ≡ 1) which

was derived using independent methods.
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Corollary 2.2.7. In the BSM model (1.0.1) the following expansion holds for all k ∈ R∗, as ε ↓ 0:

ek/2−k
2/(2Σ2τε)

(
Σ2τε

)3/2
k2

√
2π

[
1−

(
3

k2
+

1

8

)
Σ2τε+O(ε2)

]
=

 E
(
eX

(εt)
ετ − ek

)+
, if k > 0,

E
(
ek − eX

(εt)
ετ

)+
, if k < 0.

Proof. For the rescaled (forward) process (X
(εt)
ετ )ε>0 in the BSM model (1.0.1) we have Λε(u) =

Λ0(u) + εΛ1(u) for u ∈ R, where Λ0(u) = u2σ2τ/2 and Λ1(u) = −uσ2τ/2. It follows that

Λ0,1(u) = uσ2τ , Λ0,2(u) = σ2τ and Λ1,1(u) = −σ2τ/2. For any k ∈ R, u∗(k) := k/(σ2τ) is the

unique solution to the equation Λ0,1(u
∗(k)) = k and Λ∗(k) = k2/(2σ2τ). Λ0 is essentially smooth

and strictly convex on R and the BSM model satisfies the other conditions in Assumption 2.2.1.

Since Λ0,1(0) = 0, the result follows from Corollary 2.2.6.

It is natural to wonder why we considered diagonal small-maturity asymptotics and not the

small-maturity asymptotic of σt,τ for fixed t > 0. In this case it turns out that in many cases of

interest (stochastic volatility models, time-changed exponential Lévy models), the forward smile

blows up to infinity (except at-the-money) as τ tends to zero. However under the assumptions

given above, this degenerate behaviour does not occur in the diagonal small-maturity regime (Corol-

lary 2.2.6). In the Heston case, this explosive behaviour will be studied in Chapter 3. More gen-

erally this will be explored in Chapter 5, but we can provide a preliminary conjecture explaining

the origin of this behaviour. Consider a two-state Markov-chain dXt = −1
2V dt+

√
V dWt, starting

at X0 = 0, where W is a standard Brownian motion and where V is independent of W and takes

value V1 with probability p ∈ (0, 1) and value V2 ∈ (0, V1) with probability 1− p. Conditioning on

V and by the independence assumption, we have

E
(
eu(Xt+τ−Xt)

)
= peV1uτ(u−1)/2 + (1− p)eV2uτ(u−1)/2, for all u ∈ R.

Consider now the small-maturity regime where ε = τ , f(ε) ≡ 1 and Yε := X
(t)
ε for a fixed t > 0.

In this case an expansion for the re-scaled cgf in (2.2.2) as τ tends to zero is given by

Λε(u) = τ logE
(
eu(Xt+τ−Xt)/τ

)
=
V1
2
u2 + τ log

(
pe−V1u/2

)
+ τO

(
e−u

2(V1−V2)/(2τ)
)
,

for all u ∈ R. Since V1 > V2 the remainder tends to zero exponentially fast as τ ↓ 0. The assump-

tions of Theorem 2.2.4 are clearly satisfied and a simple calculation shows that limτ↓0 σt,τ (k) =
√
V1. This example naturally extends to n-state Markov chains, and a natural conjecture is that

the small-maturity forward smile does not blow up if and only if the quadratic variation of the

process is bounded. In practice, most models have unbounded quadratic variation (see examples

in Section 2.3), and hence the diagonal small-maturity asymptotic is a natural scaling.

2.2.2.2 Large-maturity asymptotics

We now consider large-maturity asymptotics, when τ is large and t is fixed. Consider (Yε) :=

(εX
(t)
1/ε), ε := 1/τ and f(ε) ≡ 1/ε (so that c = 1). Theorem 2.2.4 then applies and we obtain the
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following expansion for forward-start options:

Corollary 2.2.8. If (τ−1X
(t)
τ )τ>0 satisfies Assumption 2.2.1 with ε = τ−1 and 1 ∈ Do

0, then the

following expansion holds for all k ∈ R\{Λ0,1(0),Λ0,1(1)} as τ ↑ ∞:

e−τ(Λ
∗(k)−k)+Λ1τ−1/2

u∗(k) (u∗(k)− 1)
√
2πΛ0,2

(
1 +

Υ(1, k)

τ
+O

(
1

τ2

))

=


E
(
eX

(t)
τ − ekτ

)+
, if k > Λ0,1(1),

E
(
ekτ − eX

(t)
τ

)+
, if k < Λ0,1(0),

−E
(
eX

(t)
τ ∧ ekτ

)
, if k ∈ (Λ0,1(0),Λ0,1(1)).

In the Black-Scholes model, all the quantities above can be computed in closed form, and we

obtain:

Corollary 2.2.9. In the BSM model (1.0.1) the following expansion holds for all k ∈ R\
{
−Σ2/2,Σ2/2

}
as τ ↑ ∞:

e
−τ

(
(k+Σ2/2)

2
/(2Σ2)−k

)
4Σ3

(4k2 − Σ4)
√
2πτ

(
1−

4Σ2
(
Σ4 + 12k2

)
(4k2 − Σ4)

2
τ

+O
(

1

τ2

))

=


E
(
eX

(t)
τ − ekτ

)+
, if k > 1

2Σ
2,

E
(
ekτ − eX

(t)
τ

)+
, if k < −1

2Σ
2,

−E
(
eX

(t)
τ ∧ ekτ

)
, if k ∈ (− 1

2Σ
2, 12Σ

2).

Proof. Consider the process (X
(t)
τ /τ)τ>0 and set ε = τ−1. In the BSM model (1.0.1), Λε(u) :=

τ−1 logE(exp(uX(t)
τ )) = Λ0(u) = 1

2Σ
2u(u − 1). Thus Λ0,1(u) = Σ2 (u− 1/2) and Λ0,2(u) = Σ2.

For any k ∈ R, Λ0,1(u
∗(k)) = k has a unique solution u∗(k) = 1/2 + k/Σ2 and hence Λ∗(k) =(

k +Σ2/2
)2
/(2Σ2). Λ0 is essentially smooth and strictly convex on R and Assumption 2.2.1 is

satisfied. Since {0, 1} ⊂ Do
0 the result follows from Corollary 2.2.8.

2.2.3 Forward smile asymptotics

We now translate the forward-start option expansions above into asymptotics of the forward implied

volatility smile k 7→ σt,τ (k), which was defined in (1.0.5).
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2.2.3.1 Diagonal small-maturity forward smile

We first focus on the diagonal small-maturity case. For i = 0, 1, 2 we define the functions vi :

R∗ × R+ × R∗
+ → R by

v0(k, t, τ) :=
k2

2τΛ∗(k)
,

v1(k, t, τ) :=
v0(k, t, τ)

2τ

k

[
1 +

2

k
log

(
k2eΛ1(u

∗(k))

u∗(k)2
√
Λ0,2(u∗(k)) (τv0(k, t, τ))

3/2

)]
,

v2(k, t, τ) :=
2τ2v30(k, t, τ)

k2

(
3

k2
+

1

8

)
+

2τv20(k, t, τ)

k2

(
Υ(0, k) +

1

u∗(k)

)
+
v21(k, t, τ)

v0(k, t, τ)
− 3τ

k2
v0(k, t, τ)v1(k, t, τ),

(2.2.9)

where Λ∗, u∗, Λi,l, Υ are defined in (2.2.3), (2.2.5), (2.2.4), (2.2.8). The diagonal small-maturity

forward smile asymptotic is now given in the following proposition, proved in Section 2.5.1.

Proposition 2.2.10. Suppose that (X
(εt)
ετ )ε>0 satisfies Assumption 2.2.1 and that Λ0,1(0) = 0

(defined in (2.2.4)). The following expansion then holds for all k ∈ R∗ as ε tends to zero:

σ2
εt,ετ (k) = v0(k, t, τ) + v1(k, t, τ)ε+ v2(k, t, τ)ε

2 +O
(
ε3
)
. (2.2.10)

When Λ0,1(0) = 0 then Λ∗(k) > 0 for k ∈ R∗ and Λ∗(0) = 0 from Assumption 2.2.1(iii) and

Lemma 2.2.2(iii) (with a = 0 ∈ Do
0) so that v0 is always strictly positive, and all the vi (i = 0, 1, 2)

are well defined on R∗.

2.2.3.2 Large-maturity forward smile

In the large-maturity case, define for i = 0, 1, 2, the functions v∞i : R\{Λ0,1(0),Λ0,1(1)}×R+ → R

by

v∞0 (k, t) :=

 2
(
2Λ∗(k)− k − 2

√
Λ∗(k)(Λ∗(k)− k)

)
, if k ∈ R\ [Λ0,1(0),Λ0,1(1)] ,

2
(
2Λ∗(k)− k + 2

√
Λ∗(k)(Λ∗(k)− k)

)
, if k ∈ (Λ0,1(0),Λ0,1(1)) ,

(2.2.11)

and

v∞1 (k, t) :=
8v∞0 (k, t)2

4k2 − v∞0 (k, t)2

(
Λ1(u

∗(k))

+ log

(
4k2 − v∞0 (k, t)2

4(u∗(k)− 1)u∗(k)v∞0 (k, t)3/2
√
Λ0,2(u∗(k))

))
,

v∞2 (k, t) :=
4

v∞0 (k, t) (v∞0 (k, t)2 − 4k2)
3

[
8k4v∞1 (k, t)v∞0 (k, t)2 (v∞1 (k, t) + 6)

− 16k6v∞1 (k, t)2 − 2Υ(1, k)v∞0 (k, t)3
(
v∞0 (k, t)2 − 4k2

)2
− k2v∞0 (k, t)4

(
96 + v∞1 (k, t)2 + 8v∞1 (k, t)

)
− v∞0 (k, t)6 (v∞1 (k, t) + 8)

]
.

(2.2.12)
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The quantities Λ∗, u∗, Λi,l, Υ are defined in (2.2.3), (2.2.5), (2.2.4), (2.2.8). The large-maturity

forward smile asymptotic is given in the following proposition, proved in Section 2.5.1. When t = 0

in (2.2.10) and (2.2.13) below, we recover—and improve—the asymptotics in [60, 62, 63, 64, 65, 95].

Proposition 2.2.11. Suppose that (τ−1X
(t)
τ )τ>0 satisfies Assumption 2.2.1, with ε = τ−1 and

that 1 ∈ Do
0 and Λ0(1) = 0 (all defined in Assumption 2.2.1). The following then holds for all

k ∈ R\{Λ0,1(0),Λ0,1(1)} as τ tends to infinity:

σ2
t,τ (kτ) = v∞0 (k, t) + v∞1 (k, t)τ−1 + v∞2 (k, t)τ−2 +O(τ−3). (2.2.13)

Remark 2.2.12. It is interesting to note that the (strict) martingale property (Λ0(1) = 0) is only

required in Proposition 2.2.11 and not in Proposition 2.2.10 and Theorem 2.2.4.

Since {0, 1} ⊂ Do
0 and Λ0(1) = Λ0(0) = 0, we always have Λ∗(k) ≥ max(0, k) from Lemma 2.2.2(iii).

One can also check that 0 < v∞0 (k, t) < 2|k| for k ∈ R\ [Λ0,1(0),Λ0,1(1)] and v∞0 (k, t) > 2|k|

for k ∈ (Λ0,1(0),Λ0,1(1)). This implies that the functions v∞i (i = 0, 1, 2) are always well

defined. By Assumption 2.2.1 and Lemma 2.2.2(iii) we have Λ∗(Λ0,1(0)) = 0. Again from

Lemma 2.2.2(iii) this implies that Λ∗(Λ0,1(1)) = Λ0,1(1). Hence v∞0 (·, t) is continuous on R with

v∞0 (Λ0,1(1), t) = 2Λ0,1(1) and v
∞
0 (Λ0,1(0), t) = −2Λ0,1(0). The functions v∞1 (·, t) and v∞2 (·, t) are

undefined on {Λ0,1(0),Λ0,1(1)}. However, it can be shown that since Λ0 is strictly convex (As-

sumption 2.2.1) and Λ0(1) = 0 all limits are well defined and hence both functions can be extended

by continuity to R. For example, using Taylor expansions in neighbourhoods of these points yields:

lim
k→p

v∞1 (k, t) = 2− 2

√
v∞0 (p, t)

Λ0,2(u∗(p))

(
1 + sgn(p)

(
Λ0,3(u

∗(p))

6Λ0,2(u∗(p))
− Λ1,1(u

∗(p))

))
,

for p ∈ {Λ0,1(0),Λ0,1(1)}, which, for t = 0, agrees with Theorem 4.4.1 and [65, Equation (3.2)] for

the specific case of the Heston model (1.3.2).

2.2.3.3 Type-II forward smile

As mentioned on Page 13, another type of forward-start option has been considered in the literature.

We show here that the forward implied volatility expansions proved above carry over in this case

with some minor modifications. The following corollary shows how the Type-II forward smile

σ̃t,τ (defined in (1.0.6)) can be incorporated into our framework. The proof follows directly from

Proposition 1.4.3(i) and is therefore omitted.

Corollary 2.2.13. If
(
eXt
)
t≥0

is an (Ft)-martingale under P, then Propositions 2.2.10 and 2.2.11

hold for the Type-II forward smile σ̃t,τ with the cgf (2.2.1) calculated under P̃ (defined in (1.4.4)).
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2.3 Applications

2.3.1 Heston

In this section, we apply our general results to the Heston model (1.3.2). In Section 2.3.1.1 we

focus on diagonal small-maturity asymptotics and in Section 2.3.1.2 we focus on large-maturity

asymptotics.

2.3.1.1 Diagonal Small-Maturity Heston Forward Smile

The objective of this section is to apply Proposition 2.2.10 to the Heston forward smile, namely

Proposition 2.3.1. In Heston, Corollary 2.2.6 and Proposition 2.2.10 hold with D0 = Kt,τ ,

Λ0 = Ξ, Λ1 = L.

This proposition is proved in Section 2.5.2.1, and all the functions therein are defined as follows.

We set Ξ : Kt,τ × R+ × R∗
+ → R as

Ξ(u, t, τ) :=
uv

ξ
(
ρ̄ cot

(
1
2ξρ̄τu

)
− ρ
)
− 1

2ξ
2tu

, Kt,τ :=

{
u ∈ R : Ξ(u, 0, τ) <

2v

ξ2t

}
, (2.3.1)

with ρ̄ :=
√
1− ρ2 and the functions L,L0, L1 : Kt,τ × R+ × R∗

+ → R are defined as

L(u, t, τ) := L0(u, τ) + Ξ(u, t, τ)2
(
vL1(u, τ)

Ξ(u, 0, τ)2
− κξ2t2

4v

)
− Ξ(u, t, τ)κt

−2κθ

ξ2
log

(
1− Ξ(u, 0, τ)ξ2t

2v

)
,

L0(u, τ) :=
κθ

ξ2

(
(iξρ− d0)iτu− 2 log

(
1− g0e

−id0τu

1− g0

))
,

L1(u, τ) :=
exp(−id0τu)

ξ2 (1− g0e−id0τu)

[
(iξρ− d0)id1τu+ (d1 − κ)

(
1− eid0τu

)
+

(iξρ− d0)
(
1− e−id0τu

)
(g1 − id1g0τu)

1− g0e−id0τu

]
,

(2.3.2)

with

d0 := ξρ̄, d1 :=
i (2κρ− ξ)

2ρ̄
, g0 :=

iρ− ρ̄

iρ+ ρ̄
and g1 :=

2κ− ξρ

ξρ̄ (ρ̄+ iρ)
2 .

For any t ≥ 0, τ > 0 the functions L0 and L1 are well defined real-valued functions for all u ∈ Kt,τ
(see Remark 2.5.10 for technical details). Also since Ξ(0, t, τ)/Ξ(0, 0, τ) = 1, L is well defined at

u = 0. In order to gain some intuition on the role of the Heston parameters on the forward smile

we expand (2.2.10) around the at-the-money point in terms of the log-strike k:

Corollary 2.3.2. The following expansion holds for the Heston forward smile as ε and k tend to

zero:

σ2
εt,ετ (k) = v+εν0(t, τ)+

(
ρξ

2
+ εν1(t, τ)

)
k+

(
(4− 7ρ2)ξ2

48v
+
ξ2t

4τv
+ εν2(t, τ)

)
k2+O(k3)+O(ε2).
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The corollary is proved in Section 2.5.2.1, and the functions appearing in it are defined as

follows:

ν0(t, τ) :=
τ

48

(
24κθ + ξ2

(
ρ2 − 4

)
+ 12v(ξρ− 2κ)

)
− t

4

(
ξ2 + 4κ (v − θ)

)
,

ν1(t, τ) :=
ρξτ

24v

[
ξ2
(
1− ρ2

)
− 2κ (v + θ) + ξρv

]
+
ρξ3t

8v
,

ν2(t, τ) :=
[
80κθ

(
13ρ2 − 6

)
+ ξ2

(
521ρ4 − 712ρ2 + 176

)
+ 40ρ2v (ξρ− 2κ)

] ξ2τ

7680v2

− ξ2t

192v2

[
4κθ

(
16− 7ρ2

)
+
(
7ρ2 − 4

) (
9ξ2 + 4κv

) ]
+
ξ2t2

32τv2

(
4κ (v − 3θ) + 9ξ2

)
.

(2.3.3)

Remark 2.3.3. The following remarks should convey some practical intuition about the results

above:

(i) For t = 0 this expansion perfectly lines up with [64, Corollary 4.3].

(ii) Corollary 2.3.2 implies σεt,ετ (0) = σ0,ετ (0) − εt
8
√
v

(
ξ2 + 4κ(v − θ)

)
+ O(ε2), as ε ↓ 0. For

small enough ε, the spot at-the-money volatility is higher than the forward if and only if

ξ2 + 4κ(v − θ) > 0. In particular, when v ≥ θ, the difference between the forward at-the-

money volatility and the spot one is increasing in the forward-start date and volatility of

variance ξ. In Figure 2.2 we plot this effect using θ = v and θ > v + ξ2/(4κ). The relative

values of v and θ impact the level of the forward smile vs spot smile.

(iii) For practical purposes, we can deduce some information on the forward skew by loosely

differentiating Corollary 2.3.2 with respect to k:

∂kσεt,ετ (0) =
ξρ

4
√
v
+

(4ν1(t, τ)v − ξρν0(t, τ))

8v3/2
ε+O(ε2).

(iv) Likewise an expansion for the Heston forward convexity as ε tends to zero is given by

∂2kσεt,ετ (0) =
ξ2((2− 5ρ2)τ + 6t)

24τv3/2

− ν0(t, τ)ξ
2(3t+ (1− 4ρ2)τ) + 6τv(ρξν1(t, τ)− 4ν2(t, τ)v)

24τv5/2
ε+O(ε2),

and in particular ∂2kσεt,ετ (0) = ∂2kσ0,ετ (0) + ξ2t/(4τv3/2) + O(ε). For fixed maturity the

forward convexity is always greater than the spot implied volatility convexity (see Figure 2.2)

and this difference is increasing in the forward-start dates and volatility of variance. At

zeroth order in ε the wings of the forward smile increase to arbitrarily high levels with

decreasing maturity (see Figure 2.1(a)). This effect has been mentioned qualitatively by

practitioners [36]. As it turns out for fixed t > 0 the Heston forward smile blows up to

infinity (except at-the-money) as the maturity tends to zero, see Chapter 3 for details.

In the Heston model, (eXt)t≥0 is a true martingale [5, Proposition 2.5]. Applying Corol-

lary 2.2.13 with Lemma 1.4.8, giving the Heston forward cgf under the stopped-share-price mea-

sure (1.4.4), we derive the following asymptotic for the Type-II Heston forward smile σ̃t,τ :
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Corollary 2.3.4. The diagonal small-maturity expansion of the Heston Type-II forward smile as

ε and k tend to zero is the same as the one in Corollary 2.3.2 with ν0, ν1 and ν2 replaced by ν̃0,

ν̃1 and ν̃2, where

ν̃0(t, τ) : = ν0(t, τ) + ξρvt, ν̃1(t, τ) := ν1(t, τ),

ν̃2(t, τ) : = ν2(t, τ) +
ρξ3t

48v

(
7ρ2 − 4

)
− ρξ3t2

8vτ
.

Its proof is analogous to the proofs of Proposition 2.3.1 and Corollary 2.3.2, and is therefore

omitted. Note that when ρ = 0 or t = 0, νi = ν̃i (i = 1, 2, 3), and the Heston forward smiles Type-I

and Type-II are the same, in exact agreement with Proposition 1.4.4.
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(a) Small-maturity forward smile explosion.
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(b) Type I vs Type II forward smile.

Figure 2.1: (a): Forward smiles with forward-start date t = 1/2 and maturities τ =

1/6, 1/12, 1/16, 1/32 given by circles, squares, diamonds and triangles respectively using the He-

ston parameters (v, θ, κ, ρ, ξ) = (0.07, 0.07, 1,−0.6, 0.5) and the asymptotic in Proposition 2.3.1.

(b): Type I (circles) vs Type 2 (squares) forward smile with t = 1/2, τ = 1/12 and the Heston

parameters (v, θ, κ, ρ, ξ) = (0.07, 0.07, 1,−0.2, 0.34) using Corollaries 2.3.2 and 2.3.4.
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Figure 2.2: Forward smile vs spot smile with v = θ and θ > v + ξ2/(4κ). Circles (t = 0, τ = 1/12)

and squares (t = 1/2, τ = 1/12) use the Heston parameters v = θ = 0.07,κ = 1, ρ = −0.6, ξ = 0.3.

Diamonds (t = 0, τ = 1/12) and triangles (t = 1/2, τ = 1/12) use the same parameters but with

θ = 0.1. Plots use the asymptotic in Proposition 2.3.1.



2.3. Applications 61

2.3.1.2 Large-maturity Heston forward smile

Our main result here is Proposition 2.3.5, which is an application of Proposition 2.2.11 to the

Heston forward smile. In order to apply this result we first define a number of regimes depending

on the Heston correlation. Define the real numbers ρ− and ρ+ by

ρ± :=
e−2κt

(
ξ(e2κt − 1)± (eκt + 1)

√
16κ2e2κt + ξ2(1− eκt)2

)
8κ

, (2.3.4)

and note that −1 ≤ ρ− < 0 < ρ+ with ρ± = ±1 if and only if t = 0. We now define the

large-maturity regimes:

R1 : Good correlation regime: ρ− ≤ ρ ≤ min(ρ+, κ/ξ);

R2 : Asymmetric negative correlation regime: −1 < ρ < ρ− and t > 0;

R3 : Asymmetric positive correlation regime: ρ+ < ρ < 1 and t > 0;

R3a : ρ ≤ κ/ξ;

R3b : ρ > κ/ξ;

R4 : Large correlation regime: κ/ξ < ρ ≤ min(ρ+, 1).

(2.3.5)

In the standard case t = 0, R1 corresponds to κ ≥ ρξ and R4 is its complement. We now define

the following quantities:

u± :=
ξ − 2κρ± η

2ξ(1− ρ2)
and u∗± :=

ψ ± ν

2ξ(eκt − 1)
, (2.3.6)

with

η :=
√
ξ2(1− ρ2) + (2κ− ρξ)2, ν :=

√
ψ2 − 16κ2eκt, ψ := ξ(eκt − 1)− 4κρeκt, (2.3.7)

as well as the interval KH ⊂ R defined in Table 2.1. Note that ν defined in (2.3.7) is a well defined

R1 R2 R3a R3b R4

KH [u−, u+] [u−, u
∗
+) (u∗−, u+] (u∗−, 1] (u−, 1]

Table 2.1: Limiting domains in each large-maturity regime.

real number for all ρ ∈ [−1, ρ−] ∪ [ρ+, 1]. We define the real-valued functions V and H from KH

to R by

V (u) :=
κθ

ξ2
(κ− ρξu− d(u)) and H(u) :=

V (u)ve−κt

κθ − 2βtV (u)
− 2κθ

ξ2
log

(
κθ − 2βtV (u)

κθ (1− γ (u))

)
, (2.3.8)

with d, βt and γ defined in (1.3.6), (1.3.4) and (1.3.8). For any k ∈ R the (saddlepoint) equation

V ′(q∗(k)) = k has a unique solution q∗(k) ∈ (u−, u+):

q∗(k) :=
ξ − 2κρ+ (κθρ+ kξ) η

(
k2ξ2 + 2kκθρξ + κ2θ2

)−1/2

2ξ (1− ρ2)
. (2.3.9)
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Further let V ∗ : R → R+ denote the Fenchel-Legendre transform of V :

V ∗(k) := sup
u∈KH

{uk − V (u)} , for all k ∈ R. (2.3.10)

In Regime R1, V
∗ is given in closed-form as V ∗(k) = q∗(k)k − V (q∗(k)). (See Lemma 4.2.1 for

further details). The following proposition gives the large-maturity Heston forward smile in Regime

R1 (the good correlation regime), and its proof is postponed to Section 2.5.2.2.

Proposition 2.3.5. If ρ− ≤ ρ ≤ min (ρ+, κ/ξ), then Corollary 2.2.8 and Proposition 2.2.11 hold

with Λ0 = V , Λ∗ = V ∗, u∗ = q∗, Λ1 = H, Λ2 = 0 and D0 = [u−, u+].

Remark 2.3.6.

(i) In the Heston model there is no t-dependence for v∞0 in (2.2.13) since V ∗ does not depend

on t. Therefore under the conditions of the proposition, the limiting (zeroth order) smile is

exactly of SVI form (see [73]).

(ii) For all other regimes in (2.3.5) the essential smoothness property in Assumption 2.2.1(iv)

is not satisfied (and 1 /∈ KoH in Regimes R3b and R4) and a different strategy needs to be

employed to derive a sharp large deviations result for large-maturity forward-start options.

We leave this analysis for Chapter 4.

(iii) t = 0 implies that ρ± = ±1 and Proposition 2.3.5 extends the large-maturity asymptotics

in [63, 65].

(iv) For practical purposes, note that ρ ∈ [0,min(1/2, κ/ξ)] is always satisfied under the assump-

tions of the proposition.

(v) Even though the function V ∗ does not depend on t, ρ± and the function H do (see the

at-the-money example below). That said, to zeroth order and correlation close to zero, the

large-maturity forward smile is the same as the large-maturity spot smile. This is a very

different result compared to the Heston small-maturity forward smile (see Remark 2.3.3(iv)),

where large differences emerge between the forward smile and the spot smile at zeroth order.

We now give an example illustrating some of the differences between the Heston large-maturity

forward smile and the large-maturity spot smile due to first-order differences in the asymp-

totic (2.2.13). This ties in with Remark 2.3.6(v). Specifically we look at the forward at-the-

money volatility which, when using Proposition 2.3.5 with ρ− ≤ ρ ≤ min (ρ+, κ/ξ), satisfies
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σ2
t,τ (0) = v∞0 (0) + v∞1 (0, t)/τ +O

(
1/τ2

)
, as τ tends to infinity, with

v∞0 (0) =
4θκ(η − 2κ+ ξρ)

ξ2 (1− ρ2)
,

v∞1 (0, t) =
16κv (ρξ − 2κ+ η)

∆ξ2
+

16κθ

ξ2
log

(
∆e−κt

(
2κ− ξρ+

(
1− 2ρ2

)
η
)

8κ (1− ρ2)
2
η

)

− 8 log

(
ξ
(
1− ρ2

)3/2√
η (2ξρ− 4κ+ 2η)

(ξ (1− 2ρ2)− ρ(η − 2κ)) (ρ(η − 2κ) + ξ)

)
;

η is defined in (2.3.7) and ∆ := 2κ
(
1 + eκt

(
1− 2ρ2

))
− (1− eκt) (ρξ + η). To get an idea of

the t-dependence of the at-the-money forward volatility we set ρ = 0 (since Proposition 2.3.5

is valid for correlations near zero) and perform a Taylor expansion of v∞1 (0, t) around t = 0:

v∞1 (0, t) = v∞1 (0, 0) +

(
2θ

1+
√

1+ξ2/4κ2
− v

)
t + O

(
t2
)
. When v ≥ θ then at this order the large

τ -maturity forward at-the-money volatility is lower than the corresponding large τ -maturity at-

the-money implied volatility and this difference is increasing in t and in the ratio ξ/κ. This is

similar in spirit to Remark 2.3.3(ii) for the small-maturity Heston forward smile.

2.3.2 Schöbel-Zhu

In this Section we apply our general results to the Schöbel-Zhu (SZ) stochastic volatility model (1.3.10).

The forward cgf for the SZ model was derived in Lemma 1.3.3. The analysis in this section is sim-

ilar to the diagonal small-maturity Heston one and we therefore omit the proofs, only highlighting

the similarities and differences between the two models.

Proposition 2.3.7. In the Schöbel-Zhu model Corollary 2.2.6 and Proposition 2.2.10 hold with

D0 = Kt,τ and Λ0 = Ξ, where Kt,τ and Ξ are defined in 2.3.1.

At zeroth order in ε the SZ diagonal small-maturity forward smile is the same as in Heston mod-

ulo a re-scaling of the volatility of volatility. The first-order asymptotic is used in Corollary 2.3.8

below to highlight differences with the Heston model. In order to gain some intuition on the role

of the Schöbel-Zhu parameters on the forward smile we expand our solution (to first order in ε)

around the at-the-money point in terms of the log-strike k.

Corollary 2.3.8. The following expansion holds for the Schöbel-Zhu forward smile as ε and k

tend to zero:

σ2
εt,ετ (k) = v+εν0(t, τ)+

(
ξρ

2
+ εν1(t, τ)

)
k+

(
(4− 7ρ2)ξ2

48v
+
ξ2t

4τv
+ εν2(t, τ)

)
k2+O(k3)+O(ε2),
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where

ν0(t, τ) := τ

(
1

48
ξ2
(
ρ2 + 2

)
+ κθ

√
v +

1

4
v(ξρ− 4κ)

)
+ 2κt

√
v
(
θ −

√
v
)
,

ν1(t, τ) :=
ρξτ

(
ξ2
(
1− 2ρ2

)
− 8κv + 2ξρv

)
48v

+
ξ3ρt

8v
,

ν2(t, τ) :=
( (

521ρ4 − 452ρ2 + 56
)
ξ2 + 480κθ

√
v
(
2ρ2 − 1

)
+ 40ρ2v(ρξ − 4κ)

) ξ2τ

7680v2

− ξ2t

48v2

( (
14ρ2 − 5

)
ξ2 + 2κθ

√
v
(
10− 7ρ2

)
+ 2κv

(
7ρ2 − 4

) )
+

ξ2t2

16τv2

(
3ξ2

+ 4κ
√
v
(√
v − 2θ

) )
.

Remark 2.3.9. At this order we can make the following remarks concerning the SZ forward smile:

(i) Remark 2.3.3(iv) for the Heston forward smile also applies to the SZ forward smile.

(ii) The forward ATM volatility has a different dependence on the volatility of volatility ξ in

Heston and SZ. In Heston (Remark 2.3.3(ii)), σεt,ετ (0) − σ0,ετ (0) is decreasing in ξ. In SZ,

Corollary 2.3.8 implies σεt,ετ (0) = σ0,ετ (0) + (θ −
√
v)κtε + O(ε2), as ε ↓ 0, which does

not depend on ξ (up to an error of order O(ε2)). For realistic parameter choices (ρ ≤ 0)

the Heston ATM forward volatility is decreasing in ξ while (for example when ξ > 2v) it is

increasing in ξ in SZ and the impact is small. This effect is illustrated in Figure 2.3.

An analysis analogous to that of the Heston model can be conducted for the large-maturity SZ

forward smile, but we omit it here for brevity.
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(a) Heston forward smile ξ dependence
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(b) SZ forward smile ξ dependence

Figure 2.3: Here t = 1/2 and τ = 1/12 and we apply Corollaries 2.3.8 and 2.3.2. Circles use the

Heston parameters v = 0.07, θ = 0.07, κ = 1, ρ = −0.6, ξ = 0.3 and SZ parameters v = 0.07, θ =
√
0.07, κ = 1, ρ = −0.6, ξ = 0.3. Squares use the same parameters but with ξ = 0.4.

2.3.3 Time-changed exponential Lévy

Due to Lemma 1.4.1, the forward smile in exponential Lévy models is time-homogeneous in the

sense that σt,τ does not depend on t. This is not necessarily true in time-changed exponential



2.3. Applications 65

Lévy models as we shall now see. We shall consider here the two examples in Section 1.3.2 and we

briefly recall the set-up. We let N be a Lévy process with cgf given by logE
(
euNt

)
= tϕ(u) for

t ≥ 0 and u ∈ Kϕ := {u ∈ R : |ϕ(u)| <∞}. We consider models where X := (NVt)t≥0 pathwise

and the time-change is given by Vt :=
∫ t
0
vsds with v being a strictly positive process independent

of N . We shall consider the two examples where v is a Feller diffusion (1.3.11) and where it is a

Γ-OU process (1.3.12). We now define the functions V̂ and Ĥ from K̂∞ to R, and the functions Ṽ

and H̃ from K̃∞ to R by

V̂ (u) :=
κθ

ξ2

(
κ−

√
κ2 − 2ϕ(u)ξ2

)
,

Ĥ(u) :=
V̂ (u)ve−κt

κθ − 2βtV̂ (u)
− 2κθ

ξ2
log

(
κθ − 2βtV̂ (u)

κθ (1− γ(ϕ(u)))

)
,

Ṽ (u) :=
ϕ(u)λδ

αλ− ϕ(u)
,

H̃(u) :=
λαδ

αλ− ϕ(u)
log

(
1− ϕ(u)

αλ

)
+
ϕ(u)ve−λt

λ
+ d log

(
ϕ(u)− αλeλt

etλ(ϕ(u)− αλ)

)
,

(2.3.11)

where we set

K̂∞ :=
{
u : ϕ(u) ≤ κ2/(2ξ2)

}
, and K̃∞ := {u : ϕ(u) < αλ} ; (2.3.12)

ϕ is the Lévy exponent of N , βt and γ are defined in (1.3.14) and the other model parameters are

given in (1.3.11) and (1.3.12). The following proposition—proved in Section 2.5.3—is the main

result of the section.

Proposition 2.3.10. Suppose that ϕ is essentially smooth (Assumption 2.2.1(iv)), strictly convex

and of class C∞ on Koϕ with {0, 1} ⊂ Koϕ and ϕ(1) = 0. Then Corollary 2.2.8 and Proposition 2.2.11

hold:

(i) when v follows (1.3.11), with Λ0 = V̂ , Λ1 = Ĥ, Λ2 = 0 and D0 = K̂∞;

(ii) when v follows (1.3.12), with Λ0 = Ṽ , Λ1 = H̃, Λ2 = 0 and D0 = K̃∞;

(iii) when vt ≡ 1, with Λ0 = ϕ, Λ1 = 0, Λ2 = 0 and D0 = Kϕ.

Remark 2.3.11.

(i) If (Bt)t≥0 is a standard Brownian motion then the uncorrelated Heston model (1.3.2) can be

represented as Nt := −t/2+Bt time-changed by an integrated Feller diffusion (1.3.11). With

ϕ(u) ≡ u(u− 1)/2 and Kϕ = R, Proposition 2.3.10(i) agrees with Proposition 2.3.5.

(ii) The zeroth order large-maturity forward smile is the same as its corresponding zeroth order

large-maturity spot smile and differences only emerge at first order. It seems plausible that

this will always hold if there exists a stationary distribution for v and if v is independent of

the Lévy process N ;
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(iii) Case (iii) in the proposition corresponds to the standard exponential Lévy case (without

time-change).

We now use Proposition 2.3.10 to highlight the first-order differences in the large-maturity for-

ward smile (2.2.13) and the corresponding spot smile. If v follows (1.3.11) then a Taylor expansion

of v∞1 in (2.2.12) around t = 0 gives

v∞1 (t, k) = v∞1 (0, k) +
8v∞0 (k)2

4k2 − v∞0 (k)2
V̂ (u∗(k))

(
ξ2vV̂ (u∗(k))

2θ2κ2
+ 1− v

θ

)
t+O(t2),

for all k ∈ R \ {V̂ ′(0), V̂ ′(1)}. Using simple properties of v∞0 and V̂ we see that the large-maturity

forward smile is lower than the corresponding spot smile for k ∈ (V̂ ′(0), V̂ ′(1)) (which always

includes the at-the-money) if v ≥ θ. The forward smile is higher than the corresponding spot smile

for k ∈ R\(V̂ ′(0), V̂ ′(1)) (OTM options) if v ≤ θ, and these differences are increasing in ξ/κ and

t. This effect is illustrated in Figure 2.4 and k ∈ (V̂ ′(0), V̂ ′(1)) corresponds to strikes in the region

(0.98, 1.02) in the figure.

If v follows (1.3.12) then a simple Taylor expansion of v∞1 (·, k) in (2.2.12) around t = 0 gives

v∞1 (t, k) = v∞1 (0, k) +
8v∞0 (k)2

4k2 − v∞0 (k)2
ϕ(u∗(k)) [λ(δ − αv) + vϕ(u∗(k))]

αλ− ϕ(u∗(k))
t+O(t2),

for all k ∈ R \ {Ṽ ′(0), Ṽ ′(1)}. Similarly we deduce that the large-maturity forward smile is lower

than the corresponding spot smile for k ∈ (Ṽ ′(0), Ṽ ′(1)) if v ≥ δ/α. The forward smile is higher

than the corresponding spot smile for k ∈ R\(Ṽ ′(0), Ṽ ′(1)) (OTM options) if v ≤ δ/α, and these

differences are increasing in t.

If v follows (1.3.11) (respectively (1.3.12)) then the stationary distribution is a gamma dis-

tribution with mean θ (resp. δ/α), see [44, page 475 and page 487]. The above results seem to

indicate that the differences in level between the large-maturity forward smile and the correspond-

ing spot smile depend on the relative values of v0 and the mean of the stationary distribution of

the process v. This is also similar to Remark 2.3.3(ii) and the analysis below Remark 2.3.6 for the

Heston forward smile. These observations are also independent of the choice of ϕ indicating that

the fundamental quantity driving the non-stationarity of the large-maturity forward smile over the

corresponding spot implied volatility smile is the choice of time-change.

In the Variance-Gamma model [122], ϕ(u) ≡ µu+C log
(

GM
(M−u)(G+u)

)
, for u ∈ (−G,M), with

C > 0, G > 0, M > 1 and µ := −C log
(

GM
(M−1)(G+1)

)
ensures that (eXt)t≥0 is a true martin-

gale (ϕ(1) = 0). Clearly ϕ is essentially smooth, strictly convex and infinitely differentiable on

(−G,M) with {0, 1} ⊂ (−G,M); therefore Proposition 2.3.10 applies. For Proposition 2.3.10(iii),

the solution to ϕ′(u∗(k)) = k is u∗(µ) = (M −G)/2 and

u∗±(k) =
−2C − (G−M)(k − µ)±

√
4C2 + (G+M)2(k − µ)2

2(k − µ)
for all k ̸= µ.
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The sign condition (M − u) (G+ u) > 0 imposes −2C ±
√
4C2 + (G+M)2(k − µ)2 > 0 for all

k ̸= µ. Hence u∗+ (continuous on the whole real line) is the only valid solution and the rate function

is then given in closed-form as Λ∗(k) = ku∗+(k)− ϕ(u∗+(k)) for all real k.
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(a) Feller time-change: forward smile vs spot

smile v > θ.
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(b) Feller time-change: forward smile vs spot

smile v < θ.

Figure 2.4: Circles represent t = 0 and τ = 2 and squares represent t = 1/2 and τ = 2 us-

ing a Variance-Gamma model time-changed by a Feller diffusion and the asymptotic in Proposi-

tion 2.3.10. In (a) the parameters are C = 58.12, G = 50.5, M = 69.37, κ = 1.23, θ = 0.9, ξ = 1.6,

v = 1 and (b) uses the same parameters but with θ = 1.1.

2.4 Numerics

We compare here the true forward smile in various models and the asymptotics developed in

Propositions 2.2.10 and 2.2.11. We calculate forward-start option prices using the inverse Fourier

transform representation in Lemma 1.4.7 and a global adaptive Gauss-Kronrod quadrature scheme.

We then compute the forward smile σt,τ using a simple root search and compare it to the zeroth,

first and second order asymptotics given in Propositions 2.2.10 and 2.2.11 for various models. In

Figure 2.5 we compare the Heston diagonal small-maturity asymptotic in Proposition 2.3.1 with

the true forward smile. Figure 2.6 tests the accuracy of the Heston large-maturity asymptotic from

Proposition 2.3.5. In order to use this proposition we require ρ− ≤ ρ ≤ min (ρ+, κ/ξ) with ρ±

defined in (2.3.6). For the parameter choice in the figure we have ρ− = −0.65 and the condition is

satisfied. Finally in Figure 2.7 we consider the Variance Gamma model time-changed by a Γ-OU

process using Proposition 2.3.10. Results are in line with expectations and the higher the order of

the asymptotic the closer we match the true forward smile.
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(a) Heston diagonal small-maturity vs Fourier in-

version.
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Figure 2.5: In (a) circles, squares and diamonds represent the zeroth, first and second order

asymptotics respectively in Proposition 2.3.1 and triangles represent the true forward smile using

Fourier inversion. In (b) we plot the differences between the true forward smile and the asymptotic.

Here, t = 1/2, τ = 1/12, v = 0.07, θ = 0.07, κ = 1, ξ = 0.34, ρ = −0.8.
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(a) Heston Large-Maturity vs Fourier Inversion.
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Figure 2.6: In (a) circles, squares and diamonds represent the zeroth, first and second order

asymptotics respectively in Proposition 2.3.5 and triangles represent the true forward smile using

Fourier inversion. In (b) we plot the differences between the true forward smile and the asymptotic.

Here, t = 1, τ = 5, v = 0.07, θ = 0.07, κ = 1.5, ξ = 0.34, ρ = −0.25.

2.5 Proofs

2.5.1 Proofs of Section 2.2

2.5.1.1 Proof of Theorem 2.2.4

Our proof relies on several steps and is based on so-called sharp large deviations tools. We first

—as in classical large deviations theory—define an asymptotic measure-change allowing for weak

convergence of a rescaled version of (Yε)ε>0. In Lemma 2.5.1 we derive the asymptotics of the

characteristic function of this rescaled process under this new measure. The limit is a Gaussian
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(a) Γ-OU time-change large-maturity / Fourier

inversion.
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Figure 2.7: In (a) circles, squares and diamonds represent the zeroth, first and second order

asymptotics respectively in Proposition 2.3.10 and triangles represent the true forward smile using

Fourier inversion for a variance gamma model time-changed by a Γ-OU process. In (b) we plot the

differences between the true forward smile and the asymptotic. We use t = 1 and τ = 3 with the

parameters C = 6.5, G = 11.1, M = 33.4, v = 1, α = 0.6, d = 0.6, λ = 1.8.

characteristic function making all forthcoming computations analytically tractable. We then write

the option price as an expectation of the rescaled process under the new measure (see (2.5.11)),

and prove an inverse Fourier transform representation (Lemma 2.5.4) for sufficiently small ε. Split-

ting the integration domain (Equation (2.5.18)) of this inverse Fourier transform in two (compact

interval and tails), (a) we integrate term by term the compact part, and (b) we show that As-

sumption 2.2.1(v) implies that the tail part is exponentially small (Lemma 2.5.3). We now start

the analysis and define such a change of measure by

dQk,ε
dP

= exp

(
u∗(k)Yε

ε
− Λε (u

∗(k))

ε

)
, (2.5.1)

with u∗(k) defined in (2.2.5). By Lemma 2.2.2(i), u∗(k) ∈ Do
0 for all k ∈ R and so |Λε (u∗(k)) | is

finite for ε small enough since D0 = limε↓0{u ∈ R : |Λε (u) | <∞}. Also dQk,ε/dP is almost surely

strictly positive and E (dQk,ε/dP) = 1. Therefore (2.5.1) is a valid measure change for all k ∈ R.

We define the random variable

Zk,ε := (Yε − k)/
√
ε (2.5.2)

and set the characteristic function ΦZk,ε
: R → C of Zk,ε in the Qk,ε-measure as follows

ΦZk,ε
(u) = EQk,ε

(
eiuZk,ε

)
. (2.5.3)

Recall from Section 2.2 that Λi := Λi(u
∗(k)) and Λi,l := ∂luΛi(u)

∣∣
u=u∗(k)

; we first start with the

following important technical lemma.
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Lemma 2.5.1. The following expansion holds as ε ↓ 0:

ΦZk,ε
(u) =e−

Λ0,2u2

2

(
1 + η1(u)

√
ε+

(
η21(u)

2
+ η2(u)

)
ε+

(
η31(u)

6
+ η1(u)η2(u) + η3(u)

)
ε3/2

+R(u, ε)
)
,

with the functions ηi, i = 1, 2, 3 defined in (2.5.6) and R(u, ε) = O(ε2). Furthermore, for |u| ≤

ε−1/6, the remainder can be written R(u, ε) = max(1, |u|12)O(ε2) where O(ε2) is uniform in u.

Remark 2.5.2. By Lévy’s Convergence Theorem [147, Page 185, Theorem 18.1], Zk,ε defined

in (2.5.2) converges weakly to a normal random variable with mean 0 and variance Λ0,2 in the

Qk,ε-measure as ε tends to zero.

Proof. Using the measure change in (2.5.1) we write

log ΦZk,ε
(u) = logEP

(
dQk,ε
dP

eiuZk,ε

)
= logEP

[
exp

(
u∗(k)Yε

ε
− Λε(u

∗(k))

ε

)
exp

(
iu

√
ε

(
Yε
ε

)
− iku√

ε

)]
= −1

ε
Λε (u

∗(k))− iuk√
ε
+ logEP

[
exp

((
Yε
ε

)(
iu

√
ε+ u∗(k)

))]
= −iuk√

ε
+

1

ε

(
Λε
(
iu

√
ε+ u∗(k)

)
− Λε (u

∗(k))
)
. (2.5.4)

Since Λε is analytic [119, Theorem 7.1.1] on the set {z ∈ C : ℜ(z) ∈ Do
0} for ε small enough,

we have the Taylor expansion

log ΦZk,ε
(u) = −iuk√

ε
+

1

ε

5∑
n=1

Λ(n)
ε (u∗(k))

(iu
√
ε)n

n!
+

(iu
√
ε)6

6!

1

ε
Λ(6)
ε (u∗(k) + iA),

with A ∈ (−|u|
√
ε, |u|

√
ε) and where we have used the Lagrange form of the remainder in Taylor’s

theorem. By [128, Theorem 1.8.5] the asymptotic for Λε in 2.2.2 can be differentiated with respect

to u due to Assumption 2.2.1(ii) and therefore we write

log ΦZk,ε
(u) = −iuk√

ε
+

1

ε

5∑
n=1

(Λ0,n + Λ1,nε+ Λ2,nε
2)
(iu

√
ε)n

n!

+
1

ε

5∑
n=1

O(ε3)
(iu

√
ε)n

n!
+

(iu
√
ε)6

6!

1

ε
Λ(6)
ε (u∗(k) + iA).

We now set |u|
√
ε ≤ 1 and note that A ∈ [−1, 1]. Since Λε is analytic, the function U : R ∋

x 7→ |Λ(6)
ε (u∗(k) + ix)| is continuous on the compact set [−1, 1] and attains its maximum at

some point on this set. Again by [128, Theorem 1.8.5] and Assumption 2.2.1(ii) we have that

Λ
(6)
ε (u∗(k) + iA) = Λ

(6)
0 (u∗(k) + iA) + O(ε), as ε tends to zero. The function V : R ∋ x 7→

|Λ(6)
0 (u∗(k)+ ix)| is continuous on the compact set [−1, 1] and attains its maximum at some point

on this set. Hence (iu
√
ε)6

6!
1
εΛ

(6)
ε (u∗(k) + iA) = |u|6O(ε2) where the remainder O(ε2) is uniform in
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u. Further 1
ε

∑5
n=1 O(ε3) (iu

√
ε)n

n! = O(ε2). We therefore write for |u|
√
ε ≤ 1 (and using (2.2.5)):

log ΦZk,ε
(u) = −Λ0,2

u2

2
+

1

ε

5∑
n=3

Λ0,n
(iu

√
ε)n

n!
+

3∑
n=1

Λ1,n
(iu

√
ε)n

n!
+ iΛ2,1uε

3/2 +max(1, |u|6)O(ε2)

= −1

2
Λ0,2u

2 + η1(u)
√
ε+ η2(u)ε+ η3(u)ε

3/2 +max(1, |u|6)O(ε2), (2.5.5)

where the remainder O(ε2) is uniform in u and where we define the functions

η1(u) := iuΛ1,1 −
iu3

6
Λ0,3, η2(u) := −u

2

2
Λ1,2 +

u4

24
Λ0,4,

η3(u) := iuΛ2,1 −
iu3

6
Λ1,3 +

iu5

120
Λ0,5.

(2.5.6)

Note that the O(ε2) terms in the sum can be absorbed into the remainder since the powers of u

are smaller than the u in the remainder term. The Lagrange form of the remainder in Taylor’s

theorem yields ex = 1 + x+ eζ x
2

2 for any x and some ζ ∈ [−|x|, |x|]; since that all terms in (2.5.5)

but the first one are bounded for |u| ≤ ε−1/6,

ΦZk,ε
(u) =e−

Λ0,2u2

2

(
1 + η1(u)

√
ε+

(
η21(u)

2
+ η2(u)

)
ε+

(
η31(u)

6
+ η1(u)η2(u) + η3(u)

)
ε3/2

+max(1, |u|12)O(ε2)
)
.

We prove now that under Assumption 2.2.1(v) the tail integral
∣∣∣∫|u|>ε−1/6 ΦZk,ε

(u)Cε,k(u)du
∣∣∣

is exponentially small, where ΦZk,ε
is defined in (2.5.3) and Cε,k : R → C is defined by

Cε,k(u) :=
ε3/2f(ε)

(u∗(k)− iu
√
ε) (u∗(k)− εf(ε)− iu

√
ε)
. (2.5.7)

Note that its complex conjugate is then given by

Cε,k(u) =
ε3/2f(ε)

(u∗(k) + iu
√
ε) (u∗(k)− εf(ε) + iu

√
ε)
, (2.5.8)

and the simple bounds follow:∣∣∣Cε,k(u)∣∣∣ ≤ min

(√
εf(ε)

u2
,

ε3/2f(ε)

|u∗(k)(u∗(k)− εf(ε))|

)
. (2.5.9)

Therefore the tail estimates (using the change of variable z = u
√
ε)∣∣∣∣∣

∫
|u|>1/

√
ε

ΦZk,ε
(u)Cε,k(u)du

∣∣∣∣∣ ≤ 1√
ε

∫
|z|>1

∣∣ΦZk,ε
(z/

√
ε)
∣∣ ∣∣∣Cε,k(z/√ε)∣∣∣dz (2.5.10)

≤ εf(ε)

∫
|z|>1

dz

z2
<∞,∣∣∣∣∣

∫
ε−

1
6<|u|<ε−

1
2

ΦZk,ε
(u)Cε,k(u)du

∣∣∣∣∣ ≤ 1√
ε

∫
ε
1
3<|z|<1

∣∣ΦZk,ε
(z/

√
ε)
∣∣ ∣∣∣Cε,k(z/√ε)∣∣∣dz

≤ 2εf(ε)(1− ε1/3)

|u∗(k)(u∗(k)− εf(ε))|
<∞,
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are finite for sufficiently small ε since f(ε)ε = c+O(ε) and u∗(k) ̸∈ {0, c}. We now proceed to show

that Assumption 2.2.1(v) allows us to further conclude that these terms are in fact exponentially

small:

Lemma 2.5.3. There exists β > 0 such that the tail estimate
∣∣∣∫|u|>ε−1/6 ΦZk,ε

(u)Cε,k(u)du
∣∣∣ =

O(e−β/ε
1/3

) holds for all k ̸∈ {Λ0,1(0),Λ0,1(c)} as ε tends to zero.

Proof. We break the proof into two parts. We first show that
∣∣∣∫|u|>ε−1/2 ΦZk,ε

(u)Cε,k(u)du
∣∣∣ =

O(e−α/ε) for some α > 0 and then that
∣∣∣∫ε−1/6<|u|<ε−1/2 ΦZk,ε

(u)Cε,k(u)du
∣∣∣ = O(e−β/ε

1/3

) for

some β > 0.

Using (2.5.4), ΦZk,ε
(u) = exp

[
− iuk√

ε
+ 1

ε (Λε (iu
√
ε+ u∗(k))− Λε (u

∗(k)))
]
. Let R(ε, z) ≡

R0(ε, z) + R1(ε), with R0(ε, z) := 1
ε [ℜ (Λε (iz + u∗(k)))−ℜ (Λ0 (iz + u∗(k)))] and R1(ε) :=

1
ε [Λ0 (u

∗(k))− Λε (u
∗(k))], so that

|ΦZk,ε
(z/

√
ε)| = exp

[
1

ε
(ℜ (Λ0 (iz + u∗(k)))− Λ0 (u

∗(k))) +R(ε, z)

]
.

Set F (z) := ℜ (Λ0 (iz + u∗(k)))− Λ0 (u
∗(k)). Using (2.5.9) the tail estimate is then given by∣∣∣∣∣

∫
|u|>1/

√
ε

ΦZk,ε
(u)Cε,k(u)du

∣∣∣∣∣ ≤ 1√
ε

∫
|z|>1

∣∣ΦZk,ε
(z/

√
ε)
∣∣ ∣∣∣Cε,k(z/√ε)∣∣∣ dz

≤ εf(ε)

∫
|z|>1

eF (z)/ε+R(ε,z) dz

z2
.

Consider first the case z > 1:∫
z>1

eF (z)/ε+R(ε,z) dz

z2
= 11{p∗i>1}

∫ p∗i

1

eF (z)/ε+R(ε,z) dz

z2
+

∫
z>max(p∗i ,1)

eF (z)/ε+R(ε,z) dz

z2

≤ (p∗i − 1)+eF (p̃i)/ε+R(ε,p̃i)

p̃2i
+

∫
z>p∗i

eF (z)/ε+R(ε,z) dz

z2
,

where the first integral on the rhs follows from the extreme value theorem which implies that the

integrand attains its maximum on [1, p∗i ] at some point p̃i and the inequality for the second integral

on the rhs follows since the integrand is positive. Using Assumption 2.2.1(v)(c), for z > p∗i there

exists ε1 > 0 andM (independent of z) such that R0(ε, z) < M for ε < ε1. In particular for ε < ε1

we have ∫
z>1

eF (z)/ε+R(ε,z) dz

z2
≤ (p∗i − 1)+eF (p̃i)/ε+R(ε,p̃i)

p̃2i
+ eM+R1(ε)

∫
z>p∗i

eF (z)/ε dz

z2
.

From Assumption 2.2.1(i), both R1(ε) and R(ε, p̃i) are of order O(1). By a similar argument

to (2.5.10) the integral on the rhs is finite and we now use the Laplace method. Since F is

continuous, has a unique maximum at z = 0 and is bounded away from zero as |z| tends to infinity

(Assumption 2.2.1(v)(b)) there exists z∗+ > 0 such that F (z∗+) > F (z) for z > z∗+; hence∫
z>p∗i

eF (z)/ε dz

z2
≤
∫
z>min(p∗i ,z

∗
+)

eF (z)/ε dz

z2
≤

(z∗+ − p∗i )
+eF (z+)/ε

z2+
+

∫
z>z∗+

eF (z)/ε dz

z2
,
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where again the final step follows from the extreme value theorem: if z∗+ > p∗i the integrand attains

its maximum on [p∗i , z
∗
+] at z+. Since the contribution of the last integral is centred around z = z∗+

as ε ↓ 0, the Laplace method with concentration at the boundary yields (see Theorem 1.2.6, and

using the fact that F ∈ C3(R) by Assumption 2.2.1(v)(b))∫
z>z∗+

eF (z)/ε dz

z2
∼ − εe2F (z∗+)/ε

2F ′(z∗+)(z
∗
+)

2
.

A similar argument holds for z < −1 and therefore
∣∣∣∫|u|>ε−1/2 ΦZk,ε

(u)Cε,k(u)du
∣∣∣ = O(e−α/ε), for

some α > 0. We now consider the case ε−1/6 < |u| < ε−1/2. Using (2.5.9) this tail estimate is

given by∣∣∣∣∣
∫
ε−

1
6<|u|<ε−

1
2

ΦZk,ε
(u)Cε,k(u)du

∣∣∣∣∣ ≤ 1√
ε

∫
ε
1
3<|z|<1

∣∣ΦZk,ε
(z/

√
ε)
∣∣ ∣∣∣Cε,k(z/√ε)∣∣∣dz

≤ εf(ε)

|u∗(k)(u∗(k)− εf(ε))|

∫
ε1/3<|z|<1

eF (z)/ε+R(ε,z)dz.

Let us now estimate the last integral, and, for simplicity consider only the positive side (ε1/3, 1).

Since F ∈ C3(R) has a unique maximum at the origin (Assumption 2.2.1(v)(b)) and F ′′(0) =

−Λ′′
0(u

∗(k)) < 0 (Assumption 2.2.1(iv)), then it is strictly decreasing in an open neighbourhood

(0, η) ⊂ (0, 1) of it. Take now ε > 0 small enough so that ε1/3 ∈ (0, η). The extreme value theorem

and the fact that R(ε, z) = O(1) implies that∫
(ε1/3,η)

eF (z)/ε+R(ε,z)dz ≤ eF (ε1/3)/ε max
z∈(ε1/3,η)

eR(ε,z)
(
η − ε1/3

)
≤ eF (ε1/3)/ε max

z∈[0,1]
eR(ε,z) ≤MeF (ε1/3)/ε =Me−Λ0,2/(2ε

1/3)+O(1),

for someM > 0. The final equality follows from the expansion F (ε1/3) = ℜ
(
Λ0

(
iε1/3 + u∗(k)

))
−

Λ0 (u
∗(k)) = −Λ0,2ε

2/3/2 +O(ε). Now, on (η, 1), the function F might not be decreasing but has

a maximum, say at zη ∈ [η, 1], and hence, similarly, there exists a constant m > 0 such that∫
(η,1)

eF (z)/ε+R(ε,z)dz ≤ me−|F (zη)|/ε.

Since F (zη) < 0 does not depend on ε, the result follows.

With these preliminary results, we can now move on to the actual proof of Theorem 2.2.4. For

j = 1, 2, 3, let us define the functions gj : R2
+ → R+ by

gj(x, y) :=


(x− y)+, if j = 1,

(y − x)+, if j = 2,

min(x, y), if j = 3.

Using the definition of the Qk,ε-measure in (2.5.1) the option prices in Theorem 2.2.4 can be written
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as

E
[
gj

(
eYεf(ε), ekf(ε)

)]
= e

1
εΛε(u

∗(k))EQk,ε

[
e−

u∗(k)
ε Yεgj

(
eYεf(ε), ekf(ε)

)]
= e−

1
ε [ku

∗(k)−Λε(u
∗(k))]EQk,ε

[
e−

u∗(k)
ε (Yε−k)gj

(
eYεf(ε), ekf(ε)

)]
. (2.5.11)

By the expansion in Assumption 2.2.1(i) and Equality (2.2.6) we immediately have

exp

(
−1

ε
(ku∗(k)− Λε (u

∗(k)))

)
= exp

(
−1

ε
Λ∗(k) + Λ1 + Λ2 ε+O

(
ε2
))

. (2.5.12)

From the definition of the random variable Zk,ε in (2.5.2) we obtain

EQk,ε

[
e−

u∗(k)
ε (Yε−k)gj

(
eYεf(ε), ekf(ε)

)]
= ekf(ε)EQk,ε [g̃j(Zk,ε)] ,

where for j = 1, 2, 3, we define the modified payoff functions g̃j : R → R+ by

g̃j(z) := e−u
∗(k)z/

√
εgj(e

z
√
εf(ε), 1). (2.5.13)

Assuming (for now) that g̃j ∈ L1(R), we have for any u ∈ R,

(F g̃j) (u) :=
∫ ∞

−∞
g̃j(z)e

iuzdz =

∫ ∞

−∞
exp

(
−u

∗(k)z√
ε

)
gj

(
ez

√
εf(ε), 1

)
eiuzdz,

for j = 1, 2, 3. For j = 1 we can write (Cε,k defined in (2.5.7))∫ ∞

−∞
g̃1(z)e

iuzdz =

[
ez(

√
εf(ε)−u∗(k)/

√
ε+iu)

√
εf(ε)− u∗(k)/

√
ε+ iu

]∞
0

−

[
ez(−u

∗(k)/
√
ε+iu)

−u∗(k)/
√
ε+ iu

]∞
0

= Cε,k(u),

which is valid for u∗(k) > εf(ε). For ε sufficiently small and by the definition of f in (2.2.7) this

holds for u∗(k) > c. For j = 2 we can write∫ ∞

−∞
g̃2(z)e

iuzdz =

[
ez(−u

∗(k)/
√
ε+iu)

−u∗(k)/
√
ε+ iu

]0
−∞

−

[
ez(

√
εf(ε)−u∗(k)/

√
ε+iu)

√
εf(ε)− u∗(k)/

√
ε+ iu

]0
−∞

= Cε,k(u),

which is valid for u∗(k) < 0 as ε tends to zero. Finally, for j = 3 we have∫ ∞

−∞
g̃3(z)e

iuzdz =

∫ 0

−∞
e
−u∗(k)√

ε
z
g3

(
ez

√
εf(ε), 1

)
eiuzdz +

∫ ∞

0

e
−u∗(k)√

ε
z
g3

(
ez

√
εf(ε), 1

)
eiuzdz

=

exp
(
z (

√
εf(ε)− u∗(k)/

√
ε+ iu)

)
√
εf(ε)− u∗(k)/

√
ε+ iu

0

−∞

+

exp
(
z (−u∗(k)/

√
ε+ iu)

)
−u∗(k)/

√
ε+ iu

∞

0

= −Cε,k(u),

which is valid for 0 < u∗(k) < εf(ε). For ε sufficiently small and by the assumption on f in

(2.2.7) this is true for 0 < u∗(k) < c. In this context u∗(k) comes out naturally in the analysis as

a classical dampening factor. Note that in order for these strips of regularity to exist we require

that {0, c} ⊂ Do
0, as assumed in the theorem. By the strict convexity and essential smoothness

property in Assumption 2.2.1(iv) we have

0 < u∗(k) < c if and only if Λ0,1(0) < k < Λ0,1(c),

u∗(k) < 0 if and only if k < Λ0,1(0),

u∗(k) > c if and only if k > Λ0,1(c).

(2.5.14)
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The following technical lemma allows us to write the transformed option price as an inverse Fourier

transform. Recall that Cε,k is given in (2.5.7), its complex conjugate in (2.5.8) and g̃j in (2.5.13).

Lemma 2.5.4. There exists ε∗1 > 0 such that for all ε < ε∗1 and all k ∈ R\{Λ0,1(0),Λ0,1(c)}, we

have (ā denoting the complex conjugate of a ∈ C)

EQk,ε [g̃j(Zk,ε)] =



1

2π

∫
R
ΦZk,ε

(u)Cε,k(u)du, if j = 1, u∗(k) > c,

1

2π

∫
R
ΦZk,ε

(u)Cε,k(u)du, if j = 2, u∗(k) < 0,

− 1

2π

∫
R
ΦZk,ε

(u)Cε,k(u)du, if j = 3, 0 < u∗(k) < c.

(2.5.15)

The proof of Lemma 2.5.4 proceeds in two steps: we first prove that the integrand in the right-

hand side of Equality (2.5.15) belongs to L1(R) (and hence the integral is well defined), and we

then prove that this very equality holds. The first step is contained in the following lemma.

Lemma 2.5.5. There exists ε∗0 > 0 such that
∫
R |ΦZk,ε

(u)Cε,k(u)|du < ∞ for all ε < ε∗0 and

k ∈ R\{Λ0,1(0),Λ0,1(c)}.

Proof. Using the simple bounds in (2.5.9) we compute∫
R

∣∣∣ΦZk,ε
(u)Cε,k(u)

∣∣∣du =

∫
|u|≤1/

√
ε

∣∣∣ΦZk,ε
(u)Cε,k(u)

∣∣∣du+

∫
|u|>1/

√
ε

∣∣∣ΦZk,ε
(u)Cε,k(u)

∣∣∣ du
≤ ε3/2f(ε)

|u∗(k)(u∗(k)− εf(ε))|

∫
|u|≤1/

√
ε

∣∣ΦZk,ε
(u)
∣∣du+ εf(ε)

∫
|z|>1

dz

z2

≤ 2εf(ε)

|u∗(k)(u∗(k)− εf(ε))|
+ εf(ε)

∫
|z|>1

dz

z2
.

The quantity on the rhs is finite for ε small enough since εf(ε) = c+O(ε) and u∗(k) ̸∈ {0, c}.

We now move on to the proof of Lemma 2.5.4. We only look at the case j = 1, the other

cases being completely analogous. We denote the convolution of two functions f, h ∈ L1(R)

by (f ∗ g)(x) :=
∫
R f(x − y)g(y)dy, and recall that (f ∗ g) ∈ L1(R). For such functions, we

denote the Fourier transform by (Ff)(u) :=
∫∞
−∞ eiuxf(x)dx and the inverse Fourier transform by

(F−1h)(x) := 1
2π

∫∞
−∞ e−iuxh(u)du.

With g̃j defined in (2.5.13), the Qk,ε-measure in (2.5.1) and the random variable Zk,ε in (2.5.2),

we have

EQk,ε [g̃j(Zk,ε)] =

∫
R
qj(k/

√
ε− y)p(y)dy = (qj ∗ p)(k/

√
ε),

with qj(z) ≡ g̃j(−z) and p denoting the density of Yε/
√
ε. On the strips of regularity given

in (2.5.14) we know there exists ε0 > 0 such that qj ∈ L1(R) for ε < ε0. Since p is a density,

p ∈ L1(R), and therefore

F(qj ∗ p)(u) = Fqj(u)Fp(u). (2.5.16)
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We note that Fqj(u) ≡ F g̃j(−u) ≡ F g̃j(u) and hence

Fqj(u)Fp(u) ≡ eiuk/
√
εΦZk,ε

(u)Cε,k(u). (2.5.17)

Thus by Lemma 2.5.5 there exists an ε1 > 0 such that FqjFp ∈ L1(R) for ε < ε1. By the inversion

theorem [137, Theorem 9.11] this then implies from (2.5.16) and (2.5.17) that for ε < min(ε0, ε1):

EQk,ε [g̃j(Zk,ε)] = (qj ∗ p)(k/
√
ε) = F−1 (Fqj(u)Fp(u)) (k/

√
ε)

=
1

2π

∫
R
e−iuk/

√
εFqj(u)Fp(u)du =

1

2π

∫
R
ΦZk,ε

(u)Cε,k(u)du.

Remark 2.5.6. There exists ε0 > 0 such that for the strips of regularity given in (2.5.14), the

modified payoffs g̃j are in L2(R) for ε < ε0. If there further exists ε1 > 0 such that ΦZk,ε
∈ L2(R)

for ε < ε1 then we can directly apply Parseval’s Theorem [77, Theorem 13E] for ε < min(ε0, ε1)

and we obtain the same result as in Lemma 2.5.4. This requires though a stronger tail assumption

compared to 2.2.1(v)(c).

We now consider the integral appearing in Lemma 2.5.4. For ε > 0 small enough, we can split

the integral as∫
R
ΦZk,ε

(u)Cε,k(u)du =

∫
|u|<ε−1/6

ΦZk,ε
(u)Cε,k(u)du+

∫
|u|≥ε−1/6

ΦZk,ε
(u)Cε,k(u)du

=

∫
|u|<ε−1/6

exp

(
−Λ0,2u

2

2

)
H(ε, u)du+O

(
e−β/ε

1/3
)
, (2.5.18)

for some β > 0 by Lemma 2.5.3, and using also Lemma 2.5.1 for the first integral. The function

H : R+ × R → C is defined as H(ε, u) := exp(Λ0,2u
2/2)ΦZk,ε

(u)Cε,k(u). As ε tends to zero, the

function Cε,k (given in (2.5.8)) satisfies

Cε,k(u) =
f(ε)ϵ3/2

u∗(k)2

(
1 + h1(u, 0)

√
ε+ h2(u, 0)ε+ h3(u, 0)ε

3/2 +
εf(ε)

u∗(k)
− 3iu

u∗(k)2
ε3/2f(ε) +O(ε2)

)
,

with hi defined in (2.5.19), so that Lemma 2.5.1 and a Taylor expansion of H around ε = 0 for

c = 0 and |u| ≤ ε−1/6 yield

H(ε, u) =
f(ε)ε3/2

u∗(k)2

[
1 + h̃1(u, 0)

√
ε+ h̃2(u, 0)ε+ h̃3(u, 0)ε

3/2 +
εf(ε)

u∗(k)

+

(
η1(u)

u∗(k)
− 3iu

u∗(k)2

)
ε3/2f(ε) + max(1, |u|12)O(ε2)

]
,

where O(ε2) is uniform in u and where we define the following functions:

h1(u, c) :=
iu

u∗(k)− c

(
c

u∗(k)
− 2

)
, h2(u, c) := −

u2
(
c2 − 3cu∗(k) + 3u∗(k)2

)
u∗(k)2 (u∗(k)− c)

2 ,

h3(u, c) :=
iu3

(
4u∗(k)3 − c3 + 4c2u∗(k)− 6cu∗(k)2

)
u∗(k)3 (u∗(k)− c)

3 ,

h̃1(u, c) := η1(u) + h1(u, c), h̃2(u, c) :=
η21(u)

2
+ η2(u) + h2(u, c) + η1(u)h1(u, c),

h̃3(u, c) := h2(u, c)η1(u) + h1(u, c)

(
η21(u)

2
+ η2(u)

)
+
η31(u)

6
+ η2(u)η1(u)

+η3(u) + h3(u, c),

(2.5.19)
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with the ηi for i = 1, 2, 3, defined in (2.5.6). Analogously a Taylor expansion around ε = 0 for

c > 0 gives

Cε,k(u) =
c
√
ε

u∗(k) (u∗(k)− c)

{
1 + h1(u, c)

√
ε+ h2(u, c)ε+ h3(u, c)ε

3/2 +
u∗(k)(εf(ε)− c)

c (u∗(k)− c)

−2iuu∗(k)
√
ε(εf(ε)− c)

c (u∗(k)− c)
2 +O(ε2)

}
,

from which we deduce an expansion for H, whenever |u| ≤ ε−1/6:

H(ε, u) =
c
√
ε

u∗(k) (u∗(k)− c)

{
1 + h̃1(u, c)

√
ε+ h̃2(u, c)ε+ h̃3(u, c)ε

3/2 +
u∗(k)(εf(ε)− c)

c (u∗(k)− c)

+
u∗(k)

√
ε(εf(ε)− c)

c (u∗(k)− c)

(
η1(u)−

2iu

u∗(k)− c

)
+max(1, |u|12)O(ε2)

}
,

where O(ε2) is uniform in u. We will shortly be integrating H against a zero-mean Gaussian

characteristic function over R and as such all odd powers of u will have a null contribution. In

particular note that the polynomials

η1, h̃1, h̃3,

(
η1(u)

u∗(k)
− 3iu

(u∗(k))
2

)
ε3/2f(ε),

u∗(k)
√
ε(εf(ε)− c)

c (u∗(k)− c)

(
η1(u)−

2iu

u∗(k)− c

)

are odd functions of u and hence have zero contribution. The major quantity is h̃2, which we can

rewrite as h̃2(u, c) = h̃2,1(c)u
2 + h̃2,2(c)u

4 − 1
72Λ

2
0,3u

6, where

h̃2,1(c) := −h1(u, c)Λ1,1

i
−

Λ2
1,1 + Λ1,2

2
+ h2(1, c), h̃2,2(c) :=

h1(u, c)Λ0,3

6i
+

Λ1,1Λ0,3

6
+

Λ0,4

24
.

Let

ϕε(c) ≡
c
√
ε11{c>0} + ε3/2f(ε)11{c=0}

u∗(k) (u∗(k)− c)
.

Using simple properties of moments of a Gaussian random variable we finally compute the following∫
|u|<ε−1/6

exp

(
−Λ0,2u

2

2

)
H(ε, u)du

= ϕε(c)

[∫
|u|<ε−1/6

e−
1
2Λ0,2u

2

(
1 + h̃2(u, c) +

u∗(k)(εf(ε)− c)

c (u∗(k)− c)
11{c>0} +

εf(ε)

u∗(k)
11{c=0}

)
du+O(ε2)

]

= ϕε(c)

[∫
R
e−

1
2Λ0,2u

2

(
1 + h̃2(u, c) +

u∗(k)(εf(ε)− c)

c (u∗(k)− c)
11{c>0} +

εf(ε)

u∗(k)
11{c=0}

)
du+O(ε2)

]
= ϕε(c)

√
2π

Λ0,2

(
1 +

h̃2,1(c)

Λ0,2
+

3h̃2,2(c)

Λ2
0,2

−
5Λ2

0,3

24Λ3
0,2

+
u∗(k)(εf(ε)− c)

c (u∗(k)− c)
11{c>0} +

εf(ε)

u∗(k)
11{c=0} +O(ε2)

)
.

The third line follows from the Laplace method (Theorem 1.2.6), applied to the two integrals∫ +∞
ε−1/6(· · · )du and

∫ −ε−1/6

−∞ (· · · )du, where the concentration is at the boundary points of the do-

mains, so that the tail estimate |u| > ε−1/6 is exponentially small, and hence is absorbed in the

O(ε2) term. Combining this with (2.5.18), Lemma 2.5.4, (2.5.11), (2.5.12) and property (2.5.14),

the theorem follows.
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2.5.1.2 Proof of Propositions 2.2.10 and 2.2.11

Gao and Lee [69] have obtained representations for asymptotic implied volatility for small and

large-maturity regimes in terms of the assumed asymptotic behaviour of certain option prices,

outlining the general procedure for transforming option price asymptotics into implied volatil-

ity asymptotics. The same methodology can be followed to transform our forward-start option

asymptotics (Corollary 2.2.6 and Corollary 2.2.8) into forward smile asymptotics. In the proofs of

Proposition 2.2.10 and Proposition 2.2.11 we hence assume for brevity the existence of an ansatz

for the forward smile asymptotic and solve for the coefficients. We refer the reader to [69] for the

complete methodology.

Proof of Proposition 2.2.10. Substituting the ansatz

σ2
εt,ετ (k) = v0(k, t, τ) + v1(k, t, τ)ε+ v2(k, t, τ)ε

2 +O
(
ε3
)
,

into Corollary 2.2.7, we get that forward-start option prices have the asymptotics

E
(
eX

(εt)
ετ − ek

)+
11{k>0} + E

(
ek − eX

(εt)
ετ

)+
11{k<0}

= exp

(
− k2

2τv0ε
+
k2v1
2τv20

+
k

2

)
(v0ετ)

3/2

k2
√
2π

(
1 + γε+O

(
ε2
) )
,

where we set

γ(k, t, τ) := −τ
(

3

k2
+

1

8

)
v0 +

k2v2
2τv20

− k2v21
2τv30

+
3v1
2v0

.

The result follows after using Λ0,1(0) = 0 and equating orders with the general formula in Corol-

lary 2.2.6.

Proof of Proposition 2.2.11. Substituting the ansatz

σ2
t,τ (k) = v∞0 (k, t) + v∞1 (k, t)τ−1 + v∞2 (k, t)τ−2 +O

(
τ−3

)
,

into Corollary 2.2.9 we obtain the following asymptotic expansions for forward-start options:

E
(
eX

(t)
τ − ekτ

)+
11A − E

(
eX

(t)
τ ∧ ekτ

)
11B + E

(
ekτ − eX

(t)
τ

)+
11C

= exp

(
−τ
(
k2

2v0
− k

2
+
v0
8

)
+
v1k

2

2v20
− v1

8

)
4τ−1/2v

3/2
0

(4k2 − v20)
√
2π

(
1 +

γ∞

τ
+O

(
1

τ2

))
,

where

A :=

{
k >

σ2
t,τ (k)

2

}
, B :=

{
−
σ2
t,τ (k)

2
< k <

σ2
t,τ (k)

2

}
, C :=

{
k < −

σ2
t,τ (k)

2

}
, (2.5.20)

and

γ∞(k, t) :=

(
12k2 + v20

) (
4k2v1 − v20 (v1 + 8)

)
2v0 (v20 − 4k2)

2 − v21k
2

2v30
+
v2k

2

2v20
− v2

8
.

We obtain the expressions for v∞1 and v∞2 by equating orders with the formula in Corollary 2.2.8.

However it is not clear which is the correct root for the zeroth order term v∞0 . In order to do so, we
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have to match the domains in (2.5.20) and in Corollary 2.2.8. Indeed, suppose that we choose the

roots according to v∞0 in (2.2.11). For τ sufficiently large the condition k > σ2
t,τ (k)/2 is equivalent

to k > v∞0 (k, t)/2. Now for k > Λ0,1(1) or k < Λ0,1(0), the definition of v∞0 in (2.2.11) implies

k > σ2
t,τ (k)/2 if and only if

√
(Λ∗(k)− k)

2
+ k (Λ∗(k)− k) > Λ∗(k)− k, (2.5.21)

which is always true since Λ∗(k) > k by Lemma 2.2.2(iii). Now, for k ∈ (Λ0,1(0),Λ0,1(1)), the

definition of v∞0 in (2.2.11) implies

k > σ2
t,τ (k)/2 if and only if −

√
(Λ∗(k)− k)

2
+ k (Λ∗(k)− k) > Λ∗(k)− k, (2.5.22)

which never holds. By the assumption in the Proposition 2.2.11 and Assumption 2.2.1 we have

{0, 1} ⊂ Do
0 and Λ0(0) = Λ0(1) = 0. The differentiability and strict convexity of Λ0 (Assump-

tion 2.2.1(iv)) then imply Λ0,1(0) < 0 and Λ0,1(1) > 0. Since v∞0 > 0 we can ignore the case

k < Λ0,1(0) < 0 and hence k > σ2
t,τ (k)/2 if and only if k > Λ0,1(1). Similarly the definition of v∞0

in (2.2.11) implies that for τ large enough,

−σ2
t,τ (k)/2 < k < σ2

t,τ (k)/2 if and only if Λ0,1(0) < k < Λ0,1(1),

and

k < −σ2
t,τ (k)/2 if and only if k < Λ0,1(0).

This lines up the domains in (2.5.20) with the domains in Corollary 2.2.8. Had we specified the

roots in any other way, it is easy to check that a contradiction would have occurred.

2.5.2 Proofs of Section 2.3.1

We now let (Xt)t≥0 be the Heston process satisfying the SDE (1.3.2). The Heston forward cgf

was derived in Lemma 1.3.1. In the next two subsections we develop the tools needed to apply

Propositions 2.2.10 and 2.2.11 to the Heston model.

2.5.2.1 Proofs of Section 2.3.1.1

We consider here the Heston diagonal small-maturity process (X
(εt)
ετ )ε>0 with X defined in (1.3.2)

and (X
(t)
τ )τ>0 in (1.0.3). The forward rescaled cgf Λε in (2.2.1) is easily determined from (1.3.7).

In this subsection, we prove Proposition 2.3.1. For clarity, the proof is divided into the following

steps:

(i) In Lemma 2.5.7 we show that D0 = Kt,τ and 0 ∈ Do
0;

(ii) In Lemma 2.5.9 we show that the Heston diagonal small-maturity process has an expansion

of the form given in Assumption 2.2.1 with Λ0 = Ξ and Λ1 = L, where Ξ and L are defined

in (2.3.1) and (2.3.2);
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(iii) In Lemma 2.5.11 we show that Ξ is strictly convex and essentially smooth on Do
0, i.e. As-

sumption 2.2.1(iv);

(iv) The map (ε, u) 7→ Λε(u) is of class C∞ on R∗
+ ×Do

0, Λ0,1(0) = 0 and Assumption 2.2.1(v) is

also satisfied.

Lemma 2.5.7. For the Heston diagonal small-maturity process we have D0 = Kt,τ and 0 ∈ Do
0

with Kt,τ defined in (2.3.1) and D0 defined in Assumption 2.2.1.

Proof. For any t > 0, the random variable Vt in (1.3.2) is distributed as βt times a non-central

chi-square random variable with 4κθ/ξ2 > 0 degrees of freedom and non-centrality parameter

λ = ve−κt/βt > 0. It follows that the corresponding mgf is given by

ΛVt (u) := E
(
euVt

)
= exp

(
λβtu

1− 2βtu

)
(1− 2βtu)

−2κθ/ξ2
, for all u <

1

2βt
.

The re-normalised Heston forward cgf Λε is then computed as

eΛε(u)/ε = E
[
e

u
ε (Xεt+ετ−Xεt)

]
= E

[
E
(
e

u
ε (Xεt+ετ−Xεt)|Fεt

)]
= E

(
eA(

u
ε ,ετ)+B(

u
ε ,ετ)Vεt

)
= eA(

u
ε ,ετ)ΛVεt (B (u/ε, ετ)) ,

which agrees with (1.3.7). This only makes sense in some effective domain Kεt,ετ ⊂ R. The cgf for

Vεt is well defined in KVεt := {u ∈ R : B (u/ε, ετ) < 1
2βεt

}, and hence Kεt,ετ = KVεt∩KHετ , where KHετ
is the effective domain of the (spot) Heston cgf. Consider first KHετ for small ε. From [5, Proposition

3.1] if ξ2(u/ε− 1)u/ε > (κ− ξρu/ε)2 then the explosion time τ∗H(u) := sup{t ≥ 0 : E(euXt) <∞}

of the Heston cgf is

τ∗H

(u
ε

)
=

2√
ξ2(u/ε− 1)u/ε− (κ− ρξu/ε)2

(
π11{ρξu/ε−κ<0}

+arctan

(√
ξ2(u/ε− 1)u/ε− (κ− ρξu/ε)2

ρξu/ε− κ

))
.

Recall the following Taylor series expansions, for x close to zero:

arctan

(
1

ρξu/x− κ

√
ξ2
(u
x
− 1
) u
x
−
(
κ− ξρ

u

x

)2)
= sgn(u) arctan

(
ρ̄

ρ

)
+O (x) , if ρ ̸= 0,

arctan

(
− 1

κ

√
ξ2
(u
x
− 1
) u
x
− κ2

)
= −π

2
+O(x), if ρ = 0.

As ε tends to zero ξ2(u/ε− 1)u/ε > (κ− ρξu/ε)2 is satisfied since ξ2 > ξ2ρ2 and hence

τ∗H

(u
ε

)
=


ε

ξ|u|

(
π11{ρ=0} +

2

ρ̄

(
π11{ρu≤0} + sgn(u) arctan

(
ρ̄

ρ

))
11{ρ̸=0} +O(ε)

)
, if u ̸= 0,

∞, if u = 0.

Therefore, for ε small enough, we have τ∗H
(
u
ε

)
> ετ for all u ∈ (u−, u+), where

u− :=
2

ρ̄ξτ
arctan

(
ρ̄

ρ

)
11{ρ<0} −

π

ξτ
11{ρ=0} +

2

ρ̄ξτ

(
arctan

(
ρ̄

ρ

)
− π

)
11{ρ>0},

u+ :=
2

ρ̄ξτ

(
arctan

(
ρ̄

ρ

)
+ π

)
11{ρ<0} +

π

ξτ
11{ρ=0} +

2

ρ̄ξτ
arctan

(
ρ̄

ρ

)
11{ρ>0}.
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So as ε tends to zero, KHετ shrinks to (u−, u+). Regarding KVεt, we have (see (2.5.25) for details

on the expansion computation) βεtB(u/ε, ετ) = ξ2t
4v Ξ(u, 0, τ) + O(ε) for any u ∈ (u−, u+), with

Ξ defined in (2.3.1). Therefore limε↓0 KVεt = {u ∈ R : Ξ(u, 0, τ) < 2v
ξ2t} and hence limε↓0 Kεt,ετ =

{u ∈ R : Ξ(u, 0, τ) < 2v
ξ2t} ∩ (u−, u+). It is easily checked that Ξ(u, 0, τ) is strictly positive except

at u = 0 where it is zero, Ξ′(u, 0, τ) > 0 for u > 0, Ξ′(u, 0, τ) < 0 for u < 0 and that Ξ(u, 0, τ)

tends to infinity as u approaches u±. Since v and ξ are strictly positive and t ≥ 0 it follows that

{u ∈ R : Ξ(u, 0, τ) < 2v/(ξ2t)} ⊆ (u−, u+) with equality only if t = 0. So D0 is an open interval

around zero and the lemma follows with D0 = Kt,τ .

Remark 2.5.8. For u ∈ R∗ the inequality 0 < Ξ(u, 0, τ) < 2v/(ξ2t) is equivalent to Ξ(u, t, τ) ∈

(0,∞). In Lemma 2.5.9 below we show that Ξ is the limiting cgf of the rescaled Heston forward

cgf and so the condition for the limiting forward domain is equivalent to ensuring that the limiting

forward cgf does not blow up and is strictly positive except at u = 0 where it is zero.

Lemma 2.5.9. For any t ≥ 0, τ > 0, u ∈ Kt,τ , the expansion Λε(u) = Ξ(u, t, τ) + L(u, t, τ)ε +

O
(
ε2
)
holds as ε tends to zero, where Kt,τ , Ξ and L are defined in (2.3.1), (2.3.1) and (2.3.2)

and Λε is the rescaled cgf in Assumption 2.2.1 for the Heston diagonal small-maturity process

(X
(εt)
ετ )ε>0.

Remark 2.5.10. For any u ∈ Kt,τ , Lemma 2.5.7 implies that Λε(u) is a finite number for any

ε > 0. Therefore L defined in (2.3.2) and used in Lemma 2.5.9 is a real-valued function on Kt,τ .

Proof. All expansions below for d, γ and βt defined in (1.3.4),(1.3.6) and (1.3.8) hold for any

u ∈ Kt,τ :

d
(u
ε

)
=

1

ε

(
κ2ε2 + uε (ξ − 2κρ)− u2ξ2(1− ρ2)

)1/2
=

iu

ε
d0 + d1 +O(ε),

γ
(u
ε

)
=
κε− ρξu− iud0 − d1ε+O

(
ε2
)

κε− ρξu+ iud0 + d1ε+O (ε2)
= g0 −

iε

u
g1 +O

(
ε2
)
,

βεt =
1

4
ξ2tε− 1

8
κξ2t2ε2 +O

(
ε3
)
,

(2.5.23)

where

d0 := ρ̄ξ sgn(u), d1 :=
i (2κρ− ξ) sgn(u)

2ρ̄
, g0 :=

iρ− ρ̄ sgn(u)

iρ+ ρ̄ sgn(u)
, g1 :=

(2κ− ξρ) sgn(u)

ξρ̄ (ρ̄+ iρ sgn(u))
2 ,

with ρ̄ :=
√

1− ρ2 and sgn(u) = 1 if u ≥ 0, −1 otherwise. From the definition of A in (1.3.8) we

obtain

A
(u
ε
, ετ
)
=
κθ

ξ2

(
(κ− ρξu/ε− d(u/ε)) ετ − 2 log

(
1− γ(u/ε) exp (−d(u/ε)ετ)

1− γ(u/ε)

))
= L0(u, τ) +O(ε), (2.5.24)

where L0 is defined in (2.3.2). Substituting the asymptotics for d and γ above we further obtain

1− exp (−d(u/ε)ετ)
1− γ(u/ε) exp (−d(u/ε)ετ)

=
1− exp

(
−iud0τ − εd1τ +O(ε2)

)
1− (g0 − iεg1/u+O(ε2)) exp (−iud0τ − εd1τ +O(ε2))

,



2.5. Proofs 82

and therefore using the definition of B in (1.3.8) we obtain

B
(u
ε
, ετ
)
=
κ− ρξu/ε− d(u/ε)

ξ2
1− exp (−d (u/ε) ετ)

1− γ (u/ε) exp (−d (u/ε) ετ)

=
Ξ(u, 0, τ)

vε
+ L1(u, τ) +O(ε), (2.5.25)

with L1 defined in (2.3.2) and Ξ in (2.3.1). Combining (2.5.23) and (2.5.25) we deduce

βεtB (u/ε, ετ) =
ξ2tΞ(u, 0, τ)

4v
+

(
L1(u, τ)ξ

2t

4
− Ξ(u, 0, τ)κξ2t2

8v

)
ε+O(ε2), (2.5.26)

and therefore as ε tends to zero,

εB(u/ε, ετ)ve−κεt

1− 2βεtB(u/ε, ετ)
=

[
Ξ(u, 0, τ) + vL1(u, τ)ε+O

(
ε2
)] (

1− tκξ +O(ε2)
)

1− ξ2tΞ(u, 0, τ)/2v + (Ξ(u, 0, τ)κξ2t2/4v − L1(u, τ)ξ2t/2) ε+O (ε2)

= Ξ(u, t, τ) +

(
Ξ(u, t, τ)2

(
vL1(u, τ)

Ξ(u, 0, τ)2
− κξ2t2

4v

)
− κtΞ(u, t, τ)

)
ε+O(ε2). (2.5.27)

Again using (2.5.26) we have

−2κθε

ξ2
log (1− 2βεtB (u/ε, ετ)) = −2κθ

ξ2
log

(
1− Ξ(u, 0, τ)ξ2t

2v

)
ε+O(ε2). (2.5.28)

Recalling from Lemma 1.3.1 that

Λε(u) = εA (u/ε, ετ) +
εB (u/ε, ετ)

1− 2βεtB (u/ε, ετ)
ve−κεt − 2κθε

ξ2
log (1− 2βεtB (u/ε, ετ)) ,

the lemma follows by combining (2.5.24), (2.5.27) and (2.5.28).

Lemma 2.5.11. For all t ≥ 0, τ > 0, Ξ (given in (2.3.1)) is convex and essentially smooth on

Kt,τ , defined in (2.3.1).

Proof. The first derivative of Ξ is given, after simplification, by

∂Ξ(u, t, τ)

∂u
=

Ξ(u, t, τ)

u

[
1 +

Ξ(u, t, τ)

v

(
ξ2t

2
+

1

2
ξ2ρ̄2τ csc2

(
1

2
ρ̄ξτu

))]
.

Any sequence tending to the boundary satisfies Ξ(u, 0, τ) → 2v/ξ2t which implies Ξ(u, t, τ) ↑ ∞

from Remark 2.5.8 and hence |∂Ξ(u, t, τ)/∂u| ↑ ∞. Therefore Ξ(·, t, τ) is essentially smooth. Now,

∂2Ξ(u, t, τ)

∂u2
=
ξ2

2
Ξ(u, t, τ)

(
t+ ρ̄2τ csc2(ψu)

)2(
ρ+ 1

2ξtu− ρ̄ cot(ψu)
)2 +

v + ρ̄2τv (1− ψu cot(ψu)) csc
2(ψu)(

ρ+ 1
2ξtu− ρ̄ cot(ψu)

)2 ,

where ψu := ρ̄ξτu/2. For u ∈ Kt,τ \{0}, we have Ξ(u, t, τ) > 0 and Ξ(0, t, τ) = 0 from Remark 2.5.8.

Also we have the inequality that 1−θ/2 cot (θ/2) ≥ 0 for θ ∈ (−2π, 2π), so that Ξ is strictly convex

on Kt,τ .

As detailed in the beginning of this subsection, this concludes the proof of Proposition 2.3.1.

We now prove the forward implied volatility expansions, namely Corollary 2.3.2.
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Proof of Corollary 2.3.2. We fix t ≥ 0, τ > 0 and for ease of computations set Ξ(u) := Ξ(u, t, τ).

We first look for a Taylor expansion of u∗(k) around k = 0 using the saddlepoint equation

Ξ′(u∗(k)) = k. Differentiating this equation iteratively and setting k = 0 (and using u∗(0) = 0)

gives an expansion for u∗ in terms of the derivatives of Ξ. In particular, Ξ′′(0, )u∗
′
(0) = 1

and Ξ′′′(0)(u∗
′
(0))2 + Ξ′′(0)u∗

′′
(0) = 0, which implies that u∗

′
(0) = 1/Ξ′′(0) and u∗

′′
(0) =

−Ξ′′′(0)/Ξ′′(0)3. From the explicit expression of Ξ in (2.3.1), we then obtain

u∗(k) =
k

τv
− 3ξρ

4τv2
k2 +

ξ2
((
19ρ2 − 4

)
τ − 12t

)
24τ2v3

k3 +
5ξ3ρ

(
48t+

(
16− 37ρ2

)
τ
)

192τ2v4
k4

+
ξ4
(
1080t2 +

(
2437ρ4 − 1604ρ2 + 112

)
τ2 − 180

(
27ρ2 − 4

)
τt
)

1920τ3v5
k5 +O(k6).

Using this series expansion and the fact that Λ∗(k) = u∗(k)k−Ξ(u∗(k)), the corollary follows from

tedious but straightforward Taylor expansions of v0 and v1 defined in (2.2.9).

2.5.2.2 Proofs of Section 2.3.1.2

In this section, we prove the large-maturity asymptotics for the Heston model. Let ε = τ−1 and

consider the Heston process (τ−1X
(t)
τ )τ>0 with (Xt)t>0 defined in (1.3.2) and (X

(t)
τ )τ>0 defined

in (1.0.3). Specifically Λε defined in (2.2.1) is then given by Λε(u) = τ−1E(euX(t)
τ ), and for ease of

notation we set

Λ(t)
τ (u) = Λε(u) for all u ∈ Dε. (2.5.29)

We prove here Proposition 2.3.5 in several steps:

(i) In Proposition 2.5.14 we show that D0 = KH and if ρ < κ/ξ then {0, 1} ⊂ KoH;

(ii) Lemma 2.5.15 proves the expansion of Assumption 2.2.1 with Λ0 = V , Λ1 = H, Λ2 = 0;

(iii) By Lemma 2.5.12 and Proposition 2.5.14, V is strictly convex and essentially smooth on KoH
if ρ− ≤ ρ ≤ min (ρ+, κ/ξ); see also Remark 2.3.6(ii);

(iv) The map (ε, u) 7→ Λε(u) is of class C∞ on R∗
+ × KoH , Assumption 2.2.1(v) is also satisfied

and V (1) = 0 from Lemma 2.5.12;

(v) u∗ can be computed in closed-form and is given by q∗ in (2.3.9).

(vi) A direct application of Proposition 2.2.11 completes the proof.

The following lemma recalls some elementary facts (see also [63, 97]) about the function V

in (2.3.8), which will be used throughout the section. We then proceed with a technical result

needed in the proof of Proposition 2.5.14.
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Lemma 2.5.12. The function V in (2.3.8) is C∞, strictly convex and essentially smooth on

the open interval (u−, u+) (defined in (2.3.6)) and V (0) = 0, u− < 0 and limu↓u− V (u) and

limu↑u+ V (u) are both finite. Furthermore V (1) = 0 if ρ ≤ κ/ξ and V (1) < 0 if ρ > κ/ξ. Finally,

if ρ ≤ κ/ξ, then u+ ≥ 1 with u+ = 1 if and only if ρ = κ/ξ .

Lemma 2.5.13. Let ρ± be defined as in (2.3.6) and βt in (1.3.4). Assume further that t > 0 and

define the functions g+ and g− by

g±(ρ) := (2κ− ρξ)± ρ

√
ξ2 (1− ρ2) + (2κ− ρξ)

2 − ξ2(1− ρ2)

βt
.

(i) The inequalities ρ− ∈ (−1, 0) and ρ+ > 1/2 always hold; if κ/ξ > ρ+ and t ̸= 0, then ρ+ < 1;

finally ρ+ = 1 (and ρ− = −1) if and only if t = 0;

(ii) the inequality g+(ρ) > 0 holds if and only if ρ+ < 1 and ρ ∈ (ρ+, 1);

(iii) the inequality g−(ρ) > 0 holds if and only if ρ ∈ (−1, ρ−);

(iv) let u∗± be as in (2.3.6) and t > 0. Then u∗+ > 1 if ρ ≤ ρ−, and u
∗
− < 0 if ρ ≥ ρ+.

Proof. We first prove Lemma 2.5.13(i). The double inequality −1 < ρ− < 0 is equivalent to

ξ − (8κ+ ξ)e2κt

eκt + 1
< −

√
16κ2e2κt + ξ2 (1− eκt)

2
< ξ

(
1− eκt

)
.

The upper bound clearly holds, and the lower bound follows from the identity

√
16κ2e2κt + ξ2 (1− eκt)

2
=

√
(ξ − (8κ+ ξ)e2κt)

2

(eκt + 1)
2 − 16κe2κt (eκt − 1) (κ+ ξ + ξeκt + 3κeκt)

(eκt + 1)
2 .

We now prove that ρ+ > 1/2. From (2.3.6) this is equivalent to√
16κ2e2κt + ξ2 (1− eκt)

2
>

4ξ + (κ− 4ξ)e2κt

4 (eκt + 1)
.

The result follows by rearranging the left-hand side as√
16κ2e2κt + ξ2 (1− eκt)

2

=

√
(4ξ + (κ− 4ξ)e2κt)

2

16 (eκt + 1)
2 +

κe2κt (8ξ (e2κt − 1) + κ (512eκt + 255e2κt + 256))

16 (eκt + 1)
2 .

Assume now κ/ξ > ρ+. The inequality ρ+ < 1 is equivalent to√
16κ2e2κt + ξ2 (1− eκt)

2
<
ξ + (8κ− ξ)e2κt

eκt + 1
,

or√
(ξ + (8κ− ξ)e2κt)

2

(eκt + 1)
2 − 16κe2κt (eκt − 1) (κ− ξ (eκt + 1) + 3κeκt)

(eκt + 1)
2 <

ξ + (8κ− ξ)e2κt

eκt + 1
. (2.5.30)
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This statement is true if κ − ξ (eκt + 1) + 3κeκt > 0 and if the rhs is positive, which follow from

the obvious inequalities
eκt + 1

3eκt + 1
<

1

2
<
κ

ξ
.

We now prove Lemma 2.5.13(ii). The equation g+(ρ) = 0 implies (by squaring and rearranging

the terms):

4κ(ρ2 − 1)
(
4κe2κtρ2 + ξ(1− e2κt)ρ− κ(1 + 2eκt + e2κt)

)
= 0.

The roots of this equation are ±1 and ρ± defined in (2.3.6). The two possible positive roots are

{ρ+, 1} and the two possible negative ones are {ρ−,−1}. Clearly g+(−1) = 0. Straightforward

computations show that g′+(−1) < 0 and g′+(0) > 0. Since g+ is continuous on (−1, 0) with

g+(0) < 0, it cannot have a single root in this interval, and ρ− ∈ (−1, 0) (by Lemma 2.5.13(i)) is

hence not a valid root. Consider now ρ ∈ (0, 1]. From Lemma 2.5.13(i) the only possible roots are

1 and ρ+. Now g+(1) = 2κ− ξ+ |2κ− ξ|. If κ/ξ > 1/2 then g+(1) > 0 and hence ρ+ is the unique

root of g+ in (0, 1). Assume now that κ/ξ ≤ 1/2, which implies g+(1) = 0. Either g′+(1) ≥ 0 or

g′+(1) < 0. Since g+(0) < 0, the first case implies that g+ has zero or more than two roots in

(0, 1). If it has zero roots, then clearly g+(ρ) < 0 for ρ ∈ (0, 1). More than two roots yields a

contradiction with the fact that ρ+ is the only possible root on (0, 1). Now, Inequality (2.5.30)

implies that ρ+ < 1 if and only if κ/ξ > (eκt + 1)/(3eκt + 1), which is equivalent to g′+(1) < 0.

Therefore in the case κ/ξ ≤ 1/2, the only possible scenario is g′+(1) < 0, where g+ has a unique

root ρ+ ∈ (0, 1). In summary, on the interval [−1, 1], g+(ρ) > 0 if and only if ρ ∈ (ρ+, 1) and

ρ+ < 1. The proof of (iii) is analogous to the proof of (ii) and we omit it for brevity.

We now prove Lemma 2.5.13(iv). From (2.3.6) write ν = z(ρ)1/2, where z(ρ) := ξ2 −

2eκt
(
8κ2 − 4κξρ+ ξ2

)
+ e2κt(ξ − 4κρ)2. The two numbers u∗− and u∗+ in (2.3.6) are well de-

fined in R if and only if z(ρ) ≥ 0 and t > 0. The two roots of this polynomial are given by

χ± := 1
4κ

[
e−κt

(
ξ(eκt − 1)± 4κeκt/2

)]
. We now claim that ρ− ≤ χ− and ρ+ ≥ χ+. From the

expression of ρ− given in (2.3.6), the inequality ρ− ≤ χ− can be rearranged as

−
√
ξ2 + 16κ2e2κt − 2ξ2eκt + ξ2e2κt ≤ ξ − 2ξeκt + ξe2κt − 8κe3κt/2

eκt + 1
.

The claim then follows from the identity

√
ξ2 + 16κ2e2κt − 2ξ2eκt + ξ2e2κt

=

√√√√4eκt (eκt − 1)
2 (
ξ + 2κeκt/2

)2
(eκt + 1)

2 +

(
ξ − 2ξeκt + ξe2κt − 8κe3κt/2

)2
(eκt + 1)

2 .

Analogous manipulations imply ρ+ ≥ χ+, and hence z(ρ) is a well-defined real number for ρ ∈

[−1, ρ−] ∪ [ρ+, 1].

The claim u∗− < 0 is equivalent to

−
√
ξ2 − 2eκt (8κ2 − 4κξρ+ ξ2) + e2κt(ξ − 4κρ)2 < ξ

(
1− eκt

)
+ 4κρeκt,
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which holds as soon as ξ (1− eκt) + 4κρeκt > 0, or ρ > ξ
4κ (1− e−κt). Therefore for any ρ ≥ ρ+,

u∗− < 0 if and only if ρ+ > ξ
4κ (1− e−κt). This simplifies to

√
ξ2 + 16κ2e2κt − 2ξ2eκt + ξ2e2κt >

ξ (eκt − 1)
2

eκt + 1
,

which also reads√√√√4eκt
(
4κ2eκt (eκt + 1)

2
+ ξ2 (eκt − 1)

2
)

(eκt + 1)
2 +

ξ2 (eκt − 1)
4

(eκt + 1)
2 >

ξ (eκt − 1)
2

eκt + 1
,

and this is clearly true. Now straightforward manipulations show that the inequality u∗+ > 1 is

equivalent to√
(ξ (eκt − 1) + 4κρeκt)

2 − 16κeκt (κ+ ξρ (eκt − 1)) > ξ
(
eκt − 1

)
+ 4κρeκt,

which is true if ρ < − κ

ξ (eκt − 1)
or ρ < −ξ (1− e−κt)

4κ
. And of course the claim

(
u∗+ > 1 if ρ ≤ ρ−

)
holds if

ρ− < − κ

ξ (eκt − 1)
or ρ− < −ξ (1− e−κt)

4κ
. (2.5.31)

The first inequality, which can be re-written as

−

√√√√16κ2e3κt
(
ξ2 (eκt − 1)

2
(eκt + 1)− 4κ2eκt

)
ξ2 (e2κt − 1)

2 +

(
ξ2(1− eκt)(1− e2κt) + 8κ2e2κt

ξ(eκt + 1)(1− eκt)

)2

<
ξ2(1− eκt)(1− e2κt) + 8κ2e2κt

ξ(eκt + 1)(1− eκt)
,

holds if ξ2 (eκt − 1)
2
(eκt + 1)− 4κ2eκt > 0, or

(eκt − 1)
2
(1 + e−κt)

4
>
κ2

ξ2
.

Quick manipulations turn the second inequality in (2.5.31) into

−

√√√√4eκt
(
4κ2eκt (eκt + 1)

2 − ξ2 (eκt − 1)
2
(2eκt + 1)

)
(eκt + 1)

2 +
ξ2 (2eκt − 3e2κt + 1)

2

(eκt + 1)
2

<
ξ
(
2eκt − 3e2κt + 1

)
eκt + 1

.

Again this trivially holds if 4κ2eκt (eκt + 1)
2 − ξ2 (eκt − 1)

2
(2eκt + 1) > 0, which is in turn equiv-

alent to
κ2

ξ2
>

(eκt − 1)
2
(2 + e−κt)

4 (eκt + 1)
2 .

Since
(eκt − 1)

2
(2 + e−κt)

4 (eκt + 1)
2 <

(eκt − 1)
2
(1 + e−κt)

4
,

is clearly true, it follows that for any valid choice of parameters either inequality (or both) in (2.5.31)

holds, and the claim follows.
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We now use Lemma 2.5.13 to compute the large-maturity cgf effective limiting domain for the

forward price process (τ−1X
(t)
τ )τ>0. This is of fundamental importance since in the large-maturity

case (unlike the diagonal small-maturity case) we need to find conditions on the parameters of the

model such that the limiting cgf is essentially smooth (Assumption 2.2.1(iv)) on the interior of its

effective domain.

Proposition 2.5.14. Let ε = τ−1 and consider the large-maturity Heston forward process (τ−1X
(t)
τ )τ>0.

Then D0 = KH and if ρ < κ/ξ then {0, 1} ⊂ Do
0 with KH and D0 defined in Table 2.1 and in As-

sumption 2.2.1.

Proof. The tower property yields

E
(
eu(Xt+τ−Xt)

)
= E

[
E
(
eu(Xt+τ−Xt)|Ft

)]
= E

(
eA(u,τ)+B(u,τ)Vt

)
= eA(u,τ)E

(
eB(u,τ)Vt

)
,

with A and B defined in (1.3.8). For any fixed t ≥ 0 we require that

E
(
eu(Xt+τ−Xt)|Ft

)
<∞ for all τ > 0. (2.5.32)

If κ ≥ ρξ then due to [97, Proposition 2.3] we know that (2.5.32) is satisfied when u ∈ [u−, u+],

with u− < 0 and u+ ≥ 1 (u± defined in (2.3.6) with u+ = 1 if and only if κ = ρξ). If κ < ρξ

then due to [97, Proposition 2.3] we know that (2.5.32) is satisfied when u ∈ [u−, 1] with u− < 0.

Further we require that

E
(
eB(u,τ)Vt

)
<∞, for all τ > 0. (2.5.33)

Now denote KV := {u ∈ R : E(eB(u,τ)Vt) < ∞, for all τ > 0}. Then if κ ≥ ρξ, the domain of

the limiting forward cgf is given by KH = [u−, u+] ∩ KV and if κ < ρξ then KH = [u−, 1] ∩ KV .

Condition (2.5.33) is equivalent to B(u, τ) < 1/(2βt) for all τ > 0. Note that [0, 1] ⊂ KH by the

martingale condition. For fixed u ∈ R,

∂B(u, τ)

∂τ
=

2u(u− 1)d(u)2ed(u)τ(
κ− κed(u)τ + ξρu

(
ed(u)τ − 1

)
− d(u)

(
ed(u)τ + 1

))2 ,
so that for any u ̸∈ [0, 1], B (u, ·) is strictly increasing. Therefore

KV =

{
u ∈ R : lim

τ↑∞
B(u, τ) <

1

2βt

}
. (2.5.34)

We have limτ↑∞B(u, τ) = ξ−2(κ− ρξu− d(u)). So the condition is equivalent to κ− ρξu− d(u) <

2κ/(1 − e−κt). If ρ ≤ 0 (ρ ≥ 0) and u ≤ 0 (u ≥ 0) then κ − ρξu − d(u) ≤ κ − ρξu ≤ κ < 2κ
1−e−κt ,

and the condition in (2.5.34) is always satisfied. So if ρ = 0, KH = [u−, u+]. If ρ < 0 (ρ > 0), then

R− ⊂ KV (R+ ⊂ KV ), and hence KH contains [u−, 0] ([0, u+] if 0 < ρ ≤ κ/ξ or [0, 1] if ρ > κ/ξ

). Now suppose that ρ < 0 and u > 0. The condition in (2.5.34) (V given in (2.3.8)) is equivalent

to V (u) < κθ/(2βt). From Lemma 2.5.12, on (0, u+], the function V attains its maximum at u+.

Using the properties in Lemma 2.5.12, there exists u∗+ ∈ (1, u+) solving the equation

V (u∗+)

κθ
=

1

2βt
, (2.5.35)
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if and only if g−(ρ) > 0 (g− defined in Lemma 2.5.13), which is equivalent (see Lemma 2.5.13)

to −1 < ρ < ρ− and t > 0. The solution to (2.5.35) has two roots u∗− and u∗+ defined in (2.3.6),

and the correct solution here is u∗+ by Lemma 2.5.13(iv). So if ρ− ≤ ρ < 0 then KH = [u−, u+].

If −1 < ρ < ρ− and t > 0 then KH = [u−, u
∗
+). Analogous arguments show that for 0 < ρ ≤

min (κ/ξ, ρ+), we have KH = [u−, u+]. If ρ+ < ρ < min (κ/ξ, 1) and t > 0 then KH = (u∗−, u+],

with u− < u∗− < 0. Finally if ρ > κ/ξ and ρ > ρ+ then KH = (u∗−, 1] and if ρ > κ/ξ and ρ ≤ ρ+

then KH = (u−, 1].

The following lemma provides the asymptotic behaviour of the forward cgf Λ
(t)
τ defined in (2.5.29)

as τ tends to infinity.

Lemma 2.5.15. The following expansion holds (V ,H and d given in (2.3.8) and (1.3.6)):

Λ(t)
τ (u) =

 V (u) + τ−1H(u)
(
1 +O

(
e−d(u)τ

))
, for all u ∈ KH \ {1}, as τ ↑ ∞,

0, for u = 1 and all τ > 0.

Remark 2.5.16.

(i) When ρ > κ/ξ (R3b and R4 in (2.3.5)), we have limu↑1 Λ
(t)
τ (u) = V (1) ̸= 0, so that the limit

is not continuous at the right boundary u = 1. For ρ ≤ κ/ξ we always have V (1) = H(1) = 0

and 1 ∈ KoH for ρ < κ/ξ.

(ii) For all u ∈ KoH, d(u) > 0, so that the remainder goes to zero exponentially fast as τ tends to

infinity.

Proof of Lemma 2.5.15. First note that Λ
(t)
τ (1) = 0 for all τ > 0 since the asset price process

(eXt)t>0 is a true martingale [5, Proposition 2.5]. From the definition of Λ
(t)
τ in (2.5.29) and the

Heston forward cgf given in (1.3.7) we immediately obtain the following asymptotics as τ tends to

infinity:

A(u, τ) = τV (u)− 2κθ

ξ2
log

(
1

1− γ(u)

)
+O

(
e−d(u)τ

)
, B(u, τ) =

V (u)

κθ
+O

(
e−d(u)τ

)
,

where A and B are defined in (1.3.8), V in (2.3.8) and d and γ in (1.3.6) and (1.3.8). In

particular this implies that B(u,τ)
1−2βtB(u,τ) = V (u)

θκ−2βtV (u) + O
(
e−d(u)τ

)
and log (1− 2βtB(u, τ)) =

log
(
1− 2βtV (u)

θκ

)
+O

(
e−d(u)τ

)
, which are well defined for all u ∈ KoH. We therefore obtain

H(u) =
V (u)

κθ − 2βtV (u)
ve−κt − 2κθ

ξ2
log

(
1− 2βtV (u)

κθ

)
− 2κθ

ξ2
log

(
1

1− γ(u)

)
,

and the lemma follows from straightforward simplifications.

2.5.3 Proofs of Section 2.3.3

We consider here the two examples of time-changed exponential Lévy models given in Section 1.3.2.

The forward cgf’s were derived in Lemma 1.3.4 and Lemma 1.3.5.
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Proof of Proposition 2.3.10. We show that Proposition 2.2.11 is applicable given the assumptions

of Proposition 2.3.10. Consider case (i). The expansion for Λ
(t)
τ defined in (2.5.29) is straightfor-

ward and analogous to Lemma 2.5.15. In particular we establish that

Λ(t)
τ (u) = V̂ (u) +

Ĥ(u)

τ

(
1 +O

(
e−d(ϕ(u))τ

))
, for all u ∈ K̂o∞, as τ tends to infinity,

where the functions V̂ , Ĥ, d and the domain K̂∞ are defined in (2.3.11), (1.3.14) and (2.3.12).

Since ϕ is essentially smooth and strictly convex on Kϕ and K̂∞ ⊆ Kϕ, then the limiting cgf

Λ0 = V̂ is essentially smooth and strictly convex on K̂∞. The map (ε, u) 7→ Λε(u) (defined

in (2.5.29)) is of class C∞ on R∗
+ × K̂o∞ since ϕ is of class C∞ on K̂o∞ and Assumption 2.2.1(v)

is also satisfied. Since ϕ(1) = 0 we have that V̂ (1) = 0 and {0, 1} ⊂ K̂o∞. It remains to be

checked that the limiting domain is in fact given by K̂∞. We first note that by conditioning

on (Vu)t≤u≤t+τ and using the independence of the time-change and the Lévy process we have

E
(
eu(Xt+τ−Xt)

)
= E

(
eϕ(u)

∫ t+τ
t

vsds
)
and so any u in the limiting domain must satisfy ϕ(u) < ∞.

Using [44, page 476] and the tower property we compute

E
(
eu(Xt+τ−Xt)

)
= E

[
E
(
eϕ(u)

∫ t+τ
t

vsds|Ft
)]

= E
(
eA(ϕ(u),τ)+B(ϕ(u),τ)vt

)
= eA(ϕ(u),τ)E

(
eB(ϕ(u),τ)vt

)
, (2.5.36)

with A and B given in (1.3.14). Further from (1.3.9) we have

logE (euvt) =
uve−κt

1− 2βtu
− 2κθ

ξ2
log (1− 2βtu) , for all u <

1

2βt
.

Following a similar argument to the proof of Proposition 2.5.14 we can show that for any t ≥ 0,

B(ϕ(u), τ) < 1/(2βt) is always satisfied for each τ > 0. This follows from the independence of the

Lévy process N and the time-change. We also require that for any t ≥ 0, E
(
eϕ(u)

∫ t+τ
t

vsds|Ft
)
<

∞, for every τ > 0. Here we use [5, Corollary 3.3] with zero correlation to find that we require

ϕ(u) ≤ κ2/(2ξ2). It follows that K̂∞ =
{
u : ϕ(u) ≤ κ2/(2ξ2)

}
.

Regarding case (ii), arguments analogous to case (i) hold and we focus on showing that the

limiting domain is K̃∞. Using [44, page 488] Equality (2.5.36) also holds with A and B defined

in (1.3.17). Since we require that for any t ≥ 0, E
(
e
∫ t+τ
t

vsdsϕ(u)|Ft
)
< ∞, for every τ > 0 we

have ϕ(u) < αλ. Using [44, page 482] we also have

logE (euvt) = uve−λt + δ log

(
u− αeλt

(u− α)eλt

)
, for all u < α.

But it is straightforward to show that ϕ(u) < αλ implies B(ϕ(u), τ) < α for any τ > 0 and it

follows that K̃∞ = {u : ϕ(u) < αλ}. Case (iii) is straightforward and omitted.



Chapter 3

The small-maturity Heston

forward smile

3.1 Introduction

In Chapter 2 we derived small and large-maturity forward smile asymptotics for a general class

of models including the Heston model (1.3.2). However, these results only apply to the so-called

diagonal small-maturity regime, i.e. the behaviour (as ε tends to zero) of the process (X
(εt)
ετ )ε≥0

(defined in (1.0.3)). The conjecture, stated in Chapter 2 (see for example Remark 2.3.3(iv)), is

that for fixed t > 0 the Heston forward smile explodes to infinity (except at-the-money) as τ tends

to zero.

In this chapter we confirm this conjecture and give a high-order expansion for the forward

smile. The main result (Theorem 3.4.1) is that the small-maturity Heston forward smile explodes

according to the following asymptotic: σ2
t,τ (k) = N0(k, t)τ

−1/2 + N1(k, t)τ
−1/4 + o

(
τ−1/4

)
for

k ∈ R∗ and t > 0 as τ tends to zero. Here the forward smile, σt,τ , is defined in (1.0.3) and N0(·, t)

and N1(·, t) are even continuous functions (over R) with N0(0, t) = N1(0, t) = 0 and indepen-

dent of the Heston correlation. In the at-the-money case (k = 0) a separate model-independent

analysis (Lemma 3.4.3 and Theorem 3.4.4) shows that the small-maturity limit is well defined

and limτ↘0 σt,τ (0) = E(
√
Vt) holds for any well-behaved diffusion where Vt is the instantaneous

variance at time t. This exploding nature is consistent with empirical observations in [36] and the

diagonal small-maturity asymptotic from Chapter 2.

The chapter is structured as follows. In Section 3.2 we introduce the notion of a forward

time-scale and characterise it in the Heston model. In Section 3.3 we state the main result on

small-maturity asymptotics of forward-start options in the Heston model. Section 3.4 tackles the

forward implied volatility asymptotics: Section 3.4.1 translates the results of Section 3.3 into out-

90
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of-the-money forward smile asymptotics, and Section 3.4.2 presents a model-independent result for

the at-the-money forward implied volatility. Section 3.5 provides numerical evidence supporting

the asymptotics derived in the chapter and the main proofs are gathered in Section 3.6. In this

chapter we will always assume that forward-start date is greater than zero (t > 0) unless otherwise

stated.

3.2 Forward time-scales

In this section we introduce the notion of a forward time-scale and characterise it in the Heston

model (1.3.2). In the BSM model (1.0.1) the time-scale is given by h(t) ≡ t, which is related to

the quadratic variation of the driving Brownian motion. For diffusions (such as Heston) the (spot)

time-scale is the same, which implies that the spot smile has a finite (non-zero) small-maturity

limit. In the forward case, this however no longer remains true. Stochastic volatility models (eg.

Heston) exhibit different time-scales to the BSM model leading to different asymptotic regimes

for the forward smile relative to the spot smile. As we will show below (Lemma 3.2.3), all re-

scalings of the Heston model lead to limiting cumulant generating functions (cgf’s) that are all

zero on their domains of definition. But the forward time-scale is the only choice that leads to the

limiting cgf being zero on a bounded domain. This is one of the key properties that allows us to

derive sharp large deviation results even though at first sight this zero limit appears trivial and

non-consequential. We define the re-normalised forward cgf by (X
(t)
τ defined in (1.0.3))

Λ(t)
τ (u, a) := a logE

(
euX

(t)
τ /a

)
, for all u ∈ Dt,τ , (3.2.1)

where Dt,τ := {u ∈ R : |Λ(t)
τ (u, a)| < ∞}. With this definition the domain Dt,τ will depend on

a, but it will be clear from the context which choice of a we are using. Recall that the Heston

forward cgf (with a = 1) was derived in Lemma 1.3.1.

Definition 3.2.1. We define a (small-maturity) forward time-scale as a continuous function h :

R+ → R+ such that limτ↘0 h(τ) = 0 and Λ(u) := limτ↘0 Λ
(t)
τ (u, h(τ)) produces a non-trivial

pointwise limit. We shall say that a (pointwise) limit is trivial if it is null on R or null at the origin

and infinite on R∗.

Remark 3.2.2.

(i) The forward time-scale is unique up to scaling. If h is a forward time-scale then the family

of functions αh for any α > 0 are also forward times-scales.

(ii) In the BSM model the forward time-scale is h(τ) ≡ τ .

(iii) A forward time-scale may not exist for a model. For example, consider exponential Lévy

models with bounded domain for the Lévy exponent. The only non-trivial limit occurs when

h ≡ 1, which does not satisfy Definition 3.2.1 and so a forward-time scale does not exist.
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(iv) If (X
(t)
τ )τ≥0 satisfies a large deviations principle [48, Section 1.2] with speed h and assuming

further some tail condition (see [48, Theorem 4.3.1]), then h is the forward time-scale for the

model by Varadhan’s lemma.

(v) Diffusion models have the same spot time-scale (t = 0) as the BSM model, namely h(τ) ≡ τ

(see for example [22]). This is not necessarily true in the forward case as we will shortly see.

In order to characterise the Heston forward time-scale we require the following lemma, proved

in Section 3.6.1.

Lemma 3.2.3. Let h : R+ → R+ be a continuous function such that limτ↘0 h(τ) = 0 and a ∈ R∗
+.

The following limits hold for the Heston forward cgf as τ tends to zero with βt defined in (1.3.4):

(i) If h(τ) ≡ a
√
τ then limτ↘0 Λ

(t)
τ (u, h(τ)) = 0, for all |u| < a/

√
βt and is infinite otherwise;

(ii) if
√
τ/h(τ) ↗ ∞ then limτ↘0 Λ

(t)
τ (u, h(τ)) = 0, for u = 0 and is infinite otherwise;

(iii) if
√
τ/h(τ) ↘ 0 then limτ↘0 Λ

(t)
τ (u, h(τ)) = 0, for all u ∈ R.

As it turns out all limits are zero on their domains of definition, but using h(τ) ≡
√
τ produces

the only (up to a constant multiplicative factor) non-trivial zero limit. It follows that τ 7→
√
τ is

the Heston forward time-scale. Let now Λ : DΛ = (−1/
√
βt, 1/

√
βt) → R be the pointwise limit

(with βt := ξ2 (1− e−κt) /(4κ)) from Lemma 3.2.3, i.e. satisfying Λ(u) = 0 for u ∈ DΛ and infinity

otherwise. Further we define the function Λ∗ : R → R+ as the Fenchel-Legendre transform of Λ:

Λ∗(k) := sup
u∈DΛ

{uk − Λ(u)} , for all k ∈ R. (3.2.2)

Lemma 3.2.4. The function Λ∗ defined in (3.2.2) is characterised explicitly as Λ∗(k) = |k|/
√
βt

for all k ∈ R.

Proof. Clearly Λ∗(0) = 0. Now suppose that k > 0. Then Λ∗(k) = supu∈DΛ
{uk} = k/

√
βt. A

similar result holds for k < 0 and the result follows.

3.3 Small-maturity forward-start option asymptotics

In this section we state the main result on small-maturity forward-start option asymptotics. First

we need to define a number of functions. All functions below are real-valued and defined on R∗.

We recall that sgn(u) = 1 if u ≥ 0 and -1 otherwise.

a0(k) :=
sgn(k)√

βt
, a1(k) := −a0(k)

√
ve−κt/2

2
√
|k|β1/4

t

, a2(k) := − κθ

kξ2
− B̂1(a0(k))

a0(k)
,

a3(k) :=
2βta

3
1(k)

ξ4v2

[
ξ2vβte

κt
(
|k|ξ2β

1
2
t B̂1(a0(k))− kξ2B̂′

1(a0(k))− κθ
)

+(2κθβte
κt)2 − ξ4v2

16

]
,

(3.3.1)
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where

B̂1(u) :=
u

4

(
u2ρξ − 2

)
; (3.3.2)

ζ(k) :=
2
√
ve−κt/2

e0(k)3/2
, r(k) :=

a21(k)

2
− κθ

|k|ξ2
√
βt
, (3.3.3)


e0(k) := −2a1(k)/a0(k),

e1(k) := −2βtr(k),

e2(k) := −2βt

(
a1(k)a2(k) + a0(k)a3(k) + a1(k)B̂

′
1(a0(k))

)
,

(3.3.4)



ψ0(k) :=
a0(k)ve

−κt

e30(k)

(
e20(k) + a0(k)βt [3a1(k)e0(k)− 2a0(k)e1(k)]

)
,

ψ1(k) := −4a0(k)vβte
−κt/e40(k)

ψ2(k) :=
ve−κt

2e40(k)

(
4a0(k)βt[3a0(k)e1(k)− 4a1(k)e0(k)]− 5e20(k)

)
,

ψ3(k) := 8vβte
−κt/e50(k),

ψ4(k) :=
ve−κt

2e30(k)

(
e21(k)− e0(k)e2(k)

βt
− 2a0(k)a1(k)e0(k)e1(k) + 2e20(k)r(k)

)
,

(3.3.5)


ϕa2(k) := ψ2(k)−

1

2
ψ2
0(k)−

4κθβt
ξ2

2κθ + ξ2

e20(k)ξ
2

− 4κθβt
ξ2

a0(k)ψ0(k)

e0(k)
,

ϕb2(k) := ψ3(k)− ψ0(k)ψ1(k)−
4κθβt
ξ2

a0(k)ψ1(k)

e0(k)
,

ϕc2(k) := −ψ2
1(k)/2,

(3.3.6)

z1(k) := ψ4(k)− a3(k)k −
2κθ

ξ2
e1(k)

e0(k)
, p1(k) := e0(k) +

ϕa2(k)

ζ2(k)
+

3ϕb2(k)

ζ4(k)
+

15ϕc2(k)

ζ6(k)
, (3.3.7)

 c0(k) := 2|a1(k)k|, c1(k) :=
ve−κt

e0(k)

(
a0(k)a1(k)−

e1(k)

2βte0(k)

)
− a2(k)k,

c2(k) := e0(k)
−2κθ/ξ2 , c3(k) := z1(k) + p1(k).

(3.3.8)

We now state the main result of the section, i.e. an asymptotic expansion formula for forward-start

option prices as the remaining maturity tends to zero. The proof is given in Section 3.6.4.

Theorem 3.3.1. The following expansion holds for forward-start option prices for all k ∈ R∗ as

τ tends to zero:

E
(
eX

(t)
τ − ek

)+
=
(
1− ek

)
11{k<0}

+ exp

(
−Λ∗(k)√

τ
+
c0(k)

τ1/4
+ c1(k) + k

)
βtτ

(7/8−θκ/(2ξ2))c2(k)

ζ(k)
√
2π

(
1 + c3(k)τ

1/4 + o
(
τ1/4

))
,

where Λ∗ is characterised in Lemma 3.2.4, c0, . . . , c3 in (3.3.8), ζ in (3.3.3) and βt in (1.3.4).
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Remark 3.3.2.

(i) We have Λ∗(k) > 0 and c0(k) > 0 for all k ∈ R∗. Also note that Λ∗ is piecewise linear as

opposed to being strictly convex in the BSM model, see Lemma 3.3.4 below.

(ii) The forward time-scale
√
τ results in out-of-the-money forward-start options decaying as τ

tends to zero at leading order with a rate of exp (−1/
√
τ) as opposed to a rate of exp (−1/τ)

in the BSM model.

(iii) The fact that the limiting forward cgf is non-steep (trivially zero on a bounded interval)

results in a different asymptotic regime for higher order terms compared to the BSM model.

In particular we have a τ1/4 dependence as opposed to a τ dependence in the BSM model

and the introduction of the parameter dependent term τ (7/8−θκ/(2ξ
2)). The implications of

this parameter dependent term for forward-smile asymptotics will be discussed further in

Remark 3.4.2(vii).

(iv) The asymptotic expansion is given in closed-form and can in principle be extended to arbitrary

order using the methods given in the proof.

As an immediate consequence of Theorem 3.3.1 we have the following corollary, which provides

an example of a family of random variables for which the limiting re-scaled cumulant generating

function is zero (on its effective domain) but a large deviation principle still holds. This is to be

compared to the Gärtner-Ellis theorem (Theorem 1.2.3) which requires the limiting cgf to be at

least steep at the boundaries of its effective domain for an LDP to hold.

Corollary 3.3.3.
(
X

(t)
τ

)
τ≥0

satisfies an LDP with speed
√
τ and good rate function Λ∗ as τ tends

to zero.

Proof. The proof of Theorem 3.3.1 holds with only minor modifications for digital options, which

are equivalent to probabilities of the form P
(
X

(t)
τ ≤ k

)
or P

(
X

(t)
τ ≥ k

)
. One can then show

that limτ↘0
√
τ logP

(
X

(t)
τ ≤ k

)
= − inf{Λ∗(x), x ≤ k}. Note that of course this infimum is

null whenever k > 0. Consider now an open interval of the real line of the form (a, b). Since

(a, b) = (−∞, b) \ (−∞, a], then by continuity of the function Λ∗ and its properties given in

Lemma 3.2.4, we immediately obtain that

lim
τ↘0

√
τ logP

(
X(t)
τ ∈ (a, b)

)
= − inf

x∈(a,b)
Λ∗(x).

Since any Borel set of the real line can be written as a (countable) union / intersection of open

intervals, the corollary follows from the definition of the large deviations principle, see Defini-

tion 1.2.1.
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In order to translate the forward-start option results into forward smile asymptotics we re-

quire a similar expansion for the BSM model. The following lemma is a direct consequence of

Corollary 2.2.7 and the proof is therefore omitted.

Lemma 3.3.4. In the BSM model (1.0.1) the following expansion holds for all k ∈ R∗ as τ ↓ 0:

E
(
eX

(t)
τ − ek

)+
=
(
1− ek

)
11{k<0} +

ek/2−k
2/(2Σ2τ)

(
Σ2τ

)3/2
k2

√
2π

[
1−

(
3

k2
+

1

8

)
Σ2τ + o(τ)

]
.

3.4 Small-maturity forward smile asymptotics

3.4.1 Out-of-the-money forward implied volatility

We now translate the small-maturity forward-start option asymptotics into forward smile asymp-

totics. Define the functions Ni : R∗ × R∗
+ → R (i = 0, 1, 2, 3) by

N0(k, t) :=
k2

2Λ∗(k)
=

√
βt|k|
2

, N1(k, t) :=
2c0(k)N

2
0(k, t)

k2
=

e−κt/2β
1/4
t

√
v|k|

2
,

N2(k, t) :=
2N2

0(k, t)

k2
log

(
ec1(k)c2(k)βtk

2

ζ(k)N
3/2
0 (k, t)

)
+

N2
0(k, t)

k
+

N2
1(k, t)

N0(k, t)
,

N3(k, t) :=
N0(k, t)

k2

(
2c3(k)N0(k, t)− 3N1(k, t)

)
+

N1(k, t)

N0(k, t)

(
2N2(k, t)−

N2
1(k, t)

N0(k, t)

)
,

with Λ∗ characterised in Lemma 3.2.4, c0, . . . , c3 in (3.3.8), ζ in (3.3.3) and βt in (1.3.4). On R∗,

Λ∗(k) > 0 and so N0(k, t) > 0. Further c0(k) > 0 and so N1(k, t) > 0. Also c2(k) > 0 and

ζ(k) > 0 so that N2 is a well defined real-valued function. The following theorem—proved in

Section 3.6.4—is the main result of the section.

Theorem 3.4.1. The following expansion holds for the forward smile for all k ∈ R∗ as τ tends to

zero:

σ2
t,τ (k) =


N0(k, t)

τ1/2
+

N1(k, t)

τ1/4
+ o

(
1

τ1/4

)
, if 4κθ ̸= ξ2,

N0(k, t)

τ1/2
+

N1(k, t)

τ1/4
+N2(k, t) +N3(k, t)τ

1/4 + o
(
τ1/4

)
, if 4κθ = ξ2.

Remark 3.4.2.

(i) Note that N0(k, t) and N1(k, t) are strictly positive for all k ∈ R∗, so that the Heston forward

smile blows up to infinity (except ATM) as τ tends to zero.

(ii) Both N0(·, t) and N1(·, t) are even functions and correlation-independent quantities so that

for small maturities the Heston forward smile becomes symmetric (in log-strikes) around

the at-the-money point. Consequently, if one believes that the small-maturity forward smile

should be downward sloping (similar to the spot smile) then the Heston model should not

be chosen. This small-maturity ’U-shaped’ effect for the Heston forward smile has been

mentioned qualitatively by practitioners; see [36].
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(iii) We use the notation f ∼ g to mean f/g = 1 as τ → 0. Then in Heston we have σ2
t,τ ∼

√
βt|k|/(2

√
τ) and in exponential Lévy models with Lévy measure ν satisfying supp ν = R

we have σ2
t,τ ∼ −k2/(2τ log τ) [145, Page 21]. We therefore see that the small-maturity

exponential Lévy smile blows up at a much quicker rate than the Heston forward smile.

(iv) We have limk→0 N0(k, t) = N0(0, t) = 0 and limk→0 N1(k, t) = N1(0, t) = 0. Higher-order

terms are not necessarily continuous at k = 0. For example (when 4κθ = ξ2) we have

limk→0 N2(k, t) = +∞.

(v) The at-the-money forward implied volatility (k = 0) asymptotic is not covered by Theo-

rem 3.4.1 and a separate analysis is needed for this case (see Section 3.4.2). In particular the

proof fails since in this case the key function u∗τ (0) (defined through equation (3.6.5)) does

not converge to a boundary point, but rather to zero as τ tends to zero (see the proof of

Lemma 3.6.3).

(vi) It does not make sense to consider the limit of our asymptotic result for fixed k ∈ R∗ as t

tends to zero since for t = 0 using the forward time-scale h(τ) ≡
√
τ will produce a trivial

limiting cgf and hence none of the results will carry over. The time scale in the spot case is

h(τ) ≡ τ ; see [62]. Our result is only valid in the forward (not spot) smile case.

(vii) As seen in the proof, due to the term τ7/8−θκ/(2ξ
2) in the forward-start option asymptotics

in Theorem 3.3.1, one can only specify the small-maturity forward smile to arbitrary order

if 4κθ = ξ2. If this is not the case then such an expansion for the forward smile only holds

up to order O(1/τ1/4). Let σt :=
√
Vt be given by the dynamics dσt = −κσt

2 dt + ξ
2dWt,

with σ0 =
√
v. This corresponds to a specific case of the Schöbel-Zhu stochastic volatility

model (Section 1.3.1.2). In this case V then corresponds to the Heston model with the

parameters related to each other by the equality 4κθ = ξ2. So as the Heston volatility

dynamics deviate from Gaussian volatility dynamics a certain degeneracy occurs such that one

cannot specify high order forward smile asymptotics in the small-maturity case. Interestingly,

a similar degeneracy occurs when studying the tail probability of the stock price. As proved

in [51], the square-root behaviour of the variance process induces some singularity and hence

a fundamentally different behaviour when 4κθ ̸= ξ2.

3.4.2 At-the-money forward implied volatility

The analysis above excluded the at-the-money case k = 0. We show below that this case has

a very different behaviour and can be studied with a much simpler machinery. In this section,

we shall denote the future implied volatility σt(k, τ) as the implied volatility corresponding to a

European call/put option with strike ek, maturity τ , observed at time t. We first start with the

following model-independent lemma, bridging the gap between the at-the-money future implied
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volatility σt(0, τ) and the forward implied volatility σt,τ (0). Note that a similar result—albeit less

general—was derived in [114]. We shall denote by E0 the expectation (under the given risk-neutral

probability measure) with respect to F0, the filtration at time zero.

Lemma 3.4.3. Let t > 0. Assume that there exists n ∈ N∗ such that the expansion σt(0, τ) =∑n
j=0 σj(t)τ

j + o (τn) holds and that E0 (σj(t)) < ∞ for j = 0, ..., n. If the at-the-money forward

implied volatility satisfies σt,τ (0) =
∑n
j=0 σ̄j(t)τ

j + o (τn), then σ̄j(t) = E0(σj(t)) for all j =

0, . . . , n.

Proof. In the Black-Scholes model (1.0.1), we know that for any t ≥ 0, τ > 0, the price at

time t of a (re-normalised) European call option with maturity t + τ is given by BS(k,Σ2, τ) =

E
[(
St+τ/St − ek

)+ |Ft
]
, and its at-the-money expansion as the maturity τ tends to zero reads

(see [64, Corollary 3.5])

BS(k,Σ2, τ) =
1√
2π

(
Σ
√
τ − Σ3τ3/2

24
+O

(
Σ5τ5/2

))
.

We keep the Σ dependence in the O(. . .) to highlight the fact that, when Σ depends on τ (such

as Σ = σt(0, τ)), one has to be careful not to omit some terms. Now, for a given martingale

model for the stock price S, we shall denote by Ct(k, τ) the price at time t of a European call

option with payoff
(
St+τ/St − ek

)+
at time t+ τ . The future implied volatility σt(k, τ) is then the

unique solution to BS(k, σ2
t (k, τ), τ) = Ct(k, τ). For at-the-money k = 0, we obtain the following

expansion for short maturity τ :

Ct(0, τ) =
1√
2π

(
σ0(t)

√
τ +

(
σ1(t)−

σ3
0(t)

24

)
τ3/2 +O

(
τ5/2

))
, (3.4.1)

where we have used here the expansion assumed for σt(0, τ). Note also that the coefficients σj(t)

are random variables. We follow the probabilistic version of the O notation detailed in [102, Section

5], namely the random remainder Rτ is OP (τ
5/2) as τ tends to zero if and only if for any ε > 0

there exist a constant cε > 0 and a threshold τε > 0 for which P
(
|Rτ | ≤ cετ

5/2
)
> 1 − ε for all

τ < τε. For brevity we abuse the notations slightly here and write O instead of OP . Now, the

forward-start European call option (at inception) in the Black-Scholes model reads

E0

[(
St+τ
St

− ek
)+
]
= N (d+(Σ, τ))− ekN (d−(Σ, τ)) = BS(k,Σ2, τ),

where d±(Σ, τ) := (−k ± Σ2τ/2)/(Σ
√
τ). For a given model, we recall that C(k, t, τ) is the price

of a Type-I forward-start European call option. By definition of the forward implied volatility

σt,τ (k), we have C(k, t, τ) = BS(k, σ2
t,τ (k), τ). For at-the-money k = 0, it follows that

C(0, t, τ) = BS(0, σ2
t,τ (0), τ) = N (d+(σt,τ (0), τ))−N (d−(σt,τ (0), τ)).

Using the assumed expansion for σt,τ (0) we similarly obtain (as in (3.4.1))

C(0, t, τ) =
1√
2π

(
σ̄0(t)

√
τ +

(
σ̄1(t)−

σ̄3
0(t)

24

)
τ3/2 +O

(
τ5/2

))
. (3.4.2)
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Note that now the coefficients σ̄j(t) are not random variables, but simple constants. Recall now

that

C(k, t, τ) := E0

[(
St+τ
St

− ek
)+
]
= E0

{
E

[(
St+τ
St

− ek
)+

|Ft

]}
= E0 (Ct(k, τ)) . (3.4.3)

Combining this with (3.4.1) and (3.4.2), we find that σ̄j(t) = E0 (σj(t)) for j = 0, 1. The higher-

order terms for the expansion can be proved analogously and the lemma follows.

We now apply this to the Heston model. Recall the definition of the Kummer (confluent

hypergeometric) function M : C3 → R:

M (α, µ, z) :=
∑
n≥0

(α)n
(µ)n

zn

n!
, µ ̸= 0,−1, ...,

where the Pochhammer symbol is defined by (α)n := α (α+ 1) · · · (α+ n− 1) for n ≥ 1 and

(α)0 = 1. For any p > −2κθ/ξ2 and t > 0 we define

∆(t, p) := 2pβpt exp

(
−ve

−κt

2βt

)
Γ
(
2κθ/ξ2 + p

)
Γ (2κθ/ξ2)

M

(
2κθ

ξ2
+ p,

2κθ

ξ2
,
ve−κt

2βt

)
, (3.4.4)

with βt defined in (1.3.4). This function is related to the moments of the Feller diffusion (see [56,

Theorem 2.4]): for any t > 0, E [V pt ] = ∆(t, p) if p > −2κθ/ξ2 and is infinite otherwise. Note in

particular that limt↘0 ∆(t, p) = vp (see [1, 13.1.4 page 504]). The Heston forward at-the-money

volatility asymptotic is given in the following theorem.

Theorem 3.4.4. The following expansion holds for the forward at-the-money volatility as τ tends

to zero:

σt,τ (0) =


∆

(
t,
1

2

)
+ o (1) , if 4κθ ≤ ξ2,

∆

(
t,
1

2

)
+

∆
(
t,− 1

2

)
4

(
κθ +

ξ2(ρ2 − 4)

24

)
τ +

∆
(
t, 12
)

8
(ρξ − 2κ)τ + o(τ), if 4κθ > ξ2.

Remark 3.4.5.

(i) As opposed to the out-of-the-money case, the small-maturity limit here is well defined.

(ii) Combining Lemma 3.4.3 and [22], limτ↘0 σt,τ (0) = E(
√
Vt) holds for any well-behaved

stochastic volatility model (S, V ).

(iii) The proof does not allow one to conclude any information about higher order terms in Heston

for the case 4κθ ≤ ξ2. A different method would need to be used to compute higher order

asymptotics in this case.

Proof of Theorem 3.4.4. In Heston we recall from Corollary 2.3.2 the asymptotic σ2
t (0, τ) = Vt +(

κθ
2 + ξ2

48

(
ρ2 − 4

)
+ Vt

4 (ρξ − 2κ)
)
τ + o(τ), and so for small τ we have σt(0, τ) = σ0(t) + σ1(t)τ +

o(τ), with σ0(t) :=
√
Vt and σ1(t) := 1

4
√
Vt

(
κθ + ξ2

24 (ρ
2 − 4)

)
+

√
Vt

8 (ρξ − 2κ). Lemma 3.4.3

and (3.4.4) conclude the proof.
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3.5 Numerics

We first compare the true Heston forward smile and the asymptotics developed in the paper.

We calculate forward-start option prices using the inverse Fourier transform representation in

Lemma 1.4.7 and a global adaptive Gauss-Kronrod quadrature scheme. We then compute the

forward smile σt,τ with a simple root-finding algorithm. The Heston model parameters are given

by ρ = −0.8, ξ = 0.52, κ = 1 and v = θ = 0.07 unless otherwise stated in the figures. In Fig-

ures 3.1 and 3.2 we compare the true forward smile using Fourier inversion and the asymptotic in

Theorem 3.4.1. It is clear that the small-maturity asymptotic has very different features relative

to ”smoother” asymptotics derived in Chapter 2. This is due to the introduction of the forward

time-scale and to the fact that the limiting cgf is not steep. Note also from Remark 3.4.2(iv)

that the asymptotics in Theorem 3.4.1 can approach zero or infinity as the strike approaches at-

the-money. This appears to be a fundamental feature of non-steep asymptotics; numerically this

implies that the asymptotic may break down for strikes in a region around the at-the-money point.

In Figure 3.3 we compare the true at-the-money forward volatility using Fourier inversion and the

asymptotic in Lemma 3.4.3. Results are in line with expectations and the at-the-money asymp-

totic is more accurate than the out-of-the-money asymptotic. This is because the at-the-money

forward volatility (unlike the out-of-the-money case) has a well defined limit as τ tends to zero.

In Figure 3.4 we use these results to gain intuition on how the Heston forward smile explodes for

small maturities. In Section 2.3.1.1 we derived a diagonal small-maturity asymptotic expansion for

the Heston forward smile valid for small forward start-dates and small maturities. In order for the

small-maturity asymptotic in this chapter to be useful, there needs to be a sufficient amount of vari-

ance of variance at the forward-start date. Practically this means that the asymptotic performs

better as one increases the forward-start date. On the other hand the diagonal-small maturity

asymptotic expansion is valid for small forward-start dates. In this sense these asymptotics com-

plement each other. Figure 3.5 shows the consistency of these two results for small forward-start

date and maturity.

3.6 Proof of Theorems 3.3.1 and 3.4.1

We split the proof of Theorems 3.3.1 and 3.4.1 into several parts, from Section 3.6.1 to Section 3.6.4

below. In Section 3.6.1 we develop the necessary tools to characterise the small-maturity Heston

forward cgf domain and derive the Heston forward time-scale (Lemma 3.2.3). In Section 3.6.2 we

use the forward time-scale to define a time-dependent asymptotic measure-change and derive ex-

pansions for fundamental auxiliary functions needed in the analysis. In Section 3.6.3 we derive the

asymptotics of the characteristic function of a re-scaled version of the forward price process (X
(t)
τ )

under the asymptotic measure-change defined in Section 3.6.2. This section also uses Fourier trans-
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Figure 3.1: Here t = 1 and τ = 1/24. In (a) circles, squares, diamonds and triangles represent the

zeroth, first, second and third-order asymptotics respectively and backwards triangles represent

the true forward smile using Fourier inversion. In (b) we plot the errors.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ò

ò

ò

ò

ò

ò

ò ò

ò

ò

ò

ò

ò

ô

ô

ô

ô

ô

ô

ô ô

ô

ô

ô

ô
ô

0.8 0.9 1.0 1.1 1.2 1.3
Strike

0.1

0.2

0.3

0.4

FwdSmile

(a) Asymptotic vs Fourier inversion.

æ æ æ æ
æ

æ

æ

æ

æ

æ

æ
æ

æà à à
à

à

à

à

à

à

à

à
à

à

ì ì ì ì
ì

ì

ì

ì

ì
ì ì ì ì

ò ò ò ò ò
ò ò

ò
ò ò ò ò ò0.8 0.9 1.0 1.1 1.2 1.3

Strike

0.05

0.10

0.15

Error

(b) Errors.

Figure 3.2: Here t = 1 and τ = 1/12. In (a) circles, squares, diamonds and triangles represent the

zeroth, first, second and third-order asymptotics respectively and backwards triangles represent

the true forward smile using Fourier inversion. In (b) we plot the errors.

form methods to derive asymptotics of important expectations using this characteristic function

expansion. Section 3.6.4 finally puts all the pieces together and proves Theorems 3.3.1 and 3.4.1.

3.6.1 Heston forward time-scale

We recall that the Heston forward cgf was derived in Lemma 1.3.1. The first step in our analysis is

to characterise the forward time-scale in the Heston model. In order to achieve this we first need

to understand the limiting behaviour of a re-scaled version of the B function in (1.3.8) that plays

a fundamental role in the analysis below. The following lemma shows that using h(τ) ≡
√
τ as a

time-scale produces the only non-trivial limit for the re-scaled B function. We then immediately
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Figure 3.3: Plot of the forward at-the-money volatility (τ = 1/12) as a function of the forward-

start date t. The Heston parameters are ρ = −0.6, κ = 1, ξ = 0.4 and v = θ = 0.07. In (a) circles,

squares and diamonds are the zeroth-order, the first-order and the true forward at-the-money

volatility.
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(a) t = 1, τ = 1/100.
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Figure 3.4: Circles, squares, diamonds and triangles represent the zeroth, first, second and third-

order asymptotics respectively.
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small-maturity second-order asymptotic of Chapter 2 (squares) for t = 1/12 and τ = 1/1000.
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prove Lemma 3.2.3 which characterises the forward time-scale in the Heston model.

Lemma 3.6.1. Let h : R+ → R+ be a continuous function such that limτ↘0 h(τ) = 0 and a ∈ R∗
+.

The following limit then holds for B in (1.3.8) for all u ∈ R∗:

lim
τ→0

B(u/h(τ), τ) =



undefined, if τ/h(τ) ↗ ∞,

+∞, if h(τ) ≡ aτ,

+∞, if
√
τ/h(τ) ↗ ∞ and τ/h(τ) ↘ 0,

0, if
√
τ/h(τ) ↘ 0,

u2/(2a2), if h(τ) ≡ aτ1/2.

Proof. As τ tends to zero we have the following asymptotic behaviours for the functions d and γ

defined in (1.3.6) and (1.3.8):

d (u/h(τ)) =
1

h(τ)

(
κ2h(τ)2 + uh(τ) (ξ − 2κρ)− ρ̄2ξ2u2

)1/2
=

iu

h(τ)
d0 + d1 +O(h(τ)),

γ (u/h(τ)) =
κh(τ)− ρξu− iud0 − d1h(τ) +O

(
h(τ)2

)
κh(τ)− ρξu+ iud0 + d1h(τ) +O (h(τ)2)

= g0 −
ih(τ)

u
g1 +O

(
h(τ)2

)
,

(3.6.1)

where we have set (ρ̄ :=
√
1− ρ2)

d0 := ρ̄ξ sgn(u), d1 :=
i (2κρ− ξ) sgn(u)

2ρ̄
, g0 :=

iρ− ρ̄ sgn(u)

iρ+ ρ̄ sgn(u)
g1 :=

(2κ− ρξ) sgn(u)

ξρ̄ (ρ̄+ iρ sgn(u))
2 .

First let τ/h(τ) → ∞. Then exp (−d (u/h(τ)) τ) = exp (−iτ ρ̄ξ|u|/h(τ) +O (τ)) , and so the limit

is undefined (complex infinity). Next let τ/h(τ) ≡ 1/a. Using (3.6.1) we see that

B(u/h(τ), τ) = −
(
uρ+ iρ̄|u|
ξh (τ)

)
1− e−iξρ̄|u|/a

1− g0e−iξρ̄|u|/a +O (1) = aζ(u/a)/h(τ) +O (1) ,

where ζ(u) := u (ρ̄ξ cot (uξρ̄/2)− ρξ)
−1

, which is strictly positive for u ∈ R∗ and ζ(0) = 0. It

follows that the limit in this case is infinite. Next let τ/h(τ) → 0. Here we can write

B(u/h(τ), τ) =

(
−ρu+ iρ̄|u|

ξh(τ)
+O (1)

)((
1

g0 − 1
+O (h(τ))

)(
−iτ ρ̄ξ|u|
h(τ)

+O (τ)

)
+O

((
τ

h(τ)

)2
))

=

(
ρu+ iρ̄|u|

ξ

)(
1

g0 − 1

)
iτ ρ̄ξ|u|
h(τ)2

+O (τ/h(τ))

=
u2

2

( √
τ

h (τ)

)2

+O (τ/h(τ)) . (3.6.2)

If
√
τ/h(τ) tends to infinity, so does B(u/h(τ), τ). When

√
τ/h(τ) tends to zero then B(u/h(τ), τ)

does as well. If
√
τ/h(τ) converges to a constant 1/a, then B(u/h(τ), τ) converges to u2/(2a2),

and the lemma follows.
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Proof of Lemma 3.2.3. For any t > 0, the random variable Vt in (1.3.2) is distributed as βt (defined

in (1.3.4)) times a non-central chi-square random variable with 4κθ/ξ2 > 0 degrees of freedom and

non-centrality parameter λ = ve−κt/βt > 0. It follows that the corresponding moment generating

function is given by

ΛVt (u) := E
(
euVt

)
= exp

(
λβtu

1− 2βtu

)
(1− 2βtu)

−2κθ/ξ2
, for all u <

1

2βt
.

The re-normalised Heston forward cumulant generating function is then computed as (A and B

defined in (1.3.8))

Λ(t)
τ (u, h(τ))/h(τ) = logE

[
eu(Xt+τ−Xt)/h(τ)

]
= logE

[
E
(
eu(Xt+τ−Xt)/h(τ)|Ft

)]
= logE

(
eA(u/h(τ),τ)+B(u/h(τ),τ)Vt

)
= A (u/h(τ), τ) + log ΛVt (B (u/h(τ), τ)) ,

which agrees with (1.3.7) when h(τ) ≡ 1. This is only valid in some effective domain Dt,τ ⊂ R. The

mgf for Vt is well defined in DV
t,τ := {u ∈ R : B (u/h(τ), τ) < 1/(2βt)}, and hence Dt,τ = DV

t,τ ∩Dτ ,

where Dτ is the effective domain of the (spot) re-normalised Heston cgf. Consider first Dτ for

small τ . From [5, Proposition 3.1] if ξ2(u/h(τ) − 1)u/h(τ) > (κ − ρξu/h(τ))2 then the explosion

time τ∗(u) := sup{t ≥ 0 : E(euXt) <∞} of the Heston mgf is

τ∗H (u/h(τ)) =
2√

ξ2(u/h(τ)− 1)u/h(τ)− (κ− ρξu/h(τ))2

{
π11{ρξu/h(τ)−κ<0}

+ arctan

(√
ξ2(u/h(τ)− 1)u/h(τ)− (κ− ρξu/h(τ))2

ρξu/h(τ)− κ

)}
.

Recall the following Taylor series expansions, for x close to zero:

arctan

(
1

ρξu/x− κ

√
ξ2
(u
x
− 1
) u
x
−
(
κ− ξρ

u

x

)2)
= sgn(u) arctan

(
ρ̄

ρ

)
+O (x) , if ρ ̸= 0,

arctan

(
− 1

κ

√
ξ2
(u
x
− 1
) u
x
− κ2

)
= −π

2
+O(x), if ρ = 0.

As τ tends to zero ξ2(u/h(τ)− 1)u/h(τ) > (κ− ρξu/h(τ))2 is satisfied since ρ2 < 1 and hence

τ∗H

(
u

h(τ)

)
=


h(τ)

ξ|u|

(
π11{ρ=0} +

2

ρ̄

(
π11{ρu≤0} + sgn(u) arctan

(
ρ̄

ρ

))
11{ρ ̸=0} +O (h(τ))

)
, if u ̸= 0,

∞, if u = 0.

Therefore, for τ small enough, we have τ∗H (u/h(τ)) > τ for all u ∈ R if τ/h (τ) tends to zero and

τ∗H (u/h(τ)) > τ for all u ∈ (u−, u+) if h (τ) ≡ aτ , where

u− :=
2a

ρ̄ξτ
arctan

(
ρ̄

ρ

)
11{ρ<0} −

πa

ξτ
11{ρ=0} +

2a

ρ̄ξτ

(
arctan

(
ρ̄

ρ

)
− π

)
11{ρ>0},

u+ :=
2a

ρ̄ξτ

(
arctan

(
ρ̄

ρ

)
+ π

)
11{ρ<0} +

πa

ξτ
11{ρ=0} +

2a

ρ̄ξτ
arctan

(
ρ̄

ρ

)
11{ρ>0}.

If τ/h(τ) tends to infinity, then τ∗H (u/h(τ)) ≤ τ for all u ∈ R∗. We are also required to find DV
t,τ for

small τ . Using Lemma 3.6.1 we see that if h(τ) ≡ aτ1/2 then limτ↘0 DV
t,τ = {u ∈ R : |u| < a/

√
βt}.
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By the limit of a set we precisely mean the following:

lim inf
τ↘0

DV
t,τ :=

∪
τ>0

∩
s≤τ

DV
t,s =

∩
τ>0

∪
s≤τ

DV
t,s =: lim sup

τ↘0
DV
t,τ .

If τ1/2/h(τ) tends to infinity then limτ↘0 DV
t,τ = {0} and if it tends to zero, then limτ↘0 DV

t,τ = R.

The limiting domains in the lemma follow after taking the appropriate intersections. Next we move

on to the limits. We only consider the cases where h(τ) ≡ aτ1/2 and where τ1/2/h(τ) tends to

zero since these are the only cases for which the forward cumulant generating function is defined.

Using (3.6.2) we see as τ tends to zero

log (1− 2βtB (u/h(τ), τ)) =
B(u/h(τ), τ)ve−κt

1− 2βtB(u/h(τ), τ)
=

 O(1), if h(τ) ≡ aτ1/2,

O(τ/h(τ)), if
√
τ/h(τ) ↘ 0.

The lemma follows from this and the fact that the function A in (1.3.8) satisfies A(u/h(τ), τ) =

O
(
(τ/h(τ))2

)
.

3.6.2 Asymptotic time-dependent measure-change

In this section we define the fundamental asymptotic time-dependent measure-change in (3.6.6)

and derive expansions for critical functions related to this measure-change. In order to proceed

with this program we first need to prove some technical lemmas. We use our forward time-scale

and define the following rescaled quantities:

Λ(t)
τ (u) := Λ(t)

τ (u,
√
τ), Â(u) := A(u/

√
τ , τ), B̂(u) := B(u/

√
τ , τ), (3.6.3)

with Λ
(t)
τ , A and B defined in (3.2.1) and (1.3.8) respectively. The following lemma gives the

asymptotics of the re-scaled quantities Â, B̂ as τ tends to zero:

Lemma 3.6.2. The following expansions hold for all u ∈ DΛ as τ tends to zero (B̂1 was defined

in (3.3.2)):

B̂(u) =
u2

2
+ B̂1(u)

√
τ +O(τ), Â(u) =

u2κθτ

4
+O(τ3/2). (3.6.4)

Proof. From the definition of A in (1.3.8) and the asymptotics in (3.6.1) with h(τ) ≡
√
τ we obtain

Â(u) := A
(
u/

√
τ , τ
)
=
κθ

ξ2

((
κ− ρξu√

τ
− d

(
u√
τ

))
τ

−2 log

(
1− γ(u/

√
τ) exp (−d(u/

√
τ)τ)

1− γ(u/
√
τ)

))
=
κθ

ξ2

((
κ− ρξu√

τ
− iud0√

τ
− d1 +O(

√
τ)

)
τ

−2 log

(
1− (g0 − i

√
τg1/u+O(τ)) exp

(
−iud0

√
τ − d1τ +O(τ3/2)

)
1− (g0 − i

√
τg1/u+O(τ))

))
= u2θκτ/4 +O(τ3/2).
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Substituting the asymptotics for d and γ in (3.6.1) we further obtain

1− exp (−d(u/
√
τ)τ)

1− γ(u/
√
τ) exp (−d(u/

√
τ)τ)

=
1− exp

(
−iud0

√
τ − d1τ +O(τ3/2)

)
1− (g0 − i

√
τg1/u+O(τ)) exp

(
−iud0

√
τ − d1τ +O(τ3/2)

) ,
and therefore using the definition of B in (1.3.8) we obtain

B̂(u) := B

(
u√
τ
, τ

)
=
κ− ρξu/

√
τ − d(u/

√
τ)

ξ2
1− exp (−d (u/

√
τ) τ)

1− γ (u/
√
τ) exp (−d (u/

√
τ) τ)

= −ρξu+ iud0
ξ2

iud0
1− g0

+ B̂1(u)
√
τ +O(τ) =

u2

2
+ B̂1(u)

√
τ +O(τ).

It is still not clear what benefit the forward time-scale has given us since the limiting cgf is

still degenerate. Firstly, even though the limiting cgf is zero on a bounded interval, the re-scaled

forward cgf for fixed τ > 0 is still steep on the domain of definition which implies the existence of

a unique solution u∗τ (k) to the equation

∂uΛ
(t)
τ (u∗τ (k)) = k. (3.6.5)

Further as τ tends to zero, u∗τ (k) converges to 1/
√
βt when k > 0 and to −1/

√
βt when k < 0 (see

Lemma 3.6.3 below). The key observation is that the forward time-scale ensures finite boundary

points for the effective domain, which in turn implies finite limits for u∗τ (k). This is critical to

the asymptotic analysis that follows and it will become clear that if any other time-scale were to

be used the analysis would break down. The following lemma shows that our definition (3.6.5) of

u∗τ (k) is exactly what we need to conduct an asymptotic analysis in this degenerate case.

Lemma 3.6.3. For any k ∈ R, τ > 0, the equation (3.6.5) admits a unique solution u∗τ (k); as

τ tends to zero, it converges to 1/
√
βt (−1/

√
βt) when k > 0 (k < 0), to zero when k = 0, and

u∗τ (k) ∈ Do
Λ for τ small enough.

Proof. We first start by the following claims, which can be proved using the convexity of the forward

moment generating function and tedious computations; we shall not however detail these lengthy

computations here for brevity, but Figure 3.6 below provides a visual help (see also Appendix B).

(i) For any τ > 0, the map ∂uΛ
(t)
τ : Dt,τ → R is strictly increasing and the image of Dt,τ by

∂uΛ
(t)
τ is R;

(ii) For any τ > 0, u∗τ (0) > 0 and limτ↘0 u
∗
τ (0) = 0, i.e. the unique minimum of Λ

(t)
τ converges

to zero;

(iii) For each u ∈ Do
Λ, ∂uΛ

(t)
τ (u) converges to zero as τ tends to zero.

Now, choose k > 0 (analogous arguments hold for k < 0). It is clear from (i) that (3.6.5) admits

a unique solution. Since limτ↘0 Dt,τ = DΛ, then there exists τ1 > 0 such that for any τ < τ1,
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u∗τ (k) ∈ Do
Λ. Note further that (i) and (ii) imply u∗τ (k) > 0. From (iii) there exists τ2 > 0 such that

the sequence (u∗τ (k))τ>0 is strictly increasing as τ goes to zero for τ < τ2. Now let τ∗ = min(τ1, τ2)

and consider τ < τ∗. Then u∗τ (k) is bounded above by 1/
√
βt (because u

∗
τ (k) ∈ Do

Λ) and therefore

converges to a limit L ∈ [0, 1/
√
βt]. Suppose that L ̸= 1/

√
βt. Since s 7→ u∗s(k) is strictly increasing

as s tends to zero (and s < τ∗), and ∂uΛ
(t)
τ is strictly increasing we have ∂uΛ

(t)
τ (u∗τ (k)) ≤ ∂uΛ

(t)
τ (L);

Combining this and (iii) yields

lim
τ↘0

∂uΛ
(t)
τ (u∗τ (k)) ≤ lim

τ↘0
∂uΛ

(t)
τ (L) = 0 ̸= k,

which contradicts the assumption k > 0. Therefore L = 1/
√
βt and the lemma follows.
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Figure 3.6: Plot of u 7→ ∂uΛ
(t)
τ (u) for different values of τ . Circles, squares, diamonds and triangles

represent τ = 1, 1/2, 1/12, 1/50. The forward-start date is t = 1 and the Heston model parameters

are v = θ = 0.07, ξ = 0.4, ρ = −0.6, κ = 1. The limiting domain is (−1/
√
βt, 1/

√
βt) ≈

(−6.29, 6.29). The right plot is a zoomed version of the left graph.

For sufficiently small τ we introduce a time-dependent change of measure by

dQk,τ
dP

:= exp
(
u∗τ (k)X

(t)
τ /

√
τ − Λ(t)

τ (u∗τ (k))/
√
τ
)
. (3.6.6)

By Lemma 3.6.3, u∗τ (k) ∈ D0
Λ for τ small enough and so |Λ(t)

τ (u∗τ )| is finite since DΛ = limτ↘0{u ∈

R : |Λ(t)
τ (u)| <∞}. Also dQk,τ/dP is almost surely strictly positive and by definition E[dQk,τ/dP] =

1. Therefore (3.6.6) is a valid measure change for all k ∈ R∗ and sufficiently small τ . Equa-

tion (3.6.5) can be written explicitly as

√
τe−κt

kξ2

[
ξ2eκtÂ′(u∗τ )

(
1− 2B̂(u∗τ )βt

)2
+ B̂′(u∗τ )

(
4κθβte

κt(1− 2B̂(u∗τ )βt) + ξ2v
) ]

=
(
1− 2B̂(u∗τ )βt

)2
, (3.6.7)

with Â and B̂ defined in (3.6.3). We now use this to derive an asymptotic expansion for u∗τ as τ

tends to zero.

Lemma 3.6.4. The expansion u∗τ (k) = a0(k)+a1(k)τ
1/4+a2(k)τ

1/2+a3(k)τ
3/4+O(τ) holds for

all k ∈ R∗ as τ tends to zero, with a0, a1, a2 and a3 defined in (3.3.1).
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Proof. Existence and uniqueness was proved in Lemma 3.6.3 and so we assume the result as

an ansatz. Consider k > 0. From Lemma 3.6.3 it is clear that a0(k) = 1/
√
βt. The ansatz

and Lemma 3.6.2 then imply the following asymptotics as τ tends to zero (we drop here the

k-dependence):

B̂(u∗τ ) =
1

2βt
+ a0a1τ

1/4 + rτ1/2 +
(
a1a2 + a0a3 + a1B̂

′
1(a0)

)
τ3/4 +O(τ),

B̂′(u∗τ ) = a0 + a1τ
1/4 + (a2 + B̂′

1(a0))τ
1/2 +O(τ3/4),

Â′(u∗τ ) =
1

2
κθa0τ +O(τ5/4),

(3.6.8)

where r ≡ r(k) := a0a2+B̂1(a0)+a
2
1/2 = a21/2−κθ/(|k|ξ2

√
βt) is defined in (3.3.3). We substitute

these asymptotics into (3.6.7) and solve at each order. At the τ1/4 order we have two solutions,

a1(k) = ±
√
ve−κt/2/(2

√
kβ

3/4
t ) and we choose the negative root so that u∗τ ∈ Do

Λ for τ small

enough. In a straightforward, yet tedious, manner we continue the procedure and iteratively solve

at each order (the next two equations are linear in a2 and a3) to derive the asymptotic expansions

in the lemma. An analogous treatment holds in the case k < 0.

To complete the proof (and make the ansatz approach above rigorous) we need to show the

existence of this expansion for u∗τ (k). Fix k ∈ R∗ and set fk(u, τ) := ∂uΛ
(t)
τ (u)− k. Now let τ̄ > 0.

From Lemma 3.6.3 we know that there exists a solution u∗τ̄ (k) to the equation fk(u
∗
τ̄ (k), τ̄) = 0 and

the strict convexity of the forward cgf implies ∂ufk(u
∗
τ̄ (k), τ̄) > 0. Further, the two-dimensional

map fk : Do
t,τ ×R∗

+ → R is analytic (see [119, Theorem 7.1.1]). It follows by the Implicit Function

Theorem [108, Theorem 8.6, Chapter 0] that τ 7→ u∗τ (k) is analytic in some neighbourhood around

τ̄ . Since this argument holds for all τ̄ > 0, this function is also analytic on R∗
+. Also from

Lemma 3.6.3 we know that limτ↘0 u
∗
τ (k) = sgn(k)/

√
βt. Since we computed the Taylor series

expansion consistent with this limit and the expansion is unique, it follows that u∗τ (k) admits this

representation.

In the forthcoming analysis we will be interested in the asymptotics of

eτ (k) :=
(
1− 2B̂(u∗τ (k))βt

)
τ−1/4, (3.6.9)

as τ tends to zero. Since (1− 2B̂(u∗τ (k))βt) converges to zero, it is not immediately clear that eτ

has a well defined limit. But we can use the asymptotics in (3.6.8) to deduce the following lemma:

Lemma 3.6.5. The expansion eτ (k) = e0(k)+e1(k)τ
1/4+e2(k)τ

1/2+O(τ3/4) holds for all k ∈ R∗

as τ tends to zero, where e0, e1 and e2 are defined in (3.3.4).

Proof. We substitute the asymptotics for B̂(u∗τ ) in (3.6.8) into the definition of eτ in (3.6.9) and

the lemma follows after simplification.
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3.6.3 Characteristic function asymptotics

We now define the random variable Zτ,k :=
(
X

(t)
τ − k

)
/τ1/8 and the characteristic function Φτ,k :

R → C of Zτ,k in the Qk,τ -measure in (3.6.6) as

Φτ,k(u) := EQk,τ
(
eiuZτ,k

)
. (3.6.10)

Define now the functions ϕ1, ϕ2 : R∗ × R → C by

ϕ1(k, u) := iu

(
ψ0(k) +

4a0(k)θκβt
e0(k)ξ2

)
+ iu3ψ1(k), ϕ2(k, u) := u2ϕa2(k) + u4ϕb2(k) + u6ϕc2(k),

with ψ0, ψ1 defined in (3.3.5), a0, e0 in (3.3.1), (3.3.4), and ϕa2 , ϕ
b
2 and ϕc2 in (3.3.6). The following

lemma provides the asymptotics of Φτ,k:

Lemma 3.6.6. The following expansion holds for all k ∈ R∗ as τ tends to zero (with ζ given

in (3.3.3)):

Φτ,k(u) = e−
1
2 ζ

2(k)u2
(
1 + ϕ1(k, u)τ

1/8 + ϕ2(k, u)τ
1/4 +O

(
τ3/8

))
.

Remark 3.6.7. For any k ∈ R∗, Lévy’s Convergence Theorem [147, Page 185, Theorem 18.1]

implies that Zτ,k converges weakly to a normal random variable with zero mean and variance

ζ2(k) as τ tends to zero.

Proof. From the change of measure (3.6.6) and the forward cgf given in (1.3.7) we compute (we

drop the k-dependence throughout) for small τ :

log Φk,τ (u) = logEP
(
dQk,τ
dP

eiuZk,τ

)
= logEP

[
exp

(
u∗(k)X

(t)
τ√

τ
− Λ

(t)
τ (u∗τ )√
τ

)
exp

(
iuX

(t)
τ

τ1/8
− iuk

τ1/8

)]

= − 1√
τ
Λ(t)
τ (u∗τ )−

iuk

τ1/8
+ logEP

[
exp

((
X

(t)
τ√
τ

)(
iuτ3/8 + u∗τ

))]

= − iuk

τ1/8
+

1√
τ

(
Λ(t)
τ

(
iuτ3/8 + u∗τ

)
− Λ(t)

τ (u∗τ )
)
. (3.6.11)

Using the asymptotics in (3.6.8) we have that as τ tends to zero (we drop the k-dependence)

B̂
(
u∗τ + iuτ3/8

)
=
a20
2

+ a0a1τ
1/4 + ia0τ

3/8u+ rτ1/2 +O(τ5/8),

B̂ (u∗τ ) =
a20
2

+ a0a1τ
1/4 + rτ1/2 +O(τ3/4),

B̂
(
u∗τ + iuτ3/8

)
− B̂ (u∗τ ) = ia0uτ

3/8 + ia1uτ
5/8 − 1

2
u2τ3/4 +O(τ7/8),

(3.6.12)

where r ≡ r(k) := a0a2 + B̂1(a0) + a21/2 = a21/2− κθ/(|k|ξ2
√
βt) is defined in (3.3.3). Similarly for

small τ ,

Â
(
u∗τ + iuτ3/8

)
=
κθ

4
a20τ +

κθ

2
a0a1τ

5/4 +
iκθ

2
a0uτ

11/8 +O(τ3/2),

Â (u∗τ ) =
κθ

4
a20τ +

κθ

2
a0a1τ

5/4 +O(τ3/2),

Â
(
u∗τ + iuτ3/8

)
− Â (u∗τ ) =

iκθ

2
a0uτ

11/8 +O(τ3/2).

(3.6.13)
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We now use eτ defined in (3.6.9) to re-write the term

B̂
(
u∗τ + iuτ3/8

)
ve−κt

1− 2βtB̂
(
u∗τ + iuτ3/8

) =
ve−κtτ−1/4B̂

(
u∗τ + iuτ3/8

)
eτ − 2βtτ−1/4

(
B̂
(
u∗τ + iuτ3/8

)
− B̂ (u∗τ )

) ,
and then use the asymptotics in (3.6.12) and Lemma 3.6.5 to find that for small τ

ve−κtτ−1/4B̂
(
u∗τ + iuτ3/8

)
eτ − 2βtτ−1/4

(
B̂
(
u∗τ + iuτ3/8

)
− B̂ (u∗τ )

)
=

ve−κtτ−1/4
(
a20/2 + a0a1τ

1/4 + ia0τ
3/8u+ rτ1/2 +O(τ5/8)

)
e0 + e1τ1/4 + e2τ1/2 +O(τ3/4)− 2βtτ−1/4

(
ia0uτ3/8 + ia1uτ5/8 − 1

2u
2τ3/4 +O(τ7/8)

)
=
ve−κta20
2e0

τ−1/4 +
ve−κtia30uβt

e20
τ−1/8 + ve−κt

(
a0a1
e0

− a20e1
2e20

)
− ζ2u2

2

+ (iuψ0 + iu3ψ1)τ
1/8 + (ψ4 + ψ2u

2 + ψ3u
4)τ1/4 +O(τ3/8), (3.6.14)

with ζ and ψ0, . . . , ψ4 defined in (3.3.3) and (3.3.5). From the definition of a0, e0 and βt we note

the simplification
ive−κta30(k)uβt

e20(k)τ
1/8

=
iuk

τ1/8
. (3.6.15)

Similarly we find that as τ tends to zero

B̂ (u∗τ ) ve
−κt

1− 2βtB̂ (u∗τ )
=
ve−κtτ−1/4B̂ (u∗τ )

eτ
=
ve−κtτ−1/4

(
a20/2 + a0a1τ

1/4 + rτ1/2 +O(τ3/4)
)

e0 + e1τ1/4 + e2τ1/2 +O(τ3/4)

=
a20ve

−κt

2e0
τ−1/4 + ve−κt

(
a0a1
e0

− a20e1
2e20

)
+ ψ4τ

1/4 +O(τ1/2). (3.6.16)

Again we use eτ defined in (3.6.9) to re-write the term

exp

[
2κθ

ξ2
log

(
1− 2βtB̂ (u∗τ )

1− 2βtB̂
(
u∗τ + iuτ3/8

))] =

1−
2βt

(
B̂
(
u∗τ + iuτ3/8

)
− B̂ (u∗τ )

)
eττ1/4

−2κθ/ξ2

,

and then use the asymptotics in (3.6.12) and Lemma 3.6.5 to find that for small τ

1−
2βt

(
B̂
(
u∗τ + iuτ3/8

)
− B̂ (u∗τ )

)
eττ1/4

− 2κθ
ξ2

=

(
1 +

2ia0βtu

e0
τ1/8 − 4a20u

2β2
t

e20
τ1/4 +O(τ3/8)

) 2κθ
ξ2

= 1 +
4iκθa0βtu

e0ξ2
τ1/8 −

4κθa20β
2
t u

2
(
2κθ + ξ2

)
ξ4e20

τ1/4 +O(τ3/8). (3.6.17)

Using (3.6.11) with definition (3.6.3) and (1.3.7), property (3.6.15) and the asymptotics in (3.6.13),

(3.6.14), (3.6.16) and (3.6.17) we finally calculate the characteristic function for small τ as

Φk,τ (u) = exp

(
−ζ

2u2

2
+ (iuψ0 + iu3ψ1)τ

1/8 + (ψ2u
2 + ψ3u

4)τ1/4 +O(τ3/8)

)(
1

+
4iκθa0βtu

e0ξ2
τ1/8 −

4κθa20β
2
t u

2
(
2κθ + ξ2

)
ξ4e20

τ1/4 +O(τ3/8)
)
,
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with ψ0, . . . , ψ3 defined in (3.3.3), (3.3.5), and so the lemma follows from the following decompo-

sition

Φk,τ (u) = exp

(
−ζ

2u2

2

){
1 + i

(
u

(
ψ0 +

4κθa0βt
e0ξ2

)
+ u3ψ1

)
τ1/8 +[(

ψ2 −
ψ2
0

2
−

4κθa20β
2
t

(
2κθ + ξ2

)
ξ4e20

− 4κθa0βt
e0ξ2

ψ0

)
u2 +

(
ψ3 − ψ0ψ1 − ψ1

4κθa0βt
e0ξ2

)
u4 − u6ψ2

1

2

]
τ

1
4

+O(τ
3
8 )
}
.

The following technical lemma will be needed in Section 3.6.4 where it will be used to give the

leading order exponential decay of out-of-the-money forward-start options as τ tends to zero.

Lemma 3.6.8. The following expansion holds for all k ∈ R∗ as τ tends to zero:

e−ku
∗
τ/

√
τ+Λ(t)

τ (u∗
τ )/

√
τ = e−Λ∗(k)/

√
τ+c0(k)/τ

1/4+c1(k)τ−κθ/(2ξ
2)c2(k)

(
1 + z1(k)τ

1/4 +O(τ1/2)
)
,

where c0, c1 and c2 are defined in (3.3.8), Λ∗ is characterised explicitly in Lemma 3.2.4 and z1 is

given in (3.3.7).

Proof. We use the asymptotics in Lemma 3.6.4 and the characterisation of Λ∗ in Lemma 3.2.4 to

write for small τ (we drop the k-dependence)

exp
(
−ku∗τ/

√
τ
)
= exp

(
−a0k/

√
τ − a1k/τ

1/4 − a2k
)(

1− a3kτ
1/4 +O(τ1/2)

)
(3.6.18)

= exp
(
−Λ∗(k)/

√
τ − a1k/τ

1/4 − a2k
)(

1− a3kτ
1/4 +O(τ1/2)

)
.

Using the Heston forward cgf definition in (3.2.1), (3.6.3) and (1.3.7) we can write

exp
(
Λ(t)
τ (u∗τ )/

√
τ
)
= exp

(
Â(u∗τ ) +

B̂(u∗τ )ve
−κt

1− 2βtB̂(u∗τ )
− 2κθ

ξ2
log(1− 2βtB̂(u∗τ ))

)
. (3.6.19)

Using the definition of eτ in (3.6.9) and the asymptotics in Lemma 3.6.5 we find that for small τ

exp

(
−2κθ

ξ2
log(1− 2βtB̂(u∗τ ))

)
= τ−κθ/(2ξ

2)e
− 2κθ

ξ2

τ = τ−κθ/(2ξ
2)
(
e0 + e1τ

1/4 +O(τ1/2)
)− 2κθ

ξ2

= τ−κθ/(2ξ
2)e

−2κθ/ξ2

0

(
1− 2κθe1

ξ2e0
τ1/4 +O(τ1/2)

)
. (3.6.20)

Then the lemma follows after using (3.6.18) and (3.6.19), the asymptotics in (3.6.20), (3.6.16)

and (3.6.13) and the simplification c0(k) = ve−κt/(2e0(k)βt)− a1(k)k = 2|a1(k)k|.

We now demonstrate that |Cτ,k(u)Φτ,k(u)| is bounded for small τ by an integrable function

where Φτ,k is defined in (3.6.10) and

Cτ,k(u) :=
τ7/8(

u∗τ − iτ3/8u
) (
u∗τ −

√
τ − iτ3/8u

) .
In particular we have the following lemma:
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Lemma 3.6.9. Fix k ∈ R∗. There exists τ∗ > 0 and d > 0 such that for all τ < min(τ∗, 1) and

u ∈ R:

|Cτ,k(u)Φτ,k(u)| ≤ d11{u∈[−1,1]} + u−211{u∈R\[−1,1]}.

Proof. First we note that

|Cτ,k(u)|2 =
τ7/4(

(u∗τ )
2 + τ6/8u2

) (
(u∗τ −

√
τ)

2
+ τ6/8u2

) ≤ min

(
τ7/4

(u∗τ )
2 (u∗τ −

√
τ)

2 ,
τ1/4

u4

)
,

and so we have that

|Cτ,k(u)| ≤ min

(
τ7/8

|u∗τ | |u∗τ −
√
τ |
,
τ1/8

u2

)
.

Using the expansions for u∗τ in Lemma 3.6.4 we find that

τ7/8

|u∗τ | |u∗τ −
√
τ |

=
τ7/8

a20
+O(τ9/8).

Hence there exists a τ∗ > 0, B > 0 such that for all τ < min(τ∗, 1),

τ7/8

|u∗τ | |u∗τ −
√
τ |

≤ 1

a20
+B,

and for τ < min(τ∗, 1) we then have that

|Cτ,k(u)| ≤ min

(
1

a20
+B,

1

u2

)
,

and the lemma follows after using |Φτ,k(u)| ≤ 1.

We now use the characteristic function expansion in Lemma 3.6.6 and Fourier transform meth-

ods to derive the asymptotics for the expectation (under the measure (3.6.6)) of the modified payoff

on the re-scaled forward price process. This lemma will be critical for the analysis in Section 3.6.4.

Lemma 3.6.10. The following expansion holds for all k ∈ R∗ as τ tends to zero:

EQτ,k

[
e−u

∗
τZτ,k/τ

3/8
(
eZτ,kτ

1/8

− 1
)+]

11{k>0} + EQτ,k

[
e−u

∗
τZτ,k/τ

3/8
(
1− eZτ,kτ

1/8
)+]

11{k<0}

=
τ7/8βt

ζ(k)
√
2π

(
1 + p1(k)τ

1/4 + o
(
τ1/4

))
,

where ζ is defined in (3.3.3), p1 in (3.3.7) and βt in (1.3.4).

Proof. We first consider k > 0 and drop the k-dependence for the functions below. We denote the

Fourier transform F by (Ff)(u) :=
∫∞
−∞ eiuxf(x)dx, for all f ∈ L2, u ∈ R. The Fourier transform

of the payoff e−u
∗
τZτ,k/τ

3/8
(
eZτ,kτ

1/8 − 1
)+

is given by

∫ ∞

0

e−u
∗
τz/τ

3/8
(
ezτ

1/8

− 1
)
eiuzdz =

[
ez(iu−u

∗
τ/τ

3/8+τ1/8)(
iu− u∗τ/τ

3/8 + τ1/8
)]∞

0

−

[
ez(iu−u

∗
τ/τ

3/8)(
iu− u∗τ/τ

3/8
)]∞

0

=
1(

iu− u∗τ/τ
3/8
) − 1(

iu− u∗τ/τ
3/8 + τ1/8

)
=

τ7/8(
u∗τ − iτ3/8u

) (
u∗τ −

√
τ − iτ3/8u

) ,
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if u∗τ > max(τ1/2, 0) = τ1/2, which holds for τ small enough since u∗τ converges to a0 > 0 by

Lemma 3.6.4. Due to Remark 3.6.7, Zτ converges weakly to a Gaussian random variable and since

the Gaussian density and the modified payoff are in L2 we can use Parseval’s Theorem [77, Page

48,Theorem 13E] for small enough τ to write

EQτ,k

(
e
−

u∗
τZτ,k

τ3/8

(
eZτ,kτ

1/8

− 1
)+)

=
1

2π

∫ ∞

−∞

τ7/8Φτ,k(u)(
u∗τ + iτ3/8u

) (
u∗τ −

√
τ + iτ3/8u

)du, (3.6.21)

where we have used that

τ7/8(
u∗τ − iτ3/8u

) (
u∗τ −

√
τ − iτ3/8u

) =
τ7/8(

u∗τ + iτ3/8u
) (
u∗τ −

√
τ + iτ3/8u

) ,
with a denoting the complex conjugate for a ∈ C. Using the asymptotics of u∗τ given in Lemma 3.6.4

we can Taylor expand for small τ to find that

τ7/8(
u∗τ + iτ3/8u

) (
u∗τ −

√
τ + iτ3/8u

) =
τ7/8

a20 + 2a0a1τ1/4 +O(τ3/8)

=
τ7/8

a20

(
1− 2a1

a0
τ1/4 +O

(
τ3/8

))
. (3.6.22)

Finally combining (3.6.22) and the asymptotics of the characteristic function derived in Lemma 3.6.6

with (3.6.21) we find that for small τ

1

2π

∫ ∞

−∞

τ7/8Φτ,k(u)(
u∗τ + iτ3/8u

) (
u∗τ −

√
τ + iτ3/8u

)du
=

τ7/8

a202π

∫ ∞

−∞
e−

ζ2u2

2

(
1 + ϕ1(u, k)τ

1/8 +

(
ϕ2(u, k)−

2a1
a0

)
τ1/4 +O

(
τ3/8

))
du

=
τ7/8

a202π

∫ ∞

−∞
e−

ζ2u2

2

(
1 +

(
u2ϕa2 + u4ϕb2 + u6ϕc2 −

2a1
a0

)
τ1/4 +O

(
τ3/8

))
du,

where in the last line we have used that
∫∞
−∞ e−

ζ2u2

2 ϕ1(u, k)du = 0, since ϕ1 is an odd power of u.

The result then follows by using the Lebesgue dominated convergence theorem (using Lemma 3.6.9)

and simple moment formulae of the normal distribution. Fix now k < 0. The Fourier transform

of the payoff e−u
∗
τZτ,k/τ

3/8
(
1− eZτ,kτ

1/8
)+

is given by

∫ 0

−∞
e−u

∗
τz/τ

3/8
(
1− ezτ

1/8
)
eiuzdz =

[
ez(iu−u

∗
τ/τ

3/8)(
iu− u∗τ/τ

3/8
)]0

−∞

−

[
ez(iu−u

∗
τ/τ

3/8+τ1/8)(
iu− u∗τ/τ

3/8 + τ1/8
)]0

−∞

=
1(

iu− u∗τ/τ
3/8
) − 1(

iu− u∗τ/τ
3/8 + τ1/8

)
=

τ7/8(
u∗τ − iτ3/8u

) (
u∗τ −

√
τ − iτ3/8u

) ,
if u∗τ < min(τ1/2, 0) = 0, which holds for τ small enough since u∗τ converges to a0 < 0 by

Lemma 3.6.4. The rest of the proof is analogous to k < 0 above and we omit it for brevity.

Remark 3.6.11. We have chosen to specify the remainder in the form o(1/τ1/4) instead of

O(1/τ3/8) since it can actually be shown that the term O(1/τ3/8) is zero by extending the re-

sults in Lemma 3.6.6 and the next non-trivial term is O(1/τ1/2). For brevity we omit this analysis.
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3.6.4 Option price and forward smile asymptotics

In this section we finally put all the pieces together from Sections 3.6.1 - 3.6.3 and prove Theo-

rems 3.3.1 and 3.4.1.

Proof of Theorem 3.3.1. We use the time-dependent change of measure defined in (3.6.6) to write

forward-start call option prices for all k > 0 as

E
(
eX

(t)
τ − ek

)+
= eΛ

(t)
τ (u∗

τ )/
√
τEQk,τ

[
e−u

∗
τX

(t)
τ /

√
τ
(
eX

(t)
τ − ek

)+]
= e

− ku∗
τ−Λ

(t)
τ (u∗

τ )√
τ EQk,τ

[
e
− u∗

τ√
τ (X

(t)
τ −k)

(
eX

(t)
τ − ek

)+]
= e

− ku∗
τ−Λ

(t)
τ (u∗

τ )√
τ ekEQk,τ

[
e
−

u∗
τZτ,k

τ3/8

(
eZτ,kτ

1/8

− 1
)+]

,

with Zτ,k defined on page 108. A similar result holds for forward-start put option prices for all

k < 0. The theorem then follows by applying Lemma 3.6.8 and Lemma 3.6.10 and using put-call

parity and that in the Heston model (eXt)t≥0 is a true martingale [5, Proposition 2.5].

Proof of Theorem 3.4.1. The general machinery to translate option price asymptotics into implied

volatility asymptotics has been fully developed by Gao and Lee [69]. We simply outline the main

steps here. Assume the following ansatz for the forward implied volatility as τ tends to zero:

σ2
t,τ (k) =

N0(k, t)√
τ

+
N1(k, t)

τ1/4
+N2(k, t) +N3(k, t)τ

1/4 + o(τ1/4).

Substituting this ansatz into the BSM asymptotics in Lemma 3.3.4 we then obtain

exp

(
− k2

2
√
τN0

+
k2N1

2τ1/4N2
0

−
k2
(
N2

1 −N0N2

)
2N3

0

+
k

2

)
τ3/4N

3/2
0√

2πk2

[
1

+

(
k2
(
N3

1 − 2N0N1N2 +N2
0N3

)
2N4

0

+
3N1

2N0

)
τ1/4 + o(τ1/4)

]
.

Equating orders with Theorem 3.3.1 we solve for N0 and N1, but we can only solve for higher

order terms if τ3/4 = τ (7/8−θκ/(2ξ
2)) or 4κθ = ξ2.



Chapter 4

Large-maturity regimes of the

Heston forward smile

4.1 Introduction

Under some conditions on the parameters, it was shown in Section 2.3.1.2 that the smooth be-

haviour of the pointwise limit limτ↑∞ τ−1 logE(euX(t)
τ ) in the Heston model (1.3.2) yielded an

asymptotic behaviour for the forward smile (1.0.5) as σ2
t,τ (kτ) = v∞0 (k) + v∞1 (k, t)τ−1 + O(τ−2),

where v∞0 (·) and v∞1 (·, t) are continuous functions on R. In particular for t = 0 (spot smiles), we

recovered the result in [63, 65] (also under some restrictions on the parameters). Interestingly, the

limiting large-maturity forward smile v∞0 does not depend on the forward-start date t. A number of

practitioners (eg. Balland [10]) have made the natural conjecture that the large-maturity forward

smile should be the same as the large-maturity spot smile. The result above rigorously shows us

that this indeed holds if and only if the Heston correlation is close enough to zero.

It is natural to ask what happens when these parameter restrictions are violated. We identify a

number of regimes depending on the correlation and derive asymptotics in each regime. The main

results (Theorems 4.3.1 and 4.4.1) state the following, as τ tends to infinity:

E
(
eX

(t)
τ − ekτ

)+
= I

(
k, τ, V ′(0), V ′(1), 11{κ<ρξ}

)
+
ϕ(k, t)

τα
e−τ(V

∗(k)−k)+ψ(k,t)τγ (
1 +O

(
τ−β

))
,

σ2
t,τ (kτ) = N∞

0 (k, t) +N∞
1 (k, t)τ−λ +R(τ, λ),

for any k ∈ R, where I is some indicator function related to the intrinsic value of the option

price, and α, γ, β, λ are strictly positive constants, depending on the level of the correlation. The

remainder R decays to zero as τ tends to infinity. If t = 0 (spot smiles) we recover and extend the

results in [63, 65].

The chapter is structured as follows. In Section 4.2 we recall the different large-maturity regimes

114
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for the Heston model introduced in Section 2.3.1.2, which will drive the asymptotic behaviour of

forward-start option prices and forward implied volatilities. In Section 4.3 we derive large-maturity

forward-start option asymptotics in each regime and in Section 4.4 we translate these results into

forward smile asymptotics, including extended SVI-type formulae (Section 4.4.1). Section 4.5

provides numerics supporting the asymptotics developed in the chapter and Section 4.6 gathers

the proofs of the main results.

4.2 Large-maturity regimes

In this section we recall the large-maturity regimes introduced in (2.3.5) and some properties that

will be needed throughout the chapter. Each regime is determined by the Heston correlation and

yields fundamentally different asymptotic behaviours for large-maturity forward-start options and

the corresponding forward smile. This is due to the distinct behaviour of the moment explosions

of the forward price process (X
(t)
τ )τ>0 in each regime. The large-maturity regimes are given as

follows (2.3.5):

R1 : Good correlation regime: ρ− ≤ ρ ≤ min(ρ+, κ/ξ);

R2 : Asymmetric negative correlation regime: −1 < ρ < ρ− and t > 0;

R3 : Asymmetric positive correlation regime: ρ+ < ρ < 1 and t > 0;

R3a : ρ ≤ κ/ξ;

R3b : ρ > κ/ξ;

R4 : Large correlation regime: κ/ξ < ρ ≤ min(ρ+, 1).

where the real numbers ρ− and ρ+ are defined in (2.3.4) and note that −1 ≤ ρ− < 0 < ρ+ with

ρ± = ±1 if and only if t = 0. In the standard case t = 0, R1 corresponds to κ ≥ ρξ and R4 is its

complement. We recall the following quantities defined in (2.3.6):

u± :=
ξ − 2κρ± η

2ξ(1− ρ2)
and u∗± :=

ψ ± ν

2ξ(eκt − 1)
,

with η, ν and ψ defined in (2.3.7). From the properties outlined in Lemmas 2.5.12, 2.5.13 and

Proposition 2.5.14 we note that for t > 0, u+ > u∗+ > 1 if ρ ≤ ρ− and u− < u∗− < 0 if ρ ≥ ρ+.

Furthermore we always have u− < 0 and if ρ < κ/ξ then u+ ≥ 1 with u+ = 1 if and only if

ρ = κ/ξ. Recall the function V and H from KH to R given in (2.3.8):

V (u) :=
µ

2
(κ− ρξu− d(u)) and H(u) :=

V (u)ve−κt

κθ − 2βtV (u)
− µ log

(
κθ − 2βtV (u)

κθ (1− γ (u))

)
,

with d, βt, µ and γ defined in (1.3.6), (1.3.4) and (1.3.8) and the limiting domain KH defined in

Table 2.1 and given below for clarity. We notify the reader that the constant µ (defined in (1.3.4))

will be used extensively throughout the chapter. It is clear (see Lemma 2.5.12) that the function V

is infinitely differentiable, strictly convex and essentially smooth on the open interval (u−, u+) and

that V (0) = 0. Furthermore if ρ ≤ κ/ξ then V (1) = 0 and if ρ > κ/ξ then V (1) < 0.
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R1 R2 R3a R3b R4

KH [u−, u+] [u−, u
∗
+) (u∗−, u+] (u∗−, 1] (u−, 1]

Limiting domains in each large-maturity regime.

The following lemma characterises V ∗ (defined in (2.3.10)) and can be proved using straight-

forward calculus. The proof is therefore omitted. As we will see in Section 4.3.1, the function V ∗

can be interpreted as a large deviations rate function for our problem.

Lemma 4.2.1. Define the function W (k, u) ≡ uk− V (u) for any (k, u) ∈ R× [u−, u+]. Then (q∗

defined in (2.3.9))

• R1: V
∗(k) ≡W (k, q∗(k)) on R;

• R2: V
∗(k) ≡W (k, q∗(k)) on (−∞, V ′(u∗+)] and V

∗(k) ≡W (k, u∗+) on (V ′(u∗+),+∞);

• R3a: V
∗(k) ≡W (k, u∗−) on (−∞, V ′(u∗−)) and V

∗(k) ≡W (k, q∗(k)) on [V ′(u∗−),+∞);

• R3b:

V ∗(k) ≡


W (k, u∗−), on (−∞, V ′(u∗−)),

W (k, q∗(k)), on [V ′(u∗−), V
′(1)],

W (k, 1), on (V ′(1),+∞);

• R4: V
∗(k) ≡W (k, q∗(k)) on (−∞, V ′(1)] and V ∗(k) ≡W (k, 1) on (V ′(1),+∞).

4.3 Forward-start option asymptotics

In order to specify the forward-start option asymptotics we need to introduce some functions and

constants. As outlined in Theorem 4.3.1, each of them is defined in a specific regime and strike

region where it is well defined and real-valued. In the formulae below, γ, βt, µ are defined in (1.3.8)

and (1.3.4), u∗± in (2.3.6), V , H in (2.3.8) and q∗ in (2.3.9).

a±1 (k) := ∓
2|k − V ′(u∗±)|

ζ2±(k)
, ã±1 := ∓

∣∣∣∣ e−κtκθv

4V ′(u∗±)V
′′(u∗±)β

2
t

∣∣∣∣1/3 ,
a±2 (k) :=

µe−κt

16β2
t

ξ2vV ′′(u∗±)− 8β2
t e
κtV ′(u∗±)

(
k − V ′(u∗±)

)
V ′(u∗±)

(
k − V ′(u∗±)

)2 ,

ã±2 := − (κθe−κt)2/3

12ξ2v1/3β
4/3
t

16V ′(u∗±)V
′′(u∗±)β

2
t e
κt + ξ2vV ′′′(u∗±)

21/3|V ′(u∗±)|2/3V ′′(u∗±)
5/3

,

(4.3.1)

where

ζ2±(k) := 4βt

(
V ′(u∗±)(k − V ′(u∗±))

3

κθve−κt

)1/2

; (4.3.2)

 e±0 (k) := −2βta
±
1 (k)V

′(u∗±), e±1 (k) := −βt
[
V ′′(u∗±)a

±
1 (k)

2 + 2V ′(u∗±)a
±
2 (k)

]
,

ẽ±0 := −2βtã
±
1 V

′(u∗±), ẽ±1 := −βt
[
V ′′(u∗±)(ã

±
1 )

2 + 2V ′(u∗±)ã
±
2

]
,

(4.3.3)
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c±0 (k) := −2a±1 (k)
(
k − V ′(u∗±)

)
, c±2 (k) :=

(
κθ
(
1− γ(u∗±)

)
e±0 (k)

)µ
,

c±1 (k) := ve−κt
(
a±1 (k)V

′(u∗±)

e±0 (k)
− κθe±1 (k)

2e±0 (k)
2βt

)
− a±2 (k)

(
k − V ′(u∗±)

)
+
1

2
a±1 (k)

2V ′′(u∗±),

(4.3.4)


c̃±0 :=

3

2
(ã±1 )

2V ′′(u∗±), c̃±2 :=

(
κθ
(
1− γ(u∗±)

)
ẽ±0

)µ
, g0 :=

ve−κtV (1)

κθ − 2βtV (1)
,

c̃±1 := ve−κt
(
ã±1 V

′(u∗±)

ẽ±0
− κθẽ±1

2(ẽ±0 )
2βt

)
+ ã±1 ã

±
2 V

′′(u∗±) +
(ã±1 )

3V ′′′(u∗±)

6
,

(4.3.5)

ϕ0(k) :=
1√

2πV ′′(q∗(k))


exp (H(q∗(k)))

q∗(k)(q∗(k)− 1)
, if k ∈ Q,(

−1− sgn(k)

(
V ′′′(q∗(k))

6V ′′(q∗(k))
−H ′(q∗(k))

))
, if k ∈ Qc,

(4.3.6)

where

Q = R \ {V ′(0), V ′(1)}, Qc = {V ′(0), V ′(1)}. (4.3.7)



ϕ±(k) :=
c±2 (k)e

c±1 (k)

ζ±(k)u∗±(u
∗
± − 1)

√
2π
, ϕ̃± :=

c̃±2 e
c̃±1

u∗±(u
∗
± − 1)

√
6πV ′′(u∗±)

,

ϕ2(k) :=
−eg0

Γ(1 + µ)

(
2µ(κ− ρξ)2(k − V ′(1))

κθ − 2βtV (1)

)µ
,

ϕ1 :=
−eg0

2Γ(1 + µ/2)

(
µ(κ− ρξ)2

√
2V ′′(1)

κθ − 2βtV (1)

)µ
,

(4.3.8)

Since u∗− < 0 and u∗+ > 1, we always have V ′(u∗+) > 0 and V ′(u∗−) < 0. Furthermore, V ′′(u∗±) > 0

and one can show that γ(u∗±) ̸= 1; therefore all the functions and constants in (4.3.1),(4.3.2),(4.3.3),(4.3.4)

and (4.3.5) are well defined and real-valued. ϕ0 is well defined since V ′′(q∗(k)) > 0 and ϕ2 and

the constant ϕ1 are well defined since κθ− 2βtV (1) > 0. Finally define the following combinations

and the function I : R× R∗
+ × R3 → R :

H0 : α = 1
2 , β = 1, γ = 0, ϕ ≡ ϕ0, ψ ≡ 0,

H̃± : α = µ
3 − 1

2 , β = 1
3 , γ = 1

3 , ϕ ≡ ϕ̃±, ψ ≡ c̃±0 ,

H± : α = µ
2 − 3

4 , β = 1
2 , γ = 1

2 , ϕ ≡ ϕ±, ψ ≡ c±0 ,

H1 : α = −µ
2 , β = 1

2 , γ = 0, ϕ ≡ ϕ1, ψ ≡ 0,

H2 : α = −µ, β = 1, γ = 0, ϕ ≡ ϕ2, ψ ≡ 0,

(4.3.9)

I(k, τ, a, b, c) :=
(
1− ekτ

)
11{k<a}+11{a<k<b}+c11{b≤k}+

1− c

2
11{k=b}+

(
1− 1

2
ekτ
)
11{k=a}. (4.3.10)

We are now in a position to state the main result of the chapter, namely an asymptotic expansion

for forward-start option prices in all regimes for all (log) strikes on the real line. The proof is

obtained using Lemma 4.6.3 in conjunction with the asymptotics in Lemmas 4.6.12, 4.6.14, 4.6.17

and 4.6.18.
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Theorem 4.3.1. The following expansion holds for forward-start call options for all k ∈ R as τ

tends to infinity:

E
(
eX

(t)
τ − ekτ

)+
= I

(
k, τ, V ′(0), V ′(1), 11{κ<ρξ}

)
+
ϕ(k, t)

τα
e−τ(V

∗(k)−k)+ψ(k,t)τγ (
1 +O

(
τ−β

))
,

where the functions ϕ, ψ and the constants α, β and γ are given by the following combinations1:

• R1: H0 for k ∈ R;

• R2: H0 for k ∈ (−∞, V ′(u∗+)); H̃+ for k = V ′(u∗+); H+ for k ∈ (V ′(u∗+),+∞);

• R3a: H− for k ∈ (−∞, V ′(u∗−)); H̃− for k = V ′(u∗−); H0 for k ∈ (V ′(u∗−),+∞);

• R3b: H− for k ∈ (−∞, V ′(u∗−)); H̃− for k = V ′(u∗−); H0 for k ∈ (V ′(u∗−), V
′(1)); H1 at

k = V ′(1); H2 for k ∈ (V ′(1),+∞);

• R4: H0 for k ∈ (−∞, V ′(1)); H1 for k = V ′(1); H2 for k ∈ (V ′(1),+∞);

In order to highlight the symmetries appearing in the asymptotics, we shall at times identify

an interval with the corresponding regime and combination in force. This slight abuse of notations

should not however be harmful to the comprehension.

Remark 4.3.2.

(i) Under R1, asymptotics for the large-maturity forward smile (for k ∈ R \ {V ′(0), V ′(1)}) have

been derived in Proposition 2.3.5.

(ii) For t = 0, large-maturity asymptotics have been derived in [63, 65] under R1 and partially

in [97] under R4.

(iii) All asymptotic expansions are given in closed-form and can in principle be extended to arbi-

trary order.

(iv) When H± and H2 are in force then V ∗(k) − k is linear in k as opposed to being strictly

convex as in H0.

(v) If ρ ≤ κ/ξ then V ∗(k) − k ≥ 0 with equality if and only if k = V ′(1). If ρ > κ/ξ then

V ∗(k)−k ≥ −V (1) > 0. Since γ ∈ [0, 1), the leading order decay term is given by e−τ(V
∗(k)−k).

(vi) Under H2 (which only occurs when ρ > κ/ξ for log-strikes strictly greater than V ′(1)),

forward-start call option prices decay to one as τ tends to infinity. This is fundamentally

different than the large-strike behaviour in other regimes and in the BSM model (1.0.1),

where call option prices decay to zero. This seemingly contradictory behaviour is explained

as follows: as the maturity increases there is a positive effect on the price by an increase in

1whenever H0 is in force, the case k = V ′(a) is excluded if v = θΥ(a), with Υ defined in (4.6.35), for a ∈ {0, 1}.



4.3. Forward-start option asymptotics 119

the time value of the option and a negative effect on the price by increasing the strike of the

forward-start call option. In standard regimes and for sufficiently large strikes the strike effect

is more prominent than the time value effect in the large-maturity limit. Here, because of the

large correlation, this effect is opposite: as the asset price increases, the volatility tends to

increase driving the asset price to potentially higher levels. This gamma or time value effect

outweighs the increase in the strike of the option.

(vii) In R4, the decay rate V ∗(k) − k has a very different behaviour: the minimum achieved at

V ′(1) is not zero and V ∗(k) − k is constant for k ≥ V ′(1). There is limited information in

the leading-order behaviour and important distinctions must therefore occur in higher-order

terms. This is illustrated in Figures 4.5 and 4.6 where the first-order asymptotic is vastly

superior to the leading order.

(viii) It is important to note that u∗± and V ∗ depend on the forward-start date t through (2.3.6)

and the regime choice. However, in the uncorrelated case ρ = 0, R1 always applies and V ∗

does not depend on t. The non-stationarity of the forward smile over the spot smile (at

leading order) depends critically on how far the correlation is away from zero.

In order to translate these results into forward smile asymptotics (in the next section), we

require a similar expansion for the Black-Scholes model (1.0.1). Define the functions V ∗
BS : R×R∗

+ →

R and ϕBS : R× R∗
+ × R → R by V ∗

BS(k, a) := (k + a/2)
2
/(2a) and

ϕBS(k, a, b) ≡
4a3/2

(4k2 − a2)
√
2π

exp

(
b

(
k2

2a2
− 1

8

))
11{k ̸=±a/2} +

b− 2

2
√
2aπ

11{k=±a/2},

so that the following holds (see Corollary 2.2.9 and [65, Proposition 2.7]):

Corollary 4.3.3. Let a > 0, b ∈ R and set Σ2 := a+ b/τ for τ large enough so that a+ b/τ > 0.

In the BSM model (1.0.1) the following expansion then holds for any k ∈ R as τ tends to infinity

(the function I is defined in (4.3.10)):

E
(
eX

(t)
τ − ekτ

)+
= I

(
k, τ,−a

2
,
a

2
, 0
)
+
ϕBS(k, a, b)

τ1/2
e−τ(V

∗
BS(k,a)−k)

(
1 +O(τ−1)

)
.

4.3.1 Connection with large deviations

Although obvious from Theorem 4.3.1, we have so far not mentioned the notion of large deviations

at all. The leading-order decay of the option price as the maturity tends to infinity gives rise to

estimates for large-time probabilities; more precisely, by formally differentiating both sides with

respect to the log-strike, one can prove, following a completely analogous proof to Corollary 3.3.3,

that

− lim
τ↑∞

τ−1 logP
(
X(t)
τ ∈ B

)
= inf
z∈B

V ∗(z),
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for any Borel subset B of the real line, namely that (X
(t)
τ /τ)τ>0 satisfies a large deviations principle

under P with speed τ and good rate function V ∗ as τ tends to infinity. We refer the reader to

Section 1.2 and the excellent monograph [48] for more details on large deviations. The theorem

actually states a much stronger result here since it provides higher-order estimates, coined ‘sharp

large deviations’ in [21]. Now, classical methods to prove large deviations, when the moment

generating function is known rely on the Gärtner-Ellis theorem (Theorem 1.2.3). In mathematical

finance, one can consult for instance [62, 63, 95] for the small-and large-time behaviour of stochastic

volatility models, and [134] for an overview. The Gärtner-Ellis theorem requires, in particular, the

limiting cumulant generating function V to be steep at the boundaries of its effective domain. This

is indeed the case in Regime R1, but fails to hold in other regimes. The standard proof of this

theorem (as detailed in [48, Chapter 2, Theorem 2.3.6]) clearly holds in the open intervals of the

real line where the function V is strictly convex, encompassing basically all occurrences of H0. The

other cases, when V becomes linear, and the turning points V ′(0) and V ′(1), however have to be

handled with care and solved case by case.

4.4 Forward smile asymptotics

We now translate the forward-start option asymptotics obtained above into asymptotics of the

forward implied volatility smile. Let us first define the function N∞
0 : R× R+ → R by

N∞
0 (k, t) := 2

(
2V ∗(k)− k + 2Z(k)

√
V ∗(k)(V ∗(k)− k)

)
, for all k ∈ R, t ∈ R+ (4.4.1)

with Z : R → {−1, 1} defined by Z(k) ≡ 11{k∈[V ′(0),V ′(1)]} + sgn(ρξ − κ)11{k>V ′(1)} − 11{k<V ′(0)} and

V ∗ given in Lemma 4.2.1. Define the following combinations:

P0 : χ ≡ χ0, η ≡ 1, λ = 1, R(τ, λ) = O(τ−2λ),

P̃± : χ ≡ c̃±0 , η ≡ 1, λ = 2
3 , R(τ, λ) = o(τ−λ),

P± : χ ≡ c±0 , η ≡ 1, λ = 1
2 , R(τ, λ) =

 o
(
τ−λ

)
, if µ ̸= 1/2,

O
(
τ−2λ

)
, if µ = 1/2,

P1 : χ ≡ 0, η ≡ 0, λ = 0, R(τ, λ) = o(1).

Here c±0 and c̃±0 are given in (4.3.4) and (4.3.5) and χ0 : R \ {V ′(0), V ′(1)} → R is defined by

χ0(k, t) ≡ H(q∗(k)) + log

(
4k2 −N∞

0 (k, t)2

4(q∗(k)− 1)q∗(k)N∞
0 (k, t)3/2

√
V ′′(q∗(k))

)
, (4.4.2)

with V and H given in (2.3.8) and q∗ in (2.3.9). We now state the main result of the section,

namely an expansion for the forward smile in all regimes and (log) strikes on the real line. The

proof is given in Section 4.6.6.
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Theorem 4.4.1. The following expansion holds for the forward smile as τ tends to infinity:

σ2
t,τ (kτ) = N∞

0 (k, t) +N∞
1 (k, t)τ−λ +R(τ, λ), for any k ∈ R,

where N∞
1 : R× R+ → R is defined by (Q given in (4.3.7))

N∞
1 (k, t) :=


8N∞

0 (k, t)2

4k2 −N∞
0 (k, t)2

χ(k, t), if k ∈ Q,

2η(k)

[
1−

√
N∞

0 (k, t)

V ′′(q∗(k))

(
1 + sgn(k)

(
V ′′′(q∗(k))

6V ′′(q∗(k))
−H ′(q∗(k))

))]
, if k ∈ Qc,

with the functions χ, η, the remainder R and the constant λ given by the following combinations2:

• R1: P0 for k ∈ R;

• R2: P0 for k ∈ (−∞, V ′(u∗+)); P̃+ for k = V ′(u∗+); P+ for k ∈ (V ′(u∗+),+∞);

• R3a: P− for k ∈ (−∞, V ′(u∗−)); P̃− for k = V ′(u∗−); P0 for k ∈ (V ′(u∗−),+∞);

• R3b: P− for k ∈ (−∞, V ′(u∗−)); P̃− for k = V ′(u∗−); P0 for k ∈ (V ′(u∗−), V
′(1)); P1 for

k ∈ [V ′(1),+∞);

• R4: P0 for k ∈ (−∞, V ′(1)); P1 for k ∈ [V ′(1),+∞).

Remark 4.4.2.

(i) In the standard spot case t = 0, the large-maturity asymptotics of the implied volatility smile

was derived in [63, 65] for R1 only (i.e. assuming κ > ρξ).

(ii) The zeroth-order term N∞
0 is continuous on R (see also section 4.4.1), which is not necessarily

true for higher-order terms. In R2, R3a and R3b, N
∞
1 tends to either infinity or zero at the

critical strikes V ′(u∗+) and V ′(u∗−) (this is discussed further in Section 4.5). In R1, N
∞
1 is

continuous on the whole real line.

(iii) Straightforward computations show that 0 < N∞
0 (k) < 2|k| for k ∈ R \ [V ′(0), V ′(1)], and

N∞
0 (k) > 2|k| for k ∈ (V ′(0), V ′(1)), so that N∞

1 is well defined on R \ {V ′(0), V ′(1)}.

On (−∞, V ′(u∗−)) ∪ (V ′(u∗+),∞), c±0 > 0, so that in Regimes R2 on (V ′(u∗+),∞) and in

R3b,R3b on (−∞, V ′(u∗−)), N
∞
1 is always a positive adjustment to the zero-order term N∞

0 ;

see Figure 4.1 for an example of this ‘convexity effect’.

(iv) In the practically relevant (on Equity markets) case of large negative correlation (R2), the

additional convexity of the right wing of the forward smile is due to extreme positive moment

explosions of the forward price process. This asymmetric feature of the Heston forward smile

is a fundamental property of the model—not only for large-maturities. Quoting Bergomi [23]

from an empirical analysis: “...the increased convexity (of the forward smile) with respect to

today’s smile is larger for k > 0 than for k < 0...this is specific to the Heston model.”

2whenever P0 is in force, the case k = V ′(a) is excluded if v = θΥ(a), with Υ defined in (4.6.35), for a ∈ {0, 1}.
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Theorem 4.4.1 displays varying levels of degeneration for high-order forward smile asymptotics.

In R1 one can in principle obtain arbitrarily high-order asymptotics. In R2, R3a and R3b (with

P+ or P− in force) one can only specify the forward smile to arbitrary order if µ = 1/2 (µ defined

in (1.3.4)). If this is not the case then we can only specify the forward smile to first order. Now

the dynamics of the Heston volatility σt :=
√
Vt is given by dσt =

(
2µ−1
8σt

ξ2 − κσt

2

)
dt + ξ

2dWt,

with σ0 =
√
v. If µ = 1/2 then the volatility becomes Gaussian, which this corresponds to a

specific case of the Schöbel-Zhu stochastic volatility model (see Section 1.3.1.2). So as the Heston

volatility dynamics deviate from Gaussian volatility dynamics a certain degeneracy occurs such

that one cannot specify high order forward smile asymptotics. Interestingly, a similar degeneracy

occurs in Chapter 3 for exploding small-maturity Heston forward smile asymptotics and in [51]

when studying the tail probability of the stock price. As proved in [51], the square-root behaviour

of the variance process induces some singularity and hence a fundamentally different behaviour

when µ ̸= 1/2. In R2, R3a and R3b at the boundary points V ′(u∗±) one cannot specify the forward

smile beyond first order for any parameter configurations. This could be because these asymptotic

regimes are extreme in the sense that they are transition points between standard and degenerate

behaviours and therefore difficult to match with BSM forward volatility. Finally in R3b and R4 for

k > V ′(1) we obtain the most extreme behaviour, in the sense that one cannot specify the forward

smile beyond zeroth order. This is however not that surprising since the large correlation regime

has fundamentally different behaviour to the BSM model (see also Remark 4.3.2(vi)(vii)).

4.4.1 SVI-type limits

The so-called ‘Stochastic Volatility Inspired’ (SVI) parametrisation of the spot implied volatility

smile was proposed in [70]. As proved in [73], under the assumption κ > ρξ, the SVI parametrisa-

tion turn out to be the true large-maturity limit for the Heston (spot) smile. We now extend these

results to the large-maturity forward implied volatility smile. Define the following extended SVI

parametrisation

σ2
SVI(k, a, b, r,m, s, i0, i1, i2) := a+ b

(
r(k −m) + i0

√
i1(k −m)2 + i2(k −m) + i0s2

)
,

for all k ∈ R and the constants
ω1 :=

2µ

1− ρ2

(√
(2κ+ ξ2 − ρξ)

2
+ ξ2 (1− ρ2)−

(
2κ+ ξ2 − ρξ

))
, ω2 :=

ξ

κθ
,

a± :=
κθ

2
(
u∗± − 1

)
u∗±βt

, b± := 4
√(

u∗± − 1
)
u∗±, r± :=

2(2u∗± − 1)

b±
, m± :=

(
u∗± − 1

2

)
a±,

ã := −2m̃, b̃ := 4
√
−m̃, r̃ := 1

2
√
−m̃ , m̃ := µ(κ− ρξ),
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where u∗± is defined in (2.3.6) and βt, µ in (1.3.4). Define the following combinations:

S0 : a = ω1(1−ρ)2
2 , b = ω1ω2

2 , r = ρ, m = − ρ
ω2
, s =

√
1−ρ2
ω2

, i0 = 1, i1 = 1, i2 = 0,

S± : a = a±, b = b±, r = r±, m = m±, s = 1
8a±, i0 = −1, i1 = 1, i2 = 0,

S1 : a = ã, b = b̃, r = r̃, m = m̃, s = 0, i0 = 1, i1 = 0, i2 = 1.

The proof of the following result follows from simple manipulations of the zeroth-order forward

smile in Theorem 4.4.1 using the characterisation of V ∗ in Lemma 4.2.1.

Corollary 4.4.3. The pointwise continuous limit limτ↑∞ σ2
t,τ (kτ) = σ2

SVI(k, a, b, r,m, s, i0, i1, i2)

exists for k ∈ R with constants a, b, r,m, s, i0, i1 and i2 given by3:

• R1: S0 for k ∈ R;

• R2: S0 for k ∈ (−∞, V ′(u∗+)); S+ for k ∈ [V ′(u∗+),+∞);

• R3a: S− for k ∈ (−∞, V ′(u∗−)]; S0 for k ∈ (V ′(u∗−),+∞);

• R3b: S− for k ∈ (−∞, V ′(u∗−)]; S0 for k ∈ (V ′(u∗−), V
′(1)); S1 for k ∈ [V ′(1),+∞);

• R4: S0 for k ∈ (−∞, V ′(1)); S1 for k ∈ [V ′(1),+∞).

It is natural to conjecture [10] that the limiting forward smile limτ↑∞ σt,τ is similar to the

limiting spot smile limτ↑∞ σ0,τ . Corollary 4.4.3 shows that this only holds under R1. For the

practically relevant case of the asymmetric regime R2 when ρ < ρ−, in Figure 4.1 we compare

the two limits using the zeroth-order asymptotics in Corollary 4.4.3. At the critical log-strike

V ′(u∗+), the forward smile becomes more convex than the corresponding spot smile. Interestingly

this asymmetric feature has been empirically observed by practitioners [23] and seems to be a

fundamental feature of the Heston forward smile (not just for large maturities).
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Figure 4.1: Here t = 0.5, τ = 2, v = θ = 0.1, κ = 2, ξ = 1, ρ = −0.9, so that R2 applies. Circles

correspond to the spot smile K 7→ στ (logK) and squares to the forward smile K 7→ σt,τ (logK)

using the zeroth-order asymptotics in Corollary 4.4.3. Here ρ− ≈ −0.63 and e2V
′(u∗

+) ≈ 1.41.

3whenever S0 is in force, the case k = V ′(a) is excluded if v = θΥ(a), with Υ defined in (4.6.35), for a ∈ {0, 1}.
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4.5 Numerics

We first compare the true Heston forward smile and the asymptotics developed in the paper.

We calculate forward-start option prices using the inverse Fourier transform representation in

Lemma 1.4.7 and a global adaptive Gauss-Kronrod quadrature scheme. We then compute the

forward smile σt,τ with a simple root-finding algorithm. In Figure 4.2 we compare the true for-

ward smile using Fourier inversion and the asymptotic in Theorem 4.4.1(i) for the good correlation

regime, which was derived in Proposition 2.3.5. In Figure 4.3 we compare the true forward smile

using Fourier inversion and the asymptotic in Theorem 4.4.1(ii) for the asymmetric negative cor-

relation regime. Higher-order terms are computed using the theoretical results above; these can in

principle be extended to higher order, but the formulae become rather cumbersome; numerically,

these higher-order computations seem to add little value to the accuracy anyway. In Figure 4.4 we

compare the asymptotic in Theorem 4.4.1(ii) for the transition strike k = V ′(u∗+). Results are all

in line with expectations.

In the large correlation regime R4, we find it more accurate to use Theorem 4.3.1 and then

numerically invert the price to get the corresponding forward smile (Figures 4.5 and 4.6), rather

than use the forward smile asymptotic in Theorem 4.4.1. As explained in Remark 4.3.2(vii) the

leading-order accuracy of option prices in this regime is poor and higher-order terms embed im-

portant distinctions that need to be included. This also explains the poor accuracy of the forward

smile asymptotic in Theorem 4.4.1 for the large correlation regime. As seen in the proof (Sec-

tion 4.6.6), the leading-order behaviour of option prices is used to line up strike domains in the

BSM and Heston model and then forward smile asymptotics are matched between the models. If

the leading-order behaviour is poor, then regardless of the order of the forward smile asymptotic,

there will always be a mismatch between the asymptotic forms and the forward smile asymptotic

will be poor. Using the approach above bypasses this effect and is extremely accurate already at

first order (Figures 4.5 and 4.6).

In all but R1, higher-order terms can approach zero or infinity as the strike approaches the crit-

ical values (V ′(u∗+) or V
′(1)), separating the asymptotic regimes, and forward smile (and forward-

start option price) asymptotics are not continuous there (apart from the zeroth-order term), see

also Remark 4.4.2(ii). Numerically this implies that the asymptotic formula may break down for

strikes in a region around the the critical strike. Similar features were observed in Section 3.5 where

degenerate asymptotics were derived for the exploding small-maturity Heston forward smile.

4.6 Proof of Theorems 4.3.1 and 4.4.1

This section is devoted to the proofs of the option price and implied volatility expansions in

Theorems 4.3.1 and 4.4.1. We first start (Section 4.6.1) with some preliminary results on the
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Figure 4.2: Good correlation regime R1. In (a) circles, squares and diamonds represent the

zeroth-, first-and second-order asymptotics respectively and triangles represent the true forward

smile. In (b) we plot the differences between the true forward smile and the asymptotic. Here

t = 1, τ = 5 and v = 0.07, θ = 0.07, κ = 1.5, ξ = 0.34, ρ = −0.25.
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Figure 4.3: Asymmetric correlation regime R2. Here t = 1, τ = 5 and v = θ = 0.07,

ρ = −0.8, ξ = 0.65 and κ = 1.5, which implies eV
′(u∗

+)τ ≈ 2.39. In (a) circles, squares, diamonds

and triangles represent the zeroth-, first-, second- and third-order asymptotics respectively and

backwards triangles represent the true forward smile. In (b) we plot the errors.
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Figure 4.4: Asymmetric correlation regime R2. Here t = 1 and the Heston parameters are

the same as in Figure 4.3. Circles and squares represent the zeroth- and first-order asymptotic

and triangles represent the true forward smile. The horizontal axis is the maturity and the strike

is equal eV
′(u∗

+)τ . In (b) we plot the errors.
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Figure 4.5: Large correlation regime R4. Here t = 0, τ = 10, v = θ = 0.07, ρ = 0.5, ξ = 0.6,

and κ = 0.1. Circles and squares represent the zeroth- and first-order asymptotic and triangles

represent the true forward smile. Further eV
′(1)τ ≈ 1.06.
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Figure 4.6: Large correlation regime R4. Here t = 0, τ = 20 and the Heston parameters are

the same as in Figure 4.5. Circles and squares represent the zeroth- and first-order asymptotic and

triangles represent the true forward smile.
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behaviour of the cumulant generating function of the forward process (X
(t)
τ )τ>0, on which the

proofs will rely. The remainder of the section is devoted to the different cases, as follows:

• Section 4.6.2 is the easy case, namely whenever the function V in (2.3.8) is strictly convex,

corresponding to the behaviour H0, except at the points V ′(0) and V ′(1).

• In Section 4.6.3, we outline the general methodology we shall use in all other cases:

– Section 4.6.4 tackles the cases H±, H̃± and H2, corresponding to the function V ∗ being

linear;

– Section 4.6.5 is devoted to the analysis at the points V ′(0) and V ′(1)

• Section 4.6.6 translates the expansions for the option price into expansions for the forward

implied volatility.

4.6.1 Forward cumulant generating function (cgf) expansion and limit-

ing domain

For any t ≥ 0, τ > 0, define the re-normalised cgf of X
(t)
τ and its effective domain Dt,τ by

Λ(t)
τ (u) := τ−1 logE

(
euX

(t)
τ

)
, for all u ∈ Dt,τ := {u ∈ R : |Λ(t)

τ (u) | <∞}. (4.6.1)

The Heston forward cgf was derived in Lemma 1.3.1, from which it is straightforward to determine

Λ
(t)
τ . We recall from Proposition 2.5.14 that for fixed t ≥ 0, Dt,τ converges (in the set sense) to

KH defined in Table 2.1, as τ tends to infinity. Also the large-time expansion of Λ
(t)
τ was derived

in Lemma 2.5.15.

4.6.2 The strictly convex case

Let k := supa∈KH
V ′(a) and k := infa∈KH V

′(a). When k ∈ (k, k) \ {V ′(0), V ′(1)}, an analo-

gous analysis to Theorem 2.2.4 and Propositions 2.2.11 and 2.3.5, essentially based on the strict

convexity of V on (k, k), can be carried out and we immediately obtain the following results for

forward-start option prices and forward implied volatilities (hence proving Theorems 4.3.1 and 4.4.1

when H0 holds):

Lemma 4.6.1. The following expansions hold for all k ∈ (k, k) \ {V ′(0), V ′(1)} as τ tends to

infinity:

E
(
eX

(t)
τ − ekτ

)+
= I (k, τ, V ′(0), V ′(1), 0) +

ϕ0(k, t)

τ1/2
e−τ(V

∗(k)−k) (1 +O
(
τ−1

))
,

σ2
t,τ (kτ) = N∞

0 (k, t) +
8N∞

0 (k, t)2

4k2 −N∞
0 (k, t)2

χ0(k, t)τ
−1 +O(τ−2),
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with V ∗ given in Lemma 4.2.1, I and ϕ0 in (4.3.10) and (4.3.6), N∞
0 in (4.4.1), χ0 in (4.4.2) and

(k, k) =



R, in R1,

(−∞, V ′(u∗+)), in R2,

(V ′(u∗−),+∞), in R3a,

(V ′(u∗−), V
′(1)), in R3b,

(−∞, V ′(1)), in R4.

(4.6.2)

Proof. We sketch here a quick outline of the proof. For any k ∈ (k, k), the equation V ′(q∗(k)) = k

has a unique solution q∗(k) by strict convexity arguments. Define the random variable Zk,τ :=

(X
(t)
τ − kτ)/

√
τ ; using Fourier transform methods analogous to Theorem 2.2.4 and Proposi-

tion 2.2.11 the option price reads, for large enough τ ,

E
[
eX

(t)
τ − ekτ

]+
= I (k, τ, V ′(0), V ′(1), 0)

+
e−τ(k(q

∗(k)−1)−V (q∗(k)))eH(q∗(k))

2π

∫
R

Φτ,k(u)
√
τdu

[u− i
√
τ(q∗(k)− 1)][u− i

√
τq∗(k)]

,

where Φτ,k(u) ≡ EQ̃k,τ (eiuZk,τ ) is the characteristic function of Zk,τ under the new measure Q̃k,τ
defined by

dQ̃k,τ

dP := exp
(
q∗(k)X

(t)
τ − τΛ

(t)
τ (q∗(k)

)
. Using Lemma 2.5.15, the proofs of the option

price and the forward smile expansions are similar to those of Theorem 2.2.4 and Proposition 2.2.11

and Proposition 2.3.5. The exact representation of the set (k, k) follows from the definition of KH

in Table 2.1 and the properties of V .

4.6.3 Other cases: general methodology

Suppose that k (defined in Section 4.6.2) is finite with V ′(u) = k. We cannot define a change of

measure (as in the proof of Lemma 4.6.1) by simply replacing q∗(k) ≡ u for k ≥ k since the forward

cgf Λ
(t)
τ explodes at these points as τ tends to infinity (see Figure 4.7). One of the objectives of the
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Figure 4.7: Regime R2: Circles plot u 7→ V (u). Squares, diamonds and triangles plot u 7→

V (u) + H(u)/τ with t = 1 and τ = 2, 5, 10. Heston model parameters are v = 0.07, θ = 0.07,

ρ = −0.8, ξ = 0.65 and κ = 1.5. Also ρ− ≈ −0.56, u∗+ ≈ 9.72 and u+ ≈ 14.12.



4.6. Proof of Theorems 4.3.1 and 4.4.1 129

analysis is to understand the explosion rate of the forward cgf at these boundary points. The key

observation is that just before infinity, the forward cgf Λ
(t)
τ is still steep on Do

t,τ , and an analogous

measure change to the one above can be constructed. We therefore introduce the time-dependent

change of measure
dQk,τ
dP

:= exp
(
q∗τ (k)X

(t)
τ − τΛ(t)

τ (q∗τ (k))
)
, (4.6.3)

where q∗τ (k) is the unique solution to the equation ∂uΛ
(t)
τ (q∗τ (k)) = k for k ≥ k. We shall also require

that there exists τ1 > 0 such that q∗τ (k) ∈ KoH for all τ > τ1 and q∗τ ↑ u; therefore Lemma 2.5.15

holds, and we can ignore the exponential remainder (d(u) > 0 for all u ∈ KoH) so that the equation

∂uΛ
(t)
τ (q∗τ (k)) = k reduces to 4

V ′ (q∗τ (k)) + τ−1H ′ (q∗τ (k)) = k, (4.6.4)

where we recall the function V and H given in (2.3.8):

V (u) :=
µ

2
(κ− ρξu− d(u)) and H(u) :=

V (u)ve−κt

κθ − 2βtV (u)
− µ log

(
κθ − 2βtV (u)

κθ (1− γ (u))

)
,

with d, βt, µ and γ defined in (1.3.6), (1.3.4) and (1.3.8). In the analysis below, we will also require

q∗τ (k) to solve (4.6.4) and to converge to other points in the domain (not only boundary points).

This will be required to derive asymptotics under H0 for the strikes V ′(0) and V ′(1), where there

are no moment explosion issues but rather issues with the non-existence of the limiting Fourier

transform (see Section 4.6.5 for details). We therefore make the following assumption:

Assumption 4.6.2 (Large-maturity time-dependent saddlepoint). There exists τ1 > 0 and a set

A ⊆ R such that for all τ > τ1 and k ∈ A, Equation (4.6.4) admits a unique solution q∗τ (k) on KoH
satisfying limτ↑∞ q∗τ (k) =: q∗∞ ∈ KH ∩ (u−, u+).

Under this assumption |Λ(t)
τ (q∗τ (k))| is finite for τ > τ1 and KH = limτ↑∞{u ∈ R : |Λ(t)

τ (u)| <

∞}. Also dQk,τ/dP is almost surely strictly positive and by definition E[dQk,τ/dP] = 1. There-

fore (4.6.3) is a valid measure change for sufficiently large τ and all k ∈ A.

Our next objective is to prove weak convergence of a rescaled version of the forward price process

(X
(t)
τ )τ>0 under this new measure. To this end define the random variable Zτ,k,α := (X

(t)
τ −kτ)/τα

for k ∈ A and some α > 0, with characteristic function Φτ,k,α : R → C under Qk,τ :

Φτ,k,α(u) := EQk,τ
(
eiuZτ,k,α

)
. (4.6.5)

Define now the functions D : R∗
+ ×A → R and F : R∗

+ ×A× R∗
+ → R by

D(τ, k) := exp
[
−τ
(
k(q∗τ (k)− 1)− V (q∗τ (k))

)
+H(q∗τ (k))

]
,

F (τ, k, α) :=
1

2π

∫
R
Φτ,k,α(u)Cτ,k,α(u)du,

(4.6.6)

4A similar analysis can be conducted even if q∗τ (k) is not eventually in the interior of the limiting domain, but

then one will need to use the full cgf (not just the expansion) in (4.6.4).
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where Cτ,k,α : R → C is given by

Cτ,k,α(u) :=
τα

(u+ iτα(q∗τ − 1))(u+ iταq∗τ )
, (4.6.7)

and Cτ,k,α(u) denotes the complex conjugate of Cτ,k,α, namely:

Cτ,k,α(u) =
τα

(u− iτα(q∗τ − 1))(u− iταq∗τ )
. (4.6.8)

The main result here is an asymptotic representation for forward-start option prices:

Lemma 4.6.3. Under Assumption 4.6.2, there exists β > 0 such that for all k ∈ A, as τ ↑ ∞:

E
(
eX

(t)
τ − ekτ

)+
=


D(τ, k)F (τ, k, α)

(
1 +O(e−βτ )

)
, if q∗τ (k) > 1,

(1− ekτ ) +D(τ, k)F (τ, k, α)
(
1 +O(e−βτ )

)
, if q∗τ (k) < 0,

1 +D(τ, k)F (τ, k, α)
(
1 +O(e−βτ )

)
, if 0 < q∗τ (k) < 1.

(4.6.9)

The proof of Lemma 4.6.3 relies on the inverse Fourier representation given in Lemma 4.6.5

below. In order to prove this representation we first need to show that the integrand in the right-

hand side of Equality (4.6.11) belongs to L1(R) (and hence the integral is well defined), which is

the purpose of the following lemma:

Lemma 4.6.4. There exists τ∗0 > 0 such that
∫
R |Φτ,k,α(u)Cτ,k,α(u)|du <∞ for all τ > τ∗0 , k ∈ A,

q∗τ (k) ̸∈ {0, 1}.

Proof. We compute:∫
R

∣∣∣Φτ,k(u)Cτ,k,α(u)∣∣∣du =

∫
|u|≤τα

∣∣∣Φτ,k,α(u)Cτ,k,α(u)∣∣∣du+

∫
|u|>τα

∣∣∣Φτ,k,α(u)Cτ,k,α(u)∣∣∣du
≤ τ−α

|q∗τ (k)(q∗τ (k)− 1)|

∫
|u|≤τα

|Φτ,k,α(u)| du+

∫
|u|>1

du

u2
, (4.6.10)

where the inequality follows from the simple bounds∣∣∣Cτ,k,α(u)∣∣∣ ≤ τ−α

|q∗τ (k)(q∗τ (k)− 1)|
, for all |u| ≤ τα and

∣∣∣Cτ,k,α(u)∣∣∣ ≤ τα

u2
.

Finally (4.6.10) is finite since q∗τ (k) ̸= 1, q∗τ (k) ̸= 0 and |Φτ,k,α| ≤ 1.

We denote the convolution of two functions f, h ∈ L1(R) by (f ∗ g)(x) :=
∫
R f(x − y)g(y)dy,

and recall that (f ∗g) ∈ L1(R). For such functions, we denote the Fourier transform by (Ff)(u) :=∫
R eiuxf(x)dx and the inverse Fourier transform by (F−1h)(x) := 1

2π

∫
R e−iuxh(u)du. For j =

1, 2, 3, let us define the functions gj : R2
+ → R+ by

gj(x, y) :=


(x− y)+, if j = 1,

(y − x)+, if j = 2,

min(x, y), if j = 3.

and define g̃j : R → R+ by g̃j(z) := exp (−q∗τ (k)zτα) gj(ezτ
α

, 1). Recall the Qk,τ -measure defined

in (4.6.3) and the random variable Zk,τ,α defined on page 129. We now have the following result:
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Lemma 4.6.5. There exists τ∗1 > 0 such that for all k ∈ A and τ > τ∗1 :

EQk,τ [g̃j(Zk,τ,α)] =



1

2π

∫
R
Φτ,k,α(u)Cτ,k,α(u)du, if j = 1, q∗τ (k) > 1,

1

2π

∫
R
Φτ,k,α(u)Cτ,k,α(u)du, if j = 2, q∗τ (k) < 0,

− 1

2π

∫
R
Φτ,k,α(u)Cτ,k,α(u)du, if j = 3, 0 < q∗τ (k) < 1.

(4.6.11)

Proof. Assuming (for now) that g̃j ∈ L1(R), we have for any u ∈ R,

(F g̃j) (u) :=
∫
R
g̃j(z)e

iuzdz,

for j = 1, 2, 3. For j = 1 we can write∫ ∞

0

e−q
∗
τzτ

α
(
ezτ

α

− 1
)
eiuzdz =

[
ez(iu−q

∗
ττ

α+τα)

(iu− q∗ττ
α + τα)

]∞
0

−
[
ez(iu−q

∗
ττ

α)

(iu− q∗ττ
α)

]∞
0

= Cτ,k,α(u),

which is valid for q∗τ (k) > 1 with Cτ,k,α in (4.6.7). For j = 2 we can write∫ 0

−∞
e−q

∗
τzτ

α
(
1− ezτ

α
)
eiuzdz =

[
ez(iu−q

∗
ττ

α)

(iu− q∗ττ
α)

]0
−∞

−
[

ez(iu−q
∗
ττ

α+τα)

(iu− q∗ττ
α + τα)

]0
−∞

= Cτ,k,α(u),

which is valid for q∗τ (k) < 0. Finally, for j = 3 we have∫
R
e−q

∗
τzτ

α
(
ezτ

α

∧ 1
)
eiuzdz =

∫ 0

−∞
e−q

∗
τzτ

α

ezτ
α

eiuzdz +

∫ ∞

0

e−q
∗
τzτ

α

eiuzdz

=

[
ez(iu−q

∗
ττ

α+τα)

(iu− q∗ττ
α + τα)

]0
−∞

+

[
ez(iu−q

∗
ττ

α)

(iu− q∗ττ
α)

]∞
0

= −Cτ,k,α(u),

which is valid for 0 < q∗τ (k) < 1. From the definition of the Qk,τ -measure in (4.6.3) and the random

variable Zk,τ,α on page 129 we have

EQk,τ [g̃j(Zτ,k,α)] =

∫
R
rj(kτ

1−α − y)p(y)dy = (rj ∗ p)(kτ1−α),

with rj(z) ≡ g̃j(−z) and p denoting the density of X
(t)
τ τ−α. On the strips of regularity derived

above we know there exists τ0 > 0 such that rj ∈ L1(R) for τ > τ0. Since p is a density, p ∈ L1(R),

and therefore

F(rj ∗ p)(u) = Frj(u)Fp(u). (4.6.12)

We note that Frj(u) ≡ F g̃j(−u) ≡ F g̃j(u) and hence

Frj(u)Fp(u) ≡ eiukτ
1−α

Φτ,k,α(u)Cτ,k,α(u). (4.6.13)

Thus by Lemma 4.6.4 there exists τ1 > 0 such that FrjFp ∈ L1(R) for τ > τ1. By the inversion

theorem [137, Theorem 9.11] this then implies from (4.6.12) and (4.6.13) that for τ > max(τ0, τ1):

EQk,ε [g̃j(Zτ,k,α)] = (rj ∗ p)(kτ1−α) = F−1 (Frj(u)Fp(u)) (kτ1−α)

=
1

2π

∫
R
e−iukτ1−α

Frj(u)Fp(u)du =
1

2π

∫
R
Φτ,k,α(u)Cτ,k,α(u)du.
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We now move onto the proof of Lemma 4.6.3. We use our time-dependent change of measure

defined in (4.6.3) to write our forward-start option price for j = 1, 2, 3 as

E
(
gj(e

X(t)
τ , ekτ )

)
= e−τ[kq

∗
τ (k)−Λ(t)

τ (q∗τ (k))]ekτEQk,τ [g̃j(Zτ,k,α)] ,

with Zτ,k,α defined on page 129. We now apply Lemma 4.6.5 and then convert to forward-start call

option prices using Put-Call parity and that in the Heston model (eXt)t≥0 is a true martingale [5,

Proposition 2.5]. Finally the expansion for exp
(
−τ
(
k(q∗τ (k)− 1)− Λ

(t)
τ (q∗τ (k))

))
follows from

Lemma 2.5.15.

Finally, to end the section, we shall also need the following result on the behaviour of the

characteristic function of Zτ,k,α:

Lemma 4.6.6. Under Assumption 4.6.2 there exists β > 0 such that for any k ∈ A as τ ↑ ∞:

Φτ,k,α(u) = e−iukτ1−α+τ(V (iuτ−α+q∗τ)−V (q∗τ ))+H(iuτ
−α+q∗τ)−H(q∗τ )

(
1 +O(e−βτ )

)
,

where the remainder is uniform in u.

Proof. Fix k ∈ A. Analogous arguments to Appendix A yield that ℜd (iuτ−α + a) > d(a) for any

a ∈ KoH. Assumption 4.6.2 implies that for all τ > τ1, ℜd (iuτ−α + q∗τ (k)) > d(q∗τ (k)). It also

implies that q∗∞ < u+, and hence there exists δ > 0 and τ2 > 0 such that q∗τ (k) < u+ − δ for all

τ > τ2. Now, since d is strictly positive and concave on (u−, u+) and d(u−) = d(u+) = 0, we

obtain d(q∗τ (k)) > d(u+ − δ) > 0. This implies that the quantities O
(
exp

[
−d
(
iu
τα + q∗τ (k)

)
)τ
])

and O
(
e−d(q

∗
τ (k))τ

)
are all equal to O

(
e−d(u+−δ)τ) for all k ∈ A. Using the definition of Zτ,k,α,

the change of measure (4.6.3) and Lemma 2.5.15, we can write

log Φτ,k,α(u) = logEQk,τ
[
eiuZτ,k,α

]
= logE

[
exp

(
q∗τXτ − τΛ(t)

τ (q∗τ ) +
iu

τα
(Xτ − kτ)

)]
= −iukτ1−α + τ

(
Λ(t)
τ (iu/τα + q∗τ )− Λ(t)

τ (q∗τ )
)

= − iuk

τα−1
+ τ

[
V

(
iu

τα
+ q∗τ

)
− V (q∗τ )

]
+H

(
iu

τα
+ q∗τ

)
−H (q∗τ )

+O
[
e−d(iuτ

−α+q∗τ)τ
]
−O

(
e−d(q

∗
τ )τ
)

= −iukτ1−α + τ (V (iu/τα + q∗τ )− V (q∗τ )) +H (iu/τα + q∗τ )−H (q∗τ )

+O
(
e−d(u+−δ)τ

)
.

Since d(u+ − δ) > 0 the remainder tends to zero exponentially fast as τ tends to infinity. The

uniformity of the remainder follows from tedious, yet non-technical, computations showing that the

absolute value of the difference between Φτ,k,α(u) and its approximation is bounded by a constant

independent of u as τ tends to infinity (see Appendix C).

4.6.4 Asymptotics in the case of extreme limiting moment explosions

We consider now the cases H±, H̃± and H2, corresponding to the rate function V ∗ being linear.
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Lemma 4.6.7. Assumption 4.6.2 is verified in the following cases:

(i) R2 with A = [V ′(u∗+),∞) and q∗∞ = u∗+;

(ii) R3a and R3b with A = (−∞, V ′(u∗−)] and q
∗
∞ = u∗−.

(iii) R3b and R4 with A = (V ′(1),∞] and q∗∞ = 1.

Proof. Consider Case (i) and re-write (4.6.4) asH ′(q∗τ (k))/τ = k−V ′(q∗τ (k)). Let k ≥ V ′(u∗+); since

V is strictly convex on (u−, u+), we have H ′(q∗τ (k))/τ = k − V ′(q∗τ (k)) ≥ V ′(u∗+)− V ′(q∗τ (k)) > 0.

We now show that H ′ has the necessary properties to prove the lemma. The following statements

can be proven in a tedious yet straightforward manner (Figure 4.8 provides a visual help):

(i) There exists a ū ∈ (0, u∗+) such that H ′(ū) = 0;

(ii) H ′ : (ū, u∗+) → R is strictly increasing and tends to infinity at u∗+.

Therefore (i) and (ii) imply that a unique solution to (4.6.4) exists satisfying the conditions of

the lemma with q∗τ (k) ∈ (ū, u∗+). Let τ2 > τ1 and suppose that q∗τ2 < q∗τ1 . Since the function H ′

is strictly increasing and positive on (ū, u∗+) this implies that H ′(q∗τ2)/τ2 < H ′(q∗τ1)/τ2 and using

(4.6.4) we see that k − V ′(q∗τ2) < τ1(k − V ′(q∗τ1))/τ2 < k − V ′(q∗τ1) and so V ′(q∗τ1) < V ′(q∗τ2). The

strict convexity of V then implies that q∗τ1 < q∗τ2 which contradicts our assumption that q∗τ2 < q∗τ1 .

Hence q∗τ (k) is strictly increasing and bounded above by u∗+, and therefore converges to a limit

L ∈ [ū, u∗+]. If L ∈ [ū, u∗+), then the continuity of V ′ and H ′ and the strict convexity of V implies

that limτ↑∞ V ′(q∗τ (k)) +H ′(q∗τ (k))/τ = V ′(L) < V ′(u∗+) ≤ k, which is a contradiction. Therefore

L = u∗+, which proves Case (i). Cases (ii) and (iii) are analogous, and the lemma follows.
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Figure 4.8: Plot of u 7→ H ′(u)/τ for different values of τ . Circles, Squares and diamonds represent

τ = 2, 5, 10. In (a) u ∈ (−1.05, 9.72) and in (b) u ∈ (0, 1). The Heston parameters are v = 0.07,

θ = 0.07, ρ = −0.8, ξ = 0.65 and κ = 1.5. Also t = 1, ρ− = −0.56, u∗+ = 9.72 and u− = −1.05.
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In the following lemma we derive an asymptotic expansion for q∗τ (k). This key result will allow

us to derive asymptotics for the characteristic function Φτ,k,α as well as other auxiliary quantities

needed in the analysis.

Lemma 4.6.8. The following expansions hold for q∗τ (k) as τ tends to infinity (µ defined in (1.3.4)):

(i) In Regimes R2, R3a and R3b,

(a) under H±: q
∗
τ (k) = u∗± + a±1 (k)τ

−1/2 + a±2 (k)τ
−1 +O

(
τ−3/2

)
;

(b) under H̃±: q
∗
τ (k) = u∗± + ã±1 τ

−1/3 + ã±2 τ
−2/3 +O

(
τ−1

)
;

(ii) In Regimes R3b and R4,

(a) For k > V ′(1): q∗τ (k) = 1− µ
(k−V ′(1))τ

−1 +O(τ−2);

(b) For k = V ′(1): q∗τ (k) = 1− τ−1/2
√

µ
V ′′(1) +O

(
τ−1

)
,

with a±1 , a
±
2 and a±3 defined in (4.3.1) and u∗± in (2.3.6).

Proof. Consider Regime R2 when H+ is in force, i.e. k > V ′(u∗+), and fix such a k. Existence and

uniqueness was proved in Lemma 4.6.7 and so we assume the result as an ansatz. This implies the

following asymptotics as τ tends to infinity:

V (q∗τ (k)) = V (u∗+) +
a1V

′(u∗+)√
τ

+

(
a21V

′′(u∗+)

2
+ a2V

′(u∗+)

)
1

τ
+O

(
1

τ3/2

)
,

V ′(q∗τ (k)) = V ′(u∗+) +
a1V

′′(u∗+)√
τ

+

(
a21V

′′′(u∗+)

2
+ a2V

′′(u∗+)

)
1

τ
+O

(
1

τ3/2

)
,

γ(q∗τ (k)) = γ(u∗+) +
a1γ

′(u∗+)√
τ

+

(
a21γ

′′(u∗+)

2
+ a2γ

′(u∗+)

)
1

τ
+O

(
1

τ3/2

)
,

γ′(q∗τ (k)) = γ′(u∗+) +
a1γ

′′(u∗+)√
τ

+

(
a21γ

′′′(u∗+)

2
+ a2γ

′′(u∗+)

)
1

τ
+O

(
1

τ3/2

)
.

(4.6.14)

We substitute this into (4.6.4) and solve at each order. At the τ−1/2 order we obtain

a+1 (k) = ±e−κt/2

2βt

√
κθv

V ′(u∗+)
(
k − V ′(u∗+)

) ,
which is well defined since k − V ′(u∗+) > 0 and V ′(u∗+) > 0. We choose the negative root since we

require q∗τ ∈ (0, u∗+) ⊂ KoH for τ large enough. In a tedious yet straightforward manner we continue

the procedure and iteratively solve at each order (the next equation is linear in a2) to derive the

asymptotic expansion in the lemma. The other cases follow from analogous arguments.

To complete the proof (and make the ansatz approach above rigorous) we need to show the

existence of this expansion for q∗τ (k). Fix k > V ′(u∗+) and set fk(u, τ) := V ′(u) + H ′(u)/τ − k.

Now let τ̄ > 0. From Lemma 4.6.7 we know that there exists a solution q∗τ̄ (k) to the equation

fk(q
∗
τ̄ (k), τ̄) = 0 and the strict convexity of V +H/τ implies ∂ufk(q

∗
τ̄ (k), τ̄) > 0. Further, the two-

dimensional map fk : KoH ×R∗
+ → R is analytic. It follows by the Implicit Function Theorem [108,

Theorem 8.6, Chapter 0] that τ 7→ q∗τ (k) is analytic in some neighbourhood around τ̄ . Since this
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argument holds for all τ̄ > 0, this function is also analytic on R∗
+. Also from Lemma 4.6.7 we know

that limτ↗∞ q∗τ (k) = u∗+. Since we computed the Taylor series expansion consistent with this limit

and the expansion is unique, it follows that q∗τ (k) admits this representation.

We now derive asymptotic expansions for Φτ,k,α. These expansions will be used in the next

section to derive asymptotics for the function F in (4.6.6).

Lemma 4.6.9. The following expansions hold as τ tends to infinity:

(i) In Regimes R2, R3a and R3b,

(a) under H±: Φτ,k,3/4(u) = e−ζ
2
±(k)u2/2

(
1 +O

(
τ−1/4

))
;

(b) under H̃±: Φτ,k,1/2(u) = e−3V ′′(u∗
±)u

2/2
(
1 +O

(
τ−1/6

))
;

(ii) In Regimes R3b and R4,

(a) For k > V ′(1): Φτ,k,1 (u) = e−iu(k−V ′(1))−u2V ′′(1)
2τ

(
1− iu (k−V ′(1))

µ

)−µ
(1 +O(τ−1));

(b) For k = V ′(1): Φτ,k,1/2 (u) = e−iu
√
µV ′′(1)−u2V ′′(1)

2

(
1− iu

√
V ′′(1)
µ

)−µ

(1 +O(τ−1/2)),

with Φτ,k,α defined in (4.6.5), ζ2± in (4.3.2) and µ in (1.3.4).

Remark 4.6.10.

(i) In Case (i)(a), Zτ,k,3/4 converges weakly to a centred Gaussian with variance ζ2±(k) when H±

holds.

(ii) In Case (i)(b), Zτ,k,1/2 converges weakly a centred Gaussian with variance 3V ′′(u+) when

H̃± holds.

(iii) In Case(ii)(a), Zτ,k,1 converges weakly to the zero-mean random variable Ξ− γ, where γ :=

k − V ′(1) and Ξ is a Gamma random variable with shape parameter µ and scale parameter

β := (k − V ′(1))/µ. Note here that we specify the asymptotics with the Gaussian part

exp(−u2V ′′(1)/(2τ) so that we can apply Lemma 4.6.13 to compute large-maturity integral

asymptotics later in the section.

(iv) In Case(ii)(b), Zτ,k,1/2 converges weakly to the zero-mean random variable Ψ + Ξ, where Ψ

is Gaussian with mean −
√
µV ′′(1) and variance V ′′(1) and Ξ is Gamma-distributed with

shape µ and scale
√
V ′′(1)/µ.

We now prove Case (i)(a) in Regime R2, as the proofs in all other cases are similar. In the

forthcoming analysis we will be interested in the asymptotics of the function eτ defined by

eτ (k) ≡
√
τ (κθ − 2βtV (q∗τ (k))) . (4.6.15)
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Under R2, in Case (i)(a), (κθ − 2βtV (q∗τ )) tends to zero as τ tends to infinity, so that it is not

immediately clear what happens to eτ for large τ . But the asymptotic behaviour of V (q∗τ ) in (4.6.14)

and the definition (4.6.15) yield the following result:

Lemma 4.6.11. Assume R2 and H+. Then the expansion eτ (k) = e+0 (k)+ e
+
1 (k)τ

−1/2+O
(
τ−1

)
holds as τ tends to infinity, with e0 and e1 defined in (4.3.3).

Proof of Lemma 4.6.9. Consider Regime R2 when H+ is in force, i.e. k > V ′(u∗+), and fix such

a k, and for ease of notation drop the superscripts and k-dependence. Lemma 4.6.6 yields

log Φτ,k,3/4(u) = −iukτ1/4 + τ

(
V

(
iu

τ3/4
+ q∗τ

)
− V (q∗τ )

)
+H

(
iu

τ3/4
+ q∗τ

)
−H (q∗τ )

+O(τ−1/4). (4.6.16)

Using Lemma 4.6.8, we have the Taylor expansion (similar to (4.6.14))

V

(
q∗τ +

iu

τ3/4

)
=

κθ

2βt
+
a1V

′
√
τ

+
iuV ′

τ3/4
+

(
V ′′a21
2

+ V ′a2

)
1

τ
+

iua1V
′′

τ5/4
+O

(
1

τ3/2

)
, (4.6.17)

as τ tends to infinity, where V , V ′ and V ′′ are evaluated at u∗+. Using (4.6.14) we further have

V
(
q∗τ + iu/τ3/4

)
− V (q∗τ ) =

iuV ′(u∗+)

τ3/4
+

iua1V
′′(u∗+)

τ5/4
+O

(
1

τ3/2

)
, (4.6.18)

γ
(
q∗τ + iu/τ3/4

)
= γ(u∗+) +

a1γ
′(u∗+)√
τ

+
iuγ′(u∗+)

τ3/4
+O

(
1

τ

)
, (4.6.19)

with γ defined in (1.3.8). We now study the behaviour of H
(
iu/τ3/4 + q∗τ

)
, where H is defined

in (2.3.8). Using Lemma 4.6.11 and the expansion (4.6.18) for large τ , we first note that

eτ − 2βt
√
τ

[
V (q∗τ +

iu

τ3/4
)− V (q∗τ )

]
= e0 −

2βtiuV
′

τ1/4
+

e1√
τ
− 2βtiua1V

′′

τ3/4
+O

(
1

τ

)
, (4.6.20)

with eτ defined in (4.6.15). Together with (4.6.17), this implies

ve−κtV (q∗τ + iu/τ3/4)

κθ − 2βtV (q∗τ + iu/τ3/4)
=

√
τve−κtV (q∗τ + iu/τ3/4)

eτ − 2βt
√
τ
(
V (q∗τ + iu/τ3/4)− V (q∗τ )

)
=
κθve−κt

√
τ

2e0βt
+

iκθuve−κtV ′τ1/4

e20
+ ve−κt

(
a1V

′

e0
− e1κθ

2e20βt

)
−
ζ2+u

2

2
+O

(
1

τ1/4

)
, (4.6.21)

with ζ+ defined in (4.3.2). Substituting e0 in (4.3.3) into the second term in (4.6.21) we find

iκθuve−κtV ′

e20
= iu (k − V ′) . (4.6.22)

Following a similar procedure using eτ we establish for large τ that

ve−κtV (q∗τ )

κθ − 2βtV (q∗τ )
=
κθve−κt

√
τ

2e0βt
+ ve−κt

(
a1V

′

e0
− e1κθ

2e20βt

)
+O

(
1√
τ

)
, (4.6.23)
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and combining (4.6.21), (4.6.22) and (4.6.23) we find that

V (q∗τ + iu/τ3/4)ve−κt

κθ − 2βtV (q∗τ + iu/τ3/4)
− V (q∗τ )ve

−κt

κθ − 2βtV (q∗τ )
= iu (k − V ′) τ1/4 −

ζ2+u
2

2
+O

(
1

τ1/4

)
. (4.6.24)

We now analyse the second term of exp(H(iu/τ3/4 + q∗τ )−H(q∗τ )). We first re-write this term as

(µ defined in (1.3.4) and γ in (1.3.8))

exp

(
−µ log

(
κθ − 2βtV (q∗τ + iu/τ3/4)

κθ
(
1− γ

(
q∗τ + iu/τ3/4

)))+ µ log

(
κθ − 2βtV (q∗τ )

κθ (1− γ (q∗τ ))

))

=

(κθ − 2βtV (q∗τ + iu/τ3/4)

κθ − 2βtV (q∗τ )

)(
1− γ

(
q∗τ + iu/τ3/4

)
1− γ (q∗τ )

)−1
−µ

,

and deal with each of the multiplicative terms separately. For the first term we re-write it as

κθ − 2βtV (q∗τ + iu/τ3/4)

κθ − 2βtV (q∗τ )
=
eτ − 2βt

√
τ
(
V (q∗τ + iu/τ3/4)− V (q∗τ )

)
eτ

, (4.6.25)

and then we use the asymptotics of eτ in Lemma 4.6.11 and equation (4.6.20) to find that as τ

tends to infinity,

κθ − 2βtV (q∗τ + iu/τ3/4)

κθ − 2βtV (q∗τ )
= 1 +O

(
1

τ1/4

)
. (4.6.26)

For the second term we use the asymptotics in (4.6.14) and (4.6.19) to find that for large τ(
1− γ

(
q∗τ + iu/τ3/4

)
1− γ (q∗τ )

)−1

=

(
1−

(
γ + a1γ

′/
√
τ + iuγ′/τ3/4 +O(1/τ)

)
1− (γ + a1γ′/

√
τ +O(1/τ))

)−1

= 1 +O(1/τ3/4).

It then follows that for the second term of exp(H(iu/τ3/4+ q∗τ )−H(q∗τ )) that for large τ we have

exp

(
−µ log

(
κθ − 2βtV (q∗τ + iu/ψτ )

κθ (1− γ (q∗τ + iu/ψτ ))

)
+ µ log

(
κθ − 2βtV (q∗τ )

κθ (1− γ (q∗τ ))

))
= 1 +O

(
1

τ1/4

)
. (4.6.27)

Further as τ tends to infinity, the equality (4.6.18) implies

τ
(
V (q∗τ + iu/τ3/4)− V (q∗τ )

)
= iuV ′(q∗)τ1/4 +O(τ−1/4). (4.6.28)

Combining (4.6.24), (4.6.27) and (4.6.28) into (4.6.16) completes the proof.

In order to derive complete asymptotic expansions we still need to derive expansions for D and

F in (4.6.6). This is the purpose of this section. We first derive an expansion for D which gives

the leading-order decay of large-maturity out-of-the-money options:

Lemma 4.6.12. The following expansions hold as τ tends to infinity (µ defined in (1.3.4)):

(i) In Regimes R2, R3a and R3b,

(a) under H±: D(τ, k) = exp
(
−τ(V ∗(k)− k) +

√
τc±0 (k) + c±1 (k)

)
τµ/2c±2 (k)(1+O(τ−1/2));

(b) under H̃±: D(τ, k) = exp
(
−τ(V ∗(k)− k) + τ1/3c±0 + c±1

)
τµ/3c±2 (1 +O(τ−1/3));
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(ii) In Regimes R3b and R4,

(a) For k > V ′(1): D(τ, k) = e−τ(V
∗(k)−k)+µ+g0

(
2(k−V ′(1))(κ−ρξ)2

(κθ−2V (1)βt)

)µ
τµ(1 +O(τ−1));

(b) For k = V ′(1): D(τ, k) = e−τ(V
∗(k)−k)+µ/2+g0

(
2(κ−ρξ)2

√
V ′′(1)µ

(κθ−2V (1)βt)

)µ
τµ/2(1 +O(τ−1/2)).

where c0, c1 and c2 in (4.3.4), g0 in (4.3.5) and V ∗ is characterised explicitly in Lemma 4.2.1.

Proof. Consider Regime R2 in Case(i)(a) (namely when H+ holds), and again for ease of notation

drop the superscripts and k-dependence. We now use Lemma 4.6.8 and (4.6.14) to write for large

τ :

e−τ(kq
∗
τ−V (q∗τ )) = exp

[
−τ(ku∗+ − V (u∗+))−

√
τa1(k − V ′) + r0 − a2k +O(τ−1/2)

]
= e−τV

∗(k)−
√
τa1(k−V ′)+r0−a2k

[
1 +O(τ−1/2)

]
, (4.6.29)

with r0 := 1
2V

′′a21+V
′a2 and where we have used the characterisation of V ∗ given in Lemma 4.2.1.

We now study the asymptotics of H(q∗τ ). Using the definition of eτ in (4.6.15) we write

eH(q∗τ ) = exp

(
V (q∗τ )ve

−κt

κθ − 2βtV (q∗τ )

)[
κθ − 2βtV (q∗τ )

κθ (1− γ (q∗τ ))

]−µ
= τ

µ
2 exp

(
V (q∗τ )ve

−κt

κθ − 2βtV (q∗τ )

)[
eτ

κθ (1− γ (q∗τ ))

]−µ
, (4.6.30)

and deal with each of these terms in turn. Now by (4.6.23) we have, as τ tends to infinity,

ve−κtV (q∗τ )

κθ − 2βtV (q∗τ )
=
κθve−κt

√
τ

2e0βt
+ ve−κt

(
a1V

′

e0
− e1κθ

2e20βt

)
+O

(
1√
τ

)
. (4.6.31)

Using the asymptotics of eτ given in Lemma 4.6.11 and those of γ in (4.6.14) we find(
eτ

κθ (1− γ (q∗τ ))

)−µ

=

(
e0 + e1/

√
τ +O (1/τ)

κθ (1− γ) + κθa1γ′/
√
τ +O (1/τ)

)−µ

=

(
κθ (1− γ)

e0

)µ(
1 +O

(
1√
τ

))
. (4.6.32)

Using the definition of e0 in (4.3.3), note the simplification −a1(k−V ′)+ κθve−κt

2e0βt
= −2a1(k−V ′).

Combining this, (4.6.29), (4.6.30), (4.6.31) and (4.6.32) we find that

D(τ, k) := e−τ(k(q
∗
τ−1)−Λ(t)

τ (q∗τ )) = exp
(
−τ(V ∗(k)− k) +

√
τc+0 + c+1

)
τµ/2c+2 (1 +O(τ−1/2)),

with c+0 , c
+
1 and c+2 in (4.3.4). All other cases follows in an analogous fashion and this completes

the proof.

In Lemma 4.6.14 below we provide asymptotic expansions for the function F in (4.6.6). How-

ever, we first need the following technical result, the proof of which can be found in [21, Lemma

7.3]. Let p denote the density of a Gamma random variable with shape λ and scale ν, and p̂ the

corresponding characteristic function:

p(x) ≡ 1

Γ(λ)νλ
xλ−1e−x/ν11{x>0}, p̂(u) ≡ (1− iνu)−λ. (4.6.33)
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Lemma 4.6.13. The following expansion holds as τ tends to infinity:∫
R
exp

(
−iγu− σ2u2

2τ

)
uβ p̂(γu)du =

w∑
r=0

2πσ2r

iβγ2r+β+12rr!τ r
p(2r+β)(1) +O

(
1

τw+1

)
,

with γ, ν, λ ∈ R∗
+, β ∈ N ∪ {0}, w ∈ N and p(n) denoting the n-th derivative of the Gamma

density p.

Lemma 4.6.14. The following expansions hold as τ tends to infinity (with ζ± in (4.3.2), u∗±

in (2.3.6) and µ in (1.3.4)):

(i) In Regimes R2, R3a and R3b,

(a) under H±: F (τ, k, 3/4) =
τ−3/4

ζ±(k)u∗
+(u∗

±−1)
√
2π

(1 +O(τ−1/2));

(b) under H̃±: F (τ, k, 1/2) =
τ−1/2

u∗
±(u∗

±−1)
√

6πV ′′(u∗
±)

(1 +O(τ−1/3));

(ii) In Regimes R3b and R4,

(a) For k > V ′(1): F (τ, k, 1) = − e−µµµ

Γ(1+µ) (1 +O(τ−1));

(b) For k = V ′(1): F (τ, k, 1/2) = − e−µ/2(µ/2)µ/2

2Γ(1+µ/2) (1 +O(τ−1/2)).

Proof. First we consider Regime R2 under H+ in Case (i)(a). Using the asymptotics of q∗τ given in

Lemma 4.6.8, we can Taylor expand for large τ to obtain C(τ, k, 3/4) = τ−3/4

(u∗
+−1)u∗

+
(1 +O(τ−1/2)),

Combining this with the characteristic function asymptotics in Lemma 4.6.9 we find that for large τ ,

F (τ, k, 3/4) =
1

2πτ3/4
(
u∗+ − 1

)
u∗+

∫
R
exp

(
−
ζ2+(k)u

2

2

)
(1 +O(τ−1/4))du

=
1√

2π|ζ±(k)|τ3/4
(
u∗+ − 1

)
u∗+

(
1 +O(τ−1/4)

)
,

where the second line follows from simple properties of the normal distribution. By extending

the analysis to higher order, the O(τ−1/4) term is actually zero and the next non-trivial term is

O(τ−1/2). For brevity we omit the analysis and we give the remainder as O(τ−1/2) in the lemma.

All other cases in (i) follow from analogous arguments to above and we now move onto Case (ii)(a).

Using the asymptotics of q∗τ in Lemma 4.6.8 we have C(τ, k, 1) = −
(

µ
ν(k) − iu

)−1

+ O(τ−1) =

−ν(k)
µ

(
1− iuν(k)

µ

)−1

+O(τ−1), where we set ν(k) := k − V ′(1). Using this and the characteristic

function asymptotics in Lemma 4.6.9 we see that as τ tends to infinity:

F (τ, k, 1) =
−ν
2πµ

∫ ∞

−∞
exp

(
−iuν − u2V ′′(1)

2τ

)(
1− iuν

µ

)−1−µ

du
[
1 +O

(
τ−1

)]
,

=

(
− e−µµµ

Γ(1 + µ)
+O

(
τ−1

)) [
1 +O

(
τ−1

)]
,

where the second line follows from Lemma 4.6.13. We now prove (ii)(b). Using the asymptotics of q∗τ

for large τ in Lemma 4.6.8, we obtain C(τ, k, 1/2) = 1
a1(1+iu/a1)

+O(τ−1/2), with a1 = −
√

µ
V ′′(1) .
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Using this and the characteristic function asymptotics in Lemma 4.6.9 we have the following

expansion for large τ :

F (τ, k, 1/2) =
1

2πa1

∫
R

exp
(
iua1V

′′(1)− 1
2u

2V ′′(1)
)

(1 + iu/a1)1+µ
du
(
1 +O

(
τ−1/2

))
.

Let n and n̂ denote the Gaussian density and characteristic function with zero mean and variance

V ′′(1). Using (4.6.33), we have∫
R
e−iωun̂(u)p̂(u)du = 2πF−1(n̂(u)p̂(u))(ω) = 2πF−1(F(n ∗ p))

= 2π

∫ ∞

0

n(ω − y)p(y)dy, (4.6.34)

so that

1

2πa1

∫
R

exp
(
iua1V

′′(1)− 1
2u

2V ′′(1)
)

(1 + iu/a1)1+µ
du =

1

a1

∫ ∞

0

n(−a1V ′′(1)− y)p(y)dy.

This integral can now be computed in closed-form and the result follows after simplification using

the definition of a1 and the duplication formula for the Gamma function.

4.6.5 Asymptotics in the case of non-existence of the limiting Fourier

transform

In this section, we are interested in the cases where k ∈ {V ′(0), V ′(1)} whenever H0 is in force,

which corresponds to all the regimes except R3b and R4 at V ′(1). In these cases, the limiting

Fourier transform is undefined at these points. We show here however that the methodology of

Section 4.6.3 can still be applied, and we start by verifying Assumption 4.6.2. The following

quantity will be of primary importance:

Υ(a) := 1 +
aρξ

κ− ρξ
eκt, (4.6.35)

for a ∈ {0, 1}, and it is straightforward to check that Υ is well defined whenever H0 is in force.

Lemma 4.6.15. Let a ∈ {0, 1} and assume that v ̸= θΥ(a). Then, whenever H0 holds, Assump-

tion 4.6.2 is satisfied with A = {V ′(a)} and q∗∞ = a. Additionally, if v < θΥ(a), then there exists

τ∗1 > 0 such that q∗τ (k) < 0 if a = 0 and q∗τ (k) > 1 if a = 1 for all τ > τ∗1 , and if v > θΥ(a), then

there exists τ∗1 > 0 such that q∗τ (k) ∈ (0, 1) for all τ > τ∗1 .

Remark 4.6.16. When v = θΥ(a) for a ∈ {0, 1} then q∗τ (V
′(a)) = a for all τ > 0. In particular,

the Fourier transform is always undefined for all τ > 0 and the methodology in this section cannot

be applied.

Proof. Recall that the function H is defined in (2.3.8). We first prove the lemma in the case a = 0,

in which case Υ(0) = 1. Note that H ′(0) > 0(< 0) if and only if v/θ < 1(> 1) and H ′(0) = 0 if and
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only if v = θ. Now let k = V ′(0) and v < θ and consider the equation H ′(u)/τ = V ′(0) − V ′(u).

Since H ′ is continuous H ′ is strictly positive in some neighbourhood of zero. In order for the

right-hand side to be positive we require our solution to be in (−δ0, 0) for some δ0 > 0 since V is

strictly convex. So let δ1 ∈ (−δ0, 0). With the right-hand side locked at V ′(0) − V ′(δ1) > 0 we

then adjust τ accordingly so that H ′(δ1)/τ1 = V ′(0) − V ′(δ1). We then set uτ1 = δ1. It is clear

that for τ > τ1 there always exists a unique solution to this equation and furthermore q∗τ is strictly

increasing and bounded above by zero. The limit has to be zero otherwise the continuity of V ′ and

H ′ implies limτ↑∞ V ′(q∗τ )+H
′(q∗τ )/τ = V ′(limτ↑∞ q∗τ ) < V ′(0), a contradiction. A similar analysis

holds for v > θ and in this case q∗τ converges to zero from above. When v = θ then q∗τ = 0 for all

τ > 0 (i.e. it is a fixed point). Analogous arguments hold for k = V ′(1): H ′(1) > 0(< 0) if and

only if v/θ > Υ(1) (< Υ(1)) and H ′(1) = 0 if and only if v/θ = Υ(1). If v/θ > Υ(1) (< Υ(1)) then

q∗τ converges to 1 from below (above) and when v/θ = Υ(1), q∗τ = 1 for all τ > 0.

We now provide expansions for q∗τ and the characteristic function Φτ,k,1/2. Define the following

quantities:

α0 :=
2e−κt(v − θ)κ

θ((2κ− ξ)2 + 4κξ(1− ρ2))
, α1 :=

2e−κt(κ− ρξ)2

κθ((2κ− ξ)2 + 4κξ(1− ρ2))
(θΥ(1)− v). (4.6.36)

The proofs are analogous to Lemma 4.6.8 and 4.6.9 and omitted. Note that the asymptotics are

in agreement with the properties of q∗τ (k) in Lemma 4.6.15.

Lemma 4.6.17. Let a ∈ {0, 1} and assume that v ̸= θΥ(a). When k = V ′(a), the following

expansions hold as τ tends to infinity:

q∗τ (k) = a+ αaτ
−1 +O

(
τ−2

)
, D(τ, k) = eτV

′(a)(1−a) (1 +O
(
τ−1

))
,

Φτ,k,1/2(u) = e−
1
2u

2V ′′(a)

(
1 +

(
iαauV

′′(a)− iu3V ′′′(a)

6
+ iuH ′(a)

)
τ−1/2 +O(τ−1)

)
.

In the lemma below we now provide expansions for F in (4.6.6):

Lemma 4.6.18. Let a ∈ {0, 1} and assume that v ̸= θΥ(a). Then the following expansions hold

as τ tends to infinity (with a0 given in (4.6.36)):

F

(
τ, V ′(a),

1

2

)
=

11{a=1} − 11{a=0}sgn(α0)

2
+

[
−1 + sgn(−a)

(
V ′′′(a)
6V ′′(a) −H ′(a)

)]
√
2πτV ′′(a)

(
1 +O(τ−1)

)
.

Proof. Define the following functions from R∗ × {0, 1} to R :

ϖ1(w, a) := ew
2V ′′(a)/2π

[
2N (w

√
V ′′(a))− 1− sgn(w)

]
,

ϖ2(w, a) := −

√
2π

V ′′(a)
+ ew

2V ′′(a)/2πw
[
1 + sgn(w)− 2N

(
w
√
V ′′(a)

)]
,

ϖ3(w, a) :=

√
2π(w2V ′′(a)− 1)

(V ′′(a))3/2
− 2πw2|w| exp

(
w2V ′′(a)

2

)
N
(
−|w|

√
V ′′(a)

)
,

ϖ(w, a) :=
ϖ1(w, a)

2π
+

1

2π
√
τ

(
(αaV

′′(a) +H ′(a))ϖ2(w, a) +
V ′′′(a)ϖ3(w, a)

6

)
.

(4.6.37)



4.6. Proof of Theorems 4.3.1 and 4.4.1 142

Consider the case a = 0. Set P (u) := iα0uV
′′(0) − iu3V ′′′(0)/6 + iuH ′(0) and note that

C(u, τ, 1/2) := 1

(−iu−q∗τ
√
τ)

− 1

(−iu−q∗τ
√
τ+

√
τ)
. Using Lemma 4.6.17 and the definition of F

in (4.6.6):

F (τ, V ′(0), 1/2) =
1

2π

∫
R
e−V

′′(0)u2/2C(u, τ)(1 + P (u)τ−1/2 +O(τ−1))du. (4.6.38)

We cannot now simply Taylor expand C(u, τ, 1/2) for small τ and integrate term by term since

in the limit C(u, τ, 1/2) is not L1. This was the reason for introducing the time dependent

term q∗τ (V
′(0)) so that the Fourier transform exists for any τ > 0. Indeed, we easily see that

C(u, τ, 1/2) = −i/u + O(τ−1/2). We therefore integrate these terms directly and then com-

pute the asymptotics as τ tends to infinity. Note first that since |C(u, τ, 1/2)| = O(1), then

C(u, τ, 1/2)(1+P (u)τ−1/2+O(τ−1)) = C(u, τ, 1/2)(1+P (u)τ−1/2)+O(τ−1). Further for any w ̸=

0,
∫
R e−V

′′(0)u2/2 1
−iu−wdu = ϖ1(w, 0),

∫
R e−V

′′(0)u2/2 iu
−iu−wdu = ϖ2(w, 0) and

∫
R e−V

′′(0)u2/2 iu3

−iu−wdu =

ϖ3(w, 0). These integrals can be solved by applying the same method in (4.6.34) and identify-

ing e−V
′′(0)u2/2 as a Gaussian characteristic function and un

iu/w+1 as the Fourier transform of

∂nx exp(x/w)/w for n ∈ N ∪ {0}. Now using the definition of ϖ in (4.6.37) we then obtain

F (τ, V ′(0), 1/2) = ϖ
(
q∗τ
√
τ , 0
)
−ϖ

(
(q∗τ − 1)

√
τ , 0
)
+O

(
τ−1

)
.

Using Lemma 4.6.17 and asymptotics of the cumulative normal distribution function we compute:

ϖ
(
q∗τ
√
τ , 0
)
= ϖ

(
α0τ

−1/2 +O
(
τ−3/2

)
, 0
)
= − sgn(α0)

2
− 6H ′(0)V ′′(0)− V ′′′(0)

6
√
2π(V ′′(0))3/2

√
τ

+O
(
τ−1

)
,

ϖ((q∗τ − 1)
√
τ , 0) = ϖ

(
−
√
τ + α0τ

−1/2 +O
(
τ−3/2

)
, 0
)
=

1√
2πV ′′(0)τ

+O
(
τ−1

)
.

The case a = 1 is analogous usingϖ(·, 1) and the lemma follows after using the Lebesgue dominated

convergence theorem (analogously to Lemma 3.6.9 and Lemma 3.6.10) .

Remark 4.6.19. Consider R3b and R4 with k = V ′(1) in Section 4.6.4. Here also q∗τ (k) tends to

1 and it is natural to wonder why we did not encounter the same issues with the limiting Fourier

transform as we did in the present section. The reason this was not a concern was that the speed of

convergence (τ−1/2) of q∗τ to 1 was the same as that of the random variable Zτ,k,1/2 to its limiting

value. Intuitively the lack of steepness of the limiting cgf was more important than any issues

with the limiting Fourier transform. In the present section steepness is not a concern, but again

in the limit the Fourier transform is not defined. This becomes the dominant effect since q∗τ (k)

converges to 1 at a rate of τ−1 while the re-scaled random variable Zτ,k,1/2 converges to its limit

at the rate τ−1/2.

4.6.6 Forward smile asymptotics: Proof of Theorem 4.4.1

The general machinery to translate option price asymptotics into implied volatility asymptotics

has been fully developed by Gao and Lee [69]. We simply outline the main steps here. There
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are two main steps to determine forward smile asymptotics: (i) choose the correct root for the

zeroth-order term in order to line up the domains (and hence functional forms) in Theorem 4.3.1

and Corollary 4.3.3; (ii) match the asymptotics.

We illustrate this with a few cases from Theorem 4.4.1. Consider R3b and R4 with k > V ′(1).

We have asymptotics for forward-start call option prices for k > V ′(1) in Theorem 4.3.1 that

decay to one as τ tends to infinity. The only BSM regime in Corollary 4.3.3 where this holds

(asymptotics decay to one) is where k ∈ (−Σ2/2,Σ2/2). We now substitute our asymptotics for Σ

and at leading order we have the requirement: k > V ′(1) implies that k ∈ (−N0(k)/2,N0(k)/2).

We then need to check that this holds only for the correct root N0 used in the theorem. Note

that we only use the leading order condition here since if k ∈ (−N0(k)/2,N0(k)/2) then there

will always exist a τ1 > 0 such that k ∈ (−N0(k)/2 + o(1),N0(k)/2 + o(1)), for τ > τ1. Suppose

now that we choose the root not as given in Theorem 4.4.1. Then for the upper bound we get

the condition kV (1) > 0. Since V (1) < 0 we require V ′(1) < 0 and then this only holds for

V ′(1) < k < 0. This already contradicts k > V ′(1) but let us continue since it may be true

for a more limited range of k. The lower bound gives the condition (k − V (1))k > 0. But

the upper bound implied that we needed V ′(1) < k < 0 and so further k < V ′(1). Therefore

V ′(1) < k < V (1) but this can never hold since simple computations show that V ′(1) > V (1).

Now let’s choose the root according to the theorem. For the upper bound we get the condition

−
√
(V ∗ − k)2 + k(V ∗(k)− k) < V ∗(k) − k = −V (1) > 0 and this is always true. For the lower

bound we get the condition −
√
(V ∗ − k)2 + k(V ∗(k)− k) < V ∗(k) = k − V (1) and this is always

true for k > V ′(1) since V ′(1) > V (1). This shows that we have chosen the correct root for the

zeroth-order term and we then simply match asymptotics for higher order terms.

As a second example consider R2 and k > V ′(u∗+) in Theorem 4.4.1. Substituting the ansatz

σ2
t,τ (kτ) = N∞

0 (k) + N∞
1,+(k, t)τ

−1/2 + N∞
2,+(k, t)τ

−1 + O(τ−3/2) into the BSM asymptotics for

forward-start call options in Corollary 4.3.3, we find

E
(
eX

(t)
τ − ekτ

)+
= exp

(
−α∞

0 τ + α∞
1

√
τ + α∞

2

) 4N
3/2
0√

2πτ (4k2 −N2
0)

(
1 +O

(
τ−1/2

))
,

where α∞
0 := k2

2N0
− k

2 + N0

8 , and α∞
1 := N1

4k2−N2
0

8N2
0

and α∞
2 is a constant, the exact value does

not matter here. We now equate orders with Theorem 4.3.1. At the zeroth order we get two

solutions and since V ′(u∗+) > V (1), we choose the negative root such that the domains match in

Corollary 4.3.3 and Theorem 4.3.1 for large τ (using similar arguments as above). At the first order

we solve for N∞
1 . But now at the second order, we can only solve for higher order terms if µ = 1/2

due to the term τµ/2−3/4 = τ−1/2 in the forward-start option asymptotics in Theorem 4.3.1. All

other cases follow analogously.



Chapter 5

Black-Scholes in a CEV random

environment: a new approach to

smile modelling

5.1 Introduction

We propose a simple model with continuous paths for stock prices that allows for small-maturity

explosion of the spot implied volatility smile. It is indeed a well-documented fact on Equity markets

(see for instance [71, Chapter 5]) that standard (Itô) stochastic volatility models with continuous

paths are not able to capture the observed steepness of the left wing of the smile when the maturity

becomes small. To remedy this, several authors have suggested the addition of jumps, either in

the form of an independent Lévy process or within the more general framework of affine diffusions.

Jumps (in the stock price dynamics) imply an explosive behaviour for the small-maturity smile and

are better able to capture the observed steepness of the small-maturity spot implied volatility smile.

In particular, Tankov [145] showed that, for exponential Lévy models with Lévy measure supported

on the whole real line, the squared implied volatility smile explodes as σ2
τ (k) ∼ −k2/(2τ log τ), as

the maturity τ tends to zero, where k represents the log-moneyness.

Gatheral, Jaisson and Rosenbaum [74] have recently been revisiting stochastic volatility models,

where the instantaneous variance process is driven by a fractional Brownian motion. They suggest

that the Hurst exponent should not be used as an indicator of the historical memory of the

volatility, but rather as an additional parameter to be calibrated to the volatility surface. Their

study reveals that H ∈ (0, 1/2) (in fact H ≈ 0.1 in their calibration results), indicating short

memory of the volatility, thereby contradicting decades of time series analyses. By considering a

specific fractional uncorrelated volatility model, directly inspired by the fractional version of the

144
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Heston model [42, 87], Guennoun, Jacquier and Roome [78] provide a theoretical justification of

this result. They show in particular that, when H ∈ (0, 1/2), the implied volatility explodes as

σ2
τ (k) ∼ y0τ

H−1/2/Γ(H + 3/2) as τ tends to zero (where y0 is the initial instantaneous variance).

In this chapter we propose an alternative framework: we suppose that the stock price follows

a standard Black-Scholes model; however the instantaneous variance, instead of being constant, is

sampled from a continuous distribution. We first derive some general properties, interesting from

a financial modelling point of view, and devote a particular attention to a particular case of it,

where the variance is generated from independent CEV dynamics: Assume that interest rates and

dividends are null, and let S denote the stock price process starting at S0 = 1, the solution to

the stochastic differential equation dSτ = Sτ
√
VdWτ , for τ ≥ 0, where W is a standard Brownian

motion. Here, V is a random variable, which we assume to be distributed as V ∼ Yt, for some t > 0,

where Y is the unique strong solution of the CEV dynamics dYu = ξY pu dBu, Y0 > 0 where p ∈ R,

ξ > 0 and B is an independent Brownian motion (see Section 5.2.1 for precise statements). The

main result of this chapter (Theorem 5.2.3) is that the implied volatility generated from this model

exhibits the following behaviour as the maturity τ tends to zero:

σ2
τ (k) ∼



2(1− p)

3− 2p

(
k2ξ2(1− p)t

2τ

)1/(3−2p)

, if p < 1,

k2ξ2t

τ(log τ)2
, if p = 1,

k2

2(2p− 1)τ | log τ |
, if p > 1,

(5.1.1)

for all k ̸= 0. Sampling the initial variance from the CEV process at time t induces different time

scales for small-maturity spot smiles, thereby providing flexibility to match steep small-maturity

smiles. For p > 1, the explosion rate is the same as exponential Lévy models, and the case p ≤ 1/2

mimics the explosion rate of fractional stochastic volatility models. The CEV exponent p therefore

allows the user to modulate the short-maturity steepness of the smile.

We are not claiming here that this model should come as a replacement of fractional stochastic

volatility models or exponential Lévy models, notably because its dynamic structure looks too

simple at first sight. However, we believe it can act as an efficient building block for more involved

models, in particular for stochastic volatility models with initial random distribution for the in-

stantaneous variance. While we leave these extensions for future research, we shall highlight how

our model comes naturally into play when pricing forward-start options in stochastic volatility

models. In Chapter 3 we proved that the small-maturity forward implied volatility smile explodes

in the Heston model when the remaining maturity (after the forward-start date) becomes small.

This explosion rate corresponds precisely to the case p = 1/2 in (5.1.1). This in particular shows

that the key quantity determining the explosion rate is the (right tail of the) variance distribution

at the forward-start date (here corresponding to t).

The chapter is structured as follows: in Sections 5.2.1 and 5.2.2 we introduce our model and
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relate it to other existing approaches. In Section 5.2.3 we use the cumulant generating function to

derive extreme strike asymptotics (for some special cases) and show why this approach is not read-

ily applicable for small and large-maturity asymptotics. Sections 5.2.4 and 5.2.5 detail the main

results, namely the small and large-maturity asymptotics of option prices and the corresponding

implied volatility. Section 5.2.6 provides numerics and Section 5.2.7 describes the relationship

between our model and the pricing of forward-start options in stochastic volatility models. Sec-

tion 5.2.7 also includes a conjecture on the small-maturity forward smile in stochastic volatility

models. Finally, the proofs of the main results are gathered in Section 5.3.

5.2 Model and main results

5.2.1 Model description

We consider a filtered probability space (Ω,F , (Fs)s≥0,P) supporting a standard Brownian motion,

and let (Zs)s≥0 denote the solution to the following stochastic differential equation:

dZs = −1

2
Vds+

√
VdWs, Z0 = 0, (5.2.1)

where V is some random variable, independent of the Brownian motion W and σ (V) ⊆ F0. The

process (Zs)s≥0, in finance, clearly corresponds to the logarithm of the underlying stock price.

This is of course a simple example of stochastic differential equations with random coefficients,

existence and uniqueness of which were studied by Kohatsu-Higa, León and Nualart [110], see also

Alòs, León and Nualart [2]. In the case where V is a discrete random variable, this model reduces

to the mixture of distributions, analysed, in the Gaussian case by Brigo and Mercurio [32, 33]. In

a stochastic volatility model where the instantaneous variance process (Vt)t≥0 is uncorrelated with

the asset price process, the mixing result [135] implies that European options with maturity τ are

the same as those evaluated from the SDE (5.2.1) with V = τ−1
∫ τ
0
Vsds. As τ tends to zero, the

distribution of V approaches a Dirac Delta centred at the initial variance V0. Asymptotics of the

implied volatility are well-known and weaknesses of classical stochastic volatility models are well-

documented [71]. Although such models fit into our framework, we will not consider them further

in this paper. Define pathwise the process M by Ms := −1
2s +Ws and let (Ts)s≥0 be given by

Ts := sV. Then T is an independent increasing time-change process and Z =MT . In this way our

model can be thought of as a random time change. Let now N be a Lévy process such that (eNs)s≥0

is a (Fs)s≥0-adapted martingale; define V := τ−1
∫ τ
0
Vsds where V is a positive and independent

process, then (eNTs )s≥0 is a classical time-changed exponential Lévy process, and pricing vanilla

options is now standard [44, Section 15.5]. However, note that here, as the maturity τ tends to

zero, V converges in distribution to a Dirac Delta, in which case asymptotics are well-known [145].

The model (5.2.1) is also related to the Uncertain Volatility Model of Avellaneda and Parás [6]
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(see also [50, 96, 121]), in which the Black-Scholes volatility is allowed to evolve randomly within

two bounds. In this UVM framework, sub-and super-hedging strategies (corresponding to best and

worst case scenarios) are usually derived via the Black-Scholes-Barenblatt equation, and Fouque

and Ren [67] recently provided approximation results when the two bounds become close to each

other. One can also, at least formally, look at (5.2.1) from the perspective of fractional stochastic

volatility models, first proposed by Comte et al. in [43], and later developed and revived in [42,

74, 78]. In these models, standard stochastic volatility models are generalised by replacing the

Brownian motion driving the instantaneous volatility by a fractional Brownian motion. This

preserves the martingale property of the stock price process, and allows, in the case of short memory

(Hurst parameter H between 0 and 1/2) for short-maturity steep skew of the implied volatility

smile. However, the Mandelbrot-van Ness representation [123] of the fractional Brownian motion

reads

WH
t :=

∫ t

0

dWs

(t− s)γ
+

∫ 0

−∞

(
1

(t− s)γ
− 1

(−s)γ

)
dWs,

for all t ≥ 0, where γ := 1/2 − H. This representation in particular indicates that, at time

zero, the instantaneous variance, being driven by a fractional Brownian motion, incorporates some

randomness (through the second integral). Finally, we agree that, at first sight, randomising the

variance may sound unconventional. As mentioned in the introduction, we see this model as a

building block for more involved models, in particular stochastic volatility with random initial

variance, the full study of which is the purpose of ongoing research. After all, market data only

provides us with an initial value of the stock price, and the initial level of the variance is unknown,

usually let as a parameter to calibrate. In this sense, it becomes fairly natural to leave the latter

random.

The framework constituted by the stochastic differential equation (5.2.1) is a simple case of a

diffusion in random environment. We refer the interested reader to the seminal paper by Papanico-

laou and Varadhan [133], the monographs by Komorowski et al. [111], by Sznitman [143], and the

lectures notes by Bolthausen and Sznitman [26] and by Zeitouni [148]. We recall here briefly this

framework, and link it to our framework. The classical set-up (say in Rd) is that of a given proba-

bility space (Ω̃,A,Q) describing the random environment and a group of transformations (τx)x∈Rd ,

jointly measurable in x ∈ Rd and ω ∈ Ω̃ (the transformation essentially indicates a translation of

the environment in the x-direction). Consider now two functions b, a : Ω̃ → Rd and define

b(x, ω) := b(τx(ω)) and a(x, ω) := a(τx(ω)), for all x ∈ Rd, ω ∈ Ω̃.

For each x ∈ Rd and ω ∈ Ω̃, we let Qx,ω denote the unique solution to the martingale problem

starting at x and associated to the differential operator Lω := 1
2a(·, ω)∆+b(·, ω)∇. The probability

law Qx,ω is called the quenched law, and one can define the solution to the corresponding stochastic

differential equation Qx,ω-almost surely. The annealed law is the semi-product Qx := Q×Qx,ω, and
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corresponds to averaging over the random environment. Most of the results in the literature, using

the method of the environment viewed from the particle, however, impose Lipschitz continuity

on the drift b() and the diffusion coefficient a(), and uniform ellipticity of a(). These conditions

clearly do not hold for (5.2.1), where b(·, ω) ≡ − 1
2ω and a(·, ω) ≡ ω, since ω takes values in [0,∞).

We shall leave more precise details and applications of random environment to future research. As

far as we are aware, this framework has not been applied yet in mathematical finance, the closest

being the recent publication by Spiliopoulos [140], who proves quenched (almost sure with respect

to the environment) large deviations for a multi-scale diffusion (in a certain regime), assuming

stationarity and ergodicity of the random environment.

5.2.1.1 Cumulant generating function

In [62, 63, 95], the authors used the theory of large deviations, and in particular the Gärtner-Ellis

theorem (Theorem 1.2.3), to prove small-and large-maturity behaviours of the implied volatility in

the Heston model and more generally (in [95]) for affine stochastic volatility models. This approach

relies solely on the knowledge of the cumulant generating function of the underlying stock price, and

its rescaled limiting behaviour. For any τ ≥ 0, let ΛZ(u, τ) := logE(euZτ ) denote the cumulant

generating function of Zτ , defined on the effective domain DZ
τ := {u ∈ R : |ΛZ(u, τ)| < ∞};

similarly denote ΛV(u) ≡ logE(euV), whenever it is well defined. A direct application of the tower

property for expectations yields

ΛZ(u, τ) = ΛV
(
u(u− 1)τ

2

)
, for all u ∈ DZ

τ . (5.2.2)

Unfortunately, the cumulant generating function of V is not available in closed-form in general. In

Section 5.2.3 below, we shall see some examples where such a closed-form solution is available, and

where direct computations are therefore possible. We note in passing that this simple representation

allows, at least in principle, for straightforward (numerical) computations of the slopes of the wings

of the implied volatility using Roger Lee’s Moment Formula [116] (see also Section 5.2.3.2). The

latter are indeed given directly by the boundaries (in R) of the effective domain of ΛV . Note

further that the model (5.2.1) could be seen as a time-changed Brownian motion (with drift); the

representation (5.2.2) clearly rules out the case where Z is a simple exponential Lévy process (in

which case ΛZ(u, τ) would be linear in τ). In view of Roger Lee’s formula, this also implies that,

contrary to the Lévy case, the slopes of the implied volatility wings are not constant in time in our

model.

5.2.2 CEV randomisation

As mentioned above, this paper is a first step towards the introduction of ‘random environment’

into the realm of mathematical finance, and we believe that, seeing it ‘at work’ through a specific,
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yet non-trivial, example, will speak for its potential prowess. We assume from now on that V

corresponds to the distribution of the random variable generated, at some time t, by the solution

to the CEV stochastic differential equation dYu = ξY pu dBu, Y0 = y0 > 0 where p ∈ R, ξ > 0 and B

is a standard Brownian motion, independent ofW . The CEV process [30, 103] is the unique strong

solution to this stochastic differential equation, up to the stopping time τY0 := infu>0{Yu = 0}.

The behaviour of the process after τY0 depends on the value of p, and shall be discussed below. We

let Γ(n;x) := Γ(n)−1
∫ x
0
tn−1e−tdt denote the normalised lower incomplete Gamma function, and

mt := P(Yt = 0) = P(V = 0) represent the mass at the origin. Straightforward computations show

that, whenever the origin is an absorbing boundary, the density ζp(y) ≡ P(Yt ∈ dy)/dy is norm

decreasing and (η defined in (5.2.4))

mt = 1− Γ

(
−η; y

2(1−p)
0

2ξ2(1− p)2t

)
> 0; (5.2.3)

otherwise mt = 0 and the density ζp is norm preserving. When p ∈ [1/2, 1), the origin is naturally

absorbing. When p ≥ 1, the process Y never hits zero P-almost surely. Finally, when p < 1/2, the

origin is an attainable boundary, and can be chosen to be either absorbing or reflecting. Absorption

is compulsory if Y is required to be a martingale [94, Chapter III, Lemma 3.6]. Here it is only

used as a building block for the instantaneous variance, and such a requirement is therefore not

needed, so that both cases (absorption and reflection) will be treated. Define the constants

η :=
1

2(p− 1)
, ϑ := log(y0)−

ξ2t

2
, (5.2.4)

and the function φη by

φη(y) :=
y
1/2
0 y1/2−2p

|1− p|ξ2t
exp

(
−y

2(1−p) + y
2(1−p)
0

2ξ2t(1− p)2

)
Iη

(
(y0y)

1−p

(1− p)2ξ2t

)
,

where Iη is the modified Bessel function of the first kind of order η [1, Section 9.6]. The CEV

density, ζp(y) := P(Yt ∈ dy)/dy, reads

ζp(y) =


φ−η(y), if p ∈ [1/2, 1) or p < 1

2 with absorption,

φη(y), if p > 1 or p < 1
2 with reflection,

1

yξ
√
2πt

exp

(
− (log(y)− ϑ)2

2ξ2t

)
, if p = 1,

(5.2.5)

valid for y ∈ (0,∞). When p ≥ 1, the density ζp converges to zero around the origin, implying

that paths are being pushed away from the origin. On the other hand ζp diverges to infinity at the

origin when p < 1/2, so that the paths have a propensity towards the vicinity of the origin.

5.2.3 The cumulant generating function approach

In the literature on implied volatility asymptotics, the cumulant generating function of the stock

price has proved to be an extremely useful tool to obtain sharp estimates. This is obviously
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the case for the wings of the smile (small and large strikes) via Roger Lee’s formula, mentioned

in Section 5.2.1.1, but also to describe short-and large-maturity asymptotics, as developed for

instance in [95] or in Chapters 2, 3 and 4, via the use of (a refined version of) the Gärtner-Ellis

theorem (Theorem 1.2.3). As shown in Section 5.2.1.1, the cumulant generating function of a stock

price satisfying (5.2.1) is fully determined by that of the random variable V. However, even though

the density of the latter is known in closed-form (see Equation (5.2.5)), the cumulant generating

function is not so for general values of p. In the cases p = 0 (with either reflecting or absorbing

boundary) and p = 1/2, a closed-form expression is available and direct computations are possible.

5.2.3.1 Computation of the cumulant generating function

Let us denote by ΛV
0,r, Λ

V
0,a and ΛV

1/2 the cumulant generating function (cgf) of the random vari-

able V when p = 0 (the subscript ‘r’ and ‘a’ denote the behaviour at the origin) and p = 1/2.

Straightforward computations yield

ΛV
0,a(u) = log

(
mt +

1

2
exp

(
(uξ2t− 2y0)u

2

){
e2uy0E

(
uξ2t+ y0

ξ
√
2t

)
+ e2uy0 − 1

−E
(
uξ2t− y0

ξ
√
2t

)})
,

ΛV
0,r(u) = log

(
1

2
exp

(
(uξ2t− 2y0)u

2

){
e2uy0E

(
uξ2t+ y0

ξ
√
2t

)
+ e2uy0 + 1

+E
(
uξ2t− y0

ξ
√
2t

)})
,

ΛV
1/2(u) =

2y0u

2− uξ2t
,

(5.2.6)

where E(z) ≡ 2√
π

∫ z
0
exp(−x2)dx is the error function. Note that when p = 1/2 and p = 0 in the

absorption case, one needs to take into account the mass at zero in (5.2.3) when computing these

expectations.

5.2.3.2 Roger Lee’s wing formula

In [116], Roger Lee provided a precise link between the slope of the total implied variance in the

wings and the boundaries of the domain of the cumulant generating function of the stock price.

More precisely, for any τ ≥ 0, let u+(τ) and u−(τ) be defined as

u+(τ) := sup{u ≥ 1 : |ΛZ(u, τ)| <∞} and u−(τ) := sup{u ≥ 0 : |ΛZ(−u, τ)| <∞}.

The implied volatility στ (k) then satisfies

lim sup
k↑∞

στ (k)
2τ

k
= ψ(u+(τ)− 1) =: β+(τ) and lim sup

k↓−∞

στ (k)
2τ

|k|
= ψ(u−(τ))) =: β−(τ),

where the function ψ is defined by ψ(u) = 2− 4
(√

u(u+ 1)− u
)
. Combining (5.2.6) and (5.2.2)

yields a closed-form expression for the cumulant generating function of the stock price when p ∈

{0, 1/2}. It is clear that, when p = 0, u±(τ) = ±∞ for any τ ≥ 0, and hence the slopes of the left
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and right wings are equal to zero (the total variance flattens for small and large strikes). In the

case where p = 1/2, explosion will occur as soon as
(
1
2u(u− 1)τξ2t− 2

)
= 0, so that

u±(τ) =
1

2
± 1

2

√
1 +

16

ξ2tτ
, and β−(τ) = β+(τ) =

2

ξ
√
tτ

(√
ξ2tτ + 16− 4

)
, for all τ > 0.

The left and right slopes are the same, but the product ξ2t can be directly calibrated on the

observed wings. Note that β±(τ) is concave and increasing from 0 to 2 as the product ξ2t ranges

from zero to infinity. As τ tends to infinity, β±(τ) converges to 2, so that the implied volatility

smile does not ‘flatten out’, as is usually the case for Itô diffusions or affine stochastic volatility

models (see for instance [95]). In Section 5.2.5 below, we make this more precise by investigating

the large-time behaviour of the implied volatility using the density of the CEV-distributed variance.

5.2.3.3 Small-time asymptotics

In order to study the small-maturity behaviour of the implied volatility, one could, whenever

the moment generating function of the stock price is available in closed form (e.g. in the case

p ∈ {0, 1/2}), apply the methodology developed in [62]. The latter is based on the Gärtner-Ellis

theorem, which, essentially, consists of finding a smooth convex pointwise limit (as τ tends to zero)

of some rescaled version of the cumulant generating function. In the case where p = 1/2, it is easy

to show that

lim
τ↓0

τ1/2 log ΛZ
(
u√
τ
, τ

)
=

 0, if u ∈
(
− 2

ξ
√
t
,

2

ξ
√
t

)
,

+∞, otherwise.

(5.2.7)

The nature of this limiting behaviour falls outside the scope of the Gärtner-Ellis theorem, which

requires strict convexity of the limiting rescaled cumulant generating function. It is easy to see

that any other rescaling would yield even more degenerate behaviour. One could adapt the proof

of the Gärtner-Ellis theorem, as was done in Chapter 3 for the small-maturity behaviour of the

forward implied volatility smile in the Heston model (see also [47] and references therein for more

examples of this kind). In the case (5.2.7), we are exactly as in the framework of Chapter 3, in

which the small-maturity smile (squared) indeed explodes as τ−1/2, precisely the same explosion

as the one in (5.1.1). Unfortunately, as we mentioned above, the cumulant generating function of

the stock price is not available in general, and this approach is hence not amenable here.

5.2.3.4 Large-time asymptotics

The analysis above, based on the cumulant generating function of the stock price, can be carried

over to study the large-time behaviour of the implied volatility. In the case p = 1/2, compu-

tations are fully explicit, and the following pointwise limit follows from simple straightforward

manipulations:

lim
τ↑∞

τ−1ΛZ(u, τ) =

 0, if u ∈ [0, 1],

+∞, otherwise.
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The nature of this asymptotic behaviour, again, falls outside the scope of standard large deviations

analysis, and tedious work, in the spirit of Chapter 3, would be needed to pursue this route.

5.2.4 Small-time behaviour of option prices and implied volatility

For any k ∈ R∗, T > 0, and p > 1, the quantity (BS defined in (1.0.2))

Jp(k) :=


∫ ∞

0

BS
(
k,
y

T
, T
)
y−pdy, if k > 0,∫ ∞

0

(
ek − 1 + BS

(
k,
y

T
, T
))

y−pdy, if k < 0,
(5.2.8)

is clearly independent of T and is well defined. Indeed, consider the case k > 0. Since the stock

price is a martingale starting at one, Call options are always bounded above by one, and hence

Jp(k) ≤
∫ 1

0
BS(k, y/T, T )y−pdy+

∫∞
1
y−pdy. The second integral is finite since p > 1. When k > 0,

the asymptotic behaviour

BS
(
k,
y

T
, T
)
∼ exp

(
−k

2

2y
+
k

2

)
y3/2

k2
√
2π

holds as y tends to zero, so that limy↓0 BS(k, y/T, T )y
−p = 0, and hence the integral is finite. A

similar analysis holds when k < 0 (using put-call symmetry). Define now the following constants:

βp :=
1

3− 2p
, yp :=

(
k2ξ2t(1− p)

2

)βp

, y∗ :=
k2ξ2t

2
, (5.2.9)

the first two only when p < 1, and note that βp ∈ (0, 1); define further the following functions from

R∗
+ to R: 

f0(y) :=
k2

2y
+

y2(1−p)

2ξ2t(1− p)2
, f1(y) :=

(yy0)
(1−p)

ξ2t(1− p)2
,

g0(y) :=
k2

2y
+

log(y)

ξ2t
, g1(y) :=

log(y)

ξ2t
,

(5.2.10)
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as well as the following ones, parameterised by p:

p < 1 p = 1 p > 1

c1(t, p) f0(yp) 1/(2ξ2t) 0

c2(t, p) f1(yp) 1/(2ξ2t) 0

c3(t, p)
6− 5p

6− 4p
g0(y

∗)− ϑ

ξ2t
2p− 1

c4(t, p) 0 g1(y
∗)− ϑ

ξ2t
− 2 0

c5(t, p)
y

p
2
0 y

3
2 (1−p)
p e

k
2−

y
2(1−p)
0

2ξ2t(1−p)2
+

f′
1(yp)2

2f′′
0 (yp)

k2ξ
√
2πf ′′0 (yp)t

exp
(
k
2 − ϑ2

2ξ2t +
ϑ log(y∗)
ξ2t

)
4
√
π|k|−1ξ−3t−3/2

2(p− 1)e
− y

2(p−1)
0

2ξ2t(1−p)2 J2p(k)

(2(1− p)2ξ2t)η+1Γ(η + 1)

h1(τ, p) τβp−1 (log(τ) + log | log(τ)|)2 0

h2(τ, p) τ (βp−1)/2 (log | log(τ)|)2

| log(τ)|
0

R(τ, p) O
(
τ (1−βp)/2

)
O
(

1

| log(τ)|

)
O(τp−1)

Table 5.1: List of constants and functions

The following theorem (proved in Section 5.3.1) is the central result of this chapter (although

its equivalent below, in terms of implied volatility, is more informative for practical purposes):

Theorem 5.2.1. The following expansion holds for all k ∈ R∗ as τ tends to zero:

E
(
eZτ − ek

)+
= (1−ek)++e−c1(t,p)h1(τ,p)+c2(t,p)h2(τ,p)τ c3(t,p)| log(τ)|c4(t,p)c5(t, p) [1 +R(τ, p)] .

Remark 5.2.2.

(i) Whenever p ≤ 1, c1 and c2 are strictly positive; the function c5 is always strictly positive;

when p < 1, c3 is strictly positive; when p = 1, the functions c3 and c4 can take positive and

negative values;

(ii) Whenever p ≤ 1, h2(τ, p) ≤ h1(τ, p) for τ small enough, so that the leading order is provided

by h1;

(iii) In the lognormal case p = 1, h1(τ, 1) ∼ (log τ)2 as τ tends to zero, so that the exponential

decay of option prices is governed at leading order by exp(−c1(t, 1)(log τ)2).

Using Theorem 5.2.1 and small-maturity asymptotics for the Black-Scholes model in Lemma 3.3.4,

it is straightforward to translate option price asymptotics into asymptotics of the implied volatility:
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Theorem 5.2.3. For any k ∈ R∗, the small-maturity implied volatility smile behaves as follows:

σ2
τ (k) ∼



(1− βp)

(
k2ξ2t(1− p)

2τ

)βp

, if p < 1,

k2ξ2t

τ log(τ)2
, if p = 1,

k2

2(2p− 1)τ | log(τ)|
, if p > 1.

This theorem only presents the leading-order asymptotic behaviour of the implied volatility

as the maturity becomes small. One could in principle (following [69] or [38]) derive higher-order

terms, but these additional computations would impact the clarity of this singular behaviour. In

the at-the-money k = 0 case, the implied volatility converges to a constant:

Lemma 5.2.4. The at-the-money implied volatility στ (0) converges to E(
√
V) as τ tends to zero.

The proof of the lemma follows steps analogous to Lemma 3.4.3, and we omit the details here.

Note that, from Theorem 5.2.3, as p approaches 1 from below, the rate of explosion approaches

τ−1. When p tends to 1 from above, the explosion rate is 1/(τ | log τ |) instead. So there is a

‘discontinuity’ at p = 1 and the actual rate of explosion is less than both these limits. As an

immediate consequence of Theorem 5.2.1 we have the following corollary. Define the following

functions:

h∗(τ, p) :=


τ1−βp , if p < 1,∣∣log(τ)−1

∣∣ , if p > 1,

log(τ)−2, if p = 1,

and Λ∗
p(k) :=

 c1(t, p), if p ≤ 1,

2p− 1, if p > 1,

where c1(t, p) is defined in Table 5.1, and depends on k (through yp).

Corollary 5.2.5. For any p ∈ R, the sequence (Zτ )τ≥0 satisfies a large deviations principle with

speed h∗(τ, p) and rate function Λ∗
p as τ tends to zero. Furthermore, the rate function is good only

when p < 1.

Proof. The proof of Theorem 5.2.1 holds with only minor modifications for digital options, which

are equivalent to probabilities of the form P (Zτ ≤ k) or P (Zτ ≥ k). For p ∈ (−∞, 1], one can then

show that

lim
τ↓0

h∗(τ, p) logP (Zτ ≤ k) = − inf
{
Λ∗
p(x) : x ≤ k

}
.

The infimum is null whenever k > 0 and p < 1, and Λ∗
1(x) ≡ 1/(2ξ2t) is constant. Consider now

an open interval (a, b) ⊂ R. Since (a, b) = (−∞, b) \ (−∞, a], then by continuity and convexity

of Λ∗
p, we obtain

lim
τ↓0

h∗(τ, p) logP (Zτ ∈ (a, b)) = − inf
x∈(a,b)

Λ∗
p(x).

Since any Borel set of the real line can be written as a (countable) union / intersection of

open intervals, the corollary follows from the definition of the large deviations principle [48, Sec-

tion 1.2]. When p ∈ (1,∞), the only non-trivial choice of speed is |(log τ)−1|, in which case
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limτ↓0 |(log τ)−1| logP (Zτ ≤ k) = −(2p− 1). Clearly, the constant function is a rate function (the

level sets, either the empty set or the real line, being closed in R), and the corollary follows.

Remark 5.2.6. In the case p = 1/2, as discussed in Section 5.2.3.4, the cumulant generating

function of Z is available in closed-form. However, the large deviations principle does not follow

from the Gärtner-Ellis theorem, since the pointwise rescaled limit of the cgf is degenerate (in the

sense of (5.2.7)).

5.2.4.1 Small-maturity at-the-money skew and convexity

The goal of this section is to compute asymptotics for the at-the-money skew and convexity of

the smile as the maturity becomes small. These quantities are useful to traders who actually

observe them (or approximations thereof) on real data. We define the left and right derivatives

by ∂−k σ
2
τ (0) := limk↑0 ∂kσ

2
τ (k)|k=0 and ∂+k σ

2
τ (0) := limk↓0 ∂kσ

2
τ (k)|k=0, and similarly ∂−kkσ

2
τ (0) :=

limk↑0 ∂kkσ
2
τ (k)|k=0 and ∂+kkσ

2
τ (0) := limk↓0 ∂kkσ

2
τ (k)|k=0. The following lemma describes this

short-maturity behaviour in the general case where V is any random variable supported on [0,∞).

Lemma 5.2.7. Consider (5.2.1) and assume that E(Vn/2) <∞ for n = −1, 1, 3, and mt := P(V =

0) < 1. As τ tends to zero,

∂−k σ
2
τ (0) ∼ −E(

√
V)

48

(
E(V3/2)− E(

√
V)3
)
τ −mt

E(
√
V)

√
π√

2τ
,

∂+k σ
2
τ (0) ∼ −E(

√
V)

48

(
E(V3/2)− E(

√
V)3
)
τ +mt

E(
√
V)

√
π√

2τ
,

∂−kkσ
2
τ (0) ∼ ∂+kkσ

2
τ (0) ∼

E(
√
V)

τ

(
E
(
V−1/2

)
− E(

√
V)−1

(
1− m2

t

√
π

8

))
.

Jensen’s inequality and the fact that the support of V is in R+ imply that both E(V3/2)−E(
√
V)3

and E
(
V−1/2

)
− E(

√
V)−1 are strictly positive. The small-maturity at-the-money skew is always

negative for small mt. Note that this in particular means that the smile generated by (5.2.1) is not

necessarily symmetric. When mt > 0, the at-the-money left skew explodes to −∞ and the at-the-

money right skew explodes to +∞. Furthermore, the small-maturity at-the-money convexity tends

to infinity. In the CEV case, however, the moments are not available in closed-form in general.

Proof. We first focus on the at-the-money skew. By definition C(k, τ) = BS(k, σ2
τ (k), τ) and

therefore

∂kC(k, τ) = ∂kBS(k, σ
2
τ (k), τ) + ∂kσ

2
τ (k)∂wBS(k, σ

2
τ (k), τ),

where ∂wBS is the partial derivative with respect to the second argument. Also by (5.3.1), an

immediate application of Leibniz’s integral rule yields

∂kC(k, τ) =

∫ ∞

0

∂kBS(k, y, τ)ζp(y)dy +mt∂k
(
1− ek

)+
, (5.2.11)
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We first assume that mt = 0. The at-the-money skew is then given by

∂kσ
2
τ (k)|k=0 =

(
∂wBS(k, σ

2
τ (k), τ)|k=0

)−1
(∫ ∞

0

∂kBS(k, y, τ)|k=0ζp(y)dy − ∂kBS(k, σ
2
τ (k), τ)|k=0

)
.

Recall now from Lemma 5.2.4 that στ (0) = E(
√
V) + o(1). Straightforward computations then

yield 

∂kBS(k, σ
2
τ (k), τ)|k=0 = −N

(
στ (0)

√
τ

2

)
= −1

2
+
στ (0)

√
τ

2
√
2π

− σ3
τ (0)τ

3/2

48
√
2π

+O
(
σ5
τ (0)τ

5/2
)
,

∂kBS(k, y, τ)|k=0 = −N
(√

y
√
τ

2

)
= −1

2
+

√
y
√
τ

2
√
2π

− y3/2τ3/2

48
√
2π

+O
(
τ5/2

)
,

∂wBS(k, σ
2
τ (k), τ)|k=0 =

√
τ

στ (0)
√
2π

exp

(
−σ

2
τ (0)τ

8

)
.

(5.2.12)

as τ tends to zero. Hence

∂kσ
2
τ (k)|k=0 = exp

(
σ2
τ (0)τ

8

)
στ (0)

2

(
E(

√
V)− στ (0)−

(E(V3/2)− στ (0)
3)τ

24
+O

(
στ (0)

3τ5
))

,

and so, as τ tends to zero,

∂kσ
2
τ (k)|k=0 ∼ −E(

√
V)

48

(
E(V3/2)− E(

√
V)3
)
τ, (5.2.13)

The small-maturity convexity follows similar arguments, which we only outline:

∂kkC(k, τ) = ∂kkBS(k, σ
2
τ (k), τ) + 2∂kσ

2
τ (k)∂wkBS(k, σ

2
τ (k), τ) (5.2.14)

+
(
∂kσ

2
τ (k)

)2
∂wwBS(k, σ

2
τ (k), τ) + ∂kkσ

2
τ (k)∂wBS(k, σ

2
τ (k), τ),

and

∂kkC(k, τ) =

∫ ∞

0

∂kkBS(k, y, τ)ζp(y)dy +mt∂kk
(
1− ek

)+
. (5.2.15)

Likewise, we first consider the case mt = 0. Straightforward computations yield

∂kkBS(k, σ
2
τ (k), τ)|k=0 =

exp
(
−σ2

τ (0)τ
8

)
στ (0)

√
τ
√
2π

−N
(
στ (0)

√
τ

2

)
=

1√
2πστ (0)

√
τ
− 1

2
+O

(
στ (0)

√
τ
)
,

∂kwBS(k, σ
2
τ (k), τ)|k=0 = exp

(
−σ

2
τ (0)τ

8

) √
τ

4στ (0)
√
2π
,

∂wwBS(k, σ
2
τ (k), τ)|k=0 = −τ

2e−
τσ2

τ (0)

8 (τσ2
τ (0) + 4)

16
√
2π(τσ2

τ (0))
3/2

= −
√
τ

4
√
2πσ3

τ (0)
+

3τ5/2στ (0)

512
√
2π

+O
(
τ3/2

στ (0)

)
.

(5.2.16)

Using (5.2.14) and (5.2.15) in conjunction with (5.2.12),(5.2.16) and (5.2.13), we obtain ∂kkσ
2
τ (0) ∼

1
τ E(

√
V)
(
E
(
V−1/2

)
− E(

√
V)−1

)
. When mt > 0, we need to take right and left derivatives

in (5.2.11) and (5.2.15) to account for the atomic term. Since ∂−k
(
1− ek

)+ |k=0 = ∂−kk
(
1− ek

)+ |k=0 =

−1 and ∂+k
(
1− ek

)+ |k=0 = ∂+kk
(
1− ek

)+ |k=0 = 0, the lemma follows immediately.
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5.2.5 Large-time behaviour of option prices and implied volatility

In this section we compute the large-time behaviour of option prices and implied volatility. The

proofs are given in Section 5.3.2. It turns out that asymptotics are degenerate in the sense that

option prices decay algebraically to their intrinsic values. The structure of the asymptotic depends

on the value of p and whether the origin is reflecting or absorbing:

Theorem 5.2.8. Define the following quantity:

M(η) :=
23−6p−ηΓ

(
1
2 − 2p

)
√
πΓ(1 + η)|1− p|2η+1(ξ2t)η+1

exp

(
− y

2(1−p)
0

2ξ2t(1− p)2

)
,

with η given in (5.2.4). The following expansions hold for all k ∈ R as τ tends to infinity:

(i) if p < 3/4 and the origin is absorbing then

E
(
eZτ − ek

)+
= 1−mt +mt(1− ek)+ − 8ek/2y0

(
1

2
− 2p

)
M(−η)

1 +O
(
τ−1

)
τ2−2p

;

(ii) if p < 1/4 and the origin is reflecting then

E
(
eZτ − ek

)+
= 1− ek/2M(η)

1 +O
(
τ−1

)
τ1−2p

.

For other values of p, asymptotics are more difficult to derive and we leave this for future

research. The asymptotic behaviour of option prices is fundamentally different to Black-Scholes

asymptotics (Lemma D.0.11) and it is not clear that one can deduce asymptotics for the implied

volatility. For example, the intrinsic values do not necessarily match as τ tends to infinity because

of the mass at the origin. The one exception is when the origin is reflecting, in which case the

implied volatility tends to zero. This result follows directly from the comparison of Theorem 5.2.8

and Lemma D.0.11.

Theorem 5.2.9. If p < 1/4 and the origin is reflecting, then for all k ∈ R as τ tends to infinity:

σ2
τ (k) ∼

8(1− 2p) log τ

τ
.

Although, we have provided the large-time asymptotics in this section, it is not our intention

to use this model for options with large expiries. Our intention (as mentioned in Section 5.1) is

to use these models as building blocks for more complicated models (such as stochastic volatility

models where the initial variance is sampled from a continuous distribution) so that we are able to

better match steep small-maturity observed smiles. In these types of more sophisticated models,

the large-time behaviour is governed more from the chosen stochastic volatility model rather than

the choice of distribution for the initial variance (see Chapters 2 and 4 for examples), especially

if the variance process possesses some ergodic properties. This also suggests to use this class of

models to introduce two different time scales: one to match the small-time smile (the distribution

for the initial variance) and one to match the medium to large-time smile (the chosen stochastic

volatility model).
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Figure 5.1: Here we plot K 7→ στ (logK) for maturities of 1 (circles), 1/2 (squares) and 1/12

(diamonds) for increasing values of the CEV power p. The smile is obtained by numerically

solving for the option price using (5.3.1) and then using a simple root search to solve for the

implied volatility. Parameters of the model are given in the text.

5.2.6 Numerics

We calculate option prices using the representation (5.3.1) and a global adaptive Gauss-Kronrod

quadrature scheme. We then compute the smile στ with a simple root-finding algorithm. In

Figure 5.1 we plot the smile for different maturities and values for the CEV power p. The model

parameters are y0 = 0.07, ξ = 0.2y
1/2−p
0 and t = 1/2. Note here that we set ξ to be a different

value for each p. This is done so that the models are comparable: ξ is then given in the same units

and the quadratic variation of the CEV variance dynamics are approximately matched for different

values of p. The graphs highlight the steepness of the smiles as the maturity gets smaller and the

role of p in the shape of the small-maturity smile. Out-of-the money volatilities (for K /∈ [0.9, 1.1])

explode at a quicker rate as p increases (this can be seen from Theorem 5.2.3). The volatility for

strikes close to at-the-money K ∈ [0.9, 1.1] appears to be less explosive as one increases p. This

can be explained from the strike dependence of the coefficients of the asymptotic in Theorem 5.2.3

and is discussed further in Section 5.2.7.1.
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5.2.7 Application to forward smile asymptotics

We now show how our model (5.2.1) and the asymptotics derived above for the implied volatility

can be directly translated into asymptotics of the forward implied volatility in stochastic volatility

models. Suppose now that the log stock price process X satisfies the following SDE:

dXs = −1

2
Ysds+

√
YsdWs, X0 = 0,

dYs = ξsY
p
s dBs, Y0 = y0 > 0,

d ⟨W,B⟩s = ρds,

(5.2.17)

with p ∈ R, |ρ| < 1 and (Ws)s≥0 and (Bs)s≥0 are two standard Brownian motions. Fix the

forward-start date t > 0 and set

ξu :=

 ξ, if 0 ≤ u ≤ t,

ξ̄, if u > t,
(5.2.18)

where ξ > 0 and ξ̄ ≥ 0. This includes the Heston model and 3/2 model with zero mean reversion

(p = 1/2 and p = 3/2 respectively) as well as the SABR model (p = 1). Here we impose the

condition that if the variance hits the origin, it is either absorbed or reflected (see Section 5.2.1 for

further details). Consider the CEV process for the variance: dYu = ξY pu dBu, Y0 = y0, where p ∈ R

and B is a standard Brownian motion. Let CEV(t, ξ, p) be the distribution such that Law(Yt) =

Law(V) = CEV(t, ξ, p). Then the following lemma holds (an application of Lemma 1.4.9):

Lemma 5.2.10. In the model (5.2.17) the forward price process X
(t)
· (defined in (1.0.3)) solves

the following system of SDEs:

dX
(t)
τ = −1

2
Y (t)
τ dτ +

√
Y

(t)
τ dWτ , X

(t)
0 = 0,

dY
(t)
τ = ξ̄

(
Y

(t)
τ

)p
dBτ , Y

(t)
0 ∼ CEV(t, ξ, p),

d ⟨W,B⟩τ = ρdτ,

(5.2.19)

where Y
(t)
0 is independent to the Brownian motions (Wτ )τ≥0 and (Bτ )τ≥0.

If we set ξ̄ = 0, then X
(t)
· = Z and the following corollary provides forward smile asymptotics:

Corollary 5.2.11. When ξ̄ = 0 in (5.2.18), Theorem 5.2.1, Theorem 5.2.3 and Lemma 5.2.4 hold

with Z = X
(t)
· and στ = σt,τ .

Remark 5.2.12.

(i) This result explicitly links the shape and fatness of the right tail of the variance distribution

at the forward-start date and the asymptotic form and explosion rate of the small-maturity

forward smile. Take for example p > 1: the density of the variance in the right wing is

dominated by the polynomial y−2p and the exponential dependence on y is irrelevant. So

the smaller p in this case, the fatter the right tail and hence the larger the coefficient of the
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expansion. This also explains the algebraic (not exponential) small-maturity dependence for

forward-start option prices.

(ii) The asymptotics in the p > 1 case are extreme and the algebraic dependence on τ is similar

to small-maturity exponential Lévy models. This extreme nature is related to the fatness of

the right tail of the variance distribution: for example, the 3/2 model (p = 3/2) allows for

the occurrence of extreme paths with periods of very high instantaneous volatility (see [54,

Figure 3 ]).

(iii) The asymptotics in Theorems 5.2.1 and 5.2.3 remain the same (at this order) regardless of

whether the variance process is absorbing or reflecting at zero when p ∈ (−∞, 1/2). In-

tuitively this is because absorption or reflection primarily influences the left tail whereas

small-maturity forward smile asymptotics are influenced by the shape of the right tail of the

variance distribution.

5.2.7.1 Conjecture

When p = 1/2 in Corollary 5.2.11, the asymptotics are the same as in Theorem 3.4.1 for the

Heston model. This confirms that the key quantity determining the small-maturity forward smile

explosion rate is the variance distribution at the forward-start date. The dynamics of the stock

price are actually irrelevant at this order. This leads us to the following conjecture:

Conjecture 5.2.13. The leading-order small-maturity forward smile asymptotics generated from

(5.2.17) are equivalent to those given in Corollary 5.2.11.

Practitioners have stated [10, 36] that the Heston model (p = 1/2) produces small-maturity

forward smiles that are too convex and ‘U-shaped’ and inconsistent with observations. Further-

more, it has been empirically stated [10] that SABR or lognormal based models for the variance

(p = 1) produce less convex or ‘U-shaped’ small-maturity forward smiles. Our results provide

theoretical insight into this effect. We observed in Section 5.2.6 and Figure 5.1 that the explosion

effect was more stable for strikes close to the money as one increased p. The strike dependence

of the asymptotic implied volatility in Theorem 5.2.3 is given by K 7→
√
| logK| for p = 1/2 and

K 7→ | logK| for p = 1. It is clear that the shape of the forward implied volatility is more stable

and less U-shaped in the lognormal p = 1 case.
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5.3 Proofs

5.3.1 Proof of Theorem 5.2.1

Let C(k, τ) := E(eXτ − ek)+. This function clearly depends on the parameter t, but we omit this

dependence in the notations. The tower property implies

C(k, τ) =

∫ ∞

0

BS(k, y, τ)ζp(y)dy +mt

(
1− ek

)+
, (5.3.1)

where BS is defined in (1.0.2), ζp is density of V given in (5.2.5) and mt is the mass at the

origin (5.2.3). Our goal is to understand the asymptotics of this integral as τ tends to zero. We

break the proof of Theorem 5.2.1 into three parts: in Section 5.3.1.1 we prove the case p > 1, in

Section 5.3.1.2 we prove the case p ∈ (−∞, 1) and in Section 5.3.1.3 we prove the case p = 1. We

only prove the result for k > 0, the arguments being completely analogous when k < 0. The key

insight is that one has to re-scale the variance in terms of the maturity τ before asymptotics can be

computed. The nature of the re-scaling depends critically on the CEV power p and fundamentally

different asymptotics result in each case. Note that for k > 0,
(
1− ek

)+
= 0, so that the atomic

term in (5.3.1) is irrelevant for the analysis. When k < 0, asymptotics follow directly using Put-Call

symmetry.

5.3.1.1 Case: p > 1

In Lemma 5.3.1 we prove a bound on the CEV density. This is sufficient to allow us to prove

asymptotics for option prices in Lemma 5.3.2 after rescaling the variance by τ . This rescaling is

critical because it is the only one making BS(k, y/τ, τ) independent of τ . Let

χ(τ, p) :=
τ2p

|1− p|ξ2tΓ(1 + |η|)
(
2(1− p)2ξ2t

)|η| exp
(
− y

2(1−p)
0

2ξ2t(1− p)2

)
,

and we have the following lemma:

Lemma 5.3.1. The following bounds hold for the CEV density for all y, τ > 0 when p > 1:

χ(τ, p)

y2p

{
1− 1

2ξ2t(1− p)2

(
τ

y

)2p−2
}

≤ ζp

(y
τ

)
,

χ(τ, p)

y2p

{
1 + exp

(
y2−2p
0

2(p− 1)2tξ2

)[
1

2ξ2t(1− p)2

(
τ

y

)2p−2

+
1

ξ2t(1− p)2

(
τ

yy0

)p−1
]}

≥ ζp

(y
τ

)
.

Proof. From [120] we know that for x > 0 and ν > −1/2:

1

Γ(ν + 1)

(x
2

)ν
≤ Iν(x) ≤

cosh(x)

Γ(ν + 1)

(x
2

)ν
. (5.3.2)

Also since cosh(x) < ex holds for x > 0, the expression for the CEV density in (5.2.5) implies that

for p > 1,

χ(τ, p)

y2p
exp

(
− 1

2ξ2t(1− p)2

(
τ

y

)2p−2
)

≤ ζp

(y
τ

)
≤ χ(τ, p)

y2p
em(y,τ),
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where

m(y, τ) := − 1

2ξ2t(1− p)2

(
τ

y

)2p−2

+
1

ξ2t(1− p)2

(
τ

yy0

)p−1

.

For fixed τ > 0, note that m(·, τ) : R+ 7→ R+ takes a maximum positive value at y = y0τ

with m(y0τ, τ) = y2−2p
0 /(2(p − 1)2tξ2). When m > 0 Taylor’s Theorem with remainder yields

em(y,τ) = 1 + eγm(y, τ) for some γ ∈ (0,m(y, τ)), and hence em(y,τ) ≤ 1 + em(y0τ,τ)m(y, τ). If

m < 0 then em(y,τ) ≤ 1 + |m(y, τ)| ≤ 1 + em(y0τ,τ)|m(y, τ)|. The result for the upper bound then

follows by the triangle inequality for |m(y, τ)|. The lower bound simply follows from the inequality

1− x ≤ e−x, valid for x > 0, and

1− 1

2ξ2t(1− p)2

(
τ

y

)2p−2

≤ exp

(
− 1

2ξ2t(1− p)2

(
τ

y

)2p−2
)
.

Lemma 5.3.2. When p > 1, Theorem 5.2.1 holds.

Proof. The substitution y → y/τ and (5.3.1) imply that the option price reads

C(k, τ) =

∫ ∞

0

BS(k, y, τ)ζp(y)dy = τ−1

∫ ∞

0

BS(k, y/τ, τ)ζp(y/τ)dy.

Using Lemma 5.3.1 and Definition (5.2.8), we obtain the following bounds:

χ(τ, p)

τ

[
J2p(k)− τ2p−2

2ξ2t(1− p)2
J4p−2(k)

]
≤ C(k, τ),

χ(τ, p)

τ

[
J2p(k) + exp

(
y2−2p
0

2(p− 1)2tξ2

)(
τ2p−2

2ξ2t(1− p)2
J4p−2(k) +

τp−1

ξ2t(1− p)2yp−1
0

J3p−1(k)

)]
≥ C(k, τ).

Hence for τ < 1:∣∣∣∣ C(k, τ)τ

χ(τ, p)J2p(k)
− 1

∣∣∣∣ ≤ exp

(
y2−2p
0

2(p− 1)2tξ2

)(
J4p−2(k)

2ξ2t(1− p)2J2p(k)
+

J3p−1(k)

ξ2t(1− p)2yp−1
0 J2p(k)

)
τp−1,

which proves the lemma since Jq(k) is strictly positive, finite and independent of τ whenever

q > 1.

5.3.1.2 Case: p < 1

We use the representation in (5.3.1) and break the domain of the integral up into a compact part

and an infinite (tail) one. We prove in Lemma 5.3.4 that the tail integral is exponentially sub-

dominant (compared to the compact part) and derive asymptotics for the integral in Lemma 5.3.5.

This allows us to apply the Laplace method to the integral. We start with the following bound for

the modified Bessel function of the first kind and then prove a tail estimate in Lemma 5.3.4.
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Lemma 5.3.3. The following bound holds for all x > 0 and ν > −3/2:

Iν(x) <
ν + 2

Γ(ν + 2)

(x
2

)ν
e2x.

Proof. Let x > 0. Using (5.3.2) and the fact that that cosh(x) < ex, we obtain

1

Γ(ν + 1)

(x
2

)ν
≤ Iν(x) ≤

ex

Γ(ν + 1)

(x
2

)ν
, (5.3.3)

whenever ν > −1/2. From [139, Theorem 7, page 522], for ν ≥ −2, the inequality Iν(x) <

Iν+1(x)
2/Iν+2(x) holds, and hence combining it with the bounds in (5.3.3) we can write

Iν(x) <
Γ(ν + 3)

(Γ(ν + 2))2

(x
2

)ν
e2x,

when ν > −3/2. The lemma then follows from the trivial identity Γ(ν + 3) = (ν + 2)Γ(ν + 2).

Lemma 5.3.4. Let L > 1 and p < 1. Then the following tail estimate holds as τ tends to zero:∫ ∞

L

BS
(
k,

y

τβp
, τ
)
ζp

( y

τβp

)
dy = O

(
exp

(
− 1

4ξ2t(1− p)

[
L1−p

τ (1−βp)/2
− y1−p0

]2))
.

Proof. Lemma 5.3.3 and the density in (5.2.5) imply

ζp

( y

τβp

)
≤ b0
τ−2pβp

y−2p exp

(
− 1

2ξ2t(1− p)2

{
y1−p

τβp(1−p)
− y1−p0

}2

+
(yy0)

1−p

τβp(1−p)ξ2t(1− p)2

)
,

where the constant b0 is given by

(η + 2)

|1− p|ξ2tΓ(η + 2)
(
2(1− p)2ξ2t

)η , resp.
(|η|+ 2)

|1− p|ξ2tΓ(|η|+ 2)
(
2(1− p)2ξ2t

)|η| ,
if the origin is reflecting (resp. absorbing) when p < 1/2; the exact value of b0 is however irrelevant

for the analysis. Set now L > 1. Using this upper bound and the no-arbitrage inequality BS(·) < 1,

we find∫ ∞

L

BS
(
k,

y

τβp
, τ
)
ζp

( y

τβp

)
dy ≤

∫ ∞

L

ζp

( y

τβp

)
dy

≤ b0
τ−2pβp

∫ ∞

L

y−2p exp

(
− 1

2ξ2t(1− p)2

{
y1−p

τβp(1−p)
− y1−p0

}2

+
(yy0)

1−p

τβp(1−p)ξ2t(1− p)2

)
dy

≤ b0
τ−2pβp

∫ ∞

L

y1−2p exp

(
− 1

2ξ2t(1− p)2

{
y1−p

τβp(1−p)
− y1−p0

}2

+
(yy0)

1−p

τβp(1−p)ξ2t(1− p)2

)
dy,

where the last line follows since y1−2p > y−2p. Setting q =
(
y1−p/τβp(1−p) − y1−p0

)
/(ξ

√
t(1− p))

yields

∫ ∞

L

y1−2p exp

−

(
y1−p

τβp(1−p) − y1−p0

)2
2ξ2t(1− p)2

+
(yy0)

1−p

τβp(1−p)ξ2t(1− p)2

 dy

=
ξ
√
t(1− p)

τ2βp(p−1)

[
ξ
√
t(1− p)

∫ ∞

Lτ

qe
− q2

2 +
y
1−p
0 q

ξ
√

t(1−p) dq + y1−p0

∫ ∞

Lτ

e
− q2

2 +
y
1−p
0 q

ξ
√

t(1−p) dq

]
, (5.3.4)
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with Lτ :=
(
L1−p/τβp(1−p) − y1−p0

)
/(ξ

√
t(1 − p)) > 0 for small enough τ since L > 1 and p ∈

(−∞, 1). Set now (we always choose the positive root)

τ∗ :=

(
L1−p

5y1−p0

)(βp(1−p))−1

,

so that, for τ < τ∗ we have Lτ > 4y1−p0 /(ξ
√
t(1− p)) and hence for q > Lτ :

y1−p0 q

ξ
√
t(1− p

≤ q2

4
.

In particular, for the integrals in (5.3.4) we have the following bounds for τ < τ∗:∫ ∞

Lτ

q exp

(
−q

2

2
+

y1−p0 q

ξ
√
t(1− p)

)
dq ≤

∫ ∞

Lτ

q exp

(
−q

2

4

)
dq,

∫ ∞

Lτ

exp

(
−q

2

2
+

y1−p0 q

ξ
√
t(1− p)

)
dq ≤

∫ ∞

Lτ

exp

(
−q

2

4

)
dq.

For the first integral we simply obtain
∫∞
Lτ
q exp(−q2/4)dq = 2 exp(−L2

τ/4). For the second integral

we use the upper bound for the complementary normal distribution function [147, Section 14.8] to

write
∫∞
Lτ

e−q
2/4dq ≤ 4L−1

τ e−L
2
τ/4. The lemma then follows from noting that 1−βp = 2βp(1−p).

Lemma 5.3.5. When p < 1, Theorem 5.2.1 holds.

Proof. Let τ̃ := τβp , with βp defined in (5.2.9). Applying the substitution y → y/τ̃ to (5.3.1) yields

C(k, τ) =

∫ ∞

0

BS(k, y, τ)ζp(y)dy =
1

τ̃

∫ ∞

0

BS
(
k,
y

τ̃
, τ
)
ζp

(y
τ̃

)
dy

=
1

τ̃

∫ L

0

BS
(
k,
y

τ̃
, τ
)
ζp

(y
τ̃

)
dy +

1

τ̃

∫ ∞

L

BS
(
k,
y

τ̃
, τ
)
ζp

(y
τ̃

)
dy,

for some L > 0 to be chosen later. We start with the first integral. Using the asymptotics for the

modified Bessel function of the first kind (1.5.6) as τ tends to zero, we obtain

ζp

(y
τ̃

)
=
τ3pβp/2y

p/2
0 e

− y
2(1−p)
0

2ξ2t(1−p)2

ξy3p/2
√
2πt

e
− 1

τ
2βp(1−p)

y2(1−p)

2ξ2t(1−p)2
+ 1

τ
βp(1−p)

(yy0)(1−p)

ξ2t(1−p)2

[
1 +O

(
τ (1−p)βp

)]
.

Note that this expansion does not depend on the sign of η and so the same asymptotics hold

regardless of whether the origin is reflecting or absorbing. In the Black-Scholes model, Call option

prices satisfy (Lemma D.0.10):

BS
(
k,
y

τ̃
, τ
)
=

y3/2

k2
√
2π

(τ
τ̃

)3/2
exp

(
−k

2

2y

τ̃

τ
+
k

2

)(
1 +O

(τ
τ̃

))
,

as τ tends to zero. Using the identity 1− βp = 2βp(1− p) we then compute

1

τβp

∫ L

0

BS
(
k,

y

τβp
, τ
)
ζp

( y

τβp

)
dy

=
τβp(4−3p)/2y

p/2
0 e

− y
2(1−p)
0

2ξ2t(1−p)2
+ k

2

2πk2ξ
√
t

∫ L

0

y
3
2 (1−p)e

− f0(y)

τ
1−βp

+
f1(y)

τ
(1−βp)/2 dy

[
1 +O

(
τ (1−βp)/2

)]
,
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where f0, f1 are defined in (5.2.10). Solving the equation f ′0(y) = 0 gives y = yp with yp defined

in (5.2.9) and we always choose the positive root and set L > yp.

Let I(τ) :=
∫ L
0
y

3
2 (1−p) exp

(
− f0(y)

τ1−βp
+ f1(y)

τ(1−βp)/2

)
dy. Then for some ε > 0 small enough, as τ

tends to zero:

I(τ) ∼ e
− f0(yp)

τ
1−βp

+
f1(yp)

τ
(1−βp)/2

+
f′
1(yp)2

2f′′
0 (yp) y

3
2 (1−p)
p

∫ yp+ε

yp−ε
exp

−1

2


√
f ′′0 (yp)(y − yp)

τ (1−βp)/2
−

f ′1(yp)√
f ′′0 (yp)

2 dy

∼ e
− f0(yp)

τ
1−βp

+
f1(yp)

τ
(1−βp)/2

+
f′
1(yp)2

2f′′
0 (yp) y

3
2 (1−p)
p

∫ ∞

−∞
exp

−1

2


√
f ′′0 (yp)(y − yp)

τ (1−βp)/2
−

f ′1(yp)√
f ′′0 (yp)

2 dy

= exp

(
−
f0(yp)

τ1−βp
+

f1(yp)

τ (1−βp)/2
+
f ′1(yp)

2

2f ′′0 (yp)

)
τ (1−βp)/2y

3
2 (1−p)
p

√
2π

f ′′0 (yp)
.

The ∼ approximations here are exactly of the same type as in [75], and we refer the interested

reader to this paper for details. It follows that as τ tends to zero:

1

τβp

∫ L

0

BS
(
k,

y

τβp
, τ
)
ζp

(
y

βp

)
dy = exp

(
−c1(t, p)
τ1−βp

+
c2(t, p)

τ (1−βp)/2

)
c5(t, p)τ

c3(t,p)
[
1 +O

(
τ

1−βp
2

)]
,

with the functions c1, c2, c3 and c5 given in Table 5.1. From Lemma 5.3.4 we know that

1

τβp

∫ ∞

L

BS
(
k,

y

τβp
, τ
)
ζp(y/βp)dy = O

(
exp

(
− 1

2ξ2t(1− p)

(
L1−p

τ (1−βp)/2
− y1−p0

)2
))

.

Choosing L > max
(
1,
(
2ξ2t(1− p)f0(yp)

)1/(2−2p)
, yp

)
makes this tail term exponentially subdom-

inant to τ−βp
∫ L
0
BS(k, y/τβp , τ)ζp(y/βp)dy, which completes the proof of the lemma.

5.3.1.3 Case: p = 1

We now consider the lognormal case p = 1. The proof is similar to Section 5.3.1.2, but we need to

re-scale the variance by τ | log(τ)|. We prove a tail estimate in Lemma 5.3.6 and derive asymptotics

for option prices in Lemma 5.3.7.

Lemma 5.3.6. The following tail estimate holds for p = 1 and L > 0 as τ tends to zero (ϑ defined

in (5.2.4)):∫ ∞

L

BS

(
k,

y

τ | log(τ)|
, τ

)
ζ1

(
y

τ | log(τ)|

)
dy = O

(
exp

{
− 1

2ξ2t

[
log

(
L

τ | log(τ)|

)
− ϑ

]2})
.

Proof. By no-arbitrage arguments, the Call price is always bounded above by one, so that∫ ∞

L

BS

(
k,

y

τ | log(τ)|
, τ

)
ζ1

(
y

τ | log(τ)|

)
dy ≤

∫ ∞

L

ζ1

(
y

τ | log(τ)|

)
dy.

With the substitution q = 1
ξ
√
t
[log(y/(τ | log(τ)|)) − ϑ], the lemma follows from the bound for the

complementary Gaussian distribution function [147, Section 14.8].
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Lemma 5.3.7. Let p = 1. The following expansion holds for option prices as τ tends to zero:

C(k, τ) = c5(t, 1) exp
(
−c1(t, 1)h1(τ, p)+c2(t, 1)h2(τ, p)

)
τ c3(t,1)| log(τ)|c4(t,1)

(
1 +O

(
1

| log(τ)|

))
,

with the functions c1, c2, ..., c5, h1 and h2 given in Table 5.1.

Proof. Let τ̃ := τ | log(τ)|. With the substitution y → y/τ̃ and using (5.3.1), the option price is

given by

C(k, τ) =

∫ ∞

0

BS(k, y, τ)ζ1(y)dy =
1

τ̃

∫ ∞

0

BS
(
k,
y

τ̃
, τ
)
ζ1

(y
τ̃

)
dy

=
1

τ̃

{∫ L

0

BS
(
k,
y

τ̃
, τ
)
ζ1

(y
τ̃

)
dy +

∫ ∞

L

BS
(
k,
y

τ̃
, τ
)
ζ1

(y
τ̃

)
dy

}
=: C(k, τ) + C(k, τ),

for some L > 0. Consider the first term. Using Lemma D.0.10 with τ̃ = τ | log(τ)|, we have, as τ

tends to zero,

BS

(
k,

y

τ | log(τ)|
, τ

)
= exp

(
−k

2| log(τ)|
2y

+
k

2

)
y3/2

k2| log(τ)|3/2
√
2π

[
1 +O

(
1

| log(τ)|

)]
.

Therefore

C(k, τ) =
ek/2

(
1 +O

(
1

| log(τ)|

))
| log(τ)|3/2ξk22π

√
t

∫ L

0

exp

−k
2| log(τ)|

2y
−

(
log
(

y
τ | log(τ)|

)
− ϑ

)2
2ξ2t

 y1/2dy

= exp

(
k

2
− (log(τ) + log | log(τ)|)2 + ϑ2

2ξ2t
− ϑ(log(τ) + log | log(τ)|)

ξ2t

) I1(τ)
[
1 +O

(
1

| log(τ)|

)]
ξk22π

√
t| log(τ)|3/2

,

where I1(τ) :=
∫ L
0
g2(y) exp (−g0(y)| log τ |+ g1(y) log | log(τ)|) dy with g0 and g1 defined in (5.2.10)

and

g2(y) :=
√
y exp

(
ϑ log(y)

ξ2t

)
.

The dominant contribution from the integrand is the | log(τ)| term; the minimum of g0 is attained

at y∗ given in (5.2.9), and g′′0 (y
∗) = 4/(ξ6t3k4) > 0. Set

I0(τ) :=

∫ ∞

−∞
exp

−1

2

(
(y − y∗)

√
| log(τ)|g′′0 (y∗)−

g′(y∗) log | log(τ)|√
| log(τ)|g′′0 (y∗)

)2
dy

=

√
2π

g′′0 (y
∗)| log(τ)|

.

Then for some ε > 0 as τ tends to zero, with L > y∗,

I1(τ) ∼
∫ y∗+ϵ

y∗−ϵ
g2(y) exp

{
− g0(y)| log(τ)|+ g1(y) log | log(τ)|

}
dy

∼ g2(y
∗)e−g0(y

∗)| log(τ)|+g1(y∗) log | log(τ)|
∫ y∗+ϵ

y∗−ϵ
e−

1
2 g

′′
0 (y∗)(y−y∗)2| log(τ)|+g′1(y

∗)(y−y∗) log | log(τ)|dy

∼ g2(y
∗) exp

(
−g0(y∗)| log(τ)|+ g1(y

∗) log | log(τ)|+ (g′1(y
∗) log | log(τ)|)2

2g′′0 (y
∗)| log(τ)|

)
I0(τ)

= g2(y
∗) exp

(
−g0(y∗)| log(τ)|+ g1(y

∗) log | log(τ)|+ (g′1(y
∗) log | log(τ)|)2

2g′′0 (y
∗)| log(τ)|

)√
2π

g′′0 (y
∗)| log(τ)|

.
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where again the ∼ approximations here are exactly of the same type as in [75], and we refer the

interested reader to this paper for details. Therefore as τ tends to zero:

C(k, τ) = c5(t, 1) exp
(
−c1(t, 1)h1(τ, 1)+c2(t, 1)h2(τ, 1)

)
τ c3(t,1)| log(τ)|c4(t,1)

[
1 +O

(
1

| log(τ)|

)]
,

with the functions c1, c2, ..., c5, h1 and h2 given in Table 5.1. For ease of computation we note that

c5(t, 1) =

√
y∗ exp

(
k
2 − ϑ2

2ξ2t +
ϑ log(y∗)
ξ2t

)
k2ξ

√
2πt
√
g′′0 (y

∗)
=

|k|ξ3t3/2 exp
(
k
2 − ϑ2

2ξ2t +
ϑ log(y∗)
ξ2t

)
4
√
π

.

Now by Lemma 5.3.6,

C(k, τ) =
1

τ | log(τ)|

∫ ∞

L

BS

(
k,

y

τ | log(τ)|
, τ

)
ζ1

(
y

τ | log(τ)|

)
dy

=
1

τ | log(τ)|
O

(
exp

{
− 1

2ξ2t

[
log

(
L

τ | log(τ)|

)
− ϑ

]2})
.

Since for some B > 0 we have that

exp

(
− 1

2ξ2t

[
log

(
L

τ | log(τ)|

)
− ϑ

]2)
≤ B (τ | log(τ)|)

1
ξ2t

(log(L)−ϑ)
exp

(
− 1

2ξ2t
h1(τ, 1)

)
,

choosing L such that log(L) > ϑ yields

O

(
exp

{
− 1

2ξ2t

[
log

(
L

τ | log(τ)|

)
− ϑ

]2})
= O

(
exp

(
− 1

2ξ2t
h1(τ, 1)

))
.

Hence C(k, τ) is then exponentially subdominant to the compact part since

ec1(t,1)h1(τ,1)−c2(t,1)h2(τ,1)O

(
exp

{
− 1

2ξ2t

[
log

(
L

τ | log(τ)|

)
− ϑ

]2})
= O

(
e−c2(t,1)h2(τ,1)

)
,

and the result follows.

5.3.2 Proof of Theorem 5.2.8

The goal of this section is to prove the large-time behaviour of option prices in Theorem 5.2.8. Due

to Lemma D.0.11 and the representation (5.3.1) we have the following asymptotics for call option

prices as τ tends to infinity:

C(k, τ) = 1−mt +mt(1− ek)+ + τ−1/2ek/2L(τ)(1 +O(τ−1)), (5.3.5)

where

L(τ) =

∫ ∞

0

q(z)e−τzdz, (5.3.6)

and we set q(z) ≡ −8ζp(8z)/
√
πz. Using asymptotics for the modified Bessel function of the first

kind (1.5.11) and the definition of the density in (5.2.5) we obtain the following asymptotics for

the density as y tends to zero when p < 1 and absorption at the origin when p < 1/2:

ζp(y) =
y0y

1−2p

|1− p|ξ2tΓ(|η|+ 1) (2(1− p)2ξ2t)
|η| exp

(
− y

2(1−p)
0

2ξ2t(1− p)2

)(
1 +O

(
y2(1−p)

))
. (5.3.7)
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Analogous arguments yield that when p < 1/2 and the origin is reflecting, then, as y tends to zero,

ζp(y) =
y−2p

|1− p|ξ2tΓ(η + 1) (2(1− p)2ξ2t)
η exp

(
− y

2(1−p)
0

2ξ2t(1− p)2

)(
1 +O

(
y2(1−p)

))
. (5.3.8)

In order to apply Watson’s lemma (Theorem 1.2.4 and Remark 1.2.5) it is sufficient to require that

the function q in (5.3.6) satisfies q(z) = O(ecz) for some c > 0 as z tends to infinity. This clearly

holds here since limz↑∞ ζp(z) = 0. We also require (Remark 1.2.5 with N = 0) that

q(z) = a0z
(λ−µ)/µ +O

(
z(1+λ−µ)/µ

)
, as z ↓ 0.

When p ≥ 1, it can be shown that ζp is exponentially small, and a different method needs to be

used. When p < 1 and the density is as in (5.3.7) then in the notation of Theorem 1.2.4 we have

λ = 1− 1/(4(1− p)) and µ = 1/(2(1− p)). We require these terms to be positive and so p < 3/4.

Analogously, when p < 1/2 and the density is (5.3.8) then λ = 1−3/(4(1−p)) and µ = 1/(2(1−p))

and we require p < 1/4. An application of Watson’s Lemma in conjunction with (5.3.5) then yields

Theorem 5.2.8.



Appendix A

Verification of

Assumption 2.2.1(v)

The tail assumption 2.2.1(v) needs to be verified in order to apply Theorem 2.2.4 in Chapter 2. It

is readily satisfied by most models used in practice. Its verification is tedious but straightforward,

and we give here an outline for the time-changed exponential Lévy case where the time-change

is given by an integrated Feller process (1.3.11), i.e. Proposition 2.3.10(i). Analogous arguments

hold for all other models in the chapter.

We recall that the forward cgf is given in (1.3.13) and the limiting cgf and domain (2.3.11),(2.3.12)

are given by V̂ : K̂∞ ∋ u 7→ κθ
ξ2

(
κ−

√
κ2 − 2ϕ(u)ξ2

)
with K̂∞ :=

{
u : ϕ(u) ≤ κ2/(2ξ2)

}
and ϕ is

the Lévy exponent. Straightforward computations yield Assumption 2.2.1(v)(a). For fixed a ∈ K̂0
∞

denote Lr : R → R by Lr(z) := ℜ(V̂ (iz + a)) and Li : R → R by Li(z) := ℑ(V̂ (iz + a)). Then

V̂ (iz + a) = Lr(z) + iLi(z). Similarly we define ϕr and ϕi such that ϕ(iz + a) = ϕr(z) + iϕi(z).

From [60, Lemma A.1, page 10] we know that ϕr has a unique maximum at zero and is bounded

way from zero as |z| tends to infinity. Now Lr(z) := κ2θ
ξ2 − κθ

ξ2 ℜ
(√

κ2 − 2ϕ(iz + a)ξ2
)

and

ℜ
(√

κ2 − 2ϕ(iz + a)ξ2
)
= 1

2

√
2(κ2 − 2ϕr(z)ξ2) + 2

√
(κ2 − 2ϕr(z)ξ2)2 + 4ξ4ϕi(z)2. We certainly

have√
2(κ2 − 2ϕr(z)ξ2) + 2

√
(κ2 − 2ϕr(z)ξ2)2

≤
√
2(κ2 − 2ϕr(z)ξ2) + 2

√
(κ2 − 2ϕr(z)ξ2)2 + 4ξ4ϕi(z)2, (A.0.1)

with equality only if ϕi(z) = 0. Since ϕr has a unique maximum at zero we have ϕr(z) < ϕr(0) ≤

κ2/(2ξ2) and further
√
2(κ2 − 2ϕr(0)ξ2) ≤

√
2(κ2 − 2ϕr(z)ξ2) + 2

√
(κ2 − 2ϕr(z)ξ2)2, with the

inequality strict for all z ∈ R∗. Since ϕi(0) = 0 it follows that u = 0 is the unique minimum of

ℜ
(√

κ2 − 2ϕ(iz + a)ξ2
)
. Since ϕr is bounded away from ϕr(0) as |z| tends to infinity there exists

a q∗ > 0 and M > 0 such that for |z| > q∗ we have that ϕr(z) ≤M < ϕr(0). But then for |z| > q∗

169
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we certainly have (also using (A.0.1))

1

2
ℜ
(√

2(κ2 − 2ϕ(a)ξ2)
)
=

1

2

√
2(κ2 − 2ϕr(0)ξ2) <

1

2

√
2(κ2 − 2Mξ2) ≤ ℜ

(√
κ2 − 2ϕ(iz + a)ξ2

)
.

This proves Assumption 2.2.1(v)(b). The proof of Assumption 2.2.1(v)(c) involves tedious but

straightforward computations and we only highlight the main steps. Let a ∈ K̂0
∞ and define

A(u, τ) := A(ϕ(u), τ) − τ V̂ (u) with A given in (1.3.14). From the analysis above we know that

the map z 7→ ℜd(ϕ(iz + a)) has a unique minimum at z = 0. Also we recall that 0 < d(ϕ(a)) and

straightforward calculations show that |γ(ϕ(iz + a))| < 1 with d and γ given in (1.3.14). Using

the triangle and reverse triangle inequality we have for all z ∈ R and τ > 0 that

ℜA(ϕ(iz + a), τ) =
2κθ

ξ2
log

∣∣∣∣ 1− γ(ϕ(iz + a))

1− γ(ϕ(iz + a))e−d(ϕ(iz+a))τ

∣∣∣∣
≤ 2κθ

ξ2
log

(
2

1− e−d(ϕ(a))τ

)
. (A.0.2)

Tedious computations also reveal that (B given in (1.3.14)): ℜB(ϕ(iz + a), τ) ≤ B(ϕ(a), τ), for

all z ∈ R and τ > 0. Consider the second and third terms for the forward cgf in (1.3.13). For all

z ∈ R and τ > 0 (using |y|−1 ≤ |ℜy|−1 for all y ∈ C \ {0}):

ℜ log

(
1

1− 2βtB(ϕ(iz + a), τ)

)
= log

∣∣∣∣ 1

1− 2βtB(ϕ(iz + a), τ)

∣∣∣∣
≤ log

(
1

1− 2βtB(ϕ(a), τ)

)
, (A.0.3)

where we note in the last inequality that 1− 2βtB(ϕ(a), τ) > 0. We also compute

ℜ
(

B(ϕ(iz + a), τ)

1− 2βtB(ϕ(iz + a), τ)

)
=

ℜB(ϕ(iz + a), τ)− 2βt|B(ϕ(iz + a), τ)|2

1− 4βtℜB(ϕ(iz + a), τ) + 4β2
t |B(ϕ(iz + a), τ)|2

,

and hence using ℜB(ϕ(iz + a), τ) ≤ |B(ϕ(iz + a), τ)| and that 1 − βtℜB(ϕ(iz + a), τ) > 1/2 we

see that for all z ∈ R and τ > 0:

ℜ
(

B(ϕ(iz + a), τ)

1− 2βtB(ϕ(iz + a), τ)

)
≤ ℜB(ϕ(iz + a), τ)

1− 2βtℜB(ϕ(iz + a), τ)
≤ B(ϕ(a), τ)

1− 2βtB(ϕ(a), τ)
, (A.0.4)

where the last inequality follows since the term in the second inequality is strictly increasing in

ℜB(ϕ(iz + a), τ). Combining (A.0.2), (A.0.3) and (A.0.4) we see that as τ tends to infinity:

ℜ
[
τ−1 logE

(
e(iz+a)X

(t)
τ

)
− V̂ (iz + a)

]
≤

[
V̂ (a)ve−κt

1− 2βtV̂ (a)
+

2κθ

ξ2
log

(
2

1− 2βtV̂ (a)

)]
1

τ
+O

(
1

τ2

)
,

for all z ∈ R and where the remainder does not depend on z. This proves Assumption 2.2.1(v)(c).



Appendix B

Properties (i),(ii) and (iii) in

Lemma 3.6.3

The purpose of this appendix is to verify properties (i),(ii) and (iii) in Lemma 3.6.3. Denote the

cumulant generating function for the random variable Y by

ΛY (u) := logE
(
euY

)
, for all u ∈ DY ,

where DY is its effective domain. We say that a random variable is degenerate if DY = {0} or the

random variable is a constant. We now recall the following result [104, Theorem 2.3].

Theorem B.0.8. ΛY is strictly convex on its effective domain if and only if Y is not degenerate.

The Heston forward cgf Λ
(t)
τ in (3.6.3) is therefore strictly convex. From Lemmas 3.2.3 and 3.6.2,

for u ∈ DΛ := (−1/
√
βt, 1/

√
βt) and τ small enough, we have

∂uΛ
(t)
τ (u) = Λ0(u)

√
τ +O(τ), (B.0.1)

where we set

Λ0(u) :=
4κu

(
θe2κt

(
4κ− ξ2u2

)
+ 2eκt

(
θξ2u2 − 2κθ + 2κv

)
− θξ2u2

)
(eκt (4κ− ξ2u2) + ξ2u2)

2 .

The denominator of Λ0 explodes to infinity at the boundary points, showing that it is steep. This

proves (i) for small enough τ .

We also know that Λ
(t)
τ (0) = Λ

(t)
τ (1) = 0, and so by the strict convexity of Λ

(t)
τ , we must have

u∗τ (0) ∈ (0, 1). By the expansion in (B.0.1) and since Λ0(0) = 0 we see that u∗τ (0) must converge

to zero proving (ii). Finally, (iii) follows from expansion (B.0.1).
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Appendix C

Large-maturity Heston cgf

expansion

The purpose of this appendix is to extend the expansion in Lemma (2.5.15) to Λ
(t)
τ (iu + a) and

show that the remainder is uniform in u. Recall the definition of Λ
(t)
τ in (4.6.1) and the Heston

forward cgf given in (1.3.7). Also note that when (u, a) = (0, 1) below then Λ
(t)
τ (1) = 0 for all

τ > 0 by the martingale property.

Lemma C.0.9. The following expansion holds (V ,H and d given in (2.3.8) and (1.3.6)) for all

(u, a) ∈ R×KH \ {(0, 1)} as τ tends to infinity:

Λ(t)
τ (iu+ a) = V (iu+ a) + τ−1H(iu+ a) +O

(
e−d(a)τ

)
,

where the remainder is uniform in u and KH is given in Table 2.1.

Proof. We first consider asymptotics for A in (1.3.8). We write A as

A(iu+ a, τ) = τV (iu+ a)− 2κθ

ξ2
log

(
1

1− γ(iu+ a)

)
(C.0.1)

− 2κθ

ξ2
log
(
1− γ(iu+ a)e−d(iu+a)τ

)
.

The last term is the remainder that we want to analyse. Using the Lagrange form of the remainder

in Taylor’s theorem for small |x| we have that

log (1− γ(iu+ a)x) = −x γ(iu+ a)

1− γ(iu+ a)x∗
,

for some x∗ ∈ {y ∈ C : |y| < |x|}. Hence we have that∣∣∣log (1− γ(iu+ a)e−d(iu+a)τ
)∣∣∣ = ∣∣∣∣e−d(iu+a)τ γ(iu+ a)

1− γ(iu+ a)x∗

∣∣∣∣ ,
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with x∗ ∈ {y ∈ C : |y| < |e−d(iu+a)τ | = e−ℜd(iu+a)τ}. Using ℜd(iu+ a) ≥ d(a) (see Appendix A)

we have that ∣∣∣log (1− γ(iu+ a)e−d(iu+a)τ
)∣∣∣ ≤ e−d(a)τ

∣∣∣∣ γ(iu+ a)

1− γ(iu+ a)x∗

∣∣∣∣
with x∗ ∈ {y ∈ C : |y| < e−d(a)τ}. Using the reverse triangle inequality and that |γ(iu + a)| < 1

(see Appendix A)) we see that∣∣∣log (1− γ(iu+ a)e−d(iu+a)τ
)∣∣∣ ≤ e−d(a)τ

1

1− e−d(a)τ
≤ e−d(a)τ

(
1 +O

(
e−d(a)τ

))
,

as τ tends to infinity and where the remainder is uniform in u. Hence using (C.0.1) we have the

folowing expansion as τ tends to infinity:

A(iu+ a, τ) = τℜV (iu+ a)− 2κθ

ξ2
log

(
1

1− γ(iu+ a)

)
+O

(
e−d(a)τ

)
, (C.0.2)

and where the remainder is uniform in u. Analogous arguments yield that (B defined in (1.3.8))

B(iu+ a, τ) =
V (iu+ a)

κθ
+O

(
e−d(a)τ

)
, (C.0.3)

as τ tends to infinity and where the remainder is uniform in u. Consider the second term for the

Heston forward cgf given in (1.3.7). Using the expansion for B in (C.0.3) and the Lagrange form

of the remainder in Taylor’s theorem we find that

B(iu+ a, τ)

1− 2βtB(iu+ a, τ)
=

V (iu+ a)/(κθ) +O
(
e−d(a)τ

)
1− 2βt

(
V (iu+ a)/(κθ) +O

(
e−d(a)τ

))
=

V (iu+ a)

κθ − 2βtV (iu+ a)
+

O
(
e−d(a)τ

)
(1− 2βt (V (iu+ a)/(κθ) + x∗))

2 ,

where O
(
e−d(a)τ

)
is uniform in u and x∗ ∈ {y ∈ C : |y| < e−d(a)τ}. The last term is our remainder

and using |y|−1 ≤ |ℜy|−1 for all y ∈ C \ {0} and |ℜy| ≤ |y|:∣∣∣∣∣ 1

(1− 2βt (V (iu+ a)/(κθ) + x∗))
2

∣∣∣∣∣ ≤ 1(
1− 2βt

(
ℜV (iu+ a)/(κθ) + e−d(a)τ

))2
≤ 1(

1− 2βt
(
V (a)/(κθ) + e−d(a)τ

))2 ,
where the last line follows since ℜV (iu+ a) ≤ V (a) (see Appendix A)). Hence

B(iu+ a, τ)

1− 2βtB(iu+ a, τ)
=

V (iu+ a)

κθ − 2βtV (iu+ a)
+O

(
e−d(a)τ

)
, (C.0.4)

where the remainder is uniform in u. Analogously for the third term in the Heston forward cgf

given in (1.3.7) we find that

log (1− 2βtB(iu+ a, τ)) = log

(
1− 2βtV (iu+ a)

θκ

)
+O

(
e−d(u)τ

)
, (C.0.5)

where the remainder is uniform in u. The result follows after combining (C.0.2), (C.0.4) and (C.0.5).



Appendix D

Black-Scholes asymptotics

Lemma D.0.10. Let k, y > 0 and τ̃ : (0,∞) → (0,∞) be a continuous function such that

lim
τ↓0

τ

τ̃(τ)
= 0. Then

BS

(
k,

y

τ̃(τ)
, τ

)
=

y3/2

k2
√
2π

(
τ

τ̃(τ)

)3/2

e−
k2

2y
τ̃(τ)
τ + k

2

{
1−

(
3

k2
+

1

8

)
yτ

τ̃(τ)
+O

((
τ

τ̃(τ)

)2
)}

,

as τ tends to zero, where the function BS is defined in (1.0.2).

Proof. Let k, y > 0 and set τ∗(τ) ≡ τ/τ̃(τ). By assumption, τ∗(τ) tends to zero as τ approaches

zero, and (1.0.2) implies

BS
(
k,
y

τ̃
, τ
)
= BS (k, y, τ∗(τ)) = N (d∗+(τ))− ekN (d∗−(τ)),

where we set d∗±(τ) := −k/(
√
yτ∗(τ)) ± 1

2

√
yτ∗(τ), and N is the standard normal distribution

function. Note that d∗± tends to −∞ as τ tends to zero. The asymptotic expansion 1 − N (z) =

(2π)−1/2e−z
2/2
(
z−1 − z−3 +O(z−5)

)
, valid for large z ([1, page 932]), yields

BS

(
k,

y

τ̃(τ)
, τ

)
= N

(
d∗+(τ)

)
− ekN

(
d∗−(τ)

)
= 1−N

(
−d∗+(τ)

)
− ek(1−N

(
−d∗−(τ)

)
)

=
1√
2π

exp

(
−1

2
d∗+(τ)

2/2

){
1

d∗−(τ)
− 1

d∗+(τ)
+

1

d∗+(τ)
3
− 1

d∗−(τ)
3
+O

(
1

d∗+(τ)
5

)}
,

as τ tends to zero, where we used the identity 1
2d

∗
−(τ)

2 − k = 1
2d

∗
+(τ)

2. The lemma then follows

from the following expansions as τ tends to zero:

exp

(
−1

2
d∗+(τ)

2

)
= exp

(
− k2

2yτ∗
+
k

2

)(
1− y

8
τ∗(τ) +O

(
τ∗(τ)2

))
,

1

d∗−(τ)
− 1

d∗+(τ)
+

1

d∗+(τ)
3
− 1

d∗−(τ)
3
=
y3/2τ∗(τ)3/2

k2

(
1− 3y

k2
τ∗(τ) +O

(
τ∗(τ)2

))
.
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Lemma D.0.11. Let y > 0 and k ∈ R. Then

BS(k, y, τ) = 1− 4√
2πτy

e−yτ/8+k/2
(
1 +O(τ−1)

)
,

as τ tends to infinity, where the function BS is defined in (1.0.2).

Proof. Let y > 0. Then

BS(k, y, τ) = N
(
d∗+(τ)

)
− ekN

(
d∗−(τ)

)
,

where we set d∗±(τ) := −k/(√yτ) ± 1
2

√
yτ , and N is the standard normal distribution func-

tion. Hence d∗± tends to ±∞ as τ tends to infinity. The asymptotic expansion 1 − N (z) =

(2π)−1/2e−z
2/2
(
z−1 − z−3 +O(z−5)

)
, valid for large z ([1, page 932]), yields

BS(k, y, τ) = N
(
d∗+(τ)

)
− ek

(
1−N

(
−d∗−(τ)

))
= 1− 1√

2π
exp

(
−1

2
d∗+(τ)

2/2

){
1

d∗+(τ)
− 1

d∗−(τ)
+

1

d∗−(τ)
3
− 1

d∗+(τ)
3
+O

(
1

d∗+(τ)
5

)}
,

as τ tends to infinity, where we used the identity 1
2d

∗
−(τ)

2−k = 1
2d

∗
+(τ)

2. The lemma then follows

from the following expansions as τ tends to infinity:

exp

(
−1

2
d∗+(τ)

2

)
= exp

(
−yτ

8
+
k

2

)(
1 +O(τ−1)

)
,

1

d∗+(τ)
− 1

d∗−(τ)
+

1

d∗−(τ)
3
− 1

d∗+(τ)
3
=

4√
2πτy

(
1 +O(τ−1)

)
.
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[60] J. Figueroa-López, M. Forde and A. Jacquier. The large-maturity smile and skew for expo-

nential Lévy models. Preprint, 2011.
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[138] R. Schöbel and J. Zhu. Stochastic volatility with an Ornstein-Uhlenbeck process: an exten-

sion. European Finance Review, 3(1): 23-46, 1999.

[139] J. Segura. Bounds for ratios of modified Bessel functions and associated Turán-type inequal-

ities. Journal of Mathematical Analysis and Applications, 374(2): 516-528, 2011.

[140] K. Spiliopoulos. Quenched large deviations for multiscale diffusion processes in random en-

vironments. Electronic Journal of Probability, 20(15): 1-29, 2015.

[141] E. Stein and J. Stein. Stock-price distributions with stochastic volatility - an analytic ap-

proach. Review of Financial studies, 4(4): 727-752, 1991.

[142] V. Strassen. The existence of probability measures with given marginals. Ann. Math. Statist.,

36(2): 423-439, 1965.

[143] A.S. Sznitman. Topics in random walks in random environment. School and Conference on

Probability Theory, ICTP Lecture Notes Series, Trieste, 17: 203-266, 2004.

[144] K. Tanaka and A. Toda. Discrete approximations of continuous distributions by maximum

entropy. Economics Letters, 118(3): 445-450, 2013.

[145] P. Tankov. Pricing and hedging in exponential Lévy models: review of recent results. Paris-
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