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We consider the possibility of performing linear optical quantum computation making use of extra
photonic degrees of freedom. In particular we focus on the case where we use photons as quadbits,
4-dimensional photonic qudits. The basic 2-quadbit cluster state is a hyper-entangled state across
polarization and two spatial mode degrees of freedom. We examine the non-deterministic methods
whereby such states can be created from single photons and/or Bell pairs, and then give some
mechanisms for performing higher-dimensional fusion gates.

PACS numbers:

I. INTRODUCTION

Optical quantum computation is a strong candidate
for a scalable quantum computer. Photons have low
decoherence rates, and high fidelity optical components
are readily available. In this article we focus on the
linear optical quantum computation (LOQC) paradigm,
for which the resource overheads of the original LOQC
proposal [1] have been greatly reduced by making use
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] of the one-way quan-
tum computation model [14, 15].

Significant hurdles to practical LOQC remain, how-
ever. At present the primary obstacle is a deterministic
source of photons. Much progress has been made along
these lines [16, 17], but it is clear that there is still a long
way to go. Particularly exciting is the possibility of cre-
ating “on-demand” entangled pairs of photons [18, 19],
which obviate the need for initially creating such entan-
gled pairs from single photons [20]. The investigations of
this paper are based around an assumption that at some
time in the near future efficient deterministic sources of
either single photons or entangled photon pairs will be-
come available.

It is not always obvious how to compare the resource
requirements of various different proposals for imple-
menting LOQC within the cluster state paradigm (e.g.
how many single photon sources, memory units and feed-
forward steps is an entangled pair source “worth”?).
Since the primary difficulties for LOQC relate to sources
and detectors, it is clear that schemes which reduce the
number of photons actually used in an implementation
are desirable [31]. A travelling photonic wavepacket is in
principle a multi-mode creature, and thus can be treated
as a d-dimensional quantum system (a “qudit”). There
is a d-dimensional version of cluster state computing
[21, 22], and one purpose of this paper is to explore pro-
cedures whereby such d-dimensional clusters can be cre-
ated. The second motive is to examine some basic “initial
state” resource tradeoffs, such as: “how many Bell pairs
does it take to make a hyper-entangled state”.

For concreteness we focus on the quadbit case - specif-

ically, we treat a single photon as a four-dimensional
quantum system; using the two polarization states of two
different spatial modes to encode the four levels.

II. QUADBIT CLUSTER STATES

A. General quadbit cluster states

In this section we review the features of quadbit cluster
states we shall make use of - a pedagogical overview of
the higher-dimensional cluster state computing can be
found in [22].

We label the computational basis states
{|0̄〉, |1̄〉, |2̄〉, |3̄〉} (use of the overbar is to prevent
confusion with 0 and 1 photon Fock states). In terms of
these we can define the quadbit version of a Hadamard
rotation, which rotates the computational basis state |̄i〉
to |+i〉 (i = 0, 1, 2, 3), where

|+i〉 =
1

2
(|0̄〉 + ei iπ

2 |1̄〉 + ei iπ|2̄〉 + ei 3iπ

2 |3̄〉), (1)

A 2-quadbit cluster state |QdC2〉 is then given by the
superposition

|QdC2〉 =
1

2

3
∑

i=0

|̄i〉|+i〉,

which should be compared with the equivalent 2-qubit
cluster state |C2〉 = (|0〉|+〉 + |1〉|−〉)/

√
2. In the case of

qubits a two-qubit (non-destructive) parity gate opera-
tion would fuse [13] two 2-qubit clusters into the state

|C3〉 = (|+〉|00〉|+〉+ |−〉|11〉|−〉)/
√

2, and repeated such
fusion operations allows for the growth of arbitrary clus-
ter states (the redundant encoding of the central qubit is
easily removed by a measurement in the |±〉 basis, yield-
ing the 3-qubit cluster state as claimed). Similarly, in
the quadbit cluster case arbitrary quadbit clusters can
be grown using a quadbit fusion operation. Applied to
two 2-quadbit clusters such a fusion would achieve the
state |QdC3〉 =

∑3

i=0 |+i〉|̄īi〉|+i〉/2.
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B. Optical quadbit cluster states

We define a quadbit single photon quantum state in
two polarization/spatial modes as follows:

|0̄〉 ≡ |H〉1 , |1̄〉 ≡ |V 〉1 , |2̄〉 ≡ |H〉2 , |3̄〉 ≡ |V 〉2 , (2)

where H(V ) denotes horizontal (vertical) polarization,
and the subindex 1(2) denotes spatial mode k1(k2).

Consider now a so-called hyper-entangled state (HES)
[23], which is a two-photon state entangled in both po-
larization and spatial modes. Two-photon HES’s can be
generated by spontaneous parametric down-conversion
[24]. As with generation of single photons, such a mecha-
nism of HES production is not scalable. In Section III A,
we will consider scalable production of HES’s given de-
terministic single photon sources or entangled pairs. It
is possible to represent an HES as product of Bell states,
with a virtual tensor product structure between the spa-
tial and polarization modes, for example:

|Φ+
HES〉 =

1

2
(|H〉|H〉 + |V 〉|V 〉) ⊗ (|1〉|3〉 + |2〉|4〉). (3)

(We will always use the ⊗ symbol to refer to this virtual
tensor product of spatial modes and polarizations). Us-
ing the identification in Eq. (2), we see that |Φ+

HES〉 is
equal to

|Φ+
HES〉 =

1

2
(|H〉1|H〉3 + |V 〉1|V 〉3 + |H〉2|H〉4 + |V 〉2|V 〉4)

=
1

2
(|0̄〉|0̄〉 + |1̄〉|1̄〉 + |2̄〉|2̄〉 + |3̄〉|3̄〉).

As any single mode unitary operation can be imple-
mented with linear optics [25], a simple circuit can be
constructed which rotates the quadbit in modes 3 and 4
to yield the optical 2-quadbit cluster state |QdC2〉 defined
above.

Consider attempting to fuse two 2-quadbit clusters, the
first in modes (1,2;3,4) (as in Eq.(3)), the second in modes
(5,6;7,8). The procedure required to fuse the quadbit
in spatial modes 1,2 with that in 5,6 is a gate which
(when successful) performs a projective measurement of
the form:

|HH〉1 5〈HH |+|V V 〉1 5〈V V |+|HH〉2 6〈HH |+|V V 〉2 6〈V V |.
That is, a successful measurement should reveal “the
photons were in corresponding spatial modes with the
same polarization”, but should not reveal in which spa-
tial modes and with what polarization. In section IV we
will show that such a fusion is possible, although we have
only found methods of doing it that make use of ancillary
systems, and for which the success probability strongly
depends on the nature of the ancillas available.

III. GENERATION OF QUADBIT CLUSTER
STATES

Before discussing possible fusion mechanisms, we turn
to examining some “initial state resource tradeoffs”. This

is because, as in the case of single photons, paramet-
ric downconversion is not a suitable source for scalable
LOQC. Therefore we may well need to generate deter-
ministic HES’s from a deterministic source of either sin-
gle photons, Bell pairs or GHZ states. Whether the con-
structions we give are optimal (or even close to being so)
we cannot determine. Thus the procedures we present
should be seen as simply giving upper bounds on the
resources required. Also, because the most efficient fu-
sion gate we will present for quadbit clusters destroys the
photons involved (much like Type-II fusion for qubits) we
will need to look at mechanisms for generating an initial
resource of 3 and 4 quadbit cluster states.

Basic notation for the figures, and a brief outline of
the operation of the fundamental optical components is
set out in Appendix A.

A. General procedure for HES generation

The general circuit we present (Fig.1) is built from two
copies of a sub-circuit we label J1, and we first explain
the operation of this circuit.

The circuit J1 consists of three beam splitters (BSs)
with two vacuum inputs. Consider the case where a Bell
state (|H〉1|H〉2 + |V 〉1|V 〉2)/

√
2 is input into J1. The

first BS creates a bunched two-photon state in modes
1 and 2, and then two vacuum inputs are applied from
modes 1′ and 2′ with two regular BSs. After the circuit
J1, the state of two photons in mode 1, 1′, 2, and 2′ is
equal to

|M〉121′2′ =
1

4
(|H〉|H〉 + |V 〉|V 〉)

⊗
2

∑

j=1

[

eijπ(|j〉|j〉 + |j′〉|j′〉 +
√

2|j〉|j′〉)
]

. (4)

It is a combination of four states of bunched photon
pairs in a spatial mode (|j〉|j〉 and |j′〉|j′〉) and two anti-
bunched states in two different spatial modes (|j〉|j′〉).

We turn now to the full circuit J2 depicted in Figure
1 (b). At the centre of the circuit is a source S2 which
can be either single photons, Bell pairs or a 4-photon
GHZ state. This source is then fed into two copies of
the J1 gate, the outputs of which impinge on 50:50 beam
splitters as shown. It is easiest to begin with the case
that the source consists of two Bell pairs.

The initial state of the two Bell pairs |Φ+〉1 2|Φ+〉3 4 is

1

2
(|H〉1|H〉2 + |V 〉1|V 〉2)(|H〉3|H〉4 + |V 〉3|V 〉4).(5)

According to Eq. (4), the state after the two J1 circuits
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FIG. 1: (color online) (a) Circuit J1 (b) Circuit J2 for a hyper-
entangled state from four entangled photons

is equal to

|M〉1 2 1′ 2′ |M〉3 4 3′ 4′

=
1

16
(|H〉|H〉 + |V 〉|V 〉)(|H〉|H〉 + |V 〉|V 〉)

⊗
2

∑

j=1

[

eijπ(|j〉|j〉 + |j′〉|j′〉 +
√

2|j〉|j′〉)
]

4
∑

k=3

[

eikπ(|k〉|k〉 + |k′〉|k′〉 +
√

2|k〉|k′〉)
]

. (6)

At the end of the J1 circuits, two BSs are applied
in modes 1′, 4′ and 2′, 3′, after which detectors are lo-
cated. Successful operation occurs when two identically
polarized photons are detected in modes 1′, 4′ or 2′, 3′

respectively, and the success probability of the detection
pattern is 1/16. To see how this works, note that it is
the components of the state in Eq. (6) which consist of
two bunched photons (|j′〉|j′〉 and |k′〉|k′〉) that can yield
successful detection : the anti-bunched photonic states
(|j〉|j′〉 and |k〉|k′〉) result in destructive interference. For
example, if we detect two horizontal photons in modes 1′

and 4′ but nothing in modes 2′ and 3′, the outcome state
is

|ψ′
HES〉 =

1

2
√

2
(|H〉|H〉 + |V 〉|V 〉)

⊗(|1〉|1〉 − |2〉|2〉 + |3〉|3〉 − |4〉|4〉). (7)

This state is, up to a linear optical transformation (in
this case two BSs in mode 1 and 2 and mode 3 and 4), a
hyper-entangled state.

It is interesting to note that the failure outcomes can
still yield photons in useful states. In particular the fail-
ure outcome where only the vacuum is detected leaves
all the photons still in two Bell pairs ; this occurs with
probability 1/16, and obviously the gate can then simply

be repeated. This suggests the overall success probability
is essentially 1/8. Some of the detection patterns, while
not yielding an HES do still leave two of the photons in
Bell pair, which could be recycled.

We are also able to use for the source a four-qubit
GHZ state of the form (|HHHH〉1234+|V V V V 〉1234)/

√
2

rather than two Bell pairs; this yields a higher success
probability. This also has the advantage that in this
case we need not assume the four detectors are polariza-
tion sensitive : they need only count numbers of pho-
tons at the output of the primed modes. Upon suc-
cessful detection, when two photons are detected in any
two spatial modes, the state in modes 1 to 4 becomes
a HES with a success probability 3/16, which is higher
than the case of two Bell pairs. Interestingly, no pho-
ton detection yields a 4-photon entangled state such as
(|Φ+〉12|Φ+〉34 + |Ψ+〉12|Ψ+〉34)/

√
2.

Finally, if we wish to create a HES ballistically from
single photons, then we can replace the two Bell pairs
input at the source S2 by two copies of the circuit for
generating a Bell pair from 4 single photons (Figure 8
in Appendix C). In this case we find that the success
probability is 1/163.

B. Generating larger quadbit cluster states

1. 3 quadbit cluster state

FIG. 2: (color online) Circuit K1 for a 3 quadbit cluster state
from two HESs

To create a 3 quadbit cluster state, we use the “mod-
ified quantum filter” (MQF) scheme we present in Ap-
pendix B 2. This circuit implements a parity gate be-
tween the input photons in a manner which does not de-
stroy the input photons when it is successful, and more-
over is unaffected by situations wherein one of the input
modes is empty.

Our circuit for generating a 3 quadbit cluster from two
HES’s is depicted in Figure 2. S1 and S2 are sources
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of initial HESs each in |Φ+
HES〉. Note that there is one

photon spread across spatial modes (3,4) and one photon
spread across spatial modes (5,6) - the circuit is a two-
photon gate, and only one photon will be detected - this
is reminiscent of fusing together two Bell pairs by Type-I
fusion to create a 3 qubit GHZ (cluster) state, and in fact
this gate does act as a Type-I fusion gates for quadbits.
After a successful operation in modes 3 and 5 of the MQF,
the outcome state is equal to

√
2

6

[

|H〉1|H〉3|H〉5|H〉7 + |V 〉1|V 〉3|V 〉5|V 〉7
+ 2(|H〉2|H〉4 + |V 〉2|V 〉4)(|H〉6|H〉8 + |V 〉6|V 〉8)

]

,

(8)

(the measurement operator for operation of the MQF’s
is presented in Eq. (B5) in Section B2). Note that in
Eq. (8), the first two terms contain a photon in mode 3
and the other terms also have a photon in mode 6 (these
are the modes which will be detected). After a polar-
izing beam splitter (PBS) between modes 4 and 6, two
Rπ/4s, and a BS in mode 3 and 6, detection of a photon
in either mode 3 or 6 results in successful gate opera-
tion. The outcome state results from only four terms in
Eq. (8), such as |H〉1|H〉3|H〉5|H〉7, |V 〉1|V 〉3|V 〉5|V 〉7,
|H〉2|H〉4|H〉6|H〉8, and |V 〉2|V 〉4|V 〉6|V 〉8. The extra
beam splitter (BS3/4) with vacuum input in mode 4 bal-
ances amplitudes in the final state. For example, after a
successful detection in the MQF, the detection of a ver-
tical photon in mode 3 and vacuum in modes 6 and 4
yields a final state

|QdC′
3〉 =

1

2

(

|H〉1|H〉5|H〉7 − |V 〉1|V 〉5|V 〉7
+ |H〉2|H〉4|H〉8 − |V 〉2|V 〉4|V 〉8

)

,

=
1

2

(

|0̄〉|0̄〉|0̄〉 − |1̄〉|1̄〉|1̄〉 + |2̄〉|2̄〉|2̄〉 − |3̄〉|3̄〉|3̄〉
)

,

(9)

where the set {|0̄〉, |1̄〉, |2̄〉, |3̄〉} is defined by {|H〉1, |V 〉1,
|H〉2, |V 〉2}, {|H〉5, |V 〉5, |H〉4, |V 〉4}, and {|H〉7, |V 〉7,
|H〉8, |V 〉8}.

When the generalized quadbit Hadamard operation
and a phase shift are employed on a vertical photon
in mode 5 and 4, the outcome state is equivalent to a
3-quadbit cluster state |QdC3〉 in Section II A. There-
fore, we obtain a three-quadbit cluster state in modes
1,2,4,5,7, and 8 with success probability 1/256.

2. 4 quadbit cluster state

A slight modification of the circuit in the previous sub-
section can easily build a 4-quadbit cluster state. We
start from the intermediate state in Eq. (8) (see Figure
3). Because the state does not contain an input of vac-
uum states in mode 4 and 6, the original QF can be used
(see Section B2). When the original QF is successfully

FIG. 3: (color online) Circuit K2 for a 4-quadbit cluster state
from 2 hyper-entangled pairs

applied in modes 4 and 6 to the outcome in Eq. (8), the
final state is equal to

|QdC′
4〉 =

1

2

(

|H〉1|H〉3|H〉5|H〉7 + |V 〉1|V 〉3|V 〉5|V 〉7
+ |H〉2|H〉4|H〉6|H〉8 + |V 〉2|V 〉4|V 〉6|V 〉8

)

.

(10)

This is equivalent to

|QdC4〉 =
1

2

3
∑

d=0

|+d〉|d̄〉|+d〉|+d〉, (11)

up to a local operation on the second photon. Note this
is a 4-quadbit state of “star” form - i.e a central quadbit
with three leaves, and thus is useful for creating quadbit
clusters with nontrivial topology.

From the resource point of view, two hyper-entangled
states and six single photons (four horizontal and two
vertical photons) are used to create such a 4 quadbit
cluster with success probability 1/1024.

IV. FUSING QUADBIT CLUSTER STATES

In order to perform optical quadbit one-way quantum
computation, we require a procedure for building large
multi-quadbit cluster states. The Type-I style gate (of
section III B 1) could be used; however its success proba-
bility is very low.

In Figure 4, we present a Type-II-like fusion gate be-
tween two quadbit cluster states. The total circuit is
comprised of two sub-circuits we label T3, consisting of
two four-port interferometers. The operation of the T3

gate is discussed in Appendix B1. The basic effect of gate
T3 is to destroy the spatial mode information carried by
the photons while leaving their polarization information
in fact.
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FIG. 4: (color online) Circuit K3 of a Type2-like fusion gate
on two hyper-entangled pairs

As shown in Figure 4, the initial state is prepared in
|Φ+

HES〉1 2 3 4|Φ+
HES〉5 6 7 8. What we desire of this gate is

that when it succeeds it tells us “the photons were either
in modes 3 and 5 or they were in modes 4 and 6, and
their polarization was the same”. However it should not
reveal in which pair of spatial modes they were, and with
what polarization.

After two Rπ/2s in mode 5 and 6, the intermediate
state is

1

4
(|H〉1|H〉3 + |V 〉1|V 〉3 + |H〉2|H〉4 + |V 〉2|V 〉4)
(|V 〉5|H〉7 + |H〉5|V 〉7 + |V 〉6|H〉8 + |H〉6|V 〉8). (12)

Based on the discussion in Appendix B 1, if the upper
T3 gate is implemented (without extra photons in modes
3′, 5′) and a successful detection occurs (i.e. a single
horizontal and a single vertical photon are detected in
two of the modes 3, 5, 3′, and 5′), it generates the Bell
state in modes 1 and 7:

(|H〉1|H〉7 ± |V 〉1|V 〉7)/
√

2. (13)

Note that the parts of the input state with amplitude in
modes 4, 6 are then wiped out.

On the other hand, if the lower T3 gate detects one hor-
izontal and one vertical photon, originating from modes
4 and 6, it makes a Bell state in mode 2 and 8

(|H〉2|H〉8 ± |V 〉2|V 〉8)/
√

2. (14)

and amplitude for modes 3 and 5 is wiped out.
We essentially desire both of these T3 gates to be able

to succeed simultaneously and indistinguishably. In order

to attain this, extra photons are injected into the spatial
modes 3′, 4′, 5′, and 6′. We will consider various possible
initial states for these ancillary photons. The basic idea
is that indistiguishable events occur if two photons in dif-
ferent polarizations are detected in both the upper and
lower T3 gates simultaneously. These events can arise
from either the ancillary photons or the ‘actual inputs’
- and our lack of knowledge about which possibility oc-
curs gives an amplitude for both T3 gates working. The
success probability relies on the input state of the extra
two photons, and we discuss several possibilities.

The first case is that two single photons are injected
in mode 3′, 4′, 5′, and 6′ in the state

|Ex1〉 =
1

4
(|H〉3′ + |V 〉3′ + |H〉4′ + |V 〉4′)

(−|H〉5′ + |V 〉5′ − |H〉6′ + |V 〉6′), (15)

where each photon is a superposed state in two spatial
modes in both polarizations.

When we detect two different polarized photons in the
upper T3 gate and two different polarized photons in the
lower one, we do not know whether the four photons de-
tected in both T3 gates come from hyper-entangled states
or the extra input photons. For example, the upper T3

gate succeeds upon detection of a horizontal photon in
mode 3 and a vertical photon in mode 5. The photons
could come from any two modes out of modes 3, 5, 3′,
and 5′. According to Eq. (15), the detection works on
various input states like |H〉3|V 〉5, |V 〉3|H〉5 ,|H〉3′ |V 〉5′ ,
and |V 〉3′ |H〉5′ . If the detected photons were |H〉3|V 〉5,
|V 〉3|H〉5, the remaining state from Eq. (12) is equal
to the state in Eq. (13). However, if the detected pho-
tons were |H〉3′ |V 〉5′ , and |V 〉3′ |H〉5′ , the lower circuit
could be activated by |H〉4|V 〉6, |V 〉4|H〉6 and the re-
maining state equals Eq.(14). The same logic can be ap-
plied the other way around between the upper and lower
circuits. Thus, for the successful cases (two different po-
larized photons detected in each T3 gate), the final state
is equivalent to

1

2
(|H〉1|H〉7 + |V 〉1|V 〉7 + |H〉2|H〉8 + |V 〉2|V 〉8) , (16)

which is a superposition state of Eq. (13) and Eq. (14).
For this case, the total success probability is 1/64.

We now consider injecting a Bell pair in mode 3′, 4′,
5′, and 6′ instead of two single photons such as

|Ex2〉 =
1

2
√

2

[

(|H〉3′ + |V 〉3′)(−|H〉5′ + |V 〉5′)

+ (|H〉4′ + |V 〉4′)(−|H〉6′ + |V 〉6′)
]

.(17)

it can readily be seen that the same indistinguishability of
T3 gate operations occurs - in this case with total success
probability 1/32.

Finally, the most efficient state to use is the ancillary
input a HES

|Ex3〉 =
1

2
(|H〉3′ |V 〉5′ + |V 〉3′ |H〉5′

+ |H〉4′ |V 〉6′ + |V 〉4′ |H〉6′). (18)
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In this case the total success probability is 1/16.
Interestingly, even in some failure cases, we still have a

chance to have remanent entanglement between two pho-
tons in mode 1 (or 2) and 7 (or 8) of Figure 4. Without
the help of extra photons in the primed modes, the suc-
cess probability is 1/2 to generate a Bell pair from two
HESs through this circuit. If we use two extra photons,
the possibility of obtaining some entanglement between 1
(or 2) and 7 (or 8) becomes higher than 1/2. This could
possibly be useful for some hybrid qubit/quadbit clus-
ter states computing schemes. For example, we imagine
a modified qubit cluster state possessing a HES at the
edge and fuse two copies of this state on the HES side in
circuit K3. With an extra HES in the primed modes, a
HES or a Bell pair is generated among mode 1, 2, 7, and
8 with overall probability 3/4.

We see therefore that we can use this Type2-like circuit
to create a Bell pair from HESs. As shown in Figure 4,
we prepare two HESs with no extra photon. With prob-
ability 3/4 we achieve a Bell state. Although this seems
perverse - destroying two HES’s to create a Bell pair,
it raises an interesting possibility of attaching systems
which have the form of a HES at the end of the (qubit)
cluster state. If we perform this fusion gate on two such
photons, it appears that we could fuse the larger qubit
cluster state with the probability 3/4.

V. SUMMARY OF SOME RESOURCE
TRADEOFFS

A. Difficulties of quantifying tradeoffs

A Bell pair can be created from 4 single photons with
probability 1/4 (see Appendix C for a proof - previously
published results [20] suggested the success probability
was 3/16). Such creation is ballistic - the single photons
are fired in, and (up to some local linear transforma-
tion) the desired Bell state is created 1 in 4 times. We
could say that a Bell pair is “worth” 16 single photons
on average - this indicates how much easier things will
be if we have a deterministic source of Bell pairs. Now
a trivial extension of this ballistic scheme can create a
3-photon GHZ state from 6 single photons with proba-
bility 1/32, and can create (ballistically) a 4-photon GHZ
state with probability 1/128 (see Table I). From this we
might conclude a 3-photon GHZ state is worth 96 pho-
tons. However we can also create a 3-photon GHZ state
by using a Type-I gate [13] and fusing two Bell pairs.
The Type-I gate succeeds with probability 1/2, and each
Bell pair is worth 16 photons, so this indicates the GHZ
state is only worth 64 single photons. The difference, of
course, is that with the latter technique we would have
to store the Bell pair, once created, in order for it to be
available to combine with the second Bell pair. While
the ability to postselect on successfully generated states
(and then store them) lies at the heart of why it is we can
turn exponentially decreasing probabilities into efficient

methods for creating large entangled states, such storage
is likely to present practical problems. (It is worth noting
that the percolation techniques of [3] ameliorate many of
these issues).

Resource counting is made even messier by the follow-
ing observation: Sometimes we may require the use of
an ancillary entangled state within some larger ballistic
circuit (a Bell pair say). One may think that we could
replace this Bell pair by 4 single photons (as in Fig. 8 in
Appendix C) to obtain a ballistic single photon scheme,
and only take a hit of 1/4 in the overall success proba-
bility of the larger circuit. However the ballistic scheme
presumes the ideal state is produced “up to easily im-
plementable linear optical transformations” - and it is
generally a smaller set of detection outcomes which yield
the desired state for input into the larger circuit.

The final feature that makes resource counting difficult
is the nature of failure outcomes: sometimes failed gates
acting on suitably large input states still leave some of
the systems in useful resource states. The potential for
recycling (which also requires quantum memory) often
greatly complicates the question of optimizing resource
counting [5].

B. Resources for quadbit cluster states

As shown in Table I, A various combination of re-
sources can be used to create any desired state. Without
an entangled source (i.e. only single photon sources) one
can generate a Bell pair from 4 single photons, a 3-photon
GHZ state from 6 photons, and 4-photon GHZ state from
8 photons. However, using entangled sources, the desired
many-photon state can be built with much higher prob-
abilities.

In terms of quadbit cluster states, the counterpart of a
Bell pair for qubit is a HES. So, to build a HES requires
a source such as 8 single photons, two Bell pairs, or one

Resource Output Probability
SP BP 3GHZ 4GHZ HES 3QdC
4 BP 1/4
6 3GHZ 1/32
8 4GHZ 1/128

2 3GHZ 1/2
1 1 4GHZ 1/2

8 HES 1/4096
2 HES 1/16

1 HES 3/16
4 2 3QdC 1/256
6 2 4QdC 1/1024
6 1 1 4QdC 1/256
2 2 4QdC 1/64

1 2 4QdC 1/32
1 2 4QdC 1/16

TABLE I: Resource costs for multi-quadbit cluster states (SP
= single photon, BP = Bell pair, HES = hyper-entangled
state, and QdC = quadbit cluster)
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4-photon GHZ state. Based on the circuit J2 the optimal
probability is 3/16, obtained when using a 4-photon GHZ
state.

The bottom of the table shows various ways of building
multi-quadbit cluster states by proposed methods with
the help of extra photons. We only have one method
to build 3 quadbit cluster stated using circuit K1, while
several possible methods are available to create a 4 quad-
bit cluster state through circuits K2 and K3. For the 4
quadbit cluster state, the success probability without a 3
quadbit cluster state is 1/1024 (using circuit K2).

VI. CONCLUSION

We have initiated the study of building higher dimen-
sional cluster states of photons. Although we have pre-
sented several “modules” within our constructions that
we expect to be of generic use for LOQC using higher di-
mensional photonic states, it is unclear to us whether the
procedures we have outlined are close to the best possible.
If they are, then there seems to be limited advantage in
using higher dimensional cluster states built up from sin-
gle photons from a strict resource counting perspective.
It is possible, however, that in the future deterministic
sources of hyper-entanglement become available.

Very recently, qubit one-way quantum computation
using a hyper-entangled state (HES) has been demon-
strated [26, 27]. In these papers, a four-qubit cluster
state is created from a HES generated by a spontaneous
parametric down conversion. They assume that photon’s
polarization and its spatial modes are defined as a qubit
respectively and destroying a single photon performs two
single qubit measurements simultaneously. Note that
this is quite different to our proposal, where we use a
single photon as a higher-dimensional quantum unit. An
equivalence between these schemes arises for a 2-quadbit
HES and a 4-qubit linear cluster state because 2+2 = 2·2
[26, 27].
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APPENDIX A: BASIC OPTICAL TOOLS

We use the convention that a regular beam splitter
(Fig. 5 (a)) which we denote BSr2 acts upon two spatial
modes 1,2 according to

|H(V )〉1 → t|H(V )〉1 + r|H(V )〉2,
|H(V )〉2 → −r|H(V )〉1 + t|H(V )〉2, (A1)

where t2 + r2 = 1. A 50:50 BS (t = r = 1/
√

2) acts

according to |H(V )〉1 → (|H(V )〉1 + |H(V )〉2)/
√

2 and

|H(V )〉2 → (−|H(V )〉1 + |H(V )〉2)/
√

2. On a single pho-
ton this is a Hadamard gate in the spatial mode. How-
ever, when two horizontal (vertical) photons are injected
in modes 1 and 2 respectively, the total photonic state
shows destructive interference between modes 1 and 2
- the two photons bunch into a single mode together.
More explicitly, if two polarized photons |H〉1|H〉2 are
injected onto a 50:50 BS, the total state is equal to
1√
2
|H〉|H〉⊗(−|1〉|1〉+|2〉|2〉) where |H2〉i denote two hor-

izontal photons in mode i. This state could be called an
entangled state in spatial mode. In terms of the quadbit
encoding Eq. 2, the regular BS induces unitary rotations
between state |0̄〉,|2̄〉 and between |1̄〉,|3̄〉.

In Fig. 5 (b), a polarization rotator (Rθ) in mode 1 is
depicted - its action is taken to be

|H〉1 → cos θ|H〉1 + sin θ|V 〉1 ,
|V 〉1 → − sin θ|H〉1 + cos θ|V 〉1, (A2)

where angle θ is the amount of the rotating axis of
linear polarizer. A π/4 polarization rotator Rπ/4 acts

such that |H〉1 → |+〉1 = (|H〉1 + |V 〉1)/
√

2 and

|V 〉1 → |−〉1 = (−|H〉1 + |V 〉1)/
√

2. On a single pho-
ton this is a Hadamard gate in polarization; on two
differently polarized photons in the same spatial mode
|H〉1|V 〉1 are transformed by a rotation Rπ/4 into the

state 1√
2
(−|H〉|H〉 + |V 〉|V 〉) ⊗ |1〉|1〉, again because of

destructive interference. This photonic state has entan-
glement in polarization (although the two photons are
located in a single spatial mode together). In terms of
the quadbit encoding Eq. 2, the polarization rotator in-
duces unitary rotations between state |0̄〉,|1̄〉 and between
|2̄〉,|3̄〉.

FIG. 5: (color online) (a) Beam splitter BSr2 (b) Polarization
rotator Rθ (c) Polarizing beam splitter (PBS)
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FIG. 6: (color online) The Type3 fusion gate T3 creates in-
distinguishability of photons in mode 3 and 5

In Fig.5(c) a polarizing beam-splitter (PBS) is de-
picted. It acts such that a vertical photon is reflected
into a different spatial mode (1 → 2 and 2 → 1), while
a horizontal photon passes through a PBS. In terms of
the quadbit encoding Eq. 2, the PBS induces a swap
operation between |1̄〉 and |3̄〉.

APPENDIX B: ADVANCED OPTICAL TOOLS

1. Gate T3

Here we present a gate similar to a qubit Type-II gate,
which is used to create a Type-II-like gate for quadbits.
In Figure 6, we begin with two Bell-pairs |ψ+〉1 3|ψ+〉5 7

and act the gate on modes 3 and 5. The state after a
Rπ/2 in mode 5 is equal to

1

2
(|H〉1|H〉3 + |V 〉1|V 〉3)(|V 〉5|H〉7 + |H〉5|V 〉7). (B1)

A four-port interferometer is then introduced [28].
This interferometer essentially erases spatial mode infor-
mation . Its operation on a single photon input into any
of the modes 3, 5, 3′, 5′ is:

|P 〉3 →
(

|P 〉3 + |P 〉5 + |P 〉3′ + |P 〉5′

)

/2,

|P 〉5 →
(

− |P 〉3 + |P 〉5 − |P 〉3′ + |P 〉5′

)

/2,

|P 〉3′ →
(

− |P 〉3 − |P 〉5 + |P 〉3′ + |P 〉5′

)

/2,

|P 〉5′ →
(

|P 〉3 − |P 〉5 − |P 〉3′ + |P 〉5′

)

/2, (B2)

where P denotes either horizontal or vertical polarization
(H,V ). In the case that inputs 3′ and 5′ are vacuum, as
in our example here, we need only consider here the first
and second transformations in Eq. (B2). Note, however,
that the possibility of extra input photons in these modes
will be used in Section IV to create indistinguishability
in polarization.

To continue with our example, when we detect a hor-
izontal photon in mode 3 and a vertical photon in mode
5, the original photons in Eq.(B1) could be either |V 〉3
|H〉5 or |H〉3 |V 〉5 . When a horizontal and a vertical
photon are detected in any mode out of 3, 5, 3′, and 5′,
the final state is

1√
2
(|H〉1|H〉7 ± |V 〉1|V 〉7). (B3)

The failure cases (the detection of two horizontal or two
vertical photons) yield a product state. That is, in the
failure cases, the detection of two horizontal (vertical)
photons comes only from |H〉1|V 〉7 (|V 〉1|H〉7). The fail-
ure outcome gives us the polarization information of the
other photons.

The overall effect of the gate is to remove spatial mode
information in a way that does not destroy polarization
information. This gate T3 has success probability 1/2
and it destroys both input photons.

2. Quantum filter (QF)

The original qubit QF [29] depicted in Figure 7 is useful
for generating multi-qubit entangled states determinis-
tically. Two photons in modes i and j are injected into
the QF; successful detection occurs if and only if their po-
larizations are the same. The most interesting feature is
that the injected photons survive in the output modes af-
ter the QF. Consider, as shown in Figure 7 (a), when two
input Bell-pairs (as in Eq. (5)) are passed through a QF
set up in mode 2 and 3. (The BS3/4 is required to balance
coefficients in the two different polarization modes). The
output state is simply the fusion of the initial Bell states,
i.e. the GHZ state (|HHHH〉1234 + |V V V V 〉1234)/

√
2.

In cases where only a single photon is input there is a
fundamental asymmetry between horizontal and vertical
input photons in the workings of the QF. For example,
the QF is activated (a success detection is achieved) when
a vertical photon in mode i is input along with vacuum in
mode j. Taking into account vacuum inputs, the action
of the QF circuit when successful can be represented by
a measurement operator

Ŝij =
1

4
(|HH〉ij〈HH | + |V V 〉ij〈V V |) +

1

4
|øV 〉ij〈øV |

+
1

2
(|V ø〉ij〈V ø| + |ø ø〉ij〈ø ø|). (B4)
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This asymmetry between H,V is highly detrimental to
our purposes, as is the fact that the filter will trigger
success when only single photon is input.

To obtain a complete quantum filter for both polariza-
tions, a modification is required in the vertical part of
the original filter, and this takes two additional ancilla
vertical photons. This modified quantum filter (MQF)
is shown in Figure 7 (b). The measurement operator for
the MQF is

Ŝ′
ij =

1

8
(|HH〉ij〈HH | + |V V 〉ij〈V V |)

+
1

4
|ø ø〉ij〈ø ø|). (B5)

Note that the BS3/4 with a vacuum input (which es-
sentially just dumped unwanted amplitude) is no longer
needed because the MQF balances the outcomes for both
polarizations naturally. The success probability of the
MQF is 1/128.

FIG. 7: (color online) Implementation of (a) an original and
(b) a modified quantum filter

FIG. 8: (color online) (a) The circuit B creates a Bell pair
from four single photons in horizontal polarization when single
photons are detected at D2 and D3 and (b) An extra circuit
is required for correcting the case of two-photon detection in
circuit B.

APPENDIX C: IMPLEMENTATION OF A BELL
PAIR FROM FOUR SINGLE PHOTONS

We present a scheme to build a two-photon Bell state
from four single photons. Initially, all photons are pre-
pared with horizontal polarization. As shown in Figure
8(a), each photon passes through a Rπ/4 in each mode
and two PBSs are applied in modes 1 and 2 as well as
3 and 4. Then, we use a Type-II fusion gate between
modes 2 and 3. If two different polarized photons are
detected in any mode, we obtain a typical form of a Bell
pair with a success probability 3/16, as noted in [13, 20].
However, previously the detection of two photons of the
same polarization was regarded as a failure case.

In fact, we can transform this error state to a typical
Bell pair probabilistically with a simple circuit in Figure 8
(b). For example, we assume that two horizontal photons
are detected in mode 2 and two photons remain in modes
1 and 4. The outcome state contains a mixture of two-
photon states in a single spatial mode and a state of one
photon in each mode. The first part of the correction
circuit consists of two BSs and a Rπ/4 (see the bottom
of Figure 8 (b)). After the first part, the total state
is a bunching state made by two equivalently polarized
photons with unbalanced coefficients in each mode, such
as:

1

2
√

3
(|H2〉1 − 3|V 2〉1 + |H2〉4 + |V 2〉4). (C1)

In the remainder part of the circuit, the BSR0
(R0 =

2/3)) with a vacuum input plays a key role to balance co-
efficients in the final state and Pπ/2 is a π/2 phase shifter
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in mode 1. For successful cases, no photon detection at
D1′ reduces a coefficient of one photonic state in a cer-
tain spatial mode. Finally, the total state is equal to

|φ−〉1 4 with a success probability 1/16. Therefore, the
optimal success probability is 1/4 to create a Bell pair
linear optically from four single photons.
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