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Abstract 

A number of theoretic models, as well as empirical equations obtained by fitting specific 

experimental data, have been developed to describe the relationship between effective 

stressand permeability of whole (intact) and fractured porous rock. It has been found that 

most experimental data can be fitted using exponential equations. In this study the modified 

power law equations by Gangi for intact and fractured rocks are revisited to evaluate their 

applicability for modeling experimental permeability data which display exponential or near-

exponential effective stress dependency. It has been shown that Gangi’s power law equations 

for both intact and fractured rock can be approximated, over the range of effective stresses of 

practical interest, by exponential equations with compressibilities that are related to the 

physical property of the rock. The significance of this work is that it has provided further 

theoretical evidence for the apparent exponential relationship between effective stress and 

permeability. Moreover, it allows for more vigorous theoretical equations to be applied with 

the easiness of empirical exponential equations. This is demonstrated by applying the models 

to the experimental permeability data for six gas shales reported recently.  
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1. Introduction  

Experimental studies on the variation of intact porous rock permeability with effective stress 

applied on the rock have been reported in the literature since 1950s (e.g. Fatt and Davies, 

1952; Dobrynin, 1962; Gray et al., 1963; Knutson and Bohor, 1963; Kwon et al., 2001; 

Bustin et al. 2008; Dong et al., 2010; Heller et al., 2014). Empirical equations have been 

proposed to describe the experimental permeability data. They include exponential functions 

(e.g., Louis et al. 1977), power functions (e.g., Tiller, 1953; Kranz et al. 1979) and 

logarithmic functions (e.g. Dobrynin, 1962; Jones and Ovens, 1980).   

As well as empirical equations, theoretical models have also been developed to describe the 

experimental data and predict the permeability behavior under stress. Gangi (1978) developed 

a phenomenological model, based upon the Hertzian theory of deformation of spheres, to 

predict the variation with effective stress with the permeability of whole (intact) porous rock. 

Gangi noted that if a porous rock is assume to be made up of a packing of spherical grains of 

uniform size, then its permeability will be a function of the square of the cross-sectional area 
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of its pores. Gangi further pointed out that permeability of the porous rock also depends upon 

the number of pore channels in a unit area perpendicular to the direction of flow and the 

number of pore channels per unit area is inversely proportional to the square of the sphere 

radius. Thus; if rp is the pore radius and R is the spherical grain radius (see Figure 1a), the 

permeability of the porous rock in consideration will be given by 

  𝑘 ∝
𝑟𝑝

4

𝑅2
      (1) 

         

(a)  (b) 

Figure 1 a) A schematic of uniform grain packing for estimation of constant C0; b) reduction in the 

pore radius caused by grain deformation (modified from Gangi, 1978).  

 

Hertz theory gives change in separation,  between sphere centres in a sphere packing due to 

an external force, F, as (Figure 2): 
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where: 

 = the "approach" (or change in separation) of the sphere centres; 

R = the radius of the spherical grains;  

d = the radius of the circle-of-contact of the spheres; 

F = the external force; 

E = the Young's modulus for the grains; 

 = the Poisson's ratio for the grains; 
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P = the external stress= F/R
2
; 

Kgra = the effective elastic modulus for the grains given by 

𝐾𝑔𝑟𝑎 =
4𝐸

3π(1−𝜐2)
=

4𝐾(1−2𝜐)

π(1−𝜐2)
     

where K is the bulk modulus for the grains. Gangi noted that Kgra is typically of the same 

order of the grain material bulk modulus (𝐾𝑔𝑟𝑎 ≈ 0.7𝐾 for  ≈ 0.25). 

 

 

Figure 2 Sphere-sphere deformation considered in Hertz theory (after Gangi, 1978). 

 

Gangi assumed, to a first approximation, that the pore shape does not change significantly 

(except in size) as P is increased and obtained the following expression for the reduction in 

the "pore radius" (Figure 1b) 

∆𝑟𝑝 = 𝑐1𝛼 ≅ 1/(2 cos θ)α.      (3) 

Upon using Hertz’s theory Equation (2), Equation (3) may be rearrange as 
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where C0 = 2clR/rp is a constant depending upon the packing. Combining Equations (1) and (4), 

the following equation is obtained by Gangi  

𝑘𝑤𝑟 = 𝑘𝑙𝑝[1 − 𝐶0 (
𝑃

𝐾𝑔𝑟𝑎
)

2

3
]4     (5) 

where klp is the initial permeability of the loose-grain packing. Gangi recognised that in real 

rocks, there will be some cementation or permanent deformation of the grain contacts such 

that the radius (d in Figure 2) of the area-of-contact is not zero at zero stress. He pointed out 
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that this is equivalent to having some initial stress, Pi, acting on the rock and modified the 

equation accordingly,  

𝑘𝑤𝑟 = 𝑘𝑙𝑝[1 − 𝐶0 (
𝑃+𝑃𝑖

𝐾𝑔𝑟𝑎
)

2

3
]4     (6) 

Although Equation (6) is derived based upon the assumption that the grains are all the same 

size spheres. Gangi argued that the same functional dependence would be expected even for a 

distribution of grain sizes. Gangi also pointed out that the underling Hertzian theory Equation 

(2) is unlikely to be valid for the effective stress Pe above 0.03Kgra. However, given that Kgra 

is typically of the order of the grain bulk modulus, this would correspond, in general, to 

stresses as high as 10
5
 psi (~69 MPa), well above the range of most measurements. 

The response of fracture permeability in rocks to applied effective stress has also attracted a 

lot of interests from the research communities since 1970s (e.g. Jones, 1973; Nelson, 1975; 

Witherspoon and Gale, 1977). Both empirical equations and theoretical models have been 

developed to describe the experimental data and predict the fracture permeability behavior. It 

is commonly assumed in the derivation of the theoretical models that the fracture 

permeability is proportional to the cubic of its aperture.  

Using a 'bed of nails' model (Figure 3a) for the asperities of a fracture, Gangi (1978) 

developed a model to describe the permeability variation of a fracture (or a fractured rock) 

with applied stress. In his derivation Gangi considered a simple power-law variation for the 

asperity-length distribution,  

𝑁(𝑥) = 𝐼0 (
𝑥

𝑤0
)

𝑛−1

, 1 < 𝑛 < ∞   (7) 

where N(x) gives the number of rods whose shortness (the difference between its height li and 

the height of the largest rod w0) is less than x, and I0 is the total number of rod asperities. The 

exponent n cannot take on values less than one because the number of rods is finite when x = 

0.  

      

(a)      (b) 

Figure 3  a) A schematic of “bed of nail” model; b) Power-law asperity-shortness 

distribution functions (after Gangi, 1978). 
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These power-law distribution functions are plotted in Figure 3b. Gangi pointed out that while 

more complicated distribution functions might be needed and could be used, these 

distribution functions cover all the important characteristics that can be expected for fracture 

surfaces. For example, a very smooth surface with only a very few short asperities (or very 

few with large shortness) would be characterised by a distribution function with n close to 

one. On the other hand, a fracture with just a few tall asperities (i.e. only a few with small 

shortness) would be characterised by a large n value. Gangi noted that the first case would be 

representative of a well-polished surface, while the latter would be representative of a new 

fracture with just a few large intact asperities. 

 

Gangi (1978) derived the following equation for the spacing between the fracture faces w 

subject to an external stress P = F/(DL) (Figure 3a), 

𝑤/𝑤0 = 1 − (
𝑃

𝐾𝑎𝑠𝑝
)

𝑚

     (8a) 

Or in terms of reduction in the fracture spacing 

𝑥/𝑤0 = (
𝑃

𝐾𝑎𝑠𝑝
)

𝑚

     (8b) 

where Kasp is the effective modulus of the asperities (Kasp = EaspAr/A, where Ar/A is the 

fractional area contact of the crack faces) and is typically of the order of one-tenth to one-

hundredth of the asperity material bulk modulus. The exponent m (m=1/n, 0 < m < 1) is a 

constant that characterises the distribution function of the asperity heights, with low/high 

values representing relatively rougher/smoother fracture surfaces.  

Thus the permeability variation for the fracture is given by 

𝑘𝑓 = 𝑘𝑓0[1 − (
𝑃

𝐾𝑎𝑠𝑝
)

𝑚

]3    (9) 

where kf0 is the fracture permeability at zero effective stress.  

In the derivation of Equation (8), Gangi assumed, for mathematical convenience and 

simplicity, that the rods have the same spring constant, which provides the resistance to 

deformation. The spring constant for a rod is given by 

ki = Eai / li      (10) 

where E and ai are the Young's modulus and cross-sectional area of the rods, respectively. If 

the rods are made of the same material and they all have the same Young's modulus, E, then 

this requires that the cross-sectional area proportional to the length of the rods. It was further 

implicitly assumed that the spring constant of the rods would remain unchanged during rod 

deformation. The implication of this latter assumption will be discussed later.  

 

Walsh (1981) considered fractures with an exponential size distribution of asperities and 

found the permeability to vary as 



𝑘𝑓 = 𝑘𝑟𝑒𝑓[1 − √2ℎ/𝑎𝑟𝑒𝑓𝑙𝑛 (
𝑃

𝑃𝑟𝑒𝑓
)]3    (11) 

where kref is the permeability at reference stress Pref, h is the root-mean-square height 

distribution of asperities, and aref is the half width of the fracture aperture at the reference 

stress Pref. An advantage of this model over Gangi’s model (Equation (9)) is that it can be 

applied, in a straight forward way, to fit the experimental data though linear regression 

between k
1/3 

and lnPe. However, unlike Gangi’s model, the equation does not contain any 

elastic properties of the asperities. Other fracture permeability models have also been 

proposed, of which an excellent review is given by Rutqvist and Stephansson (2003).  

Previous studies of shale permeabilities have shown that both exponential and power law 

equations appear to yield good fit to the experimental data (e.g. Katsube et al., 1991; Vasseur 

et al., 1995; Dewhurst et al., 1999; Dong et al., 2015). Bustin et al. (2008) reported shale 

permeabilities and their variation with effective stress for several shales (Figure 4). We found 

that the digitized permeability data from the original publication, which span over 3 orders of 

magnitude, can be fitted well using an exponential function of the effective stress Pe with a 

constant compressibility coefficient cexp, 

𝑘𝑒𝑥𝑝 = 𝑘0𝑒−𝑐𝑒𝑥𝑝𝑃𝑒     (12) 

The compressibility coefficient ranges from 5.07x10
-4

 to 1.33x10
-3

 psi
-1

 (7.35x10
-2

 to 0.193 

MPa
-1

) for the five shales. 

 

Figure 4  Experimental permeability data of different shales displaying exponential relationship with 

effective stress (modified from Bustin et al., 2008) 

At a first glance there exists a mismatch between the above power law/logarithmic theoretical 

models and the experimental permeability data that exhibit exponential or near-exponential 

effective stress dependency. In this study, an in-depth analysis has been carried out to 

ascertain whether these models could be applied to describe the experimental permeability, 

which is of practical interest. In particular, the power law models by Gangi are analysed to 

evaluate their predictability of the near-exponential permeability behaviour. It will be shown 

that Gangi’s power equations for both intact and fractured rocks can be approximated by 
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exponential equations over certain ranges of effective stress. The two models are then applied 

to the comprehensive permeability data for a number of gas shales recently published by 

Heller et al. (2014) and the results are presented and discussed. 

 

2. Near-exponential relationship in the theoretical models  

In this section Gangi’s models for intact and fractured rocks are revisited to reveal the hidden 

near-exponential relationship between rock permeability and the applied effective stress. 

2.1 Intact rock 

Equation (6) maybe rearranged as 

𝑘𝑤𝑟

𝑘𝑙𝑝
= [1 − (

𝑃𝑒+𝑃𝑖

𝐾′
)

2

3
]4     (13) 

where  

𝐾′ = 𝐾𝑔𝑟𝑎/𝐶0
1.5     (14) 

Note that the external stress P is replaced by the effective stress Pe. Parameter 𝐾′ may be 

considered as an apparent bulk modulus of the porous rock which takes into account the grain 

packing as well as the grain elastic modulus. Packing constant C0 for a uniform packing 

arrangement can be computed. It can be shown that (Figure 1a) 

rp = R/cosq - R 

With q = 30
o
 (Figure 1a), rp/R = 0.155. It follows that   

𝐶0 =
2𝑐1𝑅

𝑟𝑝
≅

1

0.155 cos(30o)
= 7.46 

In other words, C0 is of order of 7.5, rather than 2 as reported by Gangi (1978). Thus, one has  

𝐾′ ≅ 𝐾𝑔𝑟𝑎/20     (14a) 

Figure 5a presents a semi-log plot of 
𝑘𝑤𝑟

𝑘𝑙𝑝
 as a function of the normalised effective stress 

𝑃𝑒+𝑃𝑖

𝐾′
. 

It can be seen that Gangi’s model predicts a steady reduction in permeability with an 

increasing (applied) effective stress. Examination of the plot reveals that the permeability 

reduction over a certain range of the normalized effective stress is very close to exponential 

(following a straight line).  

The fitted exponential equation has the form (Figure 5b) 

𝑘𝑤𝑟

𝑘𝑙𝑝
≅ 0.797e

−7.238 
𝑃𝑒+𝑃𝑖

𝐾′     (15) 

The difference between the exponential Equation (15) and Gangi’s Equation (13) is within 5% 

over the normailised effective stress range (Figure 5c) 



0.03 ≤
𝑃𝑒+𝑃𝑖

𝐾′ ≤ 0.44     (16) 

 

(a)  (b) 

 

(c)  (d) 

 

Figure 5  a) Semi-log plot of intact rock permeability ratio with respect to the normalised total 

effective stress from Gangi’s model; b) near-exponential relationship within a certain 

effective stress range identified in this study; c) Relative error between Equations (15) and 

(13); d) The slope of tangent to the semi-log permeability curve shown in a). 

 

The slope of the tangent to the semi-log permeability-effective stress curve can be found from 

Equation (13) as 

𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑠𝑙𝑜𝑝𝑒 =
𝑑𝑙𝑛

𝑘𝑤𝑟
𝑘𝑙𝑝

𝑑(
𝑃𝑒+𝑃𝑖

𝐾′ )
= −

8

3(
𝑃𝑒+𝑃𝑖

𝐾′ )1/3[1−(
𝑃𝑒+𝑃𝑖

𝐾′ )2/3]
   (17) 

As shown in Figure 5d, the tangent slope curve remains largely flat within the normalised 

effective stress range [0.03, 0.44], Figure 5d. This suggests that the two terms in the 

denominator of the right-hand-side of Equation (17) compensate each other to a large extent 

over this stress range. This appears to be an interesting property of the power-law functions, 

as we shall come across later.  
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Given 𝐾𝑔𝑟𝑎 ≅ 20𝐾′ (assuming C0 = 7.5), the normalized total effective stress range [0.03, 

0.044], with respect to 𝐾′, is equivalent to [0.0015, 0.022] with respect to Kgra. Therefore the 

effective stress Pe of interest here is well within the limit (< 0.03𝐾𝑔𝑟𝑎) for which Gangi’s 

model is considered to be valid. The near-exponential permeability reduction over this stress 

range is over one order of magnitude (a factor of 20).  

Denoting 

 𝑘𝑤𝑟𝑖 = 0.797𝑘𝑙𝑝e
−7.238

𝑃𝑖
𝐾′    (18) 

Equation (15) becomes 

𝑘𝑤𝑟 ≅ 𝑘𝑤𝑟𝑖e
−7.238

𝑃𝑒
𝐾′   0.03 −  

𝑃𝑖

𝐾′
≤

𝑃𝑒

𝐾′
≤ 0.44 −  

𝑃𝑖

𝐾′
  (19) 

 

2.2 Fractured rocks  

Equation (9) may be rewritten as   

𝑘𝑓

𝑘𝑓0
= [1 − (

𝑃𝑒

𝐾𝑎𝑠𝑝
)

𝑚

]3     (20) 

where the external stress P is replaced by the effective stress Pe. The permeability behaviour 

of fractured rocks under loading is dependent on the asperity-length distribution in the 

fractures, which is characterised by parameter m (= 1/n). Semi-log plots of 
𝑘𝑓

𝑘𝑓0
 as a function 

of the normailised effective stress 
𝑃𝑒

𝐾𝑎𝑠𝑝
 for different values of m are presented in Figure 6.  

 
Figure 6 Semi-log plot of fractured rock permeability ratio with respect to the normalised effective 

stress from Gangi’s model for m ranging from 0.1 to 0.9.  

 

 

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

0 0.2 0.4 0.6 0.8 1

k
f
/k

f0

Pe /Kasp

0.1

m = 0.9

0.2

0.3

0.4

0.6



It can be seen that the overall fracture permeability behavior is strongly influenced by the 

fracture surface characteristics. For small m (< 0.4), an initial sharp drop in the permeability 

of up to over one order of magnitude is observed at small Pe; the permeabilities then follow a 

broadly similar trend of steady reduction with further increasing in the effective stress. The 

initial sharp reduction in permeability for small m (n > 5) can be attributed to their asperity-

length distributions where there are very few tall rods (small shortness) and an overwhelming 

majority of the rods have a height less than 0.3w0 (shortness > 0.7w0) (Figure 3b). 

 

Examination of each individual permeability curve with representative value of m (0.1, 

0.2, …, 0.9) across its range reveals that a stage of near-exponential permeability reduction 

can be identified for all the curves, albeit generally over different ranges of the normalised 

effective stress (Figure 7).  
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Figure 7  Near-exponential relationships between fractured rock permeability and normalised 

effective stress identified for different values of m across its range (0, 1) in this study. 

 

 

The fitted exponential equations for all the curves have a similar form as Equation (15)  

𝑘𝑓
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≅ 𝐴𝑚e

−𝐵𝑚
𝑃𝑒

𝐾𝑎𝑠𝑝      (21) 

where Am and Bm are constant coefficients corresponding to a given m. The difference 

between the exponential Equation (21) and Gangi’s model Equation (20) is within 5% over 

the normalised effective stress range  

 𝑎𝑚 ≤
𝑃𝑒

𝐾𝑎𝑠𝑝
≤ 𝑏𝑚     (22) 

The coefficients, together with the corresponding stress ranges, are presented in Table 1. It is 

noted that the coefficient Am increases by almost two orders of magnitude, from 0.0165 to 

1.016 as m varies from 0.1 to 0.9, whereas the corresponding coefficient Bm lowering by 

approximately 50%, from 8.0 to 4.2. It is further noted that coefficient Bm appears to reduce 

lineally with increasing m (Figure 8)  
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Figure 8 A linear correlation between coefficient Bm and parameter m.  

 

While the size of the normalised effective stress range remains largely unchanged at ~ 0.4, it 

tends to shift to the left along the effective stress axis, as m is increased. For example, the 

normalised effective stress range is [0.15, 0.58] for m = 0.1, compared to [0.0, 0.38] for m = 

0.9. The corresponding near-exponential permeability reduction ranges from less than a 

factor of 5 for m = 0.9 to just over two orders of magnitude for m = 0.1. 

 

Table 1 Exponential function coefficients and associated normalised effective stress range for Gangi’s 

fracture permeability model  

m Am Bm am bm 

0.1 0.0165 8.041 0.15 0.58 

0.2 0.0972 7.625 0.13 0.57 

0.3 0.243 7.202 0.1 0.55 

0.4 0.421 6.750 0.08 0.53 

0.5 0.603 6.286 0.06 0.51 

0.6 0.763 5.810 0.04 0.49 

0.7 0.892 5.318 0.01 0.46 

0.8 0.971 4.769 0.0 0.42 

0.9 1.016 4.201 0.0 0.38 

 

The slope of the tangent to the semi-log permeability-effective stress curves in Figure 6 can 

be found from Equation (20)  

𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑠𝑙𝑜𝑝𝑒 =
𝑑𝑙𝑛

𝑘𝑓

𝑘𝑓0

𝑑(
𝑃𝑒

𝐾𝑎𝑠𝑝
)

= −
3𝑚

(
𝑃𝑒

𝐾𝑎𝑠𝑝
)1−𝑚[1−(

𝑃𝑒
𝐾𝑎𝑠𝑝

)𝑚]
    (24) 

The similarity between Equation (24) and Equation (17) is observed. Indeed, the two 

equations have the same functional expression when m = 2/3. Therefore, Equation (17) may 

y = -4.773x + 8.609
R² = 0.997
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be viewed as a special case for Equation (24). It would thus appear that the near-exponential 

behavior is something inherent in the power-law function permeability models.   

 

Equation (21) may be rewritten as 

𝑘𝑓 ≅ 𝑘𝑓𝑖e
−𝐵𝑚

𝑃𝑒
𝐾𝑎𝑠𝑝 ,  𝑎𝑚 ≤

𝑃𝑒

𝐾𝑎𝑠𝑝
≤ 𝑏𝑚  (25) 

where 𝑘𝑓𝑖 = 𝐴𝑚𝑘𝑓0. 

  

2.3 Remarks on the assumptions and validity of the permeability models  

The above analysis has shown that both Gangi’s permeability equations for intact and 

fractured rocks, irrespective of their contrasting physical models, predict a near-exponential 

relationship between permeability and effective stress over certain effective stress ranges. 

This is an important finding as this permeability behaviour has been widely reported for 

different porous rocks, intact or fractured alike. 

It has been further elucidated that this near-exponential dependency in Gangi’s permeability 

models arises from their essentially power-law function formulation. Incidentally, both the 

(elastic) deformation of grain spheres given by Hertz’s theory (Equation (2)) and reduction in 

the fracture spacing derived by Gangi (Equation (8b)) are power-law functions of the 

(normalised) effective stress.  

It has been shown that Gangi’s permeability model for intact rocks can be closely 

approximated (within 5%) by an exponential equation  

𝑘𝑤𝑟 ≅ 𝑘𝑤𝑟𝑖e
−7.238

𝑃𝑒
𝐾′   0.03 −  

𝑃𝑖

𝐾′ ≤
𝑃𝑒

𝐾′ ≤ 0.44 −  
𝑃𝑖

𝐾′  (19) 

The transformed exponential equation yields a semi-empirical pore compressibility of 

 cp = 
7.238

𝐾′
      (26) 

The apparent bulk modulus of the porous rock 𝐾′ maybe estimated by comparing Equation 

(26) with the experimentally arrived compressibility (Equation 12) 

𝐾′ =
7.238

𝑐𝑒𝑥𝑝
     (27) 

The predicted near-exponential permeability reduction is over one order of magnitude (a 

factor of 20) as the rock grains deform elastically. The permeability model becomes invalid 

when rock grains continue to deform beyond their elastic limits during loading. As the elastic 

and strength properties vary for different rocks, it maybe expected that the effective stress 

range over which Gangi’s model is valid would vary accordingly.  

 

 



It has also been shown that Gangi’s permeability model for fractured rocks can be closely 

approximated (within 5%) by the following exponential equations  

𝑘𝑓 ≅ 𝑘𝑓𝑖e
−𝐵𝑚

𝑃𝑒
𝐾𝑎𝑠𝑝 ,  𝑎𝑚 ≤

𝑃𝑒

𝐾𝑎𝑠𝑝
≤ 𝑏𝑚   (25) 

The transformed exponential equation yields a semi-empirical fracture compressibility of 

𝑐𝑓 =
𝐵𝑚

𝐾𝑎𝑠𝑝
      (28) 

Note that cf is influenced by the smoothness of the fracture surfaces as well as the effective 

modulus of the asperities. The effective modulus of the asperities 𝐾𝑎𝑠𝑝 maybe estimated by 

comparing Equation (28) with the experimentally arrived compressibility (Equation 12) 

𝐾𝑎𝑠𝑝 =
𝐵𝑚

𝑐𝑒𝑥𝑝
     (29) 

The predicted near-exponential permeability reduction ranges from less than a factor of 5 (m 

= 0.9) to just over two orders of magnitude (m = 0.1). 

Note that in this study the fracture compressibility is defined with respect to the effective 

stress as 

𝑐𝑓 = −
1

𝜙𝑓

𝜕𝜙𝑓

𝜕𝑃𝑒
      (30) 

where 𝜙𝑓 is the fracture porosity. It has been shown in the literature that Equation (30) maybe 

integrated to yield an exponential relationship between fracture porosity/fracture permeability 

and the effective stress. If we assume that the compressibility remains unchanged within the 

range of effective stress of interest, Equation (30) maybe integrated as 

𝜙𝑓 = 𝜙𝑓0𝑒−𝑐𝑓(𝑃𝑒−𝑃𝑒0)     (31) 

where 𝜙𝑓0 is the porosity at reference effective stress Pe0. Substituting porosity with 

permeability using the cubic relationship between the fracture porosity and the fracture 

permeability leads to the following exponential relationship between fracture permeability 

and effective stress 

𝑘 = 𝑘0𝑒−3𝑐𝑓(𝑃𝑒−𝑃𝑒0)     (32) 

The analysis in this study has shown that the assumption of constant fracture compressibility 

maybe justified over certain ranges of effective stress according to Gangi’s model.  

In Gangi’s fractured rock model the springs of the rods representing the asperities are 

assumed to remain unchanged during deformation. This is clearly an approximation as in 

reality the spring of rods, defined as the product of the Young’s modulus of asperities and the 

ratio of cross-section area of a rod over its height (Equation (10)), is expected to increase 

under compressive deformation - a reduction in the height is accompanied by an 

corresponding increase in its cross-section. Furthermore, the cross-section area of a rod is 

unlikely to be uniform along its height, with the narrowest section of the rod being deformed 



first. Therefore Gangi’s model tends to underestimate the rod spring constant, and thus 

overestimate the permeability reduction, especially when the (normalised) effective stress 

becomes large (beyond ~0.5). Nevertheless, the assumption of a constant rod spring appears 

to be adequate for many applications. Kwon et al. (2001) noted that values of 𝐾𝑎𝑠𝑝 inferred 

from fitting the experimental permeability data using Gangi’s model correlate with the 

effective stresses at which permeabilities were measured, and proposed that systematical 

variations in 𝐾𝑎𝑠𝑝with Pe are due to inelastic changes in loaded asperity dimensions. 

In order to better fit some permeability data of coal seams at depths, McKee et al. (1988) 

proposed a fracture compressibility which declines exponentially with increasing effective 

stress 

𝑐𝑓 = 𝑐𝑓0𝑒−𝛼(𝑃𝑒−𝑃𝑒0)     (33) 

where cp0 is the compressibility at initial effective stress Pe0 and  is a constant. Equation (32) 

then becomes   

𝑘 = 𝑘0𝑒−3𝑐�̅�(𝑃𝑒−𝑃𝑒0)     (34) 

where 𝑐�̅�is the mean compressibility over the effective stress range [Pe0, Pe] 

𝑐�̅� =
𝑐𝑓0

𝛼(𝑃𝑒−𝑃𝑒0)
(1 − 𝑒−𝛼(𝑃𝑒−𝑃𝑒0))     (35) 

A similar approach may be applied in the transformed Equation (19) to account for the effects 

of an increasing rod spring (thus  𝐾𝑎𝑠𝑝) on the permeability response.  

 

3. Application to gas shales 

Four types of porous media are present in productive gas-shale systems: the nonorganic 

matrix, the organic matrix, natural fractures, and hydraulic fractures (Wang et al., 2009). Gas 

permeability in organic matter, where adsorbed as well as free gases can be stored, is 

significantly higher than that in the nonorganic matrix, due to its high porosity. It has been 

reported that permeability values measured using core plugs can be orders of magnitude 

higher that those measured using crushed samples, suggesting that the permeability of core 

plugs is predominantly due to the organic and microfracture pore network present (e.g. Wang 

et al., 2009). Figure 9 presents a schematic diagram showing high-permeability elements in 

gas shale.   

 



 

Figure 9 Schenatic diagram showing high-permeability elements in gas shale: organic matter, 

natural fractures, and hydraulic fractures (after Wang et al., 2009). 

Gangi’s model for fractured rocks (Equation (9)) has been used by Kwon et al. (2001) to fit 

the permeability of Wilcox shale. In the current work, Gangi’s transformed permeability 

models for intact (Equation (19)) as well as for fractured (Equation (25)) rocks have been 

applied to a set of comprehensive helium gas permeability data for core samples of six 

different gas shales recently reported by Heller et al. (2014). The purposes of the study were 

two-folds: 1) to demonstrate the application of the transformed models; 2) to estimate the 

relevant elastic property of the rock (𝐾′) and asperities (𝐾𝑎𝑠𝑝) for the tested samples. It needs 

to be pointed that the rock/fracture properties thus obtained reflects the underlying physical 

model used. In other words, the measured reductions in the shale plug permeability are 

assumed to be predominantly due to either the deformation of sphere grains in packing or the 

narrowing of the fracture apertures. In reality the measured permeability behaviour of the gas 

shales is likely to be a combination of these two mechanisms.  

A notable feature of Heller’s permeability data is that the effective stress law for the core 

samples has been established experimentally. This was achieved by varying the confining 

pressure (Pc) and the flowing gas pressure (Pp) independently during a test. The pore pressure 

varied from 1,000 to 4,000 psi (6.9 to 27.6 MPa) in steps and the corresponding effective 

confining pressure ranged from ~1,000 psi to ~5,000 psi (~6.9 to 34.5 MPa). The 

permeability data used in this study have been digitized from the original publication and are 

given in Table A-1 in the Appendix.  

The effective stress is expressed as 

Pe = Pc - Pp        

where is the effective stress coefficient. It may be determined by (Kwon et al., 2001)  

χ = −
𝜕𝑙𝑜𝑔𝑘/𝜕𝑃𝑐

𝜕𝑙𝑜𝑔𝑘/𝜕𝑃𝑃
      

The effective stress coefficients determined for the six core samples vary from 0.15 to 0.85, 

Table 2 (column 2). 

 



Table 2 Results of fitting the experimental data by Heller et al. (2014) using an exponential equation  

  

Fitted coefficients  

k0, mD 

cexp  

10
-4

 psi
-1

 

(10
-2 

MPa
-1

) 

Barnett 27 0.82 2.25 
2.30 

(3.34) 

Barnett 31 0.68 2.03x10
-1

 
2.27 

(3.29) 

Eagle Ford 

127 
0.6 15.1  

1.60 

(2.32) 

Eagle Ford 

174 
0.4 9.56x10

-2
 

5.68 

(8.23) 

Marcellus 0.15 8.65x10
-2

 
2.24 

(3.25) 

Montney 0.85 17.9  
2.02 

(2.93) 

 

As shown in Figure 10, the permeability data by Heller et al. (2014) can be fitted reasonably 

well using exponential equations, with R
2
 > 0.97 for all the six samples. The fitted 

coefficients (k0 and cexp) are summarised in Table 2 (columns 3 and 4). The 

pore/microfracture compressibility cexp ranges from 1.60 to 5.68x10
-4

 psi 
-1

 (2.32 to 8.23x10
-2

 

MPa
-1

). It needs to be pointed out that the set of permeability data by Heller et al. (2014) may 

also be fitted using other equations. Indeed, we found that good match could be achieved 

using Gash’s model Equation (11) (results not shown here). 

 

3.1 Gangi’s intact rock model 

Using Equation (27), the apparent bulk modulus 𝐾′ for the six core samples tested by Heller 

et al. (2014) could be determined (Table 3, column 2). Among the six samples, Eagle Ford 

174 has the lowest 𝐾′ (~ 80 MPa) due to its relatively large compressibility. The apparent 

bulk modulus for the other five samples lies in the range between ~200 and ~300 MPa. The 

corresponding effective grain elastic moduli Kgra are of the order of several GPa with C0 = 

7.5 (Table 3, column 3). The estimation of the apparent bulk modulus for each sample allows 

the range of normalised effective stress Pe/𝐾′ to be determined (Table 3, column 4). It is 

noted that the normailsed effective stresses are generally less than 0.2, except for Eagle Ford 

174 due to its relatively low 𝐾′. 

 

We note that the ranges of normalized effective stress obtained for the six samples, with the 

exception for Eagle Ford 174, fall within the range [0.03- Pi/𝐾′, 0.44- Pi/𝐾′] provided Pi < 

0.24𝐾′. Although the equivalent pressure Pi is generally unknown, it might be speculated that 

it is more likely to be of order of ~0.01𝐾′ (~MPa) than ~ 0.1𝐾′ (~ tens of MPa). 



    

   

 

Figure 10  Fitting of the experimental permeability data by Heller et al. (2014) using exponential 

equations. Note the permeability unit for Barnett 27, Eagle Ford 127 and Montney is mD, 

as opposed to nD for the other three samples. 

 

Table 3  Results from matching the experimental data by Heller et al. (2014) using the transformed 

equation of Gangi’s model for intact rock  

 𝐾′, MPa 
Kgra, GPa 

(C0 = 7.5) 
Pe/𝐾′ 

Barnett 27 217 4.5 [0.037, 0.15] 

Barnett 31 220 4.5 [0.041, 0.17] 

Eagle Ford 127 312 6.4 [0.031, 0.12] 

Eagle Ford 174 88.0 1.8 [0.13, 0.50] 

Marcellus 222 4.6 [0.057, 0.20] 

Montney 247 5.1 [0.031, 0.10] 
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For demonstration, the predictions by Gangi’s original model Equation (5), assuming Pi = 

0.02𝐾′, for the six samples are compared with the experimental data in Figure 11, where the 

permeabilities are normalised with respect to k0. The loose packing permeability klp in 

Equation (5) can be found from Equation (18) noting kwri = k0  

𝑘𝑙𝑝 =
e

7.236
𝑃𝑖
𝐾′

0.794
𝑘0       

It can be seen that a good overall match to the experimental data is achieved for five sample 

(Barnett 31, Barnett 27, Eagle Ford 127, Marcellus and Montney), whereas for Eagle Ford 

174 a notable deviation away from the exponential trendline at the two highest stress data 

points is observed. 

 

 

  

  
Figure 11  Predictions by Gangi’s intact rock model Equation (14) assuming Pi = 0.02K

’
, compared to 

the experimental data by Heller et al. (2014). 
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3.2 Gangi’s fractured rock model 

The values of parameter Kasp can be found from Equation (29)  

𝐾𝑎𝑠𝑝 =
𝐵𝑚

𝑐𝑒𝑥𝑝
     (29) 

Recall that Bm ranges from 4.2 (m = 0.9) to 8.0 (m = 0.1) and a linear correlation exists 

between Bm and m. Clearly the effective modulus of the asperities Kasp determined from 

matching the experimental permeability data is closely related to the smoothness of the 

fracture surfaces (through coefficient Bm), and is thus unlikely to be unique. It follows that 

the resulting normalised effective stress Pe/Kasp would also vary with m.  

Examples of model matching results are presented in Figures 12 (Barnett 31) and 13 (Eagle 

Ford 174) for m = 0.1, 0.3, 0.5, 0.7, and 0.9. It can be seen from Figure 12 that the 

permeability data for Barnett 31 can be matched by the model with m = 0.5 to 0.9. Broadly 

similar outcomes have also been obtained for the other four samples, i.e. Barnett 27, Eagle 

Ford 127, Marcellus and Montney (results not shown here). On the other hand, a better match 

is achieved with m residing towards the lower end of its range (m = 0.1 to 0.5) for Eagle Ford 

174 (Figure 13). The results for the six gas shales samples in terms of the ranges for 

parameters m, Kasp and kf0 (as opposed to k0 obtained solely from curve fitting the 

experimental data) and Kasp are summarized in Table 4.  

 

Table 4  Results from matching the experimental data by Heller et al. (2014) using the transformed 

equation of Gangi’s permeability model for fractured rock  

 m Kasp, MPa 
kf0, mD 

(estimated) 

kf0, mD 

(measured) 

kf0/kf0 measured 

Barnett 27 0.5 – 0.9 188 - 126 3.7 - 2.2 1.2 2.5 

Barnett 31 0.5 – 0.9 191 - 128 0.37 - 0.20 0.1 2.9 

Eagle Ford 127 0.7 – 0.9 229 - 181 17.0 - 14.9 9.0 1.7 

Eagle Ford 174 0.1 – 0.5 97.7 - 76.3 5.79 - 0.159 1.5 x10
-2

 - 

Marcellus 0.5 – 0.9 193 - 129 
14.3 - 8.51 

x10
-2

 
3.5 x10

-2
 3.3 

Montney 0.7 – 0.9 181 - 143  20.0 - 17.6 11.0 1.7 

 

In the table, larger values of Kasp and kf0 correspond to lower values of m. The plug 

permeabilities at zero effective stress for the six samples have been reported by Heller et al. 

(2014) and are listed in Table 4 (last column) for comparison. There appears to be a typo for 

Eagle Ford 174 as the reported value of 15 nD (1.5x10
-2

 mD) is lower than those under 

loading. For the other five samples, the mean of the estimated values are between 1.7 and 3.3 

times of the measured values (Table 4 last column).  

It is further observed that the effective modulus of the asperities Kasp obtained using Gangi’ 

fracture permeability model is broadly the same order of magnitude as the apparent effective 

bulk modulus 𝐾′ determined using the model for intact rocks. 



 

 

Figure 12  Prediction by Gangi’s fracture model Equation (28) for Barnet 31 for a selection of 

values of m, compared to the experimental data. Note Kasp is specific to each given m in 

the graphs. 

  

  

Figure 13  Prediction by Gangi’s fracture model Equation (28) for Eagle Ford 174 for a selection of 

values of m, compared to the experimental data. Note Kasp is specific to each given m in 

the graphs. 
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3.3 Discussion 

Table 5 summarises the mineralogy of the six samples tested by Heller et al. (2014). Table 6 

presents the elastic properties of the main compositional constituents (Quartz, Calcite and 

clay) and Kerogen reported in the literature. It can be seen that clay and Kerogen have much 

lower elastic moduli (thus more compressible) than Quartz and Calcite. The estimated 

effective elastic moduli of the grains Kgra using the intact rock model for five of the six shale 

samples (except Eager Ford 174) fall within the range ~4.5 to ~6.5 GPa (with C0 = 7.5). The 

corresponding bulk modulus K ranges from 6.4 to 9.3 GPa (Kgra ≈ 0.7𝐾). We note that the 

estimated bulk moduli for these five samples are well within the range between that of 

Kerogen (5 GPa) and clay (12 GPa). Among the five samples, the bulk moduli for Barnett 31, 

Barnett 27, Macellus and Montney are within a narrower range of 6.4 to 7.3 GPa. On the 

other hand, the estimated bulk modulus K for Eagle Ford 174 of 1.8 GPa is much lower. 

Incidentally, a better overall match to Eagle Ford 174 is obtained using the fractured rock 

model. 

 

Table 5 Mineralogy for the six samples (after Heller et al., 2014) 

 Barnett 27 Barnett 31 
Eagle 

Ford 127 

Eagle 

Ford 174 
Marcellus Montney 

TOC (%) 3.8 5.3 1.81 4.4 1.17 2.04 

Quartz (%) 56.7 51.3 7 16.4 38 42.3 

Plagioclase/feldspar 

(%) 
3.8 4 4 1.9 6 11.9 

Calcite (%) 7.7 0 80 47.5 1 8.1 

Dolomite (%) 1.4 0.4 1 0 1 9.9 

Pyrite (%) 1.8 1.7 1 6.7 1 3.5 

Apatite (%) 1 0 2 0.6 1 0 

Total clay (%) 23.8 37.4 5 22.4 53 24.1 

 

The estimated effective moduli of asperities Kasp using the fractured model for the six 

samples are of orders of ~100 MPa. Recall that Kasp is related to the Young’s Modulus of the 

asperities by Kasp = EaspAr/A, and is typically of the order of one-tenth to one-hundredth of 

the asperity material bulk modulus. Therefore the latter is likely to lie in the range between 

orders of ~1 to ~10 GP. This is comparable with the elastic properties of Kerogen and Clay 

(Table 6). 

 

 

 

 

 



Table 6 Elastic properties of main compositional constituents of shale (after Sone, 2012) 

 
Bulk modulus K, 

GPa 

Shear modulus G, 

GPa 

Quartz 

(Mavko et al., 2009) 
37 44 

Calcite 

(Mavko et al., 2009) 
70.2 29 

Clay 

(Vanorio et al., 2003) 
12 6 

Kerogen 

(Bandyopadhyay, 2009) 
5 3 

 

In order to explain their experimental permeability data that gave an effective stress 

coefficient which is less 1, Kwon et al. (2001) proposed a conceptual pore model of shales, 

where clay forms a connected matrix in which flow paths are located and the effective pore 

radii are affected to a larger (or an equal) extent to changes in pore pressure than to confining 

pressure (Figure 14). Heller et al. (2014) found their experimental data support the model by 

Kwon at al. (2001). This study has provided further and perhaps more compelling evidence in 

this respect. It has also confirmed the important role played by the organic matrix and 

connected micronatural fractures in shale gas production. 

 

 

Figure 14  Simplified model pore model for gas shales proposed by Kwon et al. (2001) where clay 

forms a connected matrix in which flow paths reside (modified from Heller et al., 2014).  

 

 

Quartz + Calcite: Low compressibility 

Clay + Kerogen: High compressibility 
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5. Conclusions 

This study has provided theoretical evidence for the exponential-reduction permeability 

behavior under loading that has been widely reported for different fractured as well as intact 

rocks in the literature. The analysis carried out has shown that Gangi’s phenomenological 

permeability models for intact and fractured rocks can be closely approximated by 

exponential equations over certain ranges of the normalized effective stress. It thus allows for 

more vigorous theoretical equations to be applied with the easiness of empirical exponential 

equations.  

The near-exponential permeability reduction is over one order of magnitude (a factor of 20) 

for the intact rock model, and ranges from less than a factor of 5 for m = 0.9 to just over two 

orders of magnitude for m = 0.1 for the fractured rock model. Expressions for the 

compressibilities that are related to the physical property of the rock are obtained. 

Application of the transformed equations of the two permeability models indicates that the 

main gas flow paths for the six core samples reside within the soft constituents (Kerogen + 

clay) of the rocks. 
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Appendix Experimental permeability data (Heller et al., 2014) 

 

 



Table A-1  Experimental helium permeability data for six gas shales samples (digitized from Heller et al., 2014) 

Pp, psi 

Barnett 27 

( = 0.82) 

Barnett 31 

( = 0.68) 

Eagle Ford 127 

( = 0.6) 

Eagle Ford 174 

( = 0.4) 

Marcellus 

( = 0.15) 

Montney 

( = 0.85) 

Pe, psi k, mD Pe, psi k, 10
-1
mD Pe, psi k, mD Pe, psi k, 10

-2
mD Pe, psi k, 10

-2
mD Pe, psi k, mD 

1,000 

1,155 1.85 1,311 1.58 1,397 12.1 1599 4.01 1847 5.63 1,124 13.7 

2,161 1.32 2,288 1.19 2,375 10.5 2601 2.32 2844 4.70 2,105 11.6 

3,187 1.06 3,309 0.925 3,401 8.97 3625 1.19 3841 3.61 3,135 9.51 

4,188 0.86 4,303 0.798 4,427 7.37 4622 0.534 4838 2.77   

2,000 

1,338 1.68 1,586 1.44 1,780 11.0 2205 2.80 2673 4.79 1,274 13.7 

2,343 1.23 2,611 1.05 2,830 9.53 3180 1.67 3694 4.03 2,280 11.4 

3,368 1.00 3,607 0.8.26 3,830 8.22 4177 1.02 4691 3.20 3,286 9.12 

4,392 0.85 4,601 0.733 4,733 7.00 5198 0.503 5712 2.51   

3,000 

1,519 1.63 1,932 1.38 2,207 10.6 2808 2.20 3547 3.67 1,425 13.4 

2,523 1.21 2,931 1.03 3,210 8.94 3807 1.00 4544 3.01 2,456 11.1 

3,525 0.97 3,952 0.786 4,211 7.44 4827 6.13 5541 2.40 3,487 8.71 

4,549 0.81 4,946 0.684 5,136 6.57 5798 0.410 6538 2.00   

4,000 

1,676 1.57 2,255 1.26 2,561 10.3 3412 1.33   1,601 13.1 

2,704 1.16 3,278 0.947 3,562 8.83 4409 0.600   2,582 11.0 

3,730 0.93 4,273 0.749 4,588 7.24 5404 0.397   3,589 8.41 

4,729 0.80 5,291 0.646 5,488 6.46 6374 0.317     
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