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ABSTRACT

It is essential to measure physiological parameters such as
heart rate variability and respiratory rate of drivers to evaluate
their performance. The results from this measurement can be
used to assess the state of body and mind, for instance con-
centration and stress. However, current systems only work
in controlled environments, or sensors obstruct and interfere
with operations of the driver. In this study, a face-lead ECG is
placed inside a helmet to enhance comfort and convenience in
racing scenarios. Multiple electrodes were attached to facial
locations, which exhibit good contact with a helmet, and
bipolar configurations were examined between the left and
right side of the subject’s face. Standard and data-driven fil-
tering algorithms were employed to improve the extraction of
R peaks from the ECG data. The so-extracted R peaks were
subsequently used to estimate heart activity and respiration
effort, and the results were compared with standard record-
ing protocols. It is shown that ECG recordings obtained
from locations on the lower jaw match closely with conven-
tional recording paradigms (limb-lead ECG), highlighting
the potential of vital sign monitoring from within a racing
helmet.

Index Terms— Electrocardiogram ECG, vital signs, rac-
ing helmet, respiratory rate, MEMD.

1. INTRODUCTION

In motor car and motorcycle racing, the performance of
drivers depends on many factors, such as driving skill, emo-
tion, pathology and health. Inside a racing car or on a motor-
cycle, a driver is subjected to different levels of psychological
stress which can impact performance. The relevant signatures
of stress are contained in physiological parameters, such as
heart, respiratory or brain function. For instance, the car-
diac parameters of a Formula One driver were investigated
in [1] with a limb-lead electrocardiogram (ECG) configura-
tion placed at the arms, and it was shown that the correlation
between the car velocity and heart rate was positively linear.
In many racing scenarios, however, standard recording con-
figurations are not practical as they are uncomfortable and
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can hinder performance, thus highlighting the need for wear-
able and unobtrusive platforms for recording vital signs [2].

The aim of this study is to examine the potential of ECG
recordings from face locations inside a helmet, referred to as
the face-lead ECG, in monitoring both cardiac and respiratory
function. Advantages of the proposed approach are: (i) the
enhanced comfort and convenience in racing scenarios com-
pared with standard limb configurations; and (ii) improved
fidelity of the recorded data, due to the good contact between
the electrodes and skin, compared with head-based systems
without helmet support.

Various approaches for recording cardiac activity at head-
based locations have recently been introduced. A behind-
the-ear approach, using a ballistocardiographic sensor and a
single lead ECG configuration, was proposed by [3, 4] where
it was illustrated that the recordings exhibited significantly
more noise than those obtained from conventional recording
configurations, at e.g. the arm, but that the relevant peak
information could be extracted. Vital sign recordings of ECG
and electrooculogram (EOG) from within a military helmet
were examined in [5, 6] and compared with conventional
recording configurations, however, only two electrode posi-
tions located on the forehead, attached by a sweatband, and
the jaw, attached by a strap, were studied.

We propose to investigate five face locations which
exhibit good skin contact due to helmet support. The face-
lead configuration is located approximately between lead I
and lead III [7], but currents travel a larger distance from
the heart and through inhomogeneous tissues of irregular
geometries, so that the recorded data is likely to be contami-
nated by artifacts from the head, such as eye blinking, brain
activity, and jaw and cheek movements. To process face-lead
signals, we used the multivariate empirical mode decompo-
sition (MEMD) [8, 9], a recursive nonlinear filter which is
suitable for multichannel and nonstationary data. The intrin-
sic patterns of these signals can be extracted using MEMD
to separate the underlying cardiac data from artifacts [10].
Furthermore, following recent research by [11, 12, 13], the
MEMD approach was used to extract respiratory effort form
the face-lead recording.



Fig. 1: The standard limb-lead ECG, respiratory signal and
face-lead setup (top-left). The subject wearing a racing hel-
met with the face-lead configuration (above-right). Electrodes
were attached to five locations on the face, the zygomatic
bone, frontal bone, angle of mandible, body of mandible and
lower mandible (lower).

2. THE MEMD ALGORITHM

The original empirical mode decomposition (EMD) algo-
rithm [14] is a recursive nonlinear filter which decomposes a
time series into a set of narrow-band scales known as intrinsic
mode functions (IMFs). The properties of the IMFs are such
that they enable a localised time-frequency representation by
the Hilbert transform.

The multivariate extension [8, 9], see Algorithm 1, facili-
tates an enhanced operation for multi-channel data. In noise-
assisted MEMD (NA-MEMD), additional channels contain-
ing white Gaussian noise (WGN) with a specified signal-to-
noise ratio are created. This reduces unwanted phenomena in
the ‘signal-IMF’ channels such as mode-mixing, see [15, 16]
for details, and enables a more accurate estimation of IMFs
in the presence of noise.

3. EXPERIMENTAL PROTOCOL

Gold cup electrodes were attached to 5 locations on the face:
frontal bone (FB), zygomatic bone (ZB), angle of mandible
(AM), body of mandible (BM), and lower mandible (LM) as
shown Fig. 1. These locations were selected based on the

Algorithm 1 Multivariate EMD (MEMD)
Input: V(t) = [v1(t), v2(t), . . . , vN (t)]T

1. Create a suitable set of points on an (N-1) sphere for
weighting: wk = {w{k,1}, w{k,2}, . . . , w{k,N}}Kk=1,
where K is the number of projections;

2. Along each vector wk, calculate a projection, denoted
by ρ (V(t))

wk , of the input signal V(t) for all k, giving
{ρ (V(t))

wk}Kk=1 as the set of projections;

3. Identify the time instants {twk
j } of the maxima (and

minima) of the set of projections;

4. Compute the multivariate maxima (and minima) enve-
lope curves {εwk

max(t)}Kk=1 (and {εwk
max(t)}Kk=1) by inter-

polating [twk
j ,V(twk

j )];

5. The mean m(t) of the envelope curves of a set of K
direction vectors is calculated as:

m(t) =
1

2K

K∑
k=1

εwk
max(t) + εwk

min(t)

6. The ‘detail’ ĝ is defined as: ĝ = V(t) − m(t). If
it fulfills the stoppage criterion for a multivariate IMF,
apply the above procedure to V(t)− ĝ(t); if not, apply
it to ĝ(t).

areas where the helmet makes good contact with the skin. One
exception is the lower mandible location where the jaw strap
was used to attach the electrodes. An additional signal (AV)
is created by averaging the three channels around the lower
mandible (AM, BM, and LM). A bipolar configuration was
set-up between the left and right side of the face of the subject.
The centre of the forehead served as the common ground. The
standard limb-lead III (left and right arm lead), and the respi-
ratory signal, measured by piezo-electric sensor, were used as
reference signals. A conductive gel was applied to reduce the
impedance between skin and all electrodes. After attaching
the electrodes, the subject was instructed to wear the helmet
as shown in Fig. 1. Avatar EEG, a bio-amplifier manufactured
by EGI, was used to record the face-lead signals. The sam-
pling frequency was set to 500 Hz, and locations of the elec-
trodes were unobtrusive to the eye and nose areas. The sub-
ject sat comfortably on a chair without moving for a recording
duration of 3 minutes.

4. FACE-LEAD ANALYSIS

The raw data from the five channels (respiration and arm
ECG were for reference only) were processed in three offline
steps as shown in Fig. 2: (i) the multichannel signal was fil-
tered using a Butterworth bandpass filter (BPF), MEMD and
NA-MEMD; (ii) R peaks (the most dominant feature in the
ECG cycle) were identified; and (iii) the respiration estimated



Fig. 2: The processing steps in the identification of heart and
respiratory function.

from the RR intervals. A total of 64 projection direction were
taken for both MEMD and NA-MEMD. For NA-MEMD, 20
realisations of five channels of WGN at 20 dBm were gen-
erated and averaged across the individual IMFs. The noise
power was scaled based on the power of one of the face-lead
channels, the lower mandible. For MEMD and NA-MEMD,
a linear weighting was applied to the IMFs to obtain the
desired output frequency range. The weights were obtained
using a time-frequency binary-mask approach supported by
the Wiener filter (see [17] for details).

For all approaches the optimal frequency range was
determined by comparing the number of correctly identi-
fied R peaks obtained within a frequency range between fmin

and fmax, where fmin can have all integer values from 1 to 20
and fmax all integer values from 6 to 40 with the condition
that fmax − fmin > 4. Thus, a total of 510 frequency ranges
were considered.

The R peak search was achieved by identifying local
peaks in the signal amplitudes above a certain threshold
and with a minimum separation in time. The RR intervals,
the time between two adjacent R peaks, were calculated
for all three filtering methods and used to estimate the res-
piration signal using cubic spline interpolation. The res-
piration function can be obtained from ECG for subjects
that exhibit the phenomenon of respiratory sinus arrhythmia
(RSA) [18, 19, 20, 21].

5. RESULTS

The results of the different filtering operations for recordings
obtained from the LM location are shown in Fig. 3, the ECG
obtained from the arm is also shown. The positions of the
detected R peaks are marked with crosses. An R peak is said
to be correctly identified when its position is within a certain
interval before or after the peak in the reference ECG. For
empirical reasons, this interval is defined as 2% of the aver-
age time difference between two adjacent heart beats. Table
1 displays the number of correct and incorrect peak identi-
fications for the five bipolar electrode arrangements, and an
average of the three most accurate ones (AV) using the three

Fig. 3: Signal and detected peaks (crosses) after applying the
methods BPF, MEMD, and NA-MEMD to measurements at
the LM collated with limb-lead ECG.

Fig. 4: Performance of the frequency ranges sorted accord-
ing to their accuracy in detecting R peaks correctly (displayed
here for AV, similar graphs for AM, BM, and LM).

filtering approaches (BPF, MEMD, and NA-MEMD).
Fig. 4 illustrates the performance of all investigated fre-

quency ranges. The number of correctly identified R peaks of
the most reliable ranges for BPF and NA-MEMD match, but

Table 1: Left: Number of correctly identified R peaks at five
electrode locations after: (a) BPF, (b) MEMD, and (c) NA-
MEMD. The reference arm ECG identified 160 peaks in total.
Right: Number of frequency ranges per approach that detect
at least 80% of the R peaks.

Electrode Correctly identified Number of freq. ranges
location peaks (out of 160) with success rate >80%

(a) (b) (c) (a) (b) (c)

1) FB 18 17 17 0 0 0
2) AM 157 152 157 340 356 371
3) BM 159 157 160 375 401 443
4) LM 129 159 159 370 397 400
5) ZB 86 79 83 0 0 0
6) AV 159 158 160 413 420 460



Table 2: The heart rate derived from detected peaks at five locations compared to the true heart rate (mean
(µ)=56.6 beats per minute (bpm), standard deviation (σ): 1.4 bpm). The deviation is calculated at 148 points
in time.

Electrode Peak rate (in bpm, arm ECG: 56.6) Deviation from the heart rate (in bpm)
location µ± σ µ± σ

BPF MEMD NA-MEMD BPF MEMD NA-MEMD
1) Frontal bone 79.1±4.1 77.3±4.4 70.2±6.5 22.2±3.9 20.6±4.7 13.2±6.6
2) Angle of mandible 56.6±1.5 56.6±1.6 56.6±1.5 <0.05±0.2 <0.05±0.3 <0.05±0.1
3) Body of mandible 56.6±1.5 56.6±1.5 56.6±1.4 <0.05±0.1 <0.05±0.1 <0.05±0.1
4) Lower mandible 56.6±1.4 56.6±1.4 56.6±1.4 <0.05±0.1 <0.05±0.1 <0.05±0.1
5) Zygomatic bone 61.1±3.6 61.7±4.3 64.7±4.3 4.3±4.0 5.1±4.4 8.1±4.8
6) Avg. of (2) to (4) 56.6±1.5 56.6±1.4 56.6±1.5 <0.05±0.1 <0.05±0.1 <0.05±0.1

more frequency ranges for NA-MEMD detect at least 80% of
the peaks, highlighting how the approach is less dependent
on the choice of parameters (fmax and fmin).

The three locations on the lower jaw and their average sig-
nal have the highest success rate while the results of the other
two locations indicate high noise levels. Extracted peaks were
utilised to obtain the heart rate from sliding windows com-
prising 11 consecutive peaks. Table 2 summarises the results
and furthermore contains the deviation of the calculated heart
rate from the actual heart rate, which was simultaneously
obtained from the reference arm ECG. Since this is based
on previous results, the same three locations lead to the most
reliable values where signals after bandpass filtering, MEMD,
and NA-MEMD all lead to an accurate estimation of the heart
rate (the mean is is in accordance with the actual value and the
deviation from the real rate is small over the whole period).

In the next step, the temporal distances between adja-
cent peaks, the RR intervals, were obtained to detect the
respiratory rate via the phenomenon of RSA. Fig. 5 displays
the respiration recorded by the respiration belt compared to
the dynamics of the RR intervals over time measured at the
lower mandible. In this case, and for the angle and body of
mandible, an explicit correlation between the respiration belt
and the RR intervals was found.

Fig. 5: The dynamics of RR intervals over time obtained from
the LM compared with respiration (lower). (The graphs for
AM, BM, and AV are approximately identical.)

6. CONCLUSION

We have illuminated conclusively that it is possible to extract
the heart rate from electrodes attached to facial locations
which are convenient and comfortable when wearing a hel-
met. This has been achieved by applying bandpass filtering,
MEMD and NA-MEMD to the recorded signals. Out of
the five examined locations, the most accurate for R peak
detection are the three around the lower jaw. Comparing
the three different filtering methods, bandpass filtering and
NA-MEMD achieve similarly good results. However, more
frequency ranges for NA-MEMD detect at least 80% of the
R peaks, i.e. it is expected to be more robust to different
environments and subjects, see Fig. 4 and Table 1.

We have also demonstrated that face-lead ECG admits
the detection of respiration effort from the RR intervals. This
has highlighted the value of recording vital signs from the
inside of a helmet. Future work will examine real-life driving
situations, alternative sensor technologies, different types of
helmets and will combine our existing work with recordings
from the brain.
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