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Abstract

This work belongs to the theory of fluid flows at high Reynolds number, characterised by
low viscosity and, to a lesser extent, high speeds. It is a mathematically intensive field
covering most aspects of applied mathematics, from Partial Differential equations to Nu-
merical Analysis and Complex Analysis. Two of the central areas of research within this
particular branch of fluid dynamics are the boundary-layer laminar-turbulent transition and
the boundary-layer separation. Both of these phenomena have a high impact on the aero-
dynamic performance of aircraft wings, turbine blades and other fast-moving objects such
as rockets. As a consequence, their study is relevant both for industrial applications and to
the scientific community as a whole.

The mathematical element pertaining to the analysis of these two phenomena is the con-
sistent use of asymptotic methods, such as matched asymptotic expansions and multiple-
scales analysis. In particular, this work will be based on the viscous-inviscid interaction
theory originally discovered by Lin (1955) and further developed by the work of Neiland
(1969) and Stewartson & Williams (1969).

In the first chapter of this thesis, we will study the initial stages of the laminar-turbulent
transition of a compressible boundary layer on a swept wing. The instability of interest
will be the stationary crossflow vortex, which is known to be the main instability mode in
three-dimensional boundary layers on a swept wing. We will focus on two specific aspects
of the transition process, namely the receptivity and linear stability analysis of the flow.
The receptivity mechanism introduced in our work is a roughness of size comparable with
that of the boundary layer thickness. This justifies our restriction to the study of the inviscid
instability of the flow and the use of the impermeability condition on the roughness.

The remaining two chapters are concerned with the viscous-inviscid interaction of the
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boundary layer in the vicinity of a surface discontinuity. We will first study the behaviour
of the subsonic flow exposed to the singular pressure gradient

dp

dx
= κ(x0 − x)−1/3, as x → x0.

It forms when the body contour has a point x = x0 near which

yw = (x0 − x)5/3.

We will show how logarithmic terms need to be included in the solution. We then study
a similar problem, this time in the context of an incoming transonic flow near a point of
curvature discontinuity. We will show that in both cases the boundary layer experiences an
“extreme acceleration”.
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Chapter 1

Introduction

The theory used and developed in this thesis is applicable to a wide range of flying objects
such as planes, gliders or rockets. Our focus will nevertheless be on aircraft wings, such as
ones found on commercial planes. We will restrict ourselves to the local analysis of some
specific parts of the wing, as opposed to studying the wing as a whole. In particular, we will
study the stagnation-line flow on a swept wing and the flow in the vicinity of a curvature
discontinuity. We shall begin by a brief review of the origin of drag and two fundamental
phenomena which contribute to its generation.

1.1 Origin of the drag on an aircraft wing

A plane in flight experiences four different forces, traditionally paired as follows: the
weight of the aircraft pulls it down, while lift compensates to keep it airborne; the thrust
coming from the engines pushes it forward while the drag opposes that motion. The aim of
an aerodynamicist is to design wings and fuselage in such a way as to maximise lift while
minimising the drag. It turns out that optimising the lift force is a much easier task than
reducing the drag. This is partly due to the fact that lift is mostly an inviscid phenomenon
and thus allows for simplified equations (the Euler equations) to be used.

In order to determine the drag force over a body, viscosity should be taken into account.
In addition to the mathematical difficulty associated with solving the full Navier-Stokes
equations, efforts at reducing drag are often hampered by technical requirements. For
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example the wing shape, mostly designed to maximise the lift, cannot be globally modified
without severely reducing performance and we must resort to small local modifications.
Such an example would be the addition of vortex generators or arrays of roughnesses on
the surface of the wing.

The drag experienced by an aircraft is composed of

⋄ wave drag, which is caused by shockwaves forming in the flow at and above transonic
speeds;

⋄ induced drag, which is due to the generation of lift and wing tip vortices;

⋄ form drag, due to the shape of the aircraft;

⋄ skin friction drag, due to the friction of air against the surface of the aircraft.

We shall concentrate here on skin friction and form drag. Turbulence and flow separation,
which will be the focus of our study, are two central phenomena in fluid dynamics that
contribute to the generation of these two forms of drag. Indeed, the magnitude of the skin
friction τ , defined as

τ = µ
∂u

∂y
,

(where µ is the dynamic viscosity of the fluid and u represents the longitudinal component
of the fluid velocity) is closely related to the state of the boundary layer, with laminar
boundary layers having a lower skin friction than their turbulent counterparts. Similarly,
it is known that the drastically modified pressure distribution observed in separated flows
leads to an increase in form drag.

In an attempt to reduce both fuel consumption and carbon-dioxide emissions, a better
understanding of the transition process and separation of the boundary layer is required. In
this thesis, we will address both problems, and now proceed to give a brief description of
the current status of research and the challenges we are facing.

1.2 Transition to Turbulence and the role of Receptivity

The vast majority of fluid flows encountered in nature are turbulent. It is thus necessary
to understand how turbulence affects quantities such as the drag or the energy of a system.
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An important aspect that is one of the main focus of current research is the actual transition
from a laminar flow to a turbulent one.

1.2.1 Reynold’s experiment

In 1883, Reynolds demonstrated the transition to turbulence in his famous experiment on
pipe flow. His apparatus consisted of a tube placed horizontally within a large glass tank
filled with water as shown on Figure 1.1.

Figure 1.1: Reynold’s apparatus.

One end of the tube was connected to a tap through which water flowed under the action
of gravity as the tap was opened. The other end of the tube was open to the surrounding
water, and fitted with a trumpet to reduce disturbances. Flow visualisation was performed
with highly coloured water added to the flow in front of the trumpet. His experiment
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showed that for low fluid velocities, the streak of colour extended in a perfectly straight
line through the tube, as shown in Figure 1.2. This means that the flow remains steady,
with the particles’ trajectories being straight lines parallel to the tube axis. However, as the
velocity is increased in small steps, the flow suddenly assumes an unsteady and irregular
pattern, as depicted on Figure 1.3. Finally, as we further increase the velocity, the pattern
seems to become random and ‘chaotic’, as seen on Figure 1.4 (Van Dyke 1982).

Figure 1.2: Laminar flow through the pipe.

Figure 1.3: Transitional flow through the pipe.

Figure 1.4: Turbulent flow through the pipe.

Reynolds observed that this happened when the dimensionless parameter

Re =
ûmaxa

ν
,

now called the Reynolds number after him, reaches a critical value Rec ∼ 130001. Here,

1It is interesting to note that linear stability predicts the flow to be linearly stable at all values of Re. This
is because the analysis doesn’t capture the small roughness always present on the surface of the wall.
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ν represents the kinematic viscosity of the fluid, a is the diameter of the tube and ûmax the
dimensional maximum velocity of the fluid that is reached at the tube axis. We now know
that there are many factors affecting the so-called transition Reynolds number, including
the presence of surface roughness, external noise and vibrations to cite but a few. This
laminar-turbulent transition process is not limited to pipe flows. It was also discovered
to take place in various other configurations, such as the flow on a flat plate, and a lot of
research focuses on finding accurate measurement of the corresponding transition Reynolds
number.

1.2.2 Subsequent research

Over a century has now passed since Reynolds introduced the basic ideas and concepts of
what would become Hydrodynamic Stability Theory with his pipe-flow experiment. The
advent of Computational Fluid Dynamics has enabled us to acquire deep insight in the
study of turbulent flows. However, understanding the actual transition process whereby a
flow loses stability and becomes turbulent remains a great challenge. The importance of
predicting the onset of transition in a wide range of applications has brought its study to
the forefront of research in fluid dynamics.

It is now known that in a ‘quiet environment ’, the transition to turbulence occurs due to
an incipient instability of the basic flow field, and is provoked by the growth of instability
waves in the boundary layer. Of particular interest to the aeronautical community is the
boundary-layer transition of the flow over swept wings, which are standard on long range
commercial aircrafts. It is currently understood to occur in four stages. The first one is
referred to as ‘receptivity’. Receptivity is concerned with the process by which external
perturbations such as acoustic waves and surface roughness, are converted into instability
modes of the flow. The second stage of the transition process is the linear growth (or decay)
of the instability waves, which is predicted by the methods of Linear Stability Theory
(Reed, Saric & Arnal 1996). The third stage is the nonlinear growth of the perturbations
and the development of secondary instabilities. Finally, the last stage is the breakdown to
turbulence. These stages are summarised in Figure 1.5.
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wall vibration
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Linear region Turbulent flow
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δ∗(x̂)

{

Figure 1.5: Laminar-turbulent boundary-layer transition. Here, δ∗(x̂) denotes the
boundary-layer thickness.

Current attempts to delay transition have focused on the first two stages in order to try
to limit the growth of linear instabilities. Most of the methods are based on the modification
of the mean flow field. In particular, if the mean velocity profile has an inflection point, then
according to the Rayleigh theorem, the flow is inviscidly unstable (Rayleigh 1879).The aim
is then to alter the basic velocity profiles in such a way that those inflection points are either
removed or displaced (for example through suction). Four types of instability mechanisms
have been identified in swept wing flows: the leading edge instability at the attachment
line; the Tollmien-Schlichting (TS) waves, which are streamwise instabilities; the Taylor-
Görtler instability, occurring on concave parts of the wing; steady and unsteady crossflow
vortices. A lot of effort was put into the study and control of swept wing instabilities in the
past decades, and we now briefly describe some of the main results accomplished. A more
in-depth discussion can be found in Saric & Reed (2004).

1.2.3 Instabilities in three-dimensional boundary layers

Effective control of attachment line instabilities can be achieved through either passive
methods, such as the use of Gaster bumps, or active methods such as suction. This prevents
the boundary layer flow from becoming turbulent from the leading edge and contaminating
the flow downstream over the wing. The Görtler instability, which occurs on concave parts
of the wings, can be controlled through profile design, by alternating convex and concave
curvature, as shown by Benmalek & Saric (1994). There are many techniques to control the
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growth of TS waves, one such technique being the tailoring of the airfoil shape to create
a longer region of favourable pressure gradient, by increasing the distance between the
stagnation point and the point of minimum pressure. However, this technique was found
to make the boundary layer more susceptible to the crossflow instability. The latter one is
now the focus of research in swept wing boundary-layer transition, and the subject of this
study.

Whilst Linear Stability Theory is concerned with the development of the small ampli-
tude instability waves, receptivity is concerned with their origin. The term was first used
by Morkovin (1969). While there is no clear definition of receptivity, we understand it as
being the mechanism that provides the link between the external forcing environment (such
as free stream sound, vorticity or roughness), which creates the initial disturbance, and the
instability waves which develop as a consequence. The task of determining the amplitude
and spectral properties of the initial disturbance are of particular importance. These need
to be taken into account in order to improve standard transition prediction methods such
as the en method2. The traditional methods of Linear Stability Theory, which reduce the
set of original equations to an eigenvalue problem, thus describing the normal modes of
the system, are incapable of providing the required initial conditions. Instead, we need to
solve an initial value problem, with some forcing terms coming either from the boundary
conditions, or through inhomogeneous terms in the Navier-Stokes equations.

In the first chapter of this thesis, we will study the compressible flow over a swept
wing. We will perform the standard Linear Stability Analysis of the flow, which leads
to the derivation of the dispersion relation for crossflow vortices. We will then introduce
a roughness element and show how the Receptivity Analysis enables us to calculate the
initial amplitude and spectral properties of the disturbance waves. The remaining chapters
are devoted to the viscous-inviscid interaction theory, to which we now turn our attention.

2Although this method provided satisfying results on the prediction of TS waves, it is less accurate in
describing crossflow transition (White et al. 2001).
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1.3 The development of Viscous-inviscid Interaction Theory

In Chapter 3 and 4, we will study the viscous-inviscid interaction which can be observed
in the vicinity of a surface irregularity or curvature discontinuity. This is a vast subject,
whose history we trace back in this section.

1.3.1 Classical Boundary-layer Theory

The study of fluid flows was developed extensively in the 18th and 19th century, through the
work of Euler, Bernoulli and Helmholtz, to name but a few. The theory they built up is the
basis of what is known as Classical Fluid Dynamics. The main contributions were done
in inviscid flow theory, with famous examples such as the prediction of the lift force on a
cylinder. An important discovery was the dependence of the properties of fluid flows on
the fundamental dimensionless parameter called the Reynolds number. Introduced already
in Section 1.2 in the context of hydrodynamic stability of pipe-flow, we define it now in a
more general context as

Re =
ρLV

µ
. (1.1)

Here, ρ denotes the density of the fluid, µ is the dynamic viscosity of the fluid, and V is
the velocity characteristic to the flow considered. L is a reference lengthscale of the prob-
lem. The Reynolds number thus represents the relative importance of inertial to viscous
forces. In typical aerodynamic applications, the viscosity of air is small, and the Reynolds
number Re proves to be very large, usually in the order of 106. Inviscid flow theory was
developed by assuming that parameter Re−1 could be set to zero in the Navier-Stokes equa-
tions.This theory gave very satisfying results in the field of aerodynamics but also led to
contradictions.

One famous contradiction in the theory is D’Alembert’s Paradox, which is formulated
as follow. Consider uniform fluid flow with free-stream velocity U past a cylinder of radius
a. Then, inviscid potential flow theory predicts that the streamfunction should be given in
polar coordinates by

ψ(r, θ) = U

(

r − a2

r

)

sin θ. (1.2)

The corresponding streamline pattern is shown in Figure 1.6.
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Figure 1.6: Streamlines of potential flow around a cylinder.

When comparing with experimental observations, depicted in Figure 1.7, one can see that
the situation is very different. In Figure 1.7, the flow does not remain attached to the body at

Figure 1.7: Experimental flow around a cylinder with Re=26, Taneda (1956).

the back of the cylinder. A region of re-circulating flow can be observed, leading to eddies
which extend downstream if we increase the Reynolds number. The inviscid analysis also
predicted that the drag on the cylinder should be zero, which contradicts experimental
observations.

It was in 1904, during the 3rd International Congress of Mathematics held in Heidelberg,
that Prandtl put forward the idea that would revolutionise the field of aeronautics, and that
would help resolve the D’Alembert paradox. In his paper, he introduced the principle of
singular perturbations, now used everywhere in Applied Mathematics, and explained the
concept of boundary layers. Prandtl argued that no matter how small the viscosity is, there
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is always a thin region adjacent to a rigid body surface, called the boundary layer, where
viscous forces cannot be ignored and have to be taken into account. Prandtl was able to
formulate the equations valid in this region. The method was later extended to a wide
variety of situations, such as the flow past a wedge with different angles of attack (Falkner-
Skan-Cooke), and stagnation point flow (Hiemenz flow). The development of boundary-
layer theory enabled not only accurate predictions of the drag on solid surfaces, but helped
our understanding of important flow phenomena, not least of which is flow separation.
Even though it had been studied earlier, for example by Helmholtz (1868) in his attempt
to describe flow past bluff bodies, it is in the context of boundary layers that the physical
origin of flow separation was first explained.

To this aim, let us consider a body placed into a uniform fluid flow. As fluid particles
move around the body, they are exposed to a pressure gradient. In the case of an adverse
pressure gradient, where the pressure increases in the direction of flow, the particle’s ve-
locity should decrease, according to Bernoulli’s law. This doesn’t affect that much fluid
particles outside the boundary layer, since they have high kinetic energy. However, as we
get closer to the wall, fluid elements have much smaller velocity due to friction forces oc-
curring in the boundary layer. Those fluid particles experience the same adverse pressure
gradient3, but their velocity is too small to overcome it. They come to a stop and then cause
a region of reverse flow which separates from the body.

Separation has significant effects on the flow field as a whole, and especially on the
pressure distribution around the body. For instance, in the case of an aerofoil at low angle
of attack, we can usually make the following remarks (Anderson 2010):

⋄ The pressure downstream of the leading edge of the aerofoil in a separated flow is
higher than its attached counterpart, which results in a decrease in the lift force;

⋄ The pressure at the trailing edge of the aerofoil tends to be smaller in the case of
separated flow. This means that the pressure at the trailing edge is no longer able to
compensate the one at the leading edge, and this results in an increase in drag. This
particular type of drag is referred as pressure drag.

3One of the main results Blasius showed through the derivation of his equations is that pressure in the
boundary layer doesn’t change in the normal direction, and is thus determined by the outer inviscid analysis.
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This shows the importance of the study of flow separation. One of the aims is to predict the
location of the separation point xs, which, following our discussion, is expected to occur at
the point on the wall where the skin friction τw becomes zero

τw = µw
∂u

∂y

∣

∣

∣

∣

y=0

= 0. (1.3)

The other aim is to accurately model the behaviour of the flow in the vicinity of the sepa-
ration point in order to calculate drag and lift.

1.3.2 The emergence of Triple Deck Theory

Unfortunately, the classical boundary layer theory developed by Prandtl, based on the Hier-
archical approach, where the inviscid flow and the viscous flow are analysed independently
of each other, cannot describe the separation process provoked by an adverse pressure gra-
dient. It was shown by Landau & Lifshitz (1944) that as we approach the point xs of zero
skin friction, the classical boundary layer develops a singularity: the normal velocity com-
ponent appears to experience unbounded growth as x → xs. This was further investigated
by Goldstein (1948): in his work, he confirmed the ideas of Landau & Lifshitz but also
showed that the solution found at the separation point could not be continued downstream.
This discovery was of paramount importance and suggested that a whole new approach
should be followed in order to study flow separation.

The investigation of the effect of an oblique shock wave impinging on an aerofoil is
an interesting example where Prandtl’s classical boundary layer theory fails. If we follow
Prandtl’s Hierarchical strategy, then we have to conclude (Ruban 2016) that in supersonic
flow, no perturbations can propagate upstream of the intersection point, which is in total
contradiction with the actual flow behaviour. Indeed, numerous experimental observations
show that the flow actually separates upstream of the intersection point. This separation
creates a displacement of the streamlines in the bottom of the inviscid region, producing a
secondary oblique shockwave, giving rise to the ‘λ-structure’ sketched in Figure 1.8. While
we do not go into details of the analysis of the ‘λ-structure’, we summarise the important
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points which are relevant to us.

secondary shock

primary shock

S

Figure 1.8: The λ-structure of the boundary layer, courtesy of Pr. Ruban.

It can be shown that the boundary layer comes into interaction with the external invis-
cid flow. In subsonic and supersonic flows, the width of this interaction region, which is
situated around the separation point, can be estimated as Re−3/8. It is made up of three
‘decks’, each having a specific purpose in the viscous-inviscid interaction process. They
are described as follows, from bottom to top:

⋄ a viscous sublayer, with height estimated here as Re−5/8, where pressure variations
are felt strongly, leading to a deformation of the streamlines in the vicinity of the
body surface,

⋄ a middle deck, of height estimated here as order Re−1/2, which transmits the dis-
placement of the streamlines from the lower deck to the upper deck,

⋄ an upper region, situated in the inviscid potential flow, which converts the displace-
ment of streamlines into pressure perturbations; these are in turn impressed back on
the boundary layer, thus creating a self-sustained process.

This mutual interaction between the boundary layer and the external inviscid flow taking
place here is the key element that Prandtl and Goldstein were missing in their analysis. It
enables upstream perturbations to propagate and removes the Goldstein singularity.
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The theory of viscous-inviscid interaction is called ‘triple deck theory’, and was first
formulated by Neiland (1969) and independently by Stewartson & Williams (1969), and
Brown & Stewartson (1969). Triple deck theory has been successfully applied in describing
many phenomena such as separation at the trailing edge of a thin aerofoil and separation
of the boundary layer in hypersonic flow on a hot or cold wall (Sychev, Ruban & Korolev
1987). Early work was mainly concerned with self-induced separation. It was later found
that singular adverse pressure gradients imposed on the boundary layer always lead to
separation. In the case of subsonic or supersonic flows, these pressure gradients can be
generated through discontinuities in curvature, corners, shock waves etc. Interestingly, it
was found that such a singular pressure gradient can also occur in the analysis of transonic
flows around the sonic point4. This will be the focus of Chapter 4.

1.3.3 Recent advances in Transonic Theory

The motivation behind our study of transonic flows comes from the fact that most commer-
cial aircrafts fly at transonic speed when cruising. Despite the relevance and wide range of
applications of transonic flow, it was not until the end of the forties that the subject started
to develop, with the notable work of Frankl (1947), Kármán (1947) and Guderley (1947).
The reluctance to study transonic flow was in part due to the mathematical difficulty of the
equations, which comes from their inherent non-linearity. Moreover, the equations are of
mixed type, reflecting the transition between subsonic flow, governed by an elliptic equa-
tion, and supersonic flow, described by a hyperbolic equation, making numerical methods
difficult to implement.

The main achievement of classical transonic flow theory was the derivation of the Tran-
sonic Small Perturbation equation, also called Kármán-Guderley equation. It is based on a
limiting process, whereby the Kármán parameter K = (1−M2

∞)/τ 2/3 remains an order-one
quantity as the Mach number of incoming unperturbed flow M∞ → 1 and the thickness of
the body τ → 0. This equation was used extensively to study the far field behaviour of the
transonic flow over a rigid body (Frankl 1947). In our work, we will show that this equa-
tion can be used to describe transonic flow in the vicinity of the sonic point, and self-similar

4The sonic point is the point on the body surface where the Mach number M=1.
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solutions can be used to reduce it to an ODE, simplifying the analysis.
It is not surprising that due to the difficulty of the nonlinear transonic equations, little

work has been done in the theory of transonic viscous-inviscid interaction. It is however
of paramount importance for the aeronautical industry to further our understanding of the
subject. Most of the literature published so far is concerned with situations where the
external inviscid flow doesn’t actually show its transonic nature, such as in the study of the
flow near the trailing edge of a flat plate (Bodonyi & Kluwick, 1998). In these cases, the
interaction problem is simplified, and an interaction law for the pressure can be derived.
For the case of subsonic flow, the interaction law is given by the Cauchy integral of thin
aerofoil theory, while in the supersonic case, it is given by the Ackeret formula. It was
only at the beginning of the millennium that substantial progress was achieved in transonic
interaction theory. Of particular interest to us are the recent works of Buldakov & Ruban
(2002) and Yumashev (2012).

Buldakov & Ruban investigated in depth the transonic flow around the sonic point on a
smooth body surface. The hodograph and the phase portrait method were used to analyse
the inviscid transonic flow, and through the use of self-similar solutions it was found that a
pressure gradient of the form

dp

dx
∼ (−x)−1/3,

develops as we approach the sonic point. The main result of the research was the discov-
ery of logarithmic terms in the expansion for the skin friction upstream of the interaction
region, leading to an unusual behaviour of the flow in the interaction region. Furthermore,
the solution proved to be non-unique.

The next step was to study a non-smooth body surface. Looking back to the work of
Messiter & Hu (1975), it was proved that a discontinuity in curvature does not produce sep-
aration in subsonic and supersonic flow. Yumashev (2010) considered a similar problem,
but focused his attention on the transonic regime. Depending on the ratio of the curva-
tures upstream and downstream of the singularity, different types of flow structures were
observed in the transonic region: supersonic flows with a weak shock, supersonic flow de-
celerating to subsonic speed without a shock wave, and transonic Prandtl-Mayer flow. His
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analysis led to the same form of the pressure gradient studied by Buldakov & Ruban (2002)

dp

dx
= κ(−x)−1/3. (1.4)

Moreover, depending on the magnitude κ of the discontinuity, either linear or nonlinear
behaviour is possible within the interaction region. Yumashev focused on the case where
the curvature discontinuity is small, more specifically

Re−1/6 ≪ κ≪ 1

logRe
.

This approach enabled him to linearise the governing equations and find analytical solu-
tion in all of the decks of the interaction region. It was noted that for larger values of κ,
separation might be observed, providing a big contrast with the results of Messiter & Hu
(1975).

In the remaining two chapters of this thesis, we will investigate the subsonic and tran-
sonic flow past a discontinuity of curvature, where it will be assumed that the discontinuity
is of order one. We will present a full analytical solution for the subsonic case, and numeri-
cal results for the transonic case. We hope that the strongly singular pressure gradient (1.4)
provides an acceleration of the flow in the interaction region, combined with an increase
in the wall skin friction. This would have the beneficial effect of delaying the onset of
transition to turbulence and avoid early separation of the flow.
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Chapter 2

Receptivity of Crossflow Vortices to
Surface Roughness

2.1 The crossflow instability

The first chapter of this thesis is concerned with the receptivity of crossflow vortices to
surface roughness on a swept wing. The crossflow instability is specific to 3D boundary
layers. The crossflow profile (Figure 2.1) developing due to the combined effect of the
sweep of the wing and the pressure gradient normally exhibits a so called ‘generalised
inflection point’. According to Rayleigh’s theorem, under these conditions the flow is sus-
ceptible to inviscid instability. This instability takes the form of co-rotating vortices, nearly
aligned with the inviscid stream lines. Both travelling and stationary vortices exist. Ex-
periments have shown that at low level of free stream turbulence, which is typical of flight
conditions, steady crossflow vortices dominate on a wing with sweep angle larger than 35
degrees (Deyhle & Bippes 1996). This motivates us to study the spatial development of
those instabilities. The primary crossflow instability, as well as details of the nonlinear ef-
fects are now well documented (Arnal 1997, Reshotko 1997, Saric & Reed 2003). A good
understanding of the receptivity process remains a big challenge, which we hope to tackle
with this study.

The receptivity process of crossflow vortices needs to be contrasted with other typical
instabilities. Ruban (1984) showed that Tollmien-Schlichting (TS) waves are very sensi-
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tive to free stream sound and 2D roughness. In particular, an interaction between those
two mechanisms was needed to generate the necessary scale conversion which leads to the
development of a TS wave. The situation with crossflow vortices is quite different: in-
stability can occur with just one type of disturbance. Moreover, mechanisms enhancing
receptivity of TS waves, such as the combination of 2D roughness and acoustic waves, do
not affect crossflow vortices. However, they turn out to be highly sensitive to 3D roughness
and free stream vorticity. The experiments by Radeztsky et al. (1999) and Reibert et al.
(1996) showed that a decrease of amplitude from 3.3µm to 0.2µm of arrays of micron-sized
roughnesses placed on the surface of the airfoil resulted in a delay of transition from 45%

to 65% chord. These studies showed that crossflow vortices were most receptive to rough-
nesses placed near the leading edge. Smaller 3D roughnesses placed further downstream,
as well as 2D roughnesses had no effect. Furthermore the shape of the roughnesses didn’t
matter, only their spacing and height was important (Saric & Reed 2003). We will present
a novel analytical approach to the receptivity to small surface roughness based on the im-
permeability boundary condition.

û

x̂

ŷ

ẑ

ŵ

Figure 2.1: Crossflow profile in a swept-wing boundary layer.
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We will start by applying the methods of linear stability theory to the study of the com-
pressible flow of a perfect gas over a semi-infinite swept wing. The inviscid instability of
the flow is considered, the role of viscosity being restricted to establishing the basic state
velocity profile and having no effect (to leading order) on the perturbations. The compress-
ible version of the Rayleigh equation in the case of spatially growing perturbation is then
derived. This leads to an eigenvalue problem, whose eigenvalues and eigenfunctions are
calculated numerically for a few basic velocity profiles. However, as noted earlier, linear in-
stability theory does not give the initial amplitude for the development of the perturbations.
This is the role of the receptivity analysis that we will conduct, through the introduction
of a small wall roughness. The forcing term appearing in the boundary condition modi-
fies the structure of the problem, and we are able to derive an analytical expression for the
amplitude of the growing mode, through the use of the Fredholm Alternative. Finally, we
will compare our results with the work of Choudhari & Duck (1996), which is based on the
no-slip condition.

2.2 Linear Stability Analysis

Let us consider the flow of a compressible perfect gas over a swept wing, set at an angle χ
to the incoming flow. We introduce a set of coordinate axes so that ẑ runs parallel to the
leading edge of the wing, and x̂ is perpendicular to it. Coordinate ŷ is chosen normal to the
wing surface. Assuming the incoming flow has speed V∞/ cosχ, we define the free-stream
velocity vector V = (V∞, 0, V∞ tanχ). The flow layout is depicted on Figure 2.2.

χ

ẑ

V∞/ cosχ

x̂

Figure 2.2: Coordinate system for the swept wing.
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The flow is governed by the compressible Navier-Stokes equations, which are written in
Cartesian coordinates as

ρ̂
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∂û

∂x̂
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∂û
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∂û
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∂ŷ
+ ŵ
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∂p̂

∂x̂
+ v̂

∂p̂

∂ŷ
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∂û

∂ŷ
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∂ŵ

∂x̂

)2

+ µ

(

∂v̂

∂ẑ
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∂ẑ
= 0, (2.5)
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Here, û, v̂, ŵ represent the cartesian components of the velocity, p̂ denotes the pressure, ρ̂
the density and ĥ the enthalpy. Parameter γ and µ represent the heat capacity ratio and
viscosity of the fluid. The Prandtl number Pr is defined as

Pr =
cpµ

k
,

where cp is the specific heat at constant pressure and k the thermal conductivity.
The flow is viscous and must satisfy the no-slip conditions on the body surface. In the

boundary-layer approximation, the Navier-Stokes equations written in cartesian coordi-
nates are identical to the Navier-Stokes equations written in body fitted coordinates (Ruban
& Gajjar 2014). As a result, the no-slip condition are written

û = v̂ = ŵ = 0, at ŷ = 0. (2.7)

In addition, we provide the matching conditions with the freestream

(û, v̂, ŵ, p̂, ρ̂, ĥ) → (V∞, 0, V∞ tanχ, ρ∞, p∞, h∞) as x̂2 + ŷ2 + ẑ2 → ∞. (2.8)

We introduce non-dimensional variables in the usual way

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x̂ = Lx̄, ŷ = Lȳ, ẑ = Lz̄,

û = V∞u, v̂ = V∞v, ŵ = V∞w,

p̂ = p∞ + ρ∞V 2
∞p, ρ̂ = ρ∞ρ, ĥ = V 2

∞h,

(2.9)

and define the Reynolds number as

Re =
ρ∞V∞L

µ
, (2.10)

which is assumed to be large throughout this dissertation. Here, L represents a typical
length-scale, and V∞, ρ∞ and p∞ represent the free stream values of the velocity, density
and pressure respectively. We denote the dynamic viscosity of the fluid by µ.

The first aim of this chapter is to investigate the stability of the flow. Our interest lies
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into finding whether small perturbations to the basic state grow or decay. On a swept wing,
these perturbations take the form of crossflow vortices, which are an inflection type of
instability and are thus an inviscid phenomenon. The wavelength of these perturbations is
known to be of the order of the thickness of the boundary layer δ∗, which can be estimated
as δ∗ = Re−1/2 for a flat plate. Consequently, we look for a solution in the asymptotic form

u = U (x̄, y, z̄) + δu′(x, y, z) + · · · ,

v = Re−1/2 V (x̄, y, z̄) + δv′(x, y, z) + · · · ,

w = W (x̄, y, z̄) + δw′(x, y, z) + · · · ,

ρ = ρb (x̄, y, z̄) + δρ′(x, y, z) + · · · ,

p = P (x̄, y, z̄) + δp′(x, y, z) + · · · ,

h = H (x̄, y, z̄) + δh′(x, y, z) + · · · .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(2.11)

The functions (u′, v′, w′, ρ′, p′, h′) represent the perturbations to the base flow, which is
denoted (U, V,W, ρb, P,H). Parameter δ is assumed small and arbitrary at this stage. The
new ‘inviscid’ coordinates (x, y, z) are introduced through the scalings

x =
x̄− x̄0

Re−1/2
, y =

ȳ

Re−1/2
, z =

z̄ − z̄0

Re−1/2
. (2.12)

2.2.1 Computing the base flow

While our interest lies in analysing the behaviour of the perturbations, the base flow func-
tions should still be accurately calculated as these appear as coefficients in the perturbation
equations. We substitute asymptotic expansions (2.11) into the compressible Navier-Stokes
equations (2.1)-(2.6), and this reduces them at leading order to the compressible boundary-
layer equations. In this thesis, we shall restrict our attention to the front stagnation line
of the wing. Near the attachment line, where compressibility are negligible the boundary-
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layer equations take the form

U
∂U

∂x̄
+ V

∂U

∂y
+W

∂U

∂z̄
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∂x̄
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U
∂W
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∂P

∂y
= 0, (2.15)

∂U

∂x̄
+
∂V

∂y
+
∂W

∂z̄
= 0. (2.16)

The wing is assumed to be semi-infinite in the z̄ direction, so we can disregard derivatives
in z̄, leading to the set of equations

U
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+ V
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, (2.17)

U
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, (2.18)

∂P

∂y
= 0, (2.19)

∂U

∂x̄
+
∂V

∂y
= 0. (2.20)

Equation (2.19) indicates that the pressure remains constant across the boundary layer. The
matching condition with the external inviscid flow then requires that P = Pe(x̄), where
Pe(x̄) denotes the inviscid pressure at the edge of the boundary layer. Similarly, we denote
by Ue(x̄) the streamwise velocity at the edge of the boundary layer.

Near the front stagnation line, we can assume that Ue = x̄. Hence, using the Bernoulli
equation, we find

dPe

dx̄
= −x̄.

Upon introducing the stream function ψ defined as usual by ∂ψ

∂y
= U,

∂ψ

∂x̄
= −V, the

x̄-momentum equation becomes
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∂2ψ

∂y2
= x̄+

∂3ψ

∂y3
. (2.21)
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We look for a self-similar solution of the form

ψ = x̄αf(η), η =
y

x̄β
.

Substituting this into equation (2.21) shows that α = 1, β = 0, and equation (2.21) reduces
to the ordinary differential equation

f ′′′ −
(

f ′
)2

+ ff ′′ + 1 = 0.

Finally, letting W = g(y), the z̄-momentum equation becomes

g′′ + g′f = 0.

This results in the following system of equations
⎧

⎨

⎩

f ′′′ − (f ′)2 + ff ′′ + 1 = 0,

g′′ + g′f = 0,
(2.22)

which are solved using the boundary conditions

f(0) = f ′(0) = 0, f ′(∞) = 1, g(0) = 0, g′(∞) = 0. (2.23)

This task is performed numerically using a simple shooting method and an RK4 integra-
tor. Further away from the attachment point, where compressibility effects become more
pronounced, profiles from a compressible boundary-layer code are used (Mughal 1998).
The boundary-layer data, which includes the velocity profiles U,W and the density ρ were
provided to us by S. Mughal in raw form. These are shown in Figure 2.3.
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Figure 2.3: Basic velocity (left) and density profile (right) from CoBLc calculations.

2.2.2 Linearised compressible Euler equations

Let us now turn our attention to the linearised equations describing the behaviour of the
small perturbations. Using the scalings (2.12), the viscous terms drop out from the Navier-
Stokes equations. The momentum equations then take the form
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= −∂p
′

∂x
,

ρb

(

U
∂v′

∂x
+W

∂v′

∂z

)

= −∂p
′

∂y
,

ρb

(

U
∂w′

∂x
+
∂W

∂y
v′ +W

∂w′

∂z

)

= −∂p
′

∂z
,

(2.24)

and the continuity, enthalpy and state equation read

U
∂ρ′

∂x
+
∂ρb
∂y

v′ +W
∂ρ′

∂z
= −ρb

(

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z

)

,

ρb

(

U
∂h′

∂x
+
∂H

∂y
v′ +W

∂h′

∂z

)

= U
∂p′

∂x
+W

∂p′

∂z
,

h′ =
γ

γ − 1

p′

ρb
− 1

(γ − 1)M2
∞

ρ′

ρ2b
.

(2.25)

These equations no longer include viscous terms, so the no-slip condition (2.7) should be
dropped in favour of the impermeability condition. When analysing stagnation line flow,
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this is written
v′(x, 0, z) = 0. (2.26)

The condition at the edge of the boundary layer is

lim
y→∞

v′ = 0.

The base flow functions U(x̄, y, z̄),W (x̄, y, z̄) and ρb(x̄, y, z̄) appearing as coefficients
in equations (2.24)-(2.25) depend on the viscous variables (x̄, y, z̄). Since equations (2.24)-
(2.25) are written for functions depending on the inviscid variables (x, y, z), we need to re-
expand U,W, ρb accordingly. Using the scalings (2.12), a Taylor expansion around x̄0, z̄0

gives

U(x̄, y, z̄) = U(x̄0, y, z̄0) +O
(

Re−1/2
)

,

W (x̄, y, z̄) = W (x̄0, y, z̄0) +O
(

Re−1/2
)

,

ρb(x̄, y, z̄) = ρb(x̄0, y, z̄0) +O
(

Re−1/2
)

.

This means that at leading order, we are freezing the basic profile at a specific location
(x̄0, z̄0) and the functions U,W, ρb locally only depend on the normal variable y.

Experimental observations suggest that the perturbations are periodic in the spanwise
direction. Consequently, we look for a solution in the normal mode form

(u′, v′, w′, p′, ρ′, h′) =

(

ū(y), v̄(y), w̄(y), p̄(y), ρ̄(y), h̄(y)

)

eσx+iβz . (2.27)

Since we are interested in the spatial development of the instabilities, we will assume that
σ is complex and β is real. Thus the real part of σ, which we denote ℜ(σ), represents
the growth rate of the instability wave. This turns equations (2.24)-(2.25) into a system of
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ordinary differential equations

ρb
(

σU + iβW
)

ū+ ρb
dU

dy
v̄ = −σp̄,

ρb
(

σU + iβW
)

v̄ = −dp̄

dy
,

ρb
(

σU + iβW
)

w̄ + ρb
dW

dy
v̄ = −iβp̄,

(2.28)

and
(

σU + iβW
)

ρ̄+
dρb
dy

v̄ = −ρb
(

σū+
dv̄

dy
+ iβw̄

)

,

ρb
(

σU + iβW
)

h̄+ ρb
dH

dy
v̄ =

(

σU + iβW
)

p̄,

h̄ =
γ

γ − 1

p̄

ρb
− 1

(γ − 1)M2
∞

ρ̄

ρ2b
.

(2.29)

Here and throughout the rest of this chapter, we define the basic flow combination

f = σU + iβW.

The functions ū, v̄, w̄, ρ̄ and h̄ can be eliminated to reduce the system of differential equa-
tions (2.28)-(2.29) to a single ordinary differential equation for the pressure perturbations

p̄ ′′ − d

dy

(

log M̄2
)

p̄ ′ −
(

M̄2 + β2 − σ2
)

p̄ = 0, (2.30)

where M̄ = fρ1/2b M∞.

It is worth comparing equation (2.30) with the equation derived in Smith & Brown
(1990). In their paper, Smith & Brown investigated the temporal instability of a two dimen-
sional compressible boundary layer. They found that the pressure perturbations p̄ satisfied
the equation

p̄′′ − d

dy

(

log M̄2
)

p̄′ − α2(1− M̄2)p̄ = 0,

where M̄ = (U − c)ρ1/2b M∞. In contrast, we are analysing the three dimensional spatial
instability of the flow. The equations are nonetheless very similar.
The boundary conditions for equation (2.30) can be found by investigating the momentum
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equations (2.28). Setting y = 0, and using the boundary conditions v̄(0) = U(0) =

W (0) = 0 leads to
p̄(0) = 0, p̄ ′(0) = 0.

The first condition is characteristic of the spatial instability considered here and will be the
one used to solve equation (2.30).

To understand this, we turn to the study of the temporal instability of the flow of
Smith & Brown (1990). In their paper, the normal mode decomposition takes the form
Q(x, y, z, t) = Q̄(y) exp(i(αx+ βz) + ct), and the basic flow combination is written

f̃ = αU + βW − ω, c = −iω.

As a consequence, f̃(0) ̸= 0. Substituting this into the momentum equations thus leads to
p̄(0) ̸= 0, in contrast with our study. The second condition p̄ ′(0) = 0 remains however
valid for both problems and was used in Smith & Brown (1990). In order to distinguish
the spatial analysis from the temporal analysis, we will dismiss it in favour of the former
condition.

A second boundary condition should be applied far away from the wall, where it is
expected that perturbations decay. We thus need to solve the second order ODE

p̄ ′′ − d

dy

(

log M̄2
)

p̄ ′ −
(

M̄2 + β2 − σ2
)

p̄ = 0, (2.31)

subject to the boundary conditions

p̄ (0; σ) = 0, lim
y→∞

p̄ (y; σ) = 0. (2.32)

Equation (2.31) together with boundary conditions (2.32) form an eigenvalue problem. For
a given wavenumber β, we need to find σ and p̄(y; σ) such that (2.31) and (2.32) are satis-
fied, and the solution is not trivial. This problem will be solved numerically. Asymptotical
properties of this equation, which serve as a starting point for the numerical calculations,
can be found in Appendix A.
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2.2.3 Numerical solution of the stability equation

The complete solution to the eigenvalue problem (2.31)-(2.32) is now sought numerically.
The goal of this analysis is to find how the growth rate ℜ(σ) varies as a function of the
spanwise wavenumber β. This is called the dispersion relation.

An efficient way to solve the problem is to use the 4th order Runge-Kutta shooting
method. We have to integrate from some large distance yinf, where the behaviour of p̄ can be
calculated by analysing the asymptotic properties of equation (2.31), described in Appendix
A. A first guess for the eigenvalue σ is chosen, for which the corresponding solution will
likely not satisfy the boundary condition on the wall. The guess is then improved using the
Newton-Raphson method until the wall boundary condition is satisfied.

The stability equation (2.31) is very sensitive to initial conditions. In order to find
the correct guess for σ which will guarantee the convergence of the Newton-Raphson it-
eration process, we will use a global eigenvalue method to guide us towards the correct
initial guess. The QZ factorisation is an algorithm that enables us to solve the generalised
eigenvalue problem

Ax = σBx, (2.33)

with the ‘standard’ case being when B is the identity matrix.
The starting point for this method are the linearised normal mode equations (2.28)-

(2.29). The enthalpy can be eliminated by combining the energy and state equations,
thus reducing by one the number of equations and variables. The remaining equations
form a mix of differential and algebraic equations. In order to solve them, the domain is
split into N points and the equations are discretised. A second order central difference
scheme is used in the bulk of the domain. On the lower/upper boundaries, a third order for-
ward/backward difference scheme is implemented, representing the boundary conditions
on the wall and at infinity. In order to formulate boundary conditions and initialise all vari-
ables at the wall, we need expressions for ū (0) , v̄ (0) , w̄ (0) , p̄ (0) and ρ̄ (0). The common
technique is to evaluate each equation in (2.28)-(2.29) at y = 0. However, this technique
fails here since the basic flow profiles vanish at the wall, giving trivial results. To avoid this
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problem, we differentiate each equation once, and then evaluate at y = 0. We define

λ1 = U ′ (0) , λ3 = W ′ (0) .

The discretisation notation is Q0 = Q|y=0 and Qk = Q|y=k∆h, where ∆h is the spacing
between two adjacent grid points. The wall boundary conditions then take the form

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iβλ3 ū0 + λ1v̄0
′ + σ

(

λ1ū0 +
p̄0 ′

ρb0

)

= 0,

v̄0 = 0,

iβ

(

λ3w̄0 +
p̄0 ′

ρb0

)

+ λ3v̄0
′ + σλ1w̄0 = 0,

p̄0 = 0,

− iβλ3
(

ρ̄0 − ρb0M
2
∞ p̄0

)

+ ρb0
′v̄0

′ + σ
(

λ1ρb0M
2
∞p̄0 − λ1ρ̄0

)

= 0.

(2.34)

We use third order forward difference to compute v̄ ′ (0)

v̄ ′ (0) =
−11

6 v̄0 + 3v̄1 − 3
2 v̄2 +

1
3 v̄3

h
.

In order to compute boundary conditions at infinity, we use the fact that

U → Ue, W → We, ρb → 1, v̄ → 0,

leading to
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iβWe ūf + σ (Ueūf + p̄f) = 0,

p̄f = 0,

iβ (We w̄f + p̄f) + σUew̄f = 0,

iβ (We ρ̄f + w̄f) + σ (ūf + Ueρ̄f ) = 0,

iβWe

(

ρ̄f −M2
∞p̄f

)

− σ
(

UeM
2
∞p̄f − Ueρ̄f

)

= 0,

(2.35)

where subscript f denotes quantities evaluated at infinity. In practice, we used yinf = 25.
We then fill matrices A and B in order to bring (2.28)-(2.29) to the form described by
equation (2.33).
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Solving this system with the QZ algorithm implemented in Matlab then enables us to
compute the full spectrum, giving all the eigenvalues σ for a given pair (β,M∞) as well
as the corresponding eigenfunctions. It is however slow and not accurate when N is small.
This can be seen in Figure 2.7 where the boundary condition p̄ ′(0) = 0 is satisfied, but we
have p̄(0) ̸= 0. This issue can be resolved by increasing the number of grid points, but this
drastically increases computing time. Thus, this method only serves as a starting point for
our calculations.

We ran the QZ code for β = 0.3 and M∞ = 0.7. The corresponding eigenvalue plot is
displayed on Figure 2.4.
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) 

Figure 2.4: Eigenvalue computation from QZ method.

We notice four distinct features in this graph:

1. it is symmetric, which is to be expected with inviscid instability, where eigenvalues
come in complex conjugate pairs;

2. the presence of two ‘loops’, corresponding to the continuous spectrum, which arises
from the Fourier decomposition that led us to equations (2.28)-(2.29);
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3. a line, where ℜ(σ) = 0, corresponding to neutral modes;

4. four isolated points which are spurious roots.

In order to confirm the last remark, we increased the number of grid points from N = 151

to N = 201 and N = 301 and observed that these four points also moved, as shown on
Figure 2.5.
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Figure 2.5: Calculations for N = 151 ⋄, 201 ◦, 301▽.

The presence of both discrete and continuous spectrum is to be expected for this type of
problems (Saric, Reed & Arnal 1994). The eigenvalues we want should be isolated ones,
and we expect ℜ(σ) to be small. Zooming in close to the line ℜ(σ) = 0, we find a single
pair of eigenvalues, displayed on Figure 2.6. These are the relevant ones for the problem
at hand. It should be noted that while the location of the spurious roots and the continuous
spectrum varied with the number of points, as shown on Figure 2.5, this pair of eigenvalues
does not move and is thus the one we are after. For this particular example when β = 0.3,
we find the eigenvalue pair

σ = ±0.0473− 0.8716 i.

These values were compared with the one obtained through a compressible linear stability
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Figure 2.6: A closer look at the vicinity of the neutral line reveals a pair of eigenvalues.

solver (COPSE, Mughal 1998), developed independently. The results were found to agree
to 4 decimal places. The eigenfunctions corresponding to this eigenvalue are shown in Fig-
ure 2.7, where for the sake of clarity we have plotted the absolute value of the perturbations
rather than their real and imaginary part.
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Figure 2.7: Eigenfunctions of the linear system.
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The guess obtained for the eigenvalue now enables us to solve equation (2.31) precisely.
We start the numerical integration at some large value of y where the behaviour of p̄

is known from the asymptotic formula described in Appendix A. We use the guess for σ
obtained through the QZ method and we then numerically integrate (2.31) up to the wall
y = 0 using a standard 4th order Runge-Kutta method. We then iterate this process until the
boundary condition on the wall is satisfied, which is done by using the Newton-Raphson
method. The code is assumed to converge when |p̄(0)| < 10−7.

We use once again the value β = 0.3, in which case the guess from the QZ method was
σg = +0.0473 − 0.8716 i. The Newton-Raphson method converged after 4 iterations and
we found

σ = +0.0478578− 0.8694983 i.

The corresponding eigenfunction, normalised so that maxℜ(p) = 1, is plotted in Figure
2.8. We note that the boundary condition p̄(0) = 0 is clearly satisfied, as well as the extra
condition p̄ ′(0) = 0.
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Figure 2.8: Normalised eigenfunctions for β = 0.3, σ = +0.0478578− 0.8694983 i.

The full spectrum is then found by slightly increasing β at every step. Figure 2.9 shows a
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comparison of the spectrum obtained via the QZ method and the Newton-Raphson method.
There is a very good agreement between the two methods, the difference laying in the
computational cost. Indeed, the QZ method was very slow and computationally intensive:
it took about 40 hours to compute the solution at 20 values of β for a grid of size N = 801.
In comparison, the Newton-Raphson method computed the solution at 4000 values of β,
for a grid size N = 1001 in under 45 minutes. Notice that we were not able to calculate
eigenvalues for β < 0.025 using the N-R technique. These can however still be estimated
with the QZ method.
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Figure 2.9: Comparison between QZ method and N-R method.

The calculation of the dispersion relation shown on Figure 2.9 is the main goal of the
Linear Stability Analysis. It enables us to understand the range of spanwise wave number β
for which the flow is unstable. We now turn to the mechanism that generated this instability
wave, and try to determine its initial amplitude.
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2.3 Receptivity Analysis

The linear instability analysis presented in the previous section enabled us to find the eigen-
values and eigenfunctions for our problem. However, since p̄ satisfies a linear homoge-
neous equation with homogeneous boundary conditions, the amplitude of the perturbations
is unknown at this stage. The source of perturbations should be specified in order to de-
termine their amplitude and solve the receptivity problem. Let us assume that the pertur-
bations are created by a small roughness of size ϵ situated downstream, at some distance
L from the front stagnation point. In order to generate the correct resonance condition for
the crossflow instability to take place, we have to assume that the longitudinal extent of
this roughness is of the same order as the boundary-layer thickness δ∗ = Re−1/2 which
develops on the wing. Hence, we shall represent the roughness shape by the equation

ȳw = Re−1/2 ϵ η(x, z), (2.36)

where
x =

x̄− 1

Re−1/2
, z =

z̄ − 1

Re−1/2
.

We shall further assume the roughness to be periodic in the z-direction and so we write

η(x, z) = e
1
2
iβz g(x). (2.37)

The unusual factor of 1/2 in the exponent will be made clear in the next section.

2.3.1 Formulation of the receptivity problem

In order to derive appropriate equations for the problem, we proceed in a similar fashion
as Section 2.2. Starting from the compressible Navier-Stokes equations (2.1)-(2.6), we
introduce the non dimensional variables

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x̂ = Lx̄, ȳ = Lȳ, ẑ = Lz̄,

û = V∞u, v̂ = V∞v, ŵ = V∞w,

p̂ = p∞ + ρ∞V 2
∞p, ρ̂ = ρ∞ρ, ĥ = V 2

∞h.

(2.38)
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Assuming that ϵ≪ 1, the flow is then studied using asymptotic expansions

u = U (x̄, y, z̄) + δ(ϵ)u′(x, y, z) + · · · ,

v = Re−1/2 V (x̄, y, z̄) + δ(ϵ)v′(x, y, z) + · · · ,

w = W (x̄, y, z̄) + δ(ϵ)w′(x, y, z) + · · · ,

ρ = ρb (x̄, y, z̄) + δ(ϵ)ρ′(x, y, z) + · · · ,

p = P (x̄, y, z̄) + δ(ϵ)p′(x, y, z) + · · · ,

h = H (x̄, y, z̄) + δ(ϵ)h′(x, y, z) + · · · .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(2.39)

The coordinates (x, y, z) are introduced as before through the scalings

x =
x̄− 1

Re−1/2
, y =

ȳ

Re−1/2
, z =

z̄ − 1

Re−1/2
. (2.40)

This leads again to the equations (2.24)-(2.25) of Section 2.2. We remind the reader that
the perturbations equations take the form

ρb

(

U
∂u′

∂x
+

dU

dy
v′ +W

∂u′

∂z

)

= −∂p
′

∂x
, (2.41)

ρb

(

U
∂v′

∂x
+W

∂v′

∂z

)

= −∂p
′

∂y
, (2.42)

ρb

(

U
∂w′

∂x
+

dW

dy
v′ +W

∂w′

∂z

)

= −∂p
′

∂z
. (2.43)

and

U
∂ρ′

∂x
+

dρb
dy

v′ +W
∂ρ′

∂z
= −ρb

(

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z

)

, (2.44)

ρb

(

U
∂h′

∂x
+

dH

dy
v′ +W

∂h′

∂z

)

= U
∂p′

∂x
+W

∂p′

∂z
, (2.45)

h′ =
γ

γ − 1

p′

ρb
− 1

(γ − 1)M2
∞

ρ′

ρ2b
. (2.46)

Following the same reasoning as in the previous chapter, the base flow functions U,W and
ρb are Taylor expanded around the roughness location and thus are locally considered as
functions of y only.
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Unlike in Choudhari & Duck (1996), we shall assume that the roughness size is larger
than the thickness of the viscous sublayer, as shown on Figure 2.10. We thus require
ϵ ≫ Re−1/6. In this case, the viscous effects can be disregarded, and equations (2.41)-
(2.46) should be solved with the impermeability condition on the wall. In Section 2.4, we
will compare this approach with the work of Choudhari & Duck.

1

Re−2/3

Re−1/2

2

Figure 2.10: A roughness buried within the boundary layer, but larger than the viscous
sublayer.

Upon introducing the small roughness described by (2.36), we now need to assume that
parameter δ in (2.39) depends on ϵ. The relation δ(ϵ) is found by investigating the boundary
conditions. To this aim, we introduce the function φ = y−ϵ η(x, z), so that the body surface
is represented by the equation φ = 0. This enables us to write the impermeability condition
in the form

u.∇φ = 0 on φ = 0. (2.47)

We substitute the expansion (2.39), which leads to

u.∇φ = −ϵU ∂η
∂x

− ϵW
∂η

∂z
− δϵ

∂η

∂x
u′ + δv′ − δϵ

∂η

∂z
w′ + · · · . (2.48)

On φ = 0, we have y = ϵ η(x, z) and we can use Taylor expansion for U , W and u′ as
follows

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

U = ϵ η(x, z)U ′(0) + · · · ,

W = ϵ η(x, z)W ′(0) + · · · ,

u′ =u′(x, 0, z) + ϵ η(x, z)
∂u′

∂y

∣

∣

∣

∣

y=0

+ · · · ,

(2.49)

where we used the fact that the basic flow satisfies the no-slip condition U(0) = W (0) = 0.
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This leads to the equation

− ϵ2
(

U ′(0)η
∂η

∂x
+W ′(0)η

∂η

∂z

)

+ δv′(x, 0, z) +O(ϵ δ) = 0. (2.50)

According to the principle of least degeneration, we need to set δ = ϵ2. The linearised
boundary conditions in the presence of a small roughness then reduces at leading order to

v′(x, 0, z) = U ′(0)η
∂η

∂x
+W ′(0)η

∂η

∂z
. (2.51)

We now substitute (2.37) in the boundary condition (2.51) to yield

v′(x, 0, z) = eiβz
(

U ′(0)g(x)
dg

dx
+

1

2
iβW ′(0)g2(x)

)

. (2.52)

We note here that the wave number of the perturbation appears to be twice the value of the
original roughness period, given in equation (2.37). This is because the boundary condition
(2.51) is a nonlinear function of the roughness shape. This is one of the main results of this
analysis.

Thus, our task is to solve equations (2.41)-(2.46) subject to condition (2.52) at y = 0

and the condition of attenuation of the perturbations at y → ∞. Due to the fact that the
roughness is periodic in z, the solution to equations (2.41)-(2.46) is assumed to be periodic
in the span wise direction. This motivates us to look for a solution in the form

q′(x, y, z) = q̃(x, y) eiβz, (2.53)

where q represents the vector of fluid dynamic variables q = (u, v, w, p, ρ, h). We substi-
tute this into the linearised equations (2.41)-(2.46), which leads to the set of equations

ρbU
∂ũ

∂x
+ ρbiβWũ+ ρb

dU

dy
ṽ = −∂p̃

∂x
,

ρbU
∂ṽ

∂x
+ ρbiβWṽ = −∂p̃

∂y
,

ρbU
∂w̃

∂x
+ ρbiβWw̃ + ρb

dW

dy
ṽ = −iβp̃,

(2.54)
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U
∂ρ̃

∂x
+ iβW ρ̃+

dρb
dy

ṽ = −ρb
(

∂ũ

∂x
+
∂ṽ

∂y
+ iβw̃

)

,

ρbU
∂h̃

∂x
+ ρbiβWh̃+ ρb

dH

dy
ṽ = U

∂p̃

∂x
+ iβWp̃,

h̃ =
γ

γ − 1

p̃

ρb
− 1

(γ − 1)M2
∞

ρ̃

ρ2b
.

(2.55)

Taking into account the analysis conducted in Section 2.2, which showed that the per-
turbations grow exponentially downstream of the roughness, we shall apply the Laplace
transform to equations (2.54)-(2.55) in the stream wise direction x. Recall that the Laplace
transform of a function φ(x) is given by

L(φ) = φ̄(σ) =

∞
∫

0

φ(x) e−σx dx.

This is well defined provided that there exist positive constants C and a such that

|φ(x)| ≤ C eax for all ℜ(σ) > a.

The formula for the Laplace transform of the derivative is

L
(

∂φ

∂x

)

= σφ̄− φ
∣

∣

x=0
.

Assuming, subject to subsequent confirmation, that the presence of the hump doesn’t influ-
ence the perturbations upstream, we can set

ũ(0, y) = ṽ(0, y) = w̃(0, y) = 0,

with similar relations for the other flow variables. The resulting equations are then similar
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to the ones derived in Section 2.2

ρb
(

σU + iβW
)

ū+ ρb
dU

dy
v̄ = −σp̄,

ρb
(

σU + iβW
)

v̄ = −dp̄

dy
,

ρb
(

σU + iβW
)

w̄ + ρb
dW

dy
v̄ = −iβp̄.

(2.56)

(

σU + iβW
)

ρ̄+
dρb
dy

v̄ = −ρb
(

σū+
dv̄

dy
+ iβw̄

)

,

ρb
(

σU + iβW
)

h̄+ ρb
dH

dy
v̄ =

(

σU + iβW
)

p̄,

h̄ =
γ

γ − 1

p̄

ρb
− 1

(γ − 1)M2
∞

ρ̄

ρ2b
.

(2.57)

The transformation (2.53) and Laplace transform should also be applied to the boundary
condition (2.51), which, together with decay condition at infinity, take the form

v̄(0; σ) =
1

2

(

λ1σ + iλ3β
)

+∞
∫

0

e−σx [g(x)]2 dx, lim
y→∞

v̄(y; σ) = 0, (2.58)

where λ1 = U ′(0),λ3 = W ′(0). The boundary conditions are formulated for v̄ which moti-
vates us to reduce the system of differential equations (2.56)-(2.57) to a single second order
differential equation for v̄. Following a similar procedure as in Section 2.2, we introduce
functions

f = σU + iβW, q = f 2M2
∞ +

β2 − σ2

ρb
,

and equations (2.56)-(2.57) are reduced to

v̄ ′′ − q′

q
v̄ ′ −

(

f ′′

f
+ ρbq −

f ′

f

q′

q

)

v̄ = 0. (2.59)

The task is now to find a function v̄(y; σ) satisfying equation (2.59) and boundary condi-
tions (2.58). Once this is done, the original perturbation velocity v′ is recovered through
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the inverse Laplace transform

v′(x, y, z) = eiβz
1

2πi

a+i∞
∫

a−i∞

v̄(y; σ)eσxdσ, (2.60)

with a being to the right of all the singularities of v̄ in the complex σ-plane. This integral
can be evaluated by using the Residue theorem. To this aim, we need to calculate the poles
of the integrand v̄(y; σ)eσx in the complex σ-plane. This is the task of the next subsection.

2.3.2 Analytical solution of the receptivity problem

Following a brief introduction to crossflow vortices, the second section of this chapter was
concerned with the linear stability of the flow, leading to a set of homogeneous equation
and boundary conditions, namely the pressure equation (2.31) and its associated bound-
ary conditions (2.32). The amplitude of the disturbance could not be determined, but we
could find the growth rate σ. Now that we have added forcing into the system through the
boundary conditions, we can expect to be in a position to calculate the initial amplitude.

Indeed, this type of situation has been studied extensively in physical sciences (for
example in the context of wave or quantum mechanics): a given homogenous problem, de-
pending on a parameter λ, might only have a solution for a certain set of eigenvalues {λn}.
This solution involves an undetermined constant, usually referred to as the amplitude. If
we add some forcing term through a non-zero boundary condition or inhomogeneous terms
in the equation, the eigenvalue constraint disappears and a solution can be constructed for
any value of parameter λ. Moreover, using adjoint methods and the Fredholm alternative,
it is possible to calculate the aforementioned unknown amplitude. It can however be shown
that the general solution f(x;λ) then develops poles at λ = λn. This is not a problem
for us since we are actually interested in studying those poles in order to use the Residue
Theorem. We will use a Laurent expansion to find the solution, this method being justified
and demonstrated through a simplified example in Appendix B.

This discussion motivates us to look for a solution to equation (2.59) and boundary
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conditions (2.58) in the form

v̄(y; σ) =
1

σ − σ0
v0(y) + v1(y) +O(σ − σ0) as σ → σ0, (2.61)

where we assume, subject to subsequent confirmation, that σ0 is the eigenvalue of the
homogeneous problem (2.31)-(2.32). By definition, the residue of the integrand in the
inverse Laplace transform (2.60) is v0(y) eσ0x. Our task is now to find function v0(y). We
define δ = σ−σ0 and substitute expansion (2.61) into equation (2.59). The first and second
order equations in the approximation in powers of δ are

[

d2

dy2
− q′0

q0

d

dy
−
(

f ′′
0

f0
+ ρbq0 −

f ′
0

f0

q′0
q0

)]

v0 = 0, (2.62)
[

d2

dy2
− q′0

q0

d

dy
−
(

f ′′
0

f0
+ ρbq0 −

f ′
0

f0

q′0
q0

)]

v1 = Λ. (2.63)

The functions f0 and q0 are defined by f0 = f(y; σ0), q0 = q(y; σ0), and the right hand side
in (2.63) is given by

Λ =
1

q0

(

Q′ − q′0
q0
Q

)

v′0 +

[

1

f0

(

U ′′ − f ′′
0

f0
U

)

+ ρbQ+

+
1

f0

1

q0

(

f ′
0Q

′ − f ′
0

q′0
q0
Q+ q′0U

′ − q′0
f ′
0

f0
U

)]

v0.

As expected, it depends both on v0 and v′0. Finally, the function Q in the above equation is
defined as

Q = 2M2
∞f0U − 2

σ0
ρb
.

The asymptotic expansion (2.61) for v̄ should be substituted into the boundary conditions
(2.58) as well. This results in

⎧

⎪

⎨

⎪

⎩

v0(0) = 0, lim
y→∞

v0 = 0,

v1(0) = C, lim
y→∞

v1 = 0,
(2.64)
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where

C =
1

2

(

λ1σ0 + iλ3β

)

+∞
∫

0

e−σ0x [g(x)]2 dx. (2.65)

The asymptotic expansion (2.61) has split the problem into two, one homogeneous and the
other non homogeneous due to the presence of the right hand side Λ.

To progress in the analysis of the problem, it is convenient to express the differential
operators on the left hand side of (2.62)-(2.63) in self-adjoint form. Any second order ODE
can be put into Sturm-Liouville form, which is self-adjoint. Given the equation

p(x)y′′ + q(x)y′ + r(x)y = h(x), (2.66)

this is done by multiplying both sides of (2.66) by the integrating factor

I = exp

(
∫ x

q(t)/p(t)dt

)

.

In our case, the integrating factor is

exp

(

−
∫

log(q0(t))
′ dt

)

=
1

q0
.

Using this transformation, the set of equations (2.62)-(2.63) becomes

(

v′0
q0

)′

− 1

q0

(

f ′′
0

f0
+ ρbq0 −

f ′
0

f0

q′0
q0

)

v0 = 0,

(

v′1
q0

)′

− 1

q0

(

f ′′
0

f0
+ ρbq0 −

f ′
0

f0

q′0
q0

)

v1 =
Λ

q0
.

(2.67)

Combining (2.67) with the corresponding boundary conditions (2.64), we have

⎧

⎪

⎨

⎪

⎩

Lsav0 = 0, v0(0) = 0, lim
y→∞

v0 = 0,

Lsav1 =
Λ

q0
, v1(0) = C, lim

y→∞
v1 = 0,

(2.68)

The first line in (2.68) corresponds to the problem (2.31)-(2.32) solved in Section 2.2,
cast in terms of the normal velocity instead of pressure. This confirms our assumption that
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σ0 needs to be chosen as the eigenvalue of the homogeneous problem. The second problem
in (2.68) is inhomogeneous due to the forcing appearing in the boundary condition at the
wall. The Fredholm alternative tells us that a solution only exists if a certain solvability
condition is satisfied. It will enable us to determine the crossflow vortices. We define the
inner product

< φ,ψ >=

∞
∫

0

φ(t)ψ(t)dt.

The solvability condition is found as follows: assuming a solution v1 exists, we take the
inner product of the equation with v0, the solution of the homogenous problem. This is
expressed as

< Lsav1, v0 >=<
Λ

q0
, v0 > . (2.69)

Using integration by parts on the left hand side, we get

< Lsav1, v0 > =

[

v′1v0 − v1v′0
q0

]∞

0

+ < v1, Lsav0 > . (2.70)

Since v0 satisfies the first equation, i.e. Lsav0 = 0, the second term on the right hand side of
(2.70) disappears and we are just left with the boundary terms in square brackets. Equating
this with the right hand side of (2.69) leads to

[

v′1v0 − v1v′0
q0

]∞

0

=<
Λ

q0
, v0 > . (2.71)

This is the solvability condition that we require.
Let A = max(v0) and write v0 = Av̂0, with v̂0 = v0/A. According to the set of

boundary conditions in (2.68), the only non-zero boundary term in (2.71) comes from v1(0),
the forcing due to the presence of the roughness. The solvability condition (2.71) reduces
to

v1(0)

q0(0)
A v̂0

′(0) =

+∞
∫

0

Λ

q0
A v̂0 dy. (2.72)

The function Λ on the right hand side of (2.72) contains only linear combinations of v0, v′0
and we can thus extract a factor of A from it. The term v1(0) is given by the boundary
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conditions (2.65). Rearranging equation (2.72), we find that A is given by

A =
v1(0)v̂0 ′(0)

q0(0)
+∞
∫

0

Λv̂0/q0 dy

. (2.73)

We now return to the task of recovering the original perturbation v′ through the integral

v′(x, y, z) = eiβz
1

2πi

a+i∞
∫

a−i∞

v̄(y; σ)eσxdσ. (2.74)

The solution to our problem was sought in the asymptotic expansion

v̄(y; σ) =
A

σ − σ0
v̂0(y) + v1(y) + . . . as σ → σ0.

The integrand thus contains a simple pole at σ = σ0, with residue

Res (v̄ eσx) = A v̂0(y) e
σ0x .

The contour can be closed by using a large semi circle of radius R, as sketched in Figure
2.11, and the integral can then be evaluated using the Residue Theorem in the limitR → ∞.
Jordan’s Lemma is used to estimate the value of the integral on the arc of the circle, with
its contribution vanishing to 0 as we let the radius R → ∞.

O

σ0
σ1

σ2

σi

a

a − i∞

σr

a + i∞

Figure 2.11: Integration contour for the inverse Laplace transform (2.74).
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We then have
a+i∞
∫

a−i∞

v̄(y; σ)eσxdσ = 2πi
∑

σ=σi

Res
(

v̄(y; σ)eσx
)

, (2.75)

the sum being taken over the singularities σi. We are however only interested in the be-
haviour at large values of x, in which case we keep only the term which gives the largest
growth rate in the sum. The perturbations far downstream are then written

v′(x, y, z) = K(β)

⎡

⎣

∞
∫

0

e−σ0x [g(x)]2 dx

⎤

⎦ v̂0(y) e
iβz+σ0x+ · · · , as x → ∞, (2.76)

with the receptivity coefficient K(β) given by

K(β) =
1

2

(λ1σ0 + λ3iβ) v̂0 ′(0)

q0(0)
+∞
∫

0

Λv̂0/q0 dy

.

The formula (2.76) expresses the dependence of the downstream growing vortex on the
receptivity coefficient K(β) and the Laplace transform of the roughness shape in the square
brackets.

We define the amplitude Ainv of the vortex, obtained using the impermeability condi-
tion, as the receptivity coefficient K(β) multiplied by the Laplace transform of the square
of the roughness

Ainv = K(β)

⎡

⎣

∞
∫

0

e−σ0x [g(x)]2 dx

⎤

⎦ . (2.77)

The amplitude function (2.77) is calculated numerically, and its magnitude |Ainv(β)| is
shown on Figure 2.12. The roughness shape g(x) was assumed to take the standard Gaus-
sian form

g(x) = e−x2

.

In order to perform the numerical calculations, we used one of the boundary-layer velocity
profiles generated through the CoBL code of Mughal (1998). The distance s along the wing
is s = 0.0006759 and the freestream Mach number is M∞ = 0.07317. In this setting, a
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growing instability wave, corresponding to ℜ(σ) ̸= 0, is observed when β ∈ [0, 0.475].
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Figure 2.12: Amplitude of crossflow vortex |Ainv| as a function of the wavenumber β.

The results obtained in Figure 2.12 are very similar to the ones found in Choudhari &
Streett (1990) and Choudhari (1994). At low values of the wavenumber β, the amplitude
of the crossflow vortices is small. Then, as β increases to 0.125, the amplitude increases
drastically and attains a local maximum. The amplitude then decreases slowly until β
reaches the value 0.28. This is followed by a region of slow increase and the amplitude
reaches a global maximum towards the end of the spectrum when β = 0.475. At larger
values of β, the growth rate ℜ(σ) is zero and we no longer observe growing vortices.

On Figure 2.13, we present the results obtained as we increase slightly the distance s

along the wing. We first observe that the spanwise wavenumber range β for which cross-
flow vortices develop also increases. The shape of the amplitude is magnified, and in
particular its maximum increases in magnitude. Furthermore, we note that the location of
this maximum is located at a higher wavenumber β.
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Figure 2.13: Amplitude of crossflow vortex at different locations along the wing (im-
permeability): s = 0.0004167,M∞ = 0.0442322 (—); s = 0.0006759,M∞ =
0.0731715 (−−); s = 0.0009823,M∞ = 0.1094626 (-×-).

The inviscid approach, which used the impermeability condition to determine the am-
plitude of the crossflow vortices, showed two new distinct features. Firstly, the wavenum-
ber of the growing vortex appears to be twice the value of the roughness wavenumber and
secondly, the perturbations are proportional to the square of the roughness size. We now
compare this to results obtained when ϵ ∼ Re−1/6, in which case viscosity should be rein-
troduced.

2.4 Viscous approach to the study of crossflow vortices

The previous section was concerned with the inviscid instability of crossflow vortices on a
swept flat plate. The physical mechanism used to trigger this instability was the introduc-
tion of a surface roughness. Mathematically, the presence of the roughness adds forcing
terms through the boundary condition. These forcing terms are what enables us to formu-
late the receptivity problem.

The longitudinal extent of the roughness was assumed to be of the order of the boundary-
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layer thickness, estimated to be of order Re−1/2, and the height of the roughness (denoted
by ϵ) was assumed to be small to ensure that the forcing is in resonance with the crossflow
instability. Coordinates x̄, ȳ and z̄ were all scaled with δ∗ and the perturbations were of
the order of ϵ2. The latter gives us the correct conditions to get the required forcing in the
impermeability boundary condition.

In Section 2.3, we assumed that the roughness height ϵ is small, but larger than the
thickness of the viscous layer forming on the surface of the roughness. The latter may be
estimated as y ∼ Re−2/3. Here, we shall discuss the case when the roughness height is
small compared with that of the viscous sublayer, as sketched on Figure 2.14.

1

Re−2/3

Re−1/2

2

Figure 2.14: A roughness within the viscous sublayer.

To this aim, we need to impose some restriction on the roughness shape. Its longitudinal
extent remains of order δ∗, and hence so do coordinates x̄ and z̄. Let us assume

ȳw = Re−2/3 ϵη(x, z).

It is then necessary to scale ȳ accordingly and leads to the presence of a viscous sublayer
whose thickness we denote δ⋆. This approach enables us to satisfy the no-slip condition.

2.4.1 Derivation of the viscous sublayer scalings

We start from the Navier-Stokes equations (2.1)-(2.6) written in terms of the non-dimensional
variables (x̄, ȳ, z̄). The inviscid approach to the problem was based on the following
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asymptotic expansion, valid in the main part of the boundary layer1

u = U (x̄, y, z̄) + δ(ϵ) u′(x, y, z) + · · · ,

v = Re−1/2 V (x̄, y, z̄) + δ(ϵ) v′(x, y, z) + · · · ,

w = W (x̄, y, z̄) + δ(ϵ)w′(x, y, z) + · · · .

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(2.78)

According to (2.12), the ‘inviscid’ coordinates were defined by

x =
x̄− 1

Re−1/2
= O(1), y =

ȳ

Re−1/2
= O(1), z =

z̄ − 1

Re−1/2
= O(1). (2.79)

To analyse the viscous sublayer, we first note that when y is small, the basic velocity com-
ponents U and W behave as

U(x̄, y, z̄) = λ1y + · · · ,

W (x̄, y, z̄) = λ3y + · · · ,
(2.80)

where λ1 = Uy|y=0,λ3 = Wy|y=0. Provided that the roughness height ϵ is small, the
bump only produces small perturbations to the incoming Blasius flow. This motivates an
asymptotic expansion in the viscous sublayer in the form

u = λ1y + ϵ⋆ U ′(x⋆, y⋆, z⋆) + · · · ,

v = ϵ⋆ γ V ′(x⋆, y⋆, z⋆) + · · · ,

w = λ3y + ϵ⋆W ′(x⋆, y⋆, z⋆) + · · · .

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(2.81)

The small parameter ϵ⋆ used here is different from parameter ϵ used in (2.78). The ‘viscous’
coordinates (x⋆, y⋆, z⋆) appearing in (2.81) are defined through

x⋆ =
x̄− 1

Re−1/2
= O(1), y⋆ =

ȳ

δ⋆
= O(1), z⋆ =

z̄ − 1

Re−1/2
= O(1), (2.82)

with parameter δ⋆ = δ⋆(Re) ≪ 1. It is important to realise that coordinates x⋆ and z⋆ are
indistinguishable from the coordinates x and z used in Section 2.2 and 2.3. The change in

1For the purpose of this analysis, we will neglect the influence of compressibility effects, which are
assumed to be negligible in the viscous sublayer.
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notation is to emphasise that the domain of validity of (2.82) is the viscous sublayer.
Using the scaling (2.82) and combining this with (2.79) , we may rewrite the normal

coordinate y = Re1/2 δ⋆y⋆ and substitute expansions (2.81) into the x̄-momentum equation,
which is written

u
∂u

∂x̄
+ v

∂u

∂ȳ
+ w

∂u

∂z̄
= −∂p

∂x̄
+

1

Re

∂u2

∂ȳ2
.

We estimate the convective term as

u
∂u

∂x̄
= ϵ⋆ δ⋆Re1/2 y⋆

∆U ′

Re−1/2 ∆x⋆

+ · · · ,

while the viscous term on the right hand side of this equation is

1

Re

∂2u

∂ȳ2
=

1

Re

ϵ⋆

δ⋆2
∆U ′

∆y2⋆
+ · · · .

The required balance to retain viscosity is then

Re δ⋆ ∼ 1

δ⋆2Re
, (2.83)

which is easily solved to give δ⋆ = Re−2/3. In order to find the order of magnitude γ of
normal velocity perturbations, we substitute (2.81) into the continuity equation,

∂u

∂x̄
+
∂v

∂ȳ
+
∂w

∂z̄
= 0,

and balancing terms gives
γ = δ⋆Re1/2 = Re−1/6 .

The solution in the viscous sublayer is then sought in the form

u = Re−1/6 λ1y⋆ + ϵ⋆U ′(x⋆, y⋆, z⋆) + · · · ,

v = ϵ⋆ Re−1/6 V ′(x⋆, y⋆, z⋆) + · · · ,

w = Re−1/6 λ3y⋆ + ϵ⋆W ′(x⋆, y⋆, z⋆) + · · · ,

p = ϵ⋆ Re−1/6 P ′(x⋆, z⋆) + · · · .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(2.84)
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We substitute asymptotic expansions (2.84) into the Navier-Stokes equations and find that
the perturbations U ′, V ′ and W ′ satisfy the linearised boundary-layer equations

λ1y⋆
∂U ′

∂x⋆
+ λ1V

′ + λ3y⋆
∂U ′

∂z⋆
= −∂P

′

∂x⋆
+
∂2U ′

∂y2⋆
, (2.85)

λ3y⋆
∂W ′

∂x⋆
+ λ3V

′ + λ3y⋆
∂W ′

∂z⋆
= −∂P

′

∂z⋆
+
∂2W ′

∂y2⋆
, (2.86)

∂P ′

∂y⋆
= 0, (2.87)

∂U ′

∂x⋆
+
∂V ′

∂y⋆
+
∂W ′

∂z⋆
= 0. (2.88)

We need to formulate appropriate boundary conditions for the problem. Now that the
viscous term is present on the right hand side of (2.85) and (2.86), we can satisfy the
no-slip condition

u = v = w = 0, y⋆ = ϵ η(x⋆, z⋆). (2.89)

The expansions (2.84) can be expressed on the surface of the roughness as

(u, v, w) |y⋆=yw = Re−1/6 ϵ
(

λ1η(x⋆, z⋆), 0,λ3η(x⋆, z⋆)
)

+

+ ϵ⋆
(

U ′(x⋆, 0, z⋆),Re
−1/6 V ′(x⋆, 0, z⋆),W

′(x⋆, 0, z⋆)
)

+ · · · .

We can substitute this into the no-slip condition (2.89) and, provided that ϵ⋆ = Re−1/6 ϵ, it
yields

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

U ′(x⋆, 0, z⋆) = −λ1η(x⋆, z⋆),

V ′(x⋆, 0, z⋆) = 0,

W ′(x⋆, 0, z⋆) = −λ3η(x⋆, x⋆).

(2.90)

Before we solve equations (2.85)-(2.88), we should consider the matching conditions with
the main part of the boundary layer where expansions (2.78) and scalings (2.79) apply. At
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large values of y⋆, we look for a solution to equations (2.85)-(2.88) in the form

U ′ = A(x⋆, z⋆) +
D(x⋆, z⋆)

y⋆
+O

(

1

y2⋆

)

,

W ′ = B(x⋆, z⋆) +
E(x⋆, z⋆)

y⋆
+O

(

1

y2⋆

)

,

V ′ = −
(

∂A

∂x⋆
+
∂B

∂z⋆

)

y⋆ + C(x⋆, z⋆) +O

(

1

y⋆

)

,

P ′ = P0 + · · · .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

as y⋆ → ∞. (2.91)

According to Kaplun’s extension theorem, this expansion should be valid in an intermediate
region between the viscous sublayer (region 2 in Figure 2.14) and the main part of the
boundary layer (region 1 in Figure 2.14), the latter being defined by (2.79). We can then
substitute asymptotic expansions (2.91) into (2.84) which leads to

u = λ1y + ϵ⋆A(x⋆, z⋆) + ϵ⋆ Re−1/6 D(x⋆, z⋆)

y
+ · · · ,

w = λ3y + ϵ⋆B(x⋆, z⋆) + ϵ⋆ Re−1/6 E(x⋆, z⋆)

y
+ · · · ,

v = −ϵ⋆
(

∂A

∂x⋆
+
∂B

∂z⋆

)

y + ϵ⋆ Re−1/6 C(x⋆, z⋆) + · · · ,

p = ϵ⋆Re−1/6 P0 + · · · .

(2.92)

The asymptotic expansions (2.92) can now be used at the bottom of the main part of the
boundary layer, suggesting that the solution should be represented there in the form

u = U(x̄, y, z̄) + ϵ⋆ ũ(x, y, z) + ϵ⋆ Re−1/6 u′(x, y, z) + · · · ,

w = W (x̄, y, z̄) + ϵ⋆ w̃(x, y, z) + ϵ⋆ Re−1/6 w′(x, y, z) + · · · ,

v = ϵ⋆ ṽ(x, y, z) + ϵ⋆Re−1/6 v′(x, y, z) + · · · ,

p = ϵ⋆ Re−1/6 p′(x, y, z) + · · · .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(2.93)

When we substitute (2.93) into the Navier-Stokes equations, the resulting set of equations
are the linearised Euler equations. However the pressure gradient, estimated to be of the or-
der ϵ⋆ Re−1/6, disappears at leading order as it appears to be an order of magnitude smaller
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than the leading order convective terms, which according to (2.93) are estimated to be of
the order ϵ⋆.

This is in contradiction with the equations obtained in Sections 2.2 and 2.3. In order
to restore the pressure gradient, we need to assume that A(x⋆, z⋆) = B(x⋆, z⋆) = 0 so
that all terms of order ϵ⋆ disappear in (2.93). This means that ũ = ṽ = w̃ = 0. This
particular behaviour of the boundary layer, where the displacement effect is inexistent, was
first discussed by Bogolepov & Lipatov (1985) and is known as ‘compensation regime’ in
Russian literature. The equations for the second order perturbations in (2.93) are then

U
∂u′

∂x
+
∂U

∂y
v′ +W

∂u′

∂z
= −∂p

′

∂x
, (2.94)

U
∂v′

∂x
+W

∂v′

∂z
= −∂p

′

∂y
, (2.95)

U
∂w′

∂x
+
∂W

∂y
v′ +W

∂w′

∂z
= −∂p

′

∂z
, (2.96)

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0. (2.97)

These equations are similar to equations (2.24) derived in Section 2.2, with the density
of the fluid set to unity. The boundary conditions for (2.94)-(2.97) can be deduced by
matching with the asymptotic expansions (2.91) obtained at the edge of the sublayer. We
then obtain

u′, v′, w′ → 0 as x2 + y2 + z2 → ∞, (2.98)
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

u′(x, y, z) = D(x, z)/y,

v′(x, y, z) = C(x, z), as y → 0

w′(x, y, z) = E(x, z)/y.

(2.99)

We are thus able to have a non-zero boundary condition for v′(x, y, z), offering an alterna-
tive to the impermeability condition used in the inviscid approach described in Section 2.3.
Our task is now to find

C(x⋆, z⋆) = lim
y⋆→∞

V ′(x⋆, y⋆, z⋆).
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2.4.2 Analytical solution in the viscous sublayer

In order to calculate the normal velocity C(x⋆, z⋆) at the edge of the viscous sublayer, we
should solve the linearised boundary-layer equations (2.85)-(2.88). To this aim, we reduce
the original set of PDEs to a single ODE as follows. We differentiate the x⋆-momentum
equation (2.85) by x⋆, the z⋆-momentum equation (2.86) by z⋆, and then combine them.
The continuity equation (2.88) is used to eliminate U ′ and W ′, and leads to following
equation for V ′ and P ′

−y⋆

(

λ1
∂

∂x⋆
+ λ3

∂

∂z⋆

)

∂V ′

∂y⋆
+

(

λ1
∂

∂x⋆
+λ3

∂

∂z⋆

)

V ′ =

= −
(

∂2

∂x2
⋆

+
∂2

∂z2⋆

)

P ′ − ∂3V ′

∂y3⋆
. (2.100)

We differentiate this equation once more now with respect to y⋆ and use (2.87) to yield

∂4V ′

∂y4⋆
− y⋆

(

λ1
∂

∂x⋆
+ λ3

∂

∂z⋆

)

∂2V ′

∂y2⋆
= 0. (2.101)

Let us assume that the roughness shape η is periodic in the z⋆ direction and can be written
in the form

η = eiβz⋆ g(x⋆). (2.102)

Consequently, we decompose V ′ in the following way

V ′ = eiβz⋆ Ṽ (x⋆, y⋆), (2.103)

and substituting (2.103) into (2.101) yields

∂4Ṽ

∂y4⋆
− y⋆

(

λ1
∂

∂x⋆
+ iβλ3

)

∂2Ṽ

∂y2⋆
= 0. (2.104)
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In order to eliminate the dependence on x⋆, we will use the Fourier transform. Let us define
the Fourier transform in x⋆ of a function F by the integral

F̄ (y⋆;α) =

+∞
∫

−∞

e−iαx⋆ F (x⋆, y⋆) dx⋆ (2.105)

We apply the Fourier transform to equation (2.104), which turns it into

d4V̄

dy4⋆
− iy⋆ (λ1α + λ3β)

d2V̄

dy2⋆
= 0. (2.106)

We have now reduced the original set of PDEs to a single 4th order ODE. In order to for-
mulate the four necessary boundary conditions for this equation, we return to the linearised
boundary conditions for the perturbations U ′, V ′,W ′, given by (2.90). The first condition
is then

V ′(x⋆, 0, z⋆) = 0.

Furthermore, setting y⋆ = 0 in the continuity equation (2.88) and using (2.90) leads to

∂V ′

∂y⋆

∣

∣

∣

∣

y⋆=0

= λ1
∂η

∂x⋆
+ λ3

∂η

∂z⋆
.

In order to determine a third boundary condition, we look at the asymptotic expansion of
V ′ for large values of y⋆, given by

V ′(x⋆, y⋆, z⋆) = C(x⋆, z⋆) + · · · , as y⋆ → ∞,

which leads to the conclusion that

∂V ′

∂y⋆
→ 0 as y⋆ → ∞.

It should be noted that we augmented the order of the differential equation when we differ-
entiated it by y⋆ in the second step. The fourth boundary condition can be found by simply
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evaluating (2.100) at y⋆ = 0, which yields

∂3V ′

∂y3⋆
= −

(

∂2

∂x2
⋆

+
∂2

∂z2⋆

)

P ′. (2.107)

The final step in the formulation of appropriate boundary conditions for (2.106) is to apply
the Fourier decomposition (2.103) and Fourier Transform (2.105) to these four equations,
leading to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

V̄
∣

∣

y⋆=0
= 0,

V̄y⋆

∣

∣

y⋆=0
= (λ1iα + λ3iβ) ḡ,

V̄y⋆ → 0 as y⋆ → ∞,

V̄y⋆y⋆y⋆

∣

∣

y⋆=0
=
(

α2 + β2
)

p̄(0;α, β).

(2.108)

where ḡ and p̄ represent the Fourier Transforms of the body shape function g and pressure
respectively. Equation (2.106) can be reduced to the canonical form of the Airy equation
by introducing the new variable ξ defined by

y⋆ = sξ = (iλ)−1/3ξ, (2.109)

with λ = λ1α+ λ3β. This turns equation (2.106) into

d4V̄

dξ4
− ξ

d2V̄

dξ2
= 0. (2.110)

The boundary conditions (2.108) should be recast in terms of the new variable ξ. We have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

V̄
∣

∣

ξ=0
= 0,

V̄ξ

∣

∣

ξ=0
= isλḡ,

V̄ξ → 0 as ξ → ∞,

V̄ξξξ

∣

∣

ξ=0
= s3

(

α2 + β2
)

p̃(0).

(2.111)

The general solution to equation (2.110) is

V̄ξξ = C1Ai(ξ) + C0 Bi(ξ), (2.112)
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where Ai and Bi are the two complementary solutions of the Airy equations. According
to the boundary conditions, V̄ξ → 0 at large values of ξ, which leads to the condition that
V̄ξξ → 0 as ξ → ∞ as well. Thus, we should set C0 = 0 to remove the exponential growth
of the Bi function. Integrating (2.112) once yields

V̄ξ = C1

ξ
∫

0

Ai(t)dt+ C2. (2.113)

Applying the second boundary conditions, we find

C2 = isλḡ.

Letting y⋆ → ∞ and using the third boundary condition leads to the relation

C1 = − C2
∞
∫

0

Ai(t)dt
, (2.114)

and combining these two equations for C1 and C2 yields

V̄ξ =
isλḡ

∫∞
ξ Ai(t)dt

∞
∫

0

Ai(t)dt
. (2.115)

We use the well-known result
∞
∫

0

Ai(t)dt = 1/3 and we integrate by parts the numerator of

equation (2.115), leading to

V̄ξ = 3isλ ḡ

⎛

⎝−ξAi(ξ)−
∞
∫

ξ

Ai′(t)dt

⎞

⎠ . (2.116)
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Let us now integrate once more and set the integration constant to 0 due to the first boundary
condition (2.108), thus yielding

V̄ (ξ) = −3isλ ḡ

ξ
∫

0

tAi(t)dt− 3 isλ ḡ

ξ
∫

0

∞
∫

ζ

Ai′(t)dtdζ . (2.117)

We are now in measure to find

C(x⋆, z⋆) = lim
y⋆→∞

V ′(x⋆, y⋆, z⋆).

When taking the limit ξ → ∞, the second term on (2.117) becomes much smaller than the
first, and to leading order, we get

lim
ξ→∞

V̄ = 3 isλḡ

∞
∫

0

tAi(t)dt. (2.118)

We can simplify this further by substituting isλ = [i (λ1α + λ3β)]
2/3 and using the identity

∞
∫

0

tAi(t)dt = −Ai′(0). The latter result is well known and can be derived by integrating

directly the Airy equation. Thus, we obtain

lim
ξ→∞

V̄ = −3Ai′(0) [i (λ1α+ λ3β)]
2/3 ḡ(α). (2.119)

The formula (2.119) is in agreement with the work of Choudhari & Duck (1996). It can
be used to derive a new boundary condition for the inviscid problem, instead of the imper-
meability condition (2.51) used previously. Indeed, the asymptotic matching between the
main part of the boundary layer and the viscous sublayer requires2

v′(x, 0, z) = C(x⋆, z⋆). (2.120)

2Recall that coordinates x⋆ and z⋆ are identical to coordinates x and z.
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In order to calculate C(x⋆, z⋆), we need to perform the inverse Fourier transform of equa-
tion (2.119) , and as a result we obtain

C(x⋆, z⋆) = −3Ai′(0)

2π
eiβz⋆

+∞
∫

−∞

eiαx⋆ [i(λ1α + λ3β)]
2/3 ḡ(α)dα. (2.121)

The integral (2.121) is performed numerically. Once this is done, we can use boundary
condition (2.120) throughout the receptivity analysis described in Section 2.3. In particular,
recall that the amplitude of the eigenmode was found to take the form

A =
v1(0)v̂0 ′(0)

q0(0)
+∞
∫

0

Λ v̂0/q0 dy

. (2.122)

The term v1(0) should be replaced here by the Laplace transform of equation (2.121). As
a consequence, we find that the amplitude Avis of the crossflow vortex, obtained using the
no-slip boundary condition, is given by

Avis = −
3Ai′(0)

[

+∞
∫

0

e−σ0x⋆

+∞
∫

−∞
eiαx⋆ [i(λ1α + λ3β)]

2/3 ḡ(α)dαdx⋆

]

v̂′0(0)

2π q0(0)
+∞
∫

0

Λ v̂0/q0 dy

. (2.123)

The dependence of the magnitude of the amplitude function (2.123) on the wave number
β is plotted in Figure 2.15. The calculations were performed using the same profile and
roughness shape as in Section 2.3.

The function |Avis(β)| exhibits a similar behaviour as |Ainv(β)| for values of β < 0.125.
After a period of rapid growth, the amplitude reaches this time a global maximum at β =

0.125. This is followed by a sudden decrease of the amplitude until β = 0.45. It then seems
to reach a horizontal asymptote. On Figure 2.16, we plot the amplitude at locations further
down the wing. Similarly as in Section 2.3, the amplitude shape is magnified, with its
maximum increasing in magnitude, and occurring at higher values of the wavenumber β.
Figure 2.15 and 2.16 were compared with the plots obtained in Choudhari & Duck (1996)
and showed good agreement.
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Figure 2.15: Amplitude of crossflow vortex Avis as a function of the wavenumber β.
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Figure 2.16: Amplitude of crossflow vortex at different locations along the wing (no-slip):
s = 0.0004167,M∞ = 0.0442322 (—); s = 0.0006759,M∞ = 0.0731715 (−−); s =
0.0009823,M∞ = 0.1094626 (-×-).
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Chapter 3

Accelerating Subsonic Flow past a
Curved Ramp

We now move away from the field of transition to turbulence and turn towards viscous-
inviscid interaction of two-dimensional boundary layers. In the introduction, we mentioned
that separation of boundary layers is linked to singularities in the pressure gradient. The
singularities can be caused due to abrupt changes in the object’s shape, such as corners or
surface discontinuities on a wing, or by physical changes in the properties of the flow such
as shock waves. This mathematical singularity should be smoothed out by the viscous-
inviscid interaction.

The local study of the inviscid flow past corners or discontinuities typically gives rise
to algebraic singularities of the form

dp

dx
= κ(−x)λ, as x → 0−, (3.1)

where it is assumed that the origin of the coordinate system is centred at the discontinuity
point and κ, which can be small or order one, is a control parameter related to the strength
of the discontinuity. An example of such a flow would be the Prandtl-Meyer transonic flow
over a convex corner (Ruban, Wu & Pereira 2006), when parameter λ = −3/5, or transonic
flow separating from a corner point (Ruban & Turkyilmaz 2000) when λ = −2/3.

Another interesting example of a flow giving rise to such a pressure gradient is the study
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of the transonic fluid flow past a discontinuity in curvature, where it is further assumed that
the sonic point coincides with the point of discontinuity. It was shown (Buldakov & Ruban
2002) in that case that parameter λ = −1/3. It turns out that this specific value of λ
corresponds to a bifurcation in parameter space for the boundary-layer flow. Indeed, let
us set λ = −1/3 + δ and further assume that κ = κ(ϵ) ≪ 1. In this case the curvature
discontinuity only produces small perturbations to the incoming Blasius flow. It can then
be shown that the stream function upstream of the discontinuity takes the form

ψ(x, Y ) = (−x)2/3
(

1

2
τwη

2 + κ(ϵ)(−x)δf(η) + · · ·
)

, as x → 0−, (3.2)

where η = Y/(−x)1/3 = O(1). Thus, when δ > 0, the perturbations always decay and no
flow separation takes place. If δ < 0, despite the small coefficient κ(ϵ), the perturbations
will grow and might become of the same order as the leading order term, which can lead to
separation.

This leads to the conclusion that δ = 0 (corresponding to λ = −1/3) represents in-
deed an important change in the qualitative property of the solution of the boundary-layer
problem. Furthermore, it can be shown that as δ → 0, the function f(η) contains a term
growing like Γ(δ)1 and in the limit, logarithmic terms should be added in the coordinate
asymptotic expansion (3.2) of the streamfunction’s perturbation to account for this effect.

Surprisingly, a similar behaviour is observed when we assume that κ = O(1). In that
case, the pressure gradient is strong enough to affect the flow upstream of the interaction
region and logarithmic terms should be included at leading order in the asymptotic expan-
sion of the stream function. We aim to present the viscous-inviscid interaction problem and
its solution for subsonic and transonic flows subject to the pressure gradient

dp

dx
= κ(−x)−1/3, as x → 0−. (3.3)

1Here, Γ(t) is the standard Gamma function

Γ(t) =

∫

∞

0

xt−1 e−x dx,

with the asymptotic property Γ(t) ∼ 1/t as t → 0.
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In the former case, the specific pressure gradient (3.3) can be generated by suitable choice
of the body shape. Linear equations will be derived in both the upper and lower deck of
the interaction region, allowing for an analytic solution. For the latter case, we will show
in Chapter 4 that the flow naturally develops the required singularity. The equation in the
upper deck will be found to reduce to the Kármán-Guderley equation, which is nonlinear.
This problem will then be solved numerically.

3.1 General formulation

Let us investigate the fluid flow past a body shape with flat leading section of length L. The
body then bends up or down as shown in Figure 3.1.

V∞

x̂

O

L

ŷ

Figure 3.1: Layout of the problem.

We chose x̂ to be parallel and ŷ to be perpendicular to the flat part of the body contour.
The origin O is chosen to coincide with the point where the body starts to bend. The flow,
assumed to be steady, two-dimensional and incompressible, is governed by the Navier-
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Stokes equations

û
∂û

∂x̂
+ v̂

∂û

∂ŷ
= −1

ρ

∂p̂

∂x̂
+ ν

(

∂2û

∂x̂2
+
∂2û

∂ŷ2

)

,

û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ
= −1

ρ

∂p̂

∂ŷ
+ ν

(

∂2v̂

∂x̂2
+
∂2v̂

∂ŷ2

)

,

∂û

∂x̂
+
∂v̂

∂ŷ
= 0.

(3.4)

The velocity components are denoted by û and v̂, and the pressure by p̂. The density ρ and
kinematic viscosity coefficient ν are assumed to be constant throughout the flow. Let us
introduce non-dimensional variables

⎧

⎨

⎩

x̂ = Lx, ŷ = Ly,

û = V∞u, v̂ = V∞v, p̂ = p∞ + ρV 2
∞p,

(3.5)

where V∞ and p∞ represent the free stream velocity and pressure respectively. After sub-
stituting (3.5) into (3.4), the Navier-Stokes equations take the form

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(

∂2u

∂x2
+
∂2u

∂y2

)

,

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(

∂2v

∂x2
+
∂2v

∂y2

)

,

∂u

∂x
+
∂v

∂y
= 0,

(3.6)

with the Reynolds number defined as

Re =
V∞L

ν
.

We assume that in a vicinity of the origin, we may express the wall shape yw in the form

yw =

{

0 : x < 0,

κx5/3 : x > 0.
(3.7)

This condition is necessary in order to generate the pressure gradient (3.3) for subsonic
flows, as was mentioned in the introduction. Depending on the sign of κ, the body can
bend up or down. The boundary conditions are the no-slip conditions on the wall, which
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are written as
u = v = 0, y = yw, (3.8)

and the free stream conditions

u = 1, v = 0, p = 0 as x2 + y2 → ∞. (3.9)

To study the flow, we will follow Prandtl’s Hierarchical strategy. We start by analysing the
external inviscid flow, ignoring the presence of viscosity, and will then turn to the analysis
of the boundary layer. The singularity in the pressure gradient will lead to the introduction
of an interaction region which takes the standard triple deck form.

3.2 Analysis of the external inviscid flow

We start with the flow in the inviscid region, where

x = O(1), y = O(1). (3.10)

In this case, the Navier-Stokes equations (3.6) reduce to the Euler equations

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
,

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
,

∂u

∂x
+
∂v

∂y
= 0.

(3.11)

We drop the no-slip conditions in favour of the impermeability condition on the body sur-
face, which takes the form

v

u

∣

∣

∣

∣

y=yw

=
dyw
dx

. (3.12)

Additionally, we must specify the free stream conditions

u = 1, v = p = 0 as x2 + y2 → ∞. (3.13)
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The flow is assumed to be incompressible and irrotational, which enables us to introduce
the complex potential

w(x+ iy) = φ(x, y) + iψ(x, y).

Here, ψ(x, y) represents the stream-function of the flow, and φ(x, y) the potential function,
both satisfying Laplace equation. In a vicinity of the origin, we can assume that |κx| ≪ 1,
in which case the impermeability condition (3.12) can be linearised and reduces to

v(x, 0) =

⎧

⎨

⎩

0 : x < 0,
5

3
κx2/3 : x > 0.

(3.14)

Guided by this, we look for a solution in the form

w(x+ iy) = z + Cz5/3 + · · · as z → 0, (3.15)

where the constant C is assumed to be complex and should be suitably chosen in order to
satisfy the boundary conditions. Differentiating with respect to z yields

w′ = u− iv = 1 +
5

3
(Cr + iCi) z

2/3 + · · · . (3.16)

We let z = reiθ, and identifying real and imaginary parts, the velocity components become

u(x, y) = 1 +
5

3

(

Cr cos

(

2

3
θ

)

− Ci sin

(

2

3
θ

))

r2/3 + · · · , (3.17)

v(x, y) = −5

3

(

Cr sin

(

2

3
θ

)

+ Ci cos

(

2

3
θ

))

r2/3 + · · · . (3.18)

We now apply the boundary condition (3.14) and note that x ≶ 0 is equivalent to θ = π, 0,
which leads to

Cr =
1√
3
Ci, Ci = −κ.

In order to find the pressure distribution, we use the Bernoulli equation which gives

p(x, y) = 1− 1

2
|w̄′|2 = −5

3

(

Cr cos

(

2

3
θ

)

− Ci sin

(

2

3
θ

))

r2/3 + · · · as r → 0.
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In particular, on the body surface upstream of the origin, we have

p(x, 0) = χ(−x)2/3 + · · · , as x → 0−. (3.19)

The parameter χ is defined by the equation

χ =
5

3
κ

[

1√
3
cos

(

2

3
π

)

− sin

(

2

3
π

)]

= − 10

3
√
3
κ. (3.20)

When κ < 0, the pressure gradient is favourable and we expect the flow in the boundary
layer to be accelerated. We will in fact show in the following section that solutions can
only be constructed for κ < 0.

3.3 Subsonic boundary layer upstream of the curved ramp

Let us now turn our attention to the flow in the boundary layer. We introduce the usual
coordinates (x, Y ) defined by

x = x, y = Re−1/2 Y. (3.21)

The asymptotic analysis of the Navier-Stokes equations (3.6) is based on the limit

x = O(1), Y = O(1) as Re → ∞.

The solution is sought in the asymptotic form

u = U(x, Y ) + · · · ,

v = Re−1/2 V (x, Y ) + · · · ,

p = P (x, Y ) + · · · .

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(3.22)
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Substituting (3.21) and (3.22) into the Navier-Stokes equations leads to the classical boundary-
layer equations

U
∂U

∂x
+ V

∂U

∂Y
= −∂P

∂x
+
∂2U

∂Y 2
,

∂P

∂Y
= 0,

∂U

∂x
+
∂V

∂Y
= 0.

(3.23)

The second equation in (3.23) indicates that pressure remains constant across the boundary
layer and only depends on x. Asymptotic matching with the inviscid region thus requires
that P (x, Y ) = pe(x), where pe(x) denotes the inviscid wall pressure (3.19). Hence, the
pressure gradient in the boundary layer is given by equation

dpe
dx

= −2

3
χ(−x)−1/3. (3.24)

We introduce the stream function ψ(x, Y ), defined by the equations

U =
∂ψ

∂Y
, V = −∂ψ

∂x
, (3.25)

which then enables us to write the boundary-layer equations in the form

∂ψ

∂Y

∂2ψ

∂x∂Y
− ∂ψ

∂x

∂2ψ

∂Y 2
= −dpe

dx
+
∂3ψ

∂Y 3
. (3.26)

This equation should be solved together with the no-slip conditions

ψ =
∂ψ

∂Y
= 0 on Y = 0, (3.27)

as well as a matching condition with the inviscid flow. Under the influence of the strong
favourable pressure gradient (3.24), the boundary layer typically splits into two regions,
which we will denote region 2a and region 2b, depicted in Figure 3.2.
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1

x

2a

2b

Re−1/2

y

Figure 3.2: Two-tiers structure of the boundary layer.

3.3.1 Region 2b - Viscous sublayer

The slow fluid particles near the wall are the most affected by the singular pressure gradient
(3.24). In order to apply the no-slip condition, the convective terms on the left hand side
should balance with the pressure gradient as well as the viscous term. We thus need

ψ2

xY 2
∼ dpe

dx
∼ ψ

Y 3
. (3.28)

This system of estimates can easily be solved to yield

Y ∼ (−x)1/3, ψ ∼ (−x)2/3. (3.29)

The effects of viscosity then seem to be restricted to a small region near the wall, hence the
appellation ‘viscous sublayer’. This suggests the introduction of the similarity variable

η =
Y

(−x)1/3
= O(1),
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and motivates us to seek the solution to (3.26) in the form

ψ(x, Y ) = (−x)2/3f(η) + · · · , as x → 0−. (3.30)

Substituting this into (3.26) leads to the nonlinear ordinary differential equation

f ′′′ − 2

3
ff ′′ +

1

3

(

f ′
)2

+
2

3
χ = 0, (3.31)

which should be solved with no-slip conditions

f(0) = f ′(0) = 0, (3.32)

and the requirement that f(η) does not grow exponentially as η → ∞. The latter condition
is necessary in order to match with the main part of the boundary layer. This equation
admits an exact solution of the form

f(η) = Aη2 +Bη + C, (3.33)

provided that constants A,B and C satisfy

B2 − 4AC + 2χ = 0.

However, the no-slip conditions (3.32) require B = C = 0, implying that no polynomial
solutions exist. Balancing the terms in the equations shows that it allows exponentially
growing solutions, but these are incompatible with the third boundary condition. In order
to get more insight, we let

dpe
dx

= κ(−x)−1/3+δ, as x → 0−,

where δ is assumed small. Balancing terms in the boundary-layer equation leads to the
solution being sought in the form

ψ(x, Y ) = (−x)2/3+δ/4f(η) + · · · , as x → 0−, (3.34)
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where the similarity variable η = Y/(−x)1/3−δ/4. The function f now satisfies the non-
linear ordinary differential equation

f ′′′ −
(

2

3
+
δ

4

)

ff ′′ +

(

1

3
+
δ

2

)

(

f ′
)2

+ κ = 0, (3.35)

subject to the boundary conditions

f(0) = f ′(0) = 0, (3.36)

and the requirement that f(η) does not grow exponentially. At large values of η, we can
write

f = A(δ)η(8+3δ)/(4−3δ) +B(δ)η(8+3δ)/(4−3δ)−1 + · · · , (3.37)

and it can be shown that A(δ) ∼ δ−3/4 as δ → 0, indicating that the limiting case is indeed
singular. Terms growing faster than polynomials but slower than exponentials should be
added in the asymptotic expansion for the stream function. This is done by introducing
logarithmic terms in (3.30). Due to the equations being nonlinear, in order to balance every
term, the thickness of the viscous sublayer and thus the definition of the similarity variable
η should be modified to also include those logarithmic terms. Returning to the original
boundary-layer equation (3.26), we now look for a solution of the form

Y ∼ (−x)1/3
(

− log(−x)
)−α

, ψ ∼
(

− log(−x)
)α
(−x)2/3. (3.38)

Accordingly, the similarity variable η should now take the form

η =
(

− log(−x)
)α Y

(−x)1/3
. (3.39)

We chose the parameter α in such a way that the pressure gradient only appears in the
second order approximation, in which case we should set α = 1/4. This allows us to
construct a solution to the problem. Consequently, we look for a solution to equation
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(3.26) in the form of the coordinate asymptotic expansion

ψ =
(

− log(−x)
)1/4

(−x)2/3
(

f0(η) +
f1(η)

(

− log(−x)
) + · · ·

)

, as x → 0−. (3.40)

We substitute (3.40) and (3.39) into equation (3.26), and the leading order equation appears
to be

f ′′′
0 − 2

3
f0f

′′
0 +

1

3

(

f ′
0

)2

= 0, (3.41)

subject to
f0(0) = f ′

0(0) = 0, (3.42)

and the requirement that f0(η) does not grow exponentially. This equation is similar to
(3.31), but it doesn’t contain the terms coming from the pressure gradient, and thus allows
for a simple polynomial solution

f0(η) =
1

2
Aη2, (3.43)

which is now compatible with boundary conditions (3.42). The constant A remains arbi-
trary at this stage, but should be found as part of the solution. The next order equation
incorporates both the forcing from the singular pressure gradient and the terms from the
leading order solution

f ′′′
1 − 1

3
Aη2f ′′

1 +
2

3
Aηf ′

1 −
2

3
Af1 +

2

3
χ =

3

8
A2η2. (3.44)

The boundary conditions for f1 are also given by (3.42). Equation (3.44) is linear and can
be solved exactly in the following way. We first differentiate it once, leading to

f ′′′′
1 − 1

3
Aη2f ′′′

1 =
3

4
A2η, (3.45)

which has complementary solution

f ′′′
1 (η) = B exp

(

1

9
Aη3

)

.
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We then use the method of undetermined coefficients and let B = B(η), which upon
substitution into (3.45), leads to the equation

B(η) =

∫ η

0

3

4
A2ξ e−

1
9
Aξ3 dξ + C. (3.46)

When we differentiated equation (3.44), we added another constant of integration and we
thus require an additional boundary condition. It is found by evaluating equation (3.44) at
η = 0, which yields

f ′′′
1 (0) = −2

3
χ.

This fixes the integration constant C in (3.46). The general solution contains the exponen-

tially growing term exp

(

1

9
η3
)

, which should be eliminated in order to satisfy the third
boundary condition (3.42). This can be done by imposing the condition B → 0 as η → ∞,
which is possible if

2

3
χ =

∫ ∞

0

3

4
A2ξ e−

1
9
Aξ3 dξ. (3.47)

Equation (3.47) then gives us a solvability condition relating A and the body contour cur-
vature κ. The integral on the right hand side can be converted to a Gamma integral, leading
to the simplified form

A =
29/4χ3/4

37/4Γ(2/3)3/4
. (3.48)

In particular, we observe that if the curvature κ > 0, which means according to (3.20) that
parameter χ < 0, the constant A becomes complex. This indicates that the solution doesn’t
exist in the case of convex walls. It turns out that when |κ| ≪ 1, then the problem can be
linearised and solutions can be constructed for both positive and negative κ.

In order to obtain the solution for f1, we start from the equation

f ′′′
1 =

3

4
A2 e

A
9
η3
∫ η

∞
t e−

A
9
t3 dt,

and integrate this three times, leading to

f1(η) =
1

2

∫ η

0

(η − ξ)2
∫ ζ

∞

3

4
A2ζ e

1
9
A(ξ3−ζ3) dζdξ +Dη2. (3.49)
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Constant D is arbitrary at this stage and needs to be found by considering higher order
problem. Of specific interest is the behaviour of f1 at large values of η. Integrating by parts
equation (3.49), we find that

f1 = −9

8
Aη2 log(η) + C1η

2 + C2η + C3 +O

(

1

η

)

as η → ∞. (3.50)

While the constant C1 remains arbitrary at this stage, we find that

C2 = −95/6

4
A2/3Γ(2/3)2, C3 =

χ

A
. (3.51)

The aim of the analysis of the sublayer is to determine the slope θ that the streamlines make
at the edge of region 2b to estimate the displacement effect of the sublayer. By definition,

θ = lim
η→∞

Re−1/2 V

U
, (3.52)

and substituting (3.50) into (3.40) and (3.25), we obtain

θ = Re−1/2

(

− log(−x)

)−5/4

(−x)−2/3 2

3
C2 + · · · . (3.53)

This concludes our analysis of the viscous sublayer, and we now turn to the main part of
the boundary layer.

3.3.2 Region 2a - Main part of the boundary layer

The analysis of the main part of the boundary layer is based on the limit

x → 0−, Y = O(1). (3.54)

In order to estimate ψ in the main part of the boundary layer, we substitute asymptotic
expansion (3.50) into (3.40). As a result, the asymptotic expansion for ψ in region 2a takes
the form

ψ = (− log(−x))3/4 ψ0(Y ) + · · · , as x → 0−.
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We estimate each term of the boundary-layer equation (3.26) as

∂ψ

∂Y

∂2ψ

∂x∂Y
∼ ∆ψ2

0

∆x(log∆x)1/4∆Y 2
,

dpe
dx

∼ 1

∆x1/3
,

∂3ψ

∂Y 3
∼ ∆ψ0

∆Y 3
. (3.55)

According to the scalings (3.54), we see that in region 2a the convective terms dominate.
The boundary-layer equation (3.26) then reduces to

∂ψ

∂Y

∂2ψ

∂x∂Y
− ∂ψ

∂x

∂2ψ

∂Y 2
= 0. (3.56)

This can be rewritten as
∂

∂Y

(

∂ψ/∂x

∂ψ/∂Y

)

= 0, (3.57)

indicating that the streamline slope remains unchanged in the main part of the boundary
layer. According to Kaplun’s extension principle, formula (3.53) obtained at the edge of
region 2b is also applicable to the bottom of region 2a, and according to (3.57), it is actually
valid throughout the whole region.

Thus, the displacement effect generated by the change in streamline slope occurring at
the edge of region 2b is transmitted to the inviscid region through the ‘buffer’ region 2a.
This produces pressure perturbations ∆ p to the inviscid flow which, for subsonic flows,
are proportional to θ. We can then write

∆p ∼ Re−1/2

(

− log(−x)

)−5/4

(−x)−2/3.

Despite the small coefficient Re−1/2, the pressure perturbations experience unbounded
growth as x → 0−. If these perturbations become comparable with the inviscid pressure pe,
our assumption that the pressure gradient is independent of what happens in the boundary
layer breaks down and an interaction region should be introduced. This happens when

pe ∼ ∆p ⇔ (−x)2/3 ∼ Re−1/2

(

− log(−x)

)−5/4

(−x)−2/3. (3.58)
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Thus, the solution to the transcendental equation

x| log x|15/16 = Re−3/8, (3.59)

gives the longitudinal extent of the interaction region, and we denote this solution by σ.

3.4 Formulation of the interaction problem

We now turn to the description of the interaction region, which takes the standard triple
deck form as depicted on Figure 3.3. We start with the analysis of the lower deck and move
up towards the inviscid region.

1

5

4

3

2b

2a

σ

Re−1/2

Figure 3.3: Triple deck structure of interaction region.

3.4.1 Region 5: the viscous sublayer

The lower deck is the continuation of the viscous sublayer 2b, where the similarity variable
η is an order one quantity. This relation must hold as well in region 5. Hence, the thickness
of the viscous sublayer can be found by substituting x = σ in the equation (3.39) and
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expanding assuming σ ≪ 1. The analysis of region 5 is then based on the scalings

x = σX⋆, Y = σ1/3| log σ|−1/4Y⋆. (3.60)

According to Kaplun’s extension theorem, the asymptotic expansion (3.40) for ψ is valid
in the overlap region between region 2b and region 5. Hence, in order to find the form of
the solution in region 5, we rewrite (3.40) in terms of the variables X⋆ and Y⋆ leading to

ψ = | log(σ)|1/4σ2/3

(

1

2
AY 2

⋆ +
(−X⋆)

2/3

| log(σ)|

(

f1(η⋆)−
3A

8
log(−X⋆)η

2
⋆

)

+ · · ·
)

(3.61)

where we define the new similarity variable η⋆

η⋆ =
Y⋆

(−X⋆)1/3
= O(1).

This suggests that the solution in region 5 should be sought in the form

ψ = | logσ|1/4σ2/3

(

ψ⋆
0(X⋆, Y⋆) +

1

| log σ|ψ
⋆
1(X⋆, Y⋆) + · · ·

)

. (3.62)

Recall that the pressure in the boundary layer far upstream is given by P = χ(−x)2/3.
Substituting x = σX⋆, we find that the pressure in the interaction region should be sought
in the form

P = σ2/3P⋆(X⋆), (3.63)

and the matching condition with the upstream boundary layer is

P⋆ = χ(−X⋆)
2/3 as X⋆ → −∞. (3.64)

Substitution of (3.60)-(3.63) into the boundary-layer equation leads to the following equa-
tion for ψ⋆

0
∂ψ⋆

0

∂Y⋆

∂2ψ⋆
0

∂X⋆∂Y⋆
− ∂ψ⋆

0

∂X⋆

∂2ψ⋆
0

∂Y 2
⋆

=
∂3ψ⋆

0

∂Y 3
⋆

. (3.65)



3.4. FORMULATION OF THE INTERACTION PROBLEM 90

This equation should be solved subject to the no-slip condition on the wall

ψ⋆
0 =

∂ψ⋆
0

∂Y⋆
= 0, Y⋆ = 0,

together with the matching condition with the upstream boundary layer flow

ψ⋆
0 =

1

2
AY 2

⋆ as X⋆ → −∞.

It is not surprising that the solution to this equation compatible with these boundary condi-
tion is simply

ψ⋆
0 =

1

2
AY 2

⋆ .

The constant A is not arbitrary but is instead fixed by the matching condition with the
upstream flow, and its value is

A =
29/4χ3/4

37/4Γ(2/3)3/4
.

The leading order solution in the interaction region just mimics the behaviour of the flow
upstream. The interaction with the inviscid flow comes through pressure, which occurs
at second order in the asymptotic expansion. In order to study this effect, we turn to the
equation for ψ⋆

1 , which is linear

AY⋆
∂2ψ⋆

1

∂X⋆∂Y⋆
− A

∂ψ⋆
1

∂X⋆
= − dP⋆

dX⋆
+
∂3ψ⋆

1

∂Y 3
⋆

. (3.66)

It should be solved with the no-slip boundary conditions on the wall and the asymptotic
matching witch the upstream flow

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ψ⋆
1(X⋆, 0) = 0,

∂ψ⋆
1

∂Y⋆

∣

∣

∣

∣

Y⋆=0

=

{

0 X⋆ < 0,

−AκX5/3
⋆ X⋆ > 0.

ψ⋆
1 → (−X⋆)

2/3

(

f1(η⋆)−
3A

8
log(−X⋆)η

2
⋆

)

as X⋆ → −∞.

(3.67)
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The boundary-layer equations are parabolic, and in order to solve them, the asymptotic
behaviour of ψ⋆

1 for Y⋆ → ∞ should also be specified. We substitute (3.50) into the last
equation in (3.67), leading to

ψ⋆
1 = −9

8
AY 2

⋆ log Y⋆ +
1

2
C1Y

2
⋆ + C2(−X⋆)

1/3Y⋆ + · · · . (3.68)

This suggests that

ψ⋆
1 = −9

8
AY 2

⋆ log Y⋆ +
1

2
C1Y

2
⋆ + A⋆(X⋆)Y⋆ + · · · , as Y⋆ → ∞, (3.69)

The function A⋆(X⋆) is called the displacement function, and it should satisfy the condition

A⋆(X⋆) → C2(−X⋆)
1/3 + · · · as X⋆ → −∞. (3.70)

The formulation of the problem in the viscous sublayer thus consists of the linearised
boundary-layer equation (3.66), together with the no-slip condition (3.67) and the asymp-
totic behaviour of the flow specified for X⋆ → −∞ (3.67) and Y⋆ → ∞ (3.69). The
displacement function A⋆(X⋆) should be found as part of the interaction solution.

3.4.2 Region 4: the buffer layer

We now turn our attention to the middle deck, where

x = σX⋆, Y⋆ = σ−1/3| log σ|1/4Y. (3.71)

At the edge of region 5, the asymptotic expansion for the stream function takes the form

ψ =
1

2
| log σ|1/4σ2/3AY 2

⋆ +

+| log σ|−3/4σ2/3

(

−9

8
AY 2

⋆ log Y⋆ +
1

2
C1Y

2 + A⋆(X⋆)Y⋆

)

+ · · · . (3.72)

This can be deduced from the asymptotic expansion for ψ in region 5, given by (3.62), and
the asymptotic expansion of ψ⋆

1 given by (3.69). According to Kaplun’s extension theorem,
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this asymptotic expansion is also valid at the bottom of region 4. We now rewrite this in
terms of the variables of region 4 by substituting (3.71) into equation (3.72), which leads
to

ψ =
7A

8
| log σ|3/4Y 2 + | log σ|−1/4

(

1

2
C1Y

2 − 9A

8
Y 2 log Y

)

−

9A

8

log | log σ|1/4
| log σ|1/4 Y 2 + | log σ|−1/2σ1/3A⋆(X⋆)Y + · · · . (3.73)

This suggests that we look for a solution in region 4 in the asymptotic form

ψ = | log σ|3/4ψ40(Y ) + · · ·+ | log σ|−1/2σ1/3ψ41(X⋆, Y ) + · · · .

P = σ2/3P4(X⋆) + · · · .

⎫

⎬

⎭

(3.74)

The matching conditions with region 5 are then given by

ψ40 =
7A

8
Y 2 + · · ·

ψ41 = A⋆(X⋆)Y + · · ·

⎫

⎪

⎬

⎪

⎭

as Y → 0. (3.75)

Substituting (3.71) and (3.74) into the Navier-Stokes equations leads to

dψ40

dY

∂2ψ41

∂X⋆∂Y
− ∂ψ41

∂X⋆

d2ψ40

dY 2
= 0. (3.76)

This further reduces to
∂

∂Y

(

∂ψ41/∂X⋆

dψ40/dY

)

= 0, (3.77)

indicating that to leading order, the streamline slope remains the same as we go through
region 4. The solution to (3.76) subject to boundary conditions (3.75) is given by

∂ψ41

∂X⋆
= C(X⋆)

dψ40

dY
. (3.78)
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with C(X⋆) =
dA⋆

dX⋆
in order to satisfy matching conditions (3.75). In particular, note that

the streamline slope in this region is given by

θ = −Re−1/2 v

u
= −| log σ|−5/4σ−2/3 Re−1/2 dA

⋆

dX⋆
+ · · · (3.79)

which is in accordance with the scalings. The role of region 4 is then to simply transmit
the streamline slope at the edge of the viscous sublayer to the upper inviscid deck, which
gives it the name of ‘buffer region’.

3.4.3 Region 3: the upper inviscid layer

Finally, we consider the upper region of the triple deck. This region is the extension of the
triple deck into the inviscid flow. The flow is assumed to be subsonic, so we introduce the
coordinate scalings

x = σx⋆, y = σy⋆, (3.80)

and the fluid dynamics functions are scaled as

u =1 + τu1(x⋆, y⋆) + · · · ,

v = τv1(x⋆, y⋆) + · · · ,

p = τp⋆(x⋆, y⋆) + · · · .

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(3.81)

The small parameter τ is given by the equation

τ = | log σ|−5/4σ−2/3 Re−1/2 . (3.82)

We substitute this into the Navier-Stokes equations (3.6), which reduce to the linearised
Euler equations

∂u1

∂x⋆
= −∂p

⋆

∂x⋆
,

∂v1
∂x⋆

= −∂p
⋆

∂y⋆
, (3.83)

∂u1

∂x⋆
+
∂v1
∂y⋆

= 0. (3.84)
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The streamline slope at the bottom of region 3 has to match with the slope at the edge of
region 4, the latter being given by equation (3.79). It follows from (3.81) that in region 3,
the streamline slope takes the form

θw = lim
y⋆→0

v

u
= | log σ|−5/4σ−2/3Re−1/2 v1(x⋆, 0). (3.85)

This leads to the conclusion that

v1(x⋆, 0) = −dA⋆

dx⋆
. (3.86)

The condition
u1 − iv1 = Cz2/3⋆ + · · · as x⋆ + iy⋆ → ∞ (3.87)

should be added in order to match with the inviscid flow upstream, with constant C given
by

C = −κ
(

1√
3
+ i

)

.

3.5 Analytical solution of the interaction problem for subsonic flow

The formulation of the interaction problem for subsonic flow consists of linear equation
in both the upper and lower deck, which allows us to derive an analytical solution for the
pressure distribution.

3.5.1 Inviscid region

We start with the inviscid region. Equations (3.83) and (3.84) show that p⋆ satisfies the
Laplace equation

∂2p⋆

∂x2
⋆

+
∂2p⋆

∂y2⋆
= 0. (3.88)

It has to be solved with the boundary conditions

∂p⋆

∂y⋆

∣

∣

∣

∣

y⋆=0

=
d2A⋆

dx2
⋆

, p⋆ → 0 as x2
⋆ + y2⋆ → ∞. (3.89)
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Let us introduce the streamwise Fourier transform of a function f(x, y) as

f̃(k; y) =

∫ +∞

−∞
f(x, y)e−ikxdx. (3.90)

Applying this transform to equation (3.88) leads to the equation

d2p̃⋆

dy2⋆
− k2p̃⋆ = 0. (3.91)

Turning to the boundary condition (3.89), we find that

p̃⋆ → 0 as y⋆ → ∞,
dp̃⋆

dy⋆

∣

∣

∣

∣

y⋆=0

= −k2Ã⋆(k), (3.92)

where Ã⋆ denotes the Fourier transform of the displacement function A⋆(x⋆). The solution
to (3.91)-(3.92) is given by

p̃⋆ = |k|Ã⋆(k)e
−|k|y. (3.93)

3.5.2 Viscous region

Our task is now to solve the linearised boundary-layer equation (3.66), with the pressure
P ⋆ given in terms of (3.93) as

P ⋆ =
1

2π

∫ +∞

−∞
p̃⋆(k, Y⋆)e

ikX⋆dk. (3.94)

The first step is to take the Fourier transform on both sides of (3.66), leading to the equation

ikAY⋆
dψ̃⋆

dY⋆
− ikAψ̃⋆ = −ikp̃⋆(k) +

d3ψ̃⋆

dY 3
⋆

. (3.95)

We then differentiate (3.95) with respect to Y⋆ to eliminate the pressure p̃⋆, which leads to

d4ψ̃⋆

dY 4
⋆

− ikAY⋆
d2ψ̃⋆

dY 2
⋆

= 0. (3.96)
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This is a fourth order ordinary differential equation, and thus needs four boundary condi-
tions. The first two are found by applying the Fourier Transform to the set of boundary
conditions (3.67) which turn into

ψ̃⋆(k; 0) = 0,
dψ̃⋆

dY⋆

∣

∣

∣

∣

Y⋆=0

= −Af̃(k), (3.97)

where f̃(k) is the Fourier Transform of the wall shape, given explicitly by

f̃(k) = κΓ(8/3)(ik)−8/3. (3.98)

We also remind that A (not to be confused with A⋆) is a given constant with value

A =
29/4χ3/4

37/4Γ(2/3)3/4
.

In order to derive the remaining two boundary conditions, we turn to the expansion of ψ⋆

for Y⋆ → ∞, given by (3.69). Differentiating this with respect to X⋆ and Y⋆, and then
applying the Fourier Transform leads to

lim
Y⋆→∞

dψ̃⋆

dY⋆
= Ã⋆(k) + · · · . (3.99)

One more boundary condition is deduced by setting Y⋆ = 0 in equation (3.95), and applying
the Fourier transform

d3ψ̃⋆

dY 3
⋆

∣

∣

∣

∣

Y⋆=0

= ikp̃⋆(k), (3.100)

with p̃⋆(k) = |k|Ã⋆.
Equation (3.96) can be reduced to the canonical form of the Airy equation by introduc-

ing a new independent variable s defined by Y⋆ = (ikA)−1/3s. As a result, equation (3.96)
turns into

d4ψ̃⋆

ds4
− s

d2ψ̃⋆

ds2
= 0. (3.101)
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In terms of variable s, the boundary conditions (3.97)-(3.100) are written as

ψ̃⋆ = 0,

ψ̃⋆
s = −(ik)−1/3A2/3f̃(k),

ψ̃⋆
sss = A−1p̃(k),

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

at s = 0. (3.102)

ψ̃⋆
s = (ikA)−1/3Ã⋆(k) + · · · , as s → ∞. (3.103)

The general solution to equation (3.101) is

ψ̃⋆
ss = C1Ai(s) + C2 Bi(s). (3.104)

We cannot allow exponential growth in the solution for large Y⋆, or correspondingly to
large s. We need to apply some restrictions on parameter k in order to use the asymptotic
expansions for Ai(s) and Bi(s) at large value of the complex independent variable s. More
specifically, we need

| arg(s)| = | arg
(

(ik)1/3Y⋆

)

| < π

3
as Y⋆ → ∞.

We will thus allow k to be complex, and write k = |k|eiφ, with φ = arg k. The inequality
above can then be solved to yield

−3π

2
< φ <

π

2
.

We introduce a branch cut in the complex k plane along the positive imaginary axis. Using
this restriction, we are able to use the asymptotic expansions for Ai and Bi in Abramowitch
& Stegun (1972). The Bi function grows exponentially in this sector, and we thus set
C2 = 0, leading to

ψ̃⋆
ss = C1Ai(s). (3.105)

This equation can be differentiated once, in order to apply the third boundary condition of
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(3.102), giving the first relation between C1 and Ã⋆(k)

C1Ai
′(0) = A−1|k|Ã⋆(k). (3.106)

Equation (3.105) is now integrated once, yielding

ψ̃⋆
s(s) = C1

s
∫

0

Ai(ξ)dξ + ψ̃⋆
s (0), (3.107)

where ψ̃⋆
s(0) is zero according to (3.102). The second relation between C1 and Ã⋆(k) is

found by investigating the limit of equation (3.107) for large values of s, and using the first
of boundary condition (3.103)

(Aik)−1/3Ã⋆(k) = C1

∫

γ

Ai(ξ)dξ − (ik)−1/3A2/3f̃(k), (3.108)

where γ is the line extending from the origin to infinity along a ray that makes an angle
arg
[

(ik)1/3
]

with the real axis. Combining (3.106) and (3.108) and solving for the dis-
placement function Ã⋆ gives

Ã⋆ =
3A2/3Ai′(0)

(ik)1/3|k|− 3A2/3 Ai′(0)
f̃ , C1 =

|k|Ã⋆

AAi′(0)
. (3.109)

In particular, the pressure on the wall in Fourier space is given by

p̃(0; k) = Ã⋆(k)|k|. (3.110)

Returning back to physical space, we find that the pressure distribution across the interac-
tion region is given by

P⋆(X⋆) =
1

2π

+∞
∫

−∞

eikX⋆
3A2/3 Ai′(0)|k|

|k|(ik)1/3 − 3A2/3 Ai′(0)
f̃(k)dk. (3.111)

The integral (3.111) is calculated numerically. The behaviour of the pressure gradient in the
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boundary layer is plotted in Figure 3.4. This shows very good agreement with the upstream
asymptotics. The perturbations to the wall skin friction are displayed on Figure 3.5.
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Figure 3.4: Pressure gradient and corresponding asymptotics across the interaction region.
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Figure 3.5: Skin friction perturbation across the interaction region.



3.5. ANALYTICAL SOLUTION OF THE INTERACTION PROBLEM 100

We have obtained the required effect: the curvature discontinuity has the effect of accel-
erating the flow near the body surface. The pressure singularity that resulted is smoothed
out by the interaction process between the accelerating potential flow and the linear bound-
ary layer, which in turn leads to an increase in the skin friction, shown on Figure 3.5. We
also present a graph of the pressure distribution across the interaction region for various val-
ues of the curvature κ on Figure 3.6. We will compare this with the distribution obtained
in the transonic flow case.
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Figure 3.6: Pressure distribution across the interaction region.

We now check that the solution (3.111) matches with the upstream condition (3.64). In
order to do this, we will evaluate the inverse Fourier transform of the pressure gradient at
large negative values of X⋆ and prove that it matches with the condition

dP⋆

dX⋆
= −2

3
χ(−X⋆)

−1/3 as X⋆ → −∞,

given in the previous section. According to (3.110), the pressure gradient in Fourier space
is given by

F
(

dP⋆

dX⋆

)

= ik|k|Ã⋆. (3.112)
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The Fourier inversion theorem then states that

dP⋆

dX⋆
=

1

2π

+∞
∫

−∞

eikX⋆
3A2/3 Ai′(0) |k|ik

|k|(ik)1/3 − 3A2/3 Ai′(0)
f̃(k)dk. (3.113)

Recall that
f̃ = κΓ

(

8

3

)

(ik)−8/3, (3.114)

so introducing the constants B1 = 3A2/3Ai′(0)Γ(8/3) κ and B2 = 3A2/3 Ai′(0), the inte-
gral (3.113) reduces to

I(x) =
1

2π

+∞
∫

−∞

B1|k| eikX⋆

(ik)5/3
[

|k|(ik)1/3 − B2

] dk. (3.115)

We split this into two integrals, one for negative k and one for positive k

I(x) = − 1

2π

0
∫

−∞

B1k eikX⋆

(ik)5/3
[

−k(ik)1/3 − B2

] dk +
1

2π

+∞
∫

0

B1k eikX⋆

(ik)5/3
[

k(ik)1/3 − B2

] dk.

(3.116)
We first consider the second integral. We extend k to the complex plane and remember
that we introduced a branch cut on the positive imaginary axis. Due to the presence of the
modulus of k, we need to introduce a second branch cut along the negative imaginary axis.

We consider the contour Γ, sketched on Figure 3.7, which consists of

1. γ1, the line segment from ϵ to R,

2. γ2, the arc of circle of radius R, with θ ∈ [0,−π/2],

3. γ3, the line segment from −iR to −iϵ on the right hand side of the branch cut,

4. γ4, the arc of circle of radius ϵ, with θ ∈ [−π/2, 0].
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γ1

γ2

γ4

γ3

ϵ R

−iR

−iϵ

k

Figure 3.7: Contour of integration for (3.116).

We then write
∫

Γ

Λ(k) eikX⋆ dk =

(
∫

γ1

+

∫

γ2

+

∫

γ3

+

∫

γ4

)

Λ(k) eikX⋆ dk,

where
Λ(k) =

B1k

(ik)5/3
[

k(ik)1/3 −B2

] ,

and consider each of the integrals in turn.
Notice first of all that

∫

γ1

Λ(k) eikX⋆ dk recovers the original integral as ϵ→ 0, R → ∞.

On γ2, we let k = R eiθ, and we estimate
∣

∣

∣

∣

Λ
(

R eiθ
)

∣

∣

∣

∣

∼ 1

R2
as R → ∞.

The function Λ(k), the contour γ2 and parameter x all satisfy the conditions necessary to
apply Jordan’s Lemma. Accordingly, we can then assert that

∣

∣

∣

∣

∫

γ2

Λ(k) eikX⋆ dk
∣

∣

∣

∣

→ 0 as R → ∞.
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On γ4, we write k = ϵ eiθ, where it is assumed that ϵ≪ 1, and we can estimate
∣

∣

∣

∣

Λ
(

ϵ eiθ
)

eikX⋆

∣

∣

∣

∣

∼ ϵ−2/3, as ϵ→ 0.

Thus, we have the following bound
∣

∣

∣

∣

∫

γ4

Λ(k) eikX⋆ dk
∣

∣

∣

∣

≤ |γ4|
∣

∣

∣

∣

Λ
(

ϵ eiθ
)

eikX⋆

∣

∣

∣

∣

∼ ϵπ

2
ϵ−2/3 ∼ ϵ1/3 as ϵ→ 0.

The contribution from the integral along γ4 is then negligible. Finally, on γ3, we write
k = iy, leading to

I =

−R
∫

−ϵ

B1y e−yX⋆

(−y)5/3
[

iy(−y)1/3 − B2

]dy. (3.117)

We make the change of variable u = −y, which leads to

I =

R
∫

ϵ

B1u euX⋆

u5/3
[

−iu4/3 −B2

]du. (3.118)

Recall that we are interested in the behaviour of this integral at large negative values of X⋆.
Thus, I is of Laplace type. The main contribution comes from a vicinity of u = ϵ, where
to leading order

B1u

u5/3
[

−iu4/3 −B2

] ∼ −B1

B2
u−2/3.

We can then extend the range of the integral to infinity, and write

I ∼ B1

B2

∞
∫

ϵ

u−2/3 euX⋆ du. (3.119)

Using the substitution uX⋆ = −t, this is converted into

I ∼ B1

B2
(−X⋆)

−1/3

−X⋆∞
∫

−X⋆ϵ

t−2/3 e−t dt. (3.120)

For any negative fixed X⋆ no matter how large, the integral on the right hand side of (3.120)
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tends to Γ(1/3) when ϵ→ 0. Finally, we can use the Residue Theorem to write
∫

Γ

Λ(k) eikX⋆ dk = 2πi
∑

a∈Γ

Res
(

Λ(k) eikX⋆ , a
)

. (3.121)

However, the contour Γ doesn’t contain any poles so the right hand side of (3.121) is zero.
Taking the limits ϵ→ 0, R → ∞, we then get

1

2π

+∞
∫

0

B1k eikX⋆

(ik)5/3 (k(ik)1/3 − B2)
dk =

1

2π

B1

B2
Γ(1/3)(−X⋆)

−1/3 + · · · , as X⋆ → −∞.

(3.122)
The other integral in (3.116) is performed in a similar way and leads to the same answer.

Using the definition of B1, B2 and relations2

Γ(8/3)Γ(1/3) =
20
√
3

27
π, κ = − 9

10
√
3
χ,

we conclude that

dP

dX⋆
= −2

3
χ(−X⋆)

−1/3 + · · · , X⋆ → −∞. (3.123)

This is exactly the matching condition from the upstream viscous sublayer.

2The second equality simply comes from the definition of χ.
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Chapter 4

Accelerating Transonic Flow past a
Discontinuity of Wall Curvature

The previous study focused on the case where the external flow was subsonic. Our interest
was to present the behaviour of the boundary layer subjected to the pressure gradient

dpe
dx

∼ (−x)−1/3, (4.1)

in a simplified context, in particular with regards to the formulation and solution of the
interaction problem. To that aim we introduced a body shape satisfying a specific power
law, namely

yw =

{

0 : x < 0,

κx5/3 : x > 0.

This enabled us to generate the required pressure gradient. The solution in both the upper
deck and lower deck of the interaction region were found in closed-form.

We now show how this theory can be extended to the transonic regime. It turns out that
pressure gradient (4.1) is naturally generated in the vicinity of curvature discontinuities.
The analysis of the external inviscid flow needs now to account for compressibility and
transonic effects. We will show that when studying the viscous sublayer, we may still use
the incompressible boundary-layer equations derived in Section 3.3. The scalings for the
interaction region will however have to be amended. Additionally, the inviscid upper deck
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will be governed by the Kármán-Guderley equations, which are nonlinear, and the problem
will thus have to be solved numerically.

4.1 Inviscid transonic flow

Let us consider the flow of an inviscid compressible fluid over a curved surface, where a
discontinuity in the curvature is present at a point xs. We denote the curvature upstream of
point xs by κ−, and downstream by κ+. We introduce a set of coordinate axes (x̂, ŷ) such
that the origin coincides with point xs and the x-axis is tangent to the body surface at point
xs, as shown on Figure 4.1.

x̂

ŷ

O

V∞

κ− κ+

Figure 4.1: Body surface discontinuity in curvature.

The velocity components in these coordinates are denoted by û and v̂, and the speed
of sound is denoted by â. It is known that any two-dimensional steady inviscid flow of a
perfect gas is governed by the equation

(

â2 − û2
) ∂û

∂x̂
+
(

â2 − v̂2
) ∂v̂

∂ŷ
= ûv̂

(

∂û

∂ŷ
+
∂v̂

∂x̂

)

. (4.2)

The speed of sound â is related to the velocity components û and v̂ via the Bernoulli
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equation
â2

γ − 1
+

û2 + v̂2

2
=

â2∞
γ − 1

+
V̂ 2
∞

2
, (4.3)

where γ is the ratio of specific heats and V̂∞ and â∞ represent the gas velocity and the speed
of sound in the unperturbed flow upstream. Provided that the flow upstream is uniform and
free of shock waves, or the shock waves are weak, which is true for all transonic flows, the
inviscid flow remains irrotational

∂û

∂ŷ
− ∂v̂

∂x̂
= 0. (4.4)

This allows us to introduce the potential function Φ̂(x̂, ŷ) defined by

û =
∂Φ̂

∂x̂
, v̂ =

∂Φ̂

∂ŷ
.

The pressure p̂ and density ρ̂ are related to the speed of sound through the well known
formula

â2 = γ
p̂

ρ̂
. (4.5)

Substituting this into the Bernoulli equation (4.3) yields

γ

γ − 1

p̂

ρ̂
+

û2 + v̂2

2
=

γ

γ − 1

p̂∞
ρ̂∞

+
V̂ 2
∞

2
, (4.6)

which enables us to find p̂ and ρ̂ once û and v̂ are known. Finally, the entropy conservation
law takes the form

p̂

ρ̂γ
=

p̂∞
ρ̂γ∞

. (4.7)

Let us assume that the velocity at the origin coincides with the speed of sound; this is to
ensure that the flow treated is of transonic nature. In order to study the flow, we introduce
the non-dimensional variables

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x̂ = Lx, ŷ = Ly, Φ̂ = a∗LΦ,

û = a∗u, v̂ = a∗v, â = a∗a,

p̂ = p∗ + ρ∗a
2
∗p, ρ̂ = ρ∗ρ.

(4.8)
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Here, L represents the characteristic dimension of the body, a∗ is the speed of sound at
the origin, and p∗ and ρ∗ are the values of pressure and density at the origin. Under this
transformation, equations (4.2)-(4.7) become

(

a2 − u2
) ∂u

∂x
+
(

a2 − v2
) ∂v

∂y
= uv

(

∂u

∂y
+
∂v

∂x

)

, (4.9)

a2 =
γ + 1

2
− γ − 1

2

(

u2 + v2
)

, (4.10)
1

ρ
(1 + γp) +

γ − 1

2

(

u2 + v2
)

=
γ + 1

2
, (4.11)

1 + γp = ργ. (4.12)

We are interested in the asymptotic solution of (4.9)-(4.12) as we approach the singularity.
In the vicinity of point O, we do not expect the values of u and v to differ much from
their value at the point i.e. u ∼ 1 + δu, v ∼ δv. Balancing terms in equation (4.4), we
find δu/y ∼ δv/x. Equation (4.10) gives a ∼ 1 + δu. Substituting this in equation (4.9)
and balancing the first two terms on the left hand side gives δu2/x ∼ δv/y. Solving these
estimates for u and v yields

u− 1 ∼
(

x

y

)2

, v ∼
(

x

y

)3

.

The potential function Φ can then be estimated as

Φ ∼ x+ x

(

x

y

)2

. (4.13)

Let us assume that as x → 0, coordinate y → 0 according to yk ∼ x, i.e. the quantity
ξ =

x

yk
remains order-one as x and y simultaneously tend to zero. This suggests that we

look for a solution of (4.9)-(4.12) in the self-similar form

Φ = x+ y3k−2φ(ξ) + · · · , y → 0. (4.14)
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4.1.1 Self-similar solution

We now proceed to derive an equation for φ. We start by computing the velocity compo-
nents u and v, which take the following form

u =
∂Φ

∂x
=1 + y2k−2φ′(ξ) + · · · , (4.15)

v =
∂Φ

∂y
=y3k−3 [(3k − 2)φ(ξ)− kξφ′(ξ)] + · · · . (4.16)

The speed of sound a is given by the Bernoulli equation (4.10)

a = 1− γ − 1

2
y2k−2φ′(ξ) + · · · . (4.17)

An estimation for the pressure and density can then be found by solving equations (4.12)
and (4.11) for p and ρ. We have

p = −y2k−2φ′(ξ) + · · · , (4.18)

ρ = 1− y2k−2φ′(ξ) + · · · . (4.19)

Substituting (4.15)-(4.17) into (4.9) leads to the following ordinary differential equation

[

k2ξ2 − (γ + 1)φ′
]

φ′′ − 5k(k − 1)ξφ′ + 3(k − 1)(3k − 2)φ = 0. (4.20)

This equation was first derived by Frankl (1947) and Guderley (1957) in the study of the
far field behaviour of transonic flow past an aerofoil. It can be seen from (4.15) and (4.16)
that we should then chose k < 1 so that the perturbations decay at infinity. On the contrary,
we are interested in the case where y → 0 in our study, and we should thus chose k > 1.

To formulate the boundary conditions for our problem, we first introduce function yw

describing the shape of the surface. In the vicinity of the origin, we can Taylor expand the
wall shape and write

yw =

{

−1
2κ

−x2 + · · · : x < 0,

−1
2κ

+x2 + · · · : x > 0.
(4.21)
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The impermeability condition on the body surface requires that

v(x, yw) = u(x, yw)
dyw
dx

. (4.22)

Since we are looking at a vicinity of the sonic point, we can assume |κ±x| ≪ 1 so that the
boundary condition may be transferred from y = yw to y = 0. As y → 0, the similarity
variable ξ tends to ±∞ depending on the sign of x. The impermeability condition then
takes the form

⎧

⎪

⎨

⎪

⎩

lim
ξ→−∞

[(3k − 2)φ(ξ)− kξφ′(ξ)] y3k−3 = −κ−x,

lim
ξ→+∞

[(3k − 2)φ(ξ)− kξφ′(ξ)] y3k−3 = −κ+x.
(4.23)

The boundary conditions (4.23) suggest that we should investigate the asymptotic be-
haviour of function φ at large values of ξ. We look for an asymptotic solution of equation
(4.20) at large negative values of ξ in the form

φ(ξ) = d(−ξ)λ + · · · as ξ → −∞. (4.24)

Substituting this into equation (4.20) and assuming, subject to subsequent confirmation,
that λ < 3 leads to the algebraic equation

k2λ2 −
[

k2 + 5k(k − 1)
]

λ+ 3(k − 1)(3k − 2) = 0,

with solutions
λ = 3− 3/k or λ = 3− 2/k.

Since k > 0, these solutions both satisfy λ < 3. Hence, the asymptotic expansion of φ at
large negative values of ξ takes the form

φ(ξ) = d0(−ξ)3−2/k + d1(−ξ)3−3/k + · · · , ξ → −∞. (4.25)

In order to compute the similarity parameter k and the unknown coefficients d0 and d1, we
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turn to the boundary conditions (4.23). Substituting (4.25) into (4.23) leads to

d1(−x)3−3/k + · · · = κ−(−x). (4.26)

This can only be satisfied if d1 = κ− and 3 − 3/k = 1. The similarity parameter k is thus
uniquely defined as

k =
3

2
.

A similar analysis shows that the asymptotic behaviour of φ at large positive values of ξ
takes the form

φ(ξ) = c0ξ
3−2/k + c1ξ

3−3/k + · · · , ξ → ∞. (4.27)

Substituting this into the impermeability condition (4.23) yields the relation

κ+ = −c1. (4.28)

Coefficients d0 and c0 remain unknown at that point, and should be found by solving the
problem numerically on the whole interval ξ ∈ (−∞,+∞). The formulation of the prob-
lem in the inviscid part of the flow consists of the nonlinear ordinary differential equation
(4.20), now written as

(

9

4
ξ2 − (γ + 1)φ′

)

φ′′ − 15

4
ξφ′ +

15

4
φ = 0, (4.29)

and the boundary conditions

⎧

⎪

⎪

⎨

⎪

⎪

⎩

lim
ξ→−∞

[

5

2
φ(ξ)− 3

2
ξφ′(ξ)

]

= −κ−ξ,

lim
ξ→+∞

[

5

2
φ(ξ)− 3

2
ξφ′(ξ)

]

= −κ+ξ.
(4.30)

It should be noted that these boundary conditions are equivalent to specifying

d1 = κ−, c1 = −κ+,

in asymptotic expansions (4.25) and (4.27). This problem is non-trivial and should be
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solved numerically. Depending on the ratio of curvatures κ+/κ−, a wide variety of be-
haviours can be observed. In order to analyse and understand the numerical results, we
need the insight of the phase plane analysis, which we proceed to describe.

4.1.2 Phase plane analysis

A good way to analyse nonlinear second order ordinary differential equations is to study
their behaviour in the phase plane. Following the dimensional analysis of the previous
section, let us introduce functions F and G defined by

u = 1 +
1

γ + 1
y2k−2F (ξ) + · · ·

v =
1

γ + 1
y3k−3G(ξ) + · · ·

⎫

⎪

⎪

⎬

⎪

⎪

⎭

as y → 0. (4.31)

Substituting this into equation (4.9) and the irrotationality condition (4.4) enables us to
reduce the problem to a system of two first order ODE

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dF

dξ
= (k − 1)

3G− 2kξF

F − k2ξ2
,

dG

dξ
= (k − 1)

2F 2 − 3kξG

F − k2ξ2
.

(4.32)

The functions F and G are related to the potential function φ through the equations

F (ξ) = (γ + 1)φ′(ξ), G(ξ) = (γ + 1)
[

(3k − 2)φ(ξ)− kξφ′(ξ)
]

. (4.33)

Note that the system (4.32) admits the invariant transformation

ξ⋆ = Aξ, F ⋆ = A2F, G⋆ = A3G, (4.34)

for any constant A. In order to make the solution independent on A, we normalise F and
G through the transformation

F (ξ) = k2ξ2f(ξ), G(ξ) = k3ξ3g(ξ). (4.35)
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This leads to the system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

df

dξ
=

3(k − 1)g + 2f − 2kf 2

(f − 1)kξ
,

dg

dξ
=

2(k − 1)f 2 − 3kfg + 3g

(f − 1)kξ
.

(4.36)

Finally, in order to make the system autonomous, we introduce a new independent variable
χ such that

dχ =
dξ

(f − 1)kξ
. (4.37)

Thus, an equivalent formulation of ODE (4.29) is the following non-singular autonomous
system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

df

dχ
= 3(k − 1)g + 2f − 2kf 2,

dg

dχ
= 2(k − 1)f 2 − 3kfg + 3g.

(4.38)

Each solution of (4.29) can be treated as a trajectory in the phase plane, and represents a
family of solutions for all possible values of A (as defined in (4.34)). An example of such
a trajectory is depicted on Figure 4.2, along with the stationary points of (4.38), discussed
a bit further.

It can be seen from (4.37) that the transformation of the independent variable is singular
at

ξ = 0, f = 1.

As the old variable ξ passes through 0 as it increases from −∞ to +∞, variable χ changes
direction. The phase plane is thus divided into two sheets which meet at infinity, one for
ξ < 0 and another for ξ > 0. A typical trajectory thus starts on one sheet, reflects back at
infinity and comes back on the other sheet.
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Figure 4.2: A trajectory and the stationary points of (4.38).

Furthermore, each sheet contains the singular line f = 1, which corresponds to the
singular point

φ′ =
k2ξ2

(γ + 1)

of the ODE (4.20). When a trajectory hits this line in the phase plane, it corresponds
to a turning point for the physical variable ξ, which has no physical meaning. The only
exception is the point P2 in the phase plane, where f = 1 and g = 2/3, which is one of
the stationary points of system (4.38). Crossing at this point is allowed - it is related to the
characteristics curves of the original equation (4.9) (Buldakov & Ruban 2002).

Of particular interest to us are the stationary points of (4.38). They are

P1 = (0, 0), P2 =

(

1,
2

3

)

, P3 =

(

1

k2
,− 2

3k3

)

.

Identifying the type of each stationary point is important in order to understand the physical
meaning of trajectories in their vicinity. Linearising around these three points show that for
k = 3/2

1. P1 is a node,
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2. P2 is a node,

3. P3 is a saddle point.

According to definition (4.35), point P1 is reached as |ξ| → ∞, suggesting that it corre-
sponds to the behaviour of the flow on the wall. Thus, trajectories in the phase plane must
start and return back to the origin, as shown on Figure 4.2. The importance and meaning of
the saddle point P3 will be demonstrated in one of our examples. For an in-depth analysis
of the physical meaning of P2 and P3, the reader can refer to Buldakov & Ruban (2010).

Armed with this knowledge, our aim is to construct a few solutions and interpret their
meaning. The equations (4.38) are nonlinear and should be integrated numerically with
suitable boundary conditions. An equivalent method that we use here is to solve directly
equation (4.29) and then convert the solution φ into the phase-plane variables F and G

using (4.33). The corresponding solution curves can then be subsequently plotted in a
phase-plane portrait.

4.1.3 Numerical solution

We now describe the numerical solution to problem (4.29)-(4.30). Since the boundary
conditions are specified at ξ = −∞ and ξ = +∞, it should be treated as a boundary-value
problem. We can however turn it into an initial value problem, which is more convenient
for the purpose of the analysis. For fixed k = 3/2, we start from the asymptotic expansion

φ = d0(−ξ)5/3 + d1(−ξ) + · · · , as ξ → −∞. (4.39)

The second constant on the right hand side of (4.39) is fixed by the upstream boundary
condition (4.26). The first constant is taken arbitrary in the first step of the calculation,
which consists in integrating the problem numerically on the interval ξ = [−ξ∞, ξ∞] using
a simple predictor-corrector scheme. Once we have the data for large ξ∞, we find constants
c0 and c1 by solving the system of linear equations

⎧

⎪

⎨

⎪

⎩

φ(ξ∞) = c0ξ
5/3
∞ + c1ξ∞,

φ′(ξ∞) =

(

3− 2

k

)

c0ξ
2/3
∞ +

(

3− 3

k

)

c1.
(4.40)
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One can see that for each different starting value of d0, a different set {c0, c1}, and thus a
different value for κ+ will be generated. Only one such value will satisfy the downstream
boundary condition (4.28), and we need to iterate on d0 until we find the correct one.

We can thus establish a one-to-one relation between coefficient d0 and the downstream
curvature κ+. If κ+ is specified at the onset, we should iterate on d0 to satisfy the correct
boundary condition. Alternatively, we can fix d0 and find the ‘allowed’ downstream curva-
ture κ+ (by solving (4.40)) as part of the solution. The latter method has a big advantage,
in that the problem is extremely sensitive to the ratio κ−/κ+. It is not guaranteed that the
solution will converge or even exist for an arbitrary pair {κ−, κ+}. Specifying d0 rather
than κ+ thus gives us more control on the stability of the calculations.

As a starting point for the numerical calculations, we observe that the ODE

(

9

4
ξ2 − (γ + 1)φ′

)

φ′′ − 15

4
ξφ′ +

15

4
φ = 0 (4.41)

admits the simple solution
φ = Cξ.

The boundary conditions (4.30) are then satisfied provided that κ− = κ+ = −C. This solu-
tion thus corresponds to the situation when there is no discontinuity in the body curvature.
The asymptotic expansion for large values of ξ then takes the trivial form

⎧

⎨

⎩

φ = C(−ξ), as ξ → −∞,

φ = Cξ, as ξ → +∞,
(4.42)

indicating that the coefficients d0 and c0 of asymptotic expansion (4.25)-(4.27) are identi-
cally equal to 0.

In order to generate a first set of non-trivial solutions, we then perturb this ‘basic’
solution around d0. The sign of d0 has an important meaning. Let us recall that

u = 1 + y2k−2φ′(ξ) + · · · .

Inserting above the asymptotic expansion (4.25), which is valid at large negative values of
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ξ, and substituting k = 3/2, we find that

u = 1− 5

3
d0(−ξ)2/3 + · · · , as ξ → −∞, (4.43)

suggesting that the flow upstream is subsonic provided d0 > 0. Conversely, if we take
d0 < 0, the flow upstream will be supersonic. We will study the flow behaviour for both
positive and negative values of d0. We will interpret the physical meaning of the resulting
phase plane curves and specify the important parameters.

1. The first set of solutions that we present is obtained when we set the upstream cur-
vature κ− = 0.5, and chose d0 to range from 0 to 0.29. The corresponding solutions
φ′(ξ), which represent the perturbations to the streamwise velocity, are depicted on
the left of Figure 4.3. The blue line corresponds to d0 = 0, which is equivalent to
the case κ+ = κ− described earlier. As expected for d0 > 0, the flow is initially
subsonic, which is characterised by φ′(ξ) < 0. The flow then accelerates, and finally
becomes supersonic at some distance from the origin. The corresponding values for
c0, c1 are plotted on Figure 4.4.

The solutions in phase-plane variables are plotted on the right of Figure 4.3. The
blue line also represents the solution for equal curvatures. When d0 > 0, the solution
curves start at the origin in the subsonic (f < 0) side of the plane, corresponding
to the left hand side of the diagram, and they are situated above the blue line. After
going off to infinity as ξ → 0 (which is not shown on the graph), they reflect in the
g = 0 axis and jump back to g = −∞, f = −∞. They come back under the blue line
and move towards the supersonic region f > 0 and finally end up back at the origin.
All solutions stay away from the saddle point P2 and node point P3 (represented by
the black and yellow circle respectively) provided that d0 < 0.29.
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Figure 4.3: Small difference between upstream and downstream curvature.
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Figure 4.4: Behaviour of coefficients c0 and c1 as a function of d0 - subsonic.

For larger values of d0, the solution curves in the phase plane come back on the wrong
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side of the nullcline of saddle point P2. They are then deflected towards the singular
line f = 1. This has no physical meaning. There exists however a special value for
d0 where the solution comes back exactly along the nullcline of saddle point P2. It
turns out that this does have a physical meaning - it corresponds to the flow reaching
supersonic speed through a Prandtl-Meyer expansion fan. An example of such a flow
was presented in Ruban, Wu & Pereira (2006).

2. Let us now consider the opposite situation, when d0 < 0 which means that the flow
upstream is supersonic. The flow is decelerating, and only for a specific range of κ+

will we be able to observe solutions without shock. Once again setting κ− = 0.5, we
get a set of solutions which are displayed on Figure 4.5. The corresponding values
for c0 and c1 are displayed on Figure 4.6.
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Figure 4.5: Supersonic flow decelerating without a shock wave.
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Figure 4.6: Behaviour of coefficients c0 and c1 as a function of d0 - supersonic.

Observe that for some d0 > dcrit, one of the solutions in the physical plane (here
the black curve) develops a singularity. The behaviour is best explained in the phase
plane, on the right of Figure 4.5. The trajectories start once again at the origin,
but this time on the right hand side of the plane, corresponding to the supersonic
region f > 0, and under the blue line. Straight away after leaving the origin, the
trajectories approach the saddle point P2. For d0 < dcrit, trajectories are sent to
f = −∞, g = −∞ along the nullcline of P2. After going to infinity, they reflect and
come back to the origin in the subsonic side. However, we see that some trajectories
(black curve) are deflected to the other side of the saddle point and then attracted
towards the node P3. The discontinuity that the solution develops is associated with
the formation of a shock-wave as the flow decelerates from high supersonic speed
to low subsonic speeds. Thus, the remaining part of the solution curve linking point
P3 back to the origin is inaccurate and should be modified to account for the shock.
Examples of such flows can be found in Buldakov & Ruban (2002).

3. Finally, we look for solutions as κ− → 0, which corresponds to the situation when
we have a flat plate upstream, thus emulating the study of Chapter 3 but for transonic
flows. We assume that the flow upstream is subsonic, so that the solutions start once
again on the left hand side of the phase plane. After jumping to the other sheet, the
trajectories come back much closer to the nullcline of saddle point P3. For some
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critical value of the parameter d0, the trajectories comes back to the wrong side of
the saddle point, and are then deflected towards the line f = 1. The black curve
is an example of such a trajectory, and one can see that in the physical plane, the
solution develops a discontinuity. As mentioned before, these solutions do not have
a physical meaning. However, special solutions can be constructed that come back
exactly along the nullcline. These correspond to Prandtl-Mayer expansion fan, as
described in Yumashev (2010) and Ruban, Wu & Pereira (2006).
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Figure 4.7: Prandtl-Meyer flow obtained in the limit as κ− → 0.

This concludes our analysis of the behaviour in the phase plane. It gave us insight into
the actual physics of the flow and provides indication on how to calibrate the parameters
κ± for future numerical calculations.
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4.1.4 Pressure distribution in the inviscid region

The final step in the inviscid analysis is to derive an expression for the pressure gradient.
We recall that using the Bernoulli equation, we were able to find

p0 = −y2k−2φ′(ξ) + · · · . (4.44)

Differentiating once with respect to x, it follows that the pressure gradient can be written

∂p0
∂x

= −yk−2φ′′(ξ) + · · · .

In order to obtain an expression for the pressure gradient on the wall, we need to set y = 0,
which corresponds to ξ → ±∞ depending on the sign of x. We are interested in the
behaviour upstream of the singularity, in which case we should take x < 0. Using the
asymptotic expansion (4.25) for φ at large negative values of ξ, we find that

∂p0
∂x

∣

∣

∣

∣

y=0,x<0

= −10

9
d0(−x)−1/3 + · · · . (4.45)

Thus, this shows that in the vicinity of a discontinuity in curvature, transonic flows natu-
rally generate the singular pressure gradient used throughout Chapter 3. It is also important
to note that the pressure gradient is favourable provided that d0 > 0, which corresponds to
an incoming subsonic flow.

4.2 Transonic boundary layer upstream of the discontinuity

In order to analyse the behaviour of the boundary layer on the aerofoil surface, it is con-
venient to introduce orthogonal curvilinear coordinates x̂′, ŷ′ where x̂′ is measured along
the body contour and ŷ′ normal to it. The velocity components in these coordinates will be
denoted by û′ and v̂′. The pressure and gas density are written as p̂ and ρ̂. Furthermore,
we need to consider the enthalpy ĥ and the dynamic viscosity µ̂. The non-dimensional



CHAPTER 4. ACCELERATING TRANSONIC FLOW 123

variables are introduced in a similar fashion as (4.8)
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x̂′ = Lx′, ŷ′ = Ly′,

û′ = a∗u
′, v̂′ = a∗v

′, p̂ = p∗ + ρ∗a
2
∗p,

ρ̂ = ρ∗ρ, ĥ = a2∗h, µ̂ = µ̂∗µ.

(4.46)

The suffix ‘∗’ serves to denote the values of quantities immediately outside the boundary
layer at point O, where the fluid velocity is equal to the speed of sound. The analysis of the
flow is based on the asymptotic expansion

u′ = U0(x
′, Y ′) + · · · , v′ = Re−1/2 V0(x

′, Y ′) + · · · ,

p = P0(x
′, Y ′) + · · · , ρ = ρ0(x

′, Y ′) + · · · ,

h = H0(x
′, Y ′) + · · · , µ = µ0(x

′, Y ′) + · · · ,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(4.47)

where the Reynolds number

Re =
ρ̂∗V̂∗L

µ̂∗
, (4.48)

is assumed to be large, and the normal coordinate is scaled as usual as

y′ = Re−1/2 Y ′.

Substitution of (4.46)-(4.47) into the Navier-Stokes equations leads to the compressible
boundary-layer equations

ρ0

(

U0
∂U0

∂x′
+ V0

∂U0

∂Y ′

)

= −∂P0

∂x′
+

∂

∂Y ′

(

µ0
∂U0

∂Y ′

)

, (4.49)

ρ0

(

U0
∂H0

∂x′
+ V0

∂H0

∂Y ′

)

= U0
∂P0

∂x′
+

∂

∂Y ′

(

µ0

Pr

∂H0

∂Y ′
+ µ0

Pr − 1

Pr
U0
∂U0

∂Y ′

)

, (4.50)

∂ρ0U0

∂x′
+
∂ρ0V0

∂Y ′
= 0, (4.51)

H0 =
1

(γ − 1)ρ0
+

γ

γ − 1

P0

ρ0
. (4.52)

These equations are in turn the momentum equation projected upon the longitudinal coor-
dinate x′, the energy equation with Pr the Prandtl number, the continuity equation and the
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state equation. Substituting (4.46)-(4.47) into the y′-component of the momentum equation
leads to the conclusion that the pressure gradient in the boundary layer does not change
across the boundary layer to leading order

∂P0

∂Y ′
= 0. (4.53)

According to (4.45), the pressure gradient inside the boundary layer is thus given by

∂P0

∂x′
= −10

9
d0(−x′)−1/3. (4.54)

In the following analysis, we will denote the value of the non-dimensional enthalpy H0 at
the ‘bottom’ of the boundary layer at point O by Hw, and the corresponding values of the
non-dimensional density ρ0 and viscosity µ0 by ρw and µw respectively. Assuming that the
body surface is not artificially heated or cooled, ρw and µw are order-one quantities. Since
the flow is two dimensional, it is convenient to introduce the stream function Ψ0(x′, Y ′)

such that
∂Ψ0

∂Y ′
= ρ0U0,

∂Ψ0

∂x′
= −ρ0V0, (4.55)

which enables us to automatically satisfy the continuity equation.
Under the action of the singular pressure gradient (4.54), the boundary layer splits into

two subregions, the main part of the boundary layer shown in Figure 4.8 as region 2a, and
a near-wall sublayer 2b. We shall start with the sublayer 2b.

1

x

2a

2b

Re−1/2

y

Figure 4.8: Two-tiers structure of the boundary layer.
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4.2.1 Upstream boundary layer flow

The flow in region 2b experiences an extreme acceleration caused by the singular favourable
pressure gradient (4.54). The convective terms on the left hand side of the momentum
equation should then be of the same order of magnitude as the pressure gradient on the
right hand side. Taking into account that to leading order ρ0 = ρw + · · · , this is expressed
as

∂Ψ0

∂Y ′

∂2Ψ0

∂x′∂Y ′
∼ ∂P0

∂x′
. (4.56)

In order for the solution in region 2b to satisfy the no-slip condition

Ψ0 =
∂Ψ0

∂Y ′
= 0 at Y ′ = 0, (4.57)

the convective terms on the left hand side should balance with the viscous term on the right
hand side. Recalling that to leading order µ0 = µw + · · · , this is expressed as

∂Ψ0

∂Y ′

∂2Ψ0

∂x′∂Y ′
∼ ∂3Ψ0

∂Y ′3
. (4.58)

Taking into account the form of the pressure gradient (4.54), it should be clear that equa-
tions (4.56)-(4.58) are the same as the ones derived in Chapter 3. In a similar fashion, we
introduce logarithmic terms in the asymptotic expansion of the stream function Ψ0

Ψ0 ∼ (− log(−x′))1/4 (−x′)2/3. (4.59)

This is substituted in (4.58), which enables us to estimate the thickness of region 2b as

Y ′ ∼ (−x′)1/3(− log(−x′))−1/4. (4.60)

This suggests that the asymptotic expansion of the stream function in the viscous sublayer
2b should be sought in the form

ψ =
(

− log(−x)
)1/4

(−x)2/3
(

f0(η) +
f1(η)

(

− log(−x)
) + · · ·

)

, as x → 0−, (4.61)
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where, on account of (4.60), we introduce the similarity variable η

η =
(

− log(−x′)
)1/4 Y ′

(−x′)1/3
. (4.62)

The asymptotic expansion for the density ρ0 and dynamic viscosity µ0 can be determined
by estimating the temperature variations in region 2b. To this aim, we turn to the energy
equation (4.50). Balancing the heat transfer term on the right hand side of this equation
with the mechanical energy dissipation

∂

∂Y ′

(

µ0
∂H0

∂Y ′

)

∼ µ0

(

∂U0

∂Y ′

)2

,

we see that the variations of the enthalpy

|H0 −Hw| ∼ U2
0 ∼ log(−x′)(−x′)2/3.

Using the state equation (4.52), we can further assert that

|ρ0 − ρw| ∼ log(−x′)(−x′)2/3,

and, since the viscosity µ0 is a function of the enthalpy (Goldstein 1930),

|µ0 − µw| ∼ log(−x′)(−x′)2/3.

The asymptotic expansion of the density and viscosity in region 2b may thus be represented
in the form

ρ0(x
′, Y ′) = ρw + log(−x′)(−x′)2/3ρ̃(η) + · · ·

µ0(x
′, Y ′) = µw + log(−x′)(−x′)2/3µ̃(η) + · · ·

⎫

⎬

⎭

as x′ → 0−. (4.63)

Thus, in the viscous sublayer, it suffices to know the leading order terms, and the solution
for the corrections ρ̃ and µ̃ need to be worked out. We can eliminate the constants ρw and
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µw from the equation by applying the affine transformation

ψ = ρ−3/2
w µ1/2

w ψ̄, x′ = ρ−3/2
w µ3/4

w x̄, Y ′ = ρ−1/2
w µ1/4

w Ȳ . (4.64)

Substitution of (4.64), (4.63) , (4.62) and (4.61) into (4.55) and then into (4.49) leads to
a set of ordinary differential equations. We obtain the following equation and boundary
conditions in the leading order approximation

f ′′′
0 − 2

3
f0f

′′
0 +

1

3

(

f ′
0

)2
= 0, f0(0) = f ′

0(0) = 0, (4.65)

and the requirement that f0(η) does not grow exponentially as η → ∞. This equation
admits a simple solution f0 = 1

2Aη
2 which satisfies all the boundary conditions. The

constant A is arbitrary and should be found as part of the next order problem.
The latter is written

f ′′′
1 − 1

3
Aη2f ′′

1 +
2

3
Aηf ′

1 −
2

3
Af1 +

10

9
d0 =

3

8
A2η2. (4.66)

The set of boundary conditions formulated in (4.65) applies to f1(η) as well. In Chapter 3,
we found the solution to equation (4.66) to be given by the integral

f1(η) =
1

2

∫ η

0

(η − ξ)2
∫ ζ

∞

3

4
A2ζ e

1
9
A(ξ3−ζ3) dζdξ +Dη2. (4.67)

The constant D is arbitrary and, as before, should be found by considering the next order
problem for f2. In the process of solving equation (4.66), we find that we need to impose
the condition

A =
53/429/4d3/40

310/4Γ(2/3)3/4
,

in order to obtain a valid solution. This solvability condition takes a similar form as the
one derived in Chapter 3. Recall that for subsonic flows, constant A was a function of
the downstream curvature κ. The transonic version of constant A also depends on the
downstream curvature through constant d0. The asymptotic expansion of f1 at large values
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of η was found to be

f1 = −9

8
Aη2 log(η) + C1η

2 + C2η + C3 +O

(

1

η

)

as η → ∞, (4.68)

with the constants C2 and C3 given by the equations

C2 = −95/6

4
A2/3Γ(2/3)2, C3 =

5

3

d0
A
. (4.69)

The behaviour of f1 at large values of η enables us to calculate the streamline slope at
the edge of the viscous sublayer. Since we are using curvilinear coordinates (x′, Y ′), the
streamline slope θ should be calculated as

θ = −Re−1/2 ∂ψ

∂x′

/

∂ψ

∂Y ′
= −Re−1/2

(

∂ψ

∂x′

/

∂ψ

∂Y
− f ′(x′)

)

. (4.70)

We substitute expansion (4.68), which leads to

θ = −Re−1/2

(

(

− log(−x′)

)−5/4

(−x′)−2/32

3
C2 + · · ·

)

+ Re−1/2 f ′(x′). (4.71)

This expression is independent of Y . This suggests that the main part of the boundary layer,
region 2a, acts once again as a buffer region whose aim is to transmit the streamline slope
at the edge of region 2b back to the inviscid region 1.

One can see that the equations and upstream asymptotics that we obtained in Chapter 3
are still applicable to the description and formulation of the viscous sublayer of the inter-
action region, as well as the ‘buffer’ layer. However, the length-scale σ of the triple deck
should be amended to account for transonic effects.

Indeed, in transonic flows, we find that the pressure perturbations ∆p in the inviscid
region, caused by the displacement θ of the boundary layer, are stronger than their subsonic
and supersonic counterparts, namely of the order of θ2/3. The process of boundary-layer
interaction occurs when the pressure perturbations become of the same order as the original
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inviscid pressure pe. Thus, for transonic flows, the interaction occurs when

pe ∼ θ2/3 ⇔ (−x)2/3 ∼
(

Re−1/2 log(−x)−5/4(−x)−2/3
)2/3

. (4.72)

The width σ of the interaction region is now given by the solution of the transcendental
equation

x| log x|3/4 = Re−3/10 . (4.73)

4.3 Formulation of the viscous-inviscid interaction region

Let us now turn to the interaction region that forms in the vicinity of the surface discontinu-
ity. It takes the standard triple-deck form, the lowest deck (region 5) being a continuation
of the viscous sublayer 2b. The middle deck (region 4) is the continuation of the main part
of the boundary layer, while the upper deck (region 3) sits in the inviscid transonic part of
the flow. This is sketched in Figure 4.9.

2b

2a

1

5

4

3

κ+

Re−1/2

σκ−

Figure 4.9: Triple deck structure of interaction region.

4.3.1 The viscous lower deck

In order to formulate the interaction problem, we proceed as in Section 3.4.1 and introduce
the scalings

x̄ = σX⋆, Ȳ = σ1/3| log σ|−1/4Y⋆. (4.74)
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where σ is the solution of (4.73). The solution in the viscous sublayer is then sought in the
asymptotic form

⎧

⎪

⎨

⎪

⎩

ψ = | log σ|1/4σ2/3

(

1

2
AY 2

⋆ +
ψ⋆
1(X⋆, Y⋆)

| log σ|
+ · · ·

)

,

P = σ2/3P⋆(X⋆) + · · · ,
(4.75)

leading to the linearised boundary-layer equations

AY⋆
∂2ψ⋆

1

∂X⋆∂Y⋆
− A

∂ψ⋆
1

∂X⋆
= − dP⋆

dX⋆
+
∂3ψ⋆

1

∂Y 3
⋆

. (4.76)

Equation (4.76) should be solved with the boundary conditions

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ψ⋆
1 =

∂ψ⋆
1

∂Y⋆
= 0, at Y⋆ = 0,

ψ⋆
1 → (−X⋆)

2/3

(

f1(η⋆)−
3A

8
log(−X⋆)η

2
⋆

)

as X⋆ → −∞,

ψ⋆
1 = −9

8
AY 2

⋆ log Y⋆ +
1

2
C1Y

2
⋆ + A⋆(X⋆)Y⋆ + · · · , as Y⋆ → ∞.

(4.77)

These are respectively the no-slip condition on the body surface, the matching with the
flow upstream of the interaction region and the flow behaviour at the edge of the viscous
sublayer.

The similarity variable η⋆ is defined as η⋆ = Y⋆/(−X⋆)1/3 = O(1) and the function f1

is the solution to the ordinary differential equation

f ′′′
1 − 1

3
Aη2f ′′

1 +
2

3
Aηf ′

1 −
2

3
Af1 +

10

9
d0 =

3

8
A2η2, (4.78)

subject to the boundary conditions

f1(0) = f ′
1(0) = 0,

and the requirement that f1(η) does not grow exponentially as η → ∞. The displacement
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function A⋆(X⋆) satisfies the matching condition

A⋆(X⋆) → C2 (X⋆)
1/3 + · · · , as X⋆ → −∞, (4.79)

and should be found as part of the solution to the interaction problem. Finally, the stream-
line slope is estimated as

θ = Re−1/2 σ−2/3| log σ|−5/4. (4.80)

The analysis of the flow in the buffer region 4, between the viscous layer and the inviscid
upper deck remains the same as in the previous chapter and is not repeated here.

4.3.2 The inviscid upper deck

The analysis of the inviscid upper deck is the fundamental difference with the work of
Chapter 2, since we now need to account for transonic effects. The flow in this region is
governed by the transonic small perturbation theory. The scaling in the x-direction remains
the same as for region 5, so we set x = σx⋆. The y-coordinate should be scaled as

y =
σ

α
y⋆,

where α is expected to be determined as a result of the analysis of the upper deck flow.
This scaling is typical of transonic flows, which need to account for an extended region of
influence. We look for a solution in the form

⎧

⎨

⎩

u(x, y) = 1 + τ u1(x⋆, y⋆) + · · · ,

v(x, y) = γ v1(x⋆, y⋆) + · · · ,
(4.81)

with parameters τ and γ assumed to be small. Substitution of (4.81) into the irrotationality
condition gives

τα
u1

y⋆
∼ γ

v1
x⋆

,
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indicating that we should set γ = τα. In order to estimate the speed of sound a, we use the
Bernoulli equation (4.10) written for a

a2 =
1

M2
∞

+
γ − 1

2

(

1−
(

u2 + v2
)

)

,

where we set M2
∞ = 1+ ζM1, ζ ≪ 1 in order to make sure the flow is transonic. Inserting

the asymptotic expansion (4.81) leads to

a2 = 1− 2ζM1 − (γ − 1)τu1 + · · · . (4.82)

We thus chose ζ = τ to avoid degeneration. Substituting asymptotic expansions (4.81) and
(4.82) into the transonic equation (4.9) leads to the following estimates

(

a2 − u2
)

ux ∼
(

−2M1 − (γ + 1)

)

τ 2

ξ
u1
∂u1

∂x⋆
+ · · · ,

(

a2 − v2
)

vy ∼
τα2

ξ

∂v1
∂y⋆

+ · · · , (4.83)

2uvuy ∼
τ 2α2

ξ
v1
∂u1

∂y⋆
+ · · · .

Since τ ≪ 1, the third term is small compared to the second one and should be disregarded.
According to the principle of least degeneration, we should then set α2 = τ . Taking this
into account and introducing the potential function

u1 =
∂φ⋆

∂x⋆
, v1 =

∂φ⋆

∂y⋆
,

the transonic equation (4.9) reduces to

(

2M1 + (γ + 1)
∂φ⋆

∂x⋆

)

∂2φ⋆

∂x2
⋆

− ∂2φ⋆

∂y2⋆
= 0, (4.84)

which is known as the Kármán-Guderley equation. We can estimate the pressure by substi-
tuting (4.81) into the Bernoulli equation (4.10), which leads to the following scaling

p(x, y) = α2p⋆(x⋆, y⋆) + · · · .
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It remains to find the relationship between α and σ. The pressure gradient in the inviscid
flow and in the viscous flow have to match, leading to the condition

α2

σ

dp⋆

dx⋆
= σ−1/3 dP⋆

dX⋆
.

Solving for the order of magnitude leads to α = σ1/3.

Let us now turn to the boundary conditions for equation (4.84). The matching condition
of the velocity components at the edge of region 3 and 4 is written

v1(x⋆, 0) = lim
Y→∞

V

U
= −

(

A′
⋆(x⋆)− f ′(x⋆)

)

. (4.85)

A far-field condition should be added for this equation. It follows from the asymptotic
matching with the upstream transonic flow analysis carried out in Section 4.1. We have

φ⋆ = y5/2⋆ φ(ξ⋆) + · · · , as y⋆ → ∞, (4.86)

where the variable ξ⋆ is defined by
ξ⋆ =

x⋆

y3/2⋆

.

The formulation of the upper transonic problem thus consists of the scalings

x = σx⋆, y = σ2/3y⋆, (4.87)
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u(x, y) = 1 + σ2/3u1(x⋆, y⋆) + · · · ,

v(x, y) = σv1(x⋆, y⋆) + · · · ,

p(x, y) = σ2/3p⋆(x⋆, y⋆) + · · · ,

(4.88)

and the Kármán-Guderley equations, together with the impermeability condition and far-
field matching

(

2M1 + (γ + 1)
∂φ⋆

∂x⋆

)

∂2φ⋆

∂x2
⋆

− ∂2φ⋆

∂y2⋆
= 0, (4.89)
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂φ⋆

∂y⋆

∣

∣

∣

∣

y⋆=0

= −
[

A′
⋆(x⋆)− f ′(x⋆)

]

,

lim
x2
⋆+y2⋆→∞

φ⋆ = y5/2⋆ φ (ξ⋆) , ξ⋆ =
x⋆

y3/2⋆

.
(4.90)

We remind the reader that σ is the solution of the transcendental equation

x| log x|3/4 = Re−3/10, (4.91)

and the function φ(ξ⋆) is the solution to

(

9

4
ξ2 − (γ + 1)φ′

)

φ′′ − 15

4
ξφ′ +

15

4
φ = 0, (4.92)

subject to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

lim
ξ→−∞

[

5

2
φ(ξ)− 3

2
ξφ′(ξ)

]

= −κ−ξ,

lim
ξ→+∞

[

5

2
φ(ξ)− 3

2
ξφ′(ξ)

]

= −κ+ξ.
(4.93)

In order to analyse the full viscous-inviscid interaction, this should be solved in conjunction
with the linearised boundary-layer equation derived in Section 4.3.1.

4.4 Numerical solution of the interaction problem

In Chapter 3, the equations governing the viscous-inviscid interaction were linear, which
enabled us to obtain analytical solutions. The corresponding equations for transonic flow
are nonlinear and should be solved numerically. The numerical calculations are done in
three stages. The first one consists in solving the viscous sublayer equations (4.76)-(4.77).
We then solve the equations (4.89)-(4.90) of the transonic upper deck. The last step consists
in organising the interaction between the boundary layer and the transonic flow.

4.4.1 Boundary-layer calculations

The flow in the viscous sublayer is governed by the linearised boundary-layer equations
(4.76). For the purpose of the numerical calculation, we recast them in terms of the velocity
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components U and V

AY⋆
∂U

∂X⋆
+ AV = − dP⋆

dX⋆
+
∂2U

∂Y 2
⋆

,

∂U

∂X⋆
+
∂V

∂Y⋆
= 0.

(4.94)

The no-slip and matching conditions are

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

U = V = 0 at Y⋆ = 0,

U = −3

4
AY⋆ log(−X⋆) + (−X⋆)

1/3f ′
1(η⋆) + · · · , as X⋆ → −∞,

U = −9

4
AY⋆ log Y⋆ −

9

8
AY⋆ + A⋆(X⋆) + · · · , as Y⋆ → ∞.

(4.95)

We recall that the similarity variable η⋆ is defined as η⋆ = Y⋆/(−X⋆)1/3 and that the con-
stant A is given by

A =
53/429/4d3/40

310/4Γ(2/3)3/4
.

The function f1 satisfies the linear equation

f ′′′
1 − 1

3
Aη2⋆f

′′
1 +

2

3
Aη⋆f

′
1 −

2

3
Af1 +

10

9
d0 =

3

8
A2η2⋆,

with boundary conditions f1(0) = f ′
1(0) = 0 and no exponential growth for large η⋆. It has

the asymptotic behaviour

f1 = −9

8
η2⋆ log η⋆ + C2η⋆ + C3 +O

(

1

η⋆

)

, as η⋆ → ∞.

The constants C2 and C3 are given analytically by

C2 = −95/6

4
A2/3Γ(2/3)2, C3 =

5

3

d0
A
.

Finally, the displacement function A⋆ has the following asymptotic behaviour upstream

A⋆(X⋆) = C2(−X⋆)
1/3 + · · · , as X⋆ → −∞.
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In order to calculate the pressure distribution in the viscous sublayer, we introduce a dis-
crete mesh (xi, yj), with i = 1, ..., NX ; j = 1, ..., NYvis. Here, subscript ‘vis’ refers to the
viscous mesh for normal coordinate Y⋆. We denote the values of the displacement function
A⋆ and the pressure gradient dp(x) at the points xi by the vectors A0 and dp. We solve
the boundary-layer equations (4.94) by marching from position xi to the position xi+1 as
described in Kravtsova, Zametaev & Ruban (2005). At each cross-section of the boundary
layer at xi, starting from i = 3, we formulate a set of linear operator equations

Φj = 0, j = 1, ..., NYvis − 1, (4.96)

based on the X⋆-momentum equation. On the left edge of the mesh, at i = 1, 2, we use
the matching condition for the velocity profile profile U given by (4.95). Additionally, the
values of the displacement function and pressure gradient at the initial cross-sections are
known from the asymptotics

A0i = C2(−xi)
1/3, dpi = −10

9
d0(−xi)

−1/3, i = 1, 2.

The vertical velocity V is calculated using the continuity equation. It is written in finite-
difference form as follows

1

2

(

Ui−2,j − 4Ui−1,j + 3Ui,j

2∆x
+

Ui−2,j−1 − 4Ui−1,j−1 + 3Ui,j−1

2∆x

)

+

+
Vi,j − Vi,j−1

∆y
= 0.

(4.97)

We solve this equation for Vi,j and use it for progressively increasing j = 2, ...,M , starting
from the wall where according to the no-slip condition Vi,1 = 0. For a given vector A0,
the set of linear equations (4.96) serves to determine the longitudinal velocity component
Ui,j for j = 2, ..., NYvis − 1 and the pressure gradient dpi at the cross-sections xi, for
i = 3, .., NX . To compute the pressure distribution, we integrate numerically dpi starting
from i = 1, ..., NX .

We note here that the problem in the viscous sublayer can still be solved using Fourier
transform methods assuming an unknown pressure distribution P (x). Following the same
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method used in Section 3.5.2, we are able to derive the following relation between the
displacement function Ã⋆ and the pressure p̃⋆ in Fourier space

Ã⋆(k) =
(ik)1/3

3A2/3 Ai′(0)
p̃⋆. (4.98)

We used this formula as a check that the boundary-layer code described above works. To
this aim, we solved the problem with the artificial displacement function

A⋆(X⋆) = C2

(

1 +X2
⋆

)1/6
,

which provides the correct upstream asymptotic behaviour described in equation (4.79).
Figure 4.10 shows the difference between the pressure gradient obtained by taking the
inverse Fourier Transform of formula (4.98) with given Ã⋆ and the numerical code. The
asymptotic behaviour for the pressure

dP⋆

dX⋆
= −10

9
d0(−X⋆)

−1/3, as X⋆ → −∞

was plotted on top of the solution. It shows excellent agreement, indicating that the code
described works well.



4.4. NUMERICAL SOLUTION OF THE INTERACTION PROBLEM 138

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

x

dp
/d

x

 

 

Analytical solution
Numerical Solution
Asymptotic solution

Figure 4.10: Comparison between analytical, numerical and asymptotical results for the
pressure gradient distribution across the interaction region.

4.4.2 Kármán-Guderley calculations

The flow in the transonic inviscid upper deck is governed by the Kármán-Guderley equa-
tions

(

K − (γ + 1)
∂φ⋆

∂x⋆

)

∂2φ⋆

∂x2
⋆

+
∂2φ⋆

∂y2⋆
= 0, (4.99)

subject to the matching condition with the viscous flow

∂φ⋆

∂y⋆

∣

∣

∣

∣

y⋆=0

= −dA⋆

dx⋆
+

df

dx⋆
, (4.100)

and the far-field boundary conditions

lim
x2
⋆+y2⋆→∞

φ⋆ = y5/2⋆ φ (ξ⋆) , ξ⋆ =
x⋆

y3/2⋆

. (4.101)
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The Kármán parameter K = 2M1 and the body shape f has the form

f =

⎧

⎪

⎨

⎪

⎩

−1

2
κ−x2, x ≤ 0,

−1

2
κ+x2, x > 0.

(4.102)

The function φ(ξ⋆) is the solution of the equation

(

9

4
ξ2 − (γ + 1)φ′

)

φ′′ − 15

4
ξφ′ +

15

4
φ = 0, (4.103)

subject to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

lim
ξ→−∞

[

5

2
φ(ξ)− 3

2
ξφ′(ξ)

]

= −κ−ξ,

lim
ξ→+∞

[

5

2
φ(ξ)− 3

2
ξφ′(ξ)

]

= −κ+ξ.
(4.104)

For the solution to this equation, we refer to Section 4.1.3.
Given a displacement function A⋆ and the body shape (4.102), our task is to solve

equations (4.99)-(4.101) to obtain the ‘inviscid’ pressure distribution

p
∣

∣

y⋆=0
= −∂φ⋆

∂x⋆

∣

∣

∣

∣

y⋆=0

.

For this purpose, it is convenient to use the linearised Kármán-Guderley equations, which
are obtained by representing all functions in the form

φ⋆ = φ0 + φ1, p⋆ = p0 + p1, A⋆ = A0,

where φ1 and p1 are assumed to be small. Substituting this into (4.99)-(4.101) leads to the
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following leading order problem for φ0

(

K − (γ + 1)
∂φ0

∂x⋆

)

∂2φ0

∂x2
⋆

+
∂2φ0

∂y2⋆
= 0, (4.105)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂φ0

∂y⋆

∣

∣

∣

∣

y⋆=0

= −dA0

dx⋆
+

df

dx⋆
,

lim
x2
⋆+y2⋆→∞

φ0 = y5/2⋆ φ (ξ⋆) .
(4.106)

The pressure distribution is given by p0
∣

∣

y⋆=0
= −∂φ0

∂x⋆

∣

∣

∣

∣

y⋆=0

. For φ1, we need to solve the

equations

(

K − (γ + 1)
∂φ0

∂x⋆

)

∂2φ1

∂x2
⋆

− (γ + 1)
∂2φ0

∂x2
⋆

∂φ1

∂x⋆
+
∂2φ1

∂y2⋆
= 0, (4.107)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂φ1

∂y⋆

∣

∣

∣

∣

y⋆=0

= 0,

lim
x2
⋆+y2⋆→∞

φ1 = 0,
(4.108)

and the pressure is found through p1
∣

∣

y⋆=0
= −∂φ1

∂x⋆

∣

∣

∣

∣

y⋆=0

. We introduce a mesh (xi, yj)

where (i = 1, ..., NX ; j = 1, ..., NYinv). The subscript ‘inv’ refers to the inviscid mesh for
the normal coordinate y⋆. Guided by the first boundary condition (4.106), we introduce the
operator equation

Fi,1 =
−3φ0i,1 + 4φ0i,2 − φ0i,3

2∆y
+

A0i+1 − A0i−1

2∆x
− f ′

xi = 0, (4.109)

for j = 1 and all i = 2, ..., NX−1. Note that for given A0, we have used central difference
to approximate the derivative A′

0. According to the second boundary condition (4.106), we
hold the values

φ0 = y5/2φ(ξ⋆),

in the nonlinear operatorFi,j at the left (i = 1; j = 2, ..., NYinv−1), top (i = 1, ..., NX ; j =

NYinv) and right (i = NX ; j = 2, ..., NYinv − 1) edges of the mesh.
The Kármán-Guderley equation is a mixed elliptic-hyperbolic equation depending on
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the sign of
Λ = K − (γ + 1)

∂φ0

∂x⋆
. (4.110)

In order to ensure the stability of the numerical scheme, we use central or backward finite
differences schemes on x⋆ depending on the sign of Λ

∂φ0

∂x⋆
=

⎧

⎪

⎨

⎪

⎩

φ0i+1,j − φ0i−1,j

2∆x
, Λ > 0,

φ0i,j − φ0i−1,j

∆x
, Λ ≤ 0,

(4.111)

∂2φ0

∂x2
⋆

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

φ0i+1,j − 2φ0i,j + φ0i−1,j

(∆x)2
, Λ > 0,

φ0i,j − 2φ0i−1,j + φ0i−2,j

(∆x)2
, Λ ≤ 0.

(4.112)

We use central finite difference on y⋆ for the derivative

∂2φ0

∂y2⋆
=
φ0i,j+1 − 2φ0i,j + φ0i,j−1

(∆y)2
. (4.113)

Therefore, for (i = 2, ..., NX ; j = 2, ..., NYinv − 1) we express the nonlinear operator
equation for (4.105) in the form

Fi,j =

[

K − (γ + 1)

(

∂φ0

∂x⋆

)

i,j

]

(

∂2φ0

∂x2
⋆

)

i,j

+

(

∂2φ0

∂y2⋆

)

i,j

= 0, (4.114)

with the quantities in brackets given by (4.111), (4.112) and (4.113) respectively. We have
to satisfy equations (4.109) and (4.114) at each point (xi, yj) simultaneously. Following
the Newton-Raphson method, to calculate φ0i,k the operator equation can be expressed as

F k
i,j(φ0) +

∂Fi,j

∂φ0l,m

∣

∣

∣

∣

k
(

φk+1
0i,j − φk

0i,j

)

= 0, (4.115)

where k is the number of iterations. According to equations (4.109) and (4.114), for known
values of φk

0 and given A0, we compute (φ0)x and (φ0)xx and the components of matrix F .
Using the linearised Kármán-Guderley equations (4.107) and boundary condition (4.108),
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we fill the Jacobian matrix
JF =

∂F

∂φ0l,m

∣

∣

∣

∣

φ1l,m=1

, (4.116)

of size (NX − 2)(NYinv − 1) × (NX − 2)(NYinv − 1). We now need to solve the linear
system of equations

J k
F δφ

k
0 = −F k (4.117)

for the unknown quantity δφk
0 and then improve the solution at the next step φk+1

0 by setting

φk+1
0 = φk

0 + rδφk
0, (4.118)

using a relaxation parameter r. The iterative process with r = 0.8 typically needs 9-
11 iterations to get an accuracy of 10−6. Finally, for given A0 we recover the pressure
distribution p0 using the central difference

p0i = −φ0i+1,1 − φ0i−1,1

2∆x
. (4.119)

4.4.3 Viscous-inviscid interaction calculations

We finally turn to organising the interaction process. For a given A0, we compute φ0 and
the inviscid pressure pinv is found using equation (4.119). Using the same value of A0 for
the calculation of the boundary layer, we obtain the viscous pressure pvis. To organise the
‘global’ Newton iterations for the interaction code, we represent the viscous and inviscid
pressure as

pvis = L(A0), pinv = N (A0),

where L is a linear and N is a nonlinear operator. For a given value of the displacement
function A0, we can write

L = L(A0) +
∂L
∂A

∣

∣

∣

∣

A=0

δA, N = N (A0) +
∂N
∂A

∣

∣

∣

∣

A=0

δA. (4.120)

The interaction condition requires
L−N = 0.
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We thus have to solve the set of linear equations

(JL − JN ) δA = N (A0)− L(A0) (4.121)

for unknown δA and then improve the guessA0. Here, JL and JN are the Jacobian matrices
of L and N .

For given Ak
0i, let us start by calculating the viscous pressure gradient on the current

iteration k and integrate it to obtain (pvis)ki . We then numerically fill the Jacobian matrix

JL =
∂L
∂A

,

of size (NX − 3) × (NX − 3) making a perturbation of A0i by 1, step by step for i =
3, ..., NX − 1 and writing the perturbed pvis into the corresponding column. For the same
value of Ak

0i, we compute the quantities (φ0i,j)k, (pinv)ki and then fill the matrix

JN =
∂N
∂A

,

using the linear boundary value problem for φ1 given in (4.107)-(4.108).
To this aim, we let Ai1 = 0, perturb it by 1 step by step for i = 2, ..., NX − 1 and

writing the perturbed pressure in the corresponding column of the matrix JN . We compute
the operator equation at y = 0 in the same way as in (4.109), using central difference for
Λ > 0

Fi,1 =
−3φ1i,1 + 4φ1i,2 − φ1i,3

2∆y
+

A1i+1 − A1i−1

2∆x
= 0, (4.122)

and using backward differences for Λ ≤ 0

Fi,1 =
−3φ1i,1 + 4φ1i,2 − φ1i,3

2∆y
+

3A1i − 4A1i−1 + A1i−2

2∆x
= 0. (4.123)

To calculate the perturbed pressure p1, we use a 3rd order finite difference

p1i = −−2φ1i−1,1 − 3φ1i,1 + 6φ1i+1,1 − φ1i+2,1

6∆x
. (4.124)

The suggested numerical technique allows to adjust the viscous-inviscid interaction, whose
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convergence is known to be a major problem. In order to improve the stability of the
code, the formulas (4.122)-(4.124) enable us to calculate perturbations which are capable
of propagating upstream even in the supersonic case. The global iterative process used for
the solution of the interaction problem needed 6-7 iterations to get an accuracy of 10−4

using a relaxation parameter r = 0.8.

4.4.4 Results

We now present the numerical results for the interaction problem. The calculations were
performed on a mesh NX × NYinv = 101 × 41 for the upper deck and NX × NYvis =

101 × 76 for the boundary layer. We used the step sizes ∆x = ∆y = 0.2 and the Kármán
parameter was set to K = 0.2. The upstream curvature κ− was set to 1. We used the
parameter values d0 = 0.15, 0.2, 0.21 corresponding to a downstream curvature of κ+ =

1.33, 1.56 and 1.61 respectively.
In Figure 4.11, we show the pressure distribution that results from the viscous-inviscid

interaction between an accelerating potential flow and the linear boundary layer.
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Figure 4.11: Pressure distribution across the interaction region.
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The pressure distribution obtained for the transonic case is not dissimilar to the one
obtained for subsonic flow, in Figure 3.6. We can see that the pressure decreases across
the interaction region and as a result, the flow is accelerated. As parameter d0 increases,
which corresponds to the downstream curvature κ+ increasing as well, we observe a faster
decrease in pressure. The same behaviour was observed in subsonic flows. The flow thus
experiences a more intense acceleration, as we can confirm on Figure 4.12, where the skin
friction distribution across the interaction region is plotted for the same values of d0.

This was the aim of this chapter. We showed that by calibrating carefully the parameters
κ±, we generate a singular pressure gradient capable of producing an intense acceleration
of the flow within the interaction region. This has the effect of both delaying transition to
turbulence as well as avoiding separation of the flow.
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Figure 4.12: Skin friction distribution across the interaction region.
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Chapter 5

Conclusion

Despite the progress done in recent years in the field of laminar-turbulent transition, many
aspects are still to be studied, in particular the receptivity process. The first chapter of this
thesis was devoted to that subject. We investigated compressible flow over a swept wing
and started with linear stability analysis. We derived the inviscid stability equations, and
subsequently calculated numerically the dispersion relation for inviscid stationary cross-
flow vortices. This showed that for some value of the spanwise wavenumber β, we observe
growing instability vortices. The receptivity mechanism introduced to generate and anal-
yse these vortices was the addition of a spanwise periodic surface roughness, situated at
some distance L from the leading edge. The first important result was that the wavenumber
of the perturbations is twice the wavenumber of the surface roughness, and is due to non-
linearity in the boundary conditions. A second important result is that in order to observe
the inviscid instability, we need to assume that the perturbations scale like the square of the
roughness size.

The receptivity analysis that ensued led to the use of the Fredholm Alternative, and a
solvability condition was derived, which enabled us to calculate the initial amplitude of the
disturbance. The growing vortex propagating downstream of the roughness was found to
take the form

v′(x, y, z) = K(β)

⎡

⎣

∞
∫

0

e−σ0x [g(x)]2 dx

⎤

⎦ v̂0(y) e
iβz+σ0x+ · · · , as x → ∞. (5.1)
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This equation emphasises the dependance of the amplitude of the crossflow vortex on the
receptivity coefficient K(β), a global parameter independent of the roughness shape, and
on the Laplace transform of the roughness shape.

In order to apply the no-slip conditions, viscosity should be restored to the problem,
which can only be done if we impose some restrictions on the roughness size. This led
to the introduction of a viscous sublayer, where we derived an analytical formula for the
normal velocity flux at the edge of the boundary layer

lim
y⋆→∞

v′ = −3Ai′(0)

2π
eiβz⋆

+∞
∫

−∞

eiαx⋆ [i (λ1α + λ3β)]
2/3 ḡ(α)dα. (5.2)

This condition can be used as a correction to the impermeability condition, and we pre-
sented a comparison between the two approaches.

The remaining chapters of the thesis concentrated on the viscous-inviscid interaction
occurring in the vicinity of surface discontinuities. It was observed that discontinuities and
singularities in the flow lead to singular pressure gradients in the inviscid part of the flow.
These usually take the form

dp

dx
= κ(−x)λ, as x → 0−.

This singularity should be smoothed by the introduction of an interaction region, which
takes the standard triple deck form.

We focused on the special case when λ = −1/3, which corresponds to the demarcation
between decay and growth of the perturbations in the interaction region. This specific
pressure gradient arises in the study of the transonic flow past a discontinuity in curvature,
where it is further assumed that the sonic point coincides with the point of discontinuity.
This unusual singularity leads to the introduction of leading order logarithmic terms in the
asymptotic expansion of the stream function upstream of the interaction region.

To get a better understanding of the interaction process, we first presented the problem
in the context of subsonic flow. This required us to fix a specific body shape in order to
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generate the correct pressure gradient. The simplification in the analysis came from the
fact that both the viscous and inviscid part of the interaction region are governed by linear
equations, thus allowing for analytical solutions. The key result of the analysis of the flow
upstream of the triple deck was that the leading order skin friction on the wall is given by
the formula

τw =
29/4χ3/4

37/4Γ(2/3)3/4
, (5.3)

with χ being related to the curvature κ through χ = −3−3/210 κ. This indicates that the
solution only exists for negative curvatures, a condition that can be relaxed if |κ| ≪ 1. We
proceeded to derive appropriate scalings for the triple deck, and found that its longitudi-
nal extent σ satisfied a transcendental equation. In particular, we observed that σ appears
smaller than in the classical triple deck approximation. The final formulation of the inter-
action problem consisted of linear equations both in the lower viscous deck and the upper
inviscid deck, which allowed us to construct analytical solutions, expressed in terms of
inverse Fourier transforms. These were performed numerically and were found to match
very well with the upstream asymptotics.

We then turned back to the original problem, the study of transonic flow in the vicinity
of a surface discontinuity. The investigation of the upstream inviscid flow revealed a variety
of regimes, which are brought to light through the phase plane analysis. Two noteworthy
regimes are the smooth acceleration of subsonic flow to supersonic flow, and the smooth
deceleration of supersonic flow to subsonic flow. These only occur for particular values
of the curvatures upstream and downstream of the discontinuity. Further increasing their
respective values leads to the generation of a Prandtl-Meyer expansion fan or shockwaves.

The analysis of the flow in the upstream boundary layer was similar to the one carried
out for subsonic flow, up to some constants. The main difference came from the calculation
of the scaling of the triple deck region: we have to account for the fact that pressure per-
turbations in transonic flows are bigger than their subsonic counterpart. The formulation
of the problem in the viscous sublayer of the interaction region turned out to be the same
as the subsonic one. However, the inviscid upper deck is now governed by the nonlinear
Kármán-Guderley equations. Due to the non-linearity of the equations in the upper deck,
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the interaction problem was solved numerically. The pressure distribution resulting from
the transonic viscous-inviscid interaction is similar to the one obtained for subsonic flows.
As we increase the curvature downstream, the pressure decreases which results in the flow
acceleration. Furthermore, the skin friction distribution across the interaction region was
shown to increase, which is what we wanted to observe.

Further work

One of the directions in which to extend the results we presented in the crossflow recep-
tivity analysis would be to look at a wider range of velocity profiles and to higher Mach
number regimes. In particular, it would be of interest to investigate stability and receptivity
characteristics for an incoming transonic flow. So far, only some aspects of the stability
analysis have been studied (Mack 1979, 1989) and the receptivity theory remains to be
developed.

The last two chapters of this thesis form part of a large chain of effort in understanding
the viscous-inviscid interaction in transonic flow from a theoretical point of view, with the
main tool being the use of Triple Deck Theory. The starting point was the work of Buldakov
& Ruban (2002), who investigated the sonic point on a smooth body surface. Then came
the work of Yumashev (2012), who extended this to small curvature discontinuities of the
order

Re−1/6 ≪ κ± ≪ 1

log Re
.

Our work was yet another extension, this time to larger curvature discontinuities and favourable
pressure gradients. As of yet, no results have been obtained in the case of an adverse pres-
sure gradient, with the curvature κ± being of the order

κ± ∼ 1

logRe
.

This is a difficult task from an asymptotic point of view and should be the subject of further
research.
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Appendix A

Asymptotic properties of stability
equation

When y ≫ 1, functions U,W and ρb tend to their values at the edge of the boundary layer

U(y) → Ue, ρb(y) → 1 and W (y) → We,

which are found by solving the leading order problem. Recalling that f = σU + iβW , we
estimate

ρbf
2 ∼ σ2U2

e − β2W 2
e + 2iσβUeWe as y → ∞.

The middle term in equation (2.31) contains derivatives of f and ρb, which all vanish at
infinity, and are thus set to zero. This gives us the following approximation for large y

p̄ ′′ − λ2p̄ = 0, (A.1)

where
λ2 = β2(1−M2

∞W 2
e )− σ2(1−M2

∞U2
e ) + 2M2

∞iσUeWe. (A.2)

The solution to this equation is

p̄(y; σ) = A exp(λy) +B exp(−λy). (A.3)
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In the general case, λ is complex so that v̄ is a combination of exponentially growing/decaying
sinusoids. The boundary condition (2.32) requires us to chose the root whose real part is
negative, so that p̄ decays at infinity.

Suppose now that y ≪ 1. We can estimate

U(y) ∼ W (y) ∼ Cy + · · · as y → 0, (A.4)

where C is a constant. Expanding the log term, equation (2.31) can be rewritten as

p̄′′ −
(

2
f ′

f
+
ρ′b
ρb

)

p̄′ −
(

M2
∞f 2ρb + β2 − σ2

)

p̄ = 0, (A.5)

and using estimates (A.4) and ignoring density variations, it reduces to

p̄′′ − 2

y
p̄′ +

(

σ2 − β2
)

p̄ = 0.

Let us assume that
p̄ = ayα + · · · , as y → 0,

with α ≥ 0. Substituting this in equation (A.5) leads to α = 0 or α = 3, so that the
first term in the asymptotic expansion for small y is either a constant or proportional to y3.
According to boundary condition (2.32), we need p̄ (0) = 0, so this fixes

p̄ = ay3 + · · · as y → 0.

This is also consistent with p̄ ′ (0) = 0, and the numerical results in the next section confirm
this behaviour.
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Appendix B

An example of the adjoint and Fredholm
Alternative method

To motivate the technique used in the Section 2.3, we turn to the following model problem.

Find the solution to the problem

φ′′ + λ2φ = 0, φ(0) = 0, φ(1) = 0.

The general solution is given by

φ = A cos(λy) +B sin(λy).

Applying the first boundary condition leads to A = 0. In order to apply the second bound-
ary condition and not get a trivial solution, we see that we should choose λ = π, leading
to

φ = B sin(πy).

The amplitude B remains arbitrary. Let’s now solve the problem

φ′′ + λ2φ = 0, φ(0) = 1, φ(1) = 0.
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There is an exact solution to this problem given by

φ(y;λ) = cos(λy)− sec(λ) sin(λy).

This is analytic everywhere in the y plane, but exhibits a singularity in the complex σ plane
at λ = π. We find that

φ(y) = − 1

λ− π
sin(λy) + · · · as λ→ π.

with λ = π being the eigenvalue of the homogeneous problem.

Now, we can get to the same result using a different technique, which can be used when
we do not have an exact analytical expression for φ(y;λ). The reason why we want to do
that is because we are interested in calculating an integral of the form

φ′(x, y) =

a+i∞
∫

a−i∞

eλx φ(y;λ)dλ. (B.1)

This integral is evaluated using residues, so that the only thing we need to know is the
behaviour of φ around its singularities. We thus assume that φ(y;λ) is singular at λ = λ0,
with λ0 to be found, and we write

φ(y;λ) =
1

λ− λ0
φ0(y) + φ1(y) + · · · as λ→ λ0. (B.2)

This expansion is substituted in the original equation and in the boundary conditions,
leading to

φ′′
0 + λ20φ0 + (λ− λ0)(φ

′′
1 + λ20φ1 + 2λ0φ0) + · · · = 0, (B.3)

where the dots represent terms of order (λ− λ0)
2. The boundary conditions are then

φ0(0) = φ0(1) = 0, φ1(0) = 1,φ1(1) = 0. (B.4)

The problem for φ0 reduces to the homogeneous one. The solution to the first equation
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is then given by
φ0(y) = A cos(λ0y) +B sin(λ0y).

Applying the boundary conditions, we find that A = 0, and we should chose λ0 = π. The
amplitude B of the solution remains undetermined at this stage.

The second equation is

φ′′
1 + π2φ1 = −2πB sin(πy) (B.5)

subject to φ1(0) = 1,φ1(1) = 0. It turns out that this problem has a solution only for a
specific value of B. We use the adjoint method to find B in the general case. We multiply
both sides of the equation by some function ξ(y) and integrate from 0 to 1. The first term
on the right hand side is then integrated by parts twice, leading to the equation

φ′(1)ξ(1)− φ′(0)ξ(0)− φ(1)ξ′(1) + φ(0)ξ′(0)+

1
∫

0

φ(y)
(

ξ′′ + π2ξ
)

dy = −2Bπ

1
∫

0

sin(πy)ξ(y)dy. (B.6)

We chose the function ξ(y) to satisfy the equation ξ′′ + π2ξ = 0 with ξ(0) = ξ(1) = 0.
Thus, equation (B.6) becomes

φ(0)ξ′(0) = −2πB

1
∫

0

sin(πy)ξ(y)dy. (B.7)

We can then write
B = − φ(0)ξ′(0)

2π
∫ 1

0 sin(πy)ξ(y)dy
. (B.8)

In this special case, we see that ξ(y) = B sin(πy), and substituting this gives B = −1.

Hence,
φ(y;λ) = − 1

λ− π
sin(λy) + · · · as λ→ π

as before.


