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Abstract
Asthma is a complex disorder characterised by infla
mmation of airway and symptoms of wheeze and 
shortness of breath. Allergic asthma, atopic dermatitis 
and allergic rhinitis are immunoglobulin E (IgE) related 
diseases. Current therapies targeting asthma rely on 
non-specific medication to control airway inflammation 
and prevent symptoms. Severe asthma remains difficult 
to treat. Genetic and genomic approaches of asthma 

and IgE identified many novel loci underling the disease 
pathophysiology. Recent epigenetic approaches also 
revealed the insights of DNA methylation and chromatin 
modification on histones in asthma and IgE. More than 
30 microRNAs have been identified to have regulating 
roles in asthma. Understanding the pathways of the 
novel genetic loci and epigenetic elements in asthma 
and IgE will provide new therapeutic means for clinical 
management of the disease in future.
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Core tip: Asthma is a complex disorder characterised by 
inflammation of airway. Allergic asthma is an immuno
globulin E (IgE) related disease. Severe asthma remains 
difficult to treat. Genetic and genomic approaches of 
asthma and IgE identified many novel loci underling the 
disease pathophysiology. Recent epigenetic approaches 
also revealed the insights of DNA methylation and 
chromatin modification on histones in asthma and IgE. 
More than 30 microRNAs have been identified to have 
regulation roles in asthma. Understanding the pathways 
of the novel genetic loci and epigenetic elements in 
asthma and IgE will provide new therapeutic means for 
clinical management of the disease in future.
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INTRODUCTION
Asthma runs strongly in families and has a heritability 
of up to 60%[1]. Allergic asthma, atopic dermatitis and 
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allergic rhinitis are immunoglobulin E (IgE) related 
diseases. The TH2 inflammation in airway is a pre­
dominate feature of asthma. A sharp increase in the 
prevalence of asthma was observed in many countries in 
recent years and a report from the International Study 
of Asthma and Allergies in Childhood found that the 
prevalence of symptoms of asthma in children differed 
more than 20-fold between study centres around the 
world[2]. Genetic and environmental factors contribute to 
the prevalence of the disease. The current management 
of asthma relies on non-specific medication to control 
airway inflammation and prevent symptoms. Severe 
asthma remains difficult to treat. 

The genetic approaches to asthma include candidate 
gene studies, positional cloning studies and genome-
wide association studies (GWASs)[3]. The gene FCERB 
on chromosome 11 encoding high-affinity IgE receptor 
(FcεRI) β unit identified almost three decades ago was 
one of the early mile stones for genetic approaches of 
asthma[4]. It then turned out the genetic approaches 
to identify genes underlie complicated diseases were 
confined by many factors. Genetic associations to 
asthma for certain locus may be found in one popula­
tion but may not always be replicated in the other 
populations. GWAS is powerful approach to overcome 
the limitations of candidate gene and positional cloning 
studies. In a GWAS approach the relationship between 
disease and allele frequencies is examined across a large 
number of markers spaced in the genome in a big case 
and control population, robust genetic effects that have 
substantial population risk can be identified.

Genetic approaches of asthma and IgE have brought 
remarkable results, but only a small component of 
the overall genetic contribution to asthma so far has 
been identified. The missing heritability may be due 
to rare highly penetrant mutations, multiple small 
effects, or epigenetic modifications of gene function and 
other regulating elements for the genome. Epigenetic 
regulation modifies gene expression that is not caused by 
changes in the DNA sequence but by DNA methylation, 
histone modification and other mechanisms. DNA 
methylation involves the addition of a methyl group to 
the DNA nucleotide cytosine and adenine which lead to 
gene silencing. Histones are highly alkaline proteins in 
eukaryotic cell nuclei that package and order the DNA 
into nucleosome. The major histone modifications are 
methylation, acetylation, phosphorylation, ubiquitination 
and sumoylation. Such modifications affect range from 
gene activation to gene silencing.

This review discusses the recent discoveries from 
genetic and epigenetic approaches to asthma and also 
summarizes the implications of specific loci or regulating 
elements for therapeutic intervention for asthma.

Genetic approaches
More than one hundred genes have been found to have 
associations with asthma by candidate gene approaches. 
The candidate gene approach cannot identify novel path­
ways[5]. Positional cloning is another genetic approach 

that identifies disease genes by progressive dissection 
of linkage regions that are consistently co-inherited with 
the disease. ADAM33[6], PHF11[7], DPP10[8], GPRA[9], 
HLA-G[10], CYFIP2[11], IRK3[12], OPN3/CHML[13] were 
discovered as asthma genes by positional cloning. Most 
associations identified by candidate gene studies and 
positional cloning studies were moderate. GWAS is more 
efficient and can be performed to investigate the entire 
genome simultaneously. It provides the opportunity to 
identify novel mechanisms of disease pathogenesis. 
The first GWAS study for asthma was carried out in 
the GABRIEL Consortium. The consortium consisted of 
collaborations among 35 partners across the European 
Community. In 2007, the consortium reported SNPs in 
the chromosome 17q12-q21 region to be significantly (P 
< 10-12) associated with childhood asthma and asthma 
associated SNPs were associated with the expression 
levels of the ORM1-like 3 Saccharomyces cerevisiae 
(ORMDL3) gene[14]. Then a large consortium GWAS 
study also confirmed ORMDL3 as an important asthma 
suspected gene. The consortium also identified IL-18R1, 
HLA-DRBI, HLA-DQ, IL-33, SMAD3, IL-2RB, SLC22A5, 
IL-13 and RORA as asthma or IgE suspected genes[15]. 
To date, more than ten GWASs on asthma or asthma-
relevant traits have been published. Serum YKL-40 
levels were shown to elevate in patients with asthma 
and were correlated with asthma severity, thickening of 
the subepithelial basement membrane in airway, and 
pulmonary function[16]. Polymorphisms of Ch13LI were 
associated YKL-40 level in 753 Hutterites in a GWAS study 
for asthma[17]. Polymorphisms of PDE4D, TLE4, ADRA1B, 
PRNP, DPP10 and GNAI3 were found to associate with 
asthma in GWASs studies of different populations[18-20]. 
Polymorphisms of DENND1B and ORMDL3 were also 
found to associate with asthma in a European American 
population GWAS study[21]. In another European GWAS 
study, RAD50, IL-13, HLA-DR-DQ, LRP1B, SNX10, 
CA10, KCNJ2 were shown associations with asthma[22]. 
In the EVE Consortium, ORMDL3, IL-1RL1, TSLP, RTP2, 
IL-33, PYHIN1 were found to associate with asthma[23]. 
Genome-wide association study identified IL-12A, IL-
12RB1, STAT4, and IRF2 genes associated with lung 
function in asthmatic patients[24]. ORMDL3/GSDMB, IL-
1RL1/IL-18R1 loci were also found to associate with 
severe asthma[25]. In a Danish GWAS study for asthma 
exacerbations in childhood, GSDMB, IL-33, RAD50 
and IL-1RL1 and CDHR3 showed association with 
asthma[26]. CTNNA3 and SEMA3D also were associated 
asthma exacerbation in GWASs studies in two paediatric 
clinical trials in the United States[27]. IL-4R was found 
increased in genome-wide expression profiling in allergic 
asthma[28]. Genome-wide differential gene expression 
in response to dust mite allergen also identified IL-5, 
IL-9 and PRG2 to interact with environmental dust mite 
to increase severe asthma exacerbations in children[29]. 
In a Japanese GWAS study, TSLP-WDR36 and USP38-
GAB1 loci were found to associate with asthma[30]. Lung 
function, particularly for forced expiratory volume in the 
first second [FEV(1)] and its ratio to forced vital capacity 
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[FEV(1)/FVC], was studied in meta-analyses of GWAS 
studies. It identified HHIP, GPR126, ADAM19, AGER-
PPT2, FAM13A, PTCH1, PID1, HTR4, INTS12-GSTCD-
NPNT, THSD4 as suspected genes for lung function 
change[31,32]. 

Epigenetic approaches 
Epigenetic effects are other possible causes of asthma. 
The patterns of gene expression become stably re­
stricted during development, majorly through methy­
lation of CpG sequences and gene silencing. Sex, age, 
environmental factors and genetic polymorphisms have 
all been strongly associated with altered methylation 
at selected loci. To asthma, allergens, microbes, 
tobacco smoke, diet and metabolism, fish oil, obesity 
and stress are important environmental factors that 
influence epigenetic effects in human cells[33]. CD19 (+) 
B lymphocytes methylation patterns and expression 
levels showed difference in the locus CYP26A1 in house 
dust mite allergic patients[34]. Children growing up in a 
traditional farming environment had lower risk of allergic 
respiratory diseases. Demethylation of the FOXP3 
promoter was association with higher number of FOXP3 
cells in cord blood mononuclear cells in an extensive 
farming exposure environment[35]. Hypomethylation 
of ORMDL1 and STAT6 and hypermethylation of RAD 
and IL-13 were also found from farm children[36]. DNA 
methylation in the CD14 promoter was also significantly 
less in farm mothers[37]. PBMC s from obese asthmatic 
children had lower levels of promoter methylation of 
the CCL5, IL-2RA and TBX21 and higher level promoter 
methylation of TGFB1 and FCER2[38]. Recent epigenome-
wide approach identified 36 loci that had association 
of serum IgE level[39]. Among them, DNA methylation 
events have been found in cytokine signalling genes 
IL-4, IL-5R, transcription factor genes ZNF22, RB1, 
GATA1, KLF1, transmembrane or transporter genes 
SLC25A33, SLC17A4, SLC43A3, TMEM52B, TMEM41A, 
eosinophil associated genes PRG2 and PRG3, phospho­
lipid metabolism genes LPCAT2, CLC and MEM86B, and 
metabolic enzyme genes L2HGDH, CEL, KEL, PDE6H, 
EFNA3, ALDH3B2.

Noncoding RNAs emerged as novel molecules that are 
important in lung diseases in recent years[40]. Noncoding 
RNAs include housekeeping RNAs, long noncoding RNAs 
and small noncoding RNAs. Micro RNAs (miRNAs) are 
the most studied small noncoding RNAs. miRNAs are 
about 18-25 nucleotide long noncoding RNAs that silence 
target mRNA. More than 3000 human miRNA genes 
have been identified so far. There is a significant number 
miRNAs that are still uncharacterized[39]. miRNAs induce 
messenger RNA (mRNA) degradation and then inhibit 
the translation. miRNAs can target 60% of mRNAs and 
control the signally pathways in most cell types[41]. More 
than 30 miRNAs have been found to associate with 
asthma[42]. These miRNAs regulate epithelium cells, 
airway smooth muscle cells and TH2 response.

To date, it is not reality to assume that genetic 
targets and regulating elements for asthma identified 

by genetic and epigenetic approaches can be accessed 
either by biologics (antibodies and proteins) or small 
molecules (drugs), but several genes regulate in path­
ways from epithelial damage to the adaptive immune 
system in asthma, providing a new means for effective 
therapies. This review focuses on the novel genes 
expressing on human airway epithelium cells and cyto­
kine networks that play important roles in asthma 
pathophysiology. It also summarizes the miRNAs that 
were found to regulating asthma pathogenesis.

THE POTENTIAL THERAPEUTIC TARGETS 
FOR ASTHMA IN EPITHELIAL CELLS
Human airway epithelium is now believed to be central 
to the pathogenesis of asthma[43,44]. Several asthma 
candidate genes identified by genetic and epigenetic 
approaches may modify the inflammatory response to 
epithelial damage or regulate homeostatic and healing 
pathways. The following novel genes identified by 
GWASs express in the airway epithelium and under­
standing their pathways in inflammation response will 
provide unique opportunities to develop new therapeutic 
means for asthma (Table 1).

ORMDL3 
The association signals on human chromosome 17 with 
asthma are maximal within an island of linkage disequi­
librium that contains ORMDL3, GSDMA and GSDMB. 
Now the associations have been found in many GWAS 
studies. The loci were not only associated childhood 
asthma, but also associated with severe asthma or 
asthma exacerbations. ORMDL3 protein is found in the 
membranes of the endoplasmic reticulum (ER). ER stress 
is one of important stage linked to cellular responses 
to inflammation[45]. ORMDL3 has been found to be up-
regulated in transcriptional activator XBP-1(S)[46]. ORM 
gene expression regulates sphingolipid metabolism[47]. 
Ceramide and sphingosine-1-phosphate (S1P) are two 
important bioactive signalling sphingolipids. They mediate 
cell survival, proliferation, apoptosis, differentiation and 
cell-cycle arrest[48]. Clinical observation showed that they 
were increased in asthmatic airways[49]. Recent study 
showed Ormdl3 may regulate ceramide level in epithelial 
cells and then regulate the inflammation response[50]. 
Transfection of ORMDL3 in human bronchial epithelial 
cells in vitro induced expression of many chemokines 
and selectively activated activating transcription factor 6, 
suggest an ER UPR pathway through which ORMDL3 may 
be linked to asthma[51]. ORMDL3 also regulates eosinophil 
trafficking, recruitment and degranulation[52], ORMDL3 
was shown to modify SERCA in the ER and induce 
inflammation[53]. A recent study showed in 17q21 risk 
allele carrier children their mononuclear cells significantly 
increased IL-17 secretion[54]. ORMDL3 may influence 
multiple pathways in the ER that mediate inflammation 
during asthma and regulating ORMDL3 may have the 
potential therapeutic effects on inflammation disease 
such as asthma. 
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of major histocompatibility complex class Ⅱ and the 
production of a variety of chemokines[60]. It promotes 
TH2 cytokine-associated inflammation by directly 
promoting the effector functions of CD4+ TH2 cells[61]. 

SMAD3
SMAD3 encodes SMAD (mothers against decapen­
taplegic homolog) family member 3 and has a role in 
modifying tumour growth[64,65] through the transforming 
growth factor-beta (TGFb) pathway[66]. SMAD3 is 
concentrated in the nuclei of bronchial epithelial cells 
and macrophages and functions as a transcriptional 
modulator activated by TGFb. The family members 
of TGFb maintain of immune function in lung[67] and 
the TGFb signalling pathways can be activated after 
allergen challenge in mild asthma[68]. A mouse knockout 
of Smad3 showed accelerated wound healing and an 
impaired local inflammatory response[69], even though 
mice lacking Smad3 may exhibit increased baseline 
levels of pro-inflammatory cytokines in their lungs[70]. 
Smad3 signalling is required for myogenic differentiation 
of myoblasts[71], this may be linked a role in airway 
smooth muscle hypertrophy. 

DPP10
DPP10 was the only gene that was identified both by 
positional cloning and GWAS studies. DPP10 genetic 
variants could affect lung function decline in aging and 
also associate aspirin-exacerbated respiratory disease. 
The DPP proteins have a b-propeller that regulates 
substrate access to an α/b hydrolase catalytic domain. 
Unlike other DPP family members, DPP10 lack of 
enzymatic activity is unable to cleave terminal dipeptides 
from asthma-related cytokines and chemokines[8]. In 
neurones, DPP10 forms part of the A-type K+ (Kv4) ion 
channel complex and DPP10 variants accelerate channel 
gating kinetics. It is not clear what exact roles of DPP10 
in the airway epithelial cells, the future research will 
focus on how DPP10 regulate inflammation response in 
epithelial cells in asthma by applying animal models and 
cellular models.

Cadherin-related family member 3
Cadherin-related family member 3 (CDHR3) is a 
transmembrane protein with six extracellular cadherin 

GSDMB and GSDMA
The human chromosome 17 locus of asthma covers a 
genomic area of approximately 200Kb. ORMDL3 and 
GSDMB reside in one island of linkage disequilibrium that 
contains all the maximally associated SNPs. Independent 
associations are also detectable telomerically near 
the GSDMA which may make contributions to asthma 
susceptibility as well[14]. The GSDM family genes were 
first identified in mouse. They are expressed majorly 
in the gastrointestinal tract and expressed a lower 
level in the skin. The mouse syntenic homology areas 
including mouse Gsdm1, Gsdm2 and Gsdm3 are on 
mouse chromosome 11. Mouse Gsdm proteins contain 
DFNA5 domain of Pfam domains. They are expressed 
predominantly in the gastrointestinal tract and in the 
skin[55] in a highly tissue-specific manner[56]. In humans 
GSDMA and GSDMB are expressed in the gastro­
intestinal and bronchial epithelium. Members of the gene 
family may have a role in regulation of apoptosis[57]. 
GSDMA was shown to mediate cell-growth inhibition. 
GSDMB is expressed in stem cell-resided region and has 
a potential role in stem cell proliferation. The GSDMB-
driven HSVtk expression vector had a therapeutic effect 
on the occult peritoneal dissemination (PD) model 
mice. This strategy can potentially be used to treat GC 
patients with PD in clinical[58]. The specific expression of 
GSDMB and GSDMA in epithelium may also service to 
therapeutic means to asthma in future. 

Thymic stromal lymphopoietin
Thymic stromal lymphopoietin (TSLP gene) was found 
to associate with asthma by GWAS and SNPs in TSLP 
may have asthma risk through up-regulating its mRNA 
expression or the protein secretion[59]. It expresses 
mainly by epithelial cells at barrier surfaces (skin, gut 
and lung)[60,61]. TSLP plays a critical role in orchestrating 
the inflammatory response and a critical factor in airway 
remodelling in asthma. Airway remodelling is a repair 
process that happens after injury resulting in airway 
hyper-responsiveness in asthma. TSLP induces cellular 
senescence during airway remodelling in asthma[62,63]. 
Myeloid dendritic cells (DCs) are the cell populations with 
the highest known co-expression of the TSLP receptor 
and its associated subunit IL-7R. Treatment of human 
DCs with TSLP induces improved survival, up-regulation 
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Table 1  The potential genetic therapeutic targets in airway epithelium for asthma

Genes Chromosome location Phenotypes Identifying methods Possible pathways related to asthma Ref.

DPP10   2 Asthma GWAS/PC Unknown; Kv4 ion channel complex [8,20]
TSLP   5 Asthma GWAS Airway remodelling; promoting TH2 inflammation [23,30]
CDHR3   7 Asthma GWAS Epithelial polarity; cells interaction and differentiation [26]
SEMA3D   7 Asthma  GWAS Airway remodelling; angiogenesis [27]
SMAD3 15 Asthma GWAS Transcriptional modulator; TGFb pathway [15]
ORMDL3 17 Asthma GWAS Sphingolipid metabolism, ER stress response [14,15,21,23,25,26]
GSDMB 17 Asthma  GWAS Epithelium cell growth [14,15,21,23,25,26]
GSDMA 17 Asthma GWAS Cell proliferation [14,15,21,23,25,26]

PC: Positional cloning; GWAS: Genome-wide association study; TGFb: Transforming growth factor-beta; ER: Endoplasmic reticulum.
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domains. The biological function of CDHR3 remains. 
It belongs to the cadherin family of transmembrane 
proteins that have function roles in homologous cell 
adhesion. It is important for epithelial polarity, cell-
cell interaction and differentiation[72]. Other members 
including E-cadherin of the family have been associated 
with asthma[73]. CDHR3 Protein structure modelling 
showed that the Cys529Tyr risk-associated alteration 
was located at the interface between two D5 and D6 
membrane-proximal cadherin domains. The variant 
residue may interfere with interdomain stabilization, 
folding or conformation[26]. 

Semaphorin-3D
Semaphorin-3D (SEMA3D) is a member of the sema­
phorin class 3 signalling molecules. SEMA3A and 
SEMA3E are secreted transmembrane proteins involved 
in immune response and the recruitment of CD4+ and 
CD8+ T cells[74]. SEMA3D is responsible for endothelial 
cell migration[75] and has been shown to be essential 
for healthy angiogenesis during development[76]. Angio­
genesis is also a feature of airway remodelling. It is 
possible that SEMA3D plays a role in airway remodelling 
from plausible mechanisms. It directs angiogenesis and 
airway epithelium migration, resulting in a reduction of 
epithelial cells. Like other semaphorins, it has effects 
on immune cell recruitment during the inflammatory 
response, which leads to remodelling[27]. 

THE POTENTIAL THERAPEUTIC TARGETS 
IN CYTOKINE NETWORKS FOR ASTHMA
Genetic and epigenetic approaches of asthma and IgE 
have revealed many cytokines and cytokine receptors 
that regulate the inflammation in the airways. These 
cytokines and cytokine networks play critical roles for 

inflammation response in epithelium cells and immune 
cells. Specific targeting the cytokines and the networks 
may provide new therapeutic means to asthma. The 
cytokines identified by GWAS and epigenetic appro­
aches are discussed here (Table 2).

IL-33, IL-18R1 and IL-1RL1
IL-33, IL-18 and IL-1 belong to the IL-1 family of cytokines 
that alter host responses to inflammatory and infectious 
challenges. They employ their functions through a toll-
like receptor-IL-1 receptor (TLR-IL-1R) superfamily. IL-1 
receptor signalling activates transcription factor nuclear 
factor kappa-B (NF-κB), mitogen-activated protein (MAP) 
kinases p38, JNK, and ERK1/2[77]. 

IL-33 was originally identified as a nuclear factor 
in vascular endothelial cells[78], and was subsequently 
detected in airway epithelial cells[79,80]. The activities 
of IL-33 as a nuclear factor remain unclear[81]. IL-33 
is constitutively expressed and has function as an 
endogenous danger signal to alert the immune system 
after endothelial or epithelial cell damage during trauma 
or infection stresses[82]. A mouse IL-33 gene knockout 
has shown IL-33 works as a crucial amplifier of innate 
immunity[83]. IL-33 expression is induced by a range of 
environmental and endogenous triggers, suggesting an 
essential role during infection, inflammation and tissue 
damage[84]. IL-33 activates a herterodimeric receptor 
complex containing IL-1RL1 (ST2) and IL-1 receptor 
accessory protein (IL-1RAP), leading to activation of NF-
κB and MAP kinases and then drives production of TH2 
cytokines IL-4, IL-5, and IL-13[79]. 

The IL-18R1 gene is located on chromosome 2q. 
It form a gene cluster along with four other members 
of the interleukin 1 receptor family [IL-1R2, IL-1R1, 
IL-RL2 (IL-1Rrp2), and IL-1RL1 (T1/ST2)] on the loci. 
IL-18R1 and IL-1RL1 flank each other with the same 
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Table 2  The genetic and epigenetic loci modify cytokines and receptors of asthma

Genes Chromosome location Phenotypes methods Identifying and functions in asthma Possible pathways Ref.

IL-18R1   2 Asthma GWAS Activation of NF-kB, inducing TH-associated 
cytokines

[15,25]

IL-1RL1   2 Asthma, Eos GWAS Receptor for IL-33 [15,23,94]
IL-5RA   3 IgE Epigenetics TH2 inflammation, regulating eosinophils [39] 
IL-12A   3 Lung function GWAS TH1 regulation, activating IFN-γ [24]
IL-4   5 IgE Epigenetics TH2 inflammation, promoting IgE class 

switching
[39]

IL-13   5 Asthma, IgE  GWAS/epigenetics TH2 inflammation, promoting IgE class 
switching

[15,22]

IL-5   5 Asthma GWAS/epigenetics TH2 inflammation, regulating eosinophils [29,36,94] 
IL-9   5 Asthma Expression profiling Stimulates cell proliferation and prevents 

apoptosis 
[29] 

IL-33   9 Asthma GWAS Inducing TH-associated cytokines [15,23,26,94]
IL-2RA 10 Asthma Epigenetics PI3K-Akt signalling pathway and Akt 

signalling
[38]

IL-4R 16 Asthma Expression profiling TH2 inflammation [28]
IL-12RB1 19 Lung function GWAS TH1 regulation, activating IFN-γ [24]
IL-2RB 22 Asthma GWAS Endocytosis and transducer mitogenic 

signals
[15]

GWAS: Genome-wide association study; IL: Interleukin; IgE: Immunoglobulin E; IFN-γ: Interferon-γ; NF-κB: Nuclear factor kappa-B.
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orientation of translation. They are within the same 
island of linkage disequilibrium and it has not yet been 
possible to assign the genetic effects at this locus to one 
gene or the other. It is possible that both genes may 
be co-regulated. IL-1RLI encodes the receptor of IL-33. 
IL-18 is closely related to IL-33[79] and synergizes with 
IL-12 to induce interferon gamma and to promote TH1 
responses[85]. These loci therefore identify a pathway 
for the communication of epithelial damage to the 
adaptive immune system and a potential switch point 
for choosing between TH1 or TH2 responses.

IL-2RB
IL-2RB encodes the beta receptor of IL-2. IL-2 is 
secreted by antigen-activated T cells. It controls the 
survival and proliferation of regulatory T cells[86] and 
plays a prominent role in the maintenance of natural 
immunologic self-tolerance[87]. The IL-2 receptor has α 
(CD25), β (CD122) and γ chains[86]. The β chain (IL-2RB) 
is a signal transduction element that is also present in 
the IL-15 receptor. It belongs to the type Ⅰ cytokine 
receptor family and has no intrinsic kinase activity[88]. The 
receptor regulates T cell-mediated immune responses 
through endocytosis, whereby ectodomain shedding 
of IL-2Rβ generates an intracellular fragment[89]. In a 
mouse model of asthma, local inhibition of Il2rb restored 
an immunosuppressive cytokine milieu that ameliorated 
lung inflammation[90].

IL-4 and IL-4R 
IL-4 is adjacent to RAD50 on chromosome 5. The locus 
is exceptional in showing strong association to IgE in 
addition to doctor-diagnosed asthma[15]. The 3’ end of 
RAD50 has several enhancer elements and conserved 
non-coding sequences that act as a locus control region 
for IL-4 and IL-13[91]. IL-4 is one of the key TH2 cytokines 
and immunoglobulin class switching in B cells. IL-4 
methylation was associated with IgE production[39]. IL-
4R is the best candidate allergic biomarker and shows to 
have association with allergic asthma in a genome-wide 
expression profiling study[28]. A soluble form of the IL-4 
receptor can block B cell-binding of IL-4 or other IL-4R 
antagonists[92].

IL-5 and IL-5RA
IL-5 encodes a growth and differentiation factor for B 
cells. IL-5 also controls the activation and localization of 
eosinophils[93]. A SNP (rs4143832) located near IL-5 on 
5q31 showed to have association with blood eosinophil 
counts[94]. Eosinophils are an important source of cyto­
kines and chemokines at the allergic inflammation sites[95] 
IL-5RA was methylation different with asthma[39]. IL-5RA 
encodes a receptor that selectively stimulates eosinophil 
production and activation[96]. In clinic, therapies directed 
at eosinophil may be effect in a subgroup of refractory 
asthma individuals[97].

IL-13
IL-13 encodes an immunoregulatory cytokine primarily 

by activated TH2 cells. IL-13 is involved in several stages 
of B-cell maturation and differentiation. It up-regulates 
CD23 and MHC class Ⅱ expression. It also promotes 
IgE isotype switching of B cells. IL-13 down-regulates 
macrophage activity and inhibits the production of pro-
inflammatory cytokines and chemokines. This cytokine 
is critical to the pathogenesis of allergen-induced 
asthma but works through mechanisms independent 
of IgE and eosinophils. rs20541 (Arg130Gln or IL13 + 
4257GA) in the coding region of IL-13 has been shown 
to be associated with asthma[98] and total serum IgE 
levels[99]. One GWAS study confirmed the important 
role of TH2 cytokine and antigen presentation genes in 
asthma[22].

IL-12A and IL-12RB1
IL-12 is a key cytokine that regulates innate and 
adaptive immune responses. IL-12 is composed of 
the p35 subunit and the p40 subunit (encoded by IL-
12A and by IL-12B respectively). The formation of 
the high-affinity IL-12 is led by the co-expression and 
dimerization of the IL-12RB1 and IL-12RB2 proteins. 
IL-12 activates interferon-γ (IFN-γ) production. STAT4 
regulates the response of lymphocytes to IL-12; it 
induces the expression of IL-12RB2 and transcription 
factor IRF1. IRF1 is induced by IFN-α, IFN-β, and IFN-γ. 
IRF2 can competitively inhibit the expression of genes 
induced by IRF1. The IL-12-STAT4-IFN-γ signalling 
pathway is essential for the differentiation of naive TH 

cells into TH1 cells[24].

IL-9
IL-9 was found to interact with environmental dust 
mite to increase severe asthma exacerbations in 
children[29]. IL-9 induces cell proliferation and prevents 
apoptosis through the IL-9R. IL-9R activates different 
STAT proteins. IL-9 has been shown to promote mast 
cell recruitment to the lung, increase mast cell activity, 
and enhance airway remodelling in a murine model of 
asthma and also mast cells act as the main expressers 
of IL-9 receptor in human asthmatic lung tissue[100]. IL-9 
production from bronchoalveolar lavage lymphocytes 
increases after an inhaled allergen challenge in atopic 
asthmatic patients[101] and IL-9 has been shown to up-
regulate expression of eotaxin in cultured human airway 
smooth muscle cells[102]. 

miRNAs AND THEIR REGULATIONS IN 
ASTHMA 
miRNA can act as a regulator between genetic and 
environmental factors in the pathogenesis of asthma. 
Epigenetic changes are potentially revisable and 
therapeutic modulation of miRNAs may provide oppor­
tunities to regulate or suppress allergic inflammation[103]. 
There are more than 11 miRNAs differentially expressed 
in human exhaled breath condensate from asthma 
patients compared with health subjects[104]. miRNA 
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570-3p was found to have lower level in serum and 
exhaled breath condensate from asthma patient[105]. 
miR-221, miR-146a and miRNA146b has been found to 
have altered expressions in asthmatic patients airway 
smooth muscle[42,106]. There are number of miRNAs 
down-regulated or up-regulated in nasal biopsies of 
asthma patients[107]. Here the most potential miRNAs 
that could be used as therapeutic targets for asthma are 
discussed (Table 3).

miR-1
Vascular endothelial growth factor (VEGF) is an important 
regulator of pulmonary TH2 inflammation. Lung-specific 
overexpression of VEGF can decrease miR-1 expre­
ssion in the endothelium of lung. Intranasal delivery 
of miR-1 inhibited inflammatory responses to allergen 
ovalbumin, house dust mite, and IL-13 overexpression. 
Myeloproliferative leukaemia (Mpl protein) is the receptor 
for thrombopoietin and has roles in megakaryopoiesis 
and hematopoietic stem cell differentiation[108]. VEGF 
controlled the expression of endothelial Mpl during TH2 
inflammation via the regulation of miR-1. In vivo silence 
of Mpl inhibited TH2 inflammation. It indirectly inhibited 
the expression of P-selectin in lung endothelium. These 
experiments defined a novel VEGF-miR-1-Mpl-P-selectin 
effector pathway in lung TH2 inflammation. The utility of 
miR-1 and Mpl may be potential therapeutic targets for 
asthma management[109].

miR-126a
In a mouse model, blockage of miR-126 suppressed 
the asthma phenotype, resulting in diminished TH2 
response, inflammation, airway hyper-responsiveness, 
eosinophil recruitment and mucus over secretion. In vivo 
activation of TLR4 by house dust mite antigens led to the 
induction of allergic disease, a process that is associated 
with expression of many small, noncoding miRNAs. 
miR-126 inhibition resulted in augmented expression of 
POU domain class 2 associating factor 1 that regulated 
GATA3 expression. Targeting miRNA-126a in the airways 
may lead to anti-inflammatory treatments for allergic 
asthma[110]. 

miR-221
The mass of airway smooth muscle (ASM) is increased 
as a feature of asthmatic airways. Increased miR-221 

expression was found in ASM cells from individuals with 
severe asthma. miR-221 increased ASM proliferation and 
IL-6 release. In severe asthma patients the inhibition of 
miR-221 reduced proliferation and IL-6 release. miR-221 
regulated p21(WAF1) and p27(kip1) expression levels 
and regulated the hyper-proliferation and IL-6 release of 
ASM cells from severe asthma patients[42].

miR-146a and miR-146b
miR-146a and miR-146b gene expressions were a 
pattern of induction in response to a variety of microbial 
components and pro-inflammatory cytokines. miR-146a 
is a NF-kB dependent gene. miR-146a/b were predicted 
to base-pair with sequences in the 3′UTRs of the tumor 
necrosis factor (TNF) receptor-associated factor 6 gene 
and IL-1 receptor-associated kinase 1 gene. These 
genes encode two key adapter molecules of Toll-like and 
cytokine receptors. miR-146 controls toll-like receptor 
and cytokine signalling. It works through a negative 
feedback regulation loop involving down-regulation of 
IL-1 receptor-associated kinase 1 and TNF receptor-
associated factor 6 protein levels[111].

miR-150
miR-150 down-regulated transcription factor c-Myb 
that regulates lymphocyte development. MiR-150 is 
specifically expressed in mature lymphocytes. c-Myb is a 
transcription factor controlling lymphocyte development. 
In vivo miR-150 controls c-Myb expression in a dose-
dependent manner over a narrow range of miRNA and 
c-Myb concentrations. MiR-150 and other miRNAs have 
evolved to control the expression of a few critical target 
proteins in particular cellular contexts[112]. c-Myb is an 
important regulator of Gata3[113]. c-Myb and GATA-3 
cooperatively regulate IL-13 expression as regulate 
IL-13 expression[114].

miR-155
Like miR-146a, miR-155 is one of the most frequently 
studied miRNAs in both innate and adaptive immune 
response. Mice without miR-155 displayed increased 
airway remodelling and were unable to produce the 
cytokines for immune system homeostasis and func­
tion[115,116]. miR-155 targets transcription factor c-Maf, 
which promotes TH2 cells to generate IL-4, IL-5 and 
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miR-1 Targeting Mpl to regulate TH2 inflammation and P-selectin in lung endothelium [109]
miR-126a Regulating TH2 inflammation, airway hyper-responsiveness, eosinophil recruitment [110]
miR-221 Mediator IL-6 proliferation in airway smooth muscle [42]
miR-146a  NF-kB dependent gene, control toll-like receptors and cytokine signalling [111]
miR-146b NF-kB dependent gene, control toll-like receptors and cytokine signalling [111]
miR-150 Down-regulated transcription factor c-Myb to control lymphocyte development [112]
miR-155 Targeting c-Maf to promote TH2 cells to generate IL-4, IL-5 and IL-10 [115,116] 

Table 3  The microRNAs and their potential roles in asthma

IL: Interleukin; NF-κB: Nuclear factor kappa-B.
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IL-10 cytokines.

FUTURE RESEARCH DIRECTIONS
The genetic and epigenetic approaches identified 
many novel loci and regulating elements in human 
genome. The airway epithelial expressions of some 
loci and inflammatory cytokines in asthma provide 
unique therapeutic targets. Regulating elements such 
as miRNAs also can be served as potential therapeutic 
targets for the disease. RNA sequencing, deep DNA 
sequencing, ChiP-sequencing, exome sequencing, 
transcript profiling and miRNA profiling are becoming 
more and more powerful platforms to discover more 
genetic variants, regulators of transcriptions that are 
in the pathogenesis of asthma. Research on cellular 
models, animal models and pharmacological models for 
these novel loci and regulation elements will eventually 
decipher the precise functions of these targets and it will 
provide new therapeutic means for asthma in future. 
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